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Abstract: This article develops statistical methods for testing the equality
of two distributions based on two independent samples generated in some
separable metric space. Such methods are broadly applicable in identifying
similarity or distinction of two complicated data sets (e.g., high-dimensional
data or functional data) collected in a wide range of research or industry
areas, including biology, bioinformatics, medicine, material science, among
others. Recently a so-called maximum mean discrepancy (MMD) based ap-
proach for the above two-sample problem has been proposed, resulting in
several interesting tests. However, the main theoretical and numerical re-
sults of these MMD based tests depend on the very restricted assumption
that the two samples have equal sample sizes. In addition, these tests are
generally implemented via permutation when the equal sample size assump-
tion is violated. In real data analysis, this equal sample size assumption is
hardly satisfied, and dropping away some of the observations often means
the loss of priceless information. It is also of interest to know if an MMD-
based test can be conducted generally without using permutation. In this
paper, we further study this MMD based approach with the equal sample
size assumption removed. We establish the asymptotic null and alternative
distributions of the MMD test statistic and its root-n consistency. We pro-
pose methods for approximating the null distribution, resulting in easy and
quick implementation. Numerical experiments based on artificial data and
two real data sets from two different areas of applications demonstrate that
in terms of control of the type I error level and power, the resulting tests
perform better or no worse than several existing competitors.
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1. Introduction

1.1. Two-sample problem and some applications

With the development of data collection techniques, complicated multivariate
data objects (e.g., high-dimensional data or functional data) in some separa-
ble metric space are frequently encountered in various areas including biology,
bioinformatics, medicine, material science, among others. For such data, we fo-
cus on the problem of comparing two samples based on their distributions. We
investigate a statistical test, which compares the null hypothesis of equal distri-
butions against the alternative hypothesis, in which distributions are not equal.
This is known as the two-sample problem.

Statistical tests for this problem are applicable in many areas. One of them is
an important issue of data integration, i.e., we investigate if two samples are part
of the same larger dataset, or if they should be treated as originating from two
different sources. For example, in bioinformatics, the two samples of microarray
data based on different experimental methods and lab facilities are often of
interest. Specimens obtained from these different settings need to be compared
to decide whether all specimens can be analyzed together. This is reasonable
since when we do not reject the null hypothesis, the two samples can be combined
into one larger sample, which can be used for further and more accurate analysis.
On the other hand, rejecting the equality of distributions indicates a difference
in the way samples are generated, which means observations should not be
integrated directly. It is also of interest to differentiate between groups of people
who are healthy or ill, or who suffer from different subtypes of a particular
cancer. One can also think about integrating two sets of observations for different
subtypes of cancer into one joint class, or treating them as distinct sets.

For the two-sample problem, there are many solutions in the literature. The
first one is probably the multivariate version of the t-test by Hotelling [14],
which however is constructed based on the assumption of multivariate normality
with identical and unknown covariance structure, limiting its applicability. This
drawback is overcome by non-parametric test such as the Kolmogorov-Smirnov
test and the Wald-Wolfowitz runs test and their multivariate extensions [3, 9].
Nevertheless, there are many modern tests with better properties. Some of them
are the further extensions of these classical tests. For example, the shrinkage-
based diagonal Hotelling’s tests [7]. In particular, the tests using characteristic
functions deserve attention. They are constructed based on an estimator of the
weighted distance between characteristic functions of two random vectors with
a certain weight function. Perhaps the most famous one is the so-called energy
test [22], while recently, Chen et al. [5] propose a modification of this test by
using a density of some random distribution as the weight function. Several
tests proposed in [17] are also interesting. The other class of tests is based on
the maximum mean discrepancy (MMD), which is also considered in this paper.
We review known results in more detail in the next section.
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1.2. Existing maximum mean discrepancy based tests

The MMD based two-sample test for equal distributions is introduced by Borg-
wardt et al. [4]. Their results are expanded by Smola et al. [21], which use a
Hilbert space embedding. In these tests, the test statistic is based on the maxi-
mum deviation of the expectation of a function evaluated on each of the random
variables, taken over a sufficiently rich function class. The choice of this class is
crucial. Fortunately, considering a reproducing kernel Hilbert space, the MMD
statistic can be easily derived (see Section 2). For a given data type, the kernel
can be appropriately chosen. For this reason, the MMD test is applicable in all
data types, such as vectors, strings, and graphs [4, Section 2.3].

Unfortunately, in all papers about MMD tests cited here, the main results
are obtained assuming the sample sizes are equal. In real data analysis, this
equal sample size assumption is hardly satisfied. In fact, among the two data
sets presented in Section 5.3, the two samples of any data set have different
sample sizes. In these cases, to apply the tests mentioned above, one has to
remove some of the observations so that the resulting two samples have the
same sample size. This, however, often means the loss of priceless information.
This equal sample size assumption is a technical condition, which allows good
theoretical results and easy implementation of the MMD based tests, but it is
not a necessary one. In fact, to construct a test, Borgwardt et al. [4] use the
asymptotic normal distribution of test statistic, which asymptotically controls
the type I error level and is consistent under fixed alternatives. However, the
empirical sizes of this test are equal to zero in their experiments (see Tables 1-3
in [4]). Thus, this test is extremely conservative for small and moderate sample
sizes, which may result in some loss of power.

Gretton et al. [10, 11, 13] derive a more accurate asymptotic null distribution,
which is a χ2-type mixture. Based on it, different tests are proposed in these pa-
pers, e.g., using the Gamma approximation, the null distribution estimate using
the empirical Gram matrix spectrum, the Pearson curves approximation, and
the resampling procedures. The two former methods are found to be less compu-
tationally intensive but perform less accurately in some cases, which was noticed
in [13]. On the other hand, the reverse is true for the latter two procedures. Fi-
nally, Gretton et al. [12] derive the asymptotic null and alternative distributions
allowing for different sample sizes, but the resulting null limiting distribution
has a very complicated form, which motivates little applications; see Remark 3.1
for some discussion. They do not use it and consider mainly the case of equal
sample sizes as well as slightly modified approximations to the null distribu-
tion from earlier papers (e.g., Gamma and Pearson’s ones). One other thing
is worth mentioning. In the numerical experiments of all papers cited in this
paragraph, an unrealistically large sample size is usually used, which is needed
for proper size control. Furthermore, these tests are generally implemented via
permutation when the equal sample size assumption is violated.
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1.3. Goals and results

As described above, the existing MMD based tests have some disadvantages.
Thus, it is of interest to construct a test using MMD, which

• is available for equal as well as unequal sample sizes, which is more realistic
in practice.

• maintains the type I error level and has reasonable power for all cases
of a number of observations and their dimension. In particular, for high-
dimensional small sample size setting.

• can be implemented easily without using permutation.

Moreover, such a test could have some good theoretical properties.
In this paper, we propose a two-sample test satisfying the above conditions.

Namely, we consider the use of a MMD statistic for the two-sample problem
without assuming the same sample sizes. We base our test on the unbiased es-
timator of squared MMD. Under the null hypothesis, we prove that the asymp-
totic distribution of test statistic is a χ2-type mixture, which will be used to
construct a test. Considering fixed and local alternative hypotheses, we show
the consistency of new testing procedures, indicating good power behavior. The-
oretical results are established under mild conditions. For implementation, we
use the three-cumulant matched χ2-approximation; see Zhang [24]. To apply it,
the asymptotic null distribution of test statistic is first considered. Although
the resulting test performs very well for large sample sizes, it is generally con-
servative for small and moderate ones. Thus we derive the first three cumulants
of the test statistic and use them in the second method, which is also accurate
for small and moderate number of observations. The resulting two new tests are
easy to implement with no permutation involved. The finite sample behavior
of the new tests and their comparison with several existing tests are studied in
numerical experiments based on artificial and real data.

The remainder of this paper is organized as follows. Section 2 presents the
hypothesis testing problem and its “kernel counterpart”. The construction of the
test statistic is also stated there. In Section 3, the asymptotic null distribution
and power of the new test statistic are proved under mild conditions. Section 4
contains the construction of two new testing procedures. The numerical exper-
iments are presented in Section 5. Finally, Section 6 concludes the paper. The
proofs of theoretical results and the detailed numerical results are presented in
Appendices A and B respectively. In the Supplementary Materials, the codes to
perform new methods and to conduct simulations are given.

2. Hypotheses and test statistic

Assume that we have the following two samples of observed random elements
in Y , a separable metric space:

yα1, . . . , yαnα

i.i.d.∼ Pα (α = 1, 2), (1)
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where P1 and P2 are unknown Borel probability measures on Y as defined in
Borgwardt et al. [4]. Let n = n1 + n2 denote the total sample size. Of interest
is to test if the two Borel probability measures are the same:

H0 : P1 = P2, versus H1 : P1 �= P2. (2)

Let K(·, ·) : Y × Y → R be a characteristic reproducing kernel. Let H be a
reproducing kernel Hilbert space (RKHS) generated byK(·, ·). For any u, v ∈ H,
the inner product and L2-norm of H are defined as 〈u, v〉 and ‖u‖ = 〈u, u〉1/2
respectively. Let φ(y) = K(·, y) : Y → H be the canonical feature mapping. It
follows that φ(Y) ⊂ H. Using this feature mapping, we then have the following
two induced samples of random elements in the RKHS H:

xα1 = φ(yα1), . . . , xαnα = φ(yαnα) (α = 1, 2). (3)

Set μα = E(xα1) (α = 1, 2). According to Borgwardt et al. [4], MMD2(P1, P2) =
‖μ1 − μ2‖2, and hence testing (2) using the two samples (1) is equivalent to
testing the following hypotheses using the two induced samples (3):

H0 : μ1 = μ2, versus H1 : μ1 �= μ2. (4)

Notice that the dimension of μ1 and μ2 can be very large. To test (4), following
[2, 6, 26], an L2-norm based test statistic using (3) can be constructed by

Tn =
n1n2

n
(S11 + S22 − 2S12), (5)

where for α = 1, 2,

Sαα = 2
nα(nα−1)

∑
1≤i<j≤nα

〈xαi, xαj〉,

S12 = 1
n1n2

∑n1

i=1

∑n2

j=1〈x1i, x2j〉 = 〈x̄1, x̄2〉
(6)

(x̄α = n−1
α

∑nα

i=1 xαi) are unbiased estimators for ‖μ1‖2, ‖μ2‖2 and 〈μ1, μ2〉 re-
spectively, so that S11 + S22 − 2S12 estimates MMD2(P1, P2) unbiasedly [4].
Notice that for (4), a linear-time statistic is proposed and studied in [15].

Notice that the two induced samples (3) are not directly computable, since
the canonical feature mapping φ(y) is implicitly defined through the reproduc-
ing kernel. Fortunately, the reproducing kernel K(·, ·) and its canonical feature
mapping φ(·) have the useful kernel trick K(y, y′) = 〈φ(y), φ(y′)〉. Thus, using
(3) and (6), we have

Sαα =
2

nα(nα − 1)

∑
1≤i<j≤nα

K(yαi, yαj), S12 =
1

n1n2

n1∑
i=1

n2∑
j=1

K(y1i, y2j),

where α = 1, 2. Therefore, we can compute Tn in (5) using the original two
samples (1) easily.
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3. Asymptotic properties

3.1. Asymptotic null distribution

Let K̃(y, y′) denote the centered version of K(y, y′), i.e.,

K̃(y, y′) = 〈φ(y)− μ, φ(y′)− μ′〉
= K(y, y′)− Ez′(K(y, z′))− Ez(K(z, y′)) + Ez,z′(K(z, z′)),

(7)

where μ = E(φ(y)), μ′ = E(φ(y′)), z and z′ are independent and they are inde-
pendent copies of y and y′ respectively. Then by some algebra (see Appendix A),
we have

Sαα = S̃αα + 2〈x̄α − μα, μα〉+ ‖μα‖2,
S12 = S̃12 + 〈x̄1 − μ1, μ2〉+ 〈x̄2 − μ2, μ1〉+ 〈μ1, μ2〉,

(8)

where α = 1, 2 and

S̃αα =
2

nα(nα − 1)

∑
1≤i<j≤nα

K̃(yαi, yαj), S̃12 =
1

n1n2

n1∑
i=1

n2∑
j=1

K̃(y1i, y2j). (9)

It is seen from (9) that in the expressions of S̃11, S̃22 and S̃12, the mean embed-
dings of the two distributions have been subtracted. It follows that

Tn = T̃n + 2Qn +
n1n2

n
‖μ1 − μ2‖2, (10)

where

T̃n =
n1n2

n
(S̃11+ S̃22−2S̃12), Qn =

n1n2

n
〈(x̄1−μ1)− (x̄2−μ2), μ1−μ2〉. (11)

It is seen that T̃n has the same distribution as that of Tn under the null hy-
pothesis. Thus, studying the null distribution of Tn is equivalent to studying
the distribution of T̃n.

We impose the following assumptions:

Assumption 1. We have yα1, . . . , yα,nα

i.i.d.∼ P (α = 1, 2) where P is a proba-
bility measure on Y.

Assumption 2. As n → ∞, we have n1/n → τ ∈ (0, 1).

Assumption 3. K(y, y′) is a reproduced kernel such that Ey(K̃(y, y)) < ∞.

Assumption 1 means that the null hypothesis is satisfied and the common
probability measure of the two samples is P . Assumption 2 is a regularity condi-
tion for two-sample problems, and it requires that the group sample sizes tend to
infinity proportionally. Assumption 3 ensures that K̃(y, y′) is square integrable,
i.e., Ey,y′(K̃2(y, y′)) < ∞, and it has the following Mercer’s expansion

K̃(y, y′) =
∞∑
r=1

λrψr(y)ψr(y
′), (12)
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where λ1, λ2, . . . are the eigenvalues of K̃(y, y′) and ψ1(y), ψ2(y), . . . are the
associated orthonormal eigenelements in the sense that∫

Y
K̃(y, y′)ψr(y)P (dy) = λrψr(y

′),

∫
Y
ψr(y)ψs(y)P (dy) = δrs, (13)

where δrs = 1 when r = s and 0 otherwise, r, s = 1, 2, . . . . In fact, under
Assumption 3, by (12), we have

Ey(K̃(y, y)) =
∑∞

r=1 λr < ∞,

Ey,y′(K̃2(y, y′)) =
∑∞

r=1 λ
2
r ≤ (

∑∞
r=1 λr)

2
< ∞,

(14)

where y, y′
i.i.d.∼ P . We have the following useful theorem, which is proved in

Appendix A.

Theorem 3.1. Under Assumptions 1–3, as n → ∞, we have T̃n
d−→ T̃ , where

T̃
d
=

∞∑
r=1

λr(Ar − 1), Ar
i.i.d.∼ χ2

1.

Remark 3.1. Gretton et al. [12] used S11 + S22 − 2S12 as their test statis-
tic, which as mentioned earlier, estimates MMD2(P1, P2) unbiasedly [4]. They
obtained the asymptotic null distribution of Wn = n(S11 + S22 − 2S12) as the
distribution of the following random variable [12, Theorem 12]:

W̃
d
=

∞∑
r=1

λr

((
z1r√
τ
− z2r√

1− τ

)2

− 1

τ(1− τ)

)
, (15)

where τ = limn→∞(n1/n) as defined in Assumption 2 and z1r’s and z2r’s are
i.i.d. from N (0, 1). The random variable W̃ is rather complicated in form, moti-
vating little applications. In fact, Gretton et al. [12] did not use the distribution
of W̃ to approximate the null distribution of Wn.

Remark 3.2. Although the expressions of T̃ and W̃ are very different in form,
we can show that they are equal up to a constant factor. In fact, let zr =

z1r/
√
τ − z2r/

√
1− τ , r = 1, 2, . . .. We have zr

i.i.d.∼ N(0, 1/τ + 1/(1 − τ)),

r = 1, 2, . . ., and hence z2r
i.i.d.∼ χ2

1/(τ(1− τ)). It follows that T̃
d
= τ(1− τ)W̃ as

desired.

Remark 3.3. Although the expressions of T̃ and W̃ are equal up to a constant
factor, the proof of Theorem 3.1, which we present in Appendix A, is different
from that of Theorem 12 of [12].

It is worthwhile to mention that the result of Theorem 3.1 can not be applied
directly to conduct the proposed test Tn since the eigenvalues λr’s are unknown
and they depend on the null probability measure P as seen from (13). Neverthe-
less, we will use the result of Theorem 3.1 to approximate the null distribution
of Tn in Section 4 for constructing new tests.
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3.2. Asymptotic power

In this subsection, we investigate the asymptotic power of the proposed test
under the following local alternative hypothesis:

H1n : μ2 = μ1 + n−(1/2−Δ)h, (16)

where 0 < Δ ≤ 1/2 and h is a constant element in the RKHS H such that
0 < ‖h‖ < ∞ and

σ2
α = E(〈xα1 − μα, h〉)2 > 0 (α = 1, 2). (17)

Notice that when Δ = 1/2, the local alternative hypothesis (16) reduces to a
fixed alternative hypothesis H1 : μ2 = μ1 + h and when 0 < Δ < 1/2, (16) is a
strict local alternative hypothesis. A strict local alternative hypothesis will tend
to the null hypothesis as the total sample size n tends to infinity. A test is usually
called to be root-n consistent if it can detect a strict local alternative hypothesis
with probability tending to 1 as the total sample size tends to infinity. A root-n
consistent test is often desired since the root-n rate is the best rate of a local
alternative hypothesis, which can be detected by a test.

Under (16) and by (10) and (11), we can write Tn as

Tn = T̃n + 2Qn +
n1n2‖h‖2
n2−2Δ

, (18)

where
Qn =

n1n2

n3/2−Δ
(〈x̄1 − μ1, h〉 − 〈x̄2 − μ2, h〉) . (19)

Theorem 3.2. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some BK <
∞. Then we have

E(T̃n) = 0, var(T̃n) ≤ 64B2
K ,

and
var(Qn) = n2

1n
2
2n

2Δ−3
(
σ2
1/n1 + σ2

2/n2

)
,

where σ2
1 , σ

2
2 ≤ 4‖h‖2BK .

Theorem 3.3. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some BK <
∞. Then under Assumption 2 and the local alternative hypothesis (16), as n →
∞, we have

(a) T̃n/(var(Qn))
1/2 p−→ 0,

(b) Qn/(var(Qn))
1/2 d−→ N (0, 1),

(c) [Tn − n1n2‖h‖2/(n2−2Δ)]/
√
var(Tn)

d−→ N (0, 1), and hence

P (Tn ≥ Ĉε) = Φ

(
nΔ‖h‖2

2(σ2
1/τ + σ2

2/(1− τ))1/2

)
(1 + o(1)) → 1,

where Ĉε denotes a consistent estimator of Cε, the upper 100ε percentile of
T̃n with ε being the given significance level, τ is defined in Assumption 2,
and Φ(·) denotes the cumulative distribution of N (0, 1).
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The proofs of Theorems 3.2 and 3.3 are given in Appendix A. Theorem 3.3(c)
shows that the Tn test is root-n consistent, indicating the optimal power be-
havior under large sample sizes. In addition, Theorem 3.3(c) shows that the
asymptotic power of Tn does not depend on the value of Ĉε as long as it is con-
sistent for Cε. In Section 4 below, we shall discuss how to obtain a consistent
estimator of Cε. For a finite number of observations, this test can also success-
fully detect the difference in distributions of samples, which will be established
in numerical experiments of Section 5.

4. Implementation

In this section, we consider two Tn tests based on the three-cumulant (3-c)
matched χ2-approximation [24, 25]. First, the asymptotic null distribution of
Tn given in Theorem 3.1 is used. Next, we propose an approximation based on
the first three cumulants of Tn under the null hypothesis.

Since (by Theorem 3.1) T̃ is a χ2-type mixture with unknown coefficients

being the eigenvalues of K̃(y, y′), y, y′
i.i.d.∼ P , where P is the common probability

measure of the two samples under the null hypothesis, it is very reasonable to
approximate its distribution using the 3-c matched χ2-approximation. The key
idea is to approximate the distribution of T̃ using that of the random variable

R
d
= β0 + β1χ

2
d. The parameters β0, β1 and d are determined via matching the

first three cumulants of T̃ and R. The first three cumulants of R are given by
β0 + β1d, 2β

2
1d and 8β3

1d, while the first three cumulants of T̃ are

E(T̃ ) = 0, var(T̃ ) = 2M2, E(T̃ 3) = 8M3

respectively, where Ml =
∑∞

r=1 λ
l
r (l = 2, 3, . . . ). Equating the first three-

cumulants of T̃ and R then leads to

β0 = −M2
2

M3
, β1 =

M3

M2
, d =

M3
2

M2
3

. (20)

Since K̃(y, y′) is nonnegative definite, we have λr ≥ 0 (r = 1, 2, . . . ) and λmax =
maxr λr > 0. Thus, Ml > 0 (l = 1, 2, . . . ). It follows that β0 < 0, β1 > 0 and
d > 0. Actually, we can show that d ≥ 1. Note that the skewness of T̃ can be
expressed as

E(T̃ 3)

var3/2(T̃ )
=

8M3

(2M2)3/2
= (8/d)1/2.

Thus the skewness of T̃ will become small as d increases.

Remark 4.1. The 3-c matched χ2-approximation to the distribution of T̃ is very
accurate. In fact, Zhang [24] showed that the upper density approximation error
bound for the 3-c matched χ2-approximation to the distribution of T̃ is O(M)+
O(1/d), where M = M4/M

2
2 , showing that this upper density approximation

error bound will disappear as M and 1/d tend to 0. The good performance of
the 3-c matched χ2-approximation is also partially verified by the simulation
results presented in Section 5.
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Let M̂2 and M̂3 be the consistent estimators of M2 and M3. Plug them into
(20), the consistent estimators of β0, β1 and d are then obtained as

β̂0 = −M̂2
2

M̂3

, β̂1 =
M̂3

M̂2

, d̂ =
M̂3

2

M̂2
3

. (21)

Then for any nominal significance level ε > 0, let χ2
d(ε) denote the upper 100ε

percentile of χ2
d. Then using (21), the proposed test with the 3-c matched

χ2-approximation can then be conducted via using the approximate critical
value β̂0 + β̂1χ

2
d̂
(ε) or the approximate p-value P (χ2

d̂
≥ (Tn − β̂0)/β̂1).

To implement the above 3-c matched χ2-approximation, we need to estimate
M2 and M3 consistently. For this purpose, we propose two methods. First, this
can be done via estimating the unknown eigenvalues λr (r = 1, 2, . . . ) of K̃(y, y′)

consistently, where y, y′
i.i.d.∼ P with P being the common Borel probability

measure of the two samples when the null hypothesis holds. Gretton et al. [13]
pointed out that the empirical eigenvalues of the centered Gram matrix can be
used to construct the consistent estimators of λr (r = 1, 2, . . . ). To this end, we
pool the two samples (1) and denote it as

y1, . . . , yn. (22)

Under the null hypothesis, we have y1, . . . , yn
i.i.d.∼ P . Let K be the n× n Gram

matrix whose (i, j)th entry is K(yi, yj) (i, j = 1, . . . , n). Let 1n denote an n× 1
vector of ones and In denote the n×n identity matrix. Then Hn = In−1n1

�
n /n

is an n×n projection matrix of rank n− 1. Set K̃∗ = HnKHn, which is usually
called the centered Gram matrix whose (i, j)th entry is

K̃∗(yi, yj) =K(yi, yj)− n−1
n∑

v=1

K(yi, yv)

− n−1
n∑

u=1

K(yu, yj) + n−2
n∑

u=1

n∑
v=1

K(yu, yv)

(i, j = 1, . . . , n). For any fixed i and j, it is easily seen that as n → ∞, by the
law of large numbers, we have

K̃∗(yi, yj)
d−→ K̃(yi, yj)

= K(yi, yj)− Ey′(K(yi, y
′))− Ey(K(y, yj)) + Ey,y′(K(y, y′)).

The following theorem gives the uniform convergence rate of K̃∗(yi, yj) to K̃(yi,
yj).

Theorem 4.1. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some BK <
∞. Then under Assumption 1, as n → ∞, we have

|K̃∗(yi, yj)− K̃(yi, yj)| = Op(n
−1/2) uniformly for all yi, yj . (23)
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Let �1, . . . , �q be all the non-zero eigenvalues of K̃∗, which can be obtained

via an eigen-decomposition of K̃∗. Then λ̂r = �r/n (r = 1, . . . , q) are consistent
estimators of λr (r = 1, 2, . . . ) [20]. The consistent estimators of M2 and M3

are then obtained as

M̂2 =

q∑
r=1

λ̂2
r, M̂3 =

q∑
r=1

λ̂3
r. (24)

To show the consistency of M̂2 and M̂3, following Gretton et al. [13, Theorem 1],
we impose the following condition:

∞∑
r=1

√
λr < ∞. (25)

Note that Condition (25) is stronger than Assumption 3, since we have

E[K̃(y, y)] =

∞∑
r=1

λr ≤
[ ∞∑
r=1

√
λr

]2

< ∞. (26)

Theorem 4.2. Under Assumptions 1, 2 and Condition (25), as n → ∞, we

have M̂�
p−→ M�, 
 = 2, 3 and

β̂0
p−→ β0, β̂1

p−→ β1, d̂
p−→ d.

Remark 4.2. The above implementation depends on the large sample property
of T̃n as stated in Theorem 3.1. In fact, in the experiments conducted in Gretton
et al. [13, Section 4], the sample sizes of the two groups equal 5000 each, which is
extremely large. Thus, for small and moderate sample sizes which are realistic
in real data analysis, the above implementation can be very inaccurate. The
simulation studies conducted in Section 5 indicate that the above implementation
results in very conservative empirical sizes and this may also affect the associate
power performance.

Remark 4.2 motivates our second method of estimating M2 and M3. To take
the moderate or small sample sizes into account, we can estimate the distribution
of T̃n directly via approximating it using the distribution of R by matching the
first three cumulants of T̃n and R. To this end, we first find out the first three
cumulants of T̃n under the null hypothesis (Assumption 1) as in the following
theorem. Its proof is deferred to Appendix A.

Theorem 4.3. Under Assumption 1, the first three cumulants of T̃n are given
by

E(T̃n) = 0,

var(T̃n) = 2
{
1 +

(
n2
2

n2(n1−1) +
n2
1

n2(n2−1)

)}
E(K̃2(y, y′)),

E(T̃ 3
n) = 8

{
1−

(
n3
2

n3(n1−1)2 +
n3
1

n3(n2−1)2

)}
E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

+4
(

n3
2n1

n3(n1−1)2 − 2n1n2

n3 +
n3
1n2

n3(n2−1)2

)
E(K̃3(y, y′)),
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where y, y′, y′′
i.i.d.∼ P . Furthermore, under Assumptions 1–3, as n → ∞, we

have
var(T̃n) = 2E(K̃2(y, y′))(1 + o(1)),

E(T̃ 3
n) = 8E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))(1 + o(1)).

By Theorem 4.3, we may estimate M2 and M3 using the following estimators

M̂2 =
{
1 +

(
n2
2

n2(n1−1) +
n2
1

n2(n2−1)

)}
Ê(K̃2(y, y′)),

M̂3 =
{
1−

(
n3
2

n3(n1−1)2 +
n3
1

n3(n2−1)2

)}
Ê(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

+1
2

(
n3
2n1

n3(n1−1)2 − 2n1n2

n3 +
n3
1n2

n3(n2−1)2

)
Ê(K̃3(y, y′)),

(27)

where

Ê(K̃2(y, y′)) =
2

n(n− 1)

∑
1≤i<j≤n

(K̃∗(yi, yj))
2,

Ê(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′)) =
6

n(n− 1)(n− 2)

·
∑

1≤i<j<k≤n

K̃∗(yi, yj)K̃
∗(yj , yk)K̃

∗(yk, yi),

Ê(K̃3(y, y′)) =
2

n(n− 1)

∑
1≤i<j≤n

(K̃∗(yi, yj))
3.

Notice that the second term of M̂3 in (27) can be very small, even for a small
sample size. The tests with and without this second term perform almost the
same in simulations (data not shown). Thus we will throughout ignore this
second term.

The following theorem shows that under some regularity conditions, M̂�, 
 =
2, 3 are consistent estimators ofM�, 
 = 2, 3 and hence β̂0, β̂1 and d̂ are consistent
estimators of β0, β1 and d respectively.

Theorem 4.4. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some BK <

∞. Then under Assumptions 1 and 2, as n → ∞, we have M̂�
p−→ M�, 
 = 2, 3

and
β̂0

p−→ β0, β̂1
p−→ β1, d̂

p−→ d.

To sum up, we propose two tests using the 3-c matched χ2-approximation
methods with the estimators (24) and (27). The resulting tests are denoted as
T3c1 and T3c2 respectively. We check their finite sample behavior in the next
section.

5. Numerical experiments

5.1. Tests considered and general set-up

In this section, we conducted intensive numerical experiments to examine the
performance of the proposed T3c1 and T3c2 tests in terms of controlling the type
I error level, powers, and computational time against
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• the energy test proposed in [22], denoted as TSR;
• the modified Cramér test with ψ(t) = 1 − exp(−t/2) proposed in [17,

Page 2], denoted as TSG1;
• the marginal-modified Cramér test with ψ(t) = 1 − exp(−t/2) proposed

in [17, Section 2], denoted as TSG2;
• the block-modified Cramér test with ψ(t) = 1 − exp(−t/2) proposed in

[17, Section 3], denoted as TSG3.

We used the energy test as a competitor since it is known to have good
finite sample properties and is very popular in practice. TSG1 has the same
test statistic as our test with the Gaussian radial basis function (RBF) kernel
(see below). TSG2 and TSG3 are modifications of the Cramér test, constructed
for high-dimensional settings by comparing marginal distributions. The null
distributions of TSR and TSGi (i = 1, 2, 3) are approximated by permutation.
Additionally, we compare our tests with the test procedures by Gretton et al.,
as was suggested by the reviewer (see Section 5.4).

In the implementation of T3c1 and T3c2, we chose the kernel K(·, ·) to be the
Gaussian RBF kernel K(y, y′) = exp{−‖y − y′‖2/(2σ2)}, where σ2 is called a
kernel width. It is easy to see that the above Gaussian RBF kernel is bounded
above by 1 so that Assumption 3 is always satisfied and the conditions of The-
orems 3.2 and 3.3 are also satisfied. Other kernels are also applicable. For an
extensive list of kernels, we refer to [18]. Following [13], we may take σ2 to be
the squared median distance between observations in the pooled sample (22).
The resulting tests are denoted as T3c1m and T3c2m respectively. Alternatively,
following [17], we may take σ2 to be the data dimension p and the resulting
tests are denoted as T3c1p and T3c2p respectively. Note that the dimension based
kernel width p may not be applicable for all the data (see Section 5.3).

Throughout this section, we took ε = 5% to be the nominal significance
level. For a test implemented by permutation, we used 1000 permutation runs
for estimating the p-value. As usual, the empirical size and power of a test
were computed as the proportion of rejections of the null hypothesis based on
1000 simulation runs. The simulation experiments were performed using the R
program [23]. For TSR, its implementation in the energy package [16] was used.
The R codes for conducting the simulations are available in the Supplement
Material.

5.2. Artificial data sets

Set-up: Let μ∗ = (1, . . . , p)�/(
∑p

i=1 i
2)1/2 and Σρ = (1 − ρ)Ip + ρJp, where Ip

and Jp denote the identity matrix and the matrix of ones of size p × p and
ρ ∈ (0, 1). We generated the two samples (1) as follows.

For size control, we set y1i = μ+Γ1/2u1i (i = 1, . . . , n1) and y2i = μ+Γ1/2u2i

(i = 1, . . . , n2), where uαi = (uαi1, . . . , uαip)
� (α = 1, 2) and the components

uαir are i.i.d. (r = 1, . . . , p). As their distributions, we considered the normal
distribution N (0, 1), the Student distribution with four degrees of freedom, t4,
and the chi-square distribution with one degree of freedom, χ2

1. These three
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cases of distributions were denoted as Models 1, 2 and 3 respectively. We set
μ = μ∗ and Γ = Σρ with ρ = 0.2, 0.5, 0.8.

On the other hand for power comparison, we set y1i = μ1 + Γ
1/2
1 u1i (i =

1, . . . , n1) and y2i = μ2 + Γ
1/2
2 u2i (i = 1, . . . , n2), where μ1, μ2,Γ1,Γ2, uαi =

(uαi1, . . . , uαip)
� were generated using the following five models (α = 1, 2; i =

1, . . . , nα; r = 1, . . . , p):

• Model 4 with μ1 = μ∗, μ2 = μ∗ + δ1p, δ = 0.2, 0.4, 0.6, 1p is p × 1 vector

of ones, Γ1 = Γ2 = Σρ, ρ = 0.2, 0.5, 0.8, uαir
i.i.d.∼ N (0, 1);

• Model 5 with μ1 = μ2 = μ∗, Γ1 = Σ0.95, Γ2 = Σρ, ρ = 0.3, 0.5, 0.7,

uαir
i.i.d.∼ t4;

• Model 6 with μ1 = μ2 = μ∗, Γ1 = (ρ|i−j|)pi,j=1, Γ2 = Σρ, ρ = 0.2, 0.5, 0.8,

uαir
i.i.d.∼ N (0, 1) or uαir

i.i.d.∼ t4;

• Model 7 with y2i = μ2 + Γ
1/2
2 (u2i + δvi), where μ1 = μ2 = μ∗, Γ1 = Γ2 =

Σρ, ρ = 0.2, 0.5, 0.8, uαi
i.i.d.∼ Np(0, Ip), δ = 0.5, 0.75, 1, vi = (vi1, . . . , vip)

�

and vir
i.i.d.∼ N (0, 1);

• Model 8 is Model 7 with vir
i.i.d.∼ t4.

Under Models 4–8, the two generated samples do not have the same distribu-
tion so that the alternative hypothesis holds. Concretely speaking, under Model
4, the two mean vectors are different. Under Models 5 and 6, the two covariance
matrices are different, but the one or two-dimensional marginal distributions are
the same. On the other hand under Models 7 and 8, the one or two-dimensional
marginal distributions are not the same. It is expected that the tests may have
different performances under different models. We considered p = 10, 100, 500
and (n1, n2) ∈ {(20, 30), (40, 60)}.

Results: To save space, the empirical sizes and powers of the tests obtained
under Models 1–8 are given in Tables 10–15 of Appendix B. Here Figure 1
presents the most important findings of these all results, which we describe in
the following.

We first study the behavior of the tests under the null hypothesis (Models
1–3). Row 1 of Figure 1 (see also Table 10 in Appendix B) shows that when the
null hypothesis holds, almost all tests control the type I error well except that
T3c1p is very conservative, most of its empirical sizes being smaller than 5% and
T3c1m is also quite conservative. That is, T3c1 is generally conservative regardless
of which of the two kernel width choices is used. As mentioned in Remark 4.2,
this is due to the fact that the sample sizes (n1, n2) ∈ {(20, 30), (40, 60)} are too
small for the asymptotical property of T3c1p and T3c1m as stated in Theorem 3.1
to take effect.

We now study the power behavior of the tests under various alternative hy-
potheses (Models 4–8) based on Rows 2–6 of Figure 1 (see also Tables 11–15 in
Appendix B). We have several conclusions. First of all, T3c1p and T3c2p perform
generally quite well under all the models and they are generally comparable
with TSG1 and outperform the other tests with a good margin. Notice that
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Fig 1: Box-and-whisker plots for the empirical sizes and powers obtained in Mod-
els 1–3 and Models 4–8 respectively. Green (respectively blue) box-and-whisker
plots correspond to the known tests TSR, TSG1, TSG2 and TSG3 (respectively
new tests T3c1p, T3c1m, T3c2p and T3c2m).
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the test statistics of T3c1p, T3c2p and TSG1 are identical, but their implementa-
tions are quite different. The implementation of TSG1 depends on permutation,
while the null distributions of T3c1p and T3c2p are approximated via the three-
cumulant matched chi-square approximations without using any permutation
or bootstrapping as described in Section 4. This means that our chi-square ap-
proximation approaches can work as well as permutation method, but they need
much less time to conduct (see Section 5.5). Secondly, T3c1m, T3c2m and TSR

perform comparably under all the models. They perform comparably with T3c1p,
T3c2p, and TSG1 in Model 4, but they perform generally worse than the latter
tests in Models 5–8. This means that the power behavior of our tests is strongly
affected by the kernel width choice. Thus, a study for the kernel width choice
for our tests is interesting and warranted. Thirdly, TSG2 and TSG3 perform rea-
sonably well under all the models except in Models 5 and 6. TSG2 has nearly no
power in both Models 5 and 6 and TSG3 has nearly no powers in Model 6. This
is not a surprise, because TSG2 and TSG3 are constructed via comparing the one
or two-dimensional marginal distributions only. By the way, these two tests are
very time-consuming, which is caused by their construction (see Section 5.5).

5.3. Real data sets

Data sets: Here, we considered two real data sets. The first one is the glass data
set described in [8]. It contains two types of glass, having 70 and 76 observations
respectively, which are characterized by p = 9 variables. The second one is the
well-known colon data set [1] available at:

http://genomics-pubs.princeton.edu/oncology/affydata/index.html. It
contains 40 tumor and 22 normal colon tissues, each having p = 2000 gene
expression levels.

Two-sample tests: Notice that in each of the above data sets, there are two
natural groups of observations. We first check if the two groups of each data set
are generated from different distributions. The first two rows of Table 1 display
the p-values of all tests. It is seen that all tests reject the null hypothesis for
the glass data set, showing that the two natural groups of the glass data set
are unlikely to have the same distribution. However, for the colon data, the re-
sults of the tests are not consistent: the null hypothesis was strongly rejected by
TSR, TSG1, T3c1m and T3c2m, but it was not rejected by TSG2, TSG3, T3c1p and
T3c2p. Notice that T3c1p and T3c1m (resp. T3c2p and T3c2m) are constructed in the
same way except that the dimension based kernel width p used in T3c1p and T3c2p

may not be at the same scale level as the squared distances of the observations
while the squared median-distance based kernel width used in T3c1m and T3c2m

are always at the same scale level as the squared distances of the observations.
Thus, this problem may be solved via re-scaling each variable of the colon data
using the pooled standard deviation of the variable so that the dimension-based
kernel width p is at the same scale level as the squared distances of the trans-
formed observations. The last row of Table 1 displays the p-values of all tests
for the scaled colon data set. It is seen that the p-values of T3c1p and T3c2p are

http://genomics-pubs.princeton.edu/oncology/affydata/index.html
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Table 1

P -values of all tests for the glass and colon data sets.

Data set TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

glass 0.0010 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
colon 0.0010 0.0000 0.2070 0.2820 0.4759 0.0017 0.3229 0.0009
colon (scaled) 0.0420 0.0210 0.0550 0.0340 0.0365 0.0401 0.0265 0.0311

generally comparable with those of T3c1m and T3c2m, respectively, and almost
all tests except TSG2 reject the null hypothesis at 5% significance level. This
shows that the two natural groups of the colon data set are unlikely to have the
same distribution.

Numerical experiments based on real data sets: It is often of interest to de-
termine if all the tests have good size control and power for the real data sets.
Here we present the numerical experiments based on the above glass and colon
data sets.

Set-up: For each of the glass and colon data sets, we selected without re-
placement observations for two samples. For the type I error level (respectively
power) study, we selected two samples of sizes n1 and n2 without replacement
from the first group only (respectively from the first and second groups sepa-
rately). For simplicity, we considered the balanced design with n1 = n2. The
sample sizes depended on the data set and are reported with results below.
For TSR and TSGi (i = 1, 2, 3), the number of permutation runs was 1000. The
empirical size and power of a test were computed using 1000 simulation runs.

Results: For the glass data set, the resulting empirical sizes and powers of the
tests are presented in Table 2. It is seen that in terms of size control, all tests are
comparable and are largely close to the nominal size 5% most of the time. These
results are similar to those obtained from the numerical investigation based on
the artificial data sets. In terms of power, T3c2m performs best, followed by
TSG3, TSG2, T3c1m, T3c2p, TSG1, TSR, while T3c1p performs worst. Notice that
unlike in the artificial data based experiment, in this real data based exper-
iment, the squared median-distance based kernel width performs better than
the dimension-based kernel width, since T3c2m and T3c1m generally have larger
powers than T3c2p and T3c1p respectively.

For the unscaled colon data set, the resulting empirical sizes and powers of
the tests are presented in Table 3. We have the following observations. First,
both TSR and T3c2m have good size control and powers. Second, T3c1m is rather
conservative since many of its empirical sizes are less than 2%. This conserva-
tivity is expected since as mentioned in Remark 4.2, for small and moderate
sample sizes, the asymptotic properties of the test statistic derived in Theo-
rem 3.1 and used in the implementation of T3c1 do not take effect. Due to this
conservativity, the empirical powers of T3c1m are also affected and are generally
smaller than those of TSR and T3c2m. Third, both TSG2 and TSG3 have good
size control but their empirical powers are around 5% or even smaller than 5%,
showing that both TSG2 and TSG3 do not perform well in the colon data set
based experiments. Fourth, the empirical sizes and powers of TSG1, T3c1p and
T3c2p totally do not make sense since the empirical sizes and powers of TSG1
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Table 2

Empirical sizes and powers (in %) of all tests for the experiment based on the glass data set
(n = n1 = n2).

n TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

Empirical sizes
11 4.7 5.0 4.8 4.7 4.8 4.6 5.1 5.1
12 5.4 5.2 5.0 5.0 5.7 5.1 5.9 5.6
13 4.7 4.4 5.0 4.9 5.0 4.8 5.1 5.5
14 5.1 4.7 5.2 5.2 4.6 5.1 5.0 5.6
15 4.6 4.6 4.8 4.8 5.0 4.8 5.3 5.4
16 3.8 4.3 4.7 4.5 4.5 3.5 5.0 3.6
17 4.0 4.2 3.7 3.4 4.1 3.4 4.4 4.3
18 4.4 4.4 4.2 3.9 4.2 4.3 4.2 4.8
19 4.9 5.4 5.4 5.3 5.5 5.1 5.5 5.4
20 5.7 5.4 6.1 6.0 5.5 5.7 5.8 6.1
21 4.9 4.8 4.9 5.0 4.6 4.7 4.8 4.8
22 5.3 5.1 5.0 5.0 4.8 5.0 4.8 5.5
23 5.3 5.4 5.3 5.4 5.4 5.6 5.6 6.1
24 5.7 5.7 5.6 5.4 5.3 5.2 5.5 5.6
25 5.5 5.6 5.0 5.1 5.3 4.4 5.5 4.8
26 4.4 4.4 4.4 4.5 4.5 4.4 4.6 4.5
27 3.9 4.1 4.4 4.2 4.1 3.6 4.2 3.7
28 4.6 4.9 5.0 5.1 4.8 4.5 5.0 4.7
29 6.1 5.6 6.3 6.3 5.9 5.7 6.1 5.7
30 4.0 4.3 4.5 4.4 4.1 4.2 4.1 4.5

Empirical powers
11 18.1 24.2 28.5 31.0 12.7 27.4 25.9 38.4
12 23.2 27.4 33.6 36.1 15.5 33.5 29.4 43.9
13 26.2 29.6 39.0 40.4 17.9 36.2 31.3 48.4
14 30.5 35.1 43.3 47.0 22.1 44.1 38.1 55.0
15 38.4 42.5 51.2 54.3 26.3 49.8 44.5 61.4
16 43.2 48.4 56.9 58.6 32.5 54.3 49.3 64.4
17 46.9 52.6 62.1 64.4 36.0 58.6 54.2 68.8
18 55.3 59.6 65.4 69.2 42.8 65.6 60.8 74.8
19 63.9 63.6 71.8 74.5 49.5 72.1 66.5 79.7
20 64.8 63.9 71.4 73.8 52.4 73.4 66.1 80.8
21 72.4 69.9 78.1 80.3 55.8 77.3 71.9 85.3
22 77.8 75.6 80.7 84.0 64.1 82.7 77.0 86.7
23 80.5 79.3 83.3 86.2 66.0 84.2 79.6 89.9
24 86.7 83.7 90.1 91.9 74.1 90.5 84.5 93.7
25 90.7 86.3 91.4 93.2 79.6 93.0 87.7 95.7
26 92.4 90.5 94.1 94.9 84.1 94.6 90.7 96.4
27 94.6 91.2 94.0 95.8 84.4 94.8 91.4 96.6
28 96.5 94.4 96.3 97.7 89.1 97.0 94.9 98.1
29 98.1 94.8 97.9 98.2 91.2 97.8 96.0 98.9
30 99.1 96.3 98.4 98.6 94.1 98.7 97.1 99.4

are always 100% while the empirical sizes and powers of T3c1p and T3c2p are al-
ways 0%. The problems with TSG1, T3c1p and T3c2p are probably due to the fact
that they all use the dimension based kernel width p which is not adaptive to
the scale level of the squared distances between the observations. As mentioned
in the “two-sample tests” above, these problems may be solved via re-scaling
each variable of the colon data set using the pooled standard deviation of the
variable.
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Table 3

Empirical sizes and powers (in %) of all tests for the experiments based on the colon data
set (n = n1 = n2). The results for the TSG1, T3c1p, and T3c2p tests are clearly explained in

the text.

n TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

Empirical sizes
5 4.5 100 5.3 4.9 0 1.7 0 4.7
6 3.9 100 4.6 3.8 0 2.3 0 5.1
7 5.0 100 5.4 5.6 0 2.9 0 5.7
8 4.3 100 4.8 4.5 0 1.9 0 4.6
9 5.0 100 4.8 6.2 0 3.0 0 5.1
10 5.5 100 4.8 5.7 0 3.7 0 5.7
11 4.1 100 4.3 5.4 0 2.7 0 4.4
12 5.3 100 4.3 5.3 0 3.2 0 5.4
13 5.1 100 4.9 4.6 0 3.7 0 5.3
14 4.6 100 4.1 4.8 0 2.7 0 4.7
15 4.9 100 5.6 6.1 0 3.3 0 5.0
16 5.7 100 5.0 5.8 0 4.4 0 5.6
17 3.9 100 4.7 4.7 0 2.5 0 3.8
18 5.0 100 5.3 4.3 0 3.6 0 5.1
19 5.9 100 5.4 4.3 0 4.5 0 5.9
20 6.4 100 6.5 4.7 0 4.8 0 6.2

Empirical powers
5 16.5 100 5.0 5.4 0 4.8 0 17.5
6 24.7 100 4.2 5.7 0 8.2 0 27.6
7 28.8 100 4.8 5.4 0 11.5 0 32.0
8 35.9 100 4.1 5.2 0 17.7 0 37.6
9 43.3 100 4.4 5.1 0 22.0 0 46.4
10 52.1 100 4.5 4.4 0 28.9 0 53.2
11 61.2 100 4.8 4.4 0 38.0 0 63.1
12 71.2 100 4.3 4.4 0 48.8 0 72.3
13 78.4 100 3.0 5.5 0 58.6 0 77.7
14 84.1 100 2.9 3.9 0 67.3 0 84.4
15 88.7 100 1.9 4.5 0 72.8 0 88.9
16 92.5 100 2.3 3.9 0 81.1 0 92.8
17 96.8 100 3.1 3.5 0 89.2 0 96.4
18 98.7 100 2.4 3.1 0 94.2 0 98.4
19 99.5 100 2.2 2.6 0 97.8 0 99.5
20 99.8 100 2.1 3.1 0 98.5 0 99.8

We then repeated the above numerical experiment based on the scaled colon
data set. The resulting empirical sizes and powers of the tests are presented in
Table 4. We now have the following observations. First, the empirical sizes of
TSR, TSG1, TSG2, TSG3, T3c2p, and T3c2m are generally comparable and they are
all around 5% while the empirical powers of TSR, TSG1, T3c2m and T3c2p are gen-
erally comparable. This means that the empirical sizes and powers of TSG1, T3c1p

and T3c2p have been improved substantially and to make TSG1, T3c1p and T3c2p

work well, it is indeed very important to make the squared distances of the
observations and the dimension based kernel width p have the same scale level.
Second, the empirical sizes of T3c1m and T3c1p are now generally comparable
and so are their empirical powers. Nevertheless, T3c1m and T3c1p are still rather
conservative due to the same reason as mentioned in the previous paragraph for
the conservativity of T3c1m and due to this conservativity, the empirical pow-
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Table 4

Empirical sizes and powers (in %) of all tests for the experiments based on the scaled colon
data set (n = n1 = n2).

n TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

Empirical sizes
5 5.6 5.7 5.2 5.1 1.2 1.7 4.8 5.1
6 5.2 5.1 5.5 6.0 2.0 2.9 5.5 6.5
7 4.3 4.0 4.5 4.1 2.0 2.6 4.1 4.7
8 5.7 5.3 6.0 5.7 3.1 3.8 6.0 5.8
9 4.9 4.7 5.2 5.1 2.8 3.4 5.2 5.7
10 5.7 5.3 5.2 4.9 3.1 4.4 5.6 5.8
11 6.4 6.1 5.2 5.7 3.5 4.1 6.2 6.3
12 4.8 4.9 5.3 5.1 2.7 3.0 5.0 5.0
13 6.7 5.5 5.8 5.3 4.0 4.8 5.9 6.2
14 4.8 5.5 5.3 5.2 3.3 3.6 5.3 5.1
15 5.3 5.0 4.9 5.3 2.9 3.3 5.4 5.5
16 4.8 5.0 4.8 4.9 3.1 3.3 4.8 4.6
17 4.7 5.0 4.9 5.3 3.2 3.5 5.3 4.8
18 4.5 5.0 4.6 5.2 3.0 3.1 5.0 4.8
19 4.2 4.6 4.5 4.1 2.6 3.3 4.2 4.6
20 5.7 5.6 5.8 5.7 3.7 4.2 5.8 5.6

Empirical powers
5 6.7 8.0 6.5 7.2 1.6 2.0 7.5 7.4
6 6.0 6.9 5.2 6.0 1.9 2.6 7.5 7.7
7 7.9 8.8 6.0 7.3 2.8 3.5 9.7 9.7
8 8.5 8.9 5.3 7.0 2.8 3.6 9.4 9.8
9 9.8 11.0 6.5 7.8 3.1 4.2 11.0 10.6
10 10.7 12.7 8.5 9.7 5.0 5.1 13.9 13.2
11 10.8 13.5 6.8 8.1 4.5 5.3 12.9 12.6
12 11.4 13.8 6.8 8.6 4.7 5.6 14.4 13.7
13 13.5 17.8 6.2 9.2 5.4 5.9 16.5 15.8
14 17.4 18.4 8.6 11.0 7.5 9.0 18.8 17.5
15 17.1 21.2 8.8 11.8 7.5 8.6 22.9 20.0
16 20.6 24.4 8.8 12.1 9.5 10.1 25.2 24.1
17 21.7 26.2 8.5 12.5 9.3 10.4 26.2 23.3
18 26.4 31.5 8.4 13.7 11.9 12.2 30.7 26.1
19 30.2 37.6 9.1 16.6 15.3 14.8 36.3 32.2
20 34.7 41.8 10.8 18.1 17.2 18.3 40.8 36.8

ers of T3c1m and T3c1p are generally smaller than those of TSR, TSG1, T3c2p and
T3c2m. Third, both TSG2 and TSG3 have good size control but their empirical
powers are still much smaller than those of TSR, TSG1, T3c2p and T3c2m. This
again shows that TSG2 and TSG3 do not perform well in the colon data set
based experiments.

5.4. Comparison with the Gretton et al. tests

To address a concern from the reviewer, some simulation studies are conducted
to compare our tests T3c1q and T3c2q against two of the Gretton et al. tests,
namely the test (denoted as T q

spec) based on the null distribution estimate using
the empirical Gram matrix spectrum [13, Section 3.2], and the test (denoted as
T q
pear) based on the Pearson curve approximation [11, Section 4], for q = p,m.
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Table 5

Empirical sizes (under Models 1 and 2) and powers (under Models 6[N ] and 6[t4]) (in %)
of T p

spec, T
p
pear, T3c1p, T3c2p, Tm

spec, T
m
pear, T3c1m and T3c2m for n = (30, 30).

Model p ρ T p
spec T p

pear T3c1p T3c2p Tm
spec Tm

pear T3c1m T3c2m

1 10 0.2 3.6 2.9 3.3 4.7 3.6 3.4 3.7 4.6
0.5 4.1 3.9 4.1 4.9 4.0 3.5 3.6 4.5
0.8 4.4 3.8 4.0 4.9 4.9 4.3 5.0 5.3

100 0.2 1.9 1.0 1.6 5.0 3.3 2.2 2.8 5.1
0.5 3.7 3.4 3.5 4.4 3.9 3.4 3.7 4.3
0.8 4.9 3.8 4.3 4.9 4.6 4.1 4.7 5.0

500 0.2 2.9 1.1 2.3 4.4 3.0 1.6 2.3 4.5
0.5 4.0 3.1 4.1 4.7 3.9 3.2 3.4 4.1
0.8 4.3 3.7 3.7 4.1 3.9 3.4 3.8 4.0

2 10 0.2 2.8 2.2 2.5 4.4 3.1 2.2 2.7 4.1
0.5 3.8 3.5 3.4 4.9 4.4 3.7 4.1 5.2
0.8 3.9 3.3 3.6 4.6 4.3 3.6 4.4 4.9

100 0.2 0.3 0.1 0.3 4.2 3.4 1.9 2.7 5.1
0.5 4.1 2.9 3.6 5.2 4.1 3.3 4.0 5.0
0.8 4.7 4.5 4.4 5.3 4.3 3.4 4.1 4.4

500 0.2 0.2 0.1 0.3 4.2 3.5 2.4 3.1 5.7
0.5 2.8 1.9 2.5 4.8 4.1 3.3 4.0 4.4
0.8 4.1 3.4 3.5 4.8 4.3 3.8 4.4 4.6

6[N ] 10 0.2 4.7 2.8 4.5 7.5 4.1 3.3 4.2 6.1
0.5 12.1 10.4 11.0 15.0 9.2 8.1 7.8 9.8
0.8 8.5 7.7 8.0 9.3 7.2 6.4 6.5 7.5

100 0.2 2.8 1.4 2.4 18.9 3.5 1.7 3.0 9.8
0.5 67.4 47.7 63.0 90.7 31.1 22.0 27.5 42.4
0.8 99.4 98.1 99.2 99.7 76.2 64.9 72.0 83.7

500 0.2 2.2 0.3 1.9 28.4 3.4 0.9 2.6 12.7
0.5 85.9 63.0 81.6 99.9 38.9 25.2 32.9 57.6
0.8 100.0 100.0 100.0 100.0 99.0 95.6 99.3 100.0

6[t4] 10 0.2 3.4 1.8 3.0 7.9 4.5 3.8 4.1 6.6
0.5 13.3 10.3 12.4 19.6 8.0 6.6 7.5 9.4
0.8 16.4 12.6 14.4 19.3 8.9 7.3 8.3 8.7

100 0.2 0.4 0.1 0.5 37.4 3.6 1.5 3.1 10.7
0.5 86.8 64.3 86.6 99.7 30.5 22.6 27.7 43.4
0.8 100.0 100.0 100.0 100.0 75.7 67.0 71.4 83.4

500 0.2 0.2 0.0 0.1 71.5 2.6 1.1 2.5 12.8
0.5 98.1 80.9 98.8 100.0 37.7 24.9 32.5 58.0
0.8 100.0 100.0 100.0 100.0 98.3 94.9 98.09 100.0

We do not consider the test based on the Gamma approximation, since “Gamma
approximation to the null distribution, which has a smaller computational cost,
is generally less accurate” [10, p. 738].

Table 5 presents the empirical sizes (under Models 1 and 2 in Section 5.2)
and powers (under Models 6[N ] and 6[t4]) of T p

spec, T
p
pear, T3c1p, T3c2p, T

m
spec,

Tm
pear, T3c1m and T3c2m for n = (30, 30). It is seen that in terms of size control

and power, for q = p,m, T3c2q substantially outperforms T q
spec, T

q
pear and T3c1q

which are generally comparable and are all quite conservative. As mentioned in
Remark 4.2, the conservativity of T3c1p and T3c1m is due to the fact that the null
distributions of T3c1p and T3c1m are estimated using the estimated eigenvalues of
the Gram matrix whose asymptotic properties may not take effect for small and
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Table 6

Empirical sizes and powers (in %) of T p
spec, T

p
pear, T3c1p, T3c2p, Tm

spec, T
m
pear, T3c1m and

T3c2m for the experiments based on the glass data set (n = n1 = n2).

n T p
spec T p

pear T3c1p T3c2p T p
spec T p

pear T3c1p T3c2p

Empirical sizes Empirical powers
11 6.2 4.9 5.5 5.8 13.0 12.0 13.5 24.8
12 3.3 3.2 3.1 4.3 19.1 17.6 17.4 33.2
13 4.7 4.3 4.8 4.9 21.0 20.1 19.2 35.1
14 5.2 4.0 5.0 5.1 25.2 24.1 24.8 41.2
15 5.6 5.3 5.6 5.9 29.4 27.9 27.5 45.2
16 4.9 4.1 4.5 5.0 34.1 33.7 32.6 49.8
17 4.9 4.8 4.7 4.9 37.9 38.4 36.2 55.0
18 4.7 3.7 4.7 4.7 41.9 42.7 39.5 56.8
19 5.2 4.5 4.8 5.0 48.5 48.1 46.5 63.4
20 3.8 3.6 3.4 4.2 54.5 55.4 52.7 68.6
21 5.2 4.2 5.3 5.3 61.4 62.2 61.3 74.3
22 5.5 5.0 5.8 5.9 64.0 64.7 62.4 76.2
23 5.7 4.6 5.7 5.9 68.5 69.2 68.2 81.4
24 5.7 5.0 5.2 5.4 74.6 77.2 74.5 86.4
25 5.4 4.8 5.2 5.3 78.8 79.7 78.1 87.4
26 5.0 4.1 5.1 5.1 83.3 82.5 82.5 89.7
27 4.2 3.6 4.1 4.3 86.1 85.3 85.9 92.8
28 5.2 4.6 5.2 5.2 88.0 88.3 87.9 93.5
29 6.8 6.2 6.4 5.6 92.5 91.8 91.9 95.4
30 5.0 4.7 5.0 5.1 92.8 92.8 92.2 95.8
n Tm

spec Tm
pear T3c1m T3c2m Tm

spec Tm
pear T3c1m T3c2m

Empirical sizes Empirical powers
11 5.4 5.0 4.9 5.7 29.2 23.1 28.0 38.4
12 3.3 3.1 3.1 4.2 34.1 30.0 32.8 43.8
13 4.5 4.1 4.6 4.8 38.7 33.1 37.8 48.8
14 4.2 4.0 3.9 4.6 45.4 41.1 44.3 54.6
15 5.7 4.2 5.3 5.7 48.3 44.5 46.8 57.4
16 4.5 4.3 4.0 4.5 57.6 51.6 54.9 65.7
17 3.9 3.8 3.9 4.2 62.8 57.5 61.3 70.1
18 3.6 3.6 3.5 4.3 64.6 60.0 62.3 72.7
19 5.2 4.6 5.0 5.1 71.0 65.7 69.0 76.6
20 3.7 3.0 2.9 4.2 75.1 71.0 75.4 82.5
21 5.8 5.1 5.8 5.9 80.3 77.1 80.0 85.5
22 5.9 5.1 6.2 5.3 81.6 77.3 81.2 87.1
23 5.6 5.1 5.2 5.7 86.8 85.0 86.5 90.4
24 5.1 4.8 4.5 5.0 89.0 87.1 89.1 92.9
25 5.3 4.8 5.2 5.3 92.1 89.3 91.6 93.8
26 5.0 4.3 5.0 5.2 94.9 92.9 94.3 96.5
27 4.8 3.7 3.9 4.4 95.7 94.9 95.8 97.4
28 5.5 4.7 5.4 5.7 96.2 94.9 96.0 97.3
29 6.3 6.1 6.0 5.6 98.6 97.7 98.5 99.1
30 5.3 4.7 4.8 5.0 98.7 97.9 98.7 98.9

moderate sample sizes. Obviously, this reason is also applicable to explain the
conservativity of T p

spec and Tm
spec; see also [13, p. 7]. Tables 6, 7 and 8 present the

empirical sizes and powers of T p
spec, T

p
pear, T3c1p, T3c2p, T

m
spec, T

m
pear, T3c1m and

T3c2m for the experiments based on the glass data set, the colon data set, and the
scaled colon data set respectively as described in Section 5.3. For the colon data
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Table 7

Empirical sizes and powers (in %) of Tm
spec, T

m
pear, T3c1m and T3c2m for the experiments

based on the colon data set (n = n1 = n2).

Empirical sizes Empirical powers
n Tm

spec Tm
pear T3c1m T3c2m Tm

spec Tm
pear T3c1m T3c2m

5 2.8 0.6 2.8 5.6 6.0 1.0 5.0 19.3
6 2.3 0.4 1.9 4.8 8.4 2.1 7.7 25.4
7 3.4 1.7 2.8 4.9 12.4 5.7 11.4 31.9
8 3.2 1.9 2.8 5.4 18.4 8.5 16.2 38.2
9 4.2 2.3 3.6 5.9 25.2 13.4 21.8 46.8
10 3.3 2.5 2.7 5.2 31.7 20.1 30.3 52.7
11 3.6 2.1 3.0 5.2 42.8 28.8 41.4 65.3
12 3.9 2.2 3.5 5.7 51.9 36.8 48.9 73.2
13 3.3 2.3 3.1 4.5 57.7 44.9 55.0 76.8
14 2.9 2.1 2.9 4.4 67.2 55.7 64.4 83.7
15 4.2 2.9 3.8 4.9 77.8 66.6 75.8 90.4
16 3.5 2.4 3.1 4.9 84.5 73.5 82.8 93.5
17 3.0 2.7 3.1 4.4 90.4 82.1 89.2 96.0
18 4.1 3.6 3.7 5.2 93.6 87.2 92.6 98.7
19 4.9 3.8 4.6 5.2 96.8 92.9 96.8 99.7
20 3.6 3.3 3.1 4.2 99.0 97.1 99.3 99.9

set, the empirical sizes and powers of T p
spec, T

p
pear, T3c1p and T3c2p were all equal

to zero, and thus they are omitted in Table 7 (see Section 5.3 for explanation).
It is seen that in terms of size control and power, T3c2q outperforms T q

spec, T
q
pear

and T3c1q generally, for q = p,m. In addition, in terms of size control, we can
also observe the conservativity of T p

pear and Tm
pear in some cases in Table 6 and

the conservativity of T p
spec, T

m
spec, T

p
pear, T

m
pear, T3c1p and T3c1m in almost all

cases in Tables 7-8. The above results show that in terms of size control and
power, our tests T3c1p, T3c2p, T3c1m and T3c2m outperform or perform not worse
than the Gretton et al. tests under consideration.

5.5. Computational time comparison of the tests

To address a question from the reviewer, we display the computational time (in
minutes) of some considered tests in Figures 2 and 3. The experiments were
performed for one physical computer with 4 cores, 8 GB RAM, Ubuntu 18.04
64-bit, R 4.1.1. In Figure 2, we present the fastest tests, i.e., T3c1m, T3c2m and
TSR, with T3c1m the fastest, followed T3c2m, which is significantly faster than
TSR. It is seen that compared with T3c1m, the U-statistics used in estimating
the first three cumulants in T3c2m does add some amount of extra computation.
In Figure 3, we present the computational time of TSG1, T3c1m, T3c2m and TSR.
It is seen that TSG1 is much more time-consuming than T3c1m, T3c2m, and TSR.
Moreover, from Table 9, we obtain that TSG2 and TSG3 are much more time-
consuming than TSG1, TSR, T3c1m and T3c2m. Note that the implementations
of TSG1, TSG2 and TSG3 are based on the C++ implementation of the most
time-consuming parts of their constructions.
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Table 8

Empirical sizes and powers (in %) of T p
spec, T

p
pear, T3c1p, T3c2p, Tm

spec, T
m
pear, T3c1m and

T3c2m for the experiments based on the scaled colon data set (n = n1 = n2).

n T p
spec T p

pear T3c1p T3c2p T p
spec T p

pear T3c1p T3c2p

Empirical sizes Empirical powers
5 1.3 0.2 1.1 4.8 1.1 0.0 0.8 5.8
6 2.3 0.4 2.0 4.8 1.7 0.1 1.5 7.2
7 3.3 1.8 3.2 5.6 2.0 0.6 1.9 8.9
8 3.0 1.8 2.6 5.8 2.5 1.0 2.0 8.0
9 3.1 2.2 3.1 5.4 3.1 1.3 2.5 8.8
10 3.6 1.6 2.8 5.2 3.3 1.8 2.5 10.6
11 2.6 1.6 2.5 4.7 3.3 1.2 3.0 12.0
12 3.2 1.9 2.5 4.8 5.4 2.4 4.4 13.0
13 3.5 1.9 3.0 5.3 6.5 3.7 5.3 17.3
14 3.0 2.0 3.2 5.2 7.5 4.3 6.1 16.9
15 3.5 2.4 3.0 5.1 10.0 6.4 7.3 21.0
16 3.0 2.3 2.7 4.6 9.3 6.1 7.5 20.5
17 3.7 2.5 2.9 4.5 10.4 6.7 7.6 23.7
18 3.0 2.4 2.6 4.5 15.7 9.6 10.7 30.8
19 3.8 2.8 3.4 4.6 17.7 12.0 12.1 35.3
20 4.6 3.1 4.5 5.2 19.3 14.4 14.8 39.3
n Tm

spec Tm
pear T3c1m T3c2m Tm

spec Tm
pear T3c1m T3c2m

Empirical sizes Empirical powers
5 1.7 0.3 1.6 4.3 1.4 0.2 1.2 5.6
6 2.3 0.8 2.3 5.2 2.5 0.4 2.1 6.1
7 4.0 2.2 3.7 5.8 3.7 0.9 3.0 8.6
8 3.3 2.0 3.1 5.9 3.2 1.6 2.5 7.7
9 3.2 2.4 3.1 4.8 3.1 1.6 2.8 8.5
10 4.0 2.0 3.4 5.1 4.1 2.4 3.5 8.7
11 3.2 2.0 3.0 4.7 4.5 2.3 3.7 10.4
12 3.3 2.3 3.0 4.6 5.7 3.9 4.8 11.4
13 3.9 2.7 3.4 5.4 6.4 5.0 6.1 13.5
14 3.3 2.3 3.2 5.3 8.1 5.5 6.7 15.2
15 3.8 2.7 3.7 5.4 9.3 8.3 7.4 18.6
16 3.5 3.0 3.0 4.6 9.9 7.7 7.5 16.9
17 3.6 2.9 3.2 5.1 10.8 8.1 7.3 19.5
18 3.4 2.9 3.0 3.7 15.4 11.7 10.9 26.2
19 4.2 3.4 3.9 4.7 17.2 14.6 12.5 29.6
20 4.7 3.4 4.1 5.7 18.9 16.2 14.6 32.2

In conclusion, our tests T3c1p, T3c2p, T3c1m, and T3c2m are faster to compute
than the existing tests under consideration.

5.6. Testing procedure recommendation

Based on the above numerical experiments using artificial and real data, we can
recommend T3c2p and T3c2m for practical applications when the sample sizes
are small or moderate. They keep the type I error level very well and have high
powers generally. They are fast to compute and outperform several existing tests.
The squared median-distance based kernel width can be used generally since it
is scale-invariant in the sense that the associated test statistic does not change if
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Fig 2: Computational time (in minutes) of TSR (solid line), T3c1m (dashed line),
and T3c2m (dotted line) for different sample sizes (n1 = n2) and dimensions
p = 100, 500, 1000, 1500, 2000, 2500.

Fig 3: Computational time (in minutes) of TSG1 (dash-dotted line), TSR (solid
line), T3c1m (dashed line), and T3c2m (dotted line) for different sample sizes
(n1 = n2) and dimensions p = 100, 500.
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Table 9

Computational time (in minutes) of TSR, TSG1, TSG2, TSG3, T3c1m, and T3c2m for
different sample sizes (n1 = n2) and dimension p = 100.

n1 = n2 TSR TSG1 TSG2 TSG3 T3c1m T3c2m

100 0.00 0.10 1.46 1.40 0.00 0.00
200 0.01 0.34 5.84 5.53 0.00 0.00
300 0.03 0.79 13.24 12.70 0.00 0.00
400 0.07 1.54 23.81 22.90 0.00 0.01
500 0.16 2.37 37.50 35.95 0.01 0.01
600 0.25 3.46 53.81 51.80 0.01 0.03
700 0.42 4.57 72.75 71.20 0.01 0.04
800 0.48 6.65 95.68 94.01 0.02 0.08
900 0.64 7.90 122.63 116.43 0.02 0.11

1000 0.83 9.75 152.26 141.12 0.03 0.15
1100 1.01 11.61 183.06 170.18 0.04 0.20
1200 1.23 14.07 221.46 200.87 0.06 0.28
1300 1.39 16.10 252.16 237.65 0.07 0.36
1400 1.67 18.94 290.86 272.37 0.08 0.47

each observation is multiplied by a nonzero constant, while the dimension based
kernel width p in T3c1p and T3c2p should be used with caution, since it is not
scale-invariant and not always applicable.

6. Concluding remarks

We have considered the two-sample problem in a separable metric space, which
includes many data types. For this problem, we have proposed two new tests
based on the maximum mean discrepancy. In contrast to the existing tests, we
allowed different sample sizes, which is more realistic, in both theoretical and
practical issues. In addition, unlike the existing tests, which are implemented
by permutation, the two new tests were based on the three-cumulant matched
χ2-approximation. The first test, T3c1, used the cumulants of the asymptotic
null distribution of the test statistic, which resulted in its good behavior for
large sample sizes, but for small and moderate sample sizes, conservativity ap-
peared and resulted in less power. On the other hand, the second test, T3c2,
used the cumulants of the null distribution, which resulted in an accurate and
fast test for small and moderate sample sizes. In the numerical experiments pre-
sented in Section 5, we considered a squared median distance based kernel width
and a dimension-based kernel width. The former kernel width is scale-invariant
while the latter one is not. The resulting tests are denoted as T3c1m, T3c2m and
T3c1p, T3c2p respectively. In the numerical experiments based on artificial data,
T3c1p and T3c2p outperform T3c1m and T3c2m substantially while in the numer-
ical experiments based on the two real data sets, T3c1p and T3c2p can perform
much worse than T3c1m and T3c2m unless the data are properly re-scaled so that
the squared distances of the transformed observations and the dimension based
kernel width p are at the same scale level. This means that we should use the
dimension-based kernel width with caution. It also says that it is important to
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select a good kernel width for the proposed new tests. Further research in this
direction is interesting and warranted. Of course, the performance of the new
tests needs to be further evaluated on additional artificial and real data sets.
In particular, we can examine the behavior of the new tests for other types of
data including strings and graphs. This may constitute a direction for our future
research.

Appendix A: Proofs

The equalities (8) of the form

Sαα = S̃αα + 2〈x̄α − μα, μα〉+ ‖μα‖2,
S12 = S̃12 + 〈x̄1 − μ1, μ2〉+ 〈x̄2 − μ2, μ1〉+ 〈μ1, μ2〉,

where α = 1, 2, follow from

Sαα = 2
nα(nα−1)

∑
1≤i<j≤nα

〈(xαi − μα) + μα, (xαj − μα) + μα〉
= 2

nα(nα−1)

∑
1≤i<j≤nα

(〈xαi − μα, xαj − μα〉+ 〈xαi − μα, μα〉
+〈μα, xαj − μα〉+ ‖μα‖2

)
= S̃αα + 2〈x̄α − μα, μα〉+ ‖μα‖2,

S12 = 〈(x̄1 − μ1) + μ1, (x̄2 − μ2) + μ2〉
= 〈x̄1 − μ1, x̄2 − μ2〉+ 〈x̄1 − μ1, μ2〉+ 〈μ1, x̄2 − μ2〉+ 〈μ1, μ2〉
= S̃12 + 〈x̄1 − μ1, μ2〉+ 〈x̄2 − μ2, μ1〉+ 〈μ1, μ2〉,

where α = 1, 2 and

S̃αα = 2
nα(nα−1)

∑
1≤i<j≤nα

〈xαi − μα, xαj − μα〉
= 2

nα(nα−1)

∑
1≤i<j≤nα

K̃(yαi, yαj),

S̃12 = 〈x̄1 − μ1, x̄2 − μ2〉 = 1
n1n2

∑n1

i=1

∑n2

j=1 K̃(y1i, y2j).

Lemma A.1. Let α, β = 1, 2 and α �= β. We have E(S̃αα) = 0, E(S̃αβ) = 0,

and cov(S̃αα, S̃αβ) = 0. Further,

var(S̃αα) =
2

nα(nα − 1)
E(K̃2(yα1, yα2)), var(S̃αβ) =

1

nαnβ
E(K̃2(yα1, yβ1)).

Proof of Lemma A.1. We have the following useful properties. By (7), when
y′ = y, we have

Ey(K̃(y, y)) = Ey(K(y, y))− Ez,z′(K(z, z′)) > 0, (28)

where z and z′ are independent copies of y, and when y and y′ are independent,
we have

Ey(K̃(y, y′)) = Ey′(K̃(y, y′)) = Ey,y′(K̃(y, y′)) = 0. (29)
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By (28), (29) and (9), we have

E(S̃αα) =
2

nα(nα−1)

∑
1≤i<j≤nα

E(K̃(yαi, yαj)) = 0,

E(S̃αβ) =
1

nαnβ

∑nα

i=1

∑nβ

j=1 E(K̃(yαi, yβj)) = 0,

cov
(
S̃αα, S̃αβ

)
= E(S̃ααS̃αβ) = 0,

var(S̃αα) =
4

n2
α(nα−1)2

∑
1≤i<j≤nα

var(K̃(yαi, yαj))

= 2
nα(nα−1)E(K̃2(yα1, yα2)),

var(S̃αβ) =
1

n2
αn2

β

∑nα

i=1

∑nβ

j=1 var(K̃(yαi, yβj))

= 1
nαnβ

E(K̃2(yα1, yβ1)).

Theorem 3.1. Under Assumptions 1–3, as n → ∞, we have T̃n
d−→ T̃ ,

where

T̃
d
=

∞∑
r=1

λr(Ar − 1), Ar
i.i.d.∼ χ2

1.

Proof of Theorem 3.1. Under Assumption 1, we have P1 = P2 = P . Let y, y′
i.i.d.∼

P . Under Assumption 3, we have the Mercer’s expansion (12). By (29) and (13),
we have

λrEy(ψr(y)) =

∫
Y
Ey(K̃(y, y′))ψr(y

′)P (dy′) = 0.

This, together with (13), implies that E(ψr(y)) = 0 whenever λr �= 0 and
var(ψr(y)) =

∫
Y ψ2

r(y)P (dy) = 1. Set zr,αi = ψr(yαi) (i = 1, . . . , nα;α = 1, 2).

Under Assumption 1, we have yαi
i.i.d.∼ P . It follows that for a fixed r = 1, 2, . . . ,

zr,αi (i = 1, . . . , nα;α = 1, 2) are i.i.d. with mean 0 and variance 1. For different
r, zr,αi (i = 1, . . . , nα;α = 1, 2) are uncorrelated. Then by (9) and (12), we have

S̃12 = 1
n1n2

∑n1

i=1

∑n2

j=1 (
∑∞

r=1 λrzr,1izr,2j)

=
∑∞

r=1 λr z̄r,1z̄r,2,

S̃αα = 2
nα(nα−1)

∑
1≤i<j≤nα

(
∑∞

r=1 λrzr,αizr,αj)

=
∑∞

r=1 λr

(
2

nα(nα−1)

∑
1≤i<j≤nα

zr,αizr,αj

)
=

∑∞
r=1 λr(z̄

2
r,α − 1/nα)(1 + op(1)),

where z̄r,α = n−1
α

∑nα

i=1 zr,αi (α = 1, 2; r = 1, 2, . . . ). In the last equality, we
have used the following facts

2

nα(nα − 1)

∑
1≤i<j≤nα

zr,αizr,αj =
1

n2
α

⎛⎝ nα∑
i=1

nα∑
j=1

zr,αizr,αj −
nα∑
i=1

z2r,αi

⎞⎠ (1 + o(1))

=

(
z̄2r,α − 1

nα

)
(1 + op(1)),
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since as nα → ∞, we have n−1
α

∑nα

i=1 z
2
r,αi

p−→ E(z2r,α1) = 1. By (11), we then
have

T̃n =
∑∞

r=1 λr
n1n2

n

(
(z̄2r,1 − 1/n1) + (z̄2r,2 − 1/n2)− 2z̄r,1z̄r,2

)
(1 + op(1))

=
∑∞

r=1 λr

(
n1n2

n (z̄r,1 − z̄r,2)
2 − 1

)
(1 + op(1))

=
∑∞

r=1 λr(An,r − 1)(1 + op(1)),

where An,r = w2
n,r with wn,r = (n1n2/n)

1/2(z̄r,1 − z̄r,2) (r = 1, 2, . . . ), which
are uncorrelated. For any given r = 1, 2, . . . , by the central limit theorem, under

Assumptions 2 and 3, as n → ∞, we have n
1/2
α z̄r,α

d−→ N (0, 1) (α = 1, 2) and
z̄r,1 and z̄r,2 are independent. It follows that under Assumptions 2 and 3, as

n → ∞, wn,r
d−→ wr ∼ N (0, 1), and hence

An,r = w2
n,r

d−→ Ar = w2
r

i.i.d.∼ χ2
1 (r = 1, 2, . . . ). (30)

It follows that as n → ∞, E(An,r) = 1 + o(1) and var(An,r) = 2 + o(1).
Let ϕX(t) = E(eitX) denote the characteristic function of a random vari-

able X. Set T̃
(q)
n =

∑q
r=1 λr(An,r − 1). Then |ϕT̃n

(t) − ϕ
T̃

(q)
n

(t)| ≤ |t|
(
E(T̃n −

T̃
(q)
n )2

)1/2
. Therefore, as n → ∞, we have

E(T̃n − T̃
(q)
n )2 = E

(∑∞
r=q+1 λr(An,r − 1)

)2

(1 + op(1))

= var
(∑∞

r=q+1 λrAn,r

)
(1 + op(1))

≤
(∑∞

r=q+1 var
1/2(λrAn,r)

)2

(1 + op(1))

= 2
(∑∞

r=q+1 λr

)2

(1 + op(1)).

It follows that

|ϕT̃n
(t)− ϕ

T̃
(q)
n

(t)| ≤ |t|
√
2

( ∞∑
r=q+1

λr

)
(1 + o(1)). (31)

Let t be fixed. Under Assumption 3 and (14), as q → ∞, we have
∑∞

r=q+1 λr →
0. Thus, by (31), for any given ε > 0, there exist N1 and Q1, depending on |t|
and ε, such that as n > N1 and q > Q1, we have

|ϕT̃n
(t)− ϕ

T̃
(q)
n

(t)| ≤ ε. (32)

For any fixed q > Q1, by (30), as n → ∞, we have T̃
(q)
n

d−→ T̃ (q) d
=

∑q
r=1 λr(Ar−

1), Ar
i.i.d.∼ χ2

1. Thus, there exists N2, depending on q and ε such that as n > N2,
we have

|ϕ
T̃

(q)
n

(t)− ϕT̃ (q)(t)| ≤ ε. (33)

Recall that T̃ =
∑∞

r=1 λr(Ar − 1), Ar
i.i.d.∼ χ2

1. Along the same lines as those
for proving (32), we can show that there exist Q2, depending on |t| and ε, such
that as q > Q2, we have

|ϕT̃ (q)(t)− ϕT̃ (t)| ≤ ε. (34)
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It follows from (32)–(34) that for any n ≥ max(N1, N2) and q ≥ max(Q1, Q2),
we have∣∣ϕT̃n

(t)−ϕT̃ (t)
∣∣ ≤ ∣∣ϕT̃n

(t)−ϕ
T̃

(q)
n

(t)
∣∣+∣∣ϕ

T̃
(q)
n

(t)−ϕT̃ (q)(t)
∣∣+∣∣ϕT̃ (q)(t)−ϕT̃ (t)

∣∣ ≤ 3ε.

The convergence in distribution of T̃n to T̃ follows as we can let ε → 0.

Theorem 3.2. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some
BK < ∞. Then we have

E(T̃n) = 0, var(T̃n) ≤ 64B2
K ,

and
var(Qn) = n2

1n
2
2n

2Δ−3
(
σ2
1/n1 + σ2

2/n2

)
,

where σ2
1 , σ

2
2 ≤ 4‖h‖2BK .

Proof of Theorem 3.2. First of all, by (7), |K̃(y, y′)| ≤ 4BK for all y, y′ ∈ Y .
Then by Lemma A.1, for α �= β, α, β = 1, 2, we have E(T̃n) = 0 and

var(S̃αα) =
2

nα(nα−1)E(K̃2(yα1, yα2)) ≤ 32B2
K

nα(nα−1) ,

var(S̃αβ) =
1

nαnβ
E(K̃2(yα1, yβ1)) ≤ 16B2

K

nαnβ
.

It follows that

var(T̃n) =
(
n1n2

n

)2
(var(S̃11) + var(S̃22) + 4var(S̃12))

≤
(
n1n2

n

)2 ( 32B2
K

n1(n1−1) +
32B2

K

n2(n2−1) +
64B2

K

n1n2

)
= 32B2

K

(
1 +

n2
2

n2(n1−1) +
n2
1

n2(n2−1)

)
≤ 64B2

K .

By the Cauchy-Schwarz inequality and (17), we have

σ2
α ≤ E(‖xα1 − μα‖2)‖h‖2 = E(K̃(yα1, yα1))‖h‖2 ≤ 4‖h‖2BK .

Finally, var(Qn) = n2
1n

2
2n

2Δ−3
(
σ2
1/n1 + σ2

2/n2

)
.

Theorem 3.3. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some
BK < ∞. Then under Assumption 2 and the local alternative hypothesis (16),
as n → ∞, we have

(a) T̃n/(var(Qn))
1/2 p−→ 0,

(b) Qn/(var(Qn))
1/2 d−→ N (0, 1),

(c) [Tn − n1n2‖h‖2/(n2−2Δ)]/
√
var(Tn)

d−→ N (0, 1), and hence

P (Tn ≥ Ĉε) = Φ

(
nΔ‖h‖2

2(σ2
1/τ + σ2

2/(1− τ))1/2

)
(1 + o(1)) → 1,

where Ĉε denotes a consistent estimator of Cε, the upper 100ε percentile of
T̃n with ε being the given significance level, τ is defined in Assumption 2,
and Φ(·) denotes the cumulative distribution of N (0, 1).
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Proof of Theorem 3.3. Under the given conditions, by Theorem 3.2, we have
E(T̃n) = 0, var(T̃n) ≤ 64B2

K , and as n → ∞,

var(Qn) = (τ(1− τ))2
(
σ2
1/τ + σ2/(1− τ)

)
n2Δ(1 + o(1)),

where τ is defined in Assumption 2. It follows that as n → ∞, var(T̃n)/var(Qn) →
0. Thus, we have T̃n/(var(Qn))

1/2 p−→ 0, and hence (a) is proved. To show (b),
notice that by the central limit theorem, as nα → ∞, we have

uα = n1/2
α 〈x̄α − μα, μ1 − μ2〉 d−→ N(0, σ2

α) (α = 1, 2).

Since x̄1 and x̄2 are independent and by (19), we have

Qn = n1n2n
−(3/2−Δ)(u1/n

1/2
1 − u2/n

1/2
2 )

and Qn/(var(Qn))
1/2 d−→ N (0, 1). To show (c), notice that as n → ∞, by (18),

we have

Tn − n1n2‖h‖2/(n2−2Δ)√
var(Tn)

=

[
T̃n

2
√
var(Qn)

+
Qn√

var(Qn)

]
[1 + o(1)]

d−→ N (0, 1).

Note that Ĉε denotes a consistent estimator of Cε. Therefore, as n → ∞, we
have

P (Tn ≥ Ĉε) = P

(
Tn − n1n2‖h‖2/(n2−2Δ)

2
√
var(Qn)

≥ Ĉε − n1n2‖h‖2/(n2−2Δ)

2
√

var(Qn)

)

=

{
1− Φ

(
Cε

2n1n2

n3/2−Δ

√
σ2
1/n1 + σ2

2/n2

− n1n2‖h‖2/(n2−2Δ)
2n1n2

n3/2−Δ

√
σ2
1/n1 + σ2

2/n2

)}
(1 + o(1))

=Φ

(
nΔ‖h‖2

2
√
σ2
1/τ + σ2

2/(1− τ)

)
(1 + o(1))

→1.

The theorem is proved.

Theorem 4.1. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some
BK < ∞. Then under Assumption 1, as n → ∞, we have

|K̃∗(yi, yj)− K̃(yi, yj)| = Op(n
−1/2) uniformly for all yi, yj .

Proof of Theorem 4.1. Under Assumption 1, set xi = K(·, yi), i = 1, 2, . . . , n
and μ = E(xi). Then we have K̃(yi, yj) = 〈xi − μ, xj − μ〉 and K̃∗(yi, yj) =
〈xi − x̄, xj − x̄〉. It follows that

|K̃∗(yi, yj)− K̃(yi, yj)| = |〈xi − x̄, xj − x̄〉 − 〈xi − μ, xj − μ〉|
= |〈μ− x̄, xj − μ〉+ 〈xi − μ, μ− x̄〉+ 〈μ− x̄, μ− x̄〉|
≤ ‖x̄− μ‖‖xj − μ‖+ ‖x̄− μ‖‖xi − μ‖+ ‖x̄− μ‖2
= ‖x̄− μ‖2 + ‖x̄− μ‖(‖xi − μ‖+ ‖xj − μ‖).
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Note that we have E[K̃(y, y′)] = 0 when y, y′ are independent. We have

n‖x̄− μ‖2 = n−1
∑n

i=1

∑n
j=1 K̃(yi, yj)

= n−1
∑n

i=1 K̃(yi, yi) + 2(n− 1)−1
∑

1≤i<j≤n K̃(yi, yj).

It follows that as n → ∞, we have

E
[
n‖x̄− μ‖2

]
= E

[
K̃(y, y)

]
≤ 4BK ,

var
[
n‖x̄− μ‖2

]
= n−1var

[
K̃(y, y)

]
+ 2n(n− 1)−1E

[
K̃(y, y′)

]2
= 2E

[
K̃(y, y′)

]2
[1 + o(1)] ≤ 32B2

K [1 + o(1)],

where we use the fact that var
[
K̃(y, y)

]
≤ E

[
K̃(y, y)

]2
≤ 16B2

K . Therefore, as

n → ∞, we have

‖x̄− μ‖2 = Op(1/n), and ‖x̄− μ‖ = Op(1/
√
n),

uniformly. Since ‖xi − μ‖ =
√
K̃(yi, yi) ≤

√
4BK and similarly ‖xj − μ‖ ≤√

4BK . As n → ∞, we have

|K̃∗(yi, yj)− K̃(yi, yj)| = Op(n
−1/2),

uniformly for all yi, yj ’s.

Theorem 4.2. Under Assumptions 1, 2 and Condition (25), as n → ∞, we

have M̂�
p−→ M�, 
 = 2, 3 and

β̂0
p−→ β0, β̂1

p−→ β1, d̂
p−→ d.

Proof of Theorem 4.2. First of all, under Condition (25), by (26), we have

∞∑
r=1

λr ≤
[ ∞∑
r=1

√
λr

]2

< ∞. (35)

By Proposition 12 of [20], under the given conditions, as n → ∞, we have

∞∑
r=1

|λ̂r − λr|
p−→ 0. (36)

It follows that as n → ∞, we have∣∣∣∣∣
∞∑
r=1

λ̂r −
∞∑
r=1

λr

∣∣∣∣∣ ≤
∞∑
r=1

|λ̂r − λr|
p−→ 0.
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Therefore, as n → ∞, we have

∞∑
r=1

λ̂r
p−→

∞∑
r=1

λr. (37)

Then as n → ∞, for 
 = 2, 3, we have

|M̂� −M�| ≤
∑∞

r=1 |λ̂�
r − λ�

r|
≤

∑∞
r=1 |λ̂r − λr|(λ̂�−1

r + λ̂�−2
r λr + · · ·+ λ̂rλ

�−2
r + λ�−1

r )

≤
∑∞

r=1 |λ̂r − λr|(λ̂r + λr)
�−1

≤
∑∞

r=1 |λ̂r − λr|(
∑∞

r=1 λ̂r +
∑∞

r=1 λr)
�−1

= (
∑∞

r=1 λ̂r +
∑∞

r=1 λr)
�−1

∑∞
r=1 |λ̂r − λr|

p−→ 0.

That is, as n → ∞, we have M̂�
p−→ M�, 
 = 2, 3. The remaining claims then

follow. The theorem is complete.

Theorem 4.3. Under Assumption 1, the first three cumulants of T̃n are given
by

E(T̃n) = 0,

var(T̃n) = 2
{
1 +

(
n2
2

n2(n1−1) +
n2
1

n2(n2−1)

)}
E(K̃2(y, y′)),

E(T̃ 3
n) = 8

{
1−

(
n3
2

n3(n1−1)2 +
n3
1

n3(n2−1)2

)}
E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

+4
(

n3
2n1

n3(n1−1)2 − 2n1n2

n3 +
n3
1n2

n3(n2−1)2

)
E(K̃3(y, y′)),

where y, y′, y′′
i.i.d.∼ P . Furthermore, under Assumptions 1–3, as n → ∞, we

have
var(T̃n) = 2E(K̃2(y, y′))(1 + o(1)),

E(T̃ 3
n) = 8E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))(1 + o(1)).

Proof of Theorem 4.3. Under Assumption 1, Lemma A.1 implies that

E(T̃n) =
n1n2

n (E(S̃11) + E(S̃22)− 2E(S̃12)) = 0,

var(T̃n) =
(
(n1n2

n

)2
(var(S̃11) + var(S̃22) + 4var(S̃12))

=
(
n1n2

n

)2 ( 2
n1(n1−1)E(K̃2(y, y′)) + 2

n2(n2−1)E(K̃2(y, y′))

+ 4
n1n2

E(K̃2(y, y′))
)

= 2
(
n1n2

n

)2 ( 1
n1(n1−1) +

1
n2(n2−1) +

2
n1n2

)
E(K̃2(y, y′))

= 2
{
1 +

(
n2
2

n2(n1−1) +
n2
1

n2(n2−1)

)}
E(K̃2(y, y′)).

Note that

T̃ 3
n = S̃3

11 + S̃3
22 − 8S̃3

12 + 3(S̃2
11S̃22 + S̃11S̃

2
22)− 6(S̃2

11S̃12 + S̃12S̃
2
22)

+12(S̃11S̃
2
12 + S̃2

12S̃22)− 12S̃11S̃12S̃22.
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First of all, it is easy to see that E(S̃2
11S̃22) = E(S̃11S̃

2
22) = E(S̃2

11S̃12) =
E(S̃12S̃

2
22) = 0. Further,

E(S̃11S̃12S̃22) =
E
(∑

j �=k
K̃(y1j ,y1k)

∑
α �=β

K̃(y2α,y2β)
∑n1

r=1

∑n2

s=1
K̃(y1r,y2s)

)
n2
1(n1−1)n2

2(n2−1)

=

∑
j �=k

∑
α �=β

∑n1

r=1

∑n2

s=1
E(K̃(y1j ,y1k)K̃(y1r,y2s)K̃(y2α,y2β))

n2
1(n1−1)n2

2(n2−1)

= 0.

Now let y, y′, y′′
i.i.d.∼ P . Then

E(S̃11S̃
2
12) =

E
(∑

j �=k
K̃(y1j ,y1k)

∑n1

α=1

∑n2

β=1
K̃(y1α,y2β)

∑n1

r=1

∑n2

s=1
K̃(y1r,y2s)

)
n3
1(n1−1)n2

2

=

∑
j �=k

∑n1

α=1

∑n2

β=1

∑n1

r=1

∑n2

s=1
E(K̃(y1j ,y1k)K̃(y1α,y2β)K̃(y1r,y2s))

n3
1(n1−1)n2

2

= 2
n3
1(n1−1)n2

∑
j �=k

∑n2

β=1 E(K̃(y1j , y1k)K̃(y1j , y2β)K̃(y1k, y2β))

= 2
n2
1n2

E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′)).

Similarly, we have E(S̃2
12S̃22) = 2(n1n

2
2)

−1E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′)). More-
over

E(S̃3
12) =

1
n3
1n

3
2
E
(∑n1

j=1

∑n2

k=1 K̃(y1j , y2k)
)3

= 1
n3
1n

3
2
E
(∑n1

j=1

∑n2

k=1 K̃
3(y1j , y2k)

)
= 1

n3
1n

3
2
(n1n2E(K̃3(y, y′)))

= 1
n2
1n

2
2
E(K̃3(y, y′)).

Finally,

E(S̃3
11) =

8
n3
1(n1−1)3

E
(∑

j<k K̃(y1j , y1k)
)3

= 8
n3
1(n1−1)3

E
(∑

j<k K̃
3(y1j , y1k) + 3

∑∗
K̃2(y1j , y1k)K̃(y1α, y1β)

+6
∑∗∗

K̃(y1j , y1k)K̃(y1α, y1β)K̃(y1r, y1s)
)

= 8
n3
1(n1−1)3

{
n1(n1−1)

2 E(K̃3(y, y′))

+6n1(n1−1)(n1−2)
3! E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

}
= 8(n1−2)

n2
1(n1−1)2

E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′)) + 4
n2
1(n1−1)2

E(K̃3(y, y′)),

where ∗ means “j < k, α < β” and “(j, k) �= (α, β)”, while ∗∗ means “j <
k, α < β, u < v” and “(j, k), (α, β), (r, s) are not mutually equal to each other.”.
Similarly,

E(S̃3
22) =

8(n2 − 2)

n2
2(n2 − 1)2

E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))+
4

n2
2(n2 − 1)2

E(K̃3(y, y′)).
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Thus, we have

E(T̃ 3
n) =

n3
1n

3
2

n3 (E(S̃3
11) + E(S̃3

22)− 8E(S̃3
12) + 12E(S̃11S̃

2
12) + 12E(S̃2

12S̃22))

=
n3
1n

3
2

n3

{
8
(

n1−2
n2
1(n1−1)2

+ 3
n2
1n2

+ 3
n1n2

2
+ n2−2

n2(n2−1)2

)
·E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

+4
(

1
n2
1(n1−1)2

− 2
n2
1n

2
2
+ 1

n2
2(n2−1)2

)
E(K̃3(y, y′))

}
= 8

{
1−

(
n3
2

n3(n1−1)2 +
n3
1

n3(n2−1)2

)}
E(K̃(y, y′)K̃(y, y′′)K̃(y′, y′′))

+4
(

n3
2n1

n3(n1−1)2 − 2n1n2

n3 +
n3
1n2

n3(n2−1)2

)
E(K̃3(y, y′)).

Theorem 4.4. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Y for some BK <

∞. Then under Assumptions 1 and 2, as n → ∞, we have M̂�
p−→ M�, 
 = 2, 3

and
β̂0

p−→ β0, β̂1
p−→ β1, d̂

p−→ d.

Proof of Theorem 4.4. By (27), under Assumption 2, as n → ∞, we can write

M̂2 = M̃∗
2

[
1 +O(n−1)

]
,

M̂3 = M̃∗
3

[
1−O(n−2)

]
+ M̃∗

23

[
O(n−1)

]
,

where

M̃∗
2 = 2

n(n−1)

∑
1≤i<j≤n(K̃

∗(yi, yj))
2,

M̃∗
3 = 6

n(n−1)(n−2)

∑
1≤i<j<k≤n K̃

∗(yi, yj)K̃
∗(yj , yk)K̃

∗(yk, yi),

M̃∗
23 = 2

n(n−1)

∑
1≤i<j≤n(K̃

∗(yi, yj))
3.

By Theorem 4.1, we have K̃∗(yi, yj) = K̃(yi, yj) + Op(n
−1/2) uniformly for all

yi, yj ’s. Since |K̃(y, y′)| ≤ 4BK < ∞ for all y, y′ ∈ Y , we have

M̃∗
2 = M̃2 +Op(n

−1/2), M̃∗
3 = M̃3 +Op(n

−1/2), M̃∗
23 = M̃23 +Op(n

−1/2),

where

M̃2 = 2
n(n−1)

∑
1≤i<j≤n(K̃(yi, yj))

2,

M̃3 = 6
n(n−1)(n−2)

∑
1≤i<j<k≤n K̃(yi, yj)K̃(yj , yk)K̃(yk, yi),

M̃23 = 2
n(n−1)

∑
1≤i<j≤n(K̃(yi, yj))

3.

Since M̃2, M̃3 and M̃23 are U-statistics for M2,M3, and M23 = E
[
K̃(y, y′)

]3
respectively and under the given conditions, we have

E
[
K̃(y, y′)

]4
≤ (4BK)4 < ∞,

E
[
K̃(y, y′)K̃(y, y′′)K̃(y′, y′′)

]2
≤ (4BK)6 < ∞,

E
[
K̃(y, y′)

]6
≤ (4BK)6 < ∞,
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then by Lemma A of [19, p. 185], as n → ∞, we have M̃2
p−→ M2, M̃3

p−→ M3,

and M̃23
p−→ M23. It follows that as n → ∞, we have M̃∗

2
p−→ M2, M̃

∗
3

p−→ M3,

and M̃∗
23

p−→ M23. Thus, as n → ∞, we have M̂�
p−→ M�, 
 = 2, 3. The remaining

claims then follow. The theorem is complete.

Appendix B: Tables of the numerical experimental results

The detailed results of the numerical experiments based on the artificial data
sets in Section 5.2 are displayed in Tables 10–15.

Table 10: Empirical sizes (in %) of all tests obtained under Models 1-3. Column
M denotes Model, n = (n1, n2), n1 = (20, 30), and n2 = (40, 60).

M n p ρ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

1 n1 10 0.2 5.5 5.3 5.4 5.4 3.3 3.7 5.4 5.3
0.5 5.9 5.8 5.5 5.9 4.7 5.0 5.6 5.8
0.8 6.0 5.6 6.2 5.5 5.1 5.2 5.5 5.4

100 0.2 5.8 6.4 5.5 5.3 1.9 2.6 5.7 5.9
0.5 5.6 5.9 6.0 5.8 4.5 5.0 5.9 5.7
0.8 4.4 4.1 4.1 4.3 3.8 3.9 4.2 4.0

500 0.2 6.0 6.0 5.7 5.7 1.9 2.9 5.9 6.2
0.5 6.4 5.6 5.8 5.4 4.0 4.5 5.2 5.6
0.8 4.8 4.8 4.8 4.9 4.5 4.4 5.0 4.7

n2 10 0.2 4.1 4.0 3.6 4.4 3.2 3.5 3.9 4.2
0.5 5.1 5.0 5.0 5.5 4.0 4.4 4.7 4.7
0.8 5.4 5.9 6.1 5.4 5.7 5.8 5.8 5.8

100 0.2 4.7 4.5 4.8 4.6 2.0 2.8 4.3 4.2
0.5 4.3 4.1 4.1 4.2 3.1 3.4 3.8 3.9
0.8 3.9 3.8 3.6 3.8 3.9 3.8 4.2 3.9

500 0.2 5.6 5.9 5.8 5.5 3.7 4.4 5.6 5.7
0.5 5.1 6.1 5.1 6.2 5.1 5.3 5.9 5.9
0.8 5.5 5.3 5.7 5.0 5.0 5.2 5.1 5.4

2 n1 10 0.2 4.3 4.4 4.1 3.8 1.5 2.6 4.1 3.9
0.5 5.4 5.4 5.9 6.0 3.5 4.3 5.4 4.9
0.8 4.6 4.8 4.7 4.9 3.9 4.5 5.0 5.1

100 0.2 5.0 4.7 4.5 4.3 0.5 2.2 4.3 4.9
0.5 4.9 4.8 4.8 5.6 2.2 3.9 5.1 4.8
0.8 5.5 5.9 5.9 5.5 4.9 5.5 5.8 5.9

500 0.2 4.4 5.0 4.6 5.0 0.2 2.2 4.2 4.6
0.5 4.3 3.9 4.6 4.0 1.5 3.5 3.8 4.6
0.8 5.9 4.3 4.6 4.4 3.7 4.9 4.7 5.3

n2 10 0.2 5.4 5.0 5.4 4.7 3.4 4.1 4.7 4.9
0.5 5.3 4.6 4.4 4.6 3.5 3.6 4.6 4.3
0.8 5.2 5.0 5.4 4.8 4.2 5.4 4.6 5.7

100 0.2 4.8 5.3 5.5 5.1 0.6 3.3 4.6 4.5
0.5 3.6 5.2 4.5 4.7 3.1 3.9 4.9 4.2
0.8 4.7 4.7 4.5 4.6 4.4 4.3 4.6 4.4

500 0.2 6.0 6.5 5.8 6.2 1.1 3.8 5.8 6.2
0.5 4.5 4.9 4.8 5.0 3.2 4.2 4.8 4.6
0.8 3.6 5.1 4.6 5.0 4.3 4.0 4.7 4.2

3 n1 10 0.2 5.6 5.0 5.8 5.6 3.1 3.9 4.8 5.2
0.5 5.9 5.7 5.1 5.7 4.3 3.5 5.4 4.8
0.8 6.6 5.6 5.8 5.1 4.9 5.9 5.4 6.2

100 0.2 5.1 5.0 5.0 5.2 0.3 2.7 4.5 4.9
0.5 4.8 4.1 4.2 4.0 1.9 3.8 3.9 4.6
0.8 5.2 4.3 4.4 4.4 3.7 4.4 4.4 4.7

500 0.2 5.6 6.3 5.8 6.3 0.3 3.5 5.4 5.7
0.5 4.4 4.5 4.9 5.0 2.2 4.3 4.5 4.8

Continued on next page
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Table 10 – Continued from previous page

M n p ρ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

0.8 5.6 5.4 5.2 5.1 4.3 4.6 5.6 5.2
n2 10 0.2 5.3 5.0 4.5 5.1 3.2 4.5 4.8 4.8

0.5 5.1 6.4 5.7 6.5 5.0 4.8 5.6 4.9
0.8 5.2 5.8 5.2 5.3 4.8 4.5 5.2 4.9

100 0.2 5.1 4.8 5.5 5.8 1.5 3.5 4.2 4.8
0.5 5.0 5.8 5.7 5.6 4.3 4.8 5.6 5.4
0.8 6.2 5.3 5.3 4.9 4.9 5.0 5.2 5.2

500 0.2 5.0 5.5 5.2 5.8 1.0 3.2 4.9 5.0
0.5 4.5 4.8 4.7 4.6 3.2 4.2 4.6 4.8
0.8 5.7 4.5 5.2 4.9 3.9 5.0 4.3 5.2

Table 11: Empirical powers (in %) of all tests under Model 4 (n = (n1, n2),
n1 = (20, 30), n2 = (40, 60)).

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

n1 10 0.2 0.2 22.0 19.6 19.4 17.0 15.0 18.0 19.8 21.8
0.4 63.3 58.5 59.6 53.1 51.4 58.6 58.3 61.5
0.6 94.6 92.4 92.2 87.6 89.6 92.5 92.0 93.6

0.5 0.2 14.1 13.3 13.9 11.6 11.1 12.2 13.1 14.0
0.4 41.7 37.0 40.0 35.2 34.4 37.3 37.3 39.4
0.6 76.4 68.8 72.0 66.0 66.3 70.4 68.2 72.2

0.8 0.2 10.1 9.3 9.5 9.2 8.7 8.6 9.6 9.6
0.4 30.7 27.1 28.8 24.3 25.2 27.1 26.5 27.9
0.6 57.5 47.9 50.9 43.1 46.3 48.5 47.6 50.1

100 0.2 0.2 29.5 28.1 28.7 27.4 14.6 20.6 27.2 28.5
0.4 82.2 80.2 81.1 79.3 67.8 73.8 79.5 81.6
0.6 99.2 99.3 99.3 99.2 97.6 99.0 99.3 99.3

0.5 0.2 17.8 17.3 18.1 17.1 13.7 15.6 17.1 18.1
0.4 45.3 41.4 43.9 40.7 36.5 40.0 40.9 43.6
0.6 80.0 76.3 79.2 76.2 71.9 75.7 76.0 78.3

0.8 0.2 13.0 10.2 11.0 9.7 9.4 10.0 10.5 10.9
0.4 30.9 25.8 27.7 23.4 24.6 25.6 25.5 26.6
0.6 61.0 54.2 55.9 50.2 52.8 54.8 53.7 56.0

500 0.2 0.2 29.0 28.9 29.4 29.2 16.0 20.3 28.0 28.7
0.4 85.7 84.4 85.7 85.3 69.9 77.7 84.5 85.5
0.6 99.6 99.1 99.4 99.2 97.9 98.8 99.1 99.6

0.5 0.2 14.6 13.2 13.8 13.0 10.6 11.8 13.5 14.0
0.4 45.5 39.9 43.5 39.6 35.5 38.6 38.7 42.4
0.6 81.7 77.0 80.6 77.0 73.3 77.0 77.0 79.2

0.8 0.2 9.8 9.5 9.9 9.8 9.6 9.4 9.8 9.6
0.4 32.1 27.1 28.8 24.3 25.9 27.1 26.6 28.0
0.6 59.1 52.4 54.4 47.9 50.8 52.6 52.2 53.3

n2 10 0.2 0.2 40.6 36.4 36.3 31.2 33.1 36.4 36.0 40.0
0.4 91.6 87.9 89.0 83.3 85.8 89.8 88.0 90.9
0.6 99.9 99.7 99.7 99.7 99.7 99.9 99.7 99.9

0.5 0.2 27.1 24.1 25.1 22.2 21.5 23.6 23.1 24.5
0.4 70.7 63.9 68.0 61.8 61.7 65.5 63.1 66.5
0.6 96.8 94.2 95.7 92.3 93.3 95.0 93.8 95.5

0.8 0.2 18.1 16.1 16.6 14.6 15.1 15.7 15.7 16.0
0.4 55.1 47.6 51.0 42.7 46.1 47.5 46.9 48.2
0.6 88.0 81.8 83.9 78.3 81.1 82.4 81.6 82.6

100 0.2 0.2 53.8 52.5 53.4 50.8 43.6 48.0 51.5 52.8
0.4 98.3 98.0 98.3 97.7 96.6 97.7 98.1 98.2
0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 0.2 25.6 22.3 25.2 22.3 20.5 22.1 22.0 23.8
0.4 77.4 72.3 75.5 72.5 70.4 73.7 72.5 74.6
0.6 98.3 97.5 98.4 97.7 97.1 98.0 97.5 98.2

0.8 0.2 17.2 15.2 15.6 13.8 14.1 15.0 14.6 15.5
0.4 56.6 49.7 52.4 46.5 48.5 50.2 49.2 50.5

Continued on next page
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Table 11 – Continued from previous page

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

0.6 88.7 83.0 84.6 79.2 82.4 83.3 82.7 83.6
500 0.2 0.2 59.7 57.4 58.7 56.9 45.4 51.4 56.5 58.6

0.4 99.1 98.8 99.1 99.0 97.8 98.2 98.9 99.1
0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 0.2 24.7 22.8 24.3 22.2 20.8 22.5 22.6 23.7
0.4 78.5 75.4 77.4 75.2 72.3 75.1 75.3 76.6
0.6 98.7 98.3 98.7 98.2 97.9 98.3 98.0 98.5

0.8 0.2 18.9 17.1 17.6 16.1 15.8 16.4 16.7 16.5
0.4 57.3 50.6 53.3 46.5 49.5 50.8 49.8 51.4
0.6 90.2 84.2 86.6 80.1 83.2 84.5 83.7 85.5

Table 12: Empirical powers (in %) of all tests under Model 5 (n = (n1, n2)).

n p ρ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

(20, 30) 10 0.3 21.2 70.7 9.4 42.5 61.2 17.4 70.0 20.5
0.5 11.1 24.8 7.0 21.4 21.6 10.0 24.3 10.9
0.7 7.6 10.3 7.1 10.6 9.0 6.6 10.0 7.1

100 0.3 30.6 97.5 9.5 50.3 93.2 17.5 97.8 21.4
0.5 14.2 35.7 6.9 19.4 28.7 9.7 35.9 11.5
0.7 7.1 10.9 6.0 9.4 8.9 6.6 10.5 7.0

500 0.3 32.5 99.3 8.5 49.7 96.2 19.2 99.5 21.8
0.5 13.8 41.3 7.6 21.0 33.9 10.2 41.4 11.3
0.7 9.0 12.3 6.4 10.0 10.6 6.8 12.1 7.2

(40, 60) 10 0.3 76.7 100.0 9.9 97.9 99.9 50.7 100.0 54.7
0.5 23.4 71.2 7.9 52.3 65.2 15.7 70.2 16.6
0.7 9.8 15.6 6.1 15.6 13.6 7.8 14.8 7.9

100 0.3 98.3 100.0 11.8 100.0 100.0 57.0 100.0 61.0
0.5 31.9 97.9 5.9 56.2 96.1 15.2 98.1 16.0
0.7 10.7 19.3 6.4 16.4 17.7 8.0 19.4 8.0

500 0.3 99.2 100.0 13.2 99.9 100.0 58.6 100.0 62.9
0.5 34.2 99.2 7.6 56.7 97.6 17.1 99.2 18.2
0.7 11.3 20.0 6.3 16.8 18 8.3 19.8 8.5

Table 13: Empirical powers (in %) of all tests under Model 6. Column D lists
the distributions, n = (n1, n2), n1 = (20, 30), and n2 = (40, 60).

D n p ρ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

N n1 10 0.2 5.6 6.1 4.3 4.5 3.5 3.7 6.2 5.6
0.5 7.1 11.4 5.0 5.1 7.9 6.6 11.3 8.0
0.8 7.8 10.7 5.1 4.5 9.4 8.3 10.8 8.8

100 0.2 6.6 13.1 3.4 3.5 1.3 1.6 11.9 6.5
0.5 14.4 65.0 4.4 4.2 32.1 13.1 64.3 23.6
0.8 31.8 89.7 3.0 2.8 79.2 35.9 89.3 46.2

500 0.2 5.1 13.0 2.6 2.6 0.5 0.9 11.6 5.1
0.5 13.7 87.0 2.2 2.3 36.2 13.5 86.9 26.2
0.8 54.9 99.9 3.1 2.3 99.8 60.0 99.9 83

n2 10 0.2 5.2 7.6 4.4 4.6 6.1 5.0 7.5 6.1
0.5 9.3 28.0 3.1 3.9 22.2 12.8 25.9 15.4
0.8 9.5 17.4 4.6 5.2 15.6 11.6 16.6 11.9

100 0.2 9.6 39.4 3.1 2.8 10.3 4.3 35.0 11.7
0.5 55.2 100.0 3.1 3.7 100.0 79.4 100.0 89.2
0.8 99.8 100.0 3.5 3.5 100.0 100.0 100.0 100.0

500 0.2 9.5 65.8 2.1 2.0 9.9 3.8 62.1 13.1
Continued on next page
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Table 13 – Continued from previous page

D n p ρ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

0.5 78.3 100.0 1.8 2.0 100.0 96.8 100.0 99.8
0.8 100.0 100.0 2.1 1.9 100.0 100.0 100.0 100.0

t4 n1 10 0.2 5.8 7.8 5.4 4.7 2.9 3.4 8.0 5.6
0.5 6.9 15.8 3.9 4.0 9.2 6.0 15.8 8.9
0.8 7.1 13.3 4.2 3.7 9.7 6.4 12.6 7.3

100 0.2 6.8 27.0 3.7 4.5 0.1 0.8 22.8 6.8
0.5 10.6 94.7 3.3 3.4 41.1 8.9 94.9 18.1
0.8 32.4 99.9 2.7 2.9 99.4 36.6 100.0 46.8

500 0.2 5.8 48.5 3.3 4.0 0.0 0.5 36.2 6.1
0.5 13.5 100.0 3.0 4.1 65.8 11.3 100.0 23.7
0.8 53.6 100.0 2.7 2.9 100.0 60.5 100.0 81.4

n2 10 0.2 7.1 10.1 4.3 4.9 5.4 5.3 10.5 7.0
0.5 11.6 41.2 4.9 4.7 31.6 13.0 39.3 15.1
0.8 9.4 30.9 5.7 5.4 25.8 11.3 29.4 12.2

100 0.2 7.9 73.5 4.8 6.4 7.2 4.3 71.1 10.8
0.5 53.2 100.0 4.4 6.2 100.0 80.0 100.0 90.0
0.8 99.7 100.0 4.8 4.8 100.0 100.0 100.0 100.0

500 0.2 9.7 99.2 3.3 4.2 5.9 4.1 99.0 13.9
0.5 79.6 100.0 5.4 8.2 100.0 97.4 100.0 99.9
0.8 100.0 100.0 2.9 4.1 100.0 100.0 100.0 100.0

Table 14: Empirical powers (in %) of all tests under Model 7 (n = (n1, n2),
n1 = (20, 30), n2 = (40, 60)).

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

n1 10 0.2 0.5 4.1 6.7 6.2 7.5 4.1 3.7 6.8 5.2
0.75 8.2 28.8 19.1 24.1 19.2 8.7 28.5 13.2
1.0 19.7 80.1 54.0 63.7 67.1 25.3 80.1 33.6

0.5 0.5 4.8 7.1 5.6 7.2 4.8 4.0 6.8 5.1
0.75 7.2 18.6 15.4 19.5 14.6 9.4 18.4 10.3
1.0 11.9 51.0 37.2 48.8 42.8 21.3 50.5 26.4

0.8 0.5 5.3 6.5 6.1 7.1 5.8 6.2 6.7 6.3
0.75 5.8 10.7 10.6 12.0 10.3 9.0 10.8 9.4
1.0 7.2 24.3 20.2 25.9 21.7 15.9 24.3 17.1

100 0.2 0.5 4.7 10.3 8.5 11.6 2.9 3.0 9.5 5.5
0.75 9.1 69.0 44.0 63.9 28.5 6.2 67.4 16.3
1.0 44.0 100.0 96.5 99.4 98.7 38.2 100.0 66.6

0.5 0.5 5.8 8.7 7.6 9.2 6.0 5.7 9.2 7.2
0.75 7.0 25.1 18.1 26.8 16.8 9.6 25.0 12.1
1.0 11.4 70.6 45.0 65.3 55.6 22.0 69.8 27.9

0.8 0.5 4.5 5.7 5.7 6.3 5.3 5.5 5.8 5.9
0.75 6.1 9.9 9.4 11.0 9.3 8.2 10.2 8.9
1.0 8.6 27.0 22.9 28.4 24.9 18.6 27.4 19.9

500 0.2 0.5 5.9 13.2 9.1 12.6 2.6 2.8 12.4 7.2
0.75 8.4 78.7 49.4 73.9 27.6 6.4 77.1 16.5
1.0 47.5 100.0 98.6 99.8 99.2 39.1 100.0 74.3

0.5 0.5 5.0 7.5 6.1 8.1 4.9 5.3 8.2 6.0
0.75 7.2 25.1 17.1 26.1 16.8 9.9 24.2 12.6
1.0 11.7 72.0 48.6 67.3 59.2 25.7 71.8 31.5

0.8 0.5 4.8 7.1 6.8 7.5 6.6 6.1 7.0 6.7
0.75 6.8 11.8 11.1 13.5 11.0 9.9 12.3 10.3
1.0 9.0 26.8 22.4 28.3 25.2 18.3 27.5 20.0

n2 10 0.2 0.5 8.2 15.3 10.5 12.8 11.4 7.8 14.6 10.0
0.75 16.7 65.3 43.8 53.7 57.6 23.2 64.4 27.1
1.0 64.8 99.2 92.1 95.6 98.6 78.9 99.3 81.4

0.5 0.5 4.5 9.3 7.4 11.2 7.1 5.3 8.5 5.7
0.75 11.6 39.3 29.1 38.3 35.0 21.0 37.9 22.3
1.0 31.8 89.4 71.5 84.0 86.2 54.3 88.8 56.0

0.8 0.5 5.9 7.4 7.2 7.4 6.1 6.1 6.6 6.3
Continued on next page
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Table 14 – Continued from previous page

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

0.75 8.5 19.0 17.3 20.8 17.7 15.8 18.6 16.3
1.0 19.3 52.9 46.3 55.9 50.5 40.7 51.8 41.5

100 0.2 0.5 6.6 24.1 15.8 25.5 10.3 5.8 21.8 8.4
0.75 35.2 99.7 89.8 97.5 95.3 37.0 99.6 53.0
1.0 99.1 100.0 100.0 100.0 100.0 99.2 100.0 99.6

0.5 0.5 5.9 11.8 8.8 13.1 8.8 6.7 11.4 7.4
0.75 12.2 49.9 35.6 51.6 44.9 21.6 50.1 23.5
1.0 43.6 98.8 86.3 97.3 98.0 68.0 98.7 70.7

0.8 0.5 4.9 6.9 6.4 7.4 6.4 5.9 6.8 6.1
0.75 8.4 21.8 19.0 24.6 21.1 16.8 21.9 17.3
1.0 20.1 56.4 49.5 58.7 54.9 43.7 55.7 44.7

500 0.2 0.5 6.9 24.6 15.8 27.7 11.0 6.4 23.1 9.3
0.75 36.6 99.9 94.4 99.2 98.9 38.2 100.0 57.6
1.0 99.8 100.0 100.0 100.0 100.0 99.8 100.0 100.0

0.5 0.5 6.4 13.7 9.6 14.2 10.5 7.7 13.2 8.9
0.75 12.4 56.7 38.7 58.2 49.7 24.3 56.1 26.6
1.0 42.8 98.9 87.5 98.1 98.6 68.4 98.8 72.0

0.8 0.5 5.5 7.6 6.7 8.0 6.5 6.6 6.7 7.1
0.75 7.7 20.3 18.9 22.9 19.5 16.3 20.1 17.0
1.0 20.9 56.5 48.9 59.6 55.0 44.9 55.8 45.5

Table 15: Empirical powers (in %) of all tests under Model 8 (n = (n1, n2),
n1 = (20, 30), n2 = (40, 60)).

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

n1 10 0.2 0.5 6.3 21.5 11.2 15.9 12.2 7.1 21.4 10.6
0.75 20.1 78.4 43.0 53.8 67.7 28.4 78.9 37.4
1.0 61.8 99.6 85.3 91.2 98.9 78.6 99.6 85.1

0.5 0.5 6.0 13.9 9.4 12.0 10.8 7.9 13.9 9.0
0.75 10.0 53.4 30.1 41.6 43.5 21.0 53.0 25.3
1.0 34.2 93.0 67.5 79.8 89.7 59.5 93.4 64.5

0.8 0.5 5.0 9.2 8.7 10.1 8.2 7.6 9.3 8.2
0.75 8.9 28.8 23.0 27.6 25.3 19.7 28.4 21.0
1.0 18.1 60.6 48.4 54.9 57.3 43.9 60.6 46.3

100 0.2 0.5 7.2 57.3 21.3 35.3 16.0 6.1 53.5 12.1
0.75 55.4 100.0 90.4 98.3 99.7 51.6 100.0 79.6
1.0 99.8 100.0 100.0 100.0 100.0 99.4 100.0 100.0

0.5 0.5 6.1 19.2 12.2 17.5 12.9 8.4 18.3 10.2
0.75 15.0 79.8 42.6 62.3 68.9 28.6 79.3 34.9
1.0 54.1 99.9 86.1 96.2 99.8 75.1 100.0 80.1

0.8 0.5 4.3 8.6 7.9 8.9 7.8 7.2 9.2 8.1
0.75 8.6 31.3 24.6 29.8 28.6 21.0 31.2 22.5
1.0 23.9 72.2 55.2 65.7 68.8 50.7 72.0 53.5

500 0.2 0.5 7.5 63.7 24.1 43.3 16.0 5.3 60.9 12.2
0.75 67.9 100.0 94.5 99.5 100.0 60.2 100.0 86.4
1.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0

0.5 0.5 4.1 17.9 8.8 16.4 11.2 6.0 17.2 7.9
0.75 13.6 84.3 47.0 66.1 73.5 31.7 84.4 37.6
1.0 58.0 100.0 88.8 98.5 100.0 76.8 100.0 83.0

0.8 0.5 5.9 10.9 9.9 11.3 9.6 8.2 10.2 9.1
0.75 10.3 33.6 27 32.2 31.5 22.9 34.1 24.3
1.0 21.7 74.6 55.7 66.5 70.6 50.5 74.3 53.0

n2 10 0.2 0.5 12.6 46.9 26.2 33.2 40.2 17.0 46.0 20.6
0.75 66.0 99.1 84.3 91.3 98.8 80.9 99.1 84.9
1.0 99.7 100.0 99.7 100.0 100.0 99.9 100.0 99.9

0.5 0.5 10.0 27.9 19.2 25.6 24.3 14.9 27.2 16.3
0.75 38.5 91.6 65.1 79.8 89.4 60.8 91.0 63.1
1.0 89.7 100.0 96.3 99.7 100.0 97.2 100.0 97.6

0.8 0.5 6.9 16.5 14.3 18.3 15.2 13.1 15.6 13.5
Continued on next page
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Table 15 – Continued from previous page

n p ρ δ TSR TSG1 TSG2 TSG3 T3c1p T3c1m T3c2p T3c2m

0.75 19.5 55.4 46.2 53 53.3 43.8 55.0 44.6
1.0 55.9 93.0 82.5 90.4 92.0 83.7 92.8 84.2

100 0.2 0.5 22.0 95.8 57.5 77.8 84.7 25.3 95.1 36.7
0.75 99.7 100.0 99.8 100.0 100.0 99.7 100.0 99.9
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 0.5 8.4 38.2 20.9 32.7 32.7 16.5 37.1 18.6
0.75 54.1 100.0 82.8 95.9 99.9 75.4 100.0 78.3
1.0 99.0 100.0 99.5 100.0 100.0 99.5 100.0 99.8

0.8 0.5 7.6 17.7 15.9 18.3 16.8 14.0 17.3 15.5
0.75 25.5 66.0 53.3 63.1 63.7 50.1 64.9 51.1
1.0 69.5 97.6 88.7 94.9 97.1 88.9 97.7 90.0

500 0.2 0.5 28.3 99.1 68.9 89.8 93.2 31.7 98.7 45.7
0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 0.5 8.8 40.6 22.9 36.5 36.3 17.3 40.2 19.4
0.75 58.0 99.8 86.5 96.4 99.7 80.0 99.8 82.6
1.0 99.7 100.0 99.7 100.0 100.0 99.8 100.0 99.8

0.8 0.5 7.9 17.5 15.1 18.7 16.6 14.3 17.7 15.0
0.75 25.7 66.2 54.6 63.8 64.6 52.3 65.9 53.5
1.0 72.3 98.7 90.9 97.1 98.6 91.5 98.7 91.8
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