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Abstract: In this paper, we propose a robust estimator for the location
function from multi-dimensional functional data. The proposed estimators
are based on the deep neural networks with ReLU activation function.
At the meanwhile, the estimators are less susceptible to outlying obser-
vations and model-misspecification. For any multi-dimensional functional
data, we provide the uniform convergence rates for the proposed robust
deep neural networks estimators. Simulation studies illustrate the compet-
itive performance of the robust deep neural network estimators on regular
data and their superior performance on data that contain anomalies. The
proposed method is also applied to analyze 2D and 3D images of patients
with Alzheimer’s disease obtained from the Alzheimer Disease Neuroimag-
ing Initiative database.
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1. Introduction

We consider the problem of robust estimation of the location function from a
collection of functional observations defined over Rd (d ≥ 1) a multi-dimensional
domain. To be precise, let ξ = {ξ(X) : X ∈ I} be a compactly supported ran-
dom field, i.e., a real-valued second-order stochastic process on a compact set
I ⊂ R

d. Such data are nowadays commonly referred to as functional data. In
many applications, data are collected over one-dimensional domains (i.e., d = 1)
such as time-varying trajectories and relevant research has been enjoying consid-
erable popularity. The readers are referred to some monographs [19, 25, 12, 9] for
a comprehensive overview of functional data analysis (FDA). Thanks to the im-
proved capabilities of data recording and storage, as well as advances in scientific
computing and data science, many new forms of functional data have emerged.
Instead of traditional unidimensional functional data, multi-dimensional func-
tional data becomes increasingly common in various fields, such as geographical
science and neuroscience. For example, for the early detection and tracking
of Alzermer’s diease, the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) contains each individual’s 3D brain-scans. De-
spite the promising of multi-dimensional functional data, statistical methods for
such data are limited, except for very few existing works, for example, [6, 29, 7].

A fundamental problem in FDA is the estimation of central tendency, yet
most current estimation procedures either lack robustness with respect to the
many kinds of anomalies one can encounter in the functional setting or only focus
on the robustness for unidimensional scenario. The fact that robust estimation
has not been widely investigated for multi-dimensional scenario is certainly not
owing to lack of interesting applications, but to the greater technical difficulty
to handle such loss function for multi-dimensional functional data and establish
their theoretical properties.

To give some background on our proposed method for multi-dimensional func-
tional data, we first review several relevant robust FDA methods that have been
developed for analyzing unidimensional functional data. [2, 13] proposed robust
estimators for the functional principal components by adapting the projection
pursuit approach and based on MM estimation, respectively. [18] established a
robust version of spline-based estimators for a linear functional regression model.
[21] proposed a robust procedure based on convex and non-convex loss functions

adni.loni.usc.edu
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in functional linear regression models. Recently, [14, 15] proposed robust esti-
mators and associated simultaneous confidence bands for the mean function of
functional data using least absolute deviation and M-estimation, respectively.

We notice that there are few existing works on robust methods for analyzing
so-called two-way functional data which consist of a data matrix whose row and
column domains are both structured, as when the data are time series collected
at different locations in space. For example, [28] develop a robust regularized
singular value decomposition method for analyzing such special type functional
data. It is formulated as a penalized loss minimization problem and a pre-
decided two-way roughness penalty function is used to ensure smoothness along
each of the two functional domains. As this method is only designed for the
special two-way functional data, it can not be adopted to the general multi-
dimensional FDA directly. Furthermore, a lack of theoretical analysis provides
inadequate assurance to robust methods practitioners.

To remedy these deficiencies, we introduce the first class of optimal robust
location estimators based on the deep neural network (DNN) method. DNN is
one of the most promising and vibrate areas in deep learning. DNN has been
recently applied in various nonparametric regression problems, they have been
shown to successfully overcome the curse of dimensionality in nonparametric
regression; see [20, 3, 16, 17]. There are also some works proposed for deep
learning algorithms for FDA from the statistical point of view [22]. Based on
the sparsely connected DNN, [26] proposed a DNN estimator for the mean func-
tion from functional data based on the least squares neural network regression.
However, none of them works on the robust statistics, not to mention the proven
theoretical results for robust FDA.

The contributions of the present paper are three-fold. First, to the best of
our knowledge, this is the first work on proposing DNN based robust estimator
for FDA. We propose a broad class of M-type RDNN (robust DNN) estimators
to estimate location functions for multi-dimensional functional data. Compared
with the prior work [26], which can only handle the least-square estimation
of the mean function of Gaussian functional data, this paper is able to deal
with non-Gaussian and contaminated multi-dimensional functional data. Fur-
thermore, the loss function considered here is an absolutely continuous convex
function, which leads to a flexible choice of loss function and provide also quan-
tile and expectile estimators. Second, RDNN estimators come with theoretical
guarantees. In particular, we study the rate of convergence of the estimator
under weak assumptions and show that the estimator is rate-optimal even for
any d-dimensional functional data. By borrowing the strength from the DNN,
the convergence rate of the proposed RDNN estimator does not depend on the
dimension d if the true function is an intrinsically low-dimensional function. Fi-
nally, our analyses are fully nonparametric. At the meanwhile, RDNN estimator
does not suffer the curse-of-dimensionality which is a classical drawback in the
traditional nonparametric regression framework.

The paper is structured as follows. Section 2 provides the model setting in
FDA and introduces multilayer feed-forward artificial neural networks and dis-
cusses mathematical modeling. The implementation on hyperparameter selec-
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tions is also included in Section 2. The theoretical properties of the proposed
RDNN estimator can be found in Section 3. Section 4 provides the detailed
implementation on neural network’s architecture selecting and training. In Sec-
tion 5, the finite sample performance of proposed neural network estimator is
demonstrated through simulation studies.. The proposed method is applied to
the spatially normalized positron emission tomography (PET) data from ADNI
in Section 6 and we make some concluding remarks in Section 7. Technical proofs
are collected in the Appendix.

2. The model and the robust deep neural network estimator

2.1. FDA model

Let the process
{
ξ(X),X ∈ [0, 1]d

}
be L2, i.e. E

∫
[0,1]d ξ

2(X)dX < ∞. In the
classical FDA setting, d = 1 refers to the index variable as time. When d = 2, 3,
it could also be a spatial variable, such as in image or geoscience applications.
We model the multi-dimensional functional data as noisy sampled points from
a collection of trajectories that are assumed to be independent realizations of a
smooth random function ξ(X), with unknown mean function f0(X) = E{ξ (X)}.
Without loss of generality, we assume ‖f0‖∞ is bounded by for some universal
constant C. We consider a version of the model that incorporates uncorrelated
measurement errors. Let ξ1, . . . , ξn denote n independent and identically dis-
tributed (i.i.d.) copies of ξ at points X = (X1, . . . , Xd). Our goal is to recover
the mean function f0(Xj) from the noisy observations of the discretized func-
tional data:

Yij = ξi (Xj) + ei (Xj) , i = 1, 2, . . . , n, j = 1, 2, . . . , Ni, (2.1)

where ei (Xj) are random noise variables. In [27, 5, 4], it is assumed that the
noise variables ei (Xj) are independent of the ξi and i.i.d. with zero mean and
finite variance. However, we allow for correlated errors that are not necessarily
independent of the functional curves.

In terms of mean-deviations, model (2.1) can be equivalently written as

Yij = f0 (Xj) + εi (Xj) , i = 1, 2, . . . , n, j = 1, 2, . . . , Ni, (2.2)

where εi(Xj) = ξi (Xj) − E{ξi (Xj)} + ei(Xj) denotes the error process associ-
ated with the i-th response evaluated at Xj . The problem is thus reformulated
as a regression problem with repeated measurements and possibly correlated
errors. In the following, for simple notations, we consider the equally number of
observations for each subject design (Ni ≡ N). The main results can be easily
extended to irregular number design.

2.2. Robust deep neural network estimator

We first briefly introduce the necessary notations and terminologies used in the
neural networks. Popular choice of activation functions includes rectified linear
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unit (ReLU), sigmoid, and tanh. In this article, we will mainly focus on neural
networks with the ReLU activation function, i.e., σ(x) = (x)+ for x ∈ R. For
any real vector y = (y1, . . . , yr)�, define the shift activation function σ(y) =
(σ(y1), . . . , σ(yr))�. For an integer L ≥ 1 and p = (p0, p1, . . . , pL, pL+1) ∈ N

L+2,
let F(L,p) denote the class of DNN, with L hidden layers and pl nodes on hidden
layer l, for l = 1, . . . , L. We consider the feed-forward neural network class, and
any f ∈ F(L,p) has a composition structure, i.e.,

f(x)=WLσ (WL−1 . . . σ (W1σ (W0x + u0) + u1) + . . . + uL−1)+uL, x ∈ R
d,

(2.3)
where Wl ∈ R

pl+1×pl are weight matrices and ul ∈ R
pl are shift vectors, for

l = 1, . . . , L. Owing to the large capacity of neural network class, it tends
to overfit the training dataset easily. To avoid the overfitting and reduce the
computational burden, we train the robust estimator using the following s-sparse
ReLU DNN class:

F(L,p, s)

=
{
f ∈ F(L,p) :

L∑
l=0

‖Wl‖0 + ‖ul‖0 ≤ s, max
l=0,...,L

‖Wl‖∞∨‖ul‖∞ ≤ 1,

‖f‖∞ ≤ C} , (2.4)

where ‖ · ‖∞ denotes the maximum-entry norm of a matrix/vector or supnorm
of a function, ‖ ·‖0 denotes the number of non-zero entries of a matrix or vector,
s > 0 controls the number of nonzero weights and shift vectors, C controls the
range of network f . The selecting procedures of unknown tuning parameters
(L,p, s) shall be given in Section 4. To simplify the notations, we write F
instead of F(L,p, s) in the following.

In the regression model, the common objective is to find an optimal estimator
by minimizing a loss function. In the DNN setting, this coincides with training
neural networks by minimizing the empirical risk over all the training data.
In particularly, given the networks in (2.4), the proposed RDNN estimator is
defined as

f̂ = arg min
f∈F

1
nN

n∑
i=1

N∑
j=1

ρ (Yij − f (Xj)) , (2.5)

where ρ is some convex nonnegative loss function satisfying ρ(0) = 0 and F
is some function class. This formulation is very general, allowing the flexibility
in the choice of the loss function, so that better resistance towards outlying
observations is achieved. One of the well-known examples of such loss functions
is Huber’s loss function given by ρk(x) = x2/2I(|x| ≤ k)+k(|x|−k/2)I(|x| > k),
where I(·) is the indicator function, and k > 0 controls the blending of square
and absolute losses. Furthermore, the symmetry of the loss function in (2.5)
is not required, such versatile estimators may be readily incorporated into the
present framework. Indeed, to estimate conditional quantiles, one would only
need to select the loss function as ρ(x) = x(τ − I(x < 0)) for some τ ∈ (0, 1).



6466 S. Wang et al.

Finally, the asymptotic properties of quantile estimators are covered by the
theory developed in Section 3.

3. Theoretical properties of the RDNN estimator

3.1. Definitions and notations

For any vectors a, b ∈ R
N , define the scaled N -inner product 〈a, b〉N = N−1∑N

j=1 ajbj and the associated N -norm ‖a‖N =
√
N−1∑N

j=1 a
2
j . Define the ball

of β-Hölder functions with radius K as

Cβ
d (D,K) = { f : D ⊂ R

d → R :∑
α:|α|<β

‖∂αf‖∞+
∑

α:|α|=�β�
sup

x,y∈D,x �=y

|∂αf(x) − ∂αf(y)|
|x− y|β−�β�

∞
≤K

⎫⎬⎭,

where ∂α = ∂α1 . . . ∂αd with α = (α1, . . . , αd) ∈ N
d and |α| := |α|1.

We assume the true location function f0 has the natural composition struc-
ture, i.e.,

f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0,

where g� : [a�, b�]d� → [a�+1, b�+1]d�+1 , g� = (g�j)�j=1,...,d�+1
, 
 = 1, . . . , q, with

unknown parameters d� and q. We assume each g�j is β�-Hölder function with
radius K�. Let t� be the maximal number of variables on which each of the
g�j depends on t�, and t� ≤ d�. Since g�j is also t�-variate, the true underlying
function space becomes

G (q,d, t,β,K)
:= { f = gq ◦ . . . ◦ g0 : g� = (g�j)j : [a�, b�]d� → [a�+1, b�+1]d�+1 ,

g�j ∈ Cβ�
t�

(
[a�, b�]t� ,K�

)
, |a�|, |b�| ≤ K� } , (3.1)

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq), K := (K0, . . . ,Kq)
and β∗

� := β�

∏q
k=�+1(βk ∧ 1).

3.2. Assumptions

In this section, we develop the convergence rate of the proposed RDNN estimator
in (2.5). For simple notations, log denotes the logarithmic function with base 2.
For sequences (an)n and (bn)n, an � bn means an ≤ c1bn and an ≥ c2bn where
c1 and c2 are absolute constants for any n. For simplicity, let εij = εi(Xj).

We now introduce the main assumptions:

(A1) The true regression function f0 ∈ G (q,d, t,β,K).
(A2) The RDNN estimator f̂ ∈ F(L,p, s), where L � log(nNν), s � (nNν)

1
θ+1 ,

minl=1,...,L pl � (nNν)
1

θ+1 , for θ = min�=0,...,q
2β∗

�

t�
and ν ≥ 0.
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(A3) The loss function ρ(·) is an absolutely continuous convex function on R

with derivative ψ(·) := ρ′(·) existing almost everywhere.
(A4) There exist finite constants κ and c1 such that for all x ∈ R and |x′| < κ,

|ψ(x + x′) − ψ(x)| < c1.
(A5) There exist a finite constant c2 such that supj≤NE{|ψ(ε1j+u)−ψ(ε1j)|2}<

c2|u|, as |u| → 0.
(A6) supj≤N E{(ψ(ε1j))2} = O(N−ν), for some constant ν≥0, and E{ψ(ε1j)}=

0. There exist finite constants δj , j = 1, . . . , N such that 0 < infj≤N δj ≤
supj≤N δj < ∞ and supj≤N |E{ψ(ε1j + u)} − δju| = o(u), as |u| → 0.

Assumption (A1) is a natural definition for the neural network, which is
fairly flexible and many well known function classes are contained in it. For
example, the generalized additive model f0(x) = h

(∑d
i=1 fi(xi)

)
, can be writ-

ten as a composition of three functions f0 = g2 ◦ g1 ◦ g0, with g0(x1, . . . , xd) =
(f1(x1), . . . , fd(xd)), g1(x1, . . . , xd) =

∑d
i=1 xi, and g2(·) = h(·). Assumption

(A2) depicts the architecture and parameters’ setting in the network space. To
use discontinuous score functions, Assumptions (A3)-(A6) impose some regular-
ity on the error process and its finite-dimensional distributions. In particularly,
Assumptions (A3) guarantees the existence of the solution of the optimization
problem in (2.5). Most of the loss functions chosen in practice satisfy this con-
dition, such as the Huber loss function. Assumptions (A4) and (A5) require
boundedness and some regularity of the score function, which are standard con-
ditions for M-estimation procedures for FDA, see the similar conditions required
in [14]. For the first part of Assumption (A6), when considering the classical L2
loss, it essentially makes sure the maximal value of the covariance function is
finite and decreases when the number of measurements increases. They are stan-
dard regularity conditions for the covariance functions in FDA literature, see
[4, 14, 26] for example. The second part of Assumption (A6) essentially requires
that for any j = 1, . . . , N , function hj(u) = E{ψ(ε1j +u)}, is differentiable with
strictly positive derivative at the origin. This is a necessary condition for the
minimum to be well-separated in the limit. Assumption (A6) on the score func-
tion ψ is also standard conditions in M-estimation for functional data literature,
see [14, 10]. It is also not stringent assumptions for errors, for example, εij ’s fol-
lowing a zero mean Gaussian process or mixture Normal–Cauchy distribution.
We provide more detailed examples for εij ’s in Section 5.

3.3. Unified rate of convergence

The following theorem establishes the unified convergence rate of the RDNN
estimator f̂ for any multi-dimensional functional data under the empirical norm.
Its proof and some technical lemmas are provided in the Appendix.

Theorem 3.1. Under Assumptions (A1)–(A6), we have

‖f̂ − f0‖2
N = Op(nNν)−

θ
θ+1 log6(nNν), (3.2)

where ν ≥ 0, θ = min�=0,...,q
2β∗

�

t�
.
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It is interesting to observe that our proposed RDNN estimator enjoys the
same asymptotic as the least squares DNN estimator [26] does. Specifically, the
convergence rate for M-type DNN estimator in the functional regression model
depends on the smoothness, i.e., β∗

� , and the intrinsic dimension, i.e., t�, of the
true mean function f0, and the decay rate of the maximal value of the variance
function E{(ψ(ε1j))2}.

4. Implementation

Different from classical nonparametric estimators, f̂ has no analytical expres-
sion or basis expansion expression. The proposed robust estimator is constructed
using the neural network class which is fully characterized by the architectures
(L,p, s). We now provide the detailed implementation procedure for the pro-
posed estimator in (2.5).

4.1. Neural network’s architecture selection

In the DNNs’ computations, tuning parameters are crucial as they control the
overall behavior of the proposed estimator and the learning process. The tun-
ing parameters are so-called network architecture parameters, which include the
number of layers L, the number of hidden neurons within these layers p, and
sparse parameter s. There are fairly rich literature discussing the optimization
selection, such as grid search, random search, and Bayesian optimization. Nev-
ertheless, the selection of network architecture parameters has been rarely dis-
cussed. In practice, some model selection methods such as cross-validation may
have good performances, but with huge computational burdens. For this reason,
considering both the computational efficiency and the theoretical guarantee, we
select architecture parameters based on the assumptions in Theorem 3.1. Partic-
ularly, we choose L = �0.5 log(nN1/2)�, pl = �10n1/2N1/4�, s = �5n1/2N1/4�L.
We also select ν = θ = 0.5 in Assumption (A2). This choice of ν and θ includes
a large scope of true function classes. Note that in our considered sparse neural
network space F , the sparse parameter s should be carefully selected. When
designing the network architecture practically, the dropout rate is suggested as
�5n1/2N1/4�(�10n1/2N1/4�)−1 in each layer during the optimization procedure.

4.2. Training neural networks

The minimization in (2.5) is generally a computational cumbersome optimiza-
tion problem owing to non-linearities and non-convexities. The most commonly
used solution utilises stochastic gradient descent (SGD) to train a neural net-
work. SGD uses a batch of a specific size, that is, a small subset of the data
(typical size B = 22 to 210) is randomly drawn at each iteration of optimization
to evaluate the gradient, to alleviate the computation hurdle. Our input size of
network is nN , thus we choose relatively large batches B from 256 to 512 de-
pending on the performance of convergence. A pass of the whole training set is
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called an epoch. Typical choices of epochs are 200, 300 and 500. The number of
epochs defines the number of times that the learning algorithm works through
the entire training dataset. The step of the derivative at each epoch is controlled
by the learning rate which is 0.001. The readers are referred to recent mono-
graphs ([8]) for a general discussion of these numerical challenges. There are
certainly some challenges for SGD to train DNN. For example, albeit good the-
oretical guarantees for well-behaved problems, SGD might converge very slowly;
the learning rates are difficult to tune ([1]). To overcome these challenges, we
use a variant gradient based optimization algorithm Adam. Different from the
classical SGD procedures, Adam is a method for efficient stochastic optimization
that only requires first-order gradients with little memory requirement. Hence,
it is well suited for problems when there are large sample sizes and parameters
([11]), and is widely used in network training for FDA, such as [26]. In our
numerical studies, Adam provides the best results and is the most computation-
ally efficient among other gradient based algorithms. In the real applications,
we recommend Adam algorithm for finding RDNN estimators in (2.5).

5. Simulation

To illustrate the finite sample performance of the introduced RDNN estimators
based on our proposed neural networks method, we conduct substantial simu-
lations for both 2D and 3D functional data. All experiments are conducted in
R. We summarize R codes and examples for the proposed RDNN algorithms on
GitHub (https://github.com/FDASTATAUBURN/RDNN).

5.1. 2D simulation

The 2D functional data are generated from the model:

Yij = f0 (Xj) + εij , (5.1)

where the true mean function f0(xj) = −8
[
1 + exp

{
cot(x2

1j) cos(2πx2j)
}]−1,

and xj = (j1/N2, j2/N2), 1 ≤ j1, j2 ≤ N2, are the equally spaced grid points
on [0, 1]2, and N2

2 = N . The error term is εij = η(Xj) + eij , where η(·) is
generated from a Guassian process, with zero mean and covariance function
G0(xj ,xj′) =

∑2
k=1 cos(2π(xkj − xkj′)), j, j′ = 1, . . . , N . The measurement

errors eij ’s are i.i.d. standard normal random variables.
Under the proposed functional model (5.1), we introduce outlier hyper-

surfaces to the generated functional sample by randomly contaminating a sub-
set, Ro, of the original sample. The contamination proportion r is chosen to be
0, 0.1 and 0.2. The similar simulation setting has been considered in [14, 15].
We consider the following four types of outliers, i.e., two surface outliers and
two heavy-tailed distributed outliers. They mimic the types of noised data en-
countered in the real dataset in Section 6.

https://github.com/FDASTATAUBURN/RDNN
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Case 1: Stripe outliers To simulate outliers on a stripe in 2D regions, the con-
tamination occurs on a line segment a0 × I, that is,

Y o
ij∗ = Yij∗ + εoij∗ , i ∈ Ro, j∗1/N2 = a0, j∗2/N2 ∈ I,

where εoij∗ ∼ U (10, 20). In this simulation, a0 = 0.2, and we choose (i)
I = ∪5

k=1
[ 2k−2

10 , 2k−1
10
)
, and (ii) I = [0, 1].

Case 2: Square outliers To simulate outliers on a consecutive 2D region, the
contamination occurs on a square [a0, a1]2, that is,

Y o
ij∗ = Yij∗ + εoij∗ , i ∈ Ro, (j∗1/N2, j

∗
2/N2) ∈ [a0, a1]2

where εoij∗ ∼U (10, 20). In the simulation, we choose (i) [a0, a1]2 =[0.1, 0.3]2,
and (ii) [a0, a1]2 = [0.1, 0.5]2.

Case 3: Mixture Normal–Cauchy To simulate outliers with heavy-tailed distri-
bution, the distribution of εoij∗ ’s follow a mixture of a normal distribution
N(0, 1) and a Cauchy distribution with location 0 and scale 0.5. The mix-
ing weights for Cauchy distribution are (i) 30%, and (ii) 50%.

Case 4: Mixture Normal–Slash Similar to previous case, but using a mixture
of a normal distribution N(0, 1) and a Slash distribution with location 0
and scale 0.5. The mixing weights for Slash distribution are (i) 30%, and
(ii) 50%.

We consider sample size n = 50, 100, 200. For each image, let N2 = 10, implicat-
ing the number of observational points (pixels) is set to be N = N2

2 = 100. The
network architecture is determined in a data driven way as suggested in Sec-
tion 4.1, and we use Huber’s loss function with tuning parameter 1 for RDNN
estimator in (2.5). The results of each setting are based on 100 Monte Carlo sim-
ulations. Figures 1 presents heat maps of a typical set of the true mean function
and abnormal observations, along with the estimations of RDNN and DNN es-
timators. From Table 1, we can see that when training the clean data, DNN
method has comparable L2 risks with RDNN estimators. These risks decrease
as the sample size n increases. However, when contamination is involved, Ta-
ble 2 shows that the risks of DNN estimators elevated drastically, while RDNN
ones keep consistent results. In addition, although increasing either contamina-
tion rate r or contamination areas on a stripe raises the risks, we can see that
RDNN estimators perform steady and remains relatively small L2 risks even
given 20% data contain anomalies. From Table 2, we can also see that when
contamination occurs in a square region, the same trend is revealed, as previous
discussion. It is worth mentioning that when r = 0.2, for the contaminated re-
gion [0.1, 0.5]2, DNN estimators has extremely large risks, which are more than
10 times of ones of RDNN. Similar findings can be concluded from Table 3,
where the random errors following non-Gaussian heavy-tail distributions. The
RDNN estimator best mitigates the effect of this contamination relative to its
competitors. Overall, the present simulation experiments suggest that RDNN
perform well in clean data and safeguard against outlying observations either in
the form of outlying surfaces or heavy-tailed measurement errors.
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Fig 1. 2D simulation for Cases 1 and 2 on contaminated stripes and Cases 3 and 4 on square
regions. The first row: true function f0; The second row to forth row present the contaminated
data Y o, DNN estimations, RDNN estimations. From left to right, the observed data are
generated from Case 1 (i) and (ii), Case 2 (i) and (ii).

Table 1

Empirical L2 risk of 2D uncontaminated data with standard errors in brackets.

n RDNN DNN
50 0.114 (0.040) 0.125 (0.049)
100 0.059 (0.029) 0.055 (0.028)
200 0.034 (0.016) 0.031 (0.017)

5.2. 3D simulation

For 3D simulation, the functional data are generated from the model (5.1). The
true mean function is f0(xj)=f0(x1j , x2j , x3j)=exp

( 1
3x1j+ 1

3x2j+
√

x3j + 0.1
)
,

where xj = (x1j , x2j , x3j) = (j1/N3, j2/N3, j3/N3), 1 ≤ j1, j2, j3 ≤ N3, are
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Fig 2. 2D simulation for mixed Cauchy and mixed Slash distribution. The first row: true
function f0; The second row to forth row present the contaminated data Y o, DNN estimations
, RDNN estimations. From left to right, the observed data are generated from Case 3 (i) and
(ii), Case 4 (i) and (ii).

equally spaced grid points in [0, 1]3 and N = N3
3 = 53. Generate η(·) from

a Guassian process, with zero mean and covariance function G0(xj ,xj′) =∑3
k=1 cos(2π(xkj − xkj′)), j, j′ = 1, . . . , N , and the measurement errors eij ’s

are i.i.d. random variables generated from standard normal distribution. To
contaminate the clean data, we apply the similar settings in Section 5.1.

Case 5: To simulate outliers on a consecutive 3D region, the contamination
occurs on a square [a0, a1]3, that is,

Y o
ij∗ = Yij∗ + εoij∗ , i ∈ Ro, (j∗1/N3, j

∗
2/N3, j

∗
3/N3) ∈ [a0, a1]3

where εoij∗ ∼ U (10, 20). In the simulation, we choose [a0, a1]3 =[0.10, 0.20]3
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Table 2

Empirical L2 risk of 2D contaminated data in Cases 1 and 2 with standard errors in
brackets.

contaminated regions n r = 0.1 r = 0.2
RDNN DNN RDNN DNN

stripe

50 0.115 (0.048) 0.179 (0.078) 0.128 (0.055) 0.329 (0.095)
∪5
k=1

[
2k−2
10 , 2k−1

10

)
100 0.055 (0.023) 0.102 (0.033) 0.065 (0.033) 0.252 (0.055)
200 0.032 (0.015) 0.081 (0.024) 0.041 (0.018) 0.257 (0.043)
50 0.137 (0.066) 0.311 (0.081) 0.151 (0.051) 0.864 (0.164)

[0, 1] 100 0.064 (0.027) 0.240 (0.055) 0.088 (0.029) 0.842 (0.112)
200 0.036 (0.015) 0.226 (0.032) 0.064 (0.023) 0.848 (0.084)

square

50 0.118 (0.048) 0.260 (0.093) 0.154 (0.071) 0.664 (0.170)
[0.1, 0.3]2 100 0.065 (0.033) 0.195 (0.059) 0.069 (0.025) 0.754 (0.107)

200 0.038 (0.019) 0.195 (0.042) 0.054 (0.022) 0.752 (0.091)
50 0.151 (0.060) 0.657 (0.159) 0.234 (0.080) 2.014 (0.297)

[0.1, 0.5]2 100 0.078 (0.042) 0.533 (0.111) 0.134 (0.063) 2.070 (0.248)
200 0.046 (0.023) 0.550 (0.091) 0.108 (0.042) 2.172 (0.191)

Table 3

Empirical L2 risk of 2D contaminated data in Cases 3 and 4 with standard errors in
brackets.

error types n mixing weight = 30% mixing weight = 50%
RDNN DNN RDNN DNN

50 0.186 (0.069) 0.665 (0.959) 0.191 (0.069) 1.343 (3.193)
Cauchy 100 0.097 (0.044) 0.289 (0.265) 0.104 (0.586) 0.586 (0.799)

200 0.051 (0.029) 0.140 (0.175) 0.053 (0.024) 0.104 (0.066)
50 0.142 (0.065) 0.456 (0.686) 0.136 (0.071) 0.949 (2.022)

Slash 100 0.074 (0.033) 0.419 (0.948) 0.071 (0.033) 0.822 (1.533)
200 0.054 (0.027) 0.304 (0.617) 0.055 (0.029) 0.544 (1.004)

and [0.10, 0.30]3 for different contamination proportions.
Case 6: Mixture Normal–Cauchy Similar to case 3, the distribution of εoij∗ ’s fol-

low a mixture of a normal distribution N(0, 1) and a Cauchy distribution
with location 0 and scale 0.5. The mixing weights for Cauchy distribution
are (i) 30%, and (ii) 50%.

Case 7: Mixture Normal–Slash Similar to case 4, the distribution of εoij∗ ’s follow
a mixture of a normal distribution N(0, 1) and a Slash distribution with
location 0 and scale 0.5. The mixing weights for Slash distribution are (i)
30%, and (ii) 50%.

The results of each setting are based on 100 Monte Carlo simulations for
sample sizes are 50, 100, and 200. For reference, Table 4 shows the average of
empirical L2 risks for clean data. We find that when data are clean, both of
RDNN and DNN provide comparable estimations results, and the empirical
risk decreases as the sample size increases. Tables 5 and 6 report the average of
empirical L2 risks for cases 6 and 7. As expected, non-robust DNN estimator
has explosive risks, which are around three times of those for uncontaminated
data. Similar to the 2D cases, either enlarging the contaminated region or the
contamination proportion increases risk with DNN estimators. The precision of
the RDNN estimator is kept at the same level as all outlier types and the clean
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Table 4

Empirical L2 risk of 3D uncontaminated data with standard errors in brackets.

n RDNN DNN
50 0.103 (0.050) 0.090 (0.045)
100 0.055 (0.033) 0.047 (0.023)
200 0.027 (0.013) 0.026 (0.018)

Table 5

Empirical L2 risk of 3D contaminated data for cases 5 with standard errors in brackets.

Contaminated n r = 0.1 r = 0.2
regions RDNN DNN RDNN DNN

50 0.111 (0.049) 0.204 (0.066) 0.119 (0.052) 0.515 (0.107)
[0.10, 0.20]3 100 0.056 (0.028) 0.155 (0.041) 0.078 (0.033) 0.539 (0.067)

200 0.033 (0.018) 0.148 (0.029) 0.049 (0.017) 0.571 (0.058)
50 0.118 (0.060) 0.463 (0.104) 0.173 (0.055) 1.598 (0.212)

[0.10, 0.30]3 100 0.066 (0.032) 0.472 (0.092) 0.135 (0.052) 1.925 (0.160)
200 0.042 (0.017) 0.478 (0.077) 0.103 (0.033) 1.942 (0.156)

Table 6

Empirical L2 risk of 3D contaminated data for cases 6 and 7 with standard errors in
brackets.

error types n mixing weight = 30% mixing weight = 50%
RDNN DNN RDNN DNN

50 0.130 (0.072) 0.526 (1.421) 0.134 (0.073) 0.804 (2.805)
Cauchy 100 0.066 (0.035) 0.459 (0.953) 0.062 (0.036) 0.535 (1.295)

200 0.043 (0.023) 0.163 (0.267) 0.045 (0.026) 0.418 (0.907)
50 0.128 (0.062) 0.753 (2.220) 0.125 (0.057) 0.787 (1.938)

Slash 100 0.066 (0.042) 0.403 (0.887) 0.068 (0.049) 0.760 (1.458)
200 0.049 (0.036) 0.321 (0.771) 0.047 (0.030) 0.587 (1.312)

dataset. This provides strong evidence that the proposed RDNN estimator is less
sensitive to the presence of outliers, maintaining precision. In the worst case, the
risks of RDNN estimator have increased no more than four times compared with
the clean data scenarios, however, the non-robust ones have increased around
20 times.

6. Real data analysis

The dataset used in the preparation of this article were obtained from the ADNI
database (adni.loni.usc.edu). The ADNI is a longitudinal multicenter study
designed to develop clinical, imaging, genetic, and biochemical biomarkers for
the early detection and tracking of AD. From this database, we collect PET data
from 85 patients in AD group. This PET dataset has been spatially normalized
and post-processed. These AD patients have three to six times doctor visits and
we only select the PET scans obtained in the third visits. Patients’ age ranges
from 59 to 88 and average age is 76.49. All scans were reoriented into 79×95×69
voxels, which means each patient has 69 sliced 2D images with 79 × 95 pixels.
For 2D case, it indicates that each subject has N = 7, 505 = 79 × 95 observed

adni.loni.usc.edu
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pixels for each selected image slice.
In this imaging dataset, we observe that there exists a few abnormal obser-

vations, which have different pattern from the majority of data. In Figure 3,
the first row demonstrates the averaged images of the 20-th, 30-th, 40-th, and
50-th slices across all patients. In the second row, images are taken from differ-
ent individuals, where extreme small values showing in certain regions, which
lead to blur boundaries. For the 2D case, we select the 20-th, 30-th, 40-th and
50-th slices from 69 slices for each patient, and apply the proposed RDNN
for each slice, respectively, with loss function ρτ (x) = x (τ − I(x < 0)) with
τ = 0.1, 0.3, 0.5, 0.7, 0.9. The neural network (2.5) is trained through optimizer
Adam with architecture parameters (L, p, s) selected as discussed in Section 4.1.
We used 100 epochs and 128 as batch size given different data. Based on the im-
ages, we obtain the proposed RDNN estimators for each slice, and also recover
the image with the original resolution 79 × 95 pixels and a higher resolution
128 × 128. To visualize the estimates, Figures 4 provides the heat maps of the
RDNN estimator of different quantiles for all four slices in 2D scenario, Fig-
ure 5 depicts the same estimates but with a finer resolution (128× 128). For 3D
scenario, we combine all the four slices together, hence, the 3D data totally con-
tains 79× 95× 4 voxels. We first obtain the RDNN estimators with the original
resolution and recover them also in a higher resolution 128× 128× 4. Figures 6
and 7 depict the RDNN estimators in the original resolution and higher reso-
lution for each slice and quantile, respectively. The estimated quantiles serve
to confirm the suspected multi-modality in this imaging data. According to the
heat maps, in 20-th, 30-th, and 40-th slices, higher quantiles significantly differ
from lower ones in that there are much larger value presenting in the bottom
regions. In particular, for 50-th slice, higher quantiles can be easily distinguished
from lower ones in terms of overall larger values and wider boundaries.

7. Discussion

In this work, we resolve the robust estimation for functional data on multi-
dimensional domains via the promising technique from the deep learning. By
properly choosing network architecture, our estimator achieves the optimal non-
parametric convergence rate in empirical norm. To the best of our knowledge,
the present work is the first work on multi-dimensional functional data robust
estimation with theoretical justification for robust deep learning estimators.
Numerical analysis demonstrates that our approach is useful in recovering the
signal for imaging data given the existing of anomalies.

Appendix

A.1. Technical lemmas and proofs

We first introduce some lemmas which are useful in the proof of Theorem 3.1.
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Fig 3. The first row are the averaged images for 20-th, 30-th, 40-th and 50-th slices across
all patients. The rest are some abnormal data for each slices from some patients.

Lemma A.1 (Lemma A.2 of [26]). For any composite regression function in
the class G(q,d, t,β,K) and large M , such that M ≥ max�=0,...,q

{
(β� + 1)t� ∨

(K� + 1)et�
}
, there exists an estimator f∗ ∈ F such that

inf
f∗∈F

‖f∗ − f0‖2
∞ ≤ CIM

−θ, (A.1)

where θ = min�=0,...,q
2β∗

�

t�
and CI is a constant. The parameters of the neural

network f∗ satisfy:

(i) L ≤ D0D1 logM − 1;
(ii) V 2 := {

∏L+1
l=0 (pl + 1)}2 ≤ 4(d + 1)2(12rM)2D0D1 logM ;

(iii) s ≤ D0D2M logM − 1,

where D0 = 2 max�
t�+β�

β�
, D1 = 4 max�(1 + �log(t� ∨ β�)�)(q + 1), D2 = 290×∑q

�=0 d�+1(t� + β� + 1)3+t� and r = max� d�+1(t� + �β��).
Remark 1. [26] focused on deriving Lemma A.1 which provides the approxi-
mation error, and the estimation error can be easily derived under the Gaussian
distribution assumption. In contrast, given the general convex semicontinuous
loss function and non-Gaussian distribution, we have to first show the mini-
mization of convex semi-continuous functions in the unit balls in Lemma A.2

below. Then, we work on the estimation error rate ‖f̂ − f∗‖2
N = Op(CnN ) given

the convex semi-continuous loss function, which is most challenging and break-
through step. Lemma A.1 is the intermediate step but not the major technical
contribution in the current one.

Lemma A.2. Consider Euclidean space R
N endowed with inner product 〈 , 〉N

and associated norm ‖ · ‖N . Let L(·) : RN → R
+ be a convex lower semicontinu-

ous function. If L(0) < inf‖a‖N=1 L(a) for a ∈ R
N , then there exists an ã (may
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Fig 4. 2D quantile esimators with 79× 95 pixels. From the left to the right: the 20-th, 30-th,
40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-quantiles.

not be unique), such that ã = infa∈RN L(a), and the minimizer is attained in
the unit ball {a : ‖a‖N ≤ 1}.

Proof. Note that the given space is a Hilbert space. Let s = inf‖a‖N=1 L(a).
Since L is bounded below by 0, we have 0 ≤ s < ∞. Denote A = {a : L(a) ≤ s}
and B = {a : ‖a‖N ≤ 1}.



6478 S. Wang et al.

Fig 5. 2D quantile esimators with 128×128 pixels. From the left to the right: the 20-th, 30-th,
40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-quantiles.

We first prove A ⊂ B. Suppose ∃ ā ∈ A, and ā /∈ B, which implies L(ā) ≤ s
and ‖ā‖N > 1. By convexity assumption,

L

(
ā

‖ā‖N

)
= L

(
1

‖ā‖N
ā + ‖ā‖N − 1

‖ā‖N
0
)

≤ 1
‖ā‖N

L (ā) + ‖ā‖N − 1
‖ā‖N

L(0) < s,
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Fig 6. 3D quantile estimators with 79× 95 pixels. From the left to the right: the 20-th, 30-th,
40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-quantiles.

where the last inequality is obtained by assumption L(0) < s. Since ā
‖ā‖N

is on
the unit ball, this leads to the contradiction, which implies A ⊂ B.

We then prove A is a compact set. In particular, we only need to prove
the boundedness and closedness in the Euclidean space. Indeed, boundedness
is implied by the fact that A ⊂ B. For any sequence {am}m≥1, define a∗ =
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Fig 7. 3D quantile estimators with 128×128 pixels. From the left to the right: the 20-th, 30-th,
40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-quantiles.

limm→∞ am, by the lower semicontinuity of L, L(a∗) ≤ lim infm→∞ L(am) ≤ s,
which implies a∗ ∈ A. Thus, the closedness is proven.

Finally, we prove that there exists a vector ã ∈ A, such that ã = infa∈RN L(a),
which implies that the minimizer is attained in B. Since 0 ≤ infa∈RN L(a) ≤ s <
∞, there exists {ãm}m≥1, such that limm→∞ L(ãm) = infa∈RN L(a). Without
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loss of generality, assume L(ãm) ≤ s for all m, i.e. ãm ∈ A. Since A is compact,
there exists a vector ã ∈ A, such that ‖am − ã‖N → 0. Thus, by the lower
semicontinuity of L,

L(ã) ≤ lim inf
m→∞

L(ãm) = inf
a∈RN

L(a),

i.e. ã ∈ A ⊂ B is the minimzer of L.

A.2. Proof of Theorem 3.1

Proof. Let Ln(f) denote the objective function, that is,

Ln(f) = 1
nN

n∑
i=1

N∑
j=1

ρ(Yij − f(Xj)).

Let g(Xj) = f∗(Xj) − f(Xj) and it is easy to see that minimizing Ln(f) is
equivalent to minimizing

Ln(g) = 1
nN

n∑
i=1

N∑
j=1

ρ(εij + Rj + g(Xj)).

where Rj = f0(Xj) − f∗(Xj).
Denoting CnN = (nNν)−

θ
θ+1 log6(nNν), we aim to show that for every ε > 0,

there exists a γε ≥ 1 (in the following we simply write γ instead of γε), such
that

lim
n→∞

Pr
(

inf
‖g‖N=γ

Ln(C1/2
nN g) ≥ Ln(0)

)
≥ 1 − ε. (A.2)

Define F∗ = {f − f∗ : f ∈ F}, such that for any g ∈ F∗, (g1, . . . , gN )ᵀ ∈
[−2C, 2C]N ⊂ R

N . We first show the convexity and lower semicontinuity of
Ln on F∗. The convexity follows from Assumption (A3) and the convexity
of the map (g1, . . . , gN )ᵀ → ‖g‖2

N . The lower semi-continuity can be derived
from the Assumption (A3) that ρ is convex and continuous, thus also lower
semicontinuous. Note that by definition, since f∗, f ∈ F , we have ‖f∗ − f‖N ≤
‖f∗−f‖∞ ≤ 2C. Therefore, when equality Ln(0) = inf‖g‖N=γ Ln(C1/2

nN g) holds,
the convex lower semicontinuous Ln automatically guarantees the minimizer is
attained for f̂ ∈ F such that ‖f̂ − f∗‖N ≤ γC

1/2
nN .

We now establish (A.2). To this end, we decompose

Ln(C1/2
nN g) − Ln(0)

= 1
nN

n∑
i=1

N∑
j=1

ρ(εij + Rj + C
1/2
nN g(Xj)) −

1
nN

n∑
i=1

N∑
j=1

ρ(εij + Rj)

= I1(g) + I2(g) + I3(g),
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where

I1(g) = 1
nN

n∑
i=1

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

E{ψ(εij + u)}du

I2(g) = 1
nN

n∑
i=1

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

[{ψ(εij + u) − ψ(εij)}

−E{ψ(εij + u) − ψ(εij)}] du

I3(g) = C
1/2
nN

1
nN

n∑
i=1

N∑
j=1

ψ(εij)g(Xj).

By the superadditivity of the infimum we have the lower bound

inf
‖g‖N=γ

{
Ln(C1/2

nN g) − Ln(0)
}
≥ inf

‖g‖N=γ
I1(g) + inf

‖g‖N=γ
I2(g) + inf

‖g‖N=γ
I3(g).

We need to determine the order of each one of the three terms.
By Schwarz Inequality, we obtain

|I3(g)| ≤
C

1/2
nN

n

⎧⎨⎩ 1
N

N∑
j=1

∣∣∣∣∣
n∑

i=1
ψ(εij)

∣∣∣∣∣
2
⎫⎬⎭

1/2⎧⎨⎩ 1
N

N∑
j=1

|g(Xj)|2
⎫⎬⎭

1/2

.

By Assumption (A6), we have

E

⎧⎨⎩ 1
N

N∑
j=1

∣∣∣∣∣
n∑

i=1
ψ(εij)

∣∣∣∣∣
2
⎫⎬⎭ = 1

N

N∑
j=1

n∑
i=1

n∑
k=1

E{ψ(εij)ψ(εkj)}

= n

N

N∑
j=1

E{|ψ(εij)|2} = O(nN−ν).

Using Markov’s inequality, we thus find
{

1
N

∑N
j=1 |

∑n
i=1 ψ(εij)|2

}1/2
=

Op(n1/2N−ν/2). The second factor is naturally bounded by γ. Combining these
two bounds and note that (nNν)−1 � CnN , we obtain

sup
‖g‖N=γ

|I3(g)| = C
1/2
nNOp(1) (nNν)−1/2

γ ≤ Op(γCnN ). (A.3)

When n is large enough, for all g ∈ F∗,

C
1/2
nN max

j≤N
|g(Xj)| ≤ 2C1/2

nNC = o(1),

and by Lemma A.1,

max
j≤N

|Rj | ≤ ‖f0 − f∗‖∞ ≤ CIM
−θ.
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When M−θ = O(1)CnN , we have maxj≤N |Rj | = o(1) when n is large.
Applying Assumption (A6) yields, for large n∫ Rj+C

1/2
nN g(Xj)

Rj

E{ψ(εij + u)}du

=
∫ Rj+C

1/2
nN g(Xj)

Rj

{δju + o(u)}du

= CnN

2 δj |g(Xj)|2{1 + o(1)} + δjC
1/2
nNRjg(Xj){1 + o(1)}.

Hence,

1
N

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

E{ψ(εij + u)}du

= CnN

2N

N∑
j=1

δj |g(Xj)|2{1 + o(1)} + C
1/2
nN

N

N∑
j=1

δjRjg(Xj){1 + o(1)}

≥ I11(g) + I12(g),

where I11(g) := 1/2 infj δjCnN‖g‖2
N and I12(g) := N−1C

1/2
nN

∑N
j=1 δjRj |g(Xj)|2

{1 + o(1)}. We find an upper bound for |I12(g)|. By the Schwarz inequality,

sup
‖g‖N=γ

|I12(g)| ≤ sup
‖g‖N=γ

(
sup
j

δj

)
C

1/2
nN

N

N∑
j=1

|g(Xj)||Rj |{1 + o(1)}

� C
1/2
nN ‖R‖N sup

‖g‖N=γ

‖g‖N{1 + o(1)}

� γCnN{1 + o(1)},

where the last inequality is derived by ‖R‖2
N ≤ ‖f0 − f∗‖∞ ≤ M−θ � CnN .

Therefore,

inf
‖g‖N=γ

I11(g) + I12(g) = O(1)CnNγ2{1 + O(γ−1) + o(1)}

for all g ∈ F .
In the following, we show that for every ε > 0,

lim
n→∞

Pr
(

sup
‖g‖N=γ

|I2(g)| ≥ εCnN

)
= 0. (A.4)

Consider the class of real-valued functions hg : RN → R given by

hg(w) = 1
N

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(wj + u) − ψ(wj)}du.
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Let Pn be the empirical measure associated with (εi1, . . . , εiN ), i = 1, . . . , n. We
rewrite I2(g) as I2(g) = (Pn − P)hg, where Phg is the expectation for hg. Let
F∗ = {f − f∗ : f ∈ F}, where F is the sparse neural network class defined in
(2.4). By Markov’s inequality, we have

Pr
(

sup
g∈F∗

|(Pn − P)hg| > εCnN

)
≤

E{| supg∈F∗ n1/2|(Pn − P)hg|}
n1/2CnN ε

. (A.5)

Thus it suffices to show that the right-hand side of the above inequality tends
to zero as n → ∞.

Let N[](ε,G, L2(P)) be the ε-bracketing number for a set of functions G in the
L2(P)-norm and define the ε-bracketing integral,

J[](ε,G, L2(P)) =
∫ ε

0
{logN[](u,G, L2(P))}1/2du.

By Lemma 19.36 of [23], for any class of real-valued functions H such that
E(|h|2) < δ2 and ‖h‖∞ < C3 for all h ∈ H, we have

E
(

sup
h∈H

n1/2|(Pn − P)h|
)

≤ c0J[](δ,H, L2(P))
(

1 +
J[](δ,H, L2(P))C3

δ2n1/2

)
.

Hence, in the following, we first determine a bound on the bracketing number
and then we estimate δ and C3. By our previous discussion, maxj≤N |Rj | → 0
and C

1/2
nN × supg∈F∗ ‖g‖∞ → 0. Hence, for any (g1, g2) ∈ F∗ ×F∗, by Assump-

tion (A4),

sup
w∈RN

|hg1(w) − hg2(w)|

= sup
w∈RN

∣∣∣∣∣∣ 1
N

N∑
j=1

∫ Rj+C
1/2
nN g1(Xj)

Rj+C
1/2
nN g2(Xj)

{ψ(wj + u) − ψ(wj)}du

∣∣∣∣∣∣
≤ 2c1C1/2

nN ‖g1 − g2‖∞. (A.6)

Let N (ε,F∗, ‖ · ‖∞) denote the ε-covering number in the sup-norm. By (A.6)
and Theorem 2.7.11 of [24], we now have

N[](ε, {hg, g ∈ F∗}, L2(P)) ≤ N (ε/(4c1C1/2
nN ),F∗, ‖ · ‖∞). (A.7)

By Lemma 5 of [20] and Lemma A.1, we have

logN (ε/(4c1C1/2
nN ),F∗, ‖ · ‖∞)

≤ (s + 1) log(2ε−1(4c1C1/2
nN )(L + 1)V 2)

� O(1)M logM
{

log2 M + log(C1/2
nN ε−1)

}
, (A.8)

where the last inequality follows the conditions for L, s and V given in Lemma
A.1.
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Next, we estimate δ and C3. By the Schwarz inequality and Assumption (A5),
we have

E{|hg|2} ≤ N−2 E

⎧⎪⎨⎪⎩
∣∣∣∣∣∣

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(εij + u) − ψ(εij)}du

∣∣∣∣∣∣
2
⎫⎪⎬⎪⎭

≤ N−1
N∑
j=1

E

⎧⎨⎩
∣∣∣∣∣
∫ Rj+C

1/2
nN g(Xj)

Rj

{ψ(εij + u) − ψ(εij)}du
∣∣∣∣∣
2⎫⎬⎭

≤ N−1
N∑
j=1

C
1/2
nN |g(Xj)|E

{∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(εij + u)−ψ(εij)}2du

}

≤ C
1/2
nN max

j≤N
|g(Xj)|N−1

N∑
j=1

c2{|Rj |2 + CnN |g(Xj)|2}

≤ 2c2C3/2
nN ,

where the last inequality follows by the definition of neural network space F
in (2.4). Since this estimate is uniform on F , we take δ2 = c0C

3/2
nN , where

the constant c0 will be specified later. In addition, by Assumption (A5) and
Lemma A.1, we have

sup
g∈F∗

sup
w∈RN

|hg(w)| ≤ c1C
1/2
nN sup

g∈F∗

⎧⎨⎩ 1
N

N∑
j=1

|g(Xj)|2
⎫⎬⎭

1/2

≤ c1C
1/2
nN .

Let c0 = (2c2)∨c1, then C3 = c0C
1/2
nN and C3/δ

2 = C−1
nN . With our estimate of δ

and the bound on the bracketing number implied by (A.7) and (A.8), when we
take M−θ � CnN , the bracketing integral over n1/2CnN is bounded as follows

(n1/2CnN )−1J(δ,F∗, L2(P))
� C

−1/4
nN n−1/2M1/2(log3/2 M + (logM logC−1/4

nN )1/2)

= O(1)
(
nθ/(4θ+4) log−3/2 n

)
n−1/2

(
n1/(2θ+2) log−3/θ n

)
log2 n

= O(1)n−θ/(4θ+4) log(θ−6)/(2θ) n = o(1),

which also implies C3(δ2n1/2)−1J(δ,G, L2(P)) = o(1). Consequently, inequality
(A.5) entails (A.4). By the previous discussion, (A.2) holds. Given the convexity
and lower semicontinuity of Ln on F , by Lemma A.2, inequality (A.2) entails
the existence of a minimizer ĝ = f∗ − f̂ , such that ‖ĝ‖2

N = Op(CnN ). Note that
by definition, since f∗, f ∈ F , we have ‖g‖N ≤ ‖f∗ − f‖∞ ≤ 2C. Therefore,
when Ln(0) = inf‖g‖N=γ Ln(C1/2

nN g), the convex lower semicontinuous Ln auto-
matically guarantees the minimizer is attained in {g : ‖g‖N ≤ 2CCnN}. Using
the one-to-one relation between g and f , if (A.2) holds, we obtain ‖f̂ − f∗‖2

N =
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Op(CnN ). By Lemma A.1, we have

‖f̂ − f‖2
N ≤ 2‖f̂ − f∗‖2

N + 2‖f∗ − f‖2
N = Op(CnN + M−θ)

= Op(CnN + M−θ) = Op(CnN ).

which implies Theorem 3.1.
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