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Abstract: Divide-and-conquer Bayesian methods consist of three steps:
dividing the data into smaller computationally manageable subsets, run-
ning a sampling algorithm in parallel on all the subsets, and combining
parameter draws from all the subsets. These methods use the combined
parameter draws for efficient posterior inference in massive data settings.
Existing divide-and-conquer methods have a major limitation in that their
first two steps assume that the observations are independent. We address
this problem by developing a divide-and-conquer method for Bayesian infer-
ence in parametric hidden Markov models, where the state space is known
and finite. Our main contributions are two-fold. First, we partition the data
into smaller blocks of consecutive observations and modify the likelihood
on every time block. For any time block, the posterior distribution com-
puted using the modified likelihood is such that its variance has the same
asymptotic order as that of the true posterior. Second, suppose the number
of subsets is chosen appropriately depending on the mixing properties of
the hidden Markov chain. In that case, we show that the subset posterior
distributions defined using the modified likelihood are asymptotically nor-
mal as the subset sample size tends to infinity. This result facilitates using
any existing combination algorithm in the third step. We show that the
combined posterior distribution obtained using one such algorithm is close
to the true posterior distribution in 1-Wasserstein distance under widely
used regularity assumptions. Our numerical results show that the proposed
method provides an accurate approximation of the true posterior distribu-
tion than its competitors in simulation studies and a real data analysis.

Keywords and phrases: Divide-and-conquer Bayesian inference, hidden
Markov model, Monte Carlo, massive data.
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1. Introduction

We focus on divide-and-conquer Bayesian inference in parametric hidden Markov
models with a known and discrete state space, shortened as HMMs. Let (Y1, . . . ,
Yn) be the observed data from an HMM with parameter θ, K be the number of
subsets, and m = n/K be the subset sample size, where m is assumed to be an
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integer for convenience. Bayesian inference in HMMs using Monte Carlo algo-
rithms has been studied extensively (Cappé et al., 2006; Frühwirth-Schnatter,
2006). In massive data settings, however, posterior computations are inefficient
due to multiple passes through the full data. The proposed method for divide-
and-conquer inference in HMMs addresses this problem in three steps.

1. Partition the observed data sequence into K subsets

Y[0] = ∅, Y[1] = (Y1, . . . , Ym), . . . , Y[K] = (Y(K−1)m+1, . . . , Yn). (1.1)

2. Given a prior density π(θ) and the modified conditional likelihood pθ(Y[j] |
Y[j−1]), obtain θ draws on the subsets in parallel with posterior densities

π(θ | Y[j], Y[j−1]) ∝ π(θ){pθ(Y[j] | Y[j−1])}K , j = 1, . . . ,K. (1.2)

3. Combine posterior draws of θ from all the K subsets.

We study asymptotic properties of the posterior distributions estimated in the
second and third steps, resulting in two related contributions. First, we show
that mixing properties of the hidden Markov chain determine an appropriate
choice of K and that {pθ(Y[j] | Y[j−1])}K in (1.2) accurately approximates the
true conditional likelihood as m,K tend to infinity. Second, the combined pos-
terior distribution estimated in the third step has similar asymptotic properties
as the true posterior distribution under widely used regularity assumptions.

Two major groups of Markov chain Monte Carlo algorithms exist for poste-
rior inference in HMMs, one based on data augmentation (Robert et al., 1999;
Scott, 2002) and the other on the Metropolis-Hastings algorithm (Celeux et al.,
2000; Robert et al., 2000; Cappé et al., 2003). The former and latter groups
respectively draw and average over the hidden Markov chain in every itera-
tion. The data augmentation-type algorithms use forward-backward (or Baum-
Welch) recursions, but repeated passes through the full data are time-consuming
in massive data settings (Scott, 2002; Rydén, 2008). Metropolis-Hastings-type
algorithms bypass the last problem, but the proposal tuning required for the
optimal performance outweighs their advantages in practice. A major reason for
the popularity of these algorithms is the availability of efficient software, which
faces computational bottlenecks in massive data applications (Rydén, 2008).
Unfortunately, divide-and-conquer Bayesian methods cannot be used directly
to solve the bottlenecks due to their focus on independent observations. Our
main goal is to extend the existing divide-and-conquer toolbox to HMMs.

Online methods based on stochastic approximation have been widely used
to address the inefficiency of data augmentation (Cappé and Moulines, 2009).
Online Expectation Maximization (EM) has also been extended to HMMs and is
efficient in massive data settings (Cappé, 2011; Le Corff and Fort, 2013; Kantas
et al., 2015). Online EM has also been used to develop efficient variational
Bayes algorithms, but such algorithms are known to underestimate posterior
uncertainty (Foti et al., 2014; Giordano et al., 2018). Another developing area
of research leverages piece-wise-deterministic Markov process (Goldman and
Singh, 2021). These algorithms are scalable and guarantee convergence to a
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general target, but they also require tuning for optimal performance in HMMs.
Any such algorithm, which is properly tuned, can be embedded in the second
step of the proposed method for drawing parameters on the subsets using the
modified likelihood and posterior density defined in (1.2).

Particle Markov chain Monte Carlo methods are widely used for achieving
efficient posterior inference in HMMs, but a majority of these methods use
the full data sequence (Andrieu et al., 2010; Chopin and Singh, 2015; Aicher
et al., 2019). Notable exceptions are the particle smoothing methods developed
in Chan et al. (2016) and Ding and Gandy (2018). They divide the observed
data sequence into smaller time blocks and estimate the parameters by applying
a particle filter separately on each time block. More importantly, Chan et al.
(2016) develop an unbiased estimate of the true likelihood and parallelize the
sequential Monte Carlo algorithm over the time blocks for enhanced computa-
tional efficiency. These ideas are similar to the first two steps of our approach;
however, the main focus of Chan et al. (2016) is in optimal parameter esti-
mation, whereas our goal is to approximate the true posterior distribution of
the HMM parameters using the divide-and-conquer technique and justify the
asymptotic optimality of the estimated posterior.

A variety of divide-and-conquer methods exist for efficient posterior infer-
ence using Monte Carlo algorithms (Scott et al., 2016; Li et al., 2017; Minsker
et al., 2017; Srivastava et al., 2018; Robert et al., 2018; Xue and Liang, 2019;
Jordan et al., 2019; Wu and Robert, 2019; Shyamalkumar and Srivastava, 2022;
Guhaniyogi et al., 2022). The combination steps in these methods are fairly gen-
eral and their theoretical guarantees mainly rely on asymptotic normality of the
subset posterior distributions. On the other hand, their first two steps assume
that the observations are independent, so they are inapplicable to HMMs. The
major difficulty lies in extending the second step to dependent observations,
which defines the posterior density on any subset using a quasi-likelihood that
raises the subset likelihood to a power of K. This modification compensates for
the missing (1 − 1/K)-fraction of the full data on any subset (Minsker et al.,
2014). The generalization of this idea to dependent data is unclear and we are
unaware of any extensions for HMMs similar to (1.2).

Our first major contribution is the definition of subset posterior distribution
for divide-and-conquer Bayesian inference in HMMs. The first step divides the
observed data into K non-overlapping time blocks Y[1], . . . , Y[K] defined in (1.1).
For j = 1, . . . ,K, the second step defines the conditional likelihood of jth subset,
which is denoted as pθ(Y[j] | Y[j−1]) in (1.2), by conditioning only on Y[j−1]
instead of Y[1], . . . , Y[j−1]. The modified conditional likelihood is raised to a
power of K that determines the quasi-likelihood for defining the (quasi) subset
posterior density in (1.2). The quasi-likelihood replaces the true likelihood in
the original Monte Carlo algorithm for posterior inference on a subset and is
easily calculated using a simple modification of the forward-backward recursions.
The implementation requires access to (2/K)-fraction of the full data, which is
significantly more efficient than using the full data when m � n.

Our modified conditional likelihood on a subset is a type of composite like-
lihood specific to HMMs, where the composite marginal likelihood replaces the
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true likelihood (Rydén, 1994, 1997; Andrieu et al., 2005; Pauli et al., 2011). The
likelihood in (1.2) is a type of “fixed-lag conditional likelihood approximation”,
where the lag corresponds to the size of a time block. It also corresponds to
an mth order antedependence model likelihood (Zimmerman and Núñez-Antón,
2009). The proposed method preserves the dependence on the historical data
by computing the fixed-lag conditional likelihood using only two subsets as an
alternative to the true conditional likelihood, which requires access to the full
data. Based on this idea, variations of the proposed method simply replace
pθ(Y[j] | Y[j−1]) in (1.2) by any composite likelihood in the second step. Specif-
ically, if the subsets are large enough and the dependence is weak, then the
marginal likelihood can be used in (1.2) for subset posterior computation. We
choose pθ(Y[j] | Y[j−1]) as the conditional likelihood on subset j because it is
readily computed using forward-backward recursions.

Our second major contribution is to show that the K subset posterior distri-
butions defined in (1.2) are asymptotically normal as m and K tend to infinity.
For independent observations, this is the first step in justifying asymptotic nor-
mality of the combined posterior distribution; see, for example, Li et al. (2017)
and Xue and Liang (2019). This step is nontrivial in our case due to the depen-
dence within and between the K time blocks. We show that if the growth of K is
chosen appropriately depending on the mixing properties of the hidden Markov
chain, then all the subset posterior distributions are asymptotically normal and
their covariance matrices have the same asymptotic order as that of the true
posterior distribution. Such results that quantify the growth of K on a mixing
property are missing in the literature on divide-and-conquer Bayesian methods.

The asymptotic normality of subset posterior distributions simplifies the third
step. First, it implies that any existing combination algorithm can be used to
combine parameter draws from all the subsets. We choose the simplest one based
on the Double Parallel Monte Carlo algorithm, where the combined parame-
ter draw is a weighted average of the subset posterior draws (Xue and Liang,
2019). Second, the regularity assumptions required for justifying the asymptotic
normality of subset posterior distributions extend naturally to the third step.
Specifically, we need only an extra assumption on the weights used in the com-
bination step for showing the asymptotic normality of the combined posterior
distribution as m and K tend to infinity. Finally, posterior distribution esti-
mated in the third step is called the block filtered posterior distribution due to
the importance of prediction filter in the definition of subset posterior in (1.2).

The posterior distribution of parameter in HMMs is asymptotically nor-
mal under usual regularity assumptions (Bickel et al., 1998; De Gunst and
Shcherbakova, 2008; Gassiat et al., 2014; Vernet, 2015b). We extend these results
to divide-and-conquer Bayesian inference in that the block filtered posterior dis-
tribution is asymptotically normal if K and m are chosen properly depending on
mixing property of the hidden Markov chain. Our regularity assumptions and
convergence rates are natural extensions of existing results in that they reduce
to those in De Gunst and Shcherbakova (2008) if K = 1 and to those in Li et al.
(2017) if the data are independent. The additional set of regularity assumptions
are required for guaranteeing the accuracy of the subset posterior distribution.
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Finally, we identify conditions under which inference obtained using the true
and block filtered posterior distributions agree asymptotically.

2. Divide-and-conquer Bayesian inference in HMMs

2.1. Setup and background

An HMM is a discrete-time stochastic process {(Xt, Yt), t ≥ 1}, where the Y -
variables are observed and X-variables are latent. In our setup, HMMs satisfy
three properties. First, {Xt} is a time-homogeneous Markov chain with a finite
state-space X = {1, . . . , S}, where S is known, and Yt takes values in a general
space Y for every t. Second, {Yt, t ≥ 1} are conditionally independent given
{Xt, t ≥ 1}. Third, the distribution of Yt given {Xu, u ≥ 1} equals the distri-
bution of Yt given Xt. The initial distribution and transition probability matrix
of {Xt} are denoted as r(·) and Q, respectively, where r(·) is stationary with
respect to Q, P(X1 = a) = r(a) for a ∈ X , and

Qab = q(a, b), q(a, b) = P(Xt+1 = b | Xt = a), a, b ∈ X , t ≥ 1. (2.1)

The conditional distributions of Yt given Xt (t = 1, . . . , n) belong to a common
family. For any x ∈ X , the conditional distribution of Yt given Xt = x is G(· | x)
and has density g(· | x) with respect to a σ-finite measure μ on Y .

We adopt a widely used setup for studying the asymptotic properties of
HMMs (De Gunst and Shcherbakova, 2008; Bickel et al., 1998; Leroux, 1992).
Let Θ ⊂ Rd be the parameter space of fixed dimension d ∈ N, the dependence
of r(·), q(·, ·), g(· | x) on a parameter θ ∈ Θ be denoted as rθ(·), qθ(·, ·), gθ(· |
x), and θ0 ∈ Θ be the true parameter value. We use the shorthand Y n

m for
(Ym, . . . , Yn), where 1 ≤ m ≤ n. Denote the sample size as n, the observed
data as (Y1, . . . , Yn) ≡ Y n

1 , the latent data as (X1, . . . , Xn) ≡ Xn
1 , and the

augmented data as (Xn
1 , Y

n
1 ). The joint density of (Xn

1 , Y
n
1 ) with respect to

(counting measure)n × μn and marginal density of Y n
1 with respect to μn are

pθ(Xn
1 , Y

n
1 ) = rθ(X1)

n−1∏
t=1

qθ(Xt, Xt+1)
n∏

t=1
gθ(Yt | Xt),

pθ(Y n
1 ) =

∑
Xn

1 ∈Xn

pθ(Xn
1 , Y

n
1 ), θ ∈ Θ. (2.2)

The true density of the observed data is pθ0(Y n
1 ) for some θ0 ∈ Θ. Given a prior

distribution on Θ with density π, many Monte Carlo algorithms are available
for posterior inference on θ. When n is large, most of them are computationally
expensive due to the repeated passes through the full data in every iteration.

2.2. Partitioning scheme

The first step in divide-and-conquer Bayesian inference partitions the full data
into smaller subsets. A widespread practice is to randomly divide the samples
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into K subsets, but it fails to preserve the dependence structure of HMM on
any subset. We instead partition the full data into K non-overlapping blocks of
consecutive observations starting from Y1, where each block has size m = n/K
and m is assumed to be an integer for convenience. Denote the jth block of
observation with sample size m as Y jm

(j−1)m+1 and the latent X-variables as
Xjm

(j−1)m+1 (j = 1, . . . ,K). The K observation blocks constitute the K partitions
of Y n

1 in that Y n
1 = (Y m

1 , . . . , Y n
(K−1)m+1). The choice of K (or m) depends on

n and the mixing properties of the hidden Markov chain. It plays a crucial
in asymptotically valid inference on any subset relative to the true posterior
distribution; see Theorem 3.1 in Section 3.2 for the details.

After partitioning the data, the likelihoods of θ on the first and jth subsets
(j = 2, . . . ,K) conditional on the preceding subsets are

pθ(Y m
1 ) =

∑
X1∈X

pθ(Y m
1 | X1) pθ(X1), (2.3)

pθ(Y jm
(j−1)m+1 | Y (j−1)m

1 )

=
∑

X(j−1)m+1

pθ(Y jm
(j−1)m+1 | X(j−1)m+1)pθ(X(j−1)m+1 | Y (j−1)m

1 ),

respectively, where pθ(X(j−1)m+1 | Y (j−1)m
1 ) is the prediction filter of X(j−1)m+1

given the previous (j−1) subset blocks and pθ(X1) equals the stationary distri-
bution rθ(X1). For every j, the prediction filter is computed in O(n) operations
using forward filtering (or Baum-Welch algorithm) if we have access to the
full data. Unfortunately, no subset has access to the full data in the divide-
and-conquer setup. Further, using Y jm

(j−1)m+1 instead of Y n
1 for inference on θ

implies that the subset j likelihood ignores the dependence on Y
(j−1)m
1 . We next

address both problems by modifying the subset j likelihood in (2.3) using the
Kth power of one-block conditional likelihood {pθ(Y jm

(j−1)m+1 | Y (j−1)m
(j−2)m+1)}K

that requires accessing only (2/K)-fraction of the full data.

2.3. Subset sampling scheme

In the divide-and-conquer setup, any chosen sampler requires modification of
the subset likelihood because every subset posterior conditions on an (1/K)-
fraction of the full data. A popular solution to this problem is raising the subset
likelihood to the power of K. This is equivalent to replicating the data on a
subset K-times, and it compensates for the missing fraction of data, resulting
in uncertainty estimates of parameters that are asymptotically equivalent to
those obtained using the true posterior distribution (Minsker et al., 2014). The
likelihood modification is called stochastic approximation and has been widely
used in parametric models for independent data (Srivastava et al., 2015; Li
et al., 2017; Xue and Liang, 2019). The dependence induced by the hidden
Markov chain implies that stochastic approximation developed for independent
data is inapplicable for divide-and-conquer Bayesian inference in HMMs.
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One of our main contributions is to extend stochastic approximation so that
it accounts for dependence between subsets. The prediction filter pθ(X(j−1)m+1 |
Y

(j−1)m
1 ) in (2.3) is geometrically ergodic and rapidly converges to its martin-

gale limit as m tends to infinity (Bickel et al., 1998). Motivated by this result and
fixed-lag smoothing methods, we define the jth approximate “prediction filter”
by conditioning only on the (j−1)th subset; that is, pθ(X(j−1)m+1 | Y (j−1)m

(j−2)m+1)
replaces pθ(X(j−1)m+1 | Y (j−1)m

1 ) in (2.3). The likelihoods in (2.3) are accord-
ingly modified using this approximate prediction filter to yield the one-block
conditional likelihood of θ on subset j (j = 2, . . . ,K) as

pθ(Y jm
(j−1)m+1 | Y (j−1)m

(j−2)m+1)=
∑

X(j−1)m+1∈X
pθ(Y jm

(j−1)m+1 | X(j−1)m+1)×

pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1). (2.4)

To calculate the one-block conditional likelihood in (2.4), we use pθ(Y jm
(j−1)m+1 |

X(j−1)m+1) from (2.2) and estimate the prediction filter pθ(X(j−1)m+1 |Y (j−1)m
(j−2)m+1)

using forward-backward recursions of the Baum–Welch algorithm. The one-
block conditional likelihood accurately approximates the true conditional like-
lihood in (2.3) for every θ in total variation distance as m tends to infinity; see
Proposition 3.1 in Section 3 for details. The one-block conditional likelihood
in (2.4) is also efficiently computed in O(m) operations using forward-backward
recursions and requires access to only 2m observations instead of n required for
computing the true likelihood in (2.3), leading to computational gains if m � n.

The jth subset posterior distribution is defined using the jth one-block con-
ditional likelihood. Specifically, given a prior distribution Π on Θ with density
π defined with respect to Lebesgue measure, the density of the posterior distri-
bution of θ given the jth subset is defined as

π̃m(θ | Y jm
(j−1)m+1) = eKwj(θ)π(θ)∫

Θ eKwj(θ)π(θ)dθ
, (2.5)

where w1(θ) = log pθ(Y m
1 ) and wj(θ) = log pθ(Y jm

(j−1)m+1 | Y (j−1)m
(j−2)m+1) for j =

2, . . . ,K. The quasi-likelihoods used in (2.5) are the Kth power of the one-block
conditional likelihoods. They account for the dependence of a subset on their
immediately preceding time block and are raised to a power of K to compensate
for the missing (1 − 1/K)-fraction of the data. The latter idea is also used
in the stochastic approximation for independent data. Indeed, if the Y n

1 are
independent, then (2.5) recovers the definition of subset posterior distributions
in divide-and-conquer Bayesian inference for independent data; therefore, our
proposal in (2.5) generalizes stochastic approximation to dependent data. The
jth one-block conditional likelihood is also a composite likelihood in that it
approximates the true conditional likelihood in (2.3) without passing through
the full data. Other variations of π̃m(θ | Y jm

(j−1)m+1) are obtained by replacing
wj(θ) in (2.5) with other composite likelihoods that are used for inference in
HMMs, including those in Rydén (1994, 1997); Andrieu et al. (2005).



902 C. Wang and S. Srivastava

The asymptotically normality of π̃m(θ | Y jm
(j−1)m+1) in (2.5) does not follow

from existing results. The one-block conditional likelihood approximates the
true conditional likelihood in (2.4) and is raised by a power K in (2.5). Unlike
the common asymptotic setup where K = 1 and n = m, K and m in our case
simultaneously tend to infinity and n = mK (De Gunst and Shcherbakova,
2008; Vernet, 2015b,a). A crucial step in establishing the asymptotic normality
of the block filtered posterior distribution is to show that π̃m(θ | Y jm

(j−1)m+1)
is asymptotically normal. We establish that if the growth rate of K is chosen
appropriately depending on the mixing properties of the prediction filter and
K,m tend to infinity, then the subset posterior distributions are asymptotically
normal with covariance matrices having the same asymptotic order as that of
true posterior distribution; see Theorem 3.1 in Section 3 for details.

Any Monte Carlo algorithm can now be used for drawing θ using (2.5) on all
the K subsets in parallel. Let θ

(t)
(j) be the tth draw of θ on subset j and T be

the number of post-burn-in draws collected on any subset. Motivated from the
asymptotic normality of subset posterior distributions, the next section develops
a combination scheme that approximates the true posterior distribution using a
mixture with K components, where the draws from the jth mixture component
are obtained by appropriately transforming, centering, and scaling the subsets
posterior draws {θ(t)

(j)}Tt=1 for j = 1, . . . ,K.

2.4. Combination scheme

The final step of a divide-and-conquer Bayesian approach combines parame-
ter draws from all the subsets. Our combination scheme is an extension of the
Double-Parallel Monte Carlo algorithm (Xue and Liang, 2019), which is compu-
tationally simple. It uses a global centering vector θ̃ ∈ Rd and a d×d symmetric
positive definite scaling matrix Σ̃. Let θ̂j be the maximum likelihood estimator
and Σj be the posterior covariance matrix of θ on subset j. Then, we approxi-
mate the density of the true posterior distribution using

π̃n(θ | Y n
1 )= 1

K

K∑
j=1

det(Σj)1/2

det(Σ̃)1/2
π̃m

{
Σ1/2

j Σ̃−1/2(θ−θ̃)+θ̂j | Y jm
(j−1)m+1

}
, θ ∈ Θ,

(2.6)

where π̃m(θ|Y jm
(j−1)m+1) is the jth subset posterior density defined in (2.5) and

π̃n(θ | Y n
1 ) is a mixture of the K subset posterior densities. The distribution that

has density π̃n(θ | Y n
1 ) in (2.6) is called the block filtered posterior distribution.

Our combination scheme in (2.6) depends on the choice of (θ̃, Σ̃), so we denote
it as COMB(θ̃, Σ̃).

Let {θ(t)
(j)}Tt=1 be the parameter draws on subset j for j = 1, . . . ,K. The

application of COMB(θ̃, Σ̃) has two steps and yields θ draws from block filtered
posterior distribution as

θ̃
(t)
(j) = θ̃ + Σ̃1/2

{
Σ−1/2

j (θ(t)
(j) − θ̂j)

}
, j = 1, . . . ,K; t = 1, . . . , T, (2.7)
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where the θ draws on subset j are centered and scaled by (θ̂j ,Σj) for j =
1, . . . ,K and then re-centered and re-scaled by (θ̃, Σ̃). The parameter draws
θ̃
(t)
(j) in (2.7) are used as the computationally efficient alternative to draws from

the true posterior distribution for inference on θ. If the centering and scaling
parameters (θ̂j ,Σj)Kj=1 is unavailable, then we use their Monte Carlo estimates
(μθ(j) ,Σθ(j))Kj=1 for obtaining the θ draws as

μθ(j) = 1
T

T∑
t=1

θ
(t)
(j), Σθ(j) = 1

T

T∑
t=1

(
θ
(t)
(j) − μθ(j)

)(
θ
(t)
(j) − μθ(j)

)T

, j=1, . . . ,K,

(2.8)

which reduces to a version of the Double-Parallel Monte Carlo algorithm.
Many existing combination algorithms are special cases of (2.7) with different

choices of (θ̃, Σ̃). Let Id be a d× d identity matrix and A1/2 be the square root
of a symmetric positive definite matrix A. Then, three candidates for (θ̃, Σ̃) are

(μ, Id×d), (μ, Σ̌), (μ,Σ), μ = 1
K

K∑
j=1

μθ(j) ,

Σ̌1/2 = 1
K

K∑
j=1

Σ1/2
j , Σ = 1

K

K∑
j=1

Σj . (2.9)

They lead to three combination algorithms COMB(μ, Id×d), COMB(μ, Σ̌), and
COMB(μ,Σ), where the first two have been proposed in Xue and Liang (2019)
and Srivastava and Xu (2021), respectively. In Section 4 of experiments, we draw
θ from the block filtered posterior distribution using COMB(θ̂,Σ) in an HMM
with Gaussian emission densities, where θ̂ is the maximum likelihood estimator
using the full data and EM (or Baum-Welch) algorithm.

3. Theoretical properties

3.1. Setup

We introduce some notation required for stating the assumptions of our the-
oretical setup. Given n = mK observations Y n

1 ∈ Yn, the first subset log-
likelihood is Lm(θ) = log pθ(Y m

1 ) and the jth subset log-likelihood is Ljm(θ) =
log pθ(Y jm

(j−1)m+1) for θ ∈ Θ, j = 2, . . . ,K, where pθ is defined in (2.2) in terms
of rθ, Qθ, and gθ. Let θ0 ∈ Θ be the true parameter value, P (n)

θ0
be the law of

Y n
1 , {P (n)

θ : θ ∈ Θ} be the family of probability measures on Yn such that P
(n)
θ

has density pθ with respect to μn, and Π be the prior distribution on Θ with
density π(θ) with respect to the Lebesgue measure on R

d. Denote the Euclidean
norm as ‖ · ‖2, P (n)

θ0
as P0, P (n)

θ as Pθ, expectation with respect to P0 and Pθ

as E0 and Eθ, respectively, and the first, second, and third derivative of Ljm(θ)
with respect to θ as L′

jm(θ), L′′
jm(θ), and L′′′

jm(θ), respectively, for j = 1, . . . ,K.
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The theoretical guarantees are based on the following assumptions on a family
of HMM models {P (n)

θ , θ ∈ Θ} and the prior distribution Π.

(A1) (Existence of an envelope function.) There exists a constant δ0 > 0, such
that for any m ≥ 1, Lm(θ) is three times differentiable with respect to θ in
a neighborhood Bδ0(θ0) = {θ ∈ Θ : ‖θ−θ0‖2 ≤ δ0}. For any (z1, . . . , zm) ∈
Ym, there exists an envelope function M(z1, . . . , zm) that satisfies

sup
θ∈Bδ0 (θ0)

∣∣∣∣d log pθ(z1, . . . , zm)
dθl1

∣∣∣∣ ≤ M(z1, . . . , zm),

sup
θ∈Bδ0 (θ0)

∣∣∣∣d2 log pθ(z1, . . . , zm)
dθl1dθl2

∣∣∣∣ ≤ M(z1, . . . , zm),

sup
θ∈Bδ0 (θ0)

∣∣∣∣d3 log pθ(z1, . . . , zm)
dθl1dθl2dθl3

∣∣∣∣ ≤ M(z1, . . . , zm), l1, l2, l3 = 1, . . . , d,

and 1
mM(Y1, . . . , Ym) → CM P0-almost surely as m → ∞ for a constant

CM > 0.
(A2) (Law of large numbers for the log-likelihood function.) For any θ ∈ Θ and

j ∈ {1, . . . ,K}, the normalized jth subset log-likelihood m−1Ljm(θ) →
L(θ) P0-almost surely as m → ∞, where L(θ) is a continuous deterministic
function with a unique global maximum at θ0. The convergence is uniform
over any compact subsets of Θ.

(A3) (Central limit theorem for the score function at the true parameter.) For
any j ∈ {1, . . . ,K}, the normalized score function evaluated at θ0 on jth
subset, m−1/2L′

jm(θ0), P0-weakly converges to Nd(0, I0) as m → ∞, where
the I0 is non-singular and defined as the Fisher information matrix of the
model evaluated at θ0.

(A4) (Law of large numbers for the observed information matrix.) If θ∗m is any
stochastic sequence in Θ such that θ∗m → θ0 P0-almost surely as m → ∞,
then −m−1L′′

jm(θ∗m) → I0 in P0-probability as m → ∞. Furthermore,
assume that −m−1L′′

jm(θ) is positive definite with eigenvalues uniformly
bounded from below and above by constants for all θ ∈ Bδ0(θ0), every
j = 1, . . . ,K, all values of Y jm

(j−1)m+1 ∈ Ym, and sufficiently large m.
(A5) The parameter space Θ ⊂ R

d is compact with diam(Θ) := sup
θ1,θ2∈Θ

‖θ1 −

θ2‖2 < ∞ and θ0 as an interior point.
(A6) The prior density π(θ) is positive and continuous for all θ ∈ Θ.
(A7) For θ ∈ Θ, the transition probability matrix {Qθ(a, b)} (a, b ∈ {1, . . . , S})

is ergodic.

Our regularity assumptions are commonly used for proving Bernstein-von
Mises theorem in parametric models. Assumptions (A2)–(A6) are identical to
those used in Theorem 2.1 of De Gunst and Shcherbakova (2008) if we set
m = n with K = 1. Assumption (A1) is slightly stronger than the requirement
of continuous second derivatives of the log-likelihood function in De Gunst and
Shcherbakova (2008). We require the existence of an envelope function to con-
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trol the growth of the remained term in the third order Taylor expansion of
Ljm(θ) for every j after stochastic approximation. For the same reasons, Li
et al. (2017) employ an assumption that is equivalent to Assumption (A1). As-
sumptions (A5)–(A6) ensure that the prior density π(θ) is well-behaved on com-
pact set Θ. Assumptions (A1)–(A6) are the extensions of assumptions required
for proving the Bernstein-von Mises theorem for independent and identically
distributed data (Lehmann and Casella, 1998, Theorem 8.2, Chapter 6). As-
sumption (A7) implies that for any θ ∈ Θ, there exists a positive integer v ≥ 1
such that every element of the v-step transition matrix Qv

θ is positive. We as-
sume that v = 1 and ε := infa,b∈X ,θ∈Θ Qθ(a, b) > 0. The ergodicity of {Xt} in
Assumption (A7) implies that {Yt} is stationary and ergodic under Pθ (Leroux,
1992, Lemma 1). The equivalents of Assumptions (A1)–(A7) are also used for
proving the asymptotic normality of the maximum likelihood estimator of θ0 in
HMMs (Bickel et al., 1998).

The definition of jth subset (j = 2, . . . ,K) posterior distribution in (2.5)
uses the jth quasi-likelihood with approximate prediction filter conditioning
only on the (j − 1)th subset. Due to this approximation, we need the following
assumptions to guarantee the consistency of the jth subset posterior distribution
defined using the jth quasi-likelihood.

(A8) (i) For θ ∈ Θ

max
a∈X

∫
Y

{
max
b∈X

| log gθ(y|b)|
}
gθ0(y|a)μ(dy) < ∞.

(ii) Let hθ(y) = maxa,b∈X
gθ(y|a)
gθ(y|b) ≥ 1. There exists a constant M ≥ 1

such that P0-almost surely,

sup
θ∈Θ

hθ(Y1) < M.

(iii) (Convergence of prediction filter.) For θ ∈ Θ, define μθ(y) = {1 +
(S − 1)ε−2hθ(y)}−1 such that P0-almost surely,

‖pθ(Xm+1|Y m
1 ) − rθ(Xm+1)‖TV ≤ S

m−1∏
i=2

exp{−2μθ(Yi)} ≤ Sρm−2,

where the mixing coefficient

ρ := e
− 2

1+(S−1)ε−2M (3.1)

and ‖dP−dQ ‖TV is the total variation distance between measures
P and Q.

Assumptions (A8)(i)–(iii) are based on Le Gland and Mevel (2000, Theorem
2.1). They are global over Θ and imply that the prediction filters, hence the
subset log-likelihood functions, forget the condition of initial distribution expo-
nentially fast. Among them, (A8)(ii) is slightly stronger as we require hθ(Y1) to
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be bounded P0-almost surely. Assumption (A8) (iii) implies that pθ(Xm+1 | Y m
1 )

converges to rθ(Xm+1) geometrically with mixing coefficient ρ, where the mar-
tingale convergence of pθ(Xm+1 | Y m

1 ) and functions μθ(Yi) are discussed in
Bickel et al. (1998, Lemma 5). Importantly, (iii) is stronger than the assump-
tions of Bickel et al. (1998) in that we assume that as m tends to infinity, the
martingale limit of pθ(Xm+1 | Y m

1 ) is rθ instead of pθ(· | Y ∞
1 ). The bound on the

mixing coefficient ρ in (3.1) is not tight. Specifically, a referee has pointed out
that when ε = 1/S or M = 1, the HMM sequence degenerates to an independent
sequence but the bound in (3.1), hence ρ, fails to reflect this scenario.

The following proposition highlights the importance of Assumption (A8). It
shows that the jth approximate prediction filter converges to the true prediction
filter (j = 2, . . . ,K), which implies that the quasi-likelihood in (2.4) provides
an accurate approximation of the true likelihood in (2.3) as m tends to infinity.

Proposition 3.1. If Assumption (A8) holds, then for j = 2, . . . ,K and θ ∈ Θ,
as m → ∞,

‖pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1) − pθ(X(j−1)m+1 | Y (j−1)m

1 )‖TV → 0

P0-almost surely.

3.2. Main results

We now present two theorems stating theoretical properties of the subset and
block filtered posterior distributions. First, the following theorem specifies the
asymptotic order of K depending on the mixing coefficient ρ and other regular-
ity assumptions such that the limiting distributions of the K subset posterior
distributions are normal as m and K tend to infinity.

Theorem 3.1. Let the number of subsets K be a sequence Km → ∞ as m → ∞
and n = mKm. For j = 1, . . . ,Km, denote the maximum likelihood estimator of
θ as θ̂j that solves L′

jm(θ) = 0, define the local parameter hj =
√
n(θ− θ̂j), and

denote the distribution of hj implied by the jth subset posterior density in (2.5)
as Πhj

m (· | Y jm
(j−1)m+1). If Assumptions (A1)–(A7) hold, then

(i) as m → ∞,

‖Πh1
m (· | Y m

1 ) −Nd(0, I−1
0 )‖TV → 0 in P0 -probability ; (3.2)

(ii) In additional, if Assumption (A8) also holds and the number of subsets
satisfies Km = o(ρ−m) for ρ defined in (3.1), then for j ≥ 2, as m → ∞,

‖Πhj
m (· | Y jm

(j−1)m+1) −Nd(0, I−1
0 )‖TV → 0 in P0 -probability, (3.3)

where Km = o(ρ−m) denotes the sequence satisfying Kmρm → 0 as m → ∞ and
Nd(0, I−1

0 ) is a d-variate normal distribution with zero mean and the inverse of
Fisher information matrix I−1

0 as the covariance matrix.
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Theorem 3.1 shows that the credible intervals and confidence intervals based
on the jth subset posterior density (2.5) and maximum likelihood estimator on
jth subset, respectively, are asymptotically equivalent (j = 1, . . . ,K). We also
establish that K = o(ρ−m) is rate-optimal in that the limiting distribution of
subset posterior distributions are normal. This result is required for establishing
that the combined and true posterior distributions are asymptotically close in
total variation distance. The upper bound on the growth of K immediately yields
a lower bound on the growth of the subset size because m = n/K. For weakly
dependent HMMs with ρ � 1, the number of K can be chosen to be large and
m will be relatively small. On the other hand, for strongly dependent HMMs
with ρ ≈ 1, m has to be large to guarantee accurate estimation of the subset
posterior distributions, which results in a relatively small K. The theoretical
guidance for choosing K = o(ρ−m) in Theorem (ii) assumes that n,m,K tend
to infinity, but in practice unlimited computing resources are unavailable and
K cannot exceed the total number processors used, say Kmax. In this case, the
number of subsets is the minimum of Kmax and K = o(ρ−m).

The mixing coefficient ρ is unknown in practice and the relation K = o(ρ−m)
is asymptotic, implying that Theorem 3.1 (ii) cannot be used directly to choose
K. This is a common problem in divide-and-conquer methods, where the choice
of K depends on unknown parameters. To bypass this problem, we suggest
a heuristic of choosing K ∈ {logn, n1/4, n1/3, n1/2} and using the value with
maximum accuracy. In our numerical results, we have observed that if K ≈ logn,
then accuracy is very high but it comes at the cost of small run-time gains.
The accuracy decreases slightly as K increases but the gain in run-times are
significant. The optimal choice of K balances this accuracy-efficiency trade-off.
If a crude estimate of ρ is available, then the theorem can be used with the
heuristic. For a strongly dependent HMM sequence with ρ ≈ 1, K cannot be
too large; therefore, choosing K = log(n) is better. On the other hand, K can
be chosen at a polynomial order of n for a weakly dependent HMM sequence.
We evaluate this heuristic in Section 4.

Let Π̃θ
m(· | Y jm

(j−1)m+1) denote the jth subset posterior distribution of θ with
density defined in (2.5). Then, the invariance of the total variation distance
implies that as m → ∞,

‖Π̃θ
m(· | Y jm

(j−1)m+1) −Nd(θ̂j , (nI0)−1)‖TV → 0 in P0 -probability for j ≥ 1.
(3.4)

If K = 1, Theorem 3.1 recovers the usual Bernstein-von Mises theorem for
the true posterior distribution (De Gunst and Shcherbakova, 2008). Compar-
ing the limiting distributions of subset posterior distribution and true posterior
distribution, we observe that they are both asymptotically d-variate normal
distributions with the same covariance matrix (nI0)−1, but with different max-
imum likelihood estimator as mean parameters. Based on this observation, the
proposed combined posterior distribution, block filtered posterior distribution,
is a mixture model of subset posterior distribution after appropriate re-scaling
and re-centering.
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Our next result establishes conditions under which the block filtered pos-
terior distribution converges to the true posterior distribution at an optimal
parametric rate as both m and K tend to infinity. The first step in this process
is to show the asymptotic normality of the block filtered posterior distribution.
To this end, we need the following assumption on the re-scaling matrix Σ̃ and
subset posterior covariance matrices.

(A9) Let Σj be the covariance matrix of jth subset posterior distribution of
θ (j = 1, . . . ,K) and the rescaling matrix Σ̃ be a deterministic positive
symmetric matrix. As m → ∞,

‖(nΣ̃)−1/2 − I
1/2
0 ‖2

F → 0, E0 ‖(nΣj)1/2 − I
−1/2
0 ‖2

F → 0, (3.5)

uniformly for j = 1, . . . ,K, where ‖ · ‖F is the Frobenius norm.

Assumption (A9) implies that (nΣj)1/2 is close to I
−1/2
0 and that the square

Frobenius norm of their difference converges to zero in E0-expectation. Fur-
thermore, (nΣ̃)−1/2 is close to I

1/2
0 and the square Frobenius norm of their

difference converges to zero. This ensures that the limiting covariance matri-
ces of block filtered posterior and true posterior distributions coincide. For
two integrable measures ν1, ν2 on Θ, the 1-Wasserstein distance is defined as
W1(ν1, ν2) = sup‖f‖Lip≤1

{∫
Θ f(θ)d(ν1 − ν2)(θ), f : Θ → R is continuous

}
. If we

choose Σ̃ satisfying (3.5), the following theorem states that the block filtered
posterior distribution is asymptotically normal and the 1-Wasserstein distance
between the block filtered and true posterior distributions converges to 0 in
P0-probability, with rate determined by the closeness between the re-centering
vector and the maximum likelihood estimator of θ.

Theorem 3.2. Let m,Km satisfy the conditions in Theorem 3.1 and n = mKm,
Π̃θ

n(· | Y n
1 ) be the block filtered posterior distribution of θ given Y n

1 with density
defined in (2.7) based on the combination scheme COMB(θ̃, Σ̃), and Π̃h

n(· | Y n
1 )

be the distribution of h =
√
n(θ − θ̃) implied by Π̃θ

n(· | Y n
1 ). If Assumptions

(A1)–(A9) hold, then

(i) as m → ∞,

‖Π̃h
n(· | Y n

1 ) −Nd(0, I−1
0 )‖TV → 0 in P0 -probability. (3.6)

(ii) Moreover, let θ̂ be the maximum likelihood estimator of θ that solves L′
n(θ)=

0 and Πθ
n(· | Y n

1 ) be the true posterior distribution of θ given Y n
1 . Then,

up to a negligible term in P0-probability,

n−1/2diam(Θ)−1Δ2 ≤
√
nW1{Π̃θ

n(· | Y n
1 ),Πθ

n(· | Y n
1 )} ≤ Δ, (3.7)

where Δ =
√
n‖θ̃ − θ̂‖2.

Theorem 3.2(i) shows that the block filtered posterior distribution defined by
COMB(θ̃, Σ̃) is asymptotically normal with mean parameter θ̃ and covariance
matrix (nI0)−1. Theorem 3.2(ii) specifies that the approximation accuracy of
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block filtered posterior is determined by the asymptotic order of Δ =
√
n‖θ̃−θ̂‖2.

If Δ = oP0(1), then the credible regions obtained using the block filtered and true
posterior distributions match up to o(n−1/2) in P0-probability as m,K tend to
infinity, and the W1 distance between them converges to zero in P0-probability
at the optimal parametric rate n1/2. The maximum likelihood estimator θ̂ in the
theorem can be obtained efficiently using online EM (Cappé, 2011) or forward-
backward recursions (Cappé et al., 2006). In our experiments, we compute θ̂
using the latter approach to attain the optimal parametric rate.

The optimal rate can also be achieved by setting θ̃ to be any root-n consistent
estimator of θ0. This includes the maximum split data likelihood estimator of θ0
in Rydén (1994) and related composite likelihood estimators of θ0. If estimating
a root-n consistent estimator of θ0 is time consuming, then by setting θ̃ = θ̂j we
have Δ = oP0(

√
n
m ). In this case, Theorem 3.2(ii) shows that the W1 distance

between the block filtered posterior distribution and true posterior distribution
converges to zero in P0-probability with sub-optimal rate m1/2.

Consider the degenerate case in which elements of the hidden chain {Xt}nt=1
are independent. The complete data {Xt, Yt}nt=1 are samples from a mixture
model with S components, where Xt is the mixture component membership at
time t. The total variance distance between prediction filters and initial dis-
tributions is exactly zero, which corresponds to a degenerate case of ρ = 0 in
Assumption (A8). In this case, the proof of Theorem 3.1 implies that the sub-
set posterior inference using quasi-likelihood with prediction filter is equivalent
to that using quasi-likelihood with initial distribution, and this equivalence re-
moves the rate-optimal upper bound K = o(ρ−m) in the dependent case, while
having the same theoretical guarantees of block filtered posterior distribution.
Furthermore, Theorem 3.2 recovers the existing results for divide-and-conquer
Bayesian inference of independent data, where the number of subsets K and
the size of subsets m tend to infinity. For the degenerate HMM, our theoretical
setup of Theorem 3.2 imposes no restriction on the growth of K and m. This
includes the case where K = O(nc) and m = O(n1−c) for any c ∈ (0, 1) as
specified in Theorem 2 of Li et al. (2017).

4. Experiments

4.1. Setup

We compare the performance of block filtered posterior distribution with ex-
isting divide-and-conquer approaches to Bayesian inference. The true posterior
distribution of θ, estimated using a Monte Carlo algorithm, serves as the bench-
mark in every comparison. We select Double Parallel Monte Carlo (Xue and
Liang, 2019), Posterior Interval Estimation (Li et al., 2017), and Wasserstein
Posterior (Srivastava et al., 2018) as our divide-and-conquer competitors. These
competitors require modifications before they can be used for inference because
their first two steps are designed for independent observations. The modified
first step divides the observed data into K blocks of consecutive and non-
overlapping observations. The modified second step uses the density in (2.5)
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for drawing parameters on the subsets. Finally, the third step uses the origi-
nal combination algorithms of the respective competitors. There is no software
support for using Consensus Monte Carlo, so we excluded it in our comparisons
(Scott et al., 2016). Following Theorem 3.2, the combination steps are specified
by COMB(θ̂,Σ) where the centering parameter θ̂ is the maximum likelihood
estimator and is estimated using the EM (Baum-Welch) algorithm and the scal-
ing matrix Σ is matrix barycenter defined in (2.9). All the sampling algorithms
run for 10,000 iterations. The first 5000 samples are discarded as burn-in and
the remaining chain is thinned by collecting every fifth sample. We have imple-
mented all the algorithms in R and used an Oracle Grid Engine cluster with
2.6GHz 16 core compute nodes for all our experiments.

The accuracy metric for comparing the true posterior distribution and its ap-
proximation is based on the total variation distance. Let ξ be a one-dimensional
parameter, π(ξ | Y n

1 ) be the true posterior density of ξ, and π̂(ξ | Y n
1 ) be

the density of its approximation. Following Li et al. (2017), the approximation
accuracy of π̂(ξ | Y n

1 ) is

Acc {π̂(ξ | Y n
1 )} = 1 − 1

2

∫
R

|π̂(ξ | Y n
1 ) − π(ξ | Y n

1 )| dξ. (4.1)

The integral in (4.1) is the total variation distance between π̂(ξ | Y n
1 ) and

π(ξ | Y n
1 ). It is approximated numerically using the ξ draws from π̂(ξ | Y n

1 ) and
π(ξ | Y n

1 ), respectively, and kernel density estimation. For a θ = (ξ1, . . . , ξd),
we extend (4.1) as the median of Acc {π̂(ξi | Y n

1 )} (i = 1, . . . d). If this metric is
high, then π̂(θ | Y n

1 ) is an accurate estimator of π(θ | Y n
1 ).

Hamiltonian Monte Carlo (HMC) algorithm, implemented using RStan (Car-
penter et al., 2017), serves as the benchmark for comparing the accuracy and
efficiency of the divide-and-conquer approaches, which are extensions of MCMC
algorithms. The block filtered posterior’s divide-and-conquer competitors are
meant for independent data. If the accuracies of all the divide-and-conquer ap-
proaches are close to that of HMC, then block filtered posterior’s practical gains
are marginal relative to its competitors. The efficiency gains are compared in
terms of run time. The lower the run time, the higher the efficiency gain. All the
divide-and-conquer methods have similar run times, so the practical gains result
from higher accuracies. We expect marginal practical gains for the block filtered
posterior when K or S is small, or the dependence is relatively weak. In cases
where either K or S is large, we expect the block filtered posterior’s accuracy to
be much closer to that of HMC and higher than that of its competitors. Due to
the distributed computations, we expect the block-filtered posterior’s run time
to be shorter than that of HMC, indicating significant practical gains.

4.2. Simulated data analysis

Our simulation is based on an HMM with Gaussian emission densities, which has
been used in Rydén (2008). Using the notation from Section 2.1, let Y = R, g(· |
X = a) = φ(·;μa, σ

2
a) be the density of Normal distribution with mean μa and
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variance σ2
a (a = 1, . . . , S), θ = {r1, . . . , rS , Q11, . . . , QSS , μ1, . . . , μS , σ

2
1 , . . . , σ

2
S},

and d = S2 + 2S − 1.
The prior distribution of θ is conjugate to the likelihood pθ(Xn

1 , Y
n
1 ) in (2.2).

The initial distribution r = (r1, . . . , rS) and rows of the Markov transition ma-
trix {(qa1, . . . , qaS)}Sa=1 are given an independent Dirichlet prior Dir(1, . . . , 1);
the mean parameters μ1, . . . , μS are given an independent Normal prior N(ξ, κ−1)
with ξ = (min yi + max yi)/2 and κ = 1/(max yi − min yi)2; the variance pa-
rameters σ−2

1 , . . . , σ−2
S are given an independent gamma prior with parameters

(1, 1). The division and subset posterior computation steps for the block filtered
posterior distribution and its divide-and-conquer competitors are based on Sec-
tions 2.2 and 2.3. This example slightly violates our Assumption (A8) (ii) but is
particularly attractive because posterior computations on a subset using (2.5)
are analytically tractable; see Appendix D.1 for greater details.

Simulation Study of Accuracy and Efficiency. This simulation study is aimed
to analyze the performance of block filtered posterior and compare it with divide-
and-conquer competitors. We set S = 3, μ1 = −2, μ2 = 0, μ3 = 2, and σ1 =
σ2 = σ3 = 0.5. Following Rydén (2008), Q is defined as Q11 = 0.6, Q12 = 0.3,
Q13 = 0.1, Q21 = 0.1, Q22 = 0.8, Q23 = 0.1, Q31 = 0.1, Q32 = 0.3, and
Q33 = 0.6. This choice of Q also determines the stationary distribution r =
(0.2, 0.6, 0.2)T because rTQ = rT. We replicate this simulation ten times.

We use three choices of K and n, respectively. For a given n, K is varied
as logn, n1/4, and n1/3, where the first and last two choices of K have been
used to justify the asymptotic properties of Wasserstein Posterior and Posterior
Interval Estimation, respectively. We vary n as 104, 105, and 106. For a given K
and n, the subset sample size is defined as m = �n/K�, where �x� denotes the
smallest integer z such that z ≥ x. If K = logn, then m is large, which implies
that for n = 106, all the divide-and-conquer methods are slow due to a large m;
on the other hand, they are most efficient when K = n1/3.

The accuracy based on (4.1) of all the five methods are compared for posterior
inference on (μ1, μ2, μ3, σ1, σ2, σ3) (Tables 1). The divide-and-conquer competi-
tors of the block filtered posterior have low accuracy for n = 105, 106 and any
K. In comparison, the block filtered posterior distribution is the top performer
for every choice of K and n and its accuracy is close to that of the Hamilto-
nian Monte Carlo. When n is large the block filtered posterior is almost ten
times faster than Hamiltonian Monte Carlo and has better accuracy compared
to divide-and-conquer competitors for all parameters. This shows that the block
filtered posterior is an accurate and efficient algorithm for inference in HMMs
under massive data settings; see Appendix D.2 for timing comparisons and ac-
curacy for posterior inference on Q.

Simulation Study of Mixing Property. This simulation analyzes the impact
of mixing coefficient ρ on the choice of K and accuracy of the block filtered
posterior distribution. In the previous simulation study, we have (S = 3, Qε =
0.1, μ1 = −2, μ2 = 0, μ3 = 2). We consider three more HMMs with increasing
value of mixing coefficients ρ in this simulation: (S = 2, Qε = 0.3, μ1 = −2, μ2 =
2), (S = 5, Qε = 0.05, μ1 = −4, μ2 = −2, μ3 = 0, μ4 = 2, μ5 = 4), and (S =
7, Qε = 0.05, μ1 = −8, μ2 = −4, μ3 = −2, μ4 = 0, μ5 = 2, μ6 = 4, μ7 = 8).
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Table 1

Accuracy of the approximate posterior distributions of (μ1, μ2, μ3, σ1, σ2, σ3). The accuracy
values are averaged over ten simulation replications and across all the parameter

dimensions. The maximum Monte Carlo error for block filtered posterior distribution is 0.02
n K BFP WASP DPMC PIE HMC

logn 0.93 0.48 0.48 0.49
104 n1/4 0.93 0.48 0.48 0.48 0.96

n1/3 0.92 0.37 0.36 0.37
logn 0.93 0.18 0.18 0.18

105 n1/4 0.93 0.18 0.18 0.18 0.95
n1/3 0.92 0.18 0.18 0.18
logn 0.93 0.14 0.14 0.15

106 n1/4 0.93 0.12 0.12 0.13 0.96
n1/3 0.93 0.14 0.14 0.14

1 BFP, block filtered posterior distribution; WASP, Wasser-
stein posterior; DPMC, double parallel Monte Carlo; PIE,
posterior interval estimation; HMC, Hamiltonian Monte
Carlo.

For every HMM, we set σa = 0.5 for 1 ≤ a ≤ S and vary n as 104 and 105.
For a given n, K is varied as logn, n1/4, and n1/3. We replicate this simulation
ten times and benchmark the performance of divide-and-conquer approaches
relative to Hamiltonian Monte Carlo.

The accuracy of block filtered posterior distribution for inference on the emis-
sion distribution parameters follows from the results in Theorem 3.1 (Tables 1
and 2). The dependence in HMMs increases with ρ. The HMMs with S = 5, 7
have ρ ≈ 1, resulting in a relatively higher dependence than the other two HMMs
with S = 2, 3. Our theoretical results imply that the accuracy of the block fil-
tered posterior is fairly insensitive to the choice of K in the latter two HMMs
than the former two. Indeed, Hamiltonian Monte Carlo and block filtered pos-
terior have similar accuracy for every (n,K) combinations when S = 2, 3. On
the other hand, the accuracy of block filtered posterior is smaller than that of
Hamiltonian Monte Carlo and decreases with increasing K when S = 5, 7 due to
the increased dependence. Our theoretical results also imply that the accuracy
depends only on ρ and not on S. This is further confirmed by our empirical
results in that the accuracy values for the HMMs with S = 5, 7 are very similar
due to almost equal ρ values.

The block filtered posterior distribution outperforms its divide-and-conquer
competitors for every ρ and K. The competing divide-and-conquer methods are
developed for independent data, so their accuracy values are relatively large
when S = 2, ρ is small, and the dependence is weak; however, their accuracy
values quickly drop as dependence increases with ρ, reducing to 0 when S =
5, 7. On the other hand, the block filtered posterior distribution is designed
for dependent data and maintains its superior performance over the divide-and-
conquer competitors for every ρ. Relative to its divide-and-conquer competitors,
the block filtered posterior distribution is also very robust to choice of K and its
accuracy is impacted only when the subset size is very small (for example, K =
O(n1/3) and n = 104); see Appendix D.2 for accuracy for posterior inference
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on Q. We conclude based on this simulation that the block filtered posterior
distribution provides accurate posterior inference using the divide-and-conquer
technique for a broad range of ρ values.

Table 2

Accuracy of the approximate posterior distributions of (μ1, . . . , μS , σ1, . . . , σS). The
accuracy values are averaged over ten simulation replications and across all the parameter
dimensions. The maximum Monte Carlo error for block filtered posterior distribution is

0.02.
n K BFP WASP DPMC PIE HMC

S = 2
logn 0.97 0.64 0.64 0.65

104 n1/4 0.97 0.64 0.64 0.64 0.95
n1/3 0.97 0.61 0.61 0.61
logn 0.97 0.46 0.46 0.46

105 n1/4 0.97 0.46 0.46 0.46 0.95
n1/3 0.97 0.45 0.45 0.45

S = 5
logn 0.83 0.00 0.00 0.00

104 n1/4 0.82 0.00 0.00 0.00 0.95
n1/3 0.82 0.00 0.00 0.00
logn 0.82 0.00 0.00 0.00

105 n1/4 0.79 0.00 0.00 0.00 0.95
n1/3 0.80 0.00 0.00 0.00

S = 7
logn 0.80 0.00 0.00 0.00

104 n1/4 0.77 0.00 0.00 0.00 0.93
n1/3 0.69 0.00 0.00 0.00
logn 0.82 0.00 0.00 0.00

105 n1/4 0.81 0.00 0.00 0.00 0.94
n1/3 0.81 0.00 0.00 0.00

BFP, block filtered posterior distribution; WASP, Wasser-
stein posterior; DPMC, double parallel Monte Carlo; PIE,
posterior interval estimation; HMC, Hamiltonian Monte
Carlo.

4.3. Real data analysis

We illustrate the application of block filtered posterior distribution in a real-
life setting using the data of transaction information made through the pur-
chase card (PCard) program in the state of Oklahoma. We download the data
reported in fiscal year 2013 from https://data.ok.gov/dataset/purchase-
card-pcard-fiscal-year-2013. The data contains information of transaction
amount, purchase description, transaction date, and merchant category in the
previous year (2012). To remove the edge effect at the end of the year, we se-
lect the observations from 2012-07-01 to 2012-12-20 and remove the purchase
amount larger than $1000 resulting in n = 184, 303 observations. Due to the
data collection approach, multiple observations on some days have “00:00:00”
as their transaction times; therefore, we treat multiple transactions in a sin-
gle day as consecutive observations from a discrete time series that is arranged

https://data.ok.gov/dataset/purchase-card-pcard-fiscal-year-2013
https://data.ok.gov/dataset/purchase-card-pcard-fiscal-year-2013
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according to the order of transactions posted in the data set.
The purchase amount is the observed Y variable and the merchant category

is the latent discrete X variable. We de-trend the time series using Tukey’s
running median smoother as implemented in the smooth R-function and de-
seasonalize it using seasonal decomposition by loess as implemented in stl R-
function. Motivated by an annual report of PCard program audit in April 2015
(McCoy et al., 2015), we model this data set using an HMM with S = 3 where
the three categories correspond to (1) miscellaneous and speciality retail stores;
(2) services, catalog merchant, IT, utilities; and (3) airline, hotel and others.
Replicating the simulation setup, we use data augmentation and Hamiltonian
Monte Carlo for drawing θ and choose K = 10 (log(n) ≈ 12), 20 (n1/4 ≈ 21),
and 50 (n1/3 ≈ 57) for the divide-and-conquer methods. Unlike our simulation
setup, we use Hamiltonian Monte Carlo for sampling on the subsets.

The results of real and simulated data analyses in this section and Section 4.2
agree closely (Table 3). For K = 20, 50, the block filtered posterior has better
accuracy than its divide-and-conquer competitors for inference on the emission
distribution parameters for every K, and its accuracy is comparable to that of
Hamiltonian Monte Carlo. The accuracy estimates for posterior inference on Q
are even better; see Appendix D.2. The block filtered posterior distribution is
more efficient than data augmentation and Hamiltonian Monte Carlo for every
K, and its efficiency increases with K (Table 4). Noticeably, when K = 50, the
block filtered posterior is over 20 times faster than Hamiltonian Monte Carlo
and 40 times faster than data augmentation. These observations are very similar
to that of our simulation study, so we conclude that the block filtered posterior
distribution provides an accurate and efficient alternative for principled Bayesian
inference in modeling the PCard data.

Table 3

Accuracy of the approximate posterior distributions of (μ1, μ2, μ3, σ1, σ2, σ3). The entries in
the table are the median of the accuracy values computed across the three dimensions. The

maximum Monte Carlo error for the block filtered posterior distribution is 0.01
K BFP WASP DPMC PIE HMC
10(logn) 0.88 0.80 0.80 0.80
20(n1/4) 0.87 0.70 0.70 0.71 0.90
50(n1/3) 0.82 0.52 0.52 0.51

BFP, block filtered posterior distribution; WASP,
Wasserstein posterior; DPMC, double parallel Monte
Carlo; PIE, posterior interval estimation; HMC,
Hamiltonian Monte Carlo.

Table 4

Time (in hours) for computing the posterior distributions of θ

DA BFP HMC
10(logn) 20(n1/4) 50(n1/3)

26.89 2.73 1.49 0.67 17.42
DA, data augmentation; BFP, block filtered pos-
terior distribution; HMC, Hamiltonian Monte
Carlo.
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5. Discussion

Our focus has been on developing a divide-and-conquer Monte Carlo algorithm
for Bayesian analysis of parametric HMMs where the state space is known and
discrete; however, our Monte Carlo algorithm and its theoretical properties can
be extended to general state space models, where the state space is continuous
and known. This requires minimal changes in the partitioning, subset sampling,
and combining steps. Our theoretical results can also be extended to general
state space models using the ideas of Jensen and Petersen (1999), who show
that the theoretical results of Bickel et al. (1998) for general HMMs extend
naturally to general state space models.

Appendix A: Proofs of Proposition 3.1 and technical lemmas

We begin with several important lemmas and the proof of Proposition 3.1.

A.1. Preliminaries

Let P(X ) denote the space of all probability measure on X equipped with total
variation distance. For any θ ∈ Θ, the prediction filter pθt ∈ P(X ) is defined as

pθt =
{
Pθ(Xt = 1 | Y t−1

1 ), . . . ,Pθ(Xt = S | Y t−1
1 )

}T
, t = 1, . . . , n. (A.1)

The Baum’s forward equation implies that for t = 1, . . . , n− 1,

pθt+1 = Pθ(Xt+1 = ·, Yt | Y t−1
1 )

Pθ(Yt | Y t−1
1 )

= QT
θGθ(Yt)pθt
gθ(Yt)Tpθt

≡ fθ(Yt, p
θ
t ),

gθ(Yt) = {gθ(Yt | Xt = 1), . . . , gθ(Yt | Xt = S)}T
, (A.2)

where Gθ(Yt) = diag{gθ(Yt)} and Qθ is the transition matrix of {Xt} with
(Qθ)ab = qθ(a, b). For θ ∈ Θ, fθ is a measurable function on Y×P(X ). Extending
the definition of fθ(Yt, p

θ
t ) for lags s = 0, 1, . . . , t− 1, we recursively define pθt+1

for s = 0, . . . , t− 1 as

pθt+1 = fθ
0 (Y t

t , p
θ
t ) = fθ

1 (Y t
t−1, p

θ
t−1) = · · · = fθ

s (Y t
t−s, p

θ
t−s) = · · · = fθ

t−1(Y t
1 , p

θ
1),

(A.3)

where fθ
0 = fθ.

A.2. Technical lemmas

We state five technical lemmas that are used to prove Theorem 3.1 and The-
orem 3.2 in the main manuscript. The first lemma is a restatement of Lemma
3.1 in De Gunst and Shcherbakova (2008), except the full data likelihood and n
are replaced by the jth subset likelihood and m.
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Lemma A.1 (De Gunst and Shcherbakova (2008), Lemma 3.1). For any δ > 0
and j ∈ {1, . . . ,K}, there exists ε > 0 such that

P0

[
sup

‖θ−θ0‖2>δ

1
m

{Ljm(θ) − Ljm(θ0)} ≤ −ε

]
→ 1 as m → ∞.

Lemma A.2 (Le Gland and Mevel (2000) Theorem 2.1). Under Assumption
(A8), for any θ ∈ Bδ0(θ0), any pθl , p̃

θ
l ∈ P(X ), any l, s ≥ 1 and sequence

yl, . . . , yl+s ∈ Ys,

‖fθ
s {yl+s, . . . , yl, p

θ
s} − fθ

s {yl+s, . . . , yl, p̃
θ
s}‖TV

≤ ε−1
θ hθ(yi)

l+s∏
i=l+1

{1 − εθhθ(yi)−1}‖pθl − p̃θl ‖TV ,

where εθ = min
a,b∈X

qθ(a, b), ρθ(y) = max
a,b∈X

gθ(y|a)
gθ(y|b) and {1 − εθhθ(yi)−1} ∈ (0, 1).

Lemma A.3 (Le Gland and Mevel (2000) Example 3.3). Under Assumption
(A8), for any θ ∈ Bδ0(θ0), any y ∈ Y and any p, p̃ ∈ P(X ),

| log{
∑
a∈X

p(a)gθ(y|a)} − log{
∑
a∈X

p̃(a)gθ(y|a)}| ≤ [hθ(y) − 1]‖p− p̃‖TV .

Lemma A.4. The log-likelihood function of θ given Y 2m
m+1 and the conditional

log-likelihood of θ obtained from the conditional density of Y 2m
m+1 given Y m

1 can
be expressed as

exp{w1(θ)} = pθ(Y 2m
m+1)

=
∑

X2m
m+1

2m−1∏
t=m+1

rθ(Xm+1)qθ(Xt, Xt+1)
2m∏

t=m+1
gθ(Yt | Xt)

=
2m∏

t=m+1

∑
Xt

gθ(Yt | Xt)pθt (Xt), (A.4)

exp{w2(θ)} = pθ(Y 2m
m+1 | Y m

1 )

=
∑

X2m
m+1

2m−1∏
t=m+1

pθ(Xm+1 | Y m
1 )qθ(Xt, Xt+1)

2m∏
t=m+1

gθ(Yt | Xt)

=
2m∏

t=m+1

∑
Xt

gθ(Yt | Xt)p̃θt (Xt), (A.5)

where

pθm+1(Xm+1) = rθ(Xm+1), p̃θm+1(Xm+1) = pθ(Xm+1 | Y m
1 ),
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and for t = m + 2, . . . , 2m,

pθt (Xt) = fθ
t−m−2{Y t−1

m+1, rθ(Xm+1)}, p̃θt (Xt)=fθ
t−m−2{Y t−1

m+1, pθ(Xm+1 | Y m
1 )},

where fθ
t−m−2 is defined in (A.3).

Proof of Lemma A.4. We first prove the following equality by induction:

∑
Xm

1

m−1∏
t=1

rθ(X1)qθ(Xt, Xt+1)
m∏
t=1

gθ(Yt | Xt) =
m∏
t=1

∑
Xt

gθ(Yt|Xt)pθt (Xt). (A.6)

For m = 2, the left hand side of (A.6) is∑
X1,X2

rθ(X1)qθ(X1, X2)gθ(Y1|X1)gθ(Y2|X2)

=
∑
X2

gθ(Y2|X2)
∑
X1

rθ(X1)qθ(X1, X2)gθ(Y1|X1).

And the right hand side of (A.6) is{∑
X1

rθ(X1)gθ(Y1 | X1)
}{∑

X2

gθ(Y2 | X2)pθ(X2 | Y1)
}

=
∑
X2

gθ(Y2 | X2)

×
∑
X1

pθ(X2 | Y1)rθ(X1)gθ(Y1 | X1).

For fixed X2 = x2 ∈ X , we have∑
X1

rθ(X1)qθ(X1, x2)gθ(Y1 | X1) −
∑
X1

pθ(x2 | Y1)rθ(X1)gθ(Y1 | X1)

=
∑
X1

rθ(X1)qθ(X1, x2)gθ(Y1 | X1)

−
∑
X1

rθ(X1)gθ(Y1 | X1)
∑

a1
qθ(a1, x2)gθ(Y1 | a1)rθ(a1)∑

a1
gθ(Y1 | a1)rθ(a1)

= 1∑
a1

gθ(Y1 | a1)rθ(a1)

×
{∑

X1

rθ(X1)qθ(X1, x2)gθ(Y1 | X1)
∑
a1

gθ(Y1 | a1)rθ(a1)

−
∑
X1

rθ(X1)gθ(Y1 | X1)
∑
a1

qθ(a1, x2)gθ(Y1 | a1)rθ(a1)
}

= 0.

Hence, we have

∑
X2

gθ(Y2 | X2)
{∑

X1

rθ(X1)qθ(X1, X2)gθ(Y1 | X1)



918 C. Wang and S. Srivastava

−
∑
X1

pθ(X2 | Y1)rθ(X1)gθ(Y1 | X1)
}

= 0,

which proves (A.6) at m = 2. Suppose (A.6) holds for m = k − 1 ≥ 2, we have

∑
Xk−1

1

k−2∏
t=1

rθ(X1)qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt|Xt) =
k−1∏
t=1

∑
Xt

gθ(Yt | Xt)pθt (Xt).

For m = k, the left hand side of (A.6) can be expressed as

∑
Xk

1

k−1∏
t=1

rθ(X1)qθ(Xt, Xt+1)
k∏

t=1
gθ(Yt | Xt)

=
∑
Xk

gθ(Yk | Xk)
∑
Xk−1

1

q(Xk−1, Xk)rθ(X1)
k−2∏
t=1

qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt).

And the right hand side of (A.6) can be expressed as

k∏
t=1

∑
Xt

gθ(Yt | Xt)pθt (Xt)

=
{∑

Xk

gθ(Yk | Xk)pθ(Xk | Y k−1
1 )

}{
k−1∏
t=1

∑
Xt

gθ(Yt | Xt)pθt (Xt)
}

=
{∑

Xk

gθ(Yk | Xk)pθ(Xk | Y k−1
1 )

}

×

⎧⎨
⎩

∑
Xk−1

1

k−2∏
t=1

rθ(X1)qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt)

⎫⎬
⎭ ,

where the last equality is due to the induction assumption at m = k − 1. And
we have

pθ(Xk | Y k−1
1 ) =

∑
ak−1
1

qθ(ak−1, Xk)rθ(a1)
∏k−2

t=1 qθ(at, at+1)
∏k−1

t=1 gθ(Yt | at)∑
ak−1
1

rθ(a1)
∏k−2

t=1 qθ(at, at+1)
∏k−1

t=1 gθ(Yt | at)
.

For fixed Xk = xk ∈ X , we have⎧⎨
⎩

∑
Xk−1

1

q(Xk−1, xk)rθ(X1)
k−2∏
t=1

qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt)

⎫⎬
⎭

×

⎧⎨
⎩
∑
ak−1
1

rθ(a1)
k−2∏
t=1

qθ(at, at+1)
k−1∏
t=1

gθ(Yt | at)

⎫⎬
⎭
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=

⎧⎨
⎩

∑
Xk−1

1

rθ(X1)
k−2∏
t=1

qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt)

⎫⎬
⎭

×

⎧⎨
⎩
∑
ak−1
1

qθ(ak−1, xk)rθ(a1)
k−2∏
t=1

qθ(at, at+1)
k−1∏
t=1

gθ(Yt | at)

⎫⎬
⎭ .

Hence, we have

∑
Xk−1

1

q(Xk−1, Xk)rθ(X1)
k−2∏
t=1

qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt)

=pθ(Xk | Y k−1
1 )

⎧⎨
⎩

∑
Xk−1

1

k−2∏
t=1

rθ(X1)qθ(Xt, Xt+1)
k−1∏
t=1

gθ(Yt | Xt)

⎫⎬
⎭ ,

which implies that (A.6) holds for m = k. Changing indices from (1, . . . ,m) to
(m + 1, . . . , 2m), we prove equation (A.4).

By the recursive definition of prediction filter, we have for t = m+2, . . . , 2m,

pθt (Xt) = fθ
t−m−2{Y t−1

m+1, rθ(Xm+1)}, p̃θt (Xt) = fθ
t−m−2{Y t−1

m+1, pθ(Xm+1 | Y m
1 )}.

Given Y m
1 , replacing the stationary distribution rθ(Xm+1) by the prediction

filter distribution pt(Xm+1 | Y m
1 ), we prove equation (A.5).

Lemma A.5 (Devroye et al. (2018) Theorem 1.2). Suppose d > 1, let μ1 �=
μ2 ∈ Rd and let V1, V2 be two positive definite d × d matrices. Let v = μ1 − μ2
and N be an arbitrary d × d − 1 matrix with columns forming a basis for the
subspace orthogonal to v. Define the function

tv(μ1, V1, μ2, V2)=max{ |v
T(V1−V2)v|
vTV1v

,
vTv√
vTV1v

, ‖(NTV1N)−1NTV2N−Id−1‖F }.

Then, we have

1
200 ≤ ‖Nd(μ1, V1) −Nd(μ2, V2)‖TV

tv(μ1, V1, μ2, V2)
≤ 9

2 .

A.3. Proof of Proposition 3.1

Proof of Proposition 3.1. For j = 2, the total variation distance equals to zero.
Based on (A.3), for j = 3, . . . ,K, we have the following expressions for the
approximate prediction filter and the true prediction filter:

pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1) = fθ

m−1{Y
(j−1)m
(j−2)m+1, rθ(X(j−2)m+1)}

pθ(X(j−1)m+1 | Y (j−1)m
1 ) = fθ

m−1{Y
(j−1)m
(j−2)m+1, pθ(X(j−2)m+1 | Y (j−2)m

1 )},
(A.7)
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where rθ(·) ∈ P(X ) is the stationary distribution of {Xt, t ≥ 1}. Then for θ ∈ Θ,
we have that with P0-probability almost 1,

‖pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1) − pθ(X(j−1)m+1 | Y (j−1)m

1 )‖TV

(i)
≤ ε−1

θ hθ(Y(j−2)m+1)
(j−1)m∏

i=(j−2)m+2

[1 − εθhθ(Yi)−1]‖rθ(X(j−2)m+1)

− pθ(X(j−2)m+1 | Y (j−2)m
1 )‖TV

(ii)
≤ ε−1M(1−εM−1)m−1 sup

θ∈Bδ0 (θ0)
‖rθ(X(j−2)m+1)−pθ(X(j−2)m+1 | Y (j−2)m

1 )‖TV

(iii)
≤ ε−1M{(1 − εM−1)}m−1Sρ(j−2)m−2, (A.8)

where (i) follows from Lemma A.2, (ii) follows from that ε = inf
θ∈Θ

εθ, and from
(A8)(ii), hθ(Yi) < M for θ ∈ Θ and i = 1, . . . , n P0-almost surely. And (iii)
follows from assumption (A8)(iii). Since (1− εM−1), ρ ∈ (0, 1) P0-almost surely,
as m → ∞, the right side of (A.8) converges to zero P0-almost surely.

Appendix B: Proof of Theorem 3.1

We first prove Theorem 3.1(i) following the arguments used for proving Theorem
1 in Li et al. (2017) and Theorem 2.1 in De Gunst and Shcherbakova (2008).
The proof requires some essential technical changes to account for the definition
of subset posterior distributions using (quasi) conditional distribution likelihood
in (2.5) in the main manuscript. Then, we prove Theorem 3.1(ii) using results
from Theorem 2.1 in Le Gland and Mevel (2000).

B.1. Proof of Theorem 3.1(i)

Step 1: Show that θ̂1 is a weakly consistent estimator of θ0. Assumption (A5) im-
plies that θ0 is in the interior of Θ, which is compact. Assumption (A1) implies
that L′

jm(θ) exists and is continuously differentiable in the compact neighbor-
hood Bδ0(θ0) of θ0 for every (Y(j−1)m+1, . . . , Yjm) such that the components of
L′′
jm(θ) are uniformly bounded by an envelope function M(Y(j−1)m+1, . . . , Yjm).

Furthermore, E0
{
L′
jm(θ0)

}
= 0, so there exists a root of the equation L′

jm(θ) =
0 with large P0-probability in Bδ0(θ0) neighborhood. Denote this root as θ̂j .
Then, the weak consistency of θ̂j is a consequence of Lemma A.1.
Step 2: Simplify the statement of Theorem 3.1 (i). For any t ∈ Rd, define

θt = θ̂1 + t

(Km)1/2
, (B.1)

w(t) = L1m

{
θ̂1 + t

(Km)1/2

}
− L1m(θ̂1),



Distributed Bayesian inference in HMMs 921

Cm =
∫
Rd

eKw(z)π

{
θ̂1 + z

(Km)1/2

}
dz,

gm(t) = eKw(t)π

{
θ̂1 + t

(Km)1/2

}
− exp

(
− tTI0t

2

)
π(θ0).

For proving Theorem 3.1 (i), we need to show that the sequence of random
variable

ζm =
∫
Rd

∣∣∣∣∣∣
eKw(t)π

{
θ̂1 + t

(Km)1/2

}
Cm

− 1
(2π)d/2 det(I0)−1/2 exp

(
−1

2 t
TI0t

)∣∣∣∣∣∣ dt
(B.2)

converges to 0 in P0-probability as m → ∞. Using the definition of gm(t)
in (B.1),

ζm=
∫
Rd

∣∣∣∣∣∣
gm(t) + exp

(
− tTI0t

2

)
π(θ0)

Cm
− 1

(2π)d/2 det(I0)−1/2 exp
(
−1

2 t
TI0t

)∣∣∣∣∣∣ dt,
and the triangle inequality implies that

ζm ≤ 1
Cm

∫
Rd

|gm(t)|dt +
∣∣∣∣ (2π)d/2 det(I0)−1/2π(θ0)

Cm
− 1

∣∣∣∣×∫
Rd

1
(2π)d/2 det(I0)−1/2 exp

(
−1

2 t
TI0t

)
dt. (B.3)

The definition of Cm in (B.1) also implies that

Cm =
∫
Rd

{
gm(z) + exp

(
−zTI0z

2

)
π(θ0)

}
dz

=
∫
Rd

gm(z)dz + (2π)d/2 det(I0)−1/2π(θ0). (B.4)

If
∫
Rd |gm(z)|dz → 0 in P0-probability as m → ∞, then (B.4) implies that∣∣∣Cm − (2π)d/2 det(I0)−1/2π(θ0)

∣∣∣ → 0 in P0 -probability as m → ∞,

which after an application of Slutsky’s theorem implies that∣∣∣∣ (2π)d/2 det(I0)−1/2π(θ0)
Cm

− 1
∣∣∣∣ → 0 in P0 -probability as m → ∞; (B.5)

therefore, the second term on the right hand side in (B.3) converges to 0 in P0-
probability as m → ∞. This also shows that proving ζm → 0 in P0-probability
as m → ∞ is equivalent to showing that

∫
Rd |gm(t)|dt → 0 in P0-probability as

m → ∞.
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Step 3: Show that
∫
Rd |gm(t)|dt → 0 in P0-probability as m → ∞. Consider a θ∗m

in the interior of Θ that is close to θ̂1. The Taylor expansion of L1m(θ∗m) at θ̂1
is

L1m(θ∗m) = L1m(θ̂1) + (θ∗m − θ̂1)TL′
1m(θ̂1) + 1

2(θ∗m − θ̂1)TL′′
1m(θm)(θ∗m − θ̂1),

(B.6)

where θm is between θ∗m and θ̂1 and L′
1m(θ̂1) = 0 because θ̂1 is the MLE of θ

for the first subset. Define

εm(θm) = I0
2 + L′′

1m(θm)
2m ,

and rewrite B.6 as

L1m(θ∗m)=L1m(θ̂1) −
m

2 (θ∗m − θ̂1)TI0(θ∗m − θ̂1) + m(θ∗m − θ̂1)Tεm(θm)(θ∗m − θ̂1).
(B.7)

If θ∗m is a (possibly stochastic) sequence converging to θ0, then εm(θm) → 0 in
P0-probability as m → ∞ due to Assumption (A4).

We use this Taylor expansion in (B.7) to show that
∫
Rd |gm(t)|dt → 0 in P0-

probability as m → ∞. We start by partitioning the domain of the integral into
three sets: A1 = {t ∈ Rd : ‖t‖2 ≥ δ1(Km)1/2}, A2 = {t ∈ Rd : δ2 ≤ ‖t‖2 <
δ1(Km)1/2} and A3 = {t ∈ Rd : ‖t‖2 < δ2}, where δ1, δ2 are positive quantities
to be chosen later. Using the triangular inequality,∫

Rd

|gm(t)|dt ≤
∫
A1

|gm(t)|dt +
∫
A2

|gm(t)|dt +
∫
A3

|gm(t)|dt.

The proof is complete if
∫
Ai

|gm(t)|dt → 0 in P0-probability as m → ∞ for
i = 1, 2, 3.
Step 3.1: Show that

∫
A1

|gm(t)|dt → 0 in P0-probability as m → ∞. Let θ∗m =
θ̂1 + t/(Km)1/2 in (B.7) for some t ∈ A1. Using Lemma A.1, there exists an ε1
depending on δ1 such that

L1m{θ̂1 + t/(Km)1/2} − L1m(θ0) ≤ −mε1 (B.8)

with P0-probability approaching 1 as m → ∞. Because θ̂1 is a weakly consistent
estimator θ0 and L1m(θ) is a continuous function of θ, L1m(θ̂1) → L1m(θ0) with
P0-probability approaching 1 as m → ∞. Using this in (B.8), we have that for
any t ∈ A1 and δ1 > 0 there exists an ε1 depending on δ1 such that

w(t) = L1m{θ̂1 + t/(Km)1/2} − L1m(θ̂1) ≤ −mε1 (B.9)

with P0-probability approaching 1 as m → ∞, where w(t) is defined in (B.1);
therefore, with P0-probability approaching 1 as m → ∞,∫

A1

|gm(t)|dt ≤
∫
A1

eKw(t)π

{
θ̂1 + t

(Km)1/2

}
dt +

∫
A1

exp
(
− tTI0t

2

)
π(θ0)dt
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(i)
≤ exp(−Kmε1)

∫
A1

π

{
θ̂1 + t

(Km)1/2

}
dt + π(θ0)

∫
A1

exp
(
− tTI0t

2

)
dt

(ii)
≤ exp(−Kmε1)(Km)d/2

∫
‖θ−θ̂1‖2≥δ1

π(θ)dθ + π(θ0)

×
∫
‖t‖2≥δ1(Km)1/2

exp
(
− tTI0t

2

)
dt

(iii)→ 0,

where (i) follows from (B.9), (ii) follows by a change of variable from t ∈ A1
to θ = θ̂1 + t/(Km)1/2 in the first term of the summation, and (iii) follows
from two facts:

∫
‖θ−θ̂1‖2≥δ1

π(θ)dθ is bounded because π(θ) is density function
and

∫
‖t‖2≥δ1(Km)1/2 exp(−tTI0t/2)dt converges to 0 because the integrand equals

an un-normalized multivariate Gaussian density, which implies that the un-
normalized tail probability converges to 0 as m → ∞.
Step 3.2: Show that

∫
A2

|gm(t)|dt → 0 in P0-probability as m → ∞. We first show
that |gm(t)| is bounded above by an integrable function with large P0-probability
as m → ∞. The desired result follows from an appropriate choice of δ1 and δ2.
Consider the Taylor expansion of L1m(θ) at θ̂1 and set θ = θ̂1 + t/(Km)1/2 any
t ∈ A2. Because L1m(θ̂1) = 0,

w(t) = L1m{θ̂1 + t/(Km)1/2} − L1m(θ̂1) = 1
2K tT

L′′
1m(θ̂1)
m

t + Rm(t),

Rm(t) = 1
6(Km)3/2

tT
{
L′′′

1m(θ̃)t
}
t, (B.10)

for any t ∈ A2, where L′′′
1m(θ) is a d × d × d array and θ̃ satisfies ‖θ̃ − θ̂1‖2 ≤

‖t‖2/(Km)1/2 ≤ δ1, where the last inequality follows because δ2 ≤ ‖t‖2 ≤
δ1(Km)1/2. Furthermore, ‖θ̃− θ0‖2 ≤ ‖θ̃− θ̂1‖2 + ‖θ̂1 − θ0‖2 ≤ δ1 + ‖θ̂1 − θ0‖2.
If we choose δ1 ≤ δ0/3 and m to be large enough so that ‖θ̂1 − θ0‖2 ≤ δ0/3
with P0-probability approaching 1, then ‖θ̃ − θ0‖2 < δ0 for every t ∈ A2 with
P0-probability approaching 1 as m → ∞. For a given t ∈ A2,

|Rm(t)| ≤ ‖t‖3
2

6K3/2m1/2

d∑
l3=1

d∑
l2=1

d∑
l1=1

∣∣∣∣ 1
m
{L′′′

1m(θ̃)}l1l2l3
∣∣∣∣

(i)
≤ ‖t‖3

2
6K3/2m1/2

d∑
l3=1

d∑
l2=1

d∑
l1=1

1
m

sup
θ∈Bδ0 (θ0)

|{L′′′
1m(θ)}l1l2l3 |

(ii)
≤ d3‖t‖3

2
6K3/2m1/2

1
m

M(Y1, . . . , Ym)
(iii)
≤ d3δ1

6K ‖t‖2
2

1
m
M(Y1, . . . , Ym)

(iv)→ d3δ1
6K ‖t‖2

2CM P0 -almost surely; (B.11)

where (i) follows because θ̃ ∈ Bδ0(θ0) with a large P0-probability as m → ∞,
(ii) follows from Assumption (A1), (iii) follows because ‖t‖2 ≤ δ1(Km)1/2 and
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(iv) also follows from Assumption (A1). By Assumption (A4), eigenvalues of
− 1

mL′′
1m(θ) are bounded from blow and above by constants for all θ ∈ Bδ0(θ0).

Hence we choose

δ1 = min
[
δ0
3 ,

6 minθ∈Bδ0 (θ0) λ1{− 1
mL′′

1m(θ)}
4d3CM

]
, (B.12)

where λ1(B) denotes the smallest eigenvalue of matrix B. With this choice of
δ1, (B.10) and (B.11) imply that for every t ∈ A2 and with P0-probability
approaching 1 as m → ∞,

|KRm(t)| ≤ min
θ∈Bδ0 (θ0)

λ1{−L′′
1m(θ)} tTt/(4m) ≤ −tTL′′

1m(θ̂1)t/(4m),

Kw(t) ≤ 1
2 t

TL
′′
1m(θ̂1)
m

t + K|Rm(t)|

≤ 1
2 t

TL
′′
1m(θ̂1)
m

t− 1
4 t

TL
′′
1m(θ̂1)
m

t = 1
4 t

TL
′′
1m(θ̂1)
m

t. (B.13)

We use (B.13) to find an upper bound for |g(t)| that is integrable on A2. By
assumption (A4), −m−1L′′

1m(θ̂1) → I0 in P0-probability as m → ∞. This im-
plies that exp(Kw(t)) ≤ exp(−tTI0t/4) with a large P0-probability as m → ∞;
therefore, with a large P0-probability as m → ∞,∫

A2

|gm(t)|dt

(i)
≤

∫
A2

exp
(
− tTI0t

4

)
π

{
θ̂1 + t

(Km)1/2

}
dt +

∫
A2

exp
(
− tTI0t

2

)
π(θ0)dt

≤
∫
A2

exp
(
− tTI0t

4

)
π

{
θ̂1 + t

(Km)1/2

}
dt +

∫
A2

exp
(
− tTI0t

4

)
π(θ0)dt

(ii)
≤

{
sup
θ∈Θ

π(θ)
}∫

A2

2 exp
(
− tTI0t

4

)
dt

(iii)
< ∞, (B.14)

where (i) follows from triangular inequality and (B.13), (ii) is because θ0, θ̂1 +
t/(Km)1/2 ∈ Θ, Θ is compact from Assumption (A5), and π(·) is continuous on
Θ from Assumption (A6), and (iii) follows because the continuity of π(·) and the
compactness of Θ imply that π(θ) is bounded for every θ ∈ Θ and the integrand
equals an un-normalized Gaussian density, which has a finite integral over R

d.
We now can choose δ2 sufficiently large such that

∫
A2

|gm(t)|dt is arbitrarily
small in P0-probability.
Step 3.3: Show that

∫
A3

|gm(t)|dt → 0 in P0-probability as m → ∞. Using (B.11)
and Assumption (A1), we have that for any ‖t‖2 < δ2 and a sufficiently large
m,

sup
‖t‖2<δ2

|KRm(t)| ≤ sup
‖t‖2<δ2

d3‖t‖3
2

6K1/2m1/2
1
m

M(Y1, . . . , Ym)
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≤ d3δ3
2

6K1/2m1/2
1
m

M(Y1, . . . , Ym) → 0, (B.15)

where the convergence is almost surely in P0-probability. The Taylor expansion
in (B.10) yields that as m → ∞,

sup
t∈A3

exp
{∣∣∣∣Kw(t) + 1

2 t
	I0t

∣∣∣∣
}

= sup
‖t‖2<δ2

exp
{∣∣∣∣∣12 tTL

′′
1m(θ̂1)
m

t+KRm(t)+ 1
2 t

	I0t

∣∣∣∣∣
}

≤ exp

⎧⎨
⎩δ2

2
2

∥∥∥∥∥L
′′
1m(θ̂1)
m

+ I0

∥∥∥∥∥
op

⎫⎬
⎭ exp

{
sup

‖t‖2<δ2

|KRm(t)|
}

(i)→ 1, in P0 -probability, (B.16)

where ‖ · ‖op is the operator norm and (i) follows from L′′
1m(θ̂1)/m + I0 → 0 in

P0-probability as m → ∞ using Assumption (A4) and weak consistency of θ̂1,
and sup‖t‖2<δ2 |KRm(t)| → 0 in P0-probability as m → ∞ using (B.15). The
weak consistency of θ̂1 and continuity of π(·) from Assumption (A6) imply that
for any fixed δ2 > 0

sup
‖t‖2≤δ2

∣∣∣∣π
{
θ̂1 + t

(Km)1/2

}
− π(θ0)

∣∣∣∣ → 0 as m → ∞ (B.17)

in P0-probability. Combining (B.16) and (B.17), we get that∫
A3

|gm(t)|dt ≤ C

∫
A3

sup
‖t‖2≤δ2

[
exp

{
Kw(t) + 1

2 t
TI0t

}
− 1

]
×

sup
‖t‖2≤δ2

∣∣∣∣π
{
θ̂1 + t

(Km)1/2

}
− π(θ0)

∣∣∣∣ dt, (B.18)

where C is a universal constant; therefore,
∫
A3

|gm(t)|dt → 0 in P0-probability
as m → ∞ because the first and second terms in the integrand converge to 0
uniformly from (B.16) and (B.17).
Step 4: Show that

∫
Rd |gm(t)|dt → 0 in P0-probability as m → ∞. Using steps 3.1

to 3.3, choose δ1 as defined in (B.12) and δ2 large enough such that
∫
A2

|gm(t)|dt→
0 in P0-probability as m → ∞. This implies using the triangle inequality that∫

Rd

|gm(t)|dt ≤
∫
A1

|gm(t)|dt +
∫
A2

|gm(t)|dt +
∫
A3

|gm(t)|dt → 0

in P0-probability as m → ∞. The proof is complete.

B.2. Proof of Theorem 3.1(ii)

We first prove Theorem 3.1(ii) for the second subset posterior distribution and
then prove for jth subset posterior distribution defined in (2.5) in the main
manuscript (j = 3, . . . ,K).
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Step 1: Define two log-likelihood functions. We define the two log-likelihood
functions of θ that correspond to two different marginal distributions of Xm+1.
Let Y m

1 and Y 2m
m+1 denote the first and second data subsets, respectively, w1(θ)

be the log-likelihood of θ given Y 2m
m+1, and w2(θ) be the conditional log-likelihood

of θ obtained from the conditional density of Y 2m
m+1 given Y m

1 . Then,

exp{w1(θ)}

= pθ(Y 2m
m+1) =

∑
X2m

m+1∈Xm

rθ(Xm+1)
2m−1∏
t=m+1

qθ(Xt, Xt+1)
2m∏

t=m+1
gθ(Yt | Xt),

(B.19)
exp{w2(θ)}

= pθ(Y 2m
m+1 | Y m

1 )

=
∑

X2m
m+1∈Xm

pθ(Xm+1 | Y m
1 )

2m−1∏
t=m+1

qθ(Xt, Xt+1)
2m∏

t=m+1
gθ(Yt | Xt). (B.20)

If the marginal distribution of Xm+1 is rθ(·), then exp{w1(θ)} is obtained by
marginalizing over X2m

m+1 in the joint distribution of (Y 2m
m+1, X

2m
m+1). Similarly, we

recover exp{w2(θ)} after marginalizing over X2m
m+1 from the conditional distribu-

tion of (Y 2m
m+1, X

2m
m+1) given Y m

1 . This is also equivalent to the marginal density of
Y 2m
m+1 obtained from the joint distribution of (Y 2m

m+1, X
2m
m+1), where the marginal

density of Xm+1 is set to be pθ(Xm+1 ∈ · | Y m
1 ). We re-express exp{w1(θ)} and

exp{w2(θ)} in terms of the prediction filter in (A.3) using Lemma A.4 as

exp{w1(θ)} =
2m∏

t=m+1

S∑
a=1

gθ(Yt | Xt = a) pθt (a),

exp{w2(θ)} =
2m∏

t=m+1

S∑
a=1

gθ(Yt | Xt = a) p̃θt (a), (B.21)

where

pθm+1(Xm+1) = rθ(Xm+1), p̃θm+1(Xm+1) = pθ(Xm+1 | Y m
1 ),

and for t = m + 2, . . . , 2m

pθt (Xt)=fθ
t−m−2{Y t−1

m+1, rθ(Xm+1)}, p̃θt (Xt)=fθ
t−m−2{Y t−1

m+1, pθ(Xm+1 | Y m
1 )},

where fθ
t−m−2 is defined in (A.3).

Step 2: Show that supθ∈Θ |w1(θ) − w2(θ)| ≤ C̃ρm−2 P0-almost surely for some
constant C̃.

For any θ ∈ Θ we have that

|w1(θ) − w2(θ)|
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=

∣∣∣∣∣
2m∑

t=m+1

[
log

{
S∑

a=1
pθt (a)gθ(Yt | Xt = a)

}
− log

{
S∑

a=1
p̃θt (a)gθ(Yt | Xt = a)

}]∣∣∣∣∣
(i)
≤

2m∑
t=m+1

∣∣∣∣∣log
{

S∑
a=1

pθt (a)gθ(Yt | Xt = a)
}

− log
{

S∑
a=1

p̃θt (a)gθ(Yt | Xt = a)
}∣∣∣∣∣

(ii)
≤

2m∑
t=m+1

{hθ(Yt) − 1} ‖pθt − p̃θt ‖TV

= {hθ(Ym+1) − 1} ‖rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV

+ {hθ(Ym+2) − 1} ‖pθm+2 − p̃θm+2‖TV

+
2m∑

t=m+3
{hθ(Yt) − 1} ‖pθt − p̃θt‖TV

(iii)
≤ {hθ(Ym+1) − 1} ‖rθ(Xm+1) − pθ(Xm+1 | Y m

1 )‖TV

+ {hθ(Ym+2) − 1} ε−1
θ hθ(Ym+2)‖rθ(Xm+1)pθ(Xm+1 | Y m

1 )‖TV

+
2m∑

t=m+3
{hθ(Yt) − 1} ε−1

θ hθ(Yt)
t−1∏

i=m+2
{1 − εθhθ(Yi)−1}‖

× rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV

(iv)
≤ {hθ(Ym+1) − 1} ε−1

θ hθ(Ym+1)‖rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV

+ {hθ(Ym+2) − 1} ε−1
θ hθ(Ym+2)‖rθ(Xm+1) − pθ(Xm+1 | Y m

1 )‖TV

+
2m∑

t=m+3
{hθ(Yt) − 1} ε−1

θ hθ(Yt)
t−1∏

i=m+2
{1 − εhθ(Yi)−1}‖

× rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV, (B.22)

where (i) follows from the triangle inequality, (ii) follows from Lemma A.3,
(iii) follows from Lemma A.2, and (iv) follows from from Lemma A.2 because
ε−1hθ(Ym+1) > 1. Assumption (A8) implies that supθ∈Θ hθ(Yt) ≤ M for 1 ≤
t ≤ n P0-almost surely. The right side of (B.22) is a decreasing function of εθ
and ε = infθ∈Θ εθ > 0. Hence, with P0-probability almost 1, by taking supθ∈Θ
over the right hand side of (B.22) we have that

sup
θ∈Θ

|w1(θ) − w2(θ)| ≤
1
ε

sup
θ∈Θ

‖rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV×

sup
θ∈Θ

[{hθ(Ym+1) − 1}hθ(Ym+1) + {hθ(Ym+2) − 1}hθ(Ym+2)

+
2m∑

t=m+3
{hθ(Yt) − 1} ε−1hθ(Yt)

t−1∏
i=m+2

{1 − εhθ(Yi)−1}
]

≤ 1
ε

sup
θ∈Θ

‖rθ(Xm+1) − pθ(Xm+1 | Y m
1 )‖TV×
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2M(M − 1) +

2m∑
t=m+3

M(M − 1)
t−1∏

i=m+2
(1 − εM−1)

}

≤ 1
ε
M(M − 1) sup

θ∈Θ
‖rθ(Xm+1) − pθ(Xm+1 | Y m

1 )‖TV

{
2 +

∞∑
t=1

(1 − εM−1)t
}

≤ 1
ε2
M(M2 − 1) sup

θ∈Θ
‖rθ(Xm+1) − pθ(Xm+1 | Y m

1 )‖TV

(i)
≤ 1

ε2
M(M2 − 1)Sρm−2 = C̃ρm−2, (B.23)

where (i) follows from assumption (A8)(iii): supθ∈Θ ‖rθ(Xm+1) − pθ(Xm+1 |
Y m

1 )‖TV < Sρm−2 P0-almost surely.
Step 3: Show that the total variation distance of subset quasi posterior dis-
tributions induced by likelihood exp{w1(θ)} and exp{w2(θ)} tends to 0 in P0-
probability as m tends to infinity.

The definition of w1(θ) implies that w1(θ) = L2m(θ), where L2m(θ) is the log-
likelihood of θ on the second subset Y 2m

m+1. Let θ̂2 denote the maximum likelihood
estimator of θ that solves L′

2m(θ) = 0 or w′
1(θ) = 0. For large m, θ̂2 ∈ Bδ0(θ0),

hence the limiting set of local parameters limm→∞{t = (Km)1/2(θ − θ̂2) : θ ∈
Θ} = Rd. Then the densities of the second subset posterior distributions of
t = (Km)1/2(θ− θ̂2) with likelihoods exp{w1(θ̂2+t/(Km)1/2)} and exp{w2(θ̂2+
t/(Km)1/2)} are

π̃w1(t | Y 2m
m+1) = C−1

1m e
K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
,

π̃w2(t | Y 2m
m+1) = C−1

2m e
K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
,

C1m =
∫
Rd

e
K

[
w1

{
θ̂2+

z
(Km)1/2

}
−w1

{
θ̂2

}]
π
{
θ̂2 + z

(Km)1/2

}
dz,

C2m =
∫
Rd

e
K

[
w2

{
θ̂2+

z
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + z

(Km)1/2

}
dz

The total variation distance between subset posterior distributions of θ with the
likelihoods exp{w1(θ)} and exp{w2(θ)} equals

∫
Rd

∣∣π̃w1(t |Y 2m
m+1)−π̃w2(t |Y 2m

m+1)
∣∣dt;

therefore, we want to prove that∫
Rd

∣∣∣∣∣C−1
1m e

K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− C−1

2m e
K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣×
π
{
θ̂2 + t

(Km)1/2

}
dt → 0 (B.24)

in P0-probability as m → ∞. An application of triangular inequality implies
that an upper bound for the integral in (B.24) is

C−1
1m

∫
Rd

∣∣∣∣∣eK
[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣
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× π
{
θ̂2 + t

(Km)1/2

}
dt

+
∣∣C−1

1mC2m − 1
∣∣ ∫

Rd

C−1
2m e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
dt,

(B.25)

and we will show that the upper bound in (B.25) tends to 0 in P0-probability
as m → ∞.

First, we show that C1m is bounded away from 0 with a large P0-probability
as m → ∞. Because w1(θ) = L2m(θ), we have that w1

{
θ̂2 + t

(Km)1/2

}
=

L2m

{
θ̂2 + t

(Km)1/2

}
and that

C1m → (2π)d/2 det(I0)−1/2π(θ0) (B.26)

in P0-probability as m → ∞ based on the same arguments used to prove (B.5);
therefore, C−1

1m is finite with a large P0-probability as m → ∞.
Second, we find a sufficient condition which guarantees that |C−1

1mC2m−1| → 0
in P0-probability as m → ∞. We have that

|C2m − C1m|

=

∣∣∣∣∣
∫
Rd

e
K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]

× π
{
θ̂2 + t

(Km)1/2

}
dt

∣∣∣∣∣,
≤

∫
Rd

∣∣∣∣∣eK
[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣
× π

{
θ̂2 + t

(Km)1/2

}
dt (B.27)

where the last term is the first integral in (B.25); therefore, it is sufficient to
show that the first integral in (B.25) tends to 0 in P0-probability as m → ∞
because C1m is bounded away from zero with a large P0-probability as m → ∞.

Thirdly, we find a sufficient condition which gaurantees that the second term
of the upper bound in (B.25) tends to 0 in P0-probability as m → ∞. If the first
integral in (B.25) tends to 0 in P0-probability as m → ∞, then |C−1

1mC2m−1| → 0
and |C2m − C1m| → 0 in P0-probability as m → ∞, and by triangle inequality
we have that
∫
Rd

e
K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
dt

≤ C1m +
∫
Rd

∣∣∣∣∣eK
[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣×
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π
{
θ̂2 + t

(Km)1/2

}
dt → (2π)d/2 det(I0)−1/2π(θ0) (B.28)

in P0-probability as m → ∞, which implies that the second integral in (B.25)
is bounded in P0-probability as m → ∞. By Slutsky’s theorem we have that

∣∣C−1
1mC2m − 1

∣∣ ∫
Rd

C−1
2m e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
dt → 0

(B.29)

in P0-probability as m → ∞; therefore, it is sufficient to show that in P0-
probability as m → ∞,

∫
Rd

∣∣∣∣∣eK
[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣
× π

{
θ̂2 + t

(Km)1/2

}
dt → 0. (B.30)

Step 4: Show that the integral in (B.30) tends to 0 in P0-probability as m → ∞.
For any t ∈ R

d, let θ∗ = θ̂2 + t
(Km)1/2 . Using (B.23) in step 2, as m → ∞,

with P0 probability tending to 1,

|Kw1(θ∗) −Kw2(θ∗)| ≤ Ksup
θ∈Θ

|w1(θ) − w2(θ)|

≤ C̃ρ−2Kρm. (B.31)

If K = o(ρ−m), as m → ∞, |Kw1(θ∗) −Kw2(θ∗)| → 0 with P0-probability
tending to 1. Let t = 0, we have that

∣∣∣Kw1(θ̂2) −Kw2(θ̂2)
∣∣∣ → 0 with P0-

probability tending to 1. By triangle inequality, as m→∞,
∣∣∣K[w1(θ∗)−w1(θ̂2)]−

K[w2(θ∗)−w2(θ̂2)]
∣∣∣ → 0 with P0-probability tending to 1. Then by continuous

mapping theorem, we have that∣∣∣1 − exp
(
K[w2(θ∗) − w2(θ̂2)] −K[w1(θ∗) − w1(θ̂2)]

)∣∣∣ → 0 (B.32)

with P0-probability tending to 1 as m → ∞. The integral in (B.30) can be
expressed as

∫
Rd

∣∣∣∣∣eK
[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
− e

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]∣∣∣∣∣
× π

{
θ̂2 + t

(Km)1/2

}
dt

=
∫
Rd

e
K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]

×
∣∣∣1 − exp

(
K[w2(θ∗) − w2(θ̂2)] −K[w1(θ∗) − w1(θ̂2)]

)∣∣∣
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× π
{
θ̂2 + t

(Km)1/2

}
dt, (B.33)

and we know that
∫
Rd e

K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}
dt = C1m,

which is bounded in P0-probability by (B.26). An application of the dominated
convergence theorem implies that integral in (B.33) tends to 0 in P0-probability
as m → ∞.
Step 5: Show that Theorem 3.1(ii) holds for j = 2.

The proof of Theorem 3.1(i) in Section B.1 implies that as m → ∞,

∫
Rd

∣∣∣∣∣C−1
1me

K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]

× π
{
θ̂2 + t

(Km)1/2

}
− (2π)−d/2 det(I0)1/2e−

1
2 tTI0t

∣∣∣∣∣dt → 0 (B.34)

in P0-probability. For j = 2, (3.3) reduces to

∫
Rd

∣∣∣∣∣C−1
2me

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}

− (2π)−d/2 det(I0)1/2e−
1
2 tTI0t

∣∣∣∣∣dt
≤
∫
Rd

∣∣∣∣∣C−1
2me

K

[
w2

{
θ̂2+

t
(Km)1/2

}
−w2

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}

− C−1
1me

K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]∣∣∣∣∣
× π

{
θ̂2 + t

(Km)1/2

}
dt

+
∫
Rd

∣∣∣∣∣C−1
1me

K

[
w1

{
θ̂2+

t
(Km)1/2

}
−w1

{
θ̂2

}]
π
{
θ̂2 + t

(Km)1/2

}

− (2π)−d/2 det(I0)1/2e−
1
2 tTI0t

∣∣∣∣∣dt. (B.35)

The first and second integrals on the right hand side of (B.35) tend to 0 in P0-
probability as m → ∞ using steps 3, 4 and (B.34), respectively. This proves (3.3)
for j = 2

We conclude the proof by showing that Theorem 3.1(ii) holds for j = 3, . . . ,K.
Step 6: Prove Theorem 3.1 (ii) for jth subset quasi posterior distributions (j =
3, . . . ,K).

For any θ ∈ Θ and j = 3, . . . ,K, use (B.19), (B.20) to define the jth subset
likelihood functions that are equivalent to exp{w1(θ)} and exp{w2(θ)}, respec-
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tively, as

exp{wj
1(θ)} = pθ(Y jm

(j−1)m+1) =
jm∏

t=(j−1)m+1

S∑
a=1

gθ(Yt | Xt = a)pθt (a),

exp{wj
2(θ)} = pθ(Y jm

(j−1)m+1 | Y (j−1)m
(j−2)m+1) =

jm∏
t=(j−1)m+1

S∑
a=1

gθ(Yt | Xt = a)p̃θt (a),

where

pθ(j−1)m+1(X(j−1)m+1) = rθ(X(j−1)m+1),

p̃θ(j−1)m+1(X(j−1)m+1) = pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1)

and for t = (j − 1)m + 2, . . . , jm,

pθt (Xt) = fθ
t−m−2

{
Y t−1

(j−1)m+1, rθ(X(j−1)m+1)
}
,

p̃θt (Xt) = fθ
t−m−2

{
Y t−1

(j−1)m+1, pθ(X(j−1)m+1 | Y (j−1)m
(j−2)m+1)

}
,

where fθ
t−m−2 is defined in (A.3). By Assumption (A8), we have that with P0-

probability almost 1,

sup
θ∈Bδ0 (θ0)

‖rθ(X(j−1)m+1) − pθ(X(j−1)m+1|Y (j−1)m
(j−2)m+1)‖TV < ρm−2.

For any t ∈ R
d, let θ∗ = θ̂j + t

(Km)1/2 . Using a similar argument of (B.23) in
step 2, we have that∣∣∣Kwj

1(θ∗) −Kwj
2(θ∗)

∣∣∣
≤ 1

ε2
M(M2 − 1)K‖rθ∗(X(j−1)m+1) − pθ∗(X(j−1)m+1 | Y (j−1)m

(j−2)m+1)‖TV

≤ 1
ε2
M(M2 − 1)Ksup

θ∈Θ
‖rθ(X(j−1)m+1) − pθ(X(j−1)m+1 | Y (j−1)m

(j−2)m+1)‖TV

≤ ε−2Cρ−2M(M2 − 1)Kρm. (B.36)

As m → ∞, if K = o(ρ−m),
∣∣∣Kwj

1(θ∗) −Kwj
2(θ∗)

∣∣∣ → 0 with P0-probability
tending to 1. For t ∈ limm→∞{t = (Km)1/2(θ − θ̂j) : θ ∈ Θ} = Rd, we define

π̃j
w1

(t | Y 2m
m+1) = C−1

1m e
K

[
wj

1

{
θ̂j+

t
(Km)1/2

}
−wj

1

{
θ̂j

}]
π
{
θ̂j + t

(Km)1/2

}
,

π̃wj
2
(t | Y 2m

m+1) = C−1
2m e

K

[
wj

2

{
θ̂j+

t
(Km)1/2

}
−wj

2

{
θ̂j

}]
π
{
θ̂j + t

(Km)1/2

}
,

Cj
1m =

∫
Rd

e
K

[
wj

1

{
θ̂2+

z
(Km)1/2

}
−wj

1

{
θ̂j

}]
π
{
θ̂j + z

(Km)1/2

}
dz, (B.37)
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Cj
2m =

∫
Rd

e
K

[
wj

2

{
θ̂j+

z
(Km)1/2

}
−wj

2

{
θ̂j

}]
π
{
θ̂j + z

(Km)1/2

}
dz (B.38)

Following a similar argument of step 3 and step 4, we can prove that as m → ∞,
with large P0-probability

Cj
1m → (2π)d/2 det(I0)−1/2π(θ0),

Cj
2m → (2π)d/2 det(I0)−1/2π(θ0),∫
Rd

∣∣∣∣∣(Cj
1m)−1 e

K

[
wj

1

{
θ̂j+

t
(Km)1/2

}
−wj

1

{
θ̂j

}]
−(Cj

2m)−1 e
K

[
wj

2

{
θ̂j+

t
(Km)1/2

}
−wj

2

{
θ̂j

}]∣∣∣∣∣
× π

{
θ̂j + t

(Km)1/2

}
dt → 0. (B.39)

By the proof of Theorem 3.1(i) in Section B.1 implies that as m → ∞,

∫
Rd

∣∣∣∣∣(Cj
1m)−1 e

K

[
wj

1

{
θ̂j+

t
(Km)1/2

}
−wj

1

{
θ̂j

}]
π
{
θ̂j + t

(Km)1/2

}

− (2π)−d/2 det(I0)1/2e−
1
2 tTI0t

∣∣∣∣∣dt → 0 (B.40)

in P0-probability.
Theorem 3.1 (ii) at j can be expressed as∫

Rd

∣∣∣∣∣(Cj
2m)−1 e

K

[
wj

2

{
θ̂j+

t
(Km)1/2

}
−wj

2

{
θ̂j

}]
π
{
θ̂j + t

(Km)1/2

}

− (2π)−d/2 det(I0)1/2e−
1
2 tTI0t

∣∣∣∣∣dt
≤
∫
Rd

∣∣∣∣∣(Cj
1m)−1 e

K

[
wj

1

{
θ̂j+

t
(Km)1/2

}
−wj

1

{
θ̂j

}]

− (Cj
2m)−1 e

K

[
wj

2

{
θ̂j+

t
(Km)1/2

}
−wj

2

{
θ̂j

}]∣∣∣∣∣
× π

{
θ̂j + t

(Km)1/2

}
dt

+
∫
Rd

∣∣∣∣∣(Cj
1m)−1 e

K

[
wj

1

{
θ̂j+

t
(Km)1/2

}
−wj

1

{
θ̂j

}]
π
{
θ̂j + t

(Km)1/2

}

− (2π)−d/2 det(I0)1/2e−
1
2 tTI0t

∣∣∣∣∣dt. (B.41)

The first and second integrals on the right hand side of (B.41) tend to 0 in
P0-probability as m → ∞ using (B.39) and (B.40), respectively. This proves
Theorem 3.1 (ii) for jth subset quasi posterior distribution, which completes
the proof.
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Appendix C: Proof of Theorem 3.2

C.1. Proof of Theorem 3.2(i)

Step 1: Find an upper bound for the total variation distance between Π̃n(· | Y n
1 )

and d-variate normal distribution with mean zero and I−1
0 as the covariance

matrix.
For any K ∈ N and j = 1, . . . ,K, let hj =

√
n(θ − θ̂j) denote the jth local

parameter, Πhj
m (· | Y jm

(j−1)m+1) denote the distribution of hj implied by the jth
subset posterior distribution Π̃m(· | Y jm

(j−1)m+1) with density π̃m(θ | Y jm
(j−1)m+1).

Theorem 3.1 in the main manuscript implies that

‖Πhj
m (· |Y jm

(j−1)m+1)−Nd(0, I−1
0 )‖TV→0 in P0 -probability as m→∞,

j=1, . . . ,K. (C.1)

By combination scheme, the density of block filtered posterior distribution
Π̃n(θ | Y n

1 ) is defined as

π̃n(θ | Y n
1 )= 1

K

K∑
j=1

det(Σj)1/2

det(Σ̃)1/2
π̃m

{
Σ1/2

j Σ̃−1/2(θ−θ̃)+θ̂j | Y jm
(j−1)m+1

}
, θ ∈ Θ.

(C.2)

Let Π̃h
n(· | Y n

1 ) denote the distribution of h =
√
n(θ− θ̃) implied by block filtered

posterior distribution Π̃n(· | Y n
1 ). Then the density of Π̃h

n(· | Y n
1 ) is given by

π̃h
n(h | Y n

1 ) = 1
K

K∑
j=1

det(Σj)1/2

det(Σ̃)1/2
π̃m

{
Σ1/2

j Σ̃−1/2 h√
n

+ θ̂j | Y jm
(j−1)m+1

}
n−d/2

= 1
K

K∑
j=1

det(Σj)1/2

det(Σ̃)1/2
πhj
m

{
Σ1/2

j Σ̃−1/2h | Y jm
(j−1)m+1

}
, h ∈ R

d,

(C.3)

where π
hj
m (h | Y jm

(j−1)m) is the density of Πhj
m (· | Y jm

(j−1)m).
Let φ(θ;μθ,Σ) denote the density function of d-variate normal distribution

with mean μθ and Σ as covariance matrix. The total variation distance between
Π̃h

n(· | Y n
1 ) and Nd(0, I−1

0 ) is upper bounded by

‖Π̃h
n(· | Y n

1 ) −Nd(0, I−1
0 )‖TV

(i)= 1
2

∫
Rd

| 1
K

K∑
j=1

det(Σj)1/2

det(Σ̃)1/2
πhj
m

{
Σ1/2

j Σ̃−1/2h | Y jm
(j−1)m+1

}
− φ(h; 0, I−1

0 )|dh

(ii)
≤ 1

2K

K∑
j=1

∫
Rd

|det(Σj)1/2

det(Σ̃)1/2
πhj
m

{
Σ1/2

j Σ̃−1/2h | Y jm
(j−1)m+1

}
− φ(h; 0, I−1

0 )|dh
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(iii)= 1
2K

K∑
j=1

∫
Rd

|πhj
m

{
t | Y jm

(j−1)m+1

}
− det(Σ̃)1/2

det(Σj)1/2
φ(Σ̃1/2Σ−1/2

j t; 0, I−1
0 )|dt

= 1
2K

K∑
j=1

∫
Rd

|πhj
m

{
t | Y jm

(j−1)m+1

}
− φ(t; 0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j )|dt

= 1
K

K∑
j=1

{
‖Πhj

m (· | Y jm
(j−1)m+1) −Nd(0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j )‖TV

}

(iv)
≤ 1

K

K∑
j=1

{
‖Πhj

m (· | Y jm
(j−1)m+1) −Nd(0, I−1

0 )‖TV

+‖Nd(0, I−1
0 ) −Nd

(
0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j

)
)‖TV

}
, (C.4)

where (i) follows from the definition of total variation distance and (C.3),
(ii) follows from triangle inequality, (iii) follows from the transformation t =
Σ1/2

j Σ̃−1/2h, and (iv) again follows from triangle inequality. The first term inside
the summation of (C.4) converges to 0 in P0 probability by (C.1). The second
term inside the summation of (C.4) is the total variation distance between two
normal distribution with zero mean and different variance.
Step 2: Find an upper bound for the second term inside the summation of (C.4).

Let Nd(μ1, V1) and Nd(μ2, V2) be two d-variate normal distributions with
mean μ1, μ2 and covariance matrix V1, V2, respectively. Let v = μ1 − μ2. By
Lemma A.5, the total variation distance ‖Nd(μ1, V1) −Nd(μ1, V1)‖TV is upper
bounded by:

‖Nd(μ1, V1) −Nd(μ2, V2)‖TV

≤ 9
2 max{ |v

T(V1 − V2)v|
vTV1v

,
vTv√
vTV1v

, ‖(NTV1N)−1NTV2N − Id−1‖F },

(C.5)

where N is a d × (d − 1) matrix whose columns form a basis for the subspace
orthogonal to v.

Let A = (aik) and B = (bkj) be two matrix such that AB exists. In general,
we have an upper bound for ‖AB‖F

‖AB‖F =

⎛
⎝∑

i

∑
j

|
∑
k

aikbkj |2
⎞
⎠

1/2
(i)
≤

⎛
⎝∑

i

∑
j

∑
k

a2
ik

∑
k

b2kj

⎞
⎠

1/2

=

⎛
⎝∑

i,k

a2
ik

∑
j,k

b2kj

⎞
⎠

1/2

= ‖A‖F ‖B‖F , (C.6)

where (i) follows from Cauchy-Schwarz inequality.
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Denote Fj = Σ1/2
j − (nI0)−1/2 and F̃ = Σ̃−1/2 − (nI0)1/2. By assumption

(A9), we have

E0‖Σ1/2
j Σ̃−1/2 − Id‖2

F = E0 ‖{(nI0)−1/2 + Fj}{(nI0)1/2 + F̃} − Id‖2
F

= E0 ‖n−1/2I
−1/2
0 F̃ + n1/2FjI

1/2
0 + FjF̃‖2

F

(i)
≤ 3n−1‖I−1/2

0 ‖2
F ‖F̃‖2

F + 3n‖I1/2
0 ‖2

F E0 ‖Fj‖2
F + 3E0 n‖Fj‖2

Fn
−1‖F̃‖2

F

(ii)→ 0, (C.7)

where (i) follows from (C.7), and (ii) follows (A9) that n−1‖F̃‖2
F ,E0 n‖Fj‖2

F →
0 and ‖I1/2

0 ‖F , ‖I−1/2
0 ‖F < ∞. Hence, for j = 1, . . . ,K, denote Mj = Σ1/2

j Σ̃−1/2−
Id. By Assumption (A9) we have as m → ∞,

E0 ‖Mj‖2
F → 0, uniformly for j = 1, . . . ,K. (C.8)

For j = 1, we consider the difference ‖Nd(0, I−1
0 )−Nd

(
0,Σ1/2

1 Σ̃−1/2I−1
0 Σ̃−1/2

Σ1/2
1

)
‖TV. And the corresponding vector v and matrix V1, V2 in (C.5) are

v = 0,

V2 − V1 = Σ1/2
1 Σ̃−1/2I−1

0 Σ̃−1/2Σ1/2
1 − I−1

0 = M1I
−1
0 + I−1

0 MT
1 + M1I

−1
0 MT

1 .

Since v = 0, the first two terms of the right hand side of (C.5) is zero. For the
third term we have that

‖(NTV1N)−1NTV2N − Id−1‖F
= ‖(NTV1N)−1NT(V2 − V1)N‖F
= ‖(NTI−1

0 N)−1NT(M1I
−1
0 + I−1

0 MT
1 + M1I

−1
0 MT

1 )N‖F . (C.9)

We have that

‖(NTI−1
0 N)−1NT(M1I

−1
0 + I−1

0 MT
1 + M1I

−1
0 MT

1 )N‖F
(i)
≤ ‖I−1

0 ‖F ‖M1‖F (2 + ‖M‖F )‖(NTI−1
0 N)−1‖F ‖N‖2

F

(ii)
≤ ‖I−1

0 ‖Fλ(I0)‖M1‖F (2 + ‖M‖F )(d− 1)3/2, (C.10)

where λ(I0) denotes the largest singular value of I0, (i) follows from (C.6),
and (ii) follows from ‖(NTI−1

0 N)−1‖F ≤ (d − 1)1/2λ(I0) and ‖N‖F =
√
d− 1.

Combining (C.5), (C.9), and (C.10), we have that

‖Nd(0, I−1
0 ) −Nd

(
0,Σ1/2

1 Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

1

)
)‖TV ≤ C̃‖M1‖F (2 + ‖M1‖F ),

(C.11)
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where C̃ = 9(d−1)3/2λ(I0)‖I−1
0 ‖F

2 < ∞. By a simlar argument, we can show that
for j = 2, . . . ,K,

‖Nd(0, I−1
0 ) −Nd

(
0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j

)
)‖TV ≤ C̃‖Mj‖F (2 + ‖Mj‖F ).

(C.12)

Step 3: Show that Theorem 3.2(i) holds for any sequence Km → ∞ as m → ∞
and Km = o(ρ−m).

For any K = 1, 2, . . ., we define a sequence of random variables (DK
j,m)∞m=1

as

DK
j,m = ‖Πhj

m (· | Y jm
(j−1)m+1) −Nd

(
0, I−1

0
)
‖TV, j = 1, . . . ,K, m = 1, 2, . . . .

(C.13)

Since DK
j.m ∈ [0, 1] for any 1 ≤ j ≤ K and K,m ∈ N, hence for any given

sequence Km ∈ N with Km
m→∞→ ∞, we obtain that {DKm

j,m , j = 1, . . . ,Km,m =
1, 2, . . .} is uniformly integrable. Together with DKm

j,m converging to 0 in P0-
probability we have that as m → ∞,

E0 D
Km

j,m → 0, j = 1, . . . ,Km. (C.14)

Based on definition of subset quasi posterior distribution Π̃m(· | Y jm
(j−1)m+1), the

density of the first subset posterior Π̃m(· | Y m
1 ) is a function of Y m

1 , whereas the
density of the Π̃m(· | Y jm

(j−1)m+1) is a function of Y jm
(j−2)m+1 for j = 2, . . . ,Km.

By assumption (A7), {Yt, t ≥ 1} is stationary. Hence we have that for any
Km,m ≥ 1,

E0 D
Km
1,m �= E0 D

Km
2,m = · · · = E0 D

Km

Km,m. (C.15)

For any ε > 0, we have that as m → ∞,

P0
[
‖Π̃h

n(· | Y n
1 ) −Nd(0, I−1

0 )‖TV > ε
]

(i)
≤P0

⎡
⎣ 1
Km

Km∑
j=1

{
DKm

j,m +‖Nd(0, I−1
0 )−Nd(0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j )‖TV

}
>ε

⎤
⎦

(ii)
≤ 1

εKm

Km∑
j=1

E0

{
DKm

j,m + ‖Nd(0, I−1
0 ) −Nd(0,Σ1/2

j Σ̃−1/2I−1
0 Σ̃−1/2Σ1/2

j )‖TV

}

(iii)= 1
εKm

E0 D
Km
1,m + Km − 1

εKm
E0 D

Km
2,m + 1

εKm

Km∑
j=1

E0 ‖Nd(0, I−1
0 )

−Nd(0,Σ1/2
j Σ̃−1/2I−1

0 Σ̃−1/2Σ1/2
j )‖TV

(iv)
≤ 1

εKm
E0 D

Km
1,m + Km − 1

εKm
E0 D

Km
2,m + C̃

ε

1
Km

Km∑
j=1

E0 ‖Mj‖F (2 + ‖Mj‖F )

(C.16)
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(v)→ 0,

where (i) follows from (C.4) in step 1, (ii) follows from Markov inequality,
(iii) follows from (C.15), (iv) follows from (C.12) in step 2. The convergence
in (v) follows from that the first term of (C.16) converges to 0 as 1

Km
→ 0

and E0 D
Km
1,m → 0 as m → ∞; the second term of (C.16) converges to 0 as

Km−1
Km

→ 1 and E0 D
Km
2,m → 0 as Km

m→∞→ ∞; for the third term of (C.16),
by (C.8) and Jensen’s inequality we have 1

Km

∑Km

j=1 E0 ‖Mj‖F (2 + ‖Mj‖F ) → 0
as m,Km → ∞. And this completes the proof of Theorem 3.2 (i) for any given
sequence Km

m→∞→ ∞ with Km = o(ρ−m).

C.2. Proof of Theorem 3.2(ii)

Let μ, ν be two probability measures on (Θ,F) where F is the Borel σ-field.
The 1-Wasserstein distance is bounded by the total variation distance (Villani,
2008, Theorem 6.15)

W1{μ, ν} ≤ diam(Θ)‖μ− ν‖TV,

where diam(Θ) = sup
θ1,θ2∈Θ

‖θ1 − θ2‖2 < ∞ by the compactness of Θ ⊂ Rd. Hence,

as m → ∞ with P0-probability tending to 1,
√
nW1

{
Π̃n(· | Y n

1 ), Nd(θ̃, (nI0)−1)
}

(i)= W1

{
Π̃h̃=

√
n(θ−θ̃)

n (· | Y n
1 ), Nd(0, I−1

0 )
}

≤ diam(Θ)‖Π̃h̃
n(· | Y n

1 ) −Nd(0, I−1
0 )‖TV

(ii)→ 0,
√
nW1

{
Πn(· | Y n

1 ), Nd(θ̂, (nI0)−1)
}

(i)= W1

{
Πh=

√
n(θ−θ̂)

n (· | Y n
1 ), Nd(0, I−1

0 )
}

≤ diam(Θ)‖Πh
n(· | Y n

1 ) −Nd(0, I−1
0 )‖TV

(iii)→ 0, (C.17)

where (i) follows from the rescaling property of W1-distance, (ii) follows from
Theorem 3.2(ii) and (iii) follows from Theorem 3.1 in the case K = 1. By Villani
(2003), if Θ is bounded, we have the following relation between W1 distance and
W2 distance. For two square integrable probability measures μ, ν on (Θ,F),

W2{μ, ν}2diam(Θ)−1 ≤ W1{μ, ν} ≤ W2{μ, ν}, (C.18)

Furthermore, let μ be the probability measure induced by Nd(m1,Σ1) and ν
be the probability measure induced by Nd(m2,Σ2), then W2(μ, ν) has a closed
form (Olkin and Pukelsheim, 1982)

W2{Nd(m1,Σ1), Nd(m1,Σ1)} = ‖m1 −m2‖2 + ‖Σ1/2
1 − Σ1/2

2 ‖F . (C.19)
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Now we consider the upper bound of Theorem 3.2 (ii):
√
nW1

{
Π̃n(· | Y n

1 ),Πn(· | Y n
1 )

}
(i)
≤

√
nW1

{
Π̃n(· | Y n

1 ), Nd(θ̃, (nI0)−1)
}

+
√
nW1

{
Π̃n(· | Y n

1 ), Nd(θ̂, (nI0)−1)
}

+
√
nW1

{
Nd(θ̃, (nI0)−1), Nd(θ̂, (nI0)−1)

}
(ii)
≤ diam(Θ)

{
‖Π̃h̃

n(· | Y n
1 ) −Nd(0, I−1

0 )‖TV + ‖Πh
n(· | Y n

1 ), Nd(0, I−1
0 )‖TV

}
+

√
nW1

{
Nd(θ̃, (nI0)−1), Nd(θ̂, (nI0)−1)

}
(C.20)

where (i) follows from triangle inequality, (ii) follows from (C.17). The first term
of the right hand side of (C.20) converges to 0 in P0-probability by (C.17). As
for the second term, by (C.18) and (C.19), we have that

diam(Θ)−1√n‖θ̃ − θ̂‖2
2 ≤

√
nW1

{
Nd(θ̃, (nI0)−1), Nd(θ̂, (nI0)−1)

}
≤
√
n‖θ̃ − θ̂‖2.

(C.21)

Hence up to a negligible term in P0-probability, we have
√
nW1

{
Π̃n(· | Y n

1 ),Πn(· | Y n
1 )

}
≤

√
n‖θ̃ − θ̂‖2. (C.22)

For the lower bound of Theorem 3.2(ii), we have that
√
nW1

{
Π̃n(· | Y n

1 ),Πn(· | Y n
1 )

}
≥
√
nW1

{
Nd(θ̃, (nI0)−1), Nd(θ̂, (nI0)−1)

}
−
√
nW1

{
Π̃n(· | Y n

1 ), Nd(θ̃, (nI0)−1)
)

−
√
nW1

{
Π̃n(· | Y n

1 ), Nd(θ̂, (nI0)−1)
}

≥
√
nW1

{
Nd(θ̃, (nI0)−1), Nd(θ̂, (nI0)−1)

}
− diam(Θ)

{
‖Π̃h̃

n(· | Y n
1 ), Nd(0, I−1

0 )‖TV + ‖Πh
n(· | Y n

1 ) −Nd(0, I−1
0 )‖TV

}
,

(C.23)

where the second term of (C.23) converges to 0 in P0-probability and the first
term is lower bounded by diam(Θ)−1√n‖θ̃ − θ̂‖2

2 by (C.21). Hence up to a
negligible term in P0-probability, we have

√
nW1

{
Π̃n(· | Y n

1 ),Πn(· | Y n
1 )

}
≥ diam(Θ)−1√n‖θ̃ − θ̂‖2

2. (C.24)

Combining (C.22) and (C.23) completes the proof of Theorem 3.2(ii).

Appendix D: Further details of experiments

D.1. Illustrative example of simulations

We consider an illustrative example of HMM in Section 4.2 of the main
manuscript. Using the notation from Section 2.1 in the main manuscript, let
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Y = R, g(· | X = a) = φ(·;μa, σ
2
a) be the density of normal distribution with

mean μa and variance σ2
a (a = 1, . . . , S), θ = {r,Q, μ1, . . . , μS , σ

2
1 , . . . , σ

2
S} ⊂ Rd,

and d = S2 + 2S − 1. Our example is motivated from Rydén (2008), who uses
a similar example with S = 3, σ1 = . . . = σ3 = σ, and a specific choice of Q,
which automatically determines r because rTQ = rT. Under this setup, poste-
rior computations on subsets using the data augmentation based on (2.5) in the
main manuscript are analytically tractable.

The prior distribution of θ is taken conjugate to the likelihood pθ(Xn
1 , Y

n
1 )

in (2.2) of the main manuscript. The initial distribution r = (r1, . . . , rS) and
rows of the Markov transition matrix {(qa1, . . . , qaS)}Sa=1 are given an indepen-
dent Dirichlet prior Dir(1, . . . , 1); the mean parameters μ1, . . . , μS are given
an independent normal prior N(ξ, κ−1) with ξ = (min yi + max yi)/2 and
κ = 1/(max yi − min yi)2; the variance parameters σ−2

1 , . . . , σ−2
S are given an

independent gamma prior Γ(1, 1).
For j = 1, . . .K, the full conditional distributions of θ = {r,Q, μ1, . . . , μS , σ

2
1 ,

. . . , σ2
S} after stochastic approximation given (X(jm)

(j−1)m+1, Y
(jm)
(j−1)m+1) are as fol-

lows. The full conditional distribution of r is

(r1, . . . , rS) | · · · ∼ Dir
(
K · I{X(j−1)m+1 = 1}+1, . . . ,K · I{X(j−1)m+1 = S}+1

)
(D.1)

where | · · · denotes the conditioning on the remaining random quantities and
I{·} denotes the indicator function. The rows of transition matrix Q are condi-
tional independent over a = 1, . . . , S and drawn as

(qa1, . . . , qaS) | · · · ∼ Dir (Kna1 + 1, . . . ,KnaS + 1) (D.2)

where nab is the cardinality of the set {(j−1)m+1 < i ≤ jm : Xi−1 = a,Xi =
b}. The mean parameters are conditionally independent over a = 1, . . . , S, and
drawn as

μa | · · · ∼ N
(
KSa + κξσ2

Kna + κσ2 ,
σ2

Kna + κσ2

)
(D.3)

where Sa =
∑

Xi=a,(j−1)m+1≤i≤jm yi and na is the cardinality of the set {(j −
1)m + 1 ≤ i ≤ jm : Xi = a}. The variance parameters are conditionally
independent over a = 1, . . . , S and drawn as

σ−2
a | · · · ∼ Γ

(
1 + K

2 na, 1 + K

2
∑
i∈Sa

(yi − μa)2
)
. (D.4)

Given the parameters and observed chain {Yt}, the hidden Markov chain is
updated as

P(X1 = a | . . .) ∝ {raφ(Y1;μa, σ
2
a)P(Y m

2 | X1 = a, θ)}K , (D.5)

and as

P(Xi = b | Xi−1 = a) ∝ {qabφ(Yi;μb, σ
2
b )P(Y jm

i+1 | Xi = b, θ)}K , (D.6)
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for 1 ≤ j ≤ K, (j − 1)m + 1 < i ≤ jm. The prediction filter is updated as

P(X(j−1)m+1 = b | Y (j−1)m
(j−2)m+1)

∝
∑
a

{P(X(j−1)m+1 = b | X(j−1)m = a)Pθ(Y (j−1)m
(j−2)m+1, X(j−1)m = a)}K

=
∑
a

{qab Pθ(Y (j−1)m
(j−2)m+1, X(j−1)m = a)}K (D.7)

for 1 < j ≤ K, where Pθ(Y (j−1)m
(j−2)m+1, X(j−1)m = a) is calculated using forward-

backward recursion.
The subset sampling scheme is carried out in parallel using Gibbs sampler

that alternates between updating parameter θ and the hidden Markov chain
X. On the first subset, we draw parameters by cycling through the sequence
for the following six steps until the Markov chain convergent to the stationary
distribution:

(a1) Draw X1, . . . , Xm from {1, . . . , S} with equal weights as initial value for
hidden Markov chain.

(a2) Update (r1, . . . , rS) according to (D.1).
(a3) Update Q by drawing (qa1, . . . , qaS) according to (D.2) independently for

a = 1, . . . , S.
(a4) Update μa according to (D.3) independently for a = 1, . . . ,K.
(a5) Update σ−2

a according to (D.4) independently for a = 1, . . . ,K.
(a6) Update (X1, . . . , Xm) by drawing X1 from (D.5) and Xi−1 → Xi from (D.6)

for i = 2, . . . ,m.

On jth subset (j = 2, . . . ,K), we use the prediction filter on the immediately
preceding subset to approximate the initial distribution of the hidden Markov
chain; therefore, we require access to 2m observations (jth and (j−1)th subsets),
where the (j − 1)th subset is used to estimate the prediction filter and the jth
subset is used to sample posterior draws θ. For j = 2, . . . ,K, with access to
Y

(j−1)m
(j−2)m+1 and Y jm

(j−1)m+1, run the above Gibbs sampler (a1)–(a6) on Y
(j−1)m
(j−2)m+1

to get an estimation of prediction filter according to (D.7), and then run Gibbs
sampler on Y jm

(j−1)m+1 while setting r = (r1, . . . , rS) equal to the estimation of
prediction filter obtained from Y

(j−1)m
(j−2)m+1.

(b1) Run the Gibbs sampler (a1)–(a6) with observations Y
(j−1)m
(j−2)m+1.

(b2) Calculate the prediction filter weights (w1, . . . , wS) according to (D.7)
based on the MCMC estimation of parameters.

(b3) Set (r1, . . . , rS) = (w1, . . . , wS)/
∑

a wa as initial distribution for hid-
den Markov chain. Then draw X(j−1)m+1 with weight (r1, . . . , rS) and
X(j−1)m+2, . . . , Xgm with equal weight from {1, . . . , S}.

(b4) Run the Gibbs sampler (a3)–(a6) with observations Y cm
(j−1)m+1.

If we set K = 1, then we get the same sampling scheme as those in Rydén
(2008). Let {θ(t)

(j)}
T,K
t=1,j=1 be the posterior draws collected from subset posterior
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sampling scheme. Then, the final step of divide-and-conquer method simply
re-scales and re-centers the scaled and centered draws from subsets as follows:

(c1) Calculate the maximum likelihood estimator θ̂ using the full data Y n
1

by Baum-Welch EM algorithm and the Monte Carlo estimate of subset
posterior variance matrices (Σθ(j))Kj=1 by

μθ(j) = 1
T

T∑
t=1

θ
(t)
(j), Σθ(j) = 1

T

T∑
t=1

(
θ
(t)
(j) − μθ(j)

)(
θ
(t)
(j) − μθ(j)

)T

,

j = 1, . . . ,K. (D.8)

(c2) Adopt COMB(θ̃ = θ̂, Σ̃ = 1
K

∑K
j=1 Σθ(j)) and then calculate the θ draws

from block filtered posterior distribution according to the following

θ̃
(t)
(j) = θ̃ + Σ̃1/2

{
Σ−1/2

θ(j)
(θ(t)

(j) − θ̂j)
}
, j = 1, . . . ,K; t = 1, . . . , T. (D.9)

D.2. Time comparisons and accuracy for posterior inference on Q

Simulation Study of Accuracy and Efficiency. Following the discussion of the
simulation study in the main manuscript of HMM with (S = 3, Qε = 0.1, μ1 =
−2, μ2 = 0, μ3 = 2), we compare the accuracy of block filtered posterior dis-
tribution and its divide-and-conquer competitors for posterior inference on Q
(Table 5). The divide-and-conquer competitors of block filtered posterior distri-
bution have low accuracy for n = 106 and all K. In comparison, the block fil-
tered posterior distribution has the highest accuracy for all (n,K) combinations,
and its accuracy is close to the benchmark accuracy of the Hamiltonian Monte
Carlo. These observations agree with that of the simulation study for posterior
inference on the emission distribution parameters in the main manuscript.

The block filtered posterior distribution is about ten times faster than Hamil-
tonian Monte Carlo and about fifteen times faster than data augmentation when
n = 106 and K = n1/3 (Table 6). For all n, the running time of block filtered
posterior distribution decreases as K increases from logn to n1/3 because larger
K results in smaller subsets size. The run-time of subset posterior sampling
algorithms dominates the time required to combine the parameter draws from
the subsets; therefore, the block filtered posterior distribution is more efficient
than data augmentation and Hamiltonian Monte Carlo for all values of K when
n = 105 and n = 106.

Simulation Study of Mixing Property. Following the discussion of the simu-
lation study in the main manuscript of three more HMMs with S = 2, 5, 7, the
accuracy of block filtered posterior distribution and its divide-and-conquer com-
petitors for posterior inference on Q is compared in Tables 5 and 7. For HMMs
with S = 2, 3, ρ is relatively small and the block filtered posterior distribu-
tion has similar accuracy compared to Hamiltonian Monte Carlo over all (n,K)
combinations. On the other hand, HMMs with S = 5, 7 have ρ ≈ 1 and the
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Table 5

Accuracy of the approximate posterior distributions of Q. The accuracies are averaged over
ten simulation replications and across all the dimensions of Q. The maximum Monte Carlo

error for the block filtered posterior distribution is 0.02
n K BFP WASP DPMC PIE HMC

logn 0.96 0.87 0.87 0.88
104 n1/4 0.96 0.87 0.87 0.87 0.96

n1/3 0.93 0.58 0.57 0.58
logn 0.97 0.62 0.62 0.62

105 n1/4 0.97 0.63 0.63 0.63 0.95
n1/3 0.97 0.66 0.66 0.66
logn 0.96 0.22 0.22 0.23

106 n1/4 0.97 0.22 0.22 0.23 0.96
n1/3 0.96 0.25 0.25 0.25

BFP, block filtered posterior distribution; WASP, Wasser-
stein posterior; DPMC, double parallel Monte Carlo; PIE,
posterior interval estimation; HMC, Hamiltonian Monte
Carlo.

Table 6

Time (in hours) for computing the posterior distributions of θ. The times are averaged over
ten simulation replications
DA BFP HMC

logn n1/4 n1/3

n = 104 1.36 1.88 0.73 0.33 0.68
n = 105 14.80 5.58 4.97 1.22 8.60
n = 106 131.13 59.76 21.16 8.83 91.89

DA, data augmentation; BFP, block filtered poste-
rior distribution; HMC, Hamiltonian Monte Carlo.

block filtered posterior distribution has a smaller accuracy compared to Hamil-
tonian Monte Carlo. Furthermore, as K increases, the accuracy of block filtered
posterior distribution decreases because of smaller subset size and increased
dependence.

For HMMs with S = 2, 3, 5, 7 and every (n,K) combinations, the block fil-
tered posterior distribution is the top performer compared to its divide-and-
conquer competitors. For HMMs with S = 2, 3 and relatively weak dependence,
the divide-and-conquer competitors have acceptable accuracy, but their accu-
racy values decrease quickly as the dependence ρ increases and drop to 0 for
S = 5, 7. In contrast, the block filtered posterior distribution keeps its great
performance on the accuracy for S = 5, 7 and all (n,K) combinations. These
observations agree with that of the simulation study for posterior inference on
the emission distribution parameters in the main manuscript.

Real Data Analysis. Following the discussion of the read data analysis in the
main manuscript of HMM, we compare the accuracy of block filtered posterior
distribution and its divide-and-conquer competitors for posterior inference on Q
(Table 8). For K = logn, n1/4, and n1/3, the block filtered posterior distribution
outperforms its divide-and-conquer competitors, and its accuracy is close to that
of Hamiltonian Monte Carlo.
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Table 7

Accuracy of the approximate posterior distributions of Q. The accuracies are averaged over
ten simulation replications and across all the dimensions of Q. The maximum Monte Carlo

error for the block filtered posterior distribution is 0.02
n K BFP WASP DPMC PIE HMC

S = 2
logn 0.97 0.98 0.98 0.98

104 n1/4 0.97 0.98 0.98 0.99 0.96
n1/3 0.97 0.96 0.96 0.96
logn 0.97 0.98 0.98 0.99

105 n1/4 0.97 0.98 0.98 0.99 0.96
n1/3 0.97 0.98 0.98 0.98

S = 5
logn 0.65 0.00 0.00 0.00

104 n1/4 0.66 0.00 0.00 0.00 0.95
n1/3 0.62 0.00 0.00 0.00
logn 0.68 0.00 0.00 0.00

105 n1/4 0.65 0.00 0.00 0.00 0.95
n1/3 0.43 0.00 0.00 0.00

S = 7
logn 0.56 0.01 0.01 0.00

104 n1/4 0.57 0.00 0.01 0.00 0.94
n1/3 0.56 0.00 0.00 0.00
logn 0.51 0.00 0.00 0.00

105 n1/4 0.54 0.00 0.00 0.00 0.94
n1/3 0.55 0.00 0.00 0.00

BFP, block filtered posterior distribution; WASP, Wasser-
stein posterior; DPMC, double parallel Monte Carlo; PIE,
posterior interval estimation; HMC, Hamiltonian Monte
Carlo.

Table 8

Accuracy of the approximate posterior distributions of Q. The entries in the table are the
median of the accuracies computed across the Q dimensions. The maximum Monte Carlo

error for the block filtered posterior distribution is 0.01
K BFP WASP DPMC PIE HMC
10(logn) 0.97 0.97 0.96 0.97
20(n1/4) 0.95 0.77 0.77 0.78 0.96
50(n1/3) 0.93 0.43 0.38 0.43

BFP, block filtered posterior distribution; WASP,
Wasserstein posterior; DPMC, double parallel Monte
Carlo; PIE, posterior interval estimation; HMC,
Hamiltonian Monte Carlo.
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