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Abstract: Covariance functions over generalized networks have been ex-
plored to a very limited extent. We consider nested spatial or space-time
covariance models, where space is a generalized network, and where time
can be linear (the real line) or circular. We show sufficient conditions allow-
ing preservation of positive semidefiniteness when at least one of the weights
involved in the linear combination is negative. Several examples illustrate
our findings. In particular, we show nested constructions for Euclidean trees
with a finite number of leaves involving basic covariance functions with
different scale parameters or different compact supports. We also provide
criteria that allow one to build space-time models through half spectral
modeling on graphs cross linear or circular time.
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1. Introduction

1.1. Context

This paper deals with the design of covariance functions associated with random
fields with index set a generalized (or a linear) network, as well as generalized
networks cross time, where time is either the real line or the circle. Defining
covariance functions over a linear or a generalized network is a nontrivial task.
The tour de force by Anderes et al. (2020) provides sufficient conditions for
candidate functions, defined on the positive real line, that can be composed with
special metrics, to be positive semidefinite (hence, valid covariance functions)
over these spaces. Related works in this direction can be found in Monestiez et al.
(2005); Bailly et al. (2006); de Fouquet and Bernard-Michel (2006); Ver Hoef
et al. (2006) and Peterson et al. (2007).

1.2. Quasi-metric, semi-metric and metric spaces

Generalized network as in Anderes et al. (2020) are actually a special case of
quasi-metric spaces (Menegatto et al., 2020). A quasi-metric space is a pair
(X,σ) where X is a nonempty set and σ is a quasi-distance, that is, a function
σ : X × X → [0,∞) satisfying σ(x, x′) = σ(x′, x) and σ(x, x) = 0 for x, x′ ∈
X. The quasi-metric space becomes semi-metric if, additionally, σ satisfies the
triangle inequality. If σ(x, x′) is strictly positive when x �= x′, then X is a metric
space. We denote Dσ

X the diameter set of X, that is

Dσ
X = {σ(x, x′), x, x′ ∈ X}.

Normed spaces and inner product spaces are typical examples of quasi-metric
spaces with quasi-distance given by σ(x, x′) = ‖x − x′‖, x, x′ ∈ X, with ‖ · ‖
denoting the related norm.
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1.3. Linear graphs, graphs with Euclidean edges, and Euclidean
trees

A network (or equivalently, a graph), G, is a pair (V, E), where V is a collection
of nodes (called vertices in graph theory) and E denotes a collection of edges. G
is planar if it can be drawn on the plane in such a way that different edges only
possibly intersect with each other at one of their vertices, i.e., there is no edge
crossing. It is linear if, in addition, the edges are line segments.

Anderes et al. (2020) propose graphs with Euclidean edges as a generalization
of linear networks. That is, they consider graphs where each edge is associated
with an abstract set that is in bijective correspondence with a segment of the
real line. This allows one to associate each edge with a Cartesian coordinate
system to measure distances between any two points located over the edge.
Specifically, a graph with Euclidean edges is a triple (G,V, {ϕe}e∈E) such that:
a. (V, E) is a finite simple connected graph, meaning that the vertex set V is
finite, the graph has no repeated edges or edge which joins a vertex to itself,
and every pair of vertices is connected by a path.
b. Each edge e ∈ E is associated with an abstract set, denoted with the same
symbol e, where the vertex set V and all the edge sets e ∈ E are mutually
disjoint.
c. For each edge e ∈ E and every pair of vertices (u, v) ∈ V×V that is connected
by e, the mapping ϕe is a bijection that applies to e, u and v as follows: ϕe maps
e into an open interval (e, e) ⊂ R, and ϕe maps {u, v} into {e, e}.
d. Denote with dG(u, v) : V × V → [0,∞) the standard shortest-path weighted
graph metric on the vertices of (V, E) with edge weights given by e− e for every
e ∈ E . Then, dG(u, v) = e− e for all u, v ∈ V and for each e ∈ E .

The graph G endowed with a quasi-distance becomes a quasi-metric space.
Anderes et al. (2020) propose two alternative metrics. The geodesic distance, dG,
is the shortes path merging any pair of points over G. The resistance metric, dR,
is defined as the variance of the increments – i.e., a variogram – of a special class
of random processes (see Anderes et al., 2020, for a detailed essay). Depending
on the characteristics of the graph G, one metric might be used or not to build
positive definite functions. When the metrics dR and dG can be equivalently
used, we use the notation d∗; this notation slightly deviates from that of Anderes
et al. (2020) and Tang and Zimmerman (2020).

Finally, we call Euclidean tree any tree-like graph (which is planar). Vertices
of a Euclidean tree that are connected to one edge only are called leaves.

Figure 1 provides some examples of a linear graph, graphs with Euclidean
edges and a Euclidean tree. Other illustrations can be found in Anderes et al.
(2020) as well as in Tang and Zimmerman (2020). As noted in Tang and Zim-
merman (2020), an arbitrary point x belongs to G when x ∈ V ∪

⋃
e∈E e. As in

their paper, we assume that the topological structure of G does not evolve over
time.
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Fig 1. Up-Left: an example of linear network; Up-Right: A Euclidean tree with 7 leaves (blue
dots), which may represent a stream network; Bottom-Left: A graph with Euclidean edges
that may represent a road traffic network; crosses between edges with no vertices represent
bridges or tunnels. Bottom-Right: another graph with Euclidean edges; the bijection mapping
the vertices u and v into e and e and the edge e into the open interval (e, e) gives an Euclidean
system with orientation and a way to measure distances.

1.4. Nested covariance models

Nested covariance models are linear combinations of basic covariance functions.
They have an old history that can be traced back to geostatistics (Matheron,
1971; Journel and Huijbregts, 1978; Wackernagel, 2003; Gregori et al., 2008;
Chilès and Delfiner, 2012).

Since covariance functions form a convex cone that is closed under elemen-
tary algebraic operations, a linear combination of covariance functions results
in a new covariance function, provided the weights are all nonnegative. As dis-
cussed by Gregori et al. (2008), restricting all the weights to be nonnegative
can represent a serious limitation. A constructive criticism about this fact is
provided by Peron et al. (2018): admissible nested models with negative weights
have important consequences to several branches of applied sciences. Discussion
on the importance of negative weights in nested models stems from turbulence
theory (Yakhot et al., 1989), but also classical statistical inference (Bonat and
Jørgensen, 2016), where some nontrivial extensions of GLM to multivariate co-
variance functions require at least one weight in the linear combination to be
negative. The idea of modeling a function of the covariance matrix by a lin-
ear structure goes back to Pourahmadi (1999, 2011) and Pan and Mackenzie
(2003), among others (see Bonat and Jørgensen, 2016, for a thorough review).



4226 Emilio Porcu et al.

A third consequence of nested models with only nonnegative weights is their
implications in terms of statistical inference and testing, since, for instance, the
zero-value for a specific weight lies on the boundary of the parameter space.
Some criticism about this fact is expressed in Bevilacqua et al. (2012).

Nested covariance models have been already proposed over planar surfaces
(Gregori et al., 2008) and over spheres (Peron et al., 2018). Covariance func-
tions over generalized network are recent, and apparently the literature has not
devoted attention to the problem of nested covariance models for these spaces,
or over generalized networks cross time.

1.5. State of the art. Our contribution

Spatial and space-time nested covariance models have already received attention
for simple examples of quasi-metric spaces. For (X,σ) = (Rn, ‖ · ‖2), with n
a positive integer and ‖ · ‖ denoting the Euclidean norm, and for (Y, σ) =
(R, |·|), the problem of covariance models over the product space X×Y has been
addressed by Gregori et al. (2008) and Mateu et al. (2008). For (X,σ) = (Sn, θ),
with S

n denoting the unit radius n-dimensional sphere embedded in R
n+1, and

θ the geodesic distance on the sphere, and for (Y, σ′) = (R, | · |), the problem
has been tackled by Peron et al. (2018). For all these contributions, the solution
to the problem is based on Fourier inversion and on spectral representations of
the covariance functions over their related spaces.

This paper considers the following cases:
a. (X,σ) = (G, d∗), with G either a graph with Euclidean edges, or a Euclidean
tree with a given number of leaves;
b. (X,σ) = (G, d∗) as in a. above, and (Y, σ) = (R, | · |), or (Y, σ′) = (S1, θ).

What makes problems a. and b. challenging is that no spectral representation
is available for covariance functions over generalized networks (Anderes et al.,
2020). Hence, different mathematical techniques are needed in comparison with
earlier contributions in the literature.

The outline of the paper is as follows. Section 2 provides background ma-
terial. Section 3 challenges spatial nested models where the space is either a
graph with Euclidean edges or a Euclidean tree with a finite number of leaves.
The generalization of this approach to space-time models is then provided in
Section 4. Conclusions follow in Section 5, while technical proofs are deferred
to Appendix 5 to avoid mathematical burden.

2. Background material

2.1. Covariance functions over quasi-metric spaces

We consider a real-valued random field {Z(x, y) : (x, y) ∈ X×Y }, where (X,σ)
and (Y, σ′) are quasi-metric spaces. In particular, we shall consider two cases:
(Y, σ′) = (R, | · |) or (Y, σ′) = (S1, θ), where θ is the geodesic distance over the
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circle. Throughout the paper, we shall specify whether (X,σ) is equal to (G, dG)
or (G, dR), where dG and dR have been previously defined.

The choice of the metric is crucial to determine valid covariance functions as
explained below. When the reference space Y is the unit sphere S

n embedded
in R

n+1, then S
n equipped with the geodesic distance θ is a quasi-metric space

as well. In this case, we can express the geodesic distance θ as the arccosine of
the dot product between any pair of points located over the sphere.

We suppose Z to be real-valued, weakly stationary, with zero mean and with
covariance function that is pairwise isotropic. That is,

E (Z(x, y)Z(x′, y′)) = K
(
σ(x, x′), σ′(y, y′)

)
, (x, y), (x′, y′) ∈ X × Y, (2.1)

where the mapping K is defined over Dσ
X×Dσ′

Y and is real-valued. The mapping
K(σ, σ′) is positive semidefinite over X × Y , i.e.:

�∑
k=1

�∑
h=1

akK
(
σ(xk, xh), σ′(yk, yh)

)
ah ≥ 0,

for all finite system {ak}�k=1 ⊂ R and points {(xk, yk)}�k=1 ⊂ X × Y . Most of
the literature on space-time covariance functions is concerned with (X,σ) =
(Rn, ‖ · ‖), with ‖ · ‖ denoting the Euclidean distance, and (Y, σ′) = (R, | · |). In
this case, D‖·‖

Rn = [0,∞). A thorough account for this setting in provided in the
review by Porcu et al. (2021).

More recent literature considers space, X, as the unit sphere S
n embedded

in R
n+1, with the quasi metric σ(x, x′) = θ(x, x′) and θ denoting the geodesic

distance on the sphere. In this case, Dθ
Sn

= [0, π]. The reader is referred to
Porcu et al. (2016), Berg and Porcu (2017) and Porcu et al. (2021), with the
references therein. Porcu et al. (2016) consider the case (X,σ) = (Sn, θ) and
(Y, σ′) = (S1, θ), so that time is treated as circular.

It is useful to note that, if K(σ, σ′) is a pairwise isotropic covariance for
the product space X × Y then the functions K(σ(·, ·), 0) and K(0, σ′(·, ·)) are
isotropic covariance functions on X ×X and Y × Y , respectively.
Remark 1. Throughout, we shall equivalently use the following notation: either
we say that K(σ, σ′) is positive semidefinite over the product space X × Y ,
where (X,σ) and (Y, σ′) are quasi-metric spaces, or we shall use the notation
K(σ(·, ·), σ′(·, ·)) is positive semidefinite over (X × Y ) × (X × Y ).

2.2. Auxiliary background material

A function f : [0,∞) → R is completely monotonic if f(0) > 0, f is infinitely
differentiable over (0,∞) and (−1)mf (m)(x) ≥ 0 for x ≥ 0 and for all m ∈ N.
Here, f (m) denotes the mth derivative of f , and we use the abuse of notation
f (0) for f . By Bernstein’s theorem (Bernstein, 1929), f is completely monotonic
if and only if

f(t) =
∫

[0,∞)
e−ξtμ(dξ), t ≥ 0, (2.2)
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where μ is a positive and bounded measure.
Let m be a fixed positive integer. We consider the class of continuous map-

pings f : [0,∞) → R such that f(0) = 1 and such that f can be uniquely written
as

f(t) =
∫

[0,∞)
ωm(ξt)μ(dξ), t ≥ 0, (2.3)

where μ is a positive and bounded measure, and where

ωm(t) = Γ(m/2)
Γ ((m− 1)/2)

√
π

∫ ∞

1
Ωm(

√
vt)v−m/2(v − 1)(m−3)/2dv, t ≥ 0,

with Ωm(t) = Γ(m/2) (2/t)(m−2)/2
J(m−2)/2(t) and Jν the Bessel function of the

first kind of order ν.
Anderes et al. (2020) show that:

1. For a completely monotonic function f : [0,∞) → R, the composition
f(dR(·, ·)) is positive semidefinite on G×G, with G a graph with Euclidean
edges, where dR is the resistance metric.

2. If a function f admits the representation (2.3), then the mapping (x, y) �→
f(d∗(x, y)) is positive semidefinite over G×G, for G a Euclidean tree with

m/2� leaves, with 
·� denoting the ceiling function.

3. A sufficient condition for a candidate function f to admit the scale mixture
representation (2.3) is that f (2�m/2�−2) is convex on the positive real line,
with limt→∞ f(t) = 0.

Remark 2. Let f : [0,∞) → R. To build a function f(σ(·, ·)), we should use the
notation fDσ

X
to denote the restriction of f to Dσ

X . Furthermore, such a function
is positive semidefinite on X×X if K(σ, 0) := f(σ) is positive semidefinte on X.
Throughout, such a notation will not be adopted unless it becomes necessary
from the context.

3. Nested models over the space G

We explain our strategy and will then specialize for the cases where G is either
a graph with Euclidean edges, or a Euclidean tree with a given number of
leaves. Let ϕk, k = 1, . . . , N , be a collection of continuous functions, defined on
the positive real line, such that the function (x, x′) �→ ϕk(σ(x, x′)) is positive
semidefinite over the quasi-metric space X × X with quasi-metric σ, for k =
1, . . . , N . Define the mapping ϕ : [0,∞) → R through the identity

ϕ(t) =
N∑

k=1

ck ϕk(t), t ≥ 0, (3.1)

where c1, . . . , cN is a finite collection of real constants. We are going to provide
conditions on the constant cN , assuming that c1, . . . , cN−1 are fixed and non-
negative, such that the function ϕ(d∗(·, ·)) is positive semidefinite over G × G,
with G a graph with Euclidean edges, G, or over a Euclidean tree with a given
number of leaves.
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3.1. Graphs with Euclidean edges

For this case, we start by invoking Theorem 1 in Anderes et al. (2020): if ϕk is
completely monotonic on the positive real line with ϕk(0) < ∞, then the func-
tion ϕk(dR(·, ·)) is positive semidefinite over G×G. Hence, a direct application
of Equation (2.2) in concert with (3.1) provides the identity

ϕ(t) =
∫ ∞

0
e−ξtμ(dξ), t ≥ 0,

where μ(dξ) :=
∑

k ck μk(dξ) and μk is the measure associated with ϕk as
per (2.2). Accordingly, the problem is to find the range for c1, . . . , cN such that
μ is positive and bounded. Obviously, this is always true when ck ≥ 0 for all
k = 1, . . . , N . For what follows, we always assume ck ≥ 0 for k = 1, . . . , N − 1,
and evaluate a (hopefully negative) lower bound for cN such that ϕ provides a
positive semidefinite function.

Some examples of completely monotonic functions follow.
a. The Matérn family. The Matérn function, Mν , is defined as (Matérn, 1986)

Mν(t) = 21−ν

Γ(ν) t
νKν(t), t ≥ 0, (3.2)

where Kν is a modified Bessel function of the second kind. Mν(·) is completely
monotonic for 0 < ν ≤ 1

2 , and Mν(
√·) is completely monotonic for any positive

ν.
b. The Cauchy family. Another useful example comes by considering the func-
tion

Cβ(t) = (1 + t)−β
, t ≥ 0,

which is completely monotonic for β > 0.
Below we provide sufficient conditions for the model (3.1) to be positive

semidefinite over graphs with Euclidean edges when the functions ϕk belong to
either the Matérn or Cauchy families.

Theorem 3. Let G be a graph with Euclidean edges. Let ϕ be as in Equa-
tion (3.1) with ϕk(·) = Mνk

(
√·/

√
bk), k = 1, . . . , N , νk > 0 and bk > 0. If

c1, . . . , cN−1 ≥ 0 and

cN ≥ −
∑
k∈A1

ck

(
bN
bk

)νN

−
∑
k∈A2

ck
Γ(νN )
Γ(νk)

(4bN )νN

(4bk)νk

⎛⎝e
(

1
bN

− 1
bk

)
4(νN − νk)

⎞⎠νN−νk

,

(3.3)
with e standing for Euler’s number, A1 = {k ∈ {1, . . . , N − 1} : νk = νN and
bk ≥ bN} and A2 = {k ∈ {1, . . . , N−1} : νk < νN and bk > bN}, then ϕ(dR(·, ·))
is positive semidefinite over G×G.

A direct application of Theorem 3 shows the following. The upper bound of
the weight c can largely exceed 1, as shown in Figure 2 for a few particular
cases.
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Fig 2. Upper bound for c as a function of b1, for ν1 = 1 (left) or ν1 = 1.5 (right), b2 = 1 and
ν2 = 2, 3 and 4.

Corollary 4. Let G be a graph with Euclidean edges. Let ϕ be as in Equation
(3.1) with N = 2, c1 := c ≥ 0 and c2 = 1 − c, ϕk(·) = Mνk

(
√·/

√
bk), k = 1, 2,

νk > 0 and bk > 0. If

c ≤

⎛⎜⎝1 −
(
b2
b1

)ν2

IA1 −
Γ(ν2) (4b2)ν2

Γ(ν1) (4b1)ν1

⎛⎝e
(

1
b2

− 1
b1

)
4(ν2 − ν1)

⎞⎠ν2−ν1

IA2

⎞⎟⎠
−1

,

where IA is the indicator function of the set A, and A1 and A2 are defined as
in Theorem 3, then ϕ(dR(·, ·)) is positive semidefinite over G×G.

Theorem 5. Let G be a graph with Euclidean edges. Let ϕ be as in Equation
(3.1) with ϕk(·) = Cβk

(·/bk), k = 1, . . . , N , βk > 0 and bk > 0. If c1, . . . , cN−1 ≥
0 and

cN ≥ −
∑
k∈A1

ck

(
bk
bN

)βN

−
∑
k∈A2

ck
bβk

k

bβN

N

Γ(βN )
Γ(βk)

(
βk − βN

e(bk − bN )

)βk−βN

, (3.4)

with A1 = {k ∈ {1, . . . , N − 1} : βk = βN and bk ≤ bN} and A2 = {k ∈
{1, . . . , N − 1} : βk < βN and bk < bN}, then ϕ(dR(·, ·)) is positive semidefinite
over G×G.

The following come as a direct application of Theorem 5, the proof of which
is omitted. Figure 3 provides some examples of upper bounds for the weight c.

Corollary 6. Let G be a graph with Euclidean edges. Let ϕ be as in Equation
(3.1) with N = 2, c1 := c ≥ 0 and c2 = 1 − c, with ϕk(·) = Cβk

(·/bk), k =
1, . . . , N , βk > 0 and bk > 0. If

c ≤
(

1 −
(
b1
b2

)β2

IA1 −
bβ1
1

bβ2
2

Γ(β2)
Γ(β1)

(
β1 − β2

e(b1 − b2)

)β1−β2

IA2

)−1

,
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Fig 3. Upper bound for c as a function of b1, for β1 = 1 (left) or β1 = 1.5 (right), b2 = 5
and β2 = 2, 3 and 4.

with A1 and A2 as in Theorem 5, then ϕ(dR(·, ·)) is positive semidefinite over
G×G.

3.2. Euclidean trees

Below we describe a class of functions that turns out to be useful for our pur-
poses.

The Askey family of functions (Askey, 1973) is defined by

ψν(t) := (1 − t)ν+ , ν > 0, (3.5)

The function ψν(‖ · ‖/b) is compactly supported over a ball of Rn, with radius
b > 0.

Arguments in Zastavnyi (2002) show that ψν admits the integral represen-
tation (2.3) for a given positive integer m, provided ν ≥ 2m − 1. We can now
state our next result.

Theorem 7. Let G be a Euclidean tree with 
m/2� leaves, m ≥ 3. Let ϕ be the
class of functions defined through Equation (3.1), with ϕk(·) = ψν+mk+1(·/bk),
bk > 0, mk > 0 and ν ≥ 2m− 1. If c1, . . . , cN−1 ≥ 0, then ϕ (d∗(·, ·)) is positive
semidefinite over G×G provided

cN ≥−
∑
k∈A1

ck
bν+1
N B(ν + 1,mN + 1)
bν+1
k B(ν + 1,mk + 1)

−
∑
k∈A2

ck
bν+1+mN

N B(ν + 1,mN + 1)
bν+1+mk

k B(ν + 1,mk + 1)
mmk

k

mmN

N

(
bk − bN
mk −mN

)mk−mN

,

(3.6)

where B denotes the beta function, A1 = {k ∈ {1, . . . , N − 1} : bk ≥ bN and
mk ≤ mN} and A2 = {k ∈ {1, . . . , N − 1} : bk > bN and mk > mN}.
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Fig 4. Upper bound for c as a function of b1, for m = 3, ν = 5, b2 = 1, m2 = 1, (left) or
m2 = 1.5 (right), and m1 = 2, 3 or 4.

In the same spirit of Theorems 3 and 5, the following is provided as a direct
inspection from Theorem 7. The upper bound for the weight c can be much
greater than 1, as illustrated in Figure 4 for two particular cases.

Corollary 8. Let G be a Euclidean tree with 
m/2� leaves, m ≥ 3. Let ϕ be
as in Equation (3.1) with N = 2, c1 := c ≥ 0 and c2 = 1 − c, with ϕk(·) =
ψν+mk+1(·/bk), bk > 0, mk > 0 and ν ≥ 2m− 1. If

c ≤
(

1 − bν+1
2 B(ν + 1,m2 + 1)
bν+1
1 B(ν + 1,m1 + 1)

IA1

− bν+1+m2
2 B(ν + 1,m2 + 1)
bν+1+m1
1 B(ν + 1,m1 + 1)

mm1
1

mm2
2

(
b1 − b2
m1 −m2

)m1−m2

IA2

)−1

,

with A1 and A2 as in Theorem 7, then ϕ(d∗(·, ·)) is positive semidefinite over
G×G.

Another promising avenue is provided by the following theorem.

Theorem 9. Let G be a Euclidean tree with 
m/2� leaves, m ≥ 3. Let ϕ
be the class of functions defined through Equation (3.1), with ϕk(·) such that
the mapping ϑk(t) := ϕ

(2�m/2�−2)
k (t) is convex on the positive real line, with

limt→∞ ϑk(t) = 0 and ϑ
(i)
N being nonzero for i = 1, 2. Then, ϕ(d∗(·, ·)) is posi-

tive semidefinite over G × G provided c1, . . . , cN−1 are nonnegative and

−
N−1∑
k=1

ck sup
t≥0

ϑ
(2)
k (t)

ϑ
(2)
N (t)

≤ cN ≤ −
N−1∑
k=1

ck inf
t≥0

ϑ
(1)
k (t)

ϑ
(1)
N (t)

.

4. Nested models over the space G cross linear or circular time

We start by explaining the general strategy, and then provide case-by-case
solutions depending on the quasi-metric spaces involved in the calculations.
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Let ϕk, fk, k = 1, . . . , N , be two collections of continuous functions defined
on the positive real line, such that the functions (x, x′) �→ ϕk(σ(x, x′)) and
(y, y′) �→ fk(σ′(y, y′)) are, respectively, positive semidefinite over X × X and
over Y × Y , where (X,σ) and (Y, σ′) are quasi-metric spaces, for k = 1, . . . , N .
We let

Ψ(t, u) =
N∑

k=1

ck ϕk(t)fk(u), t, u ≥ 0, (4.1)

where c1, . . . , cN is a finite collection of real constants. Finding conditions for
Ψ(σ, σ′) to be positive semidefinite on X × Y is not an obvious task.

Below we provide spectral representations for the case when (Y, σ′) is either
(R, | · |) or (S1, θ). These will turn to be useful for the subsequent findings.

Theorem 10. Let (X,σ) = (G, d∗), with G a graph with Euclidean edges.

A. Let (Y, σ′) = (R, | · |) and Ψ : Dd∗
G × [0,∞) → R be such that Ψ is contin-

uous, bounded, and integrable. Then, Ψ(d∗, | · |) is positive semidefinite on
G × R if and only if the mapping Ψτ (d∗), defined as

Ψτ (d∗) = 1
2π

∫ ∞

0
cos(τ |u|)Ψ(d∗, |u|)du, (4.2)

is positive semidefinite on G for almost all τ ≥ 0 (w.r.t. Lebesgue measure).
B. Let (Y, σ′) = (S1, θ) and Ψ : Dd∗

G × [0, π] → R be such that Ψ is continuous
and bounded. Then, Ψ(d∗, θ) is positive semidefinite on G ×S

1 if and only
if

Ψ(d∗, θ) =
∞∑
k=0

Ψk(d∗) cos (k θ) , (4.3)

where the sequence {Ψk(·)}∞k=0 of continuous functions Ψk is such that
Ψk(d∗(·, ·)) is positive semidefinite over G × G for all k = 0, 1, . . ., and
additionally

∑∞
k=0 Ψk(0) < ∞.

4.1. Graphs with Euclidean edges cross time

In this section, G will be always a graph with Euclidean edges with metric dR.
We start from Equation (4.1) and call f̂k the Fourier transform of fk(| · |),
k = 1, . . . , N . We suppose fk(| · |) to be absolutely integrable on the real line,
so that f̂k is well defined. Additionally, we suppose f̂N to be strictly positive.
Using point A. in Theorem 10 we find that Ψ(dR, | · |) is positive semidefinite
G × R if and only if the mapping Ψτ as in (4.2) is positive semidefinite on G a.e.
τ ≥ 0. We now assume ϕk to be completely monotonic on the positive real line,
with associated measure μk as per (2.2). A direct inspection shows that

Ψτ (t) =
∫ ∞

0
e−ξtμ(dξ; τ), t ≥ 0,
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where

μ(dξ; τ) :=
N∑

k=1

ck μk(dξ) f̂k(τ). (4.4)

Clearly, μ is nonnegative and bounded if and only if

cN ≥ −
N−1∑
k=1

cK

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)(
inf
τ≥0

f̂k(τ)
f̂N (τ)

)
. (4.5)

When (Y, σ′) = (S1, θ) we invoke Schoenberg’s theorem (Schoenberg, 1942) and
write

fk(θ) =
∞∑
h=0

λh,k cos(h θ),

where for every k = 1, . . . , N , the sequence {λh,k}∞h=0 have nonnegative and
summable coefficients. We can now resort to Theorem 10, part B., so that, after
some algebra,

K(dR, θ) =
∞∑
h=0

cos(h θ)Kh(dR),

with

Kh(dR) =
N∑

k=1

ck λh,k ϕk(dR).

To show that K(dR, θ) is positive semidefinite on G × S
1, we need to show that

{Kh(dR(·, ·))}∞h=0 is a sequence of positive semidefinite functions over G×G with
the additional requirement that

∑∞
h=0 Kh(0) < ∞. A direct inspection shows

Kh(dR) =
∫ ∞

0
e−ξdRΔh(dξ),

with

Δh(dξ) =
N∑

k=1

ck λh,k μk(dξ),

and clearly verifying its positiveness amounts to similar conditions than those
found in Section 3. A relevant comment is that each sequence {λh,k}∞h=0 is
a convergent sequence of nonnegative coefficients (Schoenberg, 1942), for k =
1, . . . , N . Further, the measures μk are finite. Hence, the series

∞∑
h=0

Kh(0) =
N∑

k=1

(
ck μk(R+ ∪ {0})

∞∑
h=0

λh,k

)

is convergent.
Some examples follow. We state those formally for an easier reading.
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Theorem 11. Let G be a graph with Euclidean edges.
A. Let Ψ be as in Equation (4.1) with ϕk(·) = Mνk

(
√·/

√
bk), k = 1, . . . , N ,

νk > 0 and bk > 0. Let fk(·) = Mηk
(·/ak) with ak > 0 and ηk > 0. If

c1, . . . , cN−1 ≥ 0 and

cN ≥ −
∑
k∈A1

ck

(
bN
bk

)νN Γ(ηk + 1
2 )Γ(ηN )ak

Γ(ηk)Γ(ηN + 1
2 )aN

κ(ak, aN , ηk, ηN )

−
∑
k∈A2

ck
Γ(νN )
Γ(νk)

bνN

N

bνk

k

Γ(ηk + 1
2 )Γ(ηN )ak

Γ(ηk)Γ(ηN + 1
2 )aN

κ(ak, aN , ηk, ηN )
( e

bN
− e

bk

νN − νk

)νN−νk

,

(4.6)

with A1 = {k ∈ {1, . . . , N − 1} : νk = νN , bk ≥ bN and ηN ≥ ηk}, A2 = {k ∈
{1, . . . , N − 1} : νk < νN , bk > bN and ηN ≥ ηk} and κ(ak, aN , ηk, ηN ) defined
as

κ(ak, aN , ηk, ηN ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (1+2ηN ) a2

k

(1+2ηk) a2
N

≥ 1(
ak

aN

)2ηN+1
if ak

aN
< 1; ηk = ηN(

1 + τ2
0

a2
N

)ηN+ 1
2
(
1 + τ2

0
a2
k

)−ηk− 1
2 otherwise,

(4.7)
then ϕ(dR(·, ·), | · |) is positive semidefinite over G × G × R.
B. Let Ψ be as in Equation (4.1) with ϕk(·) = Cβk

(·/bk), k = 1, . . . , N , νk > 0
and bk > 0. Let fk(·) = Mηk

(·/ak) with ak > 0 and ηk > 0. If c1, . . . , cN−1 ≥ 0
and

cN ≥ −
∑
k∈A1

ck

(
bk
bN

)βN Γ(ηk + 1
2 )Γ(ηN )ak

Γ(ηk)Γ(ηN + 1
2 )aN

κ(ak, aN , ηk, ηN )

−
∑
k∈A2

ck
bβk

k Γ(βN )Γ(ηk + 1
2 )Γ(ηN )ak

bβN

N Γ(βk)Γ(ηk)Γ(ηN + 1
2 )aN

κ(ak, aN , ηk, ηN )
(

βk − βN

e(bk − bN )

)βk−βN

,

(4.8)

with A1 = {k ∈ {1, . . . , N − 1} : βk = βN , bk ≤ bN and ηN ≥ ηk}, A2 = {k ∈
{1, . . . , N − 1} : βk < βN , bk < bN and ηN ≥ ηk} and κ(ak, aN , ηk, ηN ) defined
in (4.7), then ϕ(dR(·, ·), θ(·, ·)) is positive semidefinite over

(
G × S

1)×(G × S
1).

The following result is a direct consequence of Theorem 11.

Corollary 12. Let G be a graph with Euclidean edges.
A. Let Ψ be as in Equation (4.1) with N = 2, c1 := c ≥ 0 and c2 = 1 − c, with
ϕk(·) = Mνk

(
√·/

√
bk), k = 1, 2, νk > 0 and bk > 0. Let fk(·) = Mηk

(·/ak)
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with ak > 0 and ηk > 0. If

c ≤
(

1 −
(
b2
b1

)ν2 Γ(η1 + 1
2 )Γ(η2)a1

Γ(η1)Γ(η2 + 1
2 )a2

κ(a1, a2, η1, η2)IA1

− Γ(ν2)
Γ(ν1)

bν2
2
bν1
1

Γ(η1 + 1
2 )Γ(η2)a1

Γ(η1)Γ(η2 + 1
2 )a2

κ(a1, a2, η1, η2)

⎛⎝e
(

1
b2

− 1
b1

)
ν2 − ν1

⎞⎠ν2−ν1

IA2

)−1

,

(4.9)

where A1 and A2 are specified through A. in Theorem 11 and κ is the function
defined at (4.7), then ϕ(dR(·, ·), | · |) is positive semidefinite over G × G × R.
B. Let Ψ be as in Equation (4.1), with N = 2, c1 := c ≥ 0 and c2 = 1 − c, with
ϕk(·) = Cβk

(·/bk), k = 1, 2, νk > 0 and bk > 0. Let fk(·) = Mηk
(·/ak) with

ak > 0 and ηk > 0. If

c ≤
(

1 −
(
b1
b2

)β2 Γ(η1 + 1
2 )Γ(η2)a1

Γ(η1)Γ(η2 + 1
2 )a2

κ(a1, a2, η1, η2)IA1

− bβ1
1

bβ2
2

Γ(β2)
Γ(β1)

Γ(η1 + 1
2 )Γ(η2)a1

Γ(η1)Γ(η2 + 1
2 )a2

κ(a1, a2, η1, η2)
(

β1 − β2

e(b1 − b2)

)β1−β2

IA2

)−1

,

(4.10)

with A1 and A2 as in B. of Theorem 11, and κ as defined in (4.7), then
ϕ(dR(·, ·), θ(·, ·)) is positive semidefinite over

(
G × S

1)× (G × S
1).

4.2. Examples with circular time

Example 1. We consider the functions

θ �→ fk(θ) = 1
a2
k

(ak − θ)+ , 0 < ak ≤ π,

for which we can directly compute the cosine expansion as

fk(θ) =
∞∑
h=0

λh,k cos(h θ),

with λ0,k = 1/(2π) and

λh,k = 2
π

1 − cos(hak)
h2a2

k

, h = 1, . . . .

To verify conditions for positive semidefiniteness of the model (4.1) under this
setting, we need to check conditions on cN , for c1, . . . , cN−1 ≥ 0, such that the
measures

Δ0(dξ) = 1
2π

N∑
k=1

ck μk(dξ), ξ ≥ 0
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and

Δh(dξ) = 2
π

N∑
k=1

ck
1 − cos(hak)

h2a2
k

μk(dξ), ξ ≥ 0, h = 1, 2, . . .

are nonnegative. Here, μk are the measures associated with the completely
monotonic functions ϕk. The nonnegativeness of Δh for h > 0 is automati-
cally fulfilled if aN is a multiple of 2π, in which case one only has to ensure the
nonnegativeness of Δ0; this leads to

cN ≥ −
N−1∑
k=1

ck

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)
.

Considering now the case when aN is not a multiple of 2π, some simple algebra
provides the following sufficient condition to ensure the nonnegativeness of Δh

for h = 0, 1, . . .:

cN ≥ max
{

−
N−1∑
k=1

ck

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)
,

−
N−1∑
k=1

ck
a2
N

a2
k

(
inf

h∈{1,...,∞}

1 − cos(hak)
1 − cos(haN )

)(
inf
ξ≥0

μk(dξ)
μN (dξ)

)}
.

The infimum of 1−cos(h ak)
1−cos(h aN ) is greater than zero if one assumes that aN is a

multiple of ak, i.e., aN = P ak with P ∈ N� {0}. In such a case:

1 − cos(h ak)
1 − cos(h aN ) =

(
sin(h ak/2)
sin(h aN/2)

)2

≥ 1
P 2 ,

where the last inequality is due to the fact that, for any real x such that sin x
is different from zero,∣∣∣∣ sin(Px)

sin(x)

∣∣∣∣ = ∣∣∣∣eiPx sin(Px)
eix sin(x)

∣∣∣∣ = ∣∣∣∣1 − e2iPx

1 − e2ix

∣∣∣∣ =
∣∣∣∣∣
P−1∑
p=0

e2i p x

∣∣∣∣∣ ≤
P−1∑
p=0

∣∣e2i p x
∣∣ = P,

with i denoting the imaginary unit. Under the condition that aN is not a multiple
of 2π, one therefore obtains the following sufficient condition for the model (4.1)
to be positive semidefinite:

cN ≥max
{

−
N−1∑
k=1

ck

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)
,−
∑
k∈A

ck

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)}

= −
∑
k∈A

ck

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)
,

with A = {k ∈ {1, . . . , N − 1} : aN/ak ∈ N � {0}}. The infimum of μk/μN can
be determined in a closed-form expression if the functions ϕk, k = 1, . . . , N ,
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belong to the Matérn or Cauchy families, as previously exposed in Theorems 3
and 5, respectively.

Example 2. By Lemma 2 in Gneiting (2013), the function

θ �→ fk(θ) =
(

1 + θ

2ak

)(
1 − θ

ak

)2

+
, ak ≥ π,

is positive semidefinite on S1, having the cosine expansion

fk(θ) =
∞∑
h=0

λh,k cos(h θ),

with⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ0,k = 1
8a3

k

(8a3
k − 6πa2

k + π3),

λ2h,k = 3π
4h2a3

k

, h = 1, 2, . . . ,

λ2h+1,k = 3
πa3

k(2h + 1)4
(
(2a2

k − π2)(2h + 1)2 + 4
)
, h = 0, 1, . . . .

As before we need to check conditions on cN , given c1, . . . , cN−1 ≥ 0, such
that the measures

Δ0(dξ) =
N∑

k=1

ck
1

8a3
k

(8a3
k − 6πa2

k + π3)μk(dξ), ξ ≥ 0,

Δ2h(dξ) =
N∑

k=1

ck
3π

4h2a3
k

μk(dξ), ξ ≥ 0, h = 1, 2 . . . ,

Δ2h+1(dξ) =
N∑

k=1

ck
3
(
(2a2

k − π2)(2h + 1)2 + 4
)

πa3
k(2h + 1)4 μk(dξ), ξ ≥ 0, h = 0, 1 . . . ,

are nonnegative.
It is not difficult to see that, if π ≤ aN ≤ ak, then

(2a2
k − π2)(2h + 1)2 + 4

(2a2
N − π2)(2h + 1)2 + 4 ≥ 1, h = 0, 1, . . . ,

and
(8a3

k − 6πa2
k + π3)

(8a3
N − 6πa2

N + π3) ≥ 1.

Therefore, if we assume π ≤ aN , we obtain the following sufficient condition
for the model (4.1) to be positive semidefinite:

cN ≥ −
∑
k∈A

ck
a3
N

a3
k

(
inf
ξ≥0

μk(dξ)
μN (dξ)

)
.

with A = {k ∈ {1, . . . , N − 1} : aN ≤ ak}.
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5. Concluding remarks

This paper has provided a simple and practical solution to the problem of mod-
eling the spatial correlation of random fields observed over linear and generalized
networks. An increasing number of applications to both statistics and machine
learning witnesses the importance of studying random fields in such spaces for
modeling data located on transportation, telecommunication, social, biological
and ecological networks (e.g., road networks; railways; power lines; computer,
machine and sensor networks; fruit trees; streams, rivers and drainage networks),
and the reader is referred to Monestiez et al. (1989); Audergon et al. (1993);
Cressie and Majure (1997); Bruno et al. (2001); Gardner et al. (2003); Monestiez
et al. (2005); Bailly et al. (2006); Cressie et al. (2006); de Fouquet and Bernard-
Michel (2006); Ver Hoef et al. (2006); Polus-Lefebvre et al. (2008); Garreta et al.
(2010); Peterson and Ver Hoef (2010); Ver Hoef and Peterson (2010); Perry and
Wolfe (2013); Peterson et al. (2013); Alsheikh et al. (2014); Deng et al. (2014);
Georgopoulos and Hasler (2014); Isaak et al. (2014); Baddeley et al. (2017);
Hamilton et al. (2017); Xiao et al. (2017).

The present research might provide the starting point for extensions to frame-
works that have not been studied. For instance, multivariate random fields over
nonlinear networks are, to the knowledge of the authors, completely unexplored.
Also, it is unclear how to incorporate nonstationarity into the second order struc-
ture for a random field over a nonlinear network. In particular, the approach
proposed by Paciorek and Schervish (2006) might not be adapted to the case of
nonlinear networks.

Another interesting problem is how to simulate random fields over graphs
with Euclidean edges. Simulating a random process on the plane and retaining
those realizations inside the graph is certainly not a good idea, as such a re-
striction would result in a very unrealistic process for a graph with Euclidean
edges. The ingenious approach provided by Anderes et al. (2020) to construct a
Brownian bridge over graphs is a promising avenue in this direction.

Proofs

Proof of Theorem 3

We give a constructive proof. We start by noting that (Gradshteyn and Ryzhik,
2007, formula 3.471.9)

Mνk

( √
t√
bk

)
=
∫ ∞

0

e−ξt

Γ(νk)

(
1

4bk

)νk

ξ−1−νke−
1

4ξbk dξ, t ≥ 0.

Hence, we need to show under which conditions on cN , for c1, . . . , cN−1 ≥ 0,

N∑
k

ck
1

Γ(νk)

(
1

4bk

)νk

ξ−1−νke−
1

4ξbk ≥ 0,
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for all ξ ≥ 0. A sufficient condition for this to happen is

cN ≥ −
N−1∑
k=1

ck
Γ(νN )
Γ(νk)

(4bN )νN

(4bk)νk
inf
ξ≥0

{
ξνN−νke−

1
4ξ

(
1
bk

− 1
bN

)}
.

We now notice that the function

ξ �→ f(ξ; ν, a) := ξν exp
(
− a

4ξ

)
, ξ ≥ 0,

is always nonnegative. Its infimum is equal to 1 if a ≤ 0 and ν = 0, and to 0 if
a > 0, or a = 0 and ν �= 0, or a < 0 and ν < 0. Otherwise, if a < 0 and ν > 0,
the infimum is reached at ξ0 = −a/(4ν) and is equal to (− ae

4ν )ν . This provides
the desired conditions and completes the proof.

Proof of Theorem 5

The proof is similar to that in Theorem 3. We start by noting that (Gradshteyn
and Ryzhik, 2007, formula 3.381.4)

Cβk

(
t

bk

)
=
∫ ∞

0
e−ξt bβk

k

Γ(βk)
ξβk−1e−bkξ dξ, t ≥ 0.

By using similar arguments and after some elementary algebra, we get that a
sufficient condition for positive semidefiniteness becomes

cN ≥ −
N−1∑
k=1

ck
bβk

k

bβN

N

Γ(βN )
Γ(βk)

inf
ξ≥0

{
ξβk−βN e−ξ(bk−bN )

}
.

We now consider the function

ξ �→ g(ξ;β, b) := ξβ exp(−bξ), ξ ≥ 0,

which is always nonnegative. Its infimum is equal to 1 if b ≤ 0 and β = 0, and
to 0 if b > 0 or b = 0 and β �= 0, or b < 0 and β > 0. Otherwise, if b < 0
and β < 0, the infimum is reached at ξ0 = β/b and is equal to e−β(β/b)β . This
provides the desired conditions and completes the proof.

Proof of Theorem 7

Again, we provide a proof of the constructive type. Let G be a Euclidean tree
with 
m/2� leaves, m ≥ 3. Let ϕ be the class of functions defined through
Equation (3.1), with ϕk(·) = ψν+mk+1(·/bk), with bk > 0, mk > 0 and ν ≥
2m− 1. Theorem 1 in Daley et al. (2015) shows that, for t ≥ 0,(

1 − t

bk

)ν+mk+1

+
= 1

bν+1
k B(ν + 1,mk + 1)

∫ ∞

0

(
1 − t

ξ

)ν

+
ξν
(

1 − ξ

bk

)mk

+
dξ.
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A direct inspection in concert with some algebra show that the nested model is
valid provided

N∑
k=1

ck (bk − ξ)mk
+

bν+1+mk

k B(ν + 1,mk + 1)

is nonnegative for any ξ ≥ 0. This condition always holds for ξ ≥ bN , insofar as
c1, . . . , cN−1 are assumed to be positive and the N -th summand is zero when ξ
is greater than or equal to bN . Accordingly, the nested model is valid if

cN ≥ −
N−1∑
k=1

ck
bν+1+mN

N B(ν + 1,mN + 1)
bν+1+mk

k B(ν + 1,mk + 1)
inf

ξ∈[0,bN [

(bk − ξ)mk
+

(bN − ξ)mN
.

If bk < bN , then the infimum of (bk − ξ)mk
+ /(bN − ξ)mN is reached at ξ = bk and

is equal to 0. If bk = bN and mk > mN , the infimum is also zero and is reached
at ξ = bN . If bk ≥ bN and mk ≤ mN , the infimum is reached at ξ = 0 and is
equal to bmk

k /bmN

N . Finally, if bk > bN and mk > mN , the infimum is reached at

ξ = (mkbN −mNbk)/(mk −mN ) and is equal to m
mk
k

m
mN
N

(
bk−bN

mk−mN

)mk−mN

. The
proof is completed.

Proof of Theorem 9

The proof comes straight by noting that a sufficient condition for positive
semidefiniteness is that the weighted sum

ϑ(t) =
N∑

k=1
ckϑk(t), t ≥ 0

is convex on the positive real line and that limt→∞ ϑ(t) = 0 (Anderes et al.,
2020, theorem 5). All these requirements can be verified by direct inspection.
Since ϑk is convex by assumption for all k = 1, . . . , N , inspecting for convexity
of ϑ amounts to solve the inequalities

cN ≤ −
N−1∑
k=1

ck
ϑ

(1)
k (t)

ϑ
(1)
N (t)

,

and

cN ≥ −
N−1∑
k=1

ck
ϑ

(2)
k (t)

ϑ
(2)
N (t)

.

Upon simplification, we get the result.

Proof of Theorem 10

Part B. is a direct application of Theorem 3.3 in Berg and Porcu (2017). To
prove part A., we start by the necessary condition. Let Ψ(d∗(·, ·), | · − · |) be
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positive semidefinite over (G × R) × (G × R). Then, the function

Ψ̃(d∗, |u|) := Ψ(d∗, |u|) cos(|u|), u ∈ R,

is positive semidefinite over G × R as a direct application of Schur’s product
theorem. Since positive semidefinite functions are closed under rescaling, we
have that

Kτ (d∗, |u|) := Ψ̃(d∗, τ |u|), τ ≥ 0,

is positive semidefinite over G × R for every τ .
We now adapt Lemma 3.4 in Berg and Porcu (2017) to the product space

G × R: for a Radon measure dμ : G × R, we have∫
G×R

∫
G×R

Kτ (d∗(x, x′), |u− u′|)dλ(x, u)dλ(x′, u′) ≥ 0, ∀τ ≥ 0.

We now specialize the assertion to the tensor product measure

dλ(x, u) = σ(dx) ⊗ μ(du), (s, u) ∈ G × R,

where we use the abuse of notation μ for the Lebesgue measure over the real
line, and where σ is a Radon measure. A direct application of Fubini’s theorem
shows that∫

G×G

(∫
R×R

Kτ (d∗(x, x′), |u− u′|)μ(du)μ(du′)
)
σ(dx)σ(dx′) ≥ 0, ∀τ ≥ 0.

This proves that the function

d∗ �→
∫
R×R

Kτ (d∗, |u− u′|)μ(du)μ(du′),

is positive semidefinite over G. This completes the necessary part. The sufficient
part is trivial. The proof is completed.

Proof of Theorem 11

We consider the function

fk(u) := Mηk

(
|u|
ak

)
, u ∈ R,

with νk > 0 and ak > 0, k = 1, . . . , N . The symmetric Fourier transform of fk,
denoted f̂k, admits expression (Lantuéjoul, 2002)

f̂k(τ) =
Γ(ηk + 1

2 )ak
Γ(ηk)

(
1 + τ2

a2
k

)−ηk− 1
2

, τ ∈ R.
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Hence, getting the admissibility condition (4.5) is equivalent to attain

inf
τ≥0

(
1 + τ2

a2
N

)ηN+ 1
2

(
1 + τ2

a2
k

)ηk+ 1
2
.

If ηN < ηk, the infimum is zero, as the ratio tends to zero as τ tends to
infinity. If ηN ≥ ηk, the infimum is reached at τ0 =

√
a2
N

(1+2ηk)−a2
k

(1+2ηN )
2(ηN−ηk)

when (1 + 2ηN ) a2
k < (1 + 2ηk) a2

N and at τ0 = 0 otherwise, the infimum being
κ(ak, aN , ηk, ηN ) as defined in (4.7). The rest of the proof comes straight, and
we omit it.
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