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Abstract: An important limitation of standard multiple testing proce-
dures is that the null distribution should be known. Here, we consider a
null distribution-free approach for multiple testing in the following semi-
supervised setting: the user does not know the null distribution, but has
at hand a sample drawn from this null distribution. In practical situations,
this null training sample (NTS) can come from previous experiments, from
a part of the data under test, from specific simulations, or from a sampling
process. In this work, we present theoretical results that handle such a
framework, with a focus on the false discovery rate (FDR) control and the
Benjamini-Hochberg (BH) procedure. First, we provide upper and lower
bounds for the FDR of the BH procedure based on empirical p-values,
called here the semi-supervised BH procedure. These bounds match when
α(n+1)/m is an integer, where n is the NTS sample size and m is the num-
ber of tests. Second, we give a power analysis for that procedure suggesting
that it mimics an oracle power when n is sufficiently large in front of m;
namely n � m/(max(1, k)), where k denotes the number of “detectable” al-
ternatives. Third, to complete the picture, we also present a negative result
that evidences an intrinsic transition phase to the general semi-supervised
multiple testing problem and shows that the semi-supervised BH method is
optimal in the sense that its performance boundary follows this transition
phase. Our theoretical properties are supported by numerical experiments,
which also show that the delineated boundary is of correct order with-
out further tuning any constant. Finally, we demonstrate that our work
provides a theoretical ground for standard practice in astronomical data
analysis, and in particular for the procedure proposed in Mary et al. (2020)
for galaxy detection.
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1. Introduction

1.1. Background and motivating examples

Multiple testing, with emphasis on large scale problems, is an important topic in
modern statistics. Classical theory and performance guarantees heavily rely on
the knowledge of the null distribution. However, in many practical situations, the
null distribution is out of reach. A famous situation, described in a series of work
by Efron (2004, 2007, 2008, 2009) and followed by, e.g., Schwartzman (2010),
Azriel and Schwartzman (2015), Stephens (2017), Sun and Stephens (2018),
Roquain and Verzelen (2020b) is the case where the null distribution is mis-
specified and is empirically adjusted from the data by fitting some parametric
null model (typically Gaussian). In particular, it is well known that using an
erroneous null can by disastrous in terms of false discovery rate (FDR), see, e.g.,
Roquain and Verzelen (2020a). Related works, relying on the famous two-group
model (Efron et al., 2001), propose to estimate the null distribution together
with the proportion of nulls and the alternative distribution, and to plug them
into the so-called local FDR values, see Efron et al. (2001) and Padilla and Bickel
(2012), Heller and Yekutieli (2014) among others. The latter can in turn be used
into an FDR controlling procedure, see Sun and Cai (2007), Sun and Cai (2009),
Cai and Sun (2009), Cai et al. (2019), Roquain and Verzelen (2020b), Abraham
et al. (2021). The validity of such approaches, often given asymptotically in the
number of tests, also requires strong model assumptions to ensure that these
parameters can be correctly estimated.

Here, we consider a semi-supervised setting, with essentially no assumption
on the null distribution. Instead, the user has at hand a sample, called the
null training sample (NTS), of length n ≥ 1, and generated according to this
unknown null. This is motivated by the following generic situations:

• Blackbox null sampling: the exact expression of the null distribution is
intractable, but a sampling machine is able to simulate according to the
null distribution. In that case, the NTS is exogenous and its length n
corresponds to the number of sampling, so can be chosen by the user. It
is nevertheless typically limited in size by computation time constraints.

• Null sample given: the null distribution is unknown, but previous exper-
iments or experts provide a fixed number n of examples under the null.
The NTS is exogenous as in the above case, but n cannot be modified by
the user.

• Null sample learned from data: the null distribution is unknown, but an
independent part of the same data set provides an NTS for the user. In
that case, the NTS is endogenous, of a given length n that cannot be
modified by the user.

The case of “blackbox null sampling” is motivated by numerous situations.
Two motivations come from Astrophysics; first when a code can be used to sim-
ulate images of astrophysical sources, see e.g. Bacon et al. (2021) (their Figure
15). Second, when the NTS comes from instrumental captures that are made
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without the objects of interest, see e.g. Choquet et al. (2018) for the detection of
exoplanetary debris disks (their Figure 5). In each of these situations, the null
distribution is not accessible for the user, and only the NTS can be generated.
More broadly, this case is motivated by recent advances in machine learning,
especially implicit generative models, as generative adversarial networks (Good-
fellow et al., 2014), or variational auto-encoders (Kingma and Welling, 2014), for
which sampling is possible without knowing the underlying distribution. An il-
lustration of the blackbox null sampling case is provided in Appendix A, on a toy
example for which multiple likelihood ratio tests are simultaneously performed.

The case of “null sample given” is common in the machine learning con-
text, where the learner is given a sample of “nominal patterns” but without
labeled novelties. This is classically referred to as “one class classification” or
“learning from positive and unlabeled examples” and we refer the reader to the
work Blanchard et al. (2010) that pointed out many references in this abundant
literature.

The case of “null sample learned from data” refers to the framework where it
is possible to isolate part of the data to produce a sample that contains copies
of the test statistics under the null, or approximately so. While it can be met in
various datasets, it is motivated by a specific application in Astrophysics that
is extensively developed in Section 7. It regards the detection of galaxies in the
early Universe from image measurements in multiple wavelength channels. In
this application, the distribution of the tests statistics under the null is unknown
and it was proposed in Mary et al. (2020), Bacon et al. (2021) to estimate this
distribution from a null training sample obtained from the data itself. The NTS
is obtained as the population of the opposite of local minima and the whole
NTS is used for testing each of the m local maxima.

In the three cases above, a crucial issue is to build a procedure for making
discoveries while being fully interpretable, especially when the number of tests m
is large. We thus focus on building a procedure that controls the false discovery
rate (FDR), that is, the expected ratio of errors among the discoveries made
by the procedure (Benjamini and Hochberg, 1995). Interestingly, controlling
the FDR by using a simulated NTS has similarities with the recent “knockoff”
method introduced in Barber and Candès (2015) which has been at the origin of
an impressive scientific production over the last years, see, e.g., Weinstein et al.
(2017), Katsevich and Sabatti (2019), Barber and Candès (2019), Bates et al.
(2020). Further comparisons are given in Section 1.4.

When proper p-values can be built, the classical way to control the FDR
at level α is to use the Benjamini Hochberg (BH) procedure (Benjamini and
Hochberg, 1995). However, in the setting described above, the exact p-values
are out of reach, so that the usual BH procedure cannot be used. In our context,
we call it the oracle BH procedure, and denote it by BH∗

α, or BH∗ for short.
Instead, the NTS can be used to build empirical p-values, called p̂-values for
short. It is then natural to use the p̂-values into the BH procedure, which is the
procedure studied in this paper. We call it the semi-supervised BH procedure
and denote it by B̂Hα, or B̂H for short.
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Let us already note that plugging empirically-based p-values into the BH
procedure is not new and has been widely explored in the literature, especially
in a Monte Carlo framework, see, e.g., Guo and Peddada (2008), Sandve et al.
(2011), Gandy and Hahn (2014), Zhang et al. (2019). However, while the same
null sample is used to compute all p-values in our setting, most of the existing
works focus on the case where m null samples are available, that is, each test
uses a different sample, often generated via randomization process (e.g., permu-
tations). In that case, the computational price is much higher and these works
mostly aim at reducing this price. The case of only one null sample has been
considered only recently to our knowledge, see Weinstein et al. (2017), Bates
et al. (2021). The computational issue can be easily solved (see Algorithm 1),
and our emphasis is rather on the theoretical guarantees of the resulting BH
procedure (B̂H). Further details and comparisons with existing literature are
given in Section 1.3 and in Appendix F.1.

Finally, an important point of our work will be to determine how large n
should be relatively to the number m of tests. Obviously, when n tends to
infinity while the number m of tests is kept fixed, the situation becomes similar
to the one where the null distribution is known (that is, when n = ∞). But the
situation is more complex when both n and m gets large simultaneously, which
is typical (e.g., in our galaxy detection example, we have n ≈ m = 3.3 × 106).
As can be guessed, the full picture also depends on the sparsity of the signal.
This will be adressed in our theory through a parameter called k, which is a
proxy to the number of detectable alternatives.

1.2. Contributions

Main contributions First, we study the FDR of the procedure B̂H, by pro-
viding upper and lower bounds (Theorem 3.1). These bounds hold in a strong
sense, that is, for any couple (n,m) with n,m ≥ 1, any number of true nulls
m0, any null distribution, and any marginal distribution of the alternatives.
Moreover, these bounds match and equal αm0/m when α(n + 1)/m is an inte-
ger. In practice, this provides a first guideline for choosing n in order to avoid
over-conservativeness of the procedure.

Second, we provide a power boundary for B̂H, which puts forward the crucial
role of n with respect to m: the power of B̂H is close to the one of the oracle
BH∗ if n � m/α (Proposition 4.2), but is not when n � m/α (Proposition 4.3).
This leads to the boundary n � m/α. In addition, we underline the role of the
sparsity in the boundary with the following additional result. For distributions
that are more favorable in the sense that the oracle BH∗ is expected to make at
least k true discoveries with high probability (a situation where we say that k

alternatives are “detectable”), we show that the power boundary for B̂H occurs
at n � m/(kα). As an illustration, for k = 1, the boundary is n � m/α and thus
is the same as for general distributions. However, for the dense case k = m/2, the
boundary reads n � 1/α. This indicates that an NTS of size � 1/α is enough to
recover the power of the oracle in this case. This is markedly different from the
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case of general distributions. In particular, oracle performances can be achieved
in the dense case for a constant value of n, regardless of m. Overall, this leads
to a new “rule of thumb” with a transition at n = m/(αmax(1, k)), which is
implemented in the numerical experiments (Section 6) and in the astrophysical
example (Section 7).

Third, we show that an intrinsic phase transition occurs in the general case
at n � m (Corollary 5.3). The boundary n � m (α being fixed) can not be
improved by another procedure: when n � m, no procedure (only based on the
test sample and the NTS) can both control the FDR while having a power close
to the one of BH∗ (Theorem 5.1). Since B̂H does mimic the oracle when n � m
(Proposition 4.2), this establishes a general minimax-type optimality property
for B̂H. (Note that the test statistic is fixed in our setting so that BH∗ is an
appropriate reference for power, see Remark 4.1 for a further discussion.)

Secondary contributions First, we show how B̂H can be used in the “Black-
box null sampling” setting in Appendix A. We introduce the Blackbox BH pro-
cedure, which is defined as the semi-supervised BH procedure with a preliminary
step where the NTS is properly generated, see Algorithm 2. While it can be used
in a very broad context, we illustrate its use for likelihood ratio tests for which
the oracle is accessible in Appendix A.2. A comparison with local FDR type
approaches is also provided in that case.

Second, we put forward the following, perhaps seemingly paradoxal, fact for
FDR control under negative dependence. Even in the classical setting where the
true null is known, it is better not to use BH procedure, but to build instead
artificially an NTS, and to use it along with the semi-supervised procedure
B̂H. This approach is referred to as the randomized BH procedure, which is
studied separately in Appendix B. While the superiority of the randomized BH
procedure over the usual BH procedure in terms of FDR control is shown for
an admittedly restrictive dependence structure, correcting the BH procedure to
accommodate negative dependencies is known to be a challenging task (see, e.g.,
Fithian and Lei (2020) and references therein). We think that this intriguing
side result is an important proof of concept for the randomized BH procedure.

Third, extensive numerical experiments are given in Section 6 that validate
and illustrate our theoretical results. In particular, they corroborate the fact
that the boundary where the power of B̂Hα gets of the order of the one of BH∗

α

occurs around n = m/(kα) (without further tuning of the constant), where k is
the number of “detectable” alternatives in the data. For instance, and perhaps
counter-intuitively, it is shown that oracle performances can be achieved in a
dense case for values of n as small as 5 or 10, regardless of m.

Fourth, a detailed application to galaxy detection is given in Section 7. Re-
markably, the recent results of Bacon et al. (2021) suggest the likely discovery of
an unexpected population of ultra-faint dwarf galaxies1. This discovery results
from a two-stage detection process, whose first stage relies on a former version

1 Also disseminated by the CNRS press release, see, https://www.cnrs.fr/en/first-images-
cosmic-web-reveal-myriad-unsuspected-dwarf-galaxies

https://www.cnrs.fr/en/first-images-cosmic-web-reveal-myriad-unsuspected-dwarf-galaxies
https://www.cnrs.fr/en/first-images-cosmic-web-reveal-myriad-unsuspected-dwarf-galaxies
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Fig 1. Visualization of the general, distribution-free phase transition n = m/α for the semi-
supervised multiple testing problem, as established in Section 5.2 (with α = 0.2) and of the
B̂H boundary n = m/(αk), only valid for distributions with at least k detectable alternatives
in the sense defined in Section 4.3. Left: k = 3. Right: k = 100; plot in log-log scale; the
boundary n = 1/α (k = m) is added with a dotted line; the case of the MUSE data set
(Section 7) is also added with a star symbol.

of the semi-supervised Benjamini-Hochberg procedure developed in Mary et al.
(2020), which also provides the same output as B̂Hα. Hence, the present paper
provides a theoretical support to these findings, with guarantees both on the
FDR and on the power.

Figure 1 summarizes the different power regimes put forward in our analysis.
The transition phase n = m/α separates two regimes: the regime where oracle
performances can be reached for any distribution (“mimicking the oracle possible
in general”, lime green) versus the regime where no procedure can reach the
oracle performances (“mimicking the oracle impossible in general”, tomato + red
brick). The line n = m/(αk) is the performance boundary of B̂H for favorable
distributions for which at least k alternatives are detectable (in which case
oracle performances can be reached in the lime green + tomato area). Note that
our theory proves that these boundaries hold only up to numerical constants,
whereas the numerical experiments suggest that they hold with constant 1.

1.3. Related works

Permutation-based multiple testing A common way to generate a “null
sample” from the data under test is to apply some randomization that preserves
the null distribution, typically by performing permutations of individuals. While
single testing using randomization is classical and can be traced back to Fisher
(1935), several extensions have been proposed in the literature to accommodate
multiple testing criteria, see Westfall and Young (1993), Lin (2005), Romano and
Wolf (2005, 2007), Hemerik et al. (2019). In particular, an active line of research
is dedicated to reduce the computation time of BH procedure with p-values
obtained from permutation-based null samples: indeed, the usual permutation-
based paradigm requires to generate a different “null sample” for each test, which
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makes the use of such a BH procedure prohibitive in that framework. In Guo
and Peddada (2008), they adapt the number of bootstrap samples sequentially
to speed-up BH procedure by using bootstrap confidence intervals for p-values.
This method is further refined in Gandy and Hahn (2014), where the procedure
recovers with high probability the rejection set of the BH procedure using “ideal”
p-values (exhausting all permutations). Another approach is used in Sandve
et al. (2011) by allocating the Monte Carlo budget (total number of Monte
Carlo samples) according to the significance of the test statistics, itself extending
an idea of Besag and Clifford (1991) for single testing. More recently, Zhang
et al. (2019) proposed to reduce the computation burden by following a bandit
approach. While all these works are based on null training samples, the crucial
difference is that our setting only relies on one null sample for all tests. The
consequences are the following: first, the complexity of the procedure proposed
here (B̂H) is much smaller than that of the BH procedure with permutation-
based p-values, the need for designing an efficient algorithmic strategy is far less
critical than in the works mentioned above (note that our Algorithm 1 for B̂H
is nevertheless efficient). Second, this advantage comes with a counterpart: in
the case where the initial test statistics are independent, the permutation-based
p-values are also independent, while our setting induces dependencies between
the p̂-values (the same NTS is used to build all p̂-values). This makes the FDR
control more difficult to obtain.

Finally, the above comparison has to be moderated by the fact that random-
ization testing and our semi-supervised setting each come with specific math-
ematical assumptions: randomization testing relies on a null distributional in-
variance which is very different from the assumption (Exch) below. Namely,
the exchangeability property concerns the set of “variables” (nulls of the test
sample plus the null training sample), whereas in permutation testing, the ex-
changeability concerns the set of individuals. As a consequence, mathematical
results derived in each framework cannot be directly compared. In particular,
it is important to note that we do not pretend to address the FDR control-
ling problem in the permutation-based framework. Our contribution lies in an-
other framework, which thus departs from the Monte-Carlo literature mentioned
above.

Multiple comparisons to control Multiple comparisons to control (MCC)
is a long-established problem in multiple testing (Dunnett, 1955, Hsu, 1996,
Finner and Strassburger, 2007, Fithian and Lei, 2020) where one typically aims
at comparing several treatments to some common benchmark (control). In the
MCC setting, one typical observes only one test statistic per treatments and
one test statistics for the control. This would correspond to the case where the
null training sample is of length n = 1, which is not the typical case considered
here. Hence, to our knowledge, the connection to that part of the literature is
only weak.

Other FDR controls Our work is closely related to the problem of semi-
supervised novelty detections (Blanchard et al., 2010), developed in a machine
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learning context, where the user has at hand both a null sample and an unlabeled
sample and they aim at labeling the unlabeled sample. However, the procedures
developed therein are significantly different from here: first, they adjust the test
statistics by considering families of classifiers. Second, their FDR control is based
on a concentration argument that adds an error term larger than n−1/2 +m−1/2

(see Proposition 12 therein) and depending on the VC-dimension of the classifier
class, while the FDR control in Theorem 3.1 is exact (no error term).

Finally, another closely related literature tackles the issue of learning the null
distribution without null training sample (only using the original test statistics)
but assuming that the null distribution belongs to a parametric model, typi-
cally Gaussian with unknown mean and variance. While the most classical line
of research is the one following the “local FDR” methodology introduced by
Efron, see, e.g., Efron (2008), theoretical results have been obtained by Carpen-
tier et al. (2021), Roquain and Verzelen (2020b). The methodology developed
here, and particularly the impossibility result (Section 4.2) and the boundary
phenomenon (Section 5.2), are inspired from Roquain and Verzelen (2020b).
However, the setting being markedly different, several substantial developments
are required. Also, we underline that we derive here an FDR control without
remainder terms, which was not the case in Carpentier et al. (2021), Roquain
and Verzelen (2020b).

Naive solutions to our problem For completeness, let us discuss two naive
solutions that can be straightforwardly used to derive a procedure with a proven
FDR control in the present semi-supervised setting, and explain why they are
not satisfactory. Recall that, even under independence of the test statistics, the
p̂-values are not independent, which is a problem to design an FDR controlling
procedure that takes as input these p̂-values.

First, one solution is to use the Benjamini-Yekutieli procedure or one of its
extension Benjamini and Yekutieli (2001), Blanchard and Roquain (2008) that
control the FDR under arbitrary dependence between the p-values, so also when
used with p̂-values. Namely, the semi-supervised Benjamini-Yekutieli procedure,
denoted by B̂Yα (or B̂Y for short), considers B̂Hα/cm at level α/cm where
cm = 1 + 1/2 + · · · + 1/m. However, it is well known that the power loss is
substantial with respect to BH procedure and this general fact also holds in our
setting, as it will be shown in the numerical experiments, see Appendix F.1. In
addition, Theorem 3.1 shows that under Assumption (Exch), the procedure B̂H
already achieves the desired FDR control so there is no need to use the corrected
procedure B̂Y.

A second naive solution, referred to as B̂HSplit, is to split the NTS of size
n into m null samples T 1, . . . , Tm, each of size n/m (say that the latter ratio
is an integer for simplicity) so that each p̂-value uses a different part of the
null sample, that is, each p̂i is computed from the null training sample T i. In
that case, if the test statistics are independent, these modified p̂-values are also
independent, and the BH procedure using these modified p̂-values does control
the FDR by the original result of Benjamini and Hochberg (1995). However,
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this reduces drastically the size of the (different) NTS used to calibrate each
test (n/m instead of n), which leads again to a poor power, see Appendix F.1.

1.4. Link with previous literature on knockoff: Application to
LASSO-based test statistics

The method investigated here has an important connection to the knockoff
methodology (Candès et al., 2018, Weinstein et al., 2017, 2020). We make below
a detailed description of these works to help distinguish the contribution of our
work. Interestingly, this shows that the empirical BH procedure can be used
with LASSO-based test statistics in a context of a Gaussian linear model with
i.i.d. design matrix, see also Example 3.3 and Figure 3 below.

Setting Let us consider the (potentially high-dimensional) Gaussian linear
model with m variables and N individuals where we observe

W = Mβ + ε, β ∈ Rm, ε ∼ N (0, σ2IN ), σ > 0,

in which the N ×m real design matrix M is random with a given known dis-
tribution. The aim is to test the null “βj = 0” against the alternative “βj 	= 0”,
simultaneously for all 1 ≤ j ≤ m. Two kinds of N × n real “knockoff” matrix
M̃ for M have been considered, with a corresponding specific choice of the test
statistic:

(A) the model-X knockoff (Candès et al., 2018): M̃ is obtained from M fol-
lowing a specific process, so that swapping the columns of the augmented
design M = [M̃ M ] does not change its distribution (here n = m). In
that case, the classical test statistic used is the LASSO coefficient differ-
ence (LCD), namely XLCD

j = |β̂j+m(λ)| − |β̂j(λ)|, 1 ≤ j ≤ m. In the
latter, the LASSO solution β̂j(λ) is computed in the linear model with
the augmented N × (n + m) design matrix M = [M̃ M ], that is,

β̂(λ) ∈ arg min
b∈Rn+m

{
0.5‖W −Mb‖2 + λ‖b‖1

}
, λ ≥ 0 ; (1)

(B) the counting knockoff (Weinstein et al., 2017, 2020): it is valid only when
the entries of M are i.i.d. ∼ G (say). Then, the entries of M̃ are also i.i.d.
∼ G (hence G is known and n can be arbitrary). In that case, the test
statistics Zj , 1 ≤ j ≤ n+m, are computed for each variable, typically as a
function of the LASSO path {β̂j(λ), λ ≥ 0}. Examples include the LASSO
maximum (LM) statistic ZLM

j = max{λ ≥ 0 : β̂j(λ) 	= 0} (Weinstein
et al., 2017) and the LASSO coefficient (LC) statistic ZLC

j = |β̂j(λ)|, for
a fixed λ ≥ 0 (as in Weinstein et al., 2020). The LASSO solution β̂(λ) is
still computed according to (1).

It turns out that in case (B), for a statistic either computed with LM or
LC, the observation vector (Z1, . . . , Zn+m) = (Y1, . . . , Yn, X1, . . . , Xm) satisfies
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that (Y1, . . . , Yn, Xj , j ∈ H0) is exchangeable conditionally on (Xj , j /∈ H0),
where H0 = {j ∈ {1, . . . ,m} : βj = 0}. While this exchangeability property
is considered as obvious in Weinstein et al. (2017), we provide a formal result
in Appendix E for completeness, see Lemma E.6. This assumption is the one
considered in Theorem 3.1 of Weinstein et al. (2017), which is the same as our
Assumption (Exch) below.

Procedures In Weinstein et al. (2017, 2020), the FDR controlling procedures
are each time based on an estimation of the FDP:

• In case (A): the FDP estimator is based on a symmetrisation estimator of
the FDP, that allows implicitly to compare the knockoffs test statistics to
the original test statistics. The resulting procedure is called LCD-knockoff.

• In case (B): the FDP estimator is based on a direct comparison of knockoffs
test statistics to the original test statistics. The resulting procedure is
called LC-counting-knockoff and LM-counting-knockoff, if used with the
LC test statistic and LM test statistic, respectively.

While the procedure LCD-knockoff is not the one of the present work, LM-
counting-knockoff and LC-counting-knockoff are particular cases of the empirical
BH procedure, applied with the LM test statistic (as in Weinstein et al., 2017) or
the LC test statistic (as in Weinstein et al., 2020). This link between counting-
knockoff and empirical BH has not been noticed before to our knowledge, and
is stated in Lemma 2.2.

FDR control In Weinstein et al. (2017, 2020), it is proved that LCD-knockoff
controls the FDR in case (A), while LM-counting-knockoff and LC-counting-
knockoff controls the FDR in case (B). Theorem 3.1 in Weinstein et al. (2017)
shows more generally the FDR control under Assumption (Exch). This is the
same result has our upper bound in our Theorem 3.1. Our contribution w.r.t.
that work is thus the lower bound in Theorem 3.1. It shows in particular that
the upper bound is reached when α(n + 1)/m is an integer.

Power results In Weinstein et al. (2017), they rely on the work by Bayati
and Montanari (2011) to study the power of the LM-counting-knockoff in case
(B) above. For this, they consider random effects on the true coefficient β ∈ Rm

and use as an oracle the LASSO support (computed with the non-extended
design matrix M). The comparison is done in terms of the asymptotical ROC
curve. There is a tradeoff w.r.t. the parameter n: a large n provides a good
approximation of the null distribution but deteriorates the quality of the LM
test statistics. Next, the work Weinstein et al. (2020) further investigates the
LC-counting-knockoff in case (B) and the LCD-knockoff in case (A) (thus cover-
ing the model-X knockoff framework), with an oracle given by the thresholded
LASSO (computed with the non-extended design matrix M).

By contrast, the power results obtained in the present paper are much differ-
ent: they are not developed in the particular LASSO-like cases (A)-(B) above,
but in a setting where the test statistics are not varying with n and are mutually
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independent, see (Indep) below. Hence, in our setting, there is no tradeoff in n:
a larger n always leads to more power (see the phase transition in Figure 1).
Another major difference is that our power study holds non asymptotically and
in a minimax sense over different classes of alternatives, and in particular does
not use random effects on the alternatives. In particular, our setting encom-
passes the sparse situation (proportion of alternatives tending to zero), which
is excluded in the studies Weinstein et al. (2017, 2020). On the other hand, our
power study is not able to deal with LASSO-type test statistics. In conclusion,
the power study in Weinstein et al. (2017, 2020) and the one derived in the
present work are of different nature (setting, statement) and they each have
their own merit.

1.5. Organization of the paper

The paper is organized as follows: while the model, procedures and criteria are
detailed in Section 2, FDR results are given in Section 3. Power properties of
B̂H are then derived in Section 4 with upper and lower bounds, which delineate
boundaries for B̂H. Extending to any procedure the impossibility result below
the boundary, the result of Section 5 delivers an optimality property of B̂H
and a general phase transition for the semi-supervised multiple testing problem.
We then illustrate our findings with numerical experiments in Section 6 and
the motivating application to astrophysical data is investigated in Section 7.
We conclude and discuss several open issues related to our work in Section 8.
Two by-products of our theory are presented in Appendices A and B, with the
blackbox BH procedure and the randomized BH procedure, respectively. The
main proofs are given in Appendix C and Appendix D for FDR results and power
results, respectively. Auxiliary results and proofs are postponed to Appendix E,
while additional numerical experiments are given in Appendix F.

2. Preliminaries

2.1. Setting

For n,m ≥ 1, let us observe a sample Z = (Z1, . . . , Zn+m) = (Y1, . . . , Yn,
X1, . . . , Xm) ∈ Rn+m, whose distribution is denoted by P , the model parameter,
that belongs to some model P. The sample Y = (Y1, . . . , Yn) is referred to as
the null training sample (NTS), which is assumed to be identically distributed
of marginal distribution P0 = P0(P ). We denote the upper-tail function of P0
by F0(t) = P(Yi ≥ t), t ∈ R. P0 is assumed to be unknown throughout the
manuscript (except in Appendices A.2 and B). The only assumption made on
P0 (or equivalently F0) throughout the manuscript is the following:

F0 is assumed to be continuous and decreasing on the support of P0. (Cont)

The sample X = (X1, . . . , Xm) corresponds to the sample under test, referred
to as the test sample. We consider the multiple testing problem where we would
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like to test the i-th null hypothesis Hi: “Xi ∼ P0” (against the complementary
alternative), simultaneously for 1 ≤ i ≤ m. Note that while we allow for ar-
bitrary alternatives here, this setting is typically suitable for alternatives that
make Xi stochastically larger than under the null (decisions will be based upon
large values of the Xi’s). Classically, let us denote H0(P ) = {i ∈ {1, . . . ,m} :
Xi ∼ P0} ⊆ {1, . . . ,m} the subset corresponding to true null hypotheses and
m0(P ) = |H0(P )|. Let us denote H1(P ) the complement of H0(P ) in {1, . . . ,m}
and m1(P ) = m − m0(P ). Often, we omit the parameter P in the notation
P0,H0,H1,m0,m1 for simplicity.

Throughout the paper, we are going to consider various dependence assump-
tions between the Zi’s. The most simple assumption is

(Y1, . . . , Yn, Xi, i ∈ H0) are i.i.d. ∼ P0 and independent of (Xi, i /∈ H0).
(Indep)

Note that (Indep) does not exclude dependencies between the elements of (Xi, i /∈
H0). We also use the following less restrictive condition:

(Y1, . . . , Yn, Xi, i ∈ H0) are exchangeable conditionally on (Xi, i /∈ H0).
(Exch)

Hence, under (Exch), there could be also some dependencies between the ele-
ments of (Y1, . . . , Yn, Xi, i ∈ H0).

2.2. Procedures, criteria and p-values

A multiple testing procedure is a (measurable) function R = R(Z) that returns a
subset of {1, . . . ,m} corresponding to the indices i where Hi is rejected. For any
such procedure R, the false discovery rate (FDR) of R is defined as the average
of the false discovery proportion (FDP) of R under the model parameter P ∈ P,
that is,

FDR(P,R) = EP [FDP(P,R)], FDP(P,R) =
∑

i∈H0
1{i∈R}

1 ∨ |R| . (2)

Similarly, the true discovery rate (TDR) is defined as the average of the true
discovery proportion (TDP), that is,

TDR(P,R) = EP [TDP(P,R)], TDP(P,R) =
∑

i∈H1
1{i∈R}

1 ∨m1(P ) . (3)

Note that if m1(P ) = 0, TDP(P,R) = 0 for all procedures R.
In the sequel, we will focus on p-value based procedures and we implicitly

consider the situation where it is desirable to reject Hi for large values of Xi.
If the null distribution P0 is known, F0 is known and we can consider pi(X) =
F0(Xi), 1 ≤ i ≤ m. By definition, the p-value family pi = pi(X), 1 ≤ i ≤ m,
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satisfies that for all i ∈ H0(P ), pi ∼ U(0, 1), and thus also the super-uniformity
property

∀i ∈ H0(P ), ∀u ∈ [0, 1],PZ∼P (pi ≤ u) ≤ u. (4)
As it is required to obtain valid individual tests, condition (4) is generally con-
sidered as the definition of “valid” p-values.

Since in our framework P0 is unknown, the above p-values are unknown or-
acle p-values and thus cannot be used in practice. Instead, the null sample
(Y1, . . . , Yn) can be used to build the empirical p-values

p̃i(Z) = n−1
n∑

j=1
1{Yj≥Xi}, 1 ≤ i ≤ m. (5)

However, the p̃i’s do not satisfies the necessary super-uniformity (4). For in-
stance, for u = 0, the condition (4) is violated because the event p̃i(Z) = 0 can
occur with a positive probability. Hence, using the p̃i’s as p-values is not appro-
priate, especially in a multiple testing context where under-estimating p-values
can lead to an increased number of false discoveries. This phenomenon is well
known and we refer the reader to the review of Phipson and Smyth (2010) for
more details on this issue (see also the references therein). A common way to
correct the p̃i’s is to make them slightly biased upward by considering instead
the conservative version (see, e.g., Davison and Hinkley, 1997), given by

p̂i(Z) = F̂0(Xi) = (n + 1)−1
∑

x∈{Xi,Y1,...,Yn}
1{x≥Xi}, 1 ≤ i ≤ m, (6)

where we let

F̂0(x) = (n + 1)−1

⎛⎝1 +
n∑

j=1
1{Yj≥x}

⎞⎠ , x ∈ R. (7)

Under (Exch), since for any i ∈ H0, the variables Xi, Y1, . . . , Yn are exchange-
able, the p̂i(Z)’s do satisfy the super-uniformity (4), see, e.g., Lemma 5.2 in
Arlot et al. (2010). Hence, the p̂i(Z) are “valid” p-values, that can in turn be
plugged into multiple testing procedures.

2.3. BH procedures

In this work, an important class of multiple testing procedures is the BH-type
procedures, which use as input different p-value families. The BH procedure is
defined as follows: for some level α ∈ (0, 1), order the p-values in increasing
order p(1) ≤ · · · ≤ p(m) and then let

BHα={i ∈ {1, . . . ,m} : pi ≤ αk̂/m}, k̂=max{k ∈ {0, 1, . . . ,m} : p(k) ≤ αk/m},
(8)

where α is the nominal level of BH procedure and where we let p(0) = 0 by
convention.
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Algorithm 1: B̂Hα, the semi-supervised BH procedure (case where
(Cont) holds)
Data: Z = (Z1, . . . , Zn+m) = (Y1, . . . , Yn, X1, . . . , Xm) ∈ Rn+m semi-supervised

sample, α level
1. Order the Zi’s, that is, Zτ(1) ≥ · · · ≥ Zτ(n+m), for some permutation τ of

{1, . . . , n + m}
2. Let s� = 1{τ(�)≤n} ∈ {0, 1} which is 1 if and only if Zτ(�) comes from sample

Y = (Y1, . . . , Yn)
3. Let FDP = 1, V = n, � = m + n, K = m

4. While (FDP > α and K ≥ 1) do � = �− 1

• if s�+1 = 1, V = V − 1
• else, K = K − 1

FDP = V +1
n+1

m
K

(or FDP = 1 if K = 0)

Result: B̂Hα = {i ∈ {1, . . . ,m} : Xi ≥ X(K)} (reject nothing if K = 0).

Definition 2.1. We consider the two following versions of BH procedure, de-
pending on which p-value family is given as input:

• the oracle BH procedure, denoted by BH∗
α, is the BH procedure using the

unknown p-values pi(X) = F0(Xi), 1 ≤ i ≤ m;
• the semi-supervised BH procedure, denoted by B̂Hα, is the BH procedure

using the p̂-values p̂i(Z), 1 ≤ i ≤ m, given by (6).

Importantly, the output of B̂Hα can be equivalently derived by using the
following lemma (to be proved in Appendix C.1).

Lemma 2.2. Letting T = {Xi, 1 ≤ i ≤ m}, we have

B̂Hα = {i ∈ {1, . . . ,m} : Xi ≥ t̂}

t̂ = min
{
t ∈ T : m

n + 1
1 +

∑n
i=1 1{Yi≥t}∑m

i=1 1{Xi≥t}
≤ α

}
.

Lemma 2.2 establishes that the semi-supervised BH procedure coincides with
the “counting knockoff” procedure introduced in Weinstein et al. (2017).

Assuming moreover (Cont), the output of B̂Hα can almost surely be derived
by Algorithm 1. Figure 2 provides an illustration of Algorithm 1: it is a stepwise
procedure that goes from the smallest values of the test statistics (right) to the
largest values (left), and that stops the first time where the FDP falls below α.
At each step, the FDP is estimated by the ratio of the number of null samples
in the left part plus one (V + 1), to the number of test statistics in the left part
(K), this ratio being sample-sized corrected by the factor m/(n+ 1). Hence, at
each step, the Yi’s are used as benchmarks to evaluate how many false discover-
ies are expected among the considered Xi’s. Finally, while the above version of
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Fig 2. Illustration of Algorithm 1 for m = 14, n = 17, α = 0.2, and some realization of
the ordered test statistics. At the point of rejections (vertical line) � = 14, we have V = 2,
K = 12, FDP = 2+1

n+1
m
12 ≤ 0.2, while FDP > 0.2 in any further point � > 14. The algorithm

makes K = 12 rejections in the test sample (depicted in blue). See text for further comments.

Algorithm 1 was presented for simplicity, a shortcut (faster) version can obvi-
ously be obtained by iterating in the loop only over the indices � corresponding
to the Xi’s (the FDP estimator is computed only at black points in Figure 2).
Remark 2.3. The equivalence between B̂Hα and Algorithm 1 is not true if there
are ties (this situation does not occur almost surely if (Cont) is satisfied): for
instance, if Zi = 0 for 1 ≤ i ≤ n + m. Then all the p̂-values are equal to 1
and B̂Hα rejects no null (at any level α ∈ (0, 1)). By contrast, it τ is such that
Zτ(1), . . . , Zτ(m) all come from the sample X (that is, s1 = · · · = sm = 0),
Algorithm 1 at a level α ≥ 1/(n + 1) rejects all nulls.

3. FDR control

The FDR control result is as follows.

Theorem 3.1. For all n,m ≥ 1 and α ∈ (0, 1), consider the semi-supervised BH
procedure B̂Hα at level α as defined in Definition 2.1. Then, for any parameter
P satisfying (Cont) and (Exch), the following holds:

m0

m

m

n + 1

⌊
α
n + 1
m

⌋
≤ FDR(P, B̂Hα) ≤ αm0/m,

where �x� denotes the largest integer smaller than or equal to x. In partic-
ular, when α(n + 1)/m is an integer, the FDR bound is achieved, that is,
FDR(P, B̂Hα) = αm0/m.

The proof is given in Appendix C and is based on a super-martingale argu-
ment which is similar to that of Barber and Candès (2015). However, a major
difference is that the underlying process is not an i.i.d. Bernoulli process, but
is only exchangeable, see Lemma E.2 for more details. The lower bound part
is obtained by looking carefully at the remainder term in the super-martingale
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Fig 3. FDR of B̂H and BH∗ as a function of n, the size of the null training sample Y .
Left: maximal negative equicorrelated case as described in Example 3.2. n ranges from 0 to
20, m0 = m = 2, and the FDR are evaluated with 106 simulations. Right: using LASSO
coefficient statistics as described in Example 3.3. n ranges from 0 to 40, m0 = m = 4, N = 4,
G = N (0, 1), and the FDR are evaluated with 106 simulations. To ensure (Cont), the test
statistics are disturbed in an i.i.d. manner by a N (0, (0.001)2). LASSO implemented with
module scikit-learn of python, λ = 0.1 and maxiter = 104. In both cases, the nominal level
is α = 0.5 (horizontal dashed line). The FDR lower bound delineated in Theorem 3.1 is also
displayed.

property. To our knowledge, this kind of refinement is new in the literature.
This allows to evaluate the sharpness of the FDR bound.

In particular, Theorem 3.1 shows that under (Indep) (implying (Exch)) the
semi-supervised BH procedure B̂Hα has an FDR smaller than or equal to the
one of BH∗

α. More precisely, since FDR(P,BH∗
α) = αm0/m under (Indep) (see

Benjamini and Yekutieli (2001)), we have under (Indep),

FDR(P, B̂Hα) ≤ αm0/m = FDR(P,BH∗
α). (9)

In addition, the FDR control of B̂Hα holds under the more general condi-
tion (Exch). This is not the case for BH∗

α that can violate the FDR control
under that condition. Hence, Theorem 3.1 puts forward an additional robust-
ness of B̂Hα w.r.t. the negative dependence, which is not satisfied by BH∗

α. We
provide two examples below, see Figure 3 for an illustration.
Example 3.2 (Gaussian with maximal negative equicorrelation). Assume that
Z = (Y,X) is a centered Gaussian vector with equicorrelation ρ < 0 and vari-
ances equal to 1. Classically, since the length of Z is n + m, the condition ρ ≥
−1/(n+m−1) is necessary to provide that the (n+m)×(n+m) ρ-equicorrelated
matrix (that is, with diagonal 1 and off-diagonal element ρ) is non-negative. For
instance, the maximal negatively correlated case ρ = −1/(n+m−1) can be easily
realized as Z = (1+1/(n+m−1))1/2(Wi−W )1≤i≤n+m, with Wi, 1 ≤ i ≤ n+m,
i.i.d. N (0, 1) and W denoting the sample mean of the Wi’s, 1 ≤ i ≤ n + m.
For this specific distribution P of Z, we have P0 = P0(P ) = N (0, 1) and
H0 = {1, . . . ,m}. Also, Assumption (Exch) is satisfied so that B̂Hα controls
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the FDR at level α (with equality when α(n + 1)/m is an integer). On the
other hand, it is well known that BH∗

α has an FDR above α in that case (see
also Figure 3). Additional illustrations are given in Section 6.2 in the numeri-
cal experiments. This example is also the starting point of the randomized BH
procedure developed in Appendix B.
Example 3.3 (LASSO coefficient correlations). In the Gaussian linear model de-
scribed in Section 1.4 (case B), we can consider Zj = |β̂j(λ)| + ηj , the LASSO
coefficient test statistic disturbed by some i.i.d. random variables ηj that are
N (0, ε2), with ε small enough. A well known fact is that some of the |β̂j(λ)| will
be equal to zero. Hence, the perturbation by ηj is necessary to make Assump-
tion (Cont) hold true. While the Zj ’s are not independent, Assumption (Exch)
is also satisfied, as mentioned in Section 1.4. Hence, the upper and lower bounds
of Theorem 3.1 both apply in that case. They are illustrated in Figure 3.
Remark 3.4. Since the first version of this work, earlier occurrences of the upper-
bound proved in Theorem 3.1 have been reported to us (our work has been
developed independently): first, it has been proved under assumption (Exch) in
the work of Weinstein et al. (2017) by using the same martingale as ours (in
a different context). Second, the upper-bound is a consequence of the work of
Bates et al. (2021) who showed that the p̂-values, despite their intricate struc-
ture, are positively regressively dependent on each one of the subset (PRDS).
This is proved under the stronger assumption (Indep).

Remark 3.5. When α(n + 1)/m is an integer, we can easily check that B̂Hα

coincide with B̃Hα, the BH procedure applied to the naive, unbiased, p̃-values
defined by (5). Hence, Theorem 3.1 implies that FDR(P, B̃Hα) = αm0/m in
that case (under (Exch)). This shows that, perhaps surprisingly, the naive way
to build empirical p-values eventually leads to a correct FDR control for such
values of n. Simulations will show that this is not the necessarily the case for
other values of n, see Section 6.

4. Power result

Section 3 showed that B̂Hα has an FDR smaller than or equal to the one of
the oracle BH∗

α under (Indep), see (9). Now, an important concern is to check
whether the power of B̂Hα is comparable to the one of BH∗

α. In this section, we
explore this issue under Assumption (Indep) and the power comparison is estab-
lished by comparing the true discovery proportions (3) of B̂Hα and BH∗

α′ , for α′

slightly below α. In a nutshell, we establish that the TDP of B̂Hα is larger than
the one of BH∗

α′ with a probability tending to 1, for any model parameter, when
n/m is large (Section 4.1), while we show that it is not true when n/m is small
(Section 4.2). Together, this means that the boundary achieved by the proce-
dure B̂Hα is n � m/α. We then present the case of particular, more favorable
distributions, for which at least k alternatives are “detectable” (Section 4.3). In
that case, the boundary achieved by B̂Hα is shown to be nk � m/α.
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To state our results, let us finally introduce an additional notation: let

Pn,m =
{
P = P⊗n

0 ⊗
m⊗
i=1

Pi : Pi continuous distribution on R, 0 ≤ i ≤ m

}
.

(10)

The distribution P belongs to Pn,m in the semi-supervised setting presented in
Section 2.1 and under (Indep). Hence, P can be considered as the parameter set
of the model under that assumption. In addition, since we look at power results,
we are going to focus on distributions in Pn,m with at least one true alternative.
We denote by

An,m = {P ∈ Pn,m : m1(P ) ≥ 1} (11)

the corresponding set.
Remark 4.1 (Optimality of BH∗). In the past literature, numerous works pro-
posed approaches that improve, sometimes substantially, the baseline BH pro-
cedure (as local FDR methods listed in introduction). Hence, a common belief
is that the BH procedure is well known to be conservative and suboptimal when
controlling the FDR. This belief makes the aim of mimicking the performance
of the oracle BH procedure somewhat questionable. However, we argue that this
belief is not justified when the test statistic used before applying BH algorithm
is suitably chosen, typically using a likelihood ratio or a local FDR transforma-
tion. This is shown in particular with simulations in the setting of Appendix A,
where BH∗ (= BH used with the oracle p-values) improves over a local FDR
method, itself well known to enjoy optimality properties (Cai et al., 2019). In
a nutshell, the possible conservativeness of BH procedure when controlling the
FDR is not due to the BH algorithm per se but rather to the test statistic used
as entries of this algorithm. To come back to our framework, the test statistic is
assumed to be fixed once for all in our work. Hence, given the chosen test statis-
tic, BH∗ is close to be optimal and the aim considered in this section perfectly
makes sense.

4.1. Upper bound

The following result shows that, under (Indep), when n ≥ γm with γ large
enough, the semi-supervised BH procedure at level α rejects at least all null
hypotheses rejected by the oracle BH procedure at level α′ = α(1 − η), with
high probability and with η small.

Proposition 4.2. Recall An,m (11). Let α, γ, η ∈ (0, 1) and let

γ∗(α, η) = α−1η−2 (3 log 2)(2 + (log 2)/3)(1 + η)
(1 − η/(2 log 2))2 > 0. (12)

Then, for all n,m ≥ 1 with n ≥ γm, for all P ∈ An,m, we have

PZ∼P (BH∗
α(1−η) ⊆ B̂Hα) ≥ 1 − (1/2)3γ/γ

∗(α,η)−1. (13)
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In particular, for all n,m ≥ 1 with n ≥ γm,

sup
P∈An,m

{PZ∼P (TDP(P,BH∗
α(1−η)) > TDP(P, B̂Hα))} ≤ (1/2)3γ/γ

∗(α,η)−1

Proposition 4.2 is proved in Appendix D.1. It is based on a concentration
argument of the empirical c.d.f. of the Yi’s, which relies on the independence
assumption between the Yi’s. Note that taking γ much larger than γ∗(α, η)
makes the probability in (13) arbitrarily close to 1. For illustration, if α = η =
0.1, taking γ = γ∗(α, η) ≈ 5928 provides a probability in (13) at least 3/4. Note
that, as is often the case in non asymptotical results, the value of this constant
is an artefact of the proof. It has not to be interpreted has a meaningful value
that separates feasible and unfeasible regimes.

4.2. Lower bound

The previous section shows that the power of B̂H is close to the one of the oracle
BH procedure provided that n/m is sufficiently large. We can legitimately ask
whether this condition is necessary. The following result addresses this point.

Proposition 4.3. Recall An,m (11). Let α ∈ (0, 1) and η ∈ [0, 1). Consider
n,m ≥ 1 with n/m ≤ 1/(4α). Then

sup
P∈An,m

{PZ∼P (TDP(P,BH∗
α(1−η)) > TDP(P, B̂Hα))} ≥ 1 − 2α. (14)

Proposition 4.3 is proved in Appendix D.2. It is a consequence of the fact
that all p̂-values are larger than 1/(n+ 1) (see (6)), while B̂H controls the FDR
(Theorem 3.1).

Propositions 4.2 and 4.3 are matching upper and lower bounds, up to con-
stants. Put together, these results establish that the semi-supervised BH proce-
dure achieves the boundary n � m/α: for n ≤ m/(4α), there exists a configu-
ration P ∈ An,m such that the power of B̂Hα is less than the one of the oracle
BH∗

α(1−η) (with probability at least 1 − 2α), while for n � m/α all configura-
tions P ∈ An,m are such that the power of B̂Hα is larger than the one of the
oracle (with probability arbitrarily close to 1).

4.3. Refinement to more favorable distributions

If there are enough alternatives, with enough signal strength, we show here that
the boundary achieved by B̂H can be much better than n � m/α. We extend
for this Proposition 4.2 and Proposition 4.3 to a specific set of “more favorable”
distributions.

For α ∈ (0, 1), n,m ≥ 1 and 1 ≤ k ≤ m, consider the subset of An,m given
by

An,m,k,α,β =
{
P ∈ An,m : m1(P ) ≥ k, PZ∼P

(
|H1(P ) ∩ BH∗

α/2| ≤ k − 1
)
≤β

}
.
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In words, An,m,k,α,β is the set of distributions such that at least k null hypothe-
ses are false while the probability that the procedure BH∗

α/2 makes at most k−1
number of true discoveries is smaller than β. From an intuitive point of view,
this means that the distribution contains at least k “detectable” alternatives, in
the sense that they are detectable with large probability by the oracle itself (at
level α/2).

Now, the idea is that for a distribution P ∈ An,m,k,α,β , the threshold of the
oracle procedure is at least αk/m with large probability, so that the precision
1/(n + 1) of the p̂-values is enough to mimic the power of the oracle BH if and
only if 1/n � αk/m, that is, nk � m. The following result proves that this
informal argument is correct.

Proposition 4.4. Let α ∈ (0, 1), η ∈ (0, 1/2) and β ∈ (0, 1). Then the following
holds for n,m ≥ 1 and 1 ≤ k ≤ m:

(i) if nk/m ≥ γ, for some γ > 0,

sup
P∈An,m,k,α,β

{PZ∼P (TDP(P,BH∗
α(1−η)) > TDP(P, B̂Hα))}

≤ β + (1/2)3γ/γ
∗(α,η)−1,

where γ∗(α, η) is given by (12).
(ii) if nk/m ≤ 1/(4α),

sup
P∈An,m,k,α,β

{PZ∼P (TDP(P,BH∗
α(1−η)) > TDP(P, B̂Hα))} ≥ 1 − β − 2α.

Proposition 4.4 is proved in Appendix D.3. Point (i) above is an upper-bound:
in particular, it shows that having nk/m ≥ γ∗(α, η) is enough for B̂Hα to mimic
the power of the oracle BH∗

α(1−η) with probability at least 1−β− 1/4 when the
underlying distribution belongs to the set An,m,k,α,β . Interestingly, the condition
nk/m ≥ γ∗(α, η) is much weaker than the previous condition n/m ≥ γ∗(α, η)
when k gets large.

Point (ii) is a lower-bound showing that the order given in the upper-bound
is correct. Together, (i) and (ii) ensure that the boundary achieved by B̂Hα

is nk � m on the distribution set An,m,k,α,β . In addition, when α gets small
and 1/α cannot be considered as a constant, our result is able to track the
dependence in α; since γ∗(α, η) is of order 1/α (see (12)), the boundary reads
nk � m/α. In addition, the constant in γ∗(α, η) turns out to be largely over-
estimated. The effective transition for the feasible regime when k rejections are
expected seems to be exactly at nk = m/α in the numerical experiments, see
Section 6. This provides a useful “rule of thumb” for a practical use.

5. Optimality

For a fixed level α, the previous results show that the semi-supervised BH proce-
dure B̂Hα mimics the oracle BH procedure when n � m both in terms of FDR
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(Theorem 3.1) and power (Proposition 4.2). However, when n � m, while B̂Hα

still controls the FDR, it looses the power property (Proposition 4.3). Hence, it
does not mimic the oracle in that regime. However, this does not exclude that
a different procedure, that would use the data Z more cleverly, might be able
to mimic the oracle when n � m. In this section, we show that no procedure
can mimic the oracle in that regime (Theorem 5.1). This shows a general phase
transition to the problem of mimicking the oracle (Corollary 5.3) and establishes
that B̂Hα achieves this transition, which thus delineates a kind of optimality
satisfied by the semi-supervised BH procedure.

5.1. General lower bound

Recall Pn,m (10) and An,m (11). Taken together, Theorem 3.1 and Proposi-
tion 4.2 show that for any α, η, γ ∈ (0, 1) the procedure R = B̂Hα (as a sequence
in n,m ≥ 1) satisfies simultaneously the two following properties:

sup
n,m≥1
n≥mγ

sup
P∈Pn,m

{FDR(P,R) − FDR(P,BH∗
α)} ≤ δ1; (15)

sup
n,m≥1
n≥mγ

sup
P∈An,m

P(TDP(P,BH∗
α(1−η)) > TDP(P,R)) ≤ δ2. (16)

for δ1 = 0 and δ2 = (1/2)3γ/γ∗(α,η)−1 > 0. This quantifies how B̂Hα mimics the
oracle (BH∗

α)α∈(0,1) both in terms of FDR and power when γ/γ∗(α, η) grows.
In the regime where γ is too small, the following result shows that achieving

simultaneously (15) and (16) is not possible.

Theorem 5.1. Recall Pn,m (10) and An,m (11). Let α ∈ (0, 1/4) and γ, η ∈
(0, 1) and let

γ∗(α, η) = (1 + (α(1 − η))−1/2)−3/64, (17)

Consider n,m ≥ 1 with n ≤ γm. Then for any procedure R (based only on Z),
one has either

sup
P∈Pn,m

{FDR(P,R) − FDR(BH∗
α, R)} ≥ 1/2 − α (18)

or

sup
P∈An,m

{PZ∼P (TDP(P,R) < TDP(P,BH∗
α(1−η)))} ≥ 1/2−(1/4)(γ/γ∗(α, η))1/3.

(19)
As a result, no procedure R (as a sequence in n,m ≥ 1) can satisfy simultane-
ously (15) and (16) for δ1 < 1/2 − α and δ2 < 1/2 − (1/4)(γ/γ∗(α, η))1/3.

The proof of Theorem 5.1 is given in Appendix D.4. It relies on building
two nearly indistinguishable configurations Q1, Q2 ∈ Pn,m such that: either
FDR(Q1, R) is large, or with large probability under Q2, R makes no discovery
while the oracle makes at least one correct discovery. Note that the result in
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Theorem 5.1 is silent if 1/2 − (1/4)(γ/γ∗(α, η))1/3 ≤ 0, that is, γ ≥ 8γ∗(α, η).
Hence, Theorem 5.1 is only informative whenever γ < 8γ∗(α, η). When γ <
γ∗(α, η), the RHS of (19) is in addition strictly larger than 1/4.

5.2. Phase transition

Let us elaborate further on the phase transition that we have put forward. To
this end, we introduce the following definition.

Definition 5.2. For δ1 ∈ [0, 1), δ2 ∈ [0, 1), γ > 0 and α, η ∈ (0, 1), a proce-
dure R is said to be (δ1, δ2)-mimicking the oracle (BH∗

α)α∈(0,1), for a training-
to-test sample size at least γ, and a level α with relaxation η, in short R is
MO(γ, α, η, δ1, δ2), when (15) and (16) simultaneously hold for these values of
δ1, δ2, α, γ, η.

According to this definition, Theorem 3.1, Proposition 4.2 and Theorem 5.1
can be combined as follows:

Corollary 5.3. Let α ∈ (0, 1/4), η ∈ (0, 1), and consider γ∗(α, η) defined
by (12) and γ∗(α, η) defined by (17). Then for any γ > 0:

(i) If γ < γ∗(α, η), then there exists no MO(γ, α, η, δ1, δ2) procedure for any
possible value of δ1, δ2 ∈ (0, 1/4]. This is even true for δ1 < 1/2 − α and
δ2 < 1/2 − (1/4)(γ/(γ∗(α, η)))1/3);

(ii) If γ ≥ γ∗(α, η) then there exists an MO(γ, α, η, δ1, δ2) procedure for some
values of δ1, δ2 ∈ [0, 1/4]. This is achieved by B̂Hα, even with δ1 = 0 and
δ2 = (1/2)3γ/γ∗(α,η)−1.

This phase transition is illustrated in Figure 1 in the introduction of the pa-
per. The transition is provided under the simpler form n = m/α for comparison
with Section 4.

Note that the impossibility result above is a “worst case” analysis over the
distributions P ∈ Pn,m (FDR) and P ∈ An,m (power), that is, suprema are
taken in (18) and (19). In particular, under the more stringent assumption
P ∈ An,m,k,α,β , mimicking the oracle becomes already possible whenever n �
m/(αk) (as reported in Figure 1 for k = 3 or 100).

This general phase transition is in line with the recent results by Roquain
and Verzelen (2020b). Nevertheless, their setting is markedly different: it is un-
supervised (no NTS) and the null distribution is assumed to belong to the Gaus-
sian distribution family with unknown mean and variance. The phase transition
found there was � � m/ log(m) (with our notation) where � is a lower bound on
the number of alternatives m1(P ) (with no signal strength assumption). Here,
the situation is notably different, with a boundary function of the length n
of the NTS. The situation is also very different in terms of FDR control: the
mimicking procedure B̂H provides here an FDR control both above and below
the transition boundary, while such property is not possible in the setting of
Roquain and Verzelen (2020b) (as proved in Corollary 3.3 therein).
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6. Numerical illustrations

This section provides several numerical illustrations for the theoretical findings
derived in Sections 3 and 4.

6.1. Simulation setting

While our experiments mostly focus on the two BH-type procedures B̂H and
BH∗, we will also consider other competitors: B̃H, which is the BH procedure
applied to the unbiased p̃-values defined by (5) (Section 2.2) and the “naive”
procedures B̂Y and B̂HSplit described in Section 1.3. Also, for simplicity, the way
to evaluate how the power of B̂H mimics the one of BH∗ slightly departs from
our theoretical study: first, we compare B̂H to the oracle BH∗ taken at the same
level α (say, η = 0 with the notation of Section 4). This makes the power mim-
icking more challenging. Second, to stick with the standard way of comparing
procedures (for BH∗, B̂H or their competitors), the considered power criterion
is simply the TDR (3) (average of the TDP). Unless specified, the setting is
Gaussian with a null distribution P0 = N (0, 1) and an alternative N (μ, 1), for
a given value of μ > 0. Across the sections below, we made various choices of
n, m and of the sparsity m1 (number of alternatives). We sometimes fix the
level α to the (unusual large) value 0.5 for better visibility of the curves and
faster computation time, but the results scale accordingly for smaller values
of α (the interested reader can refer to Figures 9 and 11 for situations where
α = 0.2). Finally, the FDR (resp. TDR) curves are here estimated by Monte-
Carlo simulations. The plots show the estimates F̂DR and T̂DR with two error
bars: one estimating the standard deviation of F̂DR (resp. T̂DR) and one esti-
mating the standard variation of FDP (resp. TDP) (these two deviations being
proportional).

6.2. FDR control under the full null

The first experiment concerns the case where m0 = m, which corresponds to
the so-called “full null” configuration where there is no alternative. We consider
two dependence framework: the independent case (all Zi’s independent) and
the negatively equicorrelated case described in Example 3.2. Recall that B̂H is
proved to control the FDR at level α in both cases (Theorem 3.1), while BH∗ is
only proved to control the FDR at level αm0/m = α in the independent case.
Also, B̃H (BH procedure applied to the unbiased p̃-values defined in Section 2.2)
is not proved to control the FDR since the p̃-values do not satisfy the super-
uniformity property (4).

Figure 4 displays the obtained FDR curves for BH∗ (green), B̂H (blue) and
B̃H (red). The obtained results are consistent with our theoretical findings:
negative correlations induce an FDR of BH∗ slightly above the targeted level,
although this effect tends to reduce when n gets larger. This is because the
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Fig 4. FDR result in the case of i.i.d. samples (left column) and Gaussian negative equicor-
relation (right). The cases m = 2 (top row), m = 10 (bottom row) have been investigated
with respectively 105 and 104 Monte Carlo simulations. The 2σ confidence intervals on the
estimated FDR are not visible. The standard deviation (divided by a factor 10) of the FDP
is shown by shaded areas. The figure shows the results for BH∗ (green), B̂H (blue), B̃H (red,
see text), and the lower bound of Theorem 3.1 (black).

negative correlation ρ = −(m + n − 1)−1 decreases (in absolute value) when n

grows. As expected, B̂H maintains the FDR control is any case. Meanwhile, B̃H
fails to control the FDR in any case, except for some values of n where it has
the same FDR value as B̂H (see also Remark 3.5). Hence, we shall discard B̃H
from our plots in the sequel. Interestingly, we also displayed the lower bound of
Theorem 3.1 in Figure 4: while it correctly lower bounds the estimated FDR of
B̂H for any n, it illustrates that the FDR is exactly α for n ∈ {3, 7, 11, 15, . . . }
as the theory establishes (the curves might also suggest that the lower bound is
sharp for n ∈ {4, 8, 12, 16, . . . }, which is not covered by our theory). Finally, note
that these results are in expectation: as shown by the shaded areas, there can
be large variations for particular samples. This is inherent to the BH procedure
when the number of discoveries is not large.
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6.3. Power study

Figure 5 compares the performances of the procedures BH∗ (dark green and
khaki) and B̂H (dark blue and cyan) in terms of FDR (dark colors) and TDP
(light colors) in the dense case where m1 = m0 = m

2 , with μ = 1 (left column)
and μ = 2 (right column). Regarding the FDR first, the plots show that the
FDR of B̂H tends to the oracle FDR (which is 0.25 = αm0

m = α
2 here). For

a fixed value of n, the convergence is faster for smaller values of m. This is
coherent with Theorem 3.1, ensuring that the FDR of B̂H is equal to α/2 for
n = m/α − 1. On the other hand, the variance in the FDR (blue shaded area)
is smaller at fixed n when m increases, because the larger sample size tends to
stabilize the result.

Turning to the power results, the plots show that the power of B̂H also
tends to that of BH∗ in this sparsity regime, with also faster convergence
for smaller values of m (at fixed n). This is well expected from the “rule of
thumb” delineated in Section 4.3 and ensuring that the transition occurs for
n ≈ m/(max(1, k)α) where k is a lower bound on the typical true discovery
number of the oracle. Given the displayed results, the value of k could be chosen
around (2, 4, 20, 40), so that this rule would predict a transition for n occurring
around (10, 5, 10, 5) (top-left, top-right, bottom-left, bottom-right). Strikingly
enough, the transitions indeed occur at these points in the different TDR curves.

The sparse case where m1 = 1 is considered in Figure 6, with μ = 1 (left
column) and μ = 3 (right column) and a slightly increased range for n. Here, the
oracle FDR is 0.45 for m = 10 and 0.495 for m = 100. The observations made
regarding the FDR and TDR in Figure 5 are qualitatively the same. Moreover,
in the sparse case, the convergence to the asymptotic regime is slower than in
the dense case, while increasing m for fixed n slows down more significantly the
convergence than in the dense case. This is coherent with the rule of thumb
n ≈ m/(max(1, k)α), predicting that the transition n occurs around m/α = 2m
here (only one alternative here). In addition, it is apparent on the plots that
the value of the transition n predicted by this rule turns out to be particularly
well adjusted, at least in this simulation setup.

Finally, Figure 7 compares the FDR and TDR of the procedures BH∗ and
B̂H for larger values of m and n and α = 0.2. We fix m = 103 and the size of the
NTS ranges from n = 1 to 5 × 104. In each plot, we see that the performances
of B̂H indeed increase with n. Despite the increased signal amplitude in the
sparse case, the situation is more difficult both in terms of convergence (which
is slower) and of variance in the FDP and TDP (which are larger). Interestingly,
this corroborates again the rule of thumb predicting a transition n around 20
and 625 (for the choices k ≈ 250 and k ≈ 8) for the dense and sparse situations,
respectively.

6.4. Additional experiments

Appendix F presents the following additional experiments: first, Appendix F.1
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Fig 5. FDR and TDR results for the dense case: m1 = m
2 , with μ = 1 (left column) and

μ = 2 (right column). The number of tests m equals 10 in the top row and 100 in the bottom
row. The number of Monte Carlo simulations used for estimating the FDR and TDR is 104

(top row) and 103 (bottom row). The 2σ confidence interval on the estimated FDR and TDR
is plotted in magenta. In all plots the standard deviation (divided by 10) of the FDP and
TDP are shown in shaded green for BH∗ and shaded blue for B̂H.

presents a comparison with the naive procedures B̂Y and B̂HSplit. They are both
shown to be over-conservative and much less powerful than B̂H. Second, a case
study with a Student distribution, leading to similar conclusions, is presented
in Appendix F.2. Third, Appendix F.3 is devoted to simulations for very small
values of n (n = 5 or 10) with increasing values of m: it shows that B̂H can
achieve oracle performances in that dense case, regardless of m.

7. Application

One of the major scientific goals of the MUSE integral field spectrograph, which
is installed on one of the 8 m telescopes at the Very Large Telescope in Chile, is
the detection of distant and consequently ultra faint galaxies in the early Uni-
verse. MUSE delivers 3-dimensional datacubes (two spatial dimensions and one
spectral dimension) composed of images taken in different wavelengths chan-
nels of the visible spectrum. The values of the data samples correspond to light
fluxes. Ordinary datacubes are composed with a pile of 300 × 300 pixels im-
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Fig 6. FDR and TDR results for the sparse case: m1 = 1, with μ = 1 (left column) and μ = 3
(right column). The number of tests m equals 10 for the top row and 100 for the bottom row.
The number of Monte Carlo simulations used for estimating the FDR and TDR is 104 (top
row) and 103 (bottom row). The 2σ confidence interval on the estimated FDR and TDR is
plotted in magenta. In all plots the standard deviation (divided by 10) of the FDP and TDP
are shown in shaded green for BH∗ and shaded blue for B̂H.

Fig 7. FDR and TDR results for m = 103 as a function of n, for α = 0.2. Left: dense case:
m1 = 500 and μ = 1

2
√

2 logm ≈ 1.86. Right: m1 = 10 and μ =
√

2 logm ≈ 3.72 (right).
The number of Monte Carlo simulations used for estimating the FDR and TDR is 103 for
n < 103 and 102 otherwise. The 2σ confidence interval on the estimated FDR and TDR is
plotted in magenta. In all plots the standard deviation (divided by 10) of the FDP and TDP
are shown in shaded green for BH∗ and shaded blue for B̂H.



Semi-supervised multiple testing 4953

ages in 3700 consecutive visible wavelengths, leading to more than 300 millions
voxels.

After multiple calibration and preprocessing stages, the problem of detecting
faint galaxies boils down to a typical needle in a haystack problem. The haystack
is the datacube, which can be considered as a discrete-valued 3-dimensional
random process. This process is generated by various noise sources and by the
residual perturbations of numerous bright sources. Consequently, the statistics
of the random process are poorly constrained. In this haystack, each needle
(there are hundreds of them) is a small group of connected voxels, centered on
the galaxy’s position, in which the flux locally increases.

A dedicated detection strategy, proposed by Mary et al. (2020) and further
exploited by Bacon et al. (2021), consists in considering as final test statistics the
3-dimensional local maxima of the processed datacube. In the resulting testing
problem, there is one null hypothesis linked to each of the m local maxima,
with m typically in the range [105, 106]. If we denote by x, y, z the position
of a particular local maximum, we test H0,x,y,z: “There is no galaxy centred at
position (x, y, z)”, against H1,x,y,z: “There is one galaxy centred at this position”
and the considered error criterion is the FDR.

As evoked above, the distribution of the local maxima under the null hypoth-
esis is fairly unknown. To circumvent this difficulty, Mary et al. (2020) proposed
to use the population of the opposite values of the local minima (say, Yi, in num-
ber n) as an independent “proxy” (a NTS) for the local maxima (say, Xi, in
number m). They reported numerical simulations suggesting that a procedure
close to the Benjamini-Hochberg procedure using p-values computed from this
NTS controls the FDR. This astrophysical application involves a common but
unknown distribution P0 under the null hypothesis and the possibility of using
a NTS to improve the control of the FDR. The sample sizes considered are
n = 2.3 × 106 and m = 3.3 × 106 so n < m and both are large. It is thus
interesting to see which light the present study sheds on this initial approach.

Let us check that the setting described in Section 2.1 is reasonable for this
empirical study. First, the distribution of the NTS correctly matches the null
distribution of the test sample. Indeed, the empirical distribution of the values of
the NTS and of the test sample are shown in Figure 8, left panel. The similarity
of the two distributions in the left and central parts suggests that the NTS
(blue) can serve as a useful proxy for the test sample (red). The right tail of the
test sample is logically heavier owing to the presence of galaxies, which tend to
shift the values of the local maxima upwards. Second, the measurements at the
local extrema are plausibly independent, because the typical distance between
local extrema is larger than the size of the filter used in the preprocessing. This
justifies that Assumption (Indep) is reasonably true here.

While the procedure proposed by Mary et al. (2020) is very close to the
B̂H procedure with Algorithm 1, it differs in the following point. Instead of
using FDP = V +1

K
m

n+1 (see step 4 of Algorithm 1), Mary et al. (2020) use FDP
= V

K
N1
N0

, where N1 (resp. N0) are the number of voxels of the region where
the local extrema of the test sample (resp., the NTS) are computed. Because
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Fig 8. MUSE application example. (a) Empirical distributions of the values of the NTS (the
Yi, computed as the opposite of the local minima, in blue) and of the test sample (the Xi,
local maxima, in red). (b) Results of Algorithm 1 (same color code as in Figure 2). Only the
700 largest sample values are shown. The black vertical line indicates the rejection threshold
K = 105 and 14 samples of the NTS are above this threshold.

n is large, V is large as well and using V instead of V + 1 has no numerical
impact in this regime. The normalization factors are in fact very similar as
well, with m

n+1 ≈ 1.440 and N1
N0

≈ 1.442. In effect, it turns out that there is
no numerical difference in running these two versions of Algorithm 1: in both
cases, the procedure rejects exactly 105 local maxima at target FDR α = 0.2,
a situation shown in the right panel of Figure 8. The rejected local maxima in
Mary et al. (2020) being the same as those rejected by B̂H, the discovery set
inherits the properties delineated in the present work: first, the FDR control is
established from Theorem 3.1. Second, we have n ≈ m while both are large. This
means that we are just at the border of the boundary identified in Section 5.2,
so the theory is silent for this case. Nevertheless, the distribution of the data
exhibits some minimum amount of signal, perhaps k � 50 fairly detectable
alternatives. Hence, the refined upper-bound given in Proposition 4.4 can also
be applied: since the training-to-test ratio n/m is above the boundary, that is,
n/m ≈ 1 is much larger than 1/(kα) � 0.1, the power of B̂H should be close to
the one of the oracle for this data set.

To conclude, the present paper illustrates that B̂H, together with our theo-
retical findings, delivers interpretable and useful results for common practice.
Meanwhile, it validates the use of the procedure proposed in Mary et al. (2020)
on this particular data set.

8. Conclusion and discussion

8.1. Summary

In a nutshell, this paper evaluated how classical multiple testing methodol-
ogy can generalize when replacing the knowledge of the null distribution P0 by
examples Y1, . . . , Yn following this null. While this situation is very frequent in



Semi-supervised multiple testing 4955

practice, it has only been scarcely studied so far and this paper contributed to fill
this gap. The FDR control guarantee holds whatever n,m, with no assumption
on P0 and for any marginal alternative, with a bound αm0/m (achieved when
α(n+1)/m is an integer), which is similar to the result obtained in the original
work of Benjamini and Hochberg (1995) in case where P0 is known. In addition,
the power is comparable to the one of the oracle when n � m/(αmax(1, k)),
where k is a confidence lower bound on the number of true discoveries made
by the oracle. This “rule of thumb” has been both validated by theory and
numerical experiments. Finally, we demonstrated that our work brought a the-
oretical support and thus more interpretability in a worked-out application to
recent breakthrough findings in astrophysics. In practice, our “rule of thumb”
n � m/(αmax(1, k)) can be used as follows: if the user has no strong prior belief
in a minimum number k of discoveries, choosing k = 0 might be safer, which
leads to the condition n � m/α. By contrast, if k can be accurately guessed a
priori, the less demanding condition n � m/αk can be opted for.

This work also completed the picture by exhibiting a theoretical intrinsic
limitation of the semi-supervised multiple testing setting when the null training
sample is not populated enough. It is impossible to control the FDR while mim-
icking the oracle power for n � m when letting the sparsity and the distribution
of the alternative arbitrary. This delineates a setting-intrinsic phase transition
at n � m.

8.2. Future work

Given that semi-supervised multiple testing setting is versatile, our work raises
a number of new perspectives. For instance, in recent machine learning, this
setting conveniently bypasses model assumptions on P0 and only needs a number
of null examples, that can be generated by a suitable “blackbox”. Nevertheless, in
order to avoid potential bias in the null training sample, this blackbox should be
properly calibrated with significant prior calibrations and preprocessing steps.
While building such an approach deserves an entire devoted study, we anticipate
that studying the robustness of the procedure B̂H with respect to the NTS is a
key point: what about the case where Y1, . . . , Yn are i.i.d. ∼ P ′

0 with P ′
0 ≈ P0?

Another avenue for future work is to decline recent advances in multiple test-
ing into this semi-supervised setting. For instance, while B̂H is devoted to the
FDR criterion, an interesting and challenging issue is to design semi-supervised
counterparts suitable for other criteria, as FDX Genovese and Wasserman (2004),
online FDR Foster and Stine (2008), Xu and Ramdas (2021) or post hoc bounds
Genovese and Wasserman (2006), Goeman and Solari (2011). In particular, since
the variability of the FDP of B̂H is increased by the NTS, considering criteria ac-
counting for this effect seems particularly interesting. Since various dependence
assumptions are used in such studies, we also expect that our main assump-
tion (Exch) can be relaxed in some of these frameworks.

Finally, proper calibrations of the individual tests sometimes require to con-
sider hypothesis-dependent null distributions, that is, null distributions P0,i that
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depend on i ∈ {1, . . . ,m} (see, e.g., Sulis et al., 2017, 2020 for a concrete exam-
ple). Since m null training samples should be considered in that case, it poses
a complexity issue and generalizing our result to this setting is both theoreti-
cally challenging and useful to support or improve procedures used in common
practice.

Appendix A: By-product 1: Blackbox BH procedure

A.1. Setting and procedure

In this section, we consider the same formal setting and notation as in Sec-
tion 2.1, except that the test statistics X1, . . . , Xm are given along with a “black-
box sampler” able to produce i.i.d. realizations of the null P0, even if P0 is not
known. As in the motivations described in Section 1.1, such a blackbox can come
from an external code implemented by an expert of the application domain, or
from a machine learning program that has been sufficiently trained. Our work
easily allows to design a multiple testing inference in that situation. Namely,
Algorithm 2 below can be used to produce a sampled BH procedure, that we
call the Blackbox BH procedure (bbBH). By Theorem 3.1, the bbBH procedure
achieves an FDR equal to αm0/m (when α is a rational number), provided that
(Xi, i ∈ H0) are i.i.d. ∼ P0 and independent of (Xi, i /∈ H0). Also, since n is
chosen so that (n + 1)α/m ≥ 1, it is just above the boundary put forward in
Section 4, which might indicate that the power of bbBH should be comparable
to that of the oracle.

Algorithm 2: Blackbox BH procedure
Data: X = (X1, . . . , Xm) ∈ Rm, a nominal level α ∈ (0, 1) (assumed to be a rational

number) and a blackbox sampler of the null distribution P0

1. Choose n ≥ 1 the smallest integer such that (n + 1)α/m is an integer
2. Sample (Y1, . . . , Yn) i.i.d. according to the null distribution P0

3. Apply the semi-supervised BH procedure B̂Hα to Z = (Y,X), see Algorithm 1

Result: Reject the nulls in the set B̂Hα.

A.2. Illustration with simultaneous likelihood ratio tests

To illustrate further the interest of the bbBH procedure, we consider in this
section the problem of controlling the FDR while choosing the best individual
test statistics. To this end, let us consider the common setup where we observe m
independent measurements T1, . . . , Tm ∈ R, with Ti either distributed as a null
distribution G0 or as an alternative distribution G1, where G0 and G1 are known
distribution with densities g0 and g1, respectively. For each i ∈ {1, . . . ,m}, we
consider a likelihood ratio test of the null hypothesis H0,i: “Ti ∼ G0” against
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the alternative H1,i: “Ti ∼ G1”. It rejects the null whenever {Xi ≥ c} for
Xi = g1(Ti)/g0(Ti) (with the convention Xi = +∞ if g0(Ti) = 0) and some
constant c > 0 such that F̄0(c) = α with

F̄0(t) =
∫
R

1{g1(u)>tg0(u)}g0(u)du, t ≥ 0. (20)

Denote P0 the distribution of Xi under G0 and assume that F̄0 is continuous
and decreasing on the support of P0. The oracle BH procedure BH∗, which is
not accessible in general, can be nevertheless approximated in this setting via
a numerical approximation of the function F̄0. By contrast, we can also build a
“blackbox” that generates realizations of P0 by simulating T1, . . . , Tn i.i.d. ∼ G0
and then letting Yi = g1(Ti)/g0(Ti), 1 ≤ i ≤ n. Hence, we can apply the bbBH
procedure (Algorithm 2) to control the FDR at level α in this model (and even
have an FDR equal to αm0/m), while having a power close to the one of the
oracle.

For comparisons, we also introduce two other procedures: first, the BH pro-
cedure directly applied to the original test statistics Ti’s (with respect to the
known null G0), which is referred to as BH0 below. Compared to bbBH, BH0
has the advantage to be not-random. However, since the individual tests based
on the Ti are less powerful than those based on the likelihood ratio Xi, bbBH is
in general more powerful than BH0. The second procedure is the classical FDR
controlling method based on the local FDR values Efron et al. (2001), Sun and
Cai (2007), denoted by “locfdr”, which can be used specifically for this example,
see Section F.4 for more details.

The performances of these procedures are illustrated by a numerical experi-
ment in Appendix F.4. The conclusions of this experiment are as follows:

• All procedures correctly control the FDR;
• As expected bbBH, BH∗ and locfdr have better power than BH0;
• The two procedures locfdr and bbBH both mimic the power of the oracle

BH∗, although bbBH is better adjusted for m small, while locfdr is slightly
less variant.

Overall, this section validates the use of bbBH in a “toy blackbox setting” where
alternative procedures can be employed. This suggests that bbBH will perform
favorably in general blackbox settings for which no such alternative exists.

Appendix B: By-product 2: The randomized BH procedure

Let us consider, only for the present section, the usual framework where the
null distribution is known and no NTS is given. In particular, BH∗ boils down
to the usual BH procedure.

Recall that an important part of multiple testing literature is devoted to find
procedures that control rigorously the FDR at level α while maximizing the
power. We emphasize that, in this framework, having an FDR equal to α+10−10

(say) is not allowed: the inequality FDR ≤ α must hold under any configuration
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of the model, which is particularly challenging when negative dependences are
possible. For instance, we refer to the very recent work of Fithian and Lei (2020)
(see also references therein), that aims at modifying the BH procedure in order
to control the FDR under negative dependence. The point of this section is to
show that Theorem 3.1 and Example 3.2 allow to solve this problem in a simple
way for some (admittedly specific) dependence structure.

Assume that X is an m-dimensional Gaussian equi-correlated vector with
individual variances equal to 1 and with known covariance ρ ∈ [−1/m, 0). Con-
sider n = n(ρ,m) ≥ 1 the largest integer so that ρ ≥ −1/(n + m − 1), that is,
n = �−ρ−1 − m + 1� and generate a n-sample Y1, . . . , Yn such that (Y,X) is
Gaussian equi-correlated ρ. This can be done easily via Proposition E.3. Then
Theorem 3.1 provides that the procedure B̂Hα controls the FDR at level α.
Here, since the NTS is generated by the user, this procedure can be seen as a
randomized BH procedure, (randBH in short). Algorithm 3 gives the full steps
to implement randBH.

Algorithm 3: Randomized BH procedure
Data: X = (X1, . . . , Xm) ∈ Rm, ρ ∈ [−1/m, 0), α

1. Compute n ≥ 1 the largest integer so that ρ ≥ −1/(n + m− 1), that is,
n = �−ρ−1 −m + 1�

2. Let T = X

3. For k from m to n + m− 1:

• draw U ∼ N (0, 1) independently of the rest

• let Tk+1 = ρ
1+(k−1)ρ (T1 + · · · + Tk) +

(
1 − k ρ2

1+(k−1)ρ

)1/2
U

• let T = (T1, . . . , Tk+1)

4. Let Y = (Tm+1, . . . , Tn+m)

5. Apply the semi-supervised BH procedure B̂Hα to Z = (Y,X), see Algorithm 1

Result: Reject the nulls in the set B̂Hα.

Also, we would like to make a disclaimer: we do not pretend that RandBH
is applicable in general practice, at least under the current form, because it
is linked to a too specific dependence structure. Rather, the message is that
randomization (plus using p-values biased upwards) can help the BH procedure
to be more robust with respect to negative dependencies. We think that this
intriguing side result is an important proof of concept.

Finally, this phenomenon can be derived for other negative dependence struc-
tures: however, the reachable distributions of (Xi, i ∈ H0) should necessarily be
expressible as a marginal of a larger vector (Y1, . . . , Yn, Xi, i ∈ H0) that is ex-
changeable in order to satisfy (Exch).
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Appendix C: Proof of Theorem 3.1

We assume throughout the proof that H0 = {1, . . . ,m0} without loss of gener-
ality.

C.1. Proof of Lemma 2.2

Let us recall that the p̂-values are given by p̂i = F̂0(Xi), 1 ≤ i ≤ m, with F̂0 given
by (6). Hence, they can be ordered as p̂(1) ≤ · · · ≤ p̂(m) with a permutation also
ensuring X(1) ≥ · · · ≥ X(m) and p̂(k) = F̂0(X(k)), 1 ≤ k ≤ m. Now, by definition

B̂Hα = {i ∈ {1, . . . ,m} : p̂i ≤ p̂(k̂)}, k̂ = max{k ∈ {0, 1, . . . ,m} : p̂(k) ≤ αk/m}.

Since mp̂(k)
k = m

n+1
1+
∑n

j=1
1{Yj≥X(k)}∑m

i=1
1{Xi≥X(k)}

, we have by definition of t̂ that t̂ = X(k̂).

To conclude, we only have to prove the equality

{i ∈ {1, . . . ,m} : F̂0(Xi) ≤ F̂0(X(k̂))} = {i ∈ {1, . . . ,m} : Xi ≥ X(k̂)}.

The inclusion ⊇ is clear by the monotonicity of F̂0. In addition, by definition of
k̂, we have X(k̂+1) < X(k̂), so that the set on the right-hand-side is of cardinal
k̂. Since, again by definition of k̂, the set on the left-hand-side is also of cardinal
k̂, the two sets are equal.

C.2. Reformulation of B̂H

Let us reformulate B̂H according to Algorithm 1, which will be useful for the
proof. Recall that this is possible because (Cont) holds. For this, let us order
the Zi’s, that is, Zτ(1) ≥ · · · ≥ Zτ(n+m) and consider s� = 1{τ(�)≤n} ∈ {0, 1},
1 ≤ � ≤ n+m, which is 1 if and only if Zτ(�) comes from sample Y = (Y1, . . . , Yn).
Then, we easily see that B̂Hα reject Hi if Xi ≥ Zτ(�̂) where

�̂ = max
{
� ∈ {1, . . . , n + m} : F̂DP� ≤ α

}
, F̂DP� = m

n + 1
1 +

∑�
�′=1 s�′

1 ∨
∑�

�′=1(1 − s�′)
,

(21)
with no rejection if this set is empty.

C.3. Randomization lemma

First, let us provide two lemmas that will be useful for the proof. Consider the
sample W = (Y1, . . . , Yn, X1, . . . , Xm0) of size n+m0. Consider π the permuta-
tion of {1, . . . , n+m0} that orders the Wi’s in decreasing order, that is, Wπ(1) ≥
· · · ≥ Wπ(n+m0) and let s0,� = 1{π(�)≤n} ∈ {0, 1} for any � ∈ {1, . . . , n + m0}



4960 D. Mary and E. Roquain

which equals 1 if and only if Wπ(�) comes from the sample Y . Under (Cont)
and (Exch), since the Wi’s are exchangeable and F0 is continuous, there is al-
most surely no tie in the sample W and π is uniformly distributed among all
permutations of {1, . . . , n+m0}, conditionally on (Xi,m0 +1 ≤ i ≤ m). Hence,
the following lemma holds.

Lemma C.1. Under (Cont) and (Exch), the set S0 = {� ∈ {1, . . . , n + m0} :
s0,� = 1} is uniformly distributed among all subset of {1, . . . , n + m0} of cardi-
nality n and this, independently from the order statistics (Wπ(1), . . . ,Wπ(n+m0)),
and conditionally on (Xi,m0 + 1 ≤ i ≤ m).

To study the new procedure, we should now make the link between s0,� and
s�. Denote

L = {� ∈ {1, . . . , n + m} : τ(�) ≤ n + m0}. (22)

The integer L corresponds to the ordered indices of the Zi’s coming from the
Yi’s. Then we map {1, . . . , n + m0} to L by using a bijection only depending
on the order statistics (Wπ(1), . . . ,Wπ(n+m0)) and (Xi,m0 + 1 ≤ i ≤ m), and
thus a bijection independent of S0. Hence, the above lemma entails the following
result.

Lemma C.2. Under (Exch), the set S = {� ∈ L : s� = 1} is uniformly
distributed among all subsets of L of cardinality n and this, independently from
the order statistics (Wπ(1), . . . ,Wπ(n+m0)) and conditionally on (Xi,m0 + 1 ≤
i ≤ m).

Also note that s� = 0 when � /∈ L, and we introduce the following notation:

V� =
∑

1≤�′≤�,�′∈L

s�′ =
∑

1≤�′≤�

s�′ , for all � ∈ {1, . . . , n + m}. (23)

C.4. Core argument for the proof

When B̂Hα makes at least one rejection, �̂ ∈ {1, . . . , n+m} exists. Let in addition
�̂ = 0 when B̂Hα makes no rejection. When �̂ > 0, we also denote t̂ = Zτ(�̂).
Now, by definition,

FDR(P, B̂Hα) = E[FDP(P, B̂Hα)] = E[FDP(P, B̂Hα)1{�̂>0}]

= E

[ ∑
i∈H0

1{Xi≥t̂}
1 ∨

∑m
i=1 1{Xi≥t̂}

1{�̂>0}

]
. (24)

Now, relying on (21), we have almost surely∑
i∈H0

1{Xi≥t̂}
1 ∨

∑m
i=1 1{Xi≥t̂}

1{�̂>0}

= n + 1
m

∑
i∈H0

1{Xi≥t̂}∑n
i=1 1{Yi≥t̂} + 1

m

n + 1

∑n
i=1 1{Yi≥t̂} + 1

1 ∨
∑m

i=1 1{Xi≥t̂}
1{�̂>0}
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= m0

m
F̂DP�̂ × n + 1

m0

∑
i∈H0

1{Xi≥t̂}∑n
i=1 1{Yi≥t̂} + 1

1{�̂>0}, (25)

In the next section, we will prove the following equality:

E

[
n + 1
m0

∑
i∈H0

1{Xi≥t̂}∑n
i=1 1{Yi≥t̂} + 1

1{�̂>0}

]
= 1. (26)

Let us check that this implies the statements of Theorem 3.1: first, since by
definition F̂DP�̂ ≤ α when �̂ > 0, relations (24)-(25)-(26) imply FDR(P, B̂Hα) ≤
m0
m α. Second, if α(n + 1)/m is an integer, we have F̂DP�̂ = α when �̂ > 0
by Lemma E.4, hence relations (24)-(25)-(26) implies FDR(P, B̂Hα) = m0

m α.
Finally, Lemma E.5 gives F̂DP�̂ ≥ m

n+1�α
n+1
m � when �̂ > 0, which gives that

FDR(P, B̂Hα) ≥ m0
m

m
n+1�α

n+1
m �.

C.5. Super-martingale argument

Let ξ = ((Wπ(1), . . . ,Wπ(n+m0)), (Xi,m0 + 1 ≤ i ≤ m)) for short. The proof is
based on a super-martingale argument. Recall the equivalent definition (21), so
that (26) is proved if

E
[
M�̂1{�̂≥1} | ξ

]
= m0

n + 1 , M� =
∑

�∈L,1≤�′≤�(1 − s�′)∑
�′∈L,1≤�′≤� s�′ + 1 = m0,� − V�

V� + 1 , (27)

for 1 ≤ � ≤ m + n, where V� is given by (23) and m0,� denotes the cardinal of
{1 ≤ �′ ≤ � : �′ ∈ L} for 1 ≤ � ≤ m + n. By Lemma C.2, the randomness
in the above expectation is only carried by the binary variable (s�, � ∈ L) for
which S = {� ∈ L : s� = 1} is uniformly distributed among all subsets of L of
cardinality n, conditionally on ξ (L is fixed in particular, conditionally on ξ).

Let us define the σ-fields

F� = σ ((V�′ , � ≤ �′ ≤ m + n) , ξ) , 1 ≤ � ≤ m + n, (28)

where σ(·) denotes the σ-field operator. The latter form a filtration Fm+n ⊆
Fm+n−1 ⊆ · · · ⊆ F1. Note also that

F� = σ ((s�′)�′∈L,�+1≤�′≤m+n, V�, ξ) = σ ((s�′)�+1≤�′≤m+n, V�, ξ) .

A first key point is that {�̂ ≤ �−1} ∈ F� for all � ∈ {1, . . . ,m+n}, which means
that �̂ is a stopping time with respect to the filtration (F�)�. Indeed, by (21),
we have

{�̂ ≤ �− 1} =
{
∀�′ ∈ {�, . . . ,m + n}, m

n + 1
1 + V�′

1 ∨ (�′ − V�′)
> α

}
.

Hence, {�̂ ≤ �− 1} is an event measurable in V�′ , �′ ≥ �.
A second key point is the following lemma:
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Lemma C.3. Consider the process (M�)1≤�≤m+n defined by (27) and the fil-
tration (28). Then (Mm+n,Mm−1, . . . ,M1) is a super-martingale with respect
to the filtration (Fm+n,Fm+n−1, . . . ,F1) (note that time is running backwards)
that is, M� ∈ F� for all � ∈ {1, . . . ,m + n} and

E(M� | F�+1) = M�+1 − 1{V�+1=0,�+1∈L} ≤ M�+1, 1 ≤ � ≤ m + n− 1, (29)

where V� is defined by (23) and L is given by (22).
Applying this lemma, we obtain

E[M�̂1{�̂≥1} | ξ]

=
m+n∑
�=1

E[M� 1{�̂=�} | ξ]

=
m+n∑
�=1

E[M� (1{1≤�̂≤�} − 1{1≤�̂≤�−1}) | ξ]

= E[Mm+n | ξ] +
m+n−1∑

�=1
E[(M�1{1≤�̂≤�} | ξ] −

m+n∑
�=1

E[M�1{1≤�̂≤�−1} | ξ].

Hence, we obtain

E[M�̂1{�̂≥1} | ξ] = E[Mm+n | ξ] +
m+n−1∑

�=1

E[(M� −M�+1)1{1≤�̂≤�} | ξ]

= E[Mm+n | ξ] +
m+n−1∑

�=1
E[1{1≤�̂≤�}E[(M� −M�+1) | F�+1] | ξ]

= E[Mm+n | ξ] +
m+n−1∑

�=1

E[1{1≤�̂≤�}(E[M� | F�+1] −M�+1) | ξ]

= E[Mm+n | ξ] −
m+n−1∑

�=1

P[1 ≤ �̂ ≤ �, V�+1 = 0, � + 1 ∈ L]

= E[Mm+n | ξ],

by using successively (29), the fact that {1 ≤ �̂ ≤ �} ∈ F�+1 and Lemma C.4
(below). Now, we conclude because

E[Mm+n | ξ] =
∑

�∈L(1 − s�)∑
�∈L s� + 1 = m0

n + 1 .

Lemma C.4. For all � ∈ {2, . . . ,m + n}, consider V� defined by (23), �̂ and
F̂DP� defined by (21). If V� = 0, then �̂ ≥ �.
Proof. Recall (21) and let � ∈ {2, . . . ,m + n}. If V� = 0, this implies that for
any �′ ∈ {1, . . . , �}, we have V�′ ≤ V� = 0 and thus,

F̂DP�′ = m

n + 1
1
�′
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because
∑�′

�′′=1(1−s�′′) = �′−V�′ = �′. As a result, the function �′ ∈ {1, . . . , �} �→
F̂DP�′ is decreasing. This implies �̂ ≥ � by definition of �̂.

C.6. Proof of Lemma C.3

Recall
M� =

∑
�′∈L,1≤�′≤�(1 − s�′)∑
�′∈L,1≤�′≤� s�′ + 1 = m0,� − V�

V� + 1 , 1 ≤ � ≤ m + n,

and let us prove (29). Let 1 ≤ � ≤ m+n−1. For �+1 /∈ L, we have M� = M�+1
so (29) holds true. Assume thus � + 1 ∈ L. We have in that case

M� = m0,� − V�

V� + 1

= m0,�+1 + s�+1 − 1 − V�+1

V�+1 − s�+1 + 1 .

because m0,�+1 = m0,� + 1. Remember F� = σ ((s�′)�+1≤�′≤m+n,�′∈L, V�, ξ). We
should now study the distribution of s�+1 conditionally on (s�′)�+2≤�′≤m+n, V�, ξ.
Remember that S = {� ∈ L : s� = 1} is uniformly distributed among all subsets
of L of cardinality n, conditionally on ξ. Hence, by applying Lemma E.2 below
(with q = n + m0, u = m0,� and {1, . . . , q} in place of L), we obtain

P (s�+1 = 1 | (s�′)�+2≤�′≤m+n,�′∈L, V�+1, ξ) = V�+1/m0,�+1.

This gives for V�+1 ≥ 1,

E(M� | F�+1) = V�+1

m0,�+1

m0,�+1 − V�+1

V�+1
+ m0,�+1 − V�+1

m0,�+1

m0,�+1 − 1 − V�+1

V�+1 + 1

= m0,�+1 − V�+1

m0,�+1

(
1 + m0,�+1 − 1 − V�+1

V�+1 + 1

)
= m0,�+1 − V�+1

V�+1 + 1 = M�+1.

The last thing to check is that if V�+1 = 0 then M� = m0,�+1 − 1 and M�+1 =
m0,�+1, so that E(M� | F�+1) = M�+1 − 1. This gives (29) for any possible value
of V�+1.

Appendix D: Proofs for power results

D.1. Proof of Proposition 4.2

Recall that for the oracle p-values pi = F0(Xi), 1 ≤ i ≤ m, sorted as p(0) = 0 ≤
p(1) ≤ · · · ≤ p(m), the oracle BH procedure at level α is defined by

BH∗
α = {i ∈ {1, . . . ,m} : pi ≤ p(k∗)},
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for k∗ = max{k ∈ {0, 1, . . . ,m} : p(k) ≤ αk/m}, or, equivalently,

BH∗
α = {i ∈ {1, . . . ,m} : Xi ≥ X(k∗)},

for k∗ = max{k ∈ {0, 1, . . . ,m} : X(k) ≥ F−1
0 (αk/m)}. The p̂-values are

p̂i = F̂0(Xi), 1 ≤ i ≤ m, where F̂0 is defined by (7), and the semi-supervised
BH procedure at level α(1 + η) is given by

B̂Hα(1+η) = {i ∈ {1, . . . ,m} : F̂0(Xi) ≤ F̂0(X(k̂))},

with k̂ = max{k ∈ {0, 1, . . . ,m} : F̂0(X(k)) ≤ α(1 + η)k/m}. Hence, since F̂0 is
non-increasing, we have that Xi ≥ X(k∗) implies F̂0(Xi) ≤ F̂0(X(k∗)), hence

BH∗
α ⊆ {i ∈ {1, . . . ,m} : F̂0(Xi) ≤ F̂0(X(k∗))}

which is itself contained in B̂Hα(1+η) provided that k∗ ≤ k̂. By definition of k̂,
the latter holds true whenever

F̂0(X(k∗)) ≤ α(1 + η)k∗/m. (30)

Since X(k∗) ≥ F−1
0 (αk∗/m), we have F̂0(X(k∗)) ≤ F̂0(F−1

0 (αk∗/m)) and (30)
holds if F̂0(F−1

0 (αk∗/m)) ≤ α(1 + η)k∗/m. To sum up, we obtained that

P(BH∗
α ⊆ B̂Hα(1+η)) ≥ P(Ω)

with Ω = {F̂0(F−1
0 (αk∗/m)) ≤ α(1 + η)k∗/m}.

Now, let us upper bound the probability of Ωc as follows. Letting uk =
F−1

0 (αk/m), and F̃0(x) = n−1∑n
j=1 1{Yj≥x} = n+1

n F̂0(x) − 1/n, see (7), (so
that EF̃0(x) = F0(x)), we have P(Ωc) = P(Ωc, k∗ > 0) with

P(Ωc, k∗ > 0) ≤
m∑

k=1
P(F̂0(uk) > α(1 + η)k/m)

=
m∑

k=1

P

(
F̃0(uk) >

(n + 1)α(1 + η)k/m− 1
n

)

≤
m∑

k=1
P
(
F̃0(uk) > α(1 + η)k/m− 1/n

)
=

m∑
k=1

P(n(F̃0 − F0)(uk) > αηkn/m− 1)

≤
m∑

k=1
P(n(F̃0 − F0)(uk) > cαηkn/m),

for some constant c ∈ (0, 1) such that ηαn/m ≥ 1/(1 − c) (to be chosen later)
and by noting that F0(uk) = αk/m and a = ηαkn/m satisfies a − 1 ≥ ca by
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the imposed condition on c. Applying Bernstein’s inequality (Lemma E.1 with
Wi = 1{Yi≥uk}, M = 1, V = αkn/m, A = cαηkn/m), we obtain

P(Ωc) ≤
m∑

k=1
exp

{
− (cαηkn/m)2

2αkn/m + 2(cαηkn/m)/3)

}

≤
m∑

k=1

exp
{
−c2η2αkn/m

2 + 2cη/3

}
≤ e−z

1 − e−z
≤ 2e−z,

for z = c2η2αn/m
2+2cη/3 that is assumed to be such that z ≥ log 2. Now, we only have

to choose c such that the two following conditions are satisfied:

η2αn/m ≥ η

1 − c
∨ (log 2)(2 + 2cη/3)

c2
.

To make the tradeoff, we choose c = 1−η/(2 log 2). Since 2(1−η/(2 log 2))η/3 ≤
(log 2)/3, this gives rise to the sufficient condition

η2αγ ≥ (2 log 2) ∨ κ log(2)
(1 − η/(2 log 2))2 = κ log(2)

(1 − η/(2 log 2))2 (31)

where κ = 2 + (log 2)/3 ≥ 2. Noting that z ≥ D(η)η2αγ for D(η) = (1 −
η/(2 log 2))2/κ (z is above log 2 by construction), we have proved that for any
α, η ∈ (0, 1) satisfying (31),

PZ∼P (BH∗
α ⊆ B̂Hα(1+η)) ≥ 1 − 2 exp(−D(η)αη2γ).

Applying this for α′ = α/(1 + η) ∈ (0, 1) in place of α, we obtain that for all
α, η ∈ (0, 1) with η2αγ ≥ (1 + η) κ log 2

(1−η/(2 log 2))2 = (1+η) log 2
D(η) ,

PZ∼P (BH∗
α′ ⊆ B̂Hα) ≥ 1 − 2 exp(−D(η)αγη2/(1 + η)).

Since BH∗
α(1−η) ⊆ BH∗

α′ because 1 − η ≤ 1/(1 + η), we obtain

PZ∼P (BH∗
α(1−η) ⊆ B̂Hα) ≥ 1 − 2 exp(−D(η)αγη2/(1 + η)).

Now, we note that D(η)αγη2/(1 + η)) = (3 log 2)γ/γ∗(α, η) so that the lat-
ter bound is equal to 1 − (1/2)3γ/γ∗(α,η)−1. In addition, the condition η2αγ ≥
(1+η) log 2

D(η) is equivalent to γ ≥ γ∗(α, η)/3. Also, the bound trivially holds if
γ ≤ γ∗(α, η)/3. This shows the result.

D.2. Proof of Proposition 4.3

We start by proving the following result.
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Lemma D.1. Assume (Indep) and let α ∈ (0, 1) and n,m ≥ 1. Then for any
P ∈ An,m, we have that 2αm1(P ) ≤ m/(n + 1) implies

PZ∼P (TDP(P, B̂Hα) = 0) ≥ 1 − 2α. (32)

In particular, if (n + 1)/m ≤ 1/(2α), inequality (32) holds for all P ∈ An,m

with m1(P ) = 1.

Before proving Lemma D.1, let us show that it implies Proposition 4.3. For
this, let us consider α ∈ (0, 1/4), η ∈ [0, 1) and n,m ≥ 1 with n/m ≤ 1/(4α).
Then we have (n + 1)/m ≤ 1/(4α) + 1/m ≤ 1/(2α). Applying (32) for Pa =
N (0, 1)⊗(n+m−1)⊗N (a, 1), a > 0 (note that m1(Pa) = 1), we have for all a > 0,

PZ∼Pa(TDP(P, B̂Hα) = 0) ≥ 1 − 2α.

Now, we have that BH∗
α(1−η) rejects the only null hypotheses that are false

for Pa provided that Φ̄(Xm) ≤ α(1 − η)/m, where Φ̄ denotes the standard
Gaussian upper tail function. This occurs with probability Φ̄(Φ̄−1(α(1−η)/m)−
a). Therefore, for all a > 0,

PZ∼Pa(TDP(P, B̂Hα) = 0,TDP(P,BH∗
α(1−η)) > 0)

≥ Φ̄(Φ̄−1(α(1 − η)/m) − a) − 2α.

This entails for all a > 0,

sup
P∈An,m

{PZ∼P (TDP(P, B̂Hα) < TDP(P,BH∗
α(1−η)))}

≥ Φ̄(Φ̄−1(α(1 − η)/m) − a) − 2α.

Now making a tending to infinity gives (14).
Let us now prove Lemma D.1. Consider P ∈ An,m. Assume 2αm1(P ) ≤

m/(n + 1). Denote by k̂ ≥ 0 the number of rejections of B̂Hα. First observe
that k̂ ≥ 2m1(P ) implies FDP(P, B̂Hα) ≥ (k̂ −m1(P ))/k̂ ≥ 1/2. Applying the
Markov inequality, we thus derive

PZ∼P (k̂ ≥ 2m1(P )) ≤ PZ∼P (FDP(P, B̂Hα) ≥ 1/2) ≤ 2 FDR(P, B̂Hα) ≤ 2α,

because FDR(P, B̂Hα) ≤ α by Theorem 3.1. On the other hand, if k̂ < 2m1(P )
then because 2αm1(P ) ≤ m/(n + 1), we have that all p̂-values are larger than
or equal to (see (6))

1/(n + 1) ≥ 2αm1(P )/m > αk̂/m.

Hence k̂ = 0 by definition of the BH procedure (8). This entails TDP(P, B̂Hα) =
0. Putting the above relations together, we obtain

PZ∼P (TDP(P, B̂Hα) > 0) ≤ PZ∼P (k̂ ≥ 2m1(P )) ≤ 2α,

which concludes the proof.
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D.3. Proof of Proposition 4.4

Point (i) is similar to the proof of Proposition 4.2, see Appendix D.1. The only
difference is that we can use that the number of correct rejections of the oracle
procedure at a level α′ ∈ (α/2, 1) is larger or equal to k, with large probability,
because P ∈ An,m,k,α,β .

Consider nk/m ≥ γ for some γ > 0. We first prove that for α′ ∈ (α/2, 1),
η ∈ (0, 1/2), if η2α′γ ≥ κ log(2)

(1−η/(2 log 2))2 ,

PZ∼P (BH∗
α′ ⊆ B̂Hα′(1+η)) ≥ 1 − β − 2 exp(−D(η)α′η2γ).

For this, we use exactly the same proof as in Appendix D.1, except that we use
k∗ ≥ k when k∗ > 0 on an event of probability larger than 1 − β (see notation
therein). Hence, we obtain

P(Ωc, k∗ > 0) ≤ β + P(Ωc, k∗ ≥ k) ≤
m∑

k′=k

e−k′z ≤ 2e−kz,

where z = c2η2α′n/m
2+2cη/3 , which proves the intermediate result above. Now, Point (i)

comes by applying this with α′ = α/(1 + η) ≥ α(1− η) ≥ α/2 because η < 1/2.
Point (ii) is similar to the proof of Proposition 4.3, see Appendix D.2. Con-

sider any distribution P ∈ An,m,k,α,β with m1(P ) = k and

PZ∼P (TDP(P,BH∗
α(1−η)) = 1) ≥ 1 − β

(we easily check that such a distribution exists for Gaussian alternatives with
a common alternative mean large enough). Applying Lemma D.1 with this dis-
tribution P , we obtain that if 2αk ≤ m/(n + 1), that is, (n + 1)k/m ≤ 1/(2α),

PZ∼P (TDP(P, B̂Hα) = 0) ≥ 1 − 2α.

This gives Point (ii) by noting that (n + 1)k/m ≤ 1/(4α) + k/m ≤ 1/(2α)
because k/m ≤ 1 ≤ 1/(4α).

D.4. Proof of Theorem 5.1

The proof relies on the construction of particular distributions for the Yi’s and
the Xi’s. Also remember that the BH procedure rejects for large values of Xi’s.
For instance, if Xi ∼ U(0, 1) under the null, any Xi ∈ [1 − α/m, 1] will be in
the rejection set of the oracle BH procedure at level α.

Let α′ = α(1− η). For some constant κ > 0 with κ/n < 1 (to be chosen later
on), let us consider the two following distribution on R

μ = (1 − κ/n) U(0, 1) + (κ/n) U(1 − α′/m, 1) (33)
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and the following distributions on Rn+m

Q1 = μ⊗(n+m), Q2,u = U(0, 1)⊗n ⊗
m⊗
i=1

((1 − ui)U(0, 1) + uiU(1 − α′/m, 1)) ,

(34)

for u ∈ Rm. Observe that H0(Q1) = {1, . . . ,m}, m0(Q1) = m, H0(Q2,u) = {i ∈
{1, . . . ,m} : ui = 0}, m0(Q2,u) =

∑m
i=1(1 − ui), for all u ∈ Rm. Now consider

Ui, 1 ≤ i ≤ m, that are i.i.d. B(κ/n) and U = (Ui)1≤i≤n. Then any Z ∼ Q2,U
is distributed as Q2 = U(0, 1)⊗n ⊗ μ⊗m unconditionally on U .

For any procedure R = R(Z), we have FDR(Q1, R) = PZ∼Q1(|R| > 0) (re-
member H0(Q1) = {1, . . . ,m}). Since PZ∼Q1(|R| > 0) + PZ∼Q1(|R| = 0) = 1.
Either FDR(Q1, R) = PZ∼Q1(|R| > 0) ≥ 1/2, or PZ∼Q1(|R| = 0) ≥ 1/2,
in which case PZ∼Q2(|R| = 0) ≥ 1/2 − dtv(Q1, Q2), where dtv(Q1, Q2) =
supA |Q1(A) − Q2(A)| denotes the total variation distance between the distri-
butions Q1 and Q2. Hence, in the latter case, we obtain (recall the definition of
the Ui’s above)

1/2 − dtv(Q1, Q2)
≤ EUPZ∼Q2,U (|R(Z)| = 0)

≤ EU

(
1{
∑m

i=1
Ui≥1}PZ∼Q2,U (|R(Z)| = 0)

)
+ PU

(
m∑
i=1

Ui = 0
)

≤ EU

(
1{
∑m

i=1
Ui≥1}PZ∼Q2,U (|R(Z)| = 0)

)
+ (1 − κ/n)m

≤ EU

(
1{
∑m

i=1
Ui≥1}PZ∼Q2,U (|R(Z)| = 0, |BH∗

α′ ∩H1(Q2,U )| ≥ 1)
)

+ e−κm/n,

because by definition of Q2,U the null hypothesis corresponding to any index i
with Ui = 1 corresponds to a Xi larger than 1 − α′/m and thus is rejected by
BH∗

α′ . Note that we also used (1 − κ/n)m ≤ e−κm/n because for all u ∈ [0, 1),
log(1 − u) ≤ −u. The last display entails that

sup
u∈Rm

{
PZ∼Q2,u(|R(Z)| = 0, |BH∗

α′ ∩H1(Q2,u)| ≥ 1)
}

≥ 1/2 − e−κm/n − dtv(Q1, Q2).

Summing up, we obtained that for any procedure R, either FDR(Q1, R) ≥
1/2, or there exists a distribution Q2,u, u ∈ Rm, with m1(Q2,u) ≥ 1 and

PZ∼Q2,u

(
FDP(R,Q2,u) < FDP(BH∗

α′/2, Q2,u)
)
≥ 1/2 − e−κm/n − dtv(Q1, Q2).

It only remains to upper bound the total variation distance dtv(Q1, Q2). From
Le Cam’s inequalities and tensorization identities for Hellinger distances, see,
e.g., Tsybakov (2009) Section 2.4, we have that

dtv(Q1, Q2)2
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≤
∫
Rn

∫
Rm

(
n∏

i=1
f1/2
μ (yi)

m∏
i=1

f1/2
μ (xi) −

n∏
i=1

g1/2(yi)
m∏
i=1

f1/2
μ (xi)

)2

dxdy

=
∫
Rn

(
n∏

i=1
f1/2
μ (yi) −

n∏
i=1

g1/2(yi)
)2

dy ≤ n

∫
R

(
f1/2
μ (y) − g1/2(y)

)2
dy,

where fμ(y) = (1 − κ/n)1{y∈[0,1]} + κm
nα′1{y∈[1−α′/m,1]}, y ∈ R, denotes the

density of μ, while g(y) = 1{y∈[0,1]}, y ∈ R, denotes the density of U(0, 1). Now,
we have

dtv(Q1, Q2)2

≤ n

[∫ 1

1−α′
m

((κm
nα′ + 1 − κ/n

)1/2
− 1

)2

dy +
∫ 1−α′

m

0

(
1 − (1 − κ/n)1/2

)2
dy

]

= nα′

m

((κm
nα′ + 1 − κ/n

)1/2
− 1

)2
+ n

(
1 − (1 − κ/n)1/2

)2
.

Now note that 1 ≤ κm
nα′ + 1 − κ/n ≤ κm

nα′ + 1, which entails((κm
nα′ + 1 − κ/n

)1/2
− 1

)2

≤
((

1 + κm

nα′

)1/2
− 1

)2

≤
( κm

2nα′

)2

where we used that for all u ≥ 0, (1 + u)1/2 − 1 ≤ u/2. Furthermore, for all
u ∈ [0, 1], 1− (1 − u)1/2 ≤ u and thus

(
1 − (1 − κ/n)1/2

)2 ≤ (κ/n)2. Hence, we
obtain (since m ≥ 4α′),

dtv(Q1, Q2)2 ≤ nα′

m

( κm

2nα′

)2
+ n(κ/n)2 = (κ2/n)

( m

4α′ + 1
)
≤ κ2 m

2nα′ .

Now, to make e−κm/n+κ
√

m
2nα′ small, we can choose κ = (n/m) log(1+m/n),

to get the bound n
m+

√
n log(1+m/n)

2mα′ ≤ γ+
√

γ log(1+γ−1)
2α(1−η) , because log(1+m/n) ≥

log(2) ≥ 1 n/m ≥ γ and h(u) = u log(1+1/u) is increasing on R+ (for instance,
we have h′′(u) = −1/(u(u + 1)2) and h′(10) > 0). We also check that κ/n < 1,
which holds because γ log(1 + γ−1) ≤ log(2) < 1 ≤ n.

Finally, we obtained that for any procedure R, either (18) holds or

sup
P∈An,m

{PZ∼P (TDP(P,R) < TDP(P,BH∗
α(1−η)))} ≥ 1/2−γ−

√
γ log(1 + γ−1)

2α(1 − η)
(35)

holds. Since for all x > 1, we have x−1/3 log(1 + x) ≤ 2, this entails

γ +

√
γ log(1 + γ−1)

2α(1 − η) ≤ γ1/3(1 + (α(1 − η))−1/2) = (γ/(64γ∗(α, η)))1/3,

by definition of γ∗(α, η). This gives the main statement. Let us now prove the
additional statement. Choose any sequence γk ∈ Q with 0 < γk ≤ γ and γk → γ
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when k → ∞. Since γk is of the form n/m with n,m ≥ 1 being two integers,
the previous statement applied with n = mγk shows that

max

⎛⎜⎝ sup
n,m≥1
n≥mγk

sup
P∈Pn,m

{FDR(P,R) − FDR(BH∗
α, R)} − (1/2 − α),

sup
n,m≥1
n≥mγk

sup
P∈An,m

{P(TDP(P,BH∗
α(1−η)) > TDP(P,R)} − 1/2 −

(
γk

8γ∗(α, η)

)1/3
⎞⎟⎠

is nonnegative. Hence, this also holds if we take the supremum over the indices
n,m ≥ 1, n ≥ mγ. Making k tending to infinity, we get that

max

⎛⎜⎝ sup
n,m≥1
n≥mγ

sup
P∈Pn,m

{FDR(P,R) − FDR(BH∗
α, R)} − (1/2 − α),

sup
n,m≥1
n≥mγ

sup
P∈An,m

{P(TDP(P,BH∗
α(1−η)) > TDP(P,R)} − 1/2 −

(
γ

8γ∗(α, η)

)1/3
⎞⎟⎠

is nonnegative. This excludes that (15) and (16) simultaneously holds for δ1 <
1/2 − α and δ2 < 1/2 − (γ/(8γ∗(α, η)))1/3.

Appendix E: Auxiliary results

Lemma E.1. [Bernstein’s inequality] Let Wi, 1 ≤ i ≤ n centered independent
variables with |Wi| ≤ M and

∑n
i=1 Var(Wi) ≤ V , then for any A > 0,

P

[
n∑

i=1
Wi > A

]
≤ exp

{
−1

2A
2/(V + MA/3)

}
.

Lemma E.2. Let ε1, . . . , εq ∈ {0, 1} be exchangeable binary random variables,
1 ≤ u ≤ q, and V =

∑u
i=1 εi, then

P(εu = 1 | V, εq, . . . , εu+1) = V/u.

In particular, this holds if the set {1 ≤ i ≤ q : εi = 1} is uniformly distributed
among the subsets of {1, . . . , q} of size n, for some 1 ≤ n ≤ q.

Note that the following stronger result holds: conditionally on the variables
V and εq, . . . , εu+1, the set {1 ≤ i ≤ u : εi = 1} is uniformly distributed among
the subsets of {1, . . . , u} of size n− V .

Proof. Let us first observe that (εu, . . . , ε1) are exchangeable conditionally on∑u
i=1 εi, εq, . . . , εu+1. Indeed, for any permutation g of {1, . . . , u}, we have that

(εg(u), . . . , εg(1), εq, . . . , εu+1) ∼ (εu, . . . , ε1, εq, . . . , εu+1)
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and since
∑u

i=1 εi =
∑u

i=1 εg(i), we have thus

(εg(u), . . . , εg(1),

u∑
i=1

εi, εq, . . . , εu+1) ∼ (εu, . . . , ε1,

u∑
i=1

εi, εq, . . . , εu+1),

which entails the first observation.
Hence, we have

V =
u∑

i=1
P(εi = 1 | V, εq, . . . , εu+1) = u P(εu = 1 | V, εq, . . . , εu+1),

which gives the result.

Proposition E.3. Let k ≥ 1 and consider (X1, . . . , Xk) a k-dimensional cen-
tered Gaussian vector with individual variance 1 and equi-correlation equal to
ρ ∈ [−1/k, 1]. Let

Xk+1 = a(X1 + · · · + Xk) + bU, a = ρ

1 + (k − 1)ρ , b = (1 − akρ)1/2 ,

where U ∼ N (0, 1) is independent of X1, . . . , Xk. Then the random vector
(X1, . . . , Xk, Xk+1) is a (k + 1)-dimensional centered Gaussian vector with in-
dividual variance 1 and equi-correlation ρ.

As an illustration, in the extremal case ρ = −1/k, we have a = −1, b = 0
and Xk+1 = −(X1 + · · · + Xk). The opposite extremal case is ρ = 1, for which
a = 1/k, b = 0. More generally, when ρ ∈ [−1/k, 1], a is increasing in ρ from
−1 (ρ = −1/k) to 1/k (ρ = 1) and we can check that b is well defined because
|akρ| ≤ 1: when ρ ≤ 0, |akρ| ≤ |a| ≤ 1 and when ρ ≥ 0, |akρ| ≤ |ak| ≤ 1.

Proof. Since the vector (X1, . . . , Xk, U) is Gaussian, so is (X1, . . . , Xk, Xk+1)
and we just have to check that Var(Xk+1) = 1 and for all i ∈ {1, . . . , k},
Cov(Xi, Xk+1) = ρ. This comes from

Var(Xk+1) = a2 Var(X1 + · · · + Xk) + b2

= a2(k + k(k − 1)ρ) + b2

= a
ρ

1 + (k − 1)ρk(1 + (k − 1)ρ) + 1 − akρ = 1,

and, for all i ∈ {1, . . . , k},

Cov(Xi, Xk+1) = a

⎛⎝1 +
∑

1≤j≤k,j 	=i

Cov(Xi, Xj)

⎞⎠ = a(1 + (k − 1)ρ) = ρ.

Proposition E.4. Let α ∈ (0, 1) and n,m ≥ 1 such that α(n + 1)/m is an
integer. Then if �̂ given by (21) exists, we have F̂DP�̂ = α
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Proof. Recall

F̂DP� = m

n + 1
1 +

∑�
�′=1 s�′

1 ∨
∑�

�′=1(1 − s�′)
, 1 ≤ � ≤ n + m.

Let us introduce the sets L =
{
� ∈ {1, . . . , n + m} : F̂DP� ≤ α

}
and L′ ={

� ∈ {1, . . . , n + m} : F̂DP� < α
}

. By assumption, L 	= ∅ and �̂ = maxL. If

L′ = ∅, then necessarily �̂ /∈ L′ which means F̂DP�̂ = α. So we assume in the
sequel L′ 	= ∅ and consider �̃ = maxL′ ≤ �̂.

Let us prove F̂DP�̃+1 = α. First note that �̃ ≤ n+m−1 because F̂DPn+m−1 =
1. In addition, we have by definition F̂DP�̃+1 ≥ α, which means that s�̃+1 = 1.
Let v = 1 +

∑�̃+1
�′=1 s�′ , k = 1 ∨

∑�̃+1
�′=1(1 − s�′) and a = α(n + 1)/m, so that

n+1
m F̂DP�̃+1 = v/k ≥ a and n+1

m F̂DP�̃ = (v−1)/k < a. But since v, k and a (by
assumption) are integers, we have that v − 1 < ak implies v ≤ ak and thus we
obtain v = ak. This gives F̂DP�̃+1 = m

n+1v/k = α.
Now, since F̂DP�̃+1 ≤ α we have �̂ ≥ �̃+1. But by definition of �̃, this implies

F̂DP�̂ ≥ α. Since F̂DP�̂ ≤ α also holds, this gives F̂DP�̂ = α.

Proposition E.5. Let α ∈ (0, 1) and n,m ≥ 1. Then if �̂ given by (21) exists,
we have F̂DP�̂ ≥ m

n+1�α
n+1
m �.

Proof. Let α′ = m
n+1�α

n+1
m � ≤ α and L′ =

{
� ∈ {1, . . . , n + m} : F̂DP� ≤ α′

}
.

If this set is empty, this means F̂DP�̂ > α′ and the conclusion holds. If this
set is not empty, we can consider its maximum �̃ = maxL′. Obviously, we have
�̃ ≤ �̂. If �̃ = �̂, then by Lemma E.4 (since α′(n + 1)/m is an integer), we have
F̂DP

�̃
= α′, and thus also F̂DP�̂ = α′ and the conclusion holds. If �̃ < �̂, we

have F̂DP�̂ > α′ because �̃ is a maximum. This shows F̂DP�̂ ≥ α′ in any case
and proves the result.

Lemma E.6. In the Gaussian linear model of Section 1.4, in case of counting
knockoff (case (B), with the notation therein), let us consider the LASSO solu-
tion (1) (the solution always exists and we assume that the map giving the solu-
tion is fixed and measurable). Then, for any permutation σ : {1, . . . , n + m} →
{1, . . . , n + m} of the columns of X = [X̃ X] that leaves invariant all elements
of the set {n + j, j : βj 	= 0, 1 ≤ j ≤ m} (alternatives), we have

({β̂j(λ), λ ≥ 0})1≤j≤n+m ∼ ({β̂σ(j)(λ), λ ≥ 0})1≤j≤n+m,

that is, the set of LASSO paths is invariant under the permutation σ. In par-
ticular, when considering the LASSO maximum statistics ZLM

j = max{λ ≥ 0 :
β̂j(λ) 	= 0}, 1 ≤ j ≤ n + m, or the LASSO coefficient statistics ZLC

j = |β̂j(λ)|,
1 ≤ j ≤ n + m, the vector (Z1, . . . , Zn+m) = (Y1, . . . , Yn, X1, . . . , Xm) satisfies
Assumption (Exch).
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Proof. Since ‖Y − Xb‖2 = (Y − Xb)T (Y − Xb) = Y TY − 2Y TXb + bTXTXb,
we can write the LASSO solution path as {β̂j(λ), λ ≥ 0} = f(XTY,XTX), for
some measurable function f . Moreover, by denoting Xσ the matrix X where
the columns have been permuted according the permutation σ : {1, . . . , n +
m} → {1, . . . , n + m}, we have by the i.i.d. property of X, that Xσ ∼ X for any
permutation σ. Since X is also independent of ε, we have

(XTY,XTX) = (XT (X[0 β]T + ε),XTX)
∼ ((Xσ)T (Xσ[0 β]T + ε), (Xσ)TXσ).

If in addition σ leaves invariant the set {n + j, j : βj 	= 0, 1 ≤ j ≤ m}, we have
Xσ[0β]T =

∑m
j=1 βjXσ(n+j) =

∑
j:βj 	=0 βjXσ(n+j) =

∑
j:βj 	=0 βjXn+j = X[0β]T ,

the last display is equal to ((Xσ)T (X[0β]T +ε), (Xσ)TXσ) = ((Xσ)TY, (Xσ)TXσ).
This shows

({β̂j(λ), λ ≥ 0})1≤j≤n+m = f(XTY,XTX)
∼ f((Xσ)TY, (Xσ)TXσ)
= ({β̂σ(j)(λ), λ ≥ 0})1≤j≤n+m,

and concludes the proof.

Appendix F: Additional numerical experiments

F.1. Comparison to naive procedures

Figure 9 shows a comparison with the two naive procedures defined in Section 1.3
for α = 0.2 and m = 10 as a function of n. The plots display the FDR and TDR
results for BH∗ (dark green and khaki), B̂H (dark blue and cyan), B̂Y (red
and magenta) and B̂HSplit (gray-blue and black). The left column corresponds
to i.i.d. samples and the right column to equicorrelated Gaussian samples (see
Section 6.2). We note immediately very similar performances in the i.i.d. and
correlated cases because the considered values of n are large. Under the “full
null’ (top row), the dense (middle row) and sparse (bottom row) cases, the
convergence of the FDR is clearly much slower for the naive approaches than
for BH∗ and B̂H. The same effect is true for the TDR in the signal-present
cases. As expected, the B̂Y approach is overly conservative to force the FDR
control, which leads to a substantial loss in power. The B̂HSplit approach indeed
controls the FDR but also suffers from power loss at fixed n with respect to
the proposed B̂H procedure. Note that for B̂HSplit, the rule of thumb nk � m/α
found in Section 4 is expected to become nk � m2/α, because the splitting
process uses a training sample of length n/m instead of m. This is what we
observe in the middle and lower panels, where values of k = 1 and k ≈ 3
respectively lead to n = 500 and n ≈ 170. In contrast, the corresponding values
of n are 10 times smaller for B̂H, which is consequently much more powerful at
fixed n than the naive approaches considered here.
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Fig 9. Comparison with naive procedures for m = 10 as a function of n, for α = 0.2.
The plots display the FDR and TDR results for BH∗ (dark green and khaki), B̂H (dark
blue and cyan), B̂Y (red and magenta) and B̂HSplit (gray-blue and black). Left column: i.i.d.
samples. Right column: equicorrelated Gaussian samples (see Section 6.2). Top row: full null
configuration, middle row: sparse case (m1 = 1), bottom row: dense case (m1 = 5). The
number of Monte Carlo simulations used for estimating the FDR and TDR is 104 for all
plots. The 2σ confidence interval on the estimated FDR and TDR, when visible, is plotted in
magenta.

F.2. Results in a non Gaussian case

Figure 10 illustrates the FDR and TDR in the case where the null distribution
P0 is a Student distribution with zero mean and ν = 3 degrees of freedom,
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Fig 10. FDR and TDR results for a Student distribution with three degrees of freedom, in
the dense case (compare to Figure 5) : m1 = m

2 , with μ = 1 (left column) and μ = 2 (right
column). The number of tests m equals 10 in the top row and 100 in the bottom row. The
number of Monte Carlo simulations used for estimating the FDR and TDR is 104 (top row)
and 103 (bottom row). The 2σ confidence interval on the estimated FDR and TDR is plotted
in magenta. In all plots the standard deviation (divided by 10) of the FDP and TDP are
shown in shaded green for BH∗ and shaded blue for B̂H.

rescaled to have unit variance. Comparing with the Gaussian case of (Figure 5),
where all other simulation parameters are the same, very similar conclusions
can be drawn. In particular, the FDR control of B̂H indeed holds also in the
case of a heavy tailed distribution since our results are distribution free. Note
finally that while the power is larger in the Student case than in the Gaussian
case in this setting, the situation can be reversed for other couples (α, μ). As ν
increases however, the powers in the Gaussian and standardized Student cases
become indeed similar, and hardly distinguishable when ν reaches ≈ 20.

F.3. Results for small values of n

Figure 11 displays the TDR of B̂H and BH∗ for n ∈ {5, 10} and μ ∈ {1, 3, 4}
in the fully dense case where m1 = m. In this case, when μ is large, there are
k = m detectable alternatives, so that the rule of thumb n = m/(αk) reads
n = 1/α = 5 here. We indeed observe that B̂H as a power close to the one of the
oracle for n = 5 (even more for n = 10) when μ ∈ {3, 4}, regardless of m. This
once again suggests that the rule of thumb is valid without tuning any constant.
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Fig 11. TDR of B̂H (α = 0.2) in the fully dense case m1 = m at fixed n = 5 (left column)
and n = 10 (right column) for m varying in the range [1 5 × 104]. The signal amplitude μ
increases from μ = 1 (top row) to μ = 3 (bottom row). The plots display the TDR results for
BH∗ (khaki) and B̂H (cyan). The number of Monte Carlo simulations used for estimating
TDR is 102 for all plots. The standard deviation (divided by 10) of the FDP is shown in
shaded blue and the 2σ confidence interval on the estimated TDR is plotted in magenta.

F.4. Results for bbBH procedure

This section describes the numerical experiment discussed in Appendix A.
First, we describe in detail the third procedure (locfdr): it is based on �-

values �i = π0g0(Ti)/g(Ti), 1 ≤ i ≤ m, where π0 is the probability that a null
hypothesis is true and using the notation of Appendix A. Note that the latter



Semi-supervised multiple testing 4977

Fig 12. Boxplots of the FDP (left) and TDP (right) for the procedures BH0, bbBH, Locfdr,
BH∗, see text. For each boxplot, the FDR (left) and TDR (right) are depicted with the symbol
“�”. Each picture is composed of 4 panels, one for each value of the alternative mean μ ∈
{1, 2, 3, 4}. Top m = 10, Bottom m = 100. α = 0.2, m0 = m/2, 500 replications.

is not well defined in our setting since the null hypothesis are not random.
Indeed, �-values are generally defined in the so-called “two group model” (Efron
et al., 2001) that uses an additional mixture effect for the configuration vector
θ = (θi)1≤i≤m ∈ {0, 1}m with θi = 0 if and only if i-th null hypothesis is
true. Nevertheless, we can fix π0 to the value m0/m and compute the �-values
accordingly. Then, the version of the local FDR procedure controlling the FDR
(introduced in Sun and Cai (2007)) reads as follows:

• first order the �-values �(1) ≤ · · · ≤ �(m);
• reject the null corresponding to the k̂ smallest �-values where

k̂ = max
{
k ∈ {0, . . . ,m} : k−1

k∑
i=1

�(i) ≤ α

}
.

Since the value of m0/m is used in this locfdr procedure and to make the com-
parison fair with BH0, bbBH and BH∗, we apply the locfdr at level α/(m0/m).
This way, all procedures uses the same parameter informations and target the
same FDR level αm0/m.

Figure 12 displays the FDP/TDP achieved by each procedure, in a Gaussian
setting where g0 is the density of the N (0, 1) and g1 is the density of the Cauchy
distribution with mean μ, taken in the range {1, 2, 3, 4}.
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