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Abstract: We study nonparametric estimation for the partially condi-
tional average treatment effect, defined as the treatment effect function over
an interested subset of confounders. We propose a double kernel weight-
ing estimator where the weights aim to control the balancing error of any
function of the confounders from a reproducing kernel Hilbert space af-
ter kernel smoothing over the interested subset of variables. In addition,
we present an augmented version of our estimator which can incorporate
the estimation of outcome mean functions. Based on the representer theo-
rem, gradient-based algorithms can be applied for solving the correspond-
ing infinite-dimensional optimization problem. Asymptotic properties are
studied without any smoothness assumptions for the propensity score func-
tion or the need for data splitting, relaxing certain existing stringent as-
sumptions. The numerical performance of the proposed estimator is demon-
strated by a simulation study and an application to the effect of a mother’s
smoking on a baby’s birth weight conditioned on the mother’s age.

Keywords and phrases: Augmented weighting estimator, causal infer-
ence, fully and partially conditional average treatment effect, treatment
effect heterogeneity.

Received November 2021.

∗Wong’s research is partially supported by the National Science Foundation (DMS-1711952
and CCF-1934904). Portions of this research were conducted with the advanced computing
resources provided by Texas A&M High Performance Research Computing. Yang’s research
is partially supported by the National Institute on Aging (1R01AG066883) and the National
Science Foundation (DMS-1811245). Chan’s research is partially supported by the National
Heart, Lung, and Blood Institute (R01HL122212) and the National Science Foundation (DMS-
1711952).

4332

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS2000
mailto:jiayiwang@tamu.edu
mailto:raywong@tamu.edu
mailto:syang24@ncsu.edu
mailto:kcgchan@u.washington.edu


Double kernel-covariate balancing 4333

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4333
2 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4335
3 Covariate function balancing weighting for PCATE estimation . . . 4337

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4337
3.2 Balancing via an empirical residual moment operator . . . . . 4338
3.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4340

4 Augmented estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 4342
5 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 4343

5.1 Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . 4344
5.2 L2-norm balancing . . . . . . . . . . . . . . . . . . . . . . . . . 4344
5.3 L∞-norm balancing . . . . . . . . . . . . . . . . . . . . . . . . . 4346
5.4 Augmented estimator . . . . . . . . . . . . . . . . . . . . . . . 4346

6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4348
7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4350
8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4351
A Comparisons with existing works . . . . . . . . . . . . . . . . . . . . 4352

A.1 Comparisons with [48] and [13] . . . . . . . . . . . . . . . . . . 4352
A.2 Comparison with the weights in [45] . . . . . . . . . . . . . . . 4353

B Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4355
B.1 Reparametrization . . . . . . . . . . . . . . . . . . . . . . . . . 4355
B.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . 4356

C Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4356
C.1 Additional simulation results for AIPW estimators . . . . . . . 4356
C.2 Sensitivity analysis for tuning parameters λ1 and λ2 . . . . . . 4357

D Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . 4358
E Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4360

E.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . 4360
E.2 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . 4373
E.3 Proof outline of Theorem 5.3 . . . . . . . . . . . . . . . . . . . 4374
E.4 Proof of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . 4375

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4375

1. Introduction

Causal inference often concerns not only the average effect of the treatment on
the outcome but also the conditional average treatment effect (CATE) given
a set of individual characteristics, when treatment effect heterogeneity is ex-
pected or of interest. Specifically, let T ∈ {0, 1} be the treatment assignment,
0 for control and 1 for active treatment, X ∈ X ⊂ R

d a vector of all pre-
treatment confounders, and Y the outcome of interest. Following the potential
outcomes framework, let Y (t) be the potential outcome, possibly contrary to
fact, had the unit received treatment t ∈ {0, 1}. Then, the individual treat-
ment effect is Y (1)− Y (0), and the (fully) CATE can be characterized through
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γ(x) = E{Y (1) − Y (0) | X = x}, x ∈ X . Due to the fundamental problem in
causal inference that the potential outcomes are not jointly observable, iden-
tification and estimation of the CATE in observational studies require further
assumptions. A common assumption is the no unmeasured confounding (UNC)
assumption, requiring X to capture all confounding variables that affect the
treatment assignment and outcome. This often results in a multidimensional
X. Given the UNC assumption, many methods have been proposed to estimate
γ(x) [30, 39, 24]. However, in clinical settings, researchers may only concern
the variation of treatment effect over the change of a small subset of covari-
ates V ∈ V ⊆ X , not necessarily the full set X. For example, researchers are
interested in estimating the CATE of smoking (treatment) on birth weight (out-
come) given mother’s age, which is a function of a one-dimensional variable: age.
While the target is a one-dimensional function, we still need to adjust for all
confounders in addition to mother’s age, such as mother’s education attainment
and numbers of prenatal care visits, to obtain a reasonable estimation. In this
article, we focus on estimating τ(v) = E{γ(X) | V = v} for v ∈ V , which we
refer to as the partially conditional average treatment effect (PCATE). When
V is taken to be X, τ(v) becomes the fully conditional average treatment effect
(FCATE) γ(x). Despite our major focus on cases when V is a proper subset of
X , the proposed method in this paper does not exclude the setting with V = X ,
which results in the FCATE. However, existing results for FCATE may not be
directly applicable to PCATE.

Without loss of generality, we focus on the setting with continuous V [3, 27,
13, 48, 11, 37] while the proposed method can be used to handle V that consists
of continuous and discrete variables. When V contains discrete covariates, one
can divide the whole sample into different strata by restricting the same values
of discrete covariates of V in the same stratum. Then τ(v) can be obtained by
estimating the PCATE over the remaining continuous covariates in V separately
for every stratum. A typical estimation strategy involves two steps. The first
step is to estimate nuisance parameters including the propensity score func-
tion and the outcome mean functions for the construction of adjusted responses
(through weighting and augmentation) that are (asymptotically) unbiased for
γ(x) given X = x. The nuisance parameters can be estimated by parametric,
nonparametric, and machine learning models. This step serves to adjust for
confounding biases. In the second step, existing methods typically adopt non-
parametric regression of the adjusted responses over V . However, these methods
suffer from drawbacks. Firstly, all parametric methods are potentially sensitive
to model misspecification especially when the CATE is complex. On the other
hand, although nonparametric and machine learning methods are flexible, the
first-step estimator of γ(X) with high-dimensional X requires stringent assump-
tions for the possibly low-dimensional PCATE estimation to achieve the optimal
convergence rate. For example, [3], [48], [13], [11] and [37] specify restrictive re-
quirements for the convergence rate of the estimators of the nuisance parameters
(see Remarks 3 and 6).

Instead of separating confounding adjustment and kernel smoothing in two
steps, we propose a new framework that unifies the confounding adjustment and
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kernel smoothing in one single weighting step. Two major contributions of our
work are summarized as follows.

First, we generalize the idea of covariate balancing weighting in the average
treatment effect (ATE) estimation literature [33, 16, 20, 49, 45] for estimating a
scalar parameter to the PCATE estimation framework where the estimand is a
function of v. This generalization, however, is non-trivial because we require co-
variate balancing in terms of flexible outcome models between the two treatment
groups given all possible values of v. We assume that the outcome models lie
in the reproducing kernel Hilbert space (RKHS, [40]). RKHS is a fairly general
class of function space. Examples include many commonly seen spaces such as
Sobolev space [e.g., 40, 15] and spline space [e.g., 32]. We then propose covariate
function balancing (CFB) weights that are capable of controlling the balancing
error with respect to the L2-norm of any function with a bounded norm over the
RKHS after kernel smoothing, see (3.4) and the detailed description in Section
3.2. The construction of the proposed weights specifically involves two kernels
— the reproducing kernel of the RKHS and the kernel function used in kernel
smoothing — and the goal of these weights can be understood as to balance
covariate functions generated by these two kernels.

Second, asymptotic properties of the proposed estimator are derived under
the complex dependency structure of weights and kernel smoothing without
data splitting (see Remark 7). Our method does not require any smoothness
assumptions on the propensity score model, in sharp contrast to existing meth-
ods, and only require mild smoothness assumptions for the outcome models to
achieve (near) optimal convergence rate (see Sections 5.1 and 5.2). In addition,
our proposed weighting estimator can be slightly modified to incorporate the
estimation of the outcome mean functions, similar to the augmented inverse
probability weighting (AIPW) estimator. We show that the augmentation of
the outcome models relaxes the selection of tuning parameters theoretically.

The rest of the paper is organized as follows. Section 2 provides the basic
setup for the CATE estimation. Section 3 introduces the proposed CFB weight-
ing estimator, together with the computation method. Section 4 introduces an
augmented version of the proposed estimator. The asymptotic properties of the
proposed estimators are developed in Section 5. A simulation study and a real
data application are presented in Sections 6 and 7, respectively. Additional com-
putational and technical details are deferred to the Appendix.

2. Basic setup

Suppose {(Ti, Yi(1), Yi(0), Xi) : i = 1, . . . , N} are N independent and iden-
tically distributed copies of {T, Y (1), Y (0), X}. We assume that the observed
outcome is Yi = TiYi(1)+(1−Ti)Yi(0) for i = 1, . . . , N . Thus, the observed data
{(Ti, Yi, Xi) : i = 1, . . . , N} are also independent and identically distributed. For
simplicity, we drop the subscript i when no confusion arises.

We focus on the setting satisfying treatment ignorability in observational
studies [34].
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Assumption 1 (No unmeasured confounding). {Y (1), Y (0)}⊥⊥T | X.

Assumption 1 rules out latent confounding between the treatment and out-
come. In observational studies, its plausibility relies on whether or not the ob-
served covariates X include all the confounders that affect the treatment as well
as the outcome.

Most of the existing works [30, 39, 24, 37] focus on estimating the FCATE
given the full set of X, i.e., γ(x), x ∈ X . However, to ensure Assumption 1 holds,
X is often multidimensional, leading to a multidimensional CATE function γ(x)
that is challenging to estimate. Indeed, it is common that some covariates in X
are simply confounders but not treatment effect modifiers of interest. Therefore,
a more sensible way is to allow the conditioning variables to be an interested
subset of confounders [3, 48, 13]. Instead of γ(x), we focus on estimating the
PCATE

τ(v) = E {Y (1)− Y (0) | V = v} , v ∈ V ⊆ X ,

where V is a subset of X and is of dimension d1 for d1 ≤ d. It is worth noting
that V = X is also allowed, and therefore γ(x) can be estimated under our
framework. For simplicity, we assume V is a continuous random vector for the
rest of the paper. When V contains discrete random variables, one can divide the
sample into different strata, of which the units have the same level of discrete
covariates. Then τ(v) can be estimated by estimating the PCATE at every
stratum.1 For instance, suppose we are interested in estimating the PCATE of
smoking on birth weights conditioned on mother’s age and race. As race is a
discrete variable, we could separate the sample into different strata based on
races and estimate the PCATE conditioned on mother’s age for each stratum.
In the real data example (Section 7), we estimate the PCATE conditioned on
mother’s age for white and non-Hispanic mothers, where the sample size is 3754.
Although it is not covered in Section 7, one could also estimate the PCATE
conditioned on mother’s age for other strata such as non-white mothers.

In addition to Assumption 1, we require sufficient overlap between the treat-
ment groups. Let π(x) = P(T = 1 | X = x) be the propensity score. Throughout
this paper, we also assume that the propensity score is strictly bounded above
zero and below one to ensure overlap.

Assumption 2. The propensity score π(·) is uniformly bounded away from
zero and one. That is, there exist a constant C1 > 0, such that 1/C1 ≤ π(x) ≤
(1− 1/C1) for all x ∈ X .

Under Assumptions 1 and 2, τ(v) is identifiable based on the following formula

τ(v) = E {Y (1)− Y (0) | V = v} = E

{
TY

π(X)
− (1− T )Y

1− π(X)

∣∣∣∣ V = v

}
.

First, suppose π(Xi), i = 1, . . . , N , are known. Common procedures construct
adjusted responses Zi = TiYi/π(Xi)−(1−Ti)Yi/{1−π(Xi)} and apply a kernel

1Kernel smoothing may fail to run if the sample size in some stratum is too small and
compactly supported kernels are adopted. If such a numerical issue occurs, one can consider
dropping or merging the stratum to its nearest neighbor to resolve the issue.
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smoother to the data {(Vi, Zi), i = 1, . . . , N} [e.g. 3]. Specifically, let K(v) be a
kernel function and h > 0 be a bandwidth parameter (with technical conditions
specified in Section 5.1). The above strategy leads to the following estimator for
τ(v):

1/(Nhd1)
∑N

i=1 K {(Vi − v)/h}Zi

1/(Nhd1)
∑N

j=1 K {(Vj − v)/h}
=

1

N

N∑
i=1

K̃h(Vi, v)Zi (2.1)

where

K̃h(v1, v2) =
1

hd1
K{(v1 − v2)/h}

1
N

∑N
j=1

1
hd1

K{(Vj − v2)/h}
.

In observational studies, the propensity scores π(Xi), i = 1, . . . , N , are often
unknown. [3] proposes to estimate these scores using another kernel smoother,
and construct the adjusted responses based on the estimated propensity scores.
There are two drawbacks with this approach. First, it is well known that in-
verting the estimated propensity scores can result in instability, especially when
some of the estimated propensity scores are close to zero or one [23]. Second,
this procedure relies on the propensity score model to be correctly specified or
sufficiently smooth to approximate well.

To overcome these issues, instead of obtaining the weights by inverting the
estimated propensity scores, we focus on estimating the inverse propensity score
weights directly. In the next section, we adopt the idea of covariate balancing
weighting, which has been recently studied in the context of average treatment
effect (ATE) estimation [e.g., 16, 20, 49, 9, 45, 46, 22, 43].

3. Covariate function balancing weighting for PCATE estimation

3.1. Motivation

To motivate the proposed estimator, suppose we are given two sets of the co-
variate balancing weights {ŵi : i = 1, . . . , N} and {ŵ′

i : i = 1, . . . , N} for the
treated group and control group respectively. We express the adjusted response
as

Ẑi = TiŵiYi − (1− Ti)ŵ
′
iYi, i = 1, . . . , N. (3.1)

Without loss of generality, we can take ŵi = 0 if Ti = 0 and ŵ′
i = 0 if Ti = 1.

Combining (2.1) and (3.1), the estimator of τ(v) is

τ̂(v) =
1

N

N∑
i=1

TiŵiK̃h(Vi, v)Yi −
1

N

N∑
i=1

(1− Ti)ŵ
′
iK̃h(Vi, v)Yi. (3.2)

One can see that the estimator (3.2) is a difference between two terms, which
are the estimates of μ1(v) = E{Y (1) | V = v} and μ0(v) = E{Y (0) | V = v},
respectively. For simplicity, we focus on the first term and discuss the estimation
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of the corresponding weights {wi : Ti = 1} in the treated group. The same
procedure can be applied to estimate the second term, by swapping the values
of indicators for the treated and controls. More specifically, {ŵ′

i : Ti = 0} is the
solution of (3.9) with Ti replaced by (1− Ti) for i = 1, . . . , N .

We assume Yi(1) = m1(Xi) + εi such that the εi’s are independent random
errors with E(εi) = 0 and E(ε2i ) ≤ σ2

0 < ∞, and m1 is considered as the outcome
mean function for the treated group. Focusing on the first term of (3.2), we

decompose N−1
∑N

i=1 TiŵiK̃h(Vi, v)Yi as

1

N

N∑
i=1

TiŵiK̃h(Vi, v)m1(Xi) +
1

N

N∑
i=1

TiŵiK̃h(Vi, v)εi

=
1

N

N∑
i=1

(Tiŵi − 1)K̃h(Vi, v)m1(Xi) +
1

N

N∑
i=1

TiŵiK̃h(Vi, v)εi

+

{
1

N

N∑
i=1

K̃h(Vi, v)m1(Xi)− μ1(v)

}
+ μ1(v).

(3.3)

In the last equality, only the first two terms depend on the weights. The third
term in the decomposition corresponds to the estimation error of a typical local
constant regression (Nadaraya-Watson regression) and is well-studied in the
literature [e.g. 44]. As εi’s are mean-zero random variables that are independent

of Xi’s and Ti’s., the second term N−1
∑N

i=1 TiŵiK̃h(Vi, v)εi will be handled
by controlling the variability of the weights (See the proof in Section E.2 for
details). The primary challenge lies in controlling the first term, which requires
the control of the (empirical) balance of a kernel-weighted function class because
m1(Xi), i = 1, . . . , N , are unknown. This requirement makes achieving covariate
balance significantly more challenging than those for estimating the ATE, i.e.,
when V is deterministic [e.g., 16, 20, 49, 9, 45, 46, 22, 43], for multiple reasons:
(i) covariate balance is required for all v in a continuum, and (ii) the bandwidth
h in kernel smoothing is required to diminish with the sample size N .

3.2. Balancing via an empirical residual moment operator

Suppose m1 ∈ H, where H is an RKHS with reproducing kernel κ and norm
‖ · ‖H. Also, let the squared empirical norm be ‖u‖2N = (1/N)

∑N
i=1{u(Xi)}2

for any u ∈ H. Our goal is to make the proposed estimator as close to μ1 as
possible. From the decomposition (3.3), we can achieve this goal by controlling
the first three terms (i.e., excluding μ1(v)) in the decomposition. Intuitively,
from the first term of (3.3), we aim to find weights w = {wi : Ti = 1} to ensure
the following function balancing criteria:

1

N

N∑
i=1

TiŵiK̃h(Vi, v)u(Xi) ≈
1

N

N∑
i=1

u(Xi)K̃h(Vi, v),
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for all u ∈ H, where the left and right hand sides are regarded as functions of
v. To quantify such an approximation, we define the operator MN,h,w mapping
an element of H to a function on V by

MN,h,w(u, ·) =
1

N

N∑
i=1

(Tiwi − 1)u(Xi)K̃h(Vi, ·),

which we call the empirical residual moment operator with respect to the weights
in w.

The approximation and hence the balancing error can be measured by

‖MN,h,w(u, ·)‖2,

where ‖f‖ is a generic metric applied to a function f defined on V . Typical
examples of a metric are L∞-norm (‖ · ‖∞), L2-norm (‖ · ‖2) and empirical
norm (‖ · ‖N ). If one has non-uniform preference over V , weighted L2-norm and
weighted empirical norm are also applicable. In the following, we focus on the
balancing error based on L2-norm:

SN,h(w, u) = ‖MN,h,w(u, ·)‖22. (3.4)

We will return to the discussion of other norms in Section 5. Ideally, our target is
to minimize supu∈H SN,h(w, u) uniformly over a sufficiently complex spaceH. As
soon as one attempts to do this, one may find that SN,h(w, tu) = t2SN,h(w, u) for
any t ≥ 0, which indicates a scaling issue about u. Therefore, we will standardize
the magnitude of u and restrict the space to HN = {u ∈ H : ‖u‖2N = 1} as in
[45]. Also, to overcome overfitting, we add a penalty on u in terms of ‖ · ‖H that
regularizes the complexity of u and focus on controlling the balancing error over
smoother functions. An alternative strategy in the ATE estimation literature
imposes a constraint H(1) = {u ∈ H : ‖u‖H = 1}, which, however, restricts
to a pre-fixed function class. Our strategy allows data-driven tuning based on
λ1‖ · ‖2H in (3.6) to adapt to a relevant function class. Inspired by the discussion
for (3.3), we also introduce another penalty term

RN,h(w) =
1

N

N∑
i=1

‖TiwiK̃h(Vi, ·)‖22, (3.5)

to control the variability of the weights. From the decomposition (3.3), we ex-
pect a careful control on SN,h(w,m1) and RN,h(w) would lead to a bound on

‖
∑N

i=1 TiŵiK̃h(Vi, ·)Yi/N − μ1‖2 (See Section 5.2).
In summary, given any h > 0, our CFB weights ŵ is constructed as follows:

ŵ = argmin
w

[
sup

u∈HN

{
SN,h(w, u)− λ1‖u‖2H

}
+ λ2RN,h(w)

]
, (3.6)

where λ1 and λ2 are tuning parameters (λ1 > 0 and λ2 > 0). Note that (3.6)
does not depend on the weights {wi : Ti = 0} of the control group, and the
optimization is only performed with respect to {wi : Ti = 1}.
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Remark 1. By standard representer theorem, we can show that the solu-
tion ũ = û/‖û‖N of the inner optimization satisfies that û belongs to KN =
span{κ(Xi, ·) : i = 1, . . . , N} (See Section B.1 in the Appendix). Therefore, by
the definition of MN,h,w, the weights are determined by achieving the balance
of the covariate functions generated by two kernels: the reproducing kernel κ
and the smoothing kernel K.

Remark 2. [45] adopts a similar optimization form as in (3.6) to obtain weights.
The key difference between their estimator and ours is the choice of balancing
error tailored to the target quantity. In [45], the choice of balancing error is

{
∑N

i=1(Tiwi − 1)u(Xi)/N}2, which is designed for estimating the scalar ATE.
There is no guarantee that the resulting weights will ensure enough balance for
the estimation of the PCATE, a function of v. Heuristically, one can regard
the balancing error in [45] as the limit of SN,h as h → ∞. For finite h, two
fundamental difficulties emerge that do not exist in [45]. First, MN,h,w(u, v)
changes with v, and so the choice of SN,h involves a metric for a function of v in
(3.4). This is directly related to the fact that our target is a function (PCATE)
instead of a scalar (ATE). For reasonable metrics, the resulting balancing errors
measure imbalances over all (possibly infinite) values of v, which is significantly
more difficult than the imbalance control required for ATE. Second, for each v,
the involvement of kernel function in MN,h,w suggests that the effective sample

size used in the corresponding balancing is much smaller than
∑N

i=1 Ti. There is
no theoretical guarantee for the weights of [45] to ensure enough balance required
for the PCATE, since the proposed weights are designed to balance a function
instead of a scalar. We show that the proposed CFB weighting estimator achieves
desirable properties both theoretically (Section 5) and empirically (Section 6).

3.3. Computation

In this section, we discuss the computation of the CFB weights and defer details
and proof to the Appendix. For simplicity of exposition, we introduce more
notations: ◦ is the element-wise product of two vectors, J = (1, 1, . . . , 1)ᵀ, Ω(A)
represents the maximum eigenvalue of a symmetric matrix A, P ∈ R

N×r consists
of the singular vectors of the Gram matrix M := [κ(Xi, Xj)]

N
i,j=1 ∈ R

N×N of
rank r, D ∈ R

r×r is the diagonal matrix such that

M = PDP ᵀ, (3.7)

and

Gh =

⎡
⎢⎣

∫
V K̃h(V1, v)K̃h(V1, v)dv · · ·

∫
V K̃h(V1, v)K̃h(VN , v)dv

...
. . .

...∫
V K̃h(VN , v)K̃h(V1, v)dv · · ·

∫
V K̃h(VN , v)K̃h(VN , v)dv

⎤
⎥⎦ ∈ R

N×N .

(3.8)
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Applying the standard representer theory, (3.6) can be reformulated as

ŵ =argmin
w≥1

[
Ω

{
1

N
P ᵀdiag(T ◦ w − J)Ghdiag(T ◦ w − J)P −Nλ1D

−1

}
+λ2RN,h(w)] . (3.9)

The underlying optimization is convex as shown in Lemma 1.

Lemma 1. The optimization (3.6) or equivalently (3.9) is convex.

By Lemma 1, generic convex optimization algorithms are applicable. Also, be-
cause the corresponding gradient has a closed-form expression2, gradient-based
algorithms, such as the L-BFGS-B algorithm, can be applied efficiently to solve
the optimization. Regarding the selection of the tuning parameters λ1 and λ2,
we adopt a criterion similar to [45]. Based on our theoretical study in Section
5, we will see that the optimal order of λ2 is λ2 � λ1h

d1 (see Theorems 5.2 and
5.4.) For simplicity, we choose λ2 = ρ1h

d1λ1, where ρ1 > 0 is a fixed parameter.
Notice that λ2 > 0 is mainly imposed to control RN,h(w). From our experience,
RN,h is usually stable and does not take a large value even if λ2 is small. There-
fore we are inclined to take a small λ2. We fix ρ1 = 0.01 in all our numerical
applications. Next, we discuss how to tune λ1. Roughly speaking, as λ1 increases,
BN,h(ŵ) := SN,h(ŵ, u

λ1), where uλ1 = argmaxu∈HN
{SN,h(ŵ, u)−λ1‖u‖2H}, de-

creases and approaches zero. This is because the smoother the function is, the
easier it is to be balanced. The main idea is to select the smallest λ1 such that
BN,h(ŵ) will not decrease much if we further enlarge λ1. In practice, we compute

the proposed weights with respect to a grid of λ1 such that λ
(1)
1 < · · · < λ

(K)
1 .

Write ŵ(k) as the proposed weights with respect to λ
(k)
1 . We select λ

(k∗)
1 as our

choice if k∗ is the smallest k such that {BN,h(ŵ
(k+1))−BN,h(ŵ

(k))}/(λ(k+1)
1 −

λ
(k)
1 ) ≥ ρ2, where ρ2 is chosen as a negative constant of small magnitude. We set

ρ2 = −10−6 in all numerical applications. Algorithm 1 outlines the optimization
steps, together with the tuning parameter selection.

In the following, we discuss several practical strategies to speed up the opti-
mization. First, Line 1 in Algorithm 1 computes Gh. Although the form of Gh

may seem complicated, this does not change with w. Therefore, for each h, we
can pre-compute Gh once at the beginning of an algorithm for the optimization
(3.9). However, when the integral gh(v1, v2) =

∫
V K̃h(v1, v)K̃h(v2, v)dv does not

possess a known expression, one generally has to perform a large number of nu-
merical integration for the computation of Gh, when N is large. But, for smooth
choices of K, gh is also a smooth function. When N is large, we could evaluate
gh(Vi, Vj), i ∈ S1, j ∈ S2 at smaller subsets S1 and S2. Then typical interpola-
tion methods [17] can be implemented to approximate unevaluated integrals in
Gh to ease the computation burden.

Second, Line 2 in Algorithm 1 computes the dominant eigen-pair of an r× r
matrix to obtain the gradient and objective value. Since common choices of
the reproducing kernel κ are smooth, the corresponding Gram matrix M can

2when the maximum eigenvalue in the objective function is of multiplicity 1
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Algorithm 1: Optimization steps for solving (3.9) with selection of λ1 and
λ2

Input: the data set{(Xi, Vi, Ti) :, i = 1, . . . , n}; the bandwidth h, the grid for λ1:

{λ(k)
1 : k = 1, . . . ,K}, ρ1, ρ2

1 Calculate Gh according to (3.8).
2 Calculate the Gram matrix M and compute the eigen-decomposition to obtain P and

D.

3 for k = 0, 1, . . . ,K do

4 Optimize (3.9) by L-BFGS-B algorithm with λ1 = λ
(k)
1 and λ2 = ρ1λ

(k)
1 hd1 to

obtain the solution ŵ(k).
5 Calculate the balancing error

BN,h(ŵ
(k)) = N−1ζᵀP ᵀdiag(T ◦ ŵ(k) − J)Ghdiag(T ◦ ŵ(k) − J)Pζ,

where ζ is the eigenvector that corresponds to the largest eigenvalue of

{ 1
N
P ᵀdiag(T ◦ ŵ(k) − J)Ghdiag(T ◦ ŵ(k) − J)P −Nλ

(k)
1 D−1}.

6 end
7 Select k∗ as the smallest k such that

{BN,h(ŵ
(k+1))−BN,h(ŵ

(k))}/(λ(k+1)
1 − λ

(k)
1 ) ≥ ρ2

Output: w(k∗)

usually be approximated well by a low-rank matrix. WhenN is large, to facilitate
computation, one can choose P andD with a smaller dimension r such that (3.7)
holds approximately. Due to the smaller r, this would significantly reduce the
burden of computing the dominant eigen-pair of the r × r matrix.

4. Augmented estimator

Inspired by the augmented inverse propensity weighting (AIPW) estimators
in the ATE literature [10, 5], we also propose an augmented estimator that
directly adjusts for the outcome models m1(·) and m0(·). Augmented estimators
combine estimations of weights (propensity scores) and outcome mean functions.
And they have shown to be effective in the literature and practice. For the
proposed augmented estimator, we also observe similar empirical benefits, due
to leveraging both the weights and the outcome regression. In our theoretical
study, we show that both the augmented and non-augmented estimators achieve
the optimal convergence rate. Interestingly, the augmented estimator relaxes the
requirement of the order of tuning parameters.

Recall that the outcome regression functions m1(·) and m0(·) are assumed to
be in an RKHS H, kernel-based estimators m̂1(·) and m̂0(·) can be employed.
We then perform augmentation and obtain the adjusted response in (3.1) as

Ẑi = ŵiTi{Yi − m̂1(Xi)}+ m̂1(Xi)− [ŵ′
i(1− Ti) {Yi − m̂0(Xi)}+ m̂0(Xi)] .

Correspondingly, the decomposition in (3.3) becomes

1

N

N∑
i=1

K̃h(Vi, v)m̂1(Xi) +
1

N

N∑
i=1

TiŵiK̃h(Vi, v){Yi − m̂1(Xi)}
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=
1

N

N∑
i=1

(1− Tiŵi)K̃h(Vi, v)m̂1(Xi) +
1

N

N∑
i=1

TiŵiK̃h(Vi, v)m1(Xi)

+
1

N

N∑
i=1

TiŵiK̃h(Vi, v)εi

=
1

N

N∑
i=1

(Tiŵi − 1)K̃h(Vi, v){m1(Xi)− m̂1(Xi)}+
1

N

N∑
i=1

TiŵiK̃h(Vi, v)εi

+

{
1

N

N∑
i=1

K̃h(Vi, v)m1(Xi)− μ1(v)

}
+ μ1(v).

Now, our goal is to control the difference between N−1
∑N

i=1 TiŵiK̃h(Vi, v)

×{m1(Xi)− m̂1(Xi)} and N−1
∑N

i=1 K̃h(Vi, v){m1(Xi)− m̂1(Xi)}. The weight
estimators in Section 3.2 can be adopted similarly to control this difference. It
can be shown that the term SN,h(ŵ,m1− m̂1) = ‖N−1

∑N
i=1(Tiŵi−1)K̃h(Vi, ·)

×{m1(Xi)−m̂1(Xi)}‖22 can achieve a faster rate of convergence than SN,h(ŵ,m1)
does with the same estimated weights ŵ as long as m̂1 is a consistent estima-
tor. However, this property does not improve the final convergence rate of the
PCATE estimation. This is because the term ‖N−1

∑N
i=1 K̃h(Vi, ·)m1(Xi)−μ1‖22

dominates other terms, and thus the final rate can never be faster than the opti-
mal non-parametric rate. See Remark 4 for more details. Our theoretical results
reveal that the benefit of using the augmentations lies in the relaxed order re-
quirement of the tuning parameters to achieve the optimal convergence rate.
Therefore, the performance of the augmented estimator is expected to be more
robust in the tuning parameter selection.

Unlike other AIPW-type estimators [27, 13, 48, 37] which often rely on data
splitting for estimating the propensity score and outcome mean functions to
relax technical conditions, our estimator does not require data splitting to facil-
itate the convergence with augmentation (see Remark 7). We defer the theoret-
ical comparison between our estimator and the existing AIPW-type estimator
(see Remark 6).

Lastly, we note that there are existing work using weights to balance the
residuals [e.g. 5, 45], which appears similar to the proposed augmented esti-
mator. These estimators are designed for ATE estimation and the balancing
weights cannot be directly adopted here for PCATE estimation with theoretical
guarantee.

5. Asymptotic properties

In this section, we conduct an asymptotic analysis for the proposed estimator.
For simplicity, we assume X = [0, 1]d. To facilitate our theoretical discussion
in terms of smoothness, we assume the RKHS H is contained in a Sobolev
space (see Assumption 3). Our results can be extended to other choices of H
if the corresponding entropy result and boundedness condition for the unit ball
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{u ∈ H : ‖u‖H ≤ 1} are provided. Recall that we focus on E{Y (1) | V = v}.
Similar analysis can be applied to E{Y (0) | V = v} and finally the PCATE.

5.1. Regularity conditions

Let � be a positive integer. For any function u defined on X , the the Sobolev

norm is ‖u‖W� =
√∑

|β|≤� ‖Dβu‖22, where Dβu(x1, . . . , xd) =
∂|β|u

∂x
β1
1 ...∂x

βd
d

for a

multi-index β = (β1, . . . , βd). The Sobolev space W� consists of functions with
finite Sobolev norm. For ε > 0, we denote by N (ε,F , ‖·‖) the ε-covering number
of a set F with respect to some norm ‖ · ‖. Next, we list the assumptions that
are useful for our asymptotic results.

Assumption 3. The unit ball of H is a subset of a ball in the Sobolev space
W�, with the ratio α := d/� less than 2.

Assumption 4. The regression function m1 belongs to an RKHS H.

Assumption 5. (a) K is symmetric,
∫
K(s)ds = 1, and there exists a constant

C2 such that K(s) ≤ C2 for all s. Moreover,
∫
s2K(s)ds < ∞ and

∫
K2(s)ds <

∞. (b) Take K = {K{(v − ·)/h} : h > 0, v ∈ [0, 1]d1}. There exist constants
A1 > 0 and ν1 > 0 such that N (ε,K, ‖ · ‖∞) ≤ A1ε

−ν1 .

Assumption 6. The density function g(·) of the random variable V ∈ [0, 1]d1 is
continuous, differentiable, and bounded away from zero, i.e., there exist constants
C3 > 0 and C4 > 0 such that C3 ≤ g(v) ≤ C4.

Assumption 7. h → 0 and N
2

2+αhd1 → ∞, as N → ∞.

Assumption 8. The joint density of {m1(X), V } and the conditional expecta-
tion E{m1(X) | V = v} are continuous.

Assumption 9. The errors {εi, i = 1, . . . , N} are uncorrelated, with E(εi) = 0
and Var(εi) ≤ σ2

0 for all i = 1, . . . , N . Furthermore, {εi, i = 1, . . . , N} are
independent of {Ti, i = 1, . . . , N} and {Xi, i = 1, . . . , N}.

Assumption 3 is a common condition in the literature of smoothing spline
regression. Assumptions 5–8 comprise standard conditions for kernel smoother
[e.g., 29, 12, 44] except that we require N

α
2+αhd1 → ∞ instead of Nhd1 → ∞

to ensure the difference between ‖u‖N and ‖u‖2 is asymptotically negligible.
Assumption 5(b) is satisfied whenever K(·) = ψ{p(·)} with p(·) being a poly-
nomial in d1 variables and ψ being a real-valued function of bounded variation
[38].

5.2. L2-norm balancing

Given two sequences of positive real numbers (A1, A2, . . . ) and (B1, B2, . . . ),
AN = O(BN ) represents that there exists a positive constant M such that
AN ≤ MBN as N → ∞; AN = O(BN ) represents that AN/BN → 0 as N → ∞,
and AN � BN represents AN = O(BN ) and BN = O(AN ).
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Theorem 5.1. Suppose Assumptions 1–7 hold. If λ−1
1 = O(Nhd1), we have

SN,h(ŵ,m) = Op(λ1‖m‖2N + λ1‖m‖2H + λ2h
−d1‖m‖2N ). If we further assume

λ−1
2 = O(λ−1

1 h−d1), then RN,h(ŵ) = Op(h
−d1).

Theorem 5.1 specifies the control of the balancing error and the weight vari-
ability. From (3.3), we can bound ‖

∑N
i=1 TiŵiYiKh (Vi, ·) /N − μ1‖2 through

the following decomposition∥∥∥∥∥ 1

N

N∑
i=1

TiŵiYiKh (Vi, ·)− μ1

∥∥∥∥∥
2

≤{SN,h(ŵ,m1)}
1
2

+

⎧⎨
⎩E

∥∥∥∥∥ 1

N

N∑
i=1

TiŵiK̃h(Vi, ·)εi

∥∥∥∥∥
2

2

⎫⎬
⎭

1
2

+Op

(
N− 1

2

)
+

∥∥∥∥∥ 1

N

N∑
i=1

K̃h(Vi, ·)m1(Xi)− μ1

∥∥∥∥∥
2

≤{SN,h(ŵ,m1)}
1
2 + σ0

{
RN,h(w)

N

} 1
2

+Op

(
N− 1

2

)
+

∥∥∥∥∥ 1

N

N∑
i=1

K̃h(Vi, ·)m1(Xi)− μ1

∥∥∥∥∥
2

.

Then the results of Theorem 5.1 can be used to derive the convergence rate of
the proposed estimator as shown in the following theorem.

Theorem 5.2. Suppose Assumptions 1-9 hold. If λ−1
1 = O(Nhd1), λ−1

2 =
O(λ−1

1 h−d1), and h2 = O{(N−1h−d1)1/2}, we have∥∥∥∥∥ 1

N

N∑
i=1

TiŵiYiKh (Vi, ·)− μ1

∥∥∥∥∥
2

= Op(N
−1/2h−d1/2 + λ

1/2
1 ‖m1‖H + λ

1/2
2 h−d1/2‖m1‖2).

The proof can be found in Section E.1 and E.2 in the Appendix. Since we
require λ−1

1 = O(Nhd1), the best convergence rate that we can achieve in Theo-
rem 5.2 is arbitrarily close to the optimal rate N−1/2h−d1/2. It is unclear if this
arbitrarily small gap is an artifact of our proof structure. However, in Theorem
5.4 below, we show that this gap can be closed by using the proposed augmented
estimator.

Remark 3. [3] adopts an inverse probability weighting (IPW) method to esti-
mate the PCATE, where the propensity scores are approximated parametrically
or by kernel smoothing. They provide point-wise convergence result for their es-
timators, as opposed to L2 convergence in our theorem. For their nonparametric
propensity score estimator, their result is derived based on a strong smoothness
assumption of the propensity score. More specifically, it requires high-order ker-
nels (the order should not be less than d) in estimating both the propensity
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score and the later PCATE in order to achieve the optimal convergence rate.
Compared to their results, our proposed estimator does not involve such a strong
smoothness assumption nor a parametric specification of the propensity score.

5.3. L∞-norm balancing

In Section 3.2, we mention several choices of the metric in the balancing error
(3.4). In this subsection, we provide a theoretical investigation of an important
case with L∞-norm. We note that efficient computation of the corresponding
weights is challenging, and thus is not pursued in the current paper. Nonetheless,
it is theoretically interesting to derive the convergence result for the proposed
estimator with L∞-norm. More specifically, the estimator of interest in this
subsection is defined by replacing the L2-norm in SN,h(w, u) and RN,h(w) with
the L∞-norm. Instead of the L2 convergence rate (Theorem 5.2), we can obtain
the uniform convergence rate of this estimator in the following theorem.

Theorem 5.3. Suppose Assumptions 1–9 hold, Let w̃ be the solution to (3.6) but

with SN,h(w, u) = ‖MN,h,w(u, ·)‖∞ and RN,h(w) = ‖ 1
N

∑N
i=1 TiwiK̃h(Vi, ·)‖∞.

If λ−1
1 � Nhd1 log(1/h), λ2 � N−1, log(1/h)/(log logN) → ∞ as N → ∞, and

h2 = O{(N−1h−d1 log(1/h))1/2},∥∥∥∥∥ 1

N

N∑
i=1

TiŵiYiKh (Vi, ·)− μ1

∥∥∥∥∥
∞

= Op{N−1/2h−d1/2 log1/2(1/h)}.

We provide the proof outline in Section E.3 in the Appendix.
Different from Theorem 5.2, the uniform convergence rate is optimal. Roughly

speaking, this is because, compared to the optimal L2 convergence rate, the op-
timal uniform convergence rate has an extra logarithmic order, which dominates
the arbitrarily small gap mentioned in Section 5.2.

5.4. Augmented estimator

We also derive the asymptotic property of the augmented estimator.

Theorem 5.4. Suppose Assumptions 1–9 hold. Take e = m1−m̂1 ∈ H such that
‖e‖H = Op(1) and ‖e‖2 = Op(1). Suppose λ−1

1 = O(Nhd1), λ−1
2 = O(λ−1

1 h−d1),
and h2 = O{(N−1h−d1)1/2}, we have∥∥∥∥∥ 1

N

N∑
i=1

K̃h(Vi, ·)m̂1(Xi)+
1

N

N∑
i=1

TiŵiK̃h(Vi, ·){Yi − m̂1(Xi)}−E {Y (1)|V = ·}
∥∥∥∥∥
2

= Op(N
−1/2h−d1/2 + λ

1/2
1 ‖e‖H + λ

1/2
2 h−d1/2‖e‖2).

Remark 4. In Theorem 5.2, to obtain the best convergence rate that is ar-
bitrarily close to N−1/2h−d1/2, we require λ1 and λ2 to be arbitrarily close
to N−1h−d1 and N−1, respectively. While in Theorem 5.4, as long as λ1 =
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O(N−1h−d1 log(1/h)‖e‖−2
H ) and λ2 = O(N−1 log(1/h)‖e‖−2

N ), the optimal con-
vergence rate N−1/2h−d1/2 is achievable. Therefore, with the help of augmenta-
tion, we can relax the order requirement of the tuning parameters for achieving
the optimal rate. As a result, it is “easier” to tune λ1 and λ2 with augmentation.

Remark 5. Several existing works focus on estimating the FCATE γ(·) given
the full set of covariates [24, 30]. While one could partially marginalize their
estimate γ̂(·) of γ(·) to obtain an estimate τ̌(·) of τ(·), it is not entirely clear
whether the convergence rate of τ̌(·) is optimal, even when γ̂(·) is rate-optimal
non-parametrically. The main reason is that the estimation error γ̂(x) − γ(x)
are dependent across different values of x. Note that γ(·) is a d-dimensional
function and the optimal rate is slower than the optimal rate that we achieve
for τ(·), a d1-dimensional function, when d1 < d. So the partially marginalizing
step needs to be shown to speed up the convergence significantly, in order to be
comparable to our rate result.

Remark 6. To directly estimate the PCATE τ(·), a common approach is to
apply smoothing methods to the adjusted responses with respect to V instead
of X. Including ours, most papers follow this approach. The essential difficulty
discussed in Remark 5 remains and hence the analyses are more challenging
than those for the FCATE γ(·), if the optimal rate is sought. In the existing
work [27, 36, 48, 13] that adopts augmentation, estimations of both propensity
score and outcome mean functions, referred to as nuisance parameters in below,
are required. [27] adopts parametric modeling for both nuisance parameters and
achieve double robustness; i.e., only one nuisance parameter is required to be
consistent to achieve the optimal rate for τ(·). However, parametric modeling is
a strong assumption and may be restrictive. [36, 48, 13] adopt nonparametric
nuisance modeling. Importantly, to achieve optimal rate of τ(·), these works
require consistency of both nuisance parameter estimations. In other words,
the correct specification of both nuisance parameter models are required. [13]
require both nuisance parameters to be estimated consistently with respect to
L∞ norm. While [36] and [48] implicitly require the product convergence rates
from the two estimators to be faster than N−1/2 to achieve the optimal rate
of the PCATE estimation. In other words, if one nuisance estimator is not
consistent, the other nuisance estimator has to converge faster than N−1/2. [11]
proposes a new orthogonal representation of τ(v) for a fixed v based on the
outcome mean function and the weight function. Since their method targets at
τ(v) for a fixed v, their weight function needs to be re-estimated when v changes.
On the contrary, our weights are designed for the estimation of τ(·) as a function
and can be used for all v. In order to achieve the optimal convergence rate, [11]
also require that models for both the outcome function and weight function are
consistently estimated. Overall, unlike these existing estimators, our estimators
do not rely on restrictive parametric modeling nor consistency of both nuisance
parameter estimation.

Remark 7. Most existing work (discussed in Remark 6) require data-splitting
or cross-fitting to remove the dependence between nuisance parameter estima-
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Table 1

Models for simulation with two specifications for each of logit{π(X)} and mt(X) (t = 0, 1)

Setting π(X) mt(X) (t = 0, 1) τ(v)
1 1/(1 + expX1 +X3) 10 +X1 + (2t− 1)(X2 +X4) 2v2 + 2 sin(2v)
2 1/(1 + expZ1 + Z2 + Z3) 10 +X1 + (2t− 1)(X2 +X4) 2v2 + 2 sin(2v)
3 1/(1 + expX1 +X3) 10 + (2t − 1)(Z2

1 +
2Z1 sin(2Z1)) + Z2

2 +
sin(2Z3)Z2

4

2v2+4v sin(2v)

4 1/(1 + expZ1 + Z2 + Z3) 10 + (2t − 1)(Z2
1 +

2Z1 sin(2Z1)) + Z2
2 +

sin(2Z3)Z2
4

2v2+4v sin(2v)

tions and the smoothing step for estimating τ(·), which is crucial in their theo-
retical analyses. [47] first propose cross-fitting in the context of Target Maximum
Likelihood Estimator and [10] subsequently apply to estimating equations. This
technique can be used to relax the Donsker conditions required for the class
of nuisance functions. [24] applies cross-fitting to FCATE estimation for simi-
lar purposes. While data-splitting and cross-fitting are beneficial in theoretical
development, they are not generally a favorable modification, due to criticism
of increased computation and fewer data for the estimation of different compo-
nents (nuisance parameter estimation and smoothing). However, our estimators
do not require data-splitting in both theory and practice. Our asymptotic anal-
yses are non-standard and significantly different than these existing work since,
without data-splitting, the estimated weights are intimately related with each
others and an additional layer of smoothing further complicates the dependence
structure.

6. Simulation study

We evaluate the finite-sample properties of various estimators with sample size

N = 100. The covariate Xi = [X
(1)
i , X

(2)
i , X

(3)
i , X

(4)
i ] ∈ R

4, i = 1, . . . , 100 is

generated by X
(1)
i = Z

(1)
i , X

(2)
i = {Z(1)

i }2 + Z
(2)
i , X

(3)
i = exp(Z

(3)
i /2) + Z

(2)
i

and X
(4)
i = sin(2Z

(1)
i ) + Z

(4)
i with Z

(j)
i ∼ Uniform[−2, 2] for j = 1, . . . , 4. The

conditioning variable of interest is set to be V = X1. The treatment is generated
by T | X ∼ Bernoulli{π(X)}, and the outcome is generated by Y | (T = t,X) ∼
N{mt(X), 1}. To assess the estimators, we consider two different choices for
each of π(X) and mt(X), summarized in Table 1. In Settings 1 and 2, the
outcome mean functions mt are relatively easy to estimate, as they are linear
with respect to covariates X. While in Settings 3 and 4, the outcome mean
functions are nonlinear and more complex. Propensity score function π(X) is
set to be linear with respect to X in Settings 1 and 3, and nonlinear in Settings
2 and 4. The corresponding PCATEs are nonlinear and shown in Figure 1.

In our study, we compare the following estimators for τ(·):
1. IPW: the inverse propensity weighting estimator from [3] with a logis-

tic regression model for the propensity score. In Settings 1 and 3, the
propensity score model is correctly specified.
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Fig 1. The target PCATEs in the simulation study: the left panel plots the PCATE in Settings
1 and 2; the right panel plots the PCATE in Settings 3 and 4.

2. ATERKHS: the weighted estimator described in Remark 2, whose weights
are estimated based on the covariate balancing criterion in [45].

3. Proposed: the proposed estimator with the tensor product of second-
order Sobolev kernels as the reproducing kernel κ.

4. Augmented estimators by augmenting the estimators in 1-3 by the out-
come models. We consider two outcome models: linear regression (LM)
and kernel ridge regression (KRR).

5. REG: the estimator that adopts outcome regressions [e.g., 21, 19]. To pro-
vide a better comparison between different methods, we directly smooth
{(Xi, m̂1(Xi) − m̂0(Xi)) : i = 1, . . . , N} to estimate the PCATE, where
m̂1(Xi) and m̂0(Xi) are estimated with outcome models considered in 4.

For all estimators, a kernel smoother with Gaussian kernel is applied to the
adjusted responses. For IPW, the bandwidth is set as h̃ = ĥ × N1/5 × N−2/7,
where ĥ is a commonly used optimal bandwidth in the literature such as the
direct plug-in method [35, 42, 8]. Throughout our analysis, ĥ is computed via
the R package “nprobust”. The same bandwidth formula h̃ is also considered by
[27] and [13] to estimate the PCATE. For the proposed estimator, a bandwidth
should be given prior to estimate the weights. We first compute the adjusted
response by using weights from [45], and then obtain the bandwidth h̃ as the
input to our proposed estimator.

Table 2 shows the average integrated squared error (AISE) and median inte-
grated squared error (MeISE) of above estimators over 500 simulated datasets.
Without augmentation, Proposed has significantly smaller AISE and MeISE
than other methods among all four settings. All methods are improved by aug-
mentations. In Settings 1 and 2, REG has the best performance. In these two
settings, the outcome models are linear and thus can be estimated well by both
LM and KRR. However, the differences between REG and Proposed are rel-
atively small. As for Settings 3 and 4 where outcome mean functions are more
complex, Proposed achieves the best performance and shows a significant im-
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Table 2

Simulation results for the four settings, where the average integrated squared errors (AISE)
with standard errors (SE) in parentheses and median integrated squared error (MeISE) are

provided.

Setting 1 Setting 2 Setting 3 Setting 4
Augmentation Method AISE MeISE AISE MeISE AISE MeISE AISE MeISE

No IPW 164.202 (31.06) 49.842 92.218 (14.12) 46.916 314.273 (114.3) 77.336 121.435 (18.36) 63.109
ATERKHS 70.236 (3.01) 50.961 57.551 (3.77) 39.123 92.154 (3.68) 71.184 70.091 (3.33) 48.937
Proposed 15.737 (1.94) 6.500 5.993 (0.59) 2.33 17.874 (1.36) 9.074 8.797 (0.97) 3.265

LM IPW 1.524 (0.06) 1.229 1.393 (0.04) 1.184 7.711 (2.57) 2.919 4.240 (0.32) 2.542
ATERKHS 1.462 (0.04) 1.295 1.424 (0.04) 1.275 4.255 (0.19) 3.008 3.170 (0.10) 2.677
Proposed 1.245 (0.03) 1.089 1.166 (0.03) 1.079 3.244 (0.18) 2.251 2.176 (0.06) 1.937

REG 1.055 (0.03) 0.909 0.974 (0.02) 0.861 5.496 (0.19) 4.388 4.260 (0.05) 4.097
KRR IPW 1.578 (0.08) 1.225 1.304 (0.04) 1.112 3.758 (0.21) 2.433 2.909 (0.17) 2.066

ATERKHS 1.526 (0.04) 1.361 1.404 (0.04) 1.256 3.600 (0.14) 2.735 2.710 (0.08) 2.315
Proposed 1.329 (0.04) 1.141 1.159 (0.03) 1.032 2.858 (0.12) 2.126 2.103 (0.06) 1.761

REG 1.239 (0.04) 1.052 0.999 (0.02) 0.899 3.787 (0.12) 3.159 2.816 (0.06) 2.654

provement over REG, especially when outcome models are misspecified (See
Settings 3 and 4 with LM augmentation). As ATERKHS is only designed for
marginal covariate balancing, its performance is worse than Proposed across
all scenarios.

7. Application

We apply the estimators in Section 6 to estimate the effect of maternal smoking
on birth weight as a function of mother’s age, by re-analyzing a dataset of
mothers in Pennsylvania in the USA (http://www.stata-press.com/data/r13/
cattaneo2.dta). Following [27], we focus on white and non-Hispanic mothers,
resulting in the sample size N = 3754. The outcome Y is the infant birth
weight measured in grams and the treatment indicator T is whether the mother
is a smoker. For the treatment ignorability, we include the following covariates:
mother’s age, an indicator variable for alcohol consumption during pregnancy,
an indicator for the first baby, mother’s educational attainment, an indicator for
the first prenatal visit in the first trimester, the number of prenatal care visits,
and an indicator for whether there was a previous birth where the newborn
died. Due to the boundary effect of the kernel smoother, we focus on τ(v) for
v ∈ [18, 36], which ranges from 0.05 quantile to 0.95 quantile of mothers’ ages
in the sample.

We compute various estimators of the PCATE in Section 6. For all the follow-
ing IPW related estimators, logistic regression is adopted to estimate propensity
scores. Following [3], we include IPW: the IPW estimator with no augmentation.
Following [27], we include AIPW(LM): the IPW estimator with LM augmen-
tation. We include Proposed: the proposed estimators with KRR augmentation
here as it performs the best in the simulation study and aligns with our as-
sumption for the outcome mean functions. For completeness, we also include
AIPW(KRR): the IPW estimator with KRR augmentation; REG(KRR): the
REG estimator where the outcome mean functions are estimated by KRR;
REG(LM): the REG estimator where the outcome mean functions are esti-
mated by LM. For both the KRR augmentation and the weights estimation in
Proposed, we consider a tensor product RKHS, with the second-order Sobolev

http://www.stata-press.com/data/r13/cattaneo2.dta
http://www.stata-press.com/data/r13/cattaneo2.dta
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Fig 2. The estimated PCATEs of maternal smoking on birth weight as a function of mother’s
age: the left panel includes all estimators and the right panel excludes the IPW estimator.

kernel for continuous covariates and the identity kernel for binary covariates.
For all the estimators, a kernel smoother with Gaussian kernel is applied to the
adjusted responses.

Figure 2 shows the estimated PCATEs from different methods. From the
left panel in Figure 2, IPW has large variations compared to other estimators.
The significantly positive estimates before age 20 conflict with the results from
various established research works indicating that smoking has adverse effect
on birth weights [26, 4, 1, 2]. From the right panel in Figure 2, the remaining
four estimators show a similar pattern that the effect becomes more severe as
mother’s age increases, which aligns with the existing literature [14, 41]. The
REG(LM) estimator shows a linearly decreasing pattern, while the REG(KRR)
estimator stops decreasing after age 30. AIPW(LM) and AIPW(KRR) show an
increase pattern around age 27 to 32 and decrease quickly after age 32. Com-
pared to AIPW(LM) and AIPW(KRR), Proposed shows stable effects between
age 27 and 32 and the decrease after age 32 is relatively smoother.

8. Discussions

The PCATE characterizes subgroup treatment effects and provides insights
about how treatment effect varies across the characteristics of interest. We
develop a novel nonparametric estimator for the PCATE under treatment ig-
norability. The proposed double kernel weighting is a non-trivial extension of
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covariate balancing weighting in the ATE estimation literature in that it aims to
achieve approximate covariate balancing for all flexible outcome mean functions
and for all subgroups defined based on continuous variables. In contrast to exist-
ing estimators, we do not require any smoothness assumption on the propensity
score, and thus our weighting approach is particularly useful in studies when
the treatment assignment mechanism is quite complex.

We conclude with several interesting and important extensions of the current
estimator as future research directions. First, an improved data-adaptive band-
width selection procedure is worth investigating as it plays an important role in
smoothing. In addition, instead of local constant regression, other alternatives
such as linear or spline smoothers can be considered. Third, given the appealing
theoretical properties, we will investigate efficient computation of the proposed
weighting estimators with L∞-norm. Furthermore, the asymptotic distribution
of the proposed estimator is worth studying so that inference procedures can be
developed. Although some existing works [e.g., 31, 11, 48] provide asymptotic
distributions for their proposed estimators, their analyses usually require more
stringent assumptions. Also, the asymptotic distributional results under our set-
ting are more challenging to obtain, due to the complex dependency structure
resulting from the weights.

Appendix A: Comparisons with existing works

A.1. Comparisons with [48] and [13]

All three methods (the proposed method, [48] and [13]) perform non-parametric
regression of the adjusted response on V to derive the corresponding PCATE
estimations. They can all incorporate the outcome mean functions estimations
into the adjusted response. Here, we list some differences between the proposed
estimator with estimators provided in [48] and [13] as follows:

• Both [48] and [13] adopt inverse propensity weights which are known to be
unstable. In contrast, the proposed estimation uses more stable balancing
weights.

• Both [48] and [13] require nuisance parameters (propensity function and
outcome mean function) to be consistently estimated, in order to achieve
the optimal convergence rate. More specifically, they require the product
convergence rates from two estimator to be faster than N−1/2hd1/2. As
for the proposed estimator, consistency of both nuisance parameter es-
timations are not required to achieve optimal convergence rate. See also
Remark 6.

• [48] requires a data-splitting procedure to perform their estimation. While
data-splitting is beneficial in theoretical development, it is not generally
a favorable modification, due to criticism of increased computation and
fewer data. In addition, the practical performance can be unstable. See
the simulation study in Appendix C.1. In contrast, our estimator does
not require data-splitting in both theory and practice. See also Remark 7.
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Last, we note that, in addition to a data-splitting procedure, [13] also pro-
posed a full-sample estimation procedure. But the corresponding analysis
of the full-sample estimation requires stronger assumptions to achieve the
optimal convergence rate.

A.2. Comparison with the weights in [45]

In this section, we provide more details about the comparison between the pro-
posed weights constructed through (3.6) with the weights from [45].

First, as in Remark 2, we would like to emphasize that the proposed weights
in [45] only control the balancing error with respect to the global mean (not the
FCATE), which is a scalar. More specifically, their work aim to find weights
{wi} such that

1

N

N∑
i=1

Tiwiu(Xi) ≈
1

N

N∑
i=1

u(Xi), (A.1)

for all u in an appropriate class of functions. (Note that both LHS and RHS
are scalars.) There is no guarantee that the resulting weights will ensure enough
balance for the estimation of PCATE, which is a function of v. In contrast,
our work focuses on the following balancing criterion that ensures the resulting
weighted kernel smoothing estimator to remove confounding at all level of v:

1

N

N∑
i=1

Tiwiu(Xi)K̃h(Vi, ·) ≈
1

N

N∑
i=1

u(Xi)K̃h(Vi, ·), (A.2)

for all u in an appropriate class of functions. Note that both the LHS and the
RHS are functions. To quantify the balancing error, we need to quantify the
differences between the functions in the LHS and the RHS. Toward this end, we
proposed to use the L2-distance which works nicely in both computation and
theory.

Clearly, one could argue that the idea in [45] can be generalized to control
the balancing error with respect to the function evaluated at a single point v,
which is also a scalar setting. More precisely, one could extend (A.1) to

1

N

N∑
i=1

Tiwiu(Xi)K̃h(Vi, v) ≈
1

N

N∑
i=1

u(Xi)K̃h(Vi, v), (A.3)

and construct weights w̃(v) as follows:

w̃(v) = argmin
w≥1

⎡
⎣ sup
u∈HN

⎛
⎝{

1

N

N∑
i=1

Tiwiu(Xi)K̃h(Vi, v)−
1

N

N∑
i=1

u(Xi)K̃h(Vi, v)

}2

−λ1‖u‖2H
)
+ λ2

1

N

N∑
i=1

Tiw
2
i K̃

2
h(Vi, v)

]
. (A.4)
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Fig 3. Estimated PCATEs from one simulation where data is generated under Setting 1: the
left panel is the result using weights constructed from (A.4) and the right panel is the result
using the proposed weights constructed from (3.6).

However, along this line of thinking, the weights need to be re-estimated for
every single value of v. In other words, whenever we would like to estimate the
PCATE evaluated at a new value of v, we have to estimate the weights based
on (A.3) for that v again. As v changes, the estimated weights will also change
accordingly. There are three issues with this approach. First, the weights are in-
troduced to balance the covariate distribution. Therefore, like inverse propensity
scores, they are expected to be the same for all v. Second, it is computationally
expensive to re-estimate the weights whenever a new value of v is interested.
Third, the changes of weights lead to non-smooth estimation of the PCATE
function. In this section, we provide numerical experiment to illustrate this
point. We randomly generated a sample under Setting 1, and estimated weights
through (A.3) for 50 discrete evaluation points v. Then for every evaluation
points v, we performed the local constant regression using adjusted response
Yiw̃i(v). The resulting PCATE function can be found in the left panel of Fig-
ure 3. As we can see, it is quite non-smooth, while the PCATE estimated by
our proposed estimator enjoys smoothing property. Besides, we would like to
highlight that the asymptotic theory of [45] would not be applicable here be-
cause in (A.3), the bandwith h would need to diminishes asymptotically to avoid
bias.

Therefore, similarly as in the theory of kernel regression, the effective sample
size in (A.3) would not be of order N . In fact, due to the nonparametric nature,
one would expect a nonparametric convergence rate for tne PCATE estimator,
instead of the

√
N rate obtained by [45]. In a sharp contrast, the key feature for

the proposed weights is that the corresponding balance is in the function sense,
and therefore these weights work for every v simultaneously.
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Appendix B: Computation

B.1. Reparametrization

To solve (3.9), we focus on the inner optimization of (3.6): supu∈HN
{SN,h(w, u)−

λ1‖u‖2H}, which is equivalent to

sup
u∈H

{
SN,h(w, u)

‖u‖N
− λ1

‖u‖2H
‖u‖N

}
. (B.1)

By the representer theorem [40], the solution to this infinite dimensional
optimization (B.1) can be shown to lie in a finite dimensional subspace of H:
span{κ(Xi, ·) : i = 1, . . . , N}. Letting M = [κ(Xi, Xj)]

N
i,j=1 ∈ R

N×N , (B.1)
becomes

sup
α∈RN

[
SN,h{w,

∑N
j=1 αjκ(Xj , ·)}

αᵀM2α/N
− λ1

αᵀMα

αᵀM2α/N

]
. (B.2)

By the definition of SN,h(w, u) in (3.4), we have

SN,h

⎧⎨
⎩w,

N∑
j=1

αjκ(Xj , ·)

⎫⎬
⎭ =

1

N2
αᵀMdiag(T ◦ w − J)Ghdiag(T ◦ w − J)Mα,

where ◦ represents the element-wise product of two vectors, J = (1, 1, . . . , 1)ᵀ ∈
R

N , and

Gh =

⎡
⎢⎣

∫
V K̃h(V1, v)K̃h(V1, v)dv · · ·

∫
V K̃h(V1, v)K̃h(VN , v)dv

...
. . .

...∫
V K̃h(VN , v)K̃h(V1, v)dv · · ·

∫
V K̃h(VN , v)K̃h(VN , v)dv

⎤
⎥⎦ .

Because M is positive semi-definite, we consider the eigen-decomposition of M
as

M = PDP ᵀ (B.3)

where D ∈ R
r×r is a diagonal matrices with nonzero diagonal entries, and

P ∈ R
N×r is an orthonormal matrix. Letting β = N−1/2DP ᵀα, (B.2) becomes

sup
β∈Rr:‖β‖2≤1

βᵀ
{

1

N
P ᵀdiag(T ◦ w − J)Ghdiag(T ◦ w − J)P −Nλ1D

−1

}
β.

Therefore, (3.9) can be reparameterized as

ŵ =argmin
w≥1

[
Ω

{
1

N
P ᵀdiag(T ◦ w − J)Ghdiag(T ◦ w − J)P −Nλ1D

−1

}
+λ2RN,h(w)] . (B.4)
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B.2. Proof of Lemma 1

By the definition (3.5), RN,h(w) is a convex function of w. Also, P ᵀ(T ◦w−J) is
an affine transformation of w. Then it suffices to show that Ω{diag(y)Ghdiag(y)+
B} is a convex function of y for any symmetric matrix B ∈ R

r×r.
First, we show that Gh is a positive semi-definite matrix. For any vector

a ∈ R
N , we have

aᵀGha =

∫
V
aᵀ

⎡
⎢⎣

K̃h(V1, v)K̃h(V1, v) · · · K̃h(V1, v)K̃h(VN , v)
...

. . .
...

K̃h(VN , v)K̃h(V1, v) · · · K̃h(VN , v)K̃h(VN , v)

⎤
⎥⎦ a dv

=

∫
V

⎧⎨
⎩

N∑
j=1

K̃h(Vj , v)aj

⎫⎬
⎭

2

dv ≥ 0.

Therefore there exists a matrix L such that Gh = LLᵀ.
Consider any vector y1, y2 ∈ R

r, and t ∈ [0, 1]. For β ∈ R
r, we have

βᵀ [diag{ty1 + (1− t)y2}Ghdiag{ty1 + (1− t)y2}+B]β

= βᵀ [diag{ty1 + (1− t)y2}LLᵀdiag{ty1 + (1− t)y2}+B]β

= ‖Lᵀdiag{ty1 + (1− t)y2}β‖22 + βᵀBβ

= ‖tLᵀdiag(y1)β + (1− t)Lᵀdiag(y2)β‖22 + βᵀBβ

≤ t‖Lᵀdiag(y1)β‖22 + (1− t)‖Lᵀdiag(y2)β‖22 + βᵀBβ

= tβᵀ{diag(y1)Ghdiag(y1) +B}β + (1− t)βᵀ{diag(y2)Ghdiag(y1) +B}β,

where the above inequality is due to the fact that ‖y‖22 is a convex function of
y. Therefore, we have

Ω (diag{ty1 + (1− t)y2}Ghdiag{ty1 + (1− t)y2}+B)

≤ tΩ (diag(y1)Ghdiag(y1) +B) + (1− t)Ω (diag(y2)Ghdiag(y2) +B) ,

which completes the proof.

Appendix C: Simulation

C.1. Additional simulation results for AIPW estimators

In this section, we provide additional simulation results for the AIPW estimator
considered in [13] and [48]. Both nuisance parameters are estimated nonpara-
metrically. In particular, we consider the support vector machine (svm), which
is a commonly adopted nonparametric binary classification method, for estimat-
ing the propensity scores. For the estimation of outcome mean functions, we still
adopt the kernel ridge regression. As [48] and [13] both require data-splitting
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Table 3

Simulation results for AIPW estimators when propensity scores are estimated by different
nonparametric models. The average integrated squared errors (AISE) with standard errors

in parentheses and median integrated squared error (MeISE) are provided.

Setting 1 Setting 2 Setting 3 Setting 4
Data-splitting Method AISE MeISE AISE MeISE AISE MeISE AISE MeISE

Yes svm 2.878 (0.34) 1.650 3.621 (1.17) 1.396 61.546 (34.71) 4.432 6.414 (0.82) 3.476
No svm 1.464 (0.08) 1.182 1.161 (0.03) 1.037 3.551 (0.33) 2.184 2.151 (0.07) 1.774

Proposed 1.329 (0.04) 1.141 1.159 (0.03) 1.032 2.858 (0.12) 2.126 2.103 (0.06) 1.761

for estimations, and [13] also provide a full-sample version of their estimator, so
here we present the results both with and without data-splitting.

For the implementation, we adopt svm() function from R package e1071 with
radial basis kernel for svm. The tuning parameters for nonparametric models
are all tuned by 5-fold cross-validation. The results can be found in Table 3.

As we can see, the results with data-splitting are significantly worse than
those without data-splitting. The performance of the full-sample SVM estimator
is worse than the proposed method in all four settings.

C.2. Sensitivity analysis for tuning parameters λ1 and λ2

In Theorem 5.4, we found that the order requirement of the tuning parameter
is relaxed when augmentation is imposed. Therefore it is easier to achieve such
requirement, and hence to tune the parameters. See the discussion in Remark
4. In practice, we expect the performance of the estimator would not vary much
for a range of values of tuning parameters close to the optimal choice. To pro-
vide numerical evidence, we analyze the performance of our proposed estimator
when changing the value of the tuning parameters. Here, we provide the simu-
lation results for the proposed method when doubling and halving the values of
selected tuning parameters λ1 and λ2. The results can be found in Table 4. We
still use Proposed to represent the proposed method when the values of tun-
ing parameters are decided by the strategy described in Section 3.3. Denote the
selected tuning parameters as λ̃1 and λ̃2. We use Proposed(2) to represent the
method when the values of tuning parameters are doubled (i.e., 2λ̃1 and 2λ̃2)
and use Proposed(0.5) to represent the method when the values of tuning pa-

Table 4

Simulation results of Proposed(0.5), Proposed and Proposed(2) for four settings, where
the average integrated squared errors (AISE) with standard errors in parentheses and

median integrated squared error (MeISE) are provided.

Setting 1 Setting 2 Setting 3 Setting 4
Augmentation Method AISE MeISE AISE MeISE AISE MeISE AISE MeISE

No Proposed(0.5) 14.246 (0.82) 7.025 5.73 (0.42) 2.693 18.426 (1.62) 9.473 8.510 (0.86) 3.568
Proposed 15.814 (1.94) 6.502 5.993 (0.59) 2.333 17.874 (1.36) 9.074 8.797 (0.97) 3.277

Proposed(2) 14.111 (0.88) 6.889 5.322 (0.38) 2.318 17.345 (0.97) 9.517 7.594 (0.53) 3.341
LM Proposed(0.5) 1.237 (0.03) 1.081 1.158 (0.03) 1.065 3.195 (0.18) 2.199 2.123 (0.06) 1.906

Proposed 1.245 (0.03) 1.089 1.166 (0.03) 1.079 3.244 (0.18) 2.251 2.176 (0.06) 1.937
Proposed(2) 1.235 (0.03) 1.075 1.155 (0.03) 1.082 3.151 (0.17) 2.235 2.087 (0.05) 1.915

KRR Proposed(0.5) 1.326 (0.04) 1.128 1.154 (0.03) 1.039 2.831 (0.12) 2.102 2.073 (0.06) 1.746
Proposed 1.329 (0.04) 1.141 1.159 (0.03) 1.032 2.858 (0.12) 2.126 2.103 (0.06) 1.761

Proposed(2) 1.315 (0.04) 1.117 1.150 (0.03) 1.033 2.825 (0.12) 2.092 2.067 (0.06) 1.738
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rameters are halved (i.e., 0.5λ̃1 and 0.5λ̃2). As we can see, by varying the tuning
parameters, the change in terms of AISE for estimators without augmentation
is larger than those with augmentations.

Appendix D: Uncertainty quantification

In this section, we outline two possible ad-hoc strategies to construct the confi-
dence interval, which can be used for practical purpose.

For the AIPW, the estimation error of the estimated weights and outcome
means are shown to be negligible in its asymptotic (point-wise) variance [13].
For large samples, the proposed weights are expected to behave like propensity
scores, as propensity scores are the solution to population balancing conditions.
Therefore, we expect the effect of estimation errors of the weights and the out-
come means to be small, if not negligible, in our estimation. In this regard, we
could get the corresponding point-wise confidence interval from existing results
for the typical local constant regression estimator, see [18], [48] and [27]. Mainly,
the asymptotic variance can be constructed as

σ̂2(v) =
1

Nhd1

(
∫
K2(v)dv)

∑N
i=1 K̃h(Vi, v)(Ẑi − τ̂(Vi))

2/N

(Nhd1)−1
∑N

i=1 K{(Vi − v)/h}
, (D.1)

where Ẑi is the adjusted response Ẑi = ŵiTi{Yi − m̂1(Xi)}+ m̂1(Xi)− [ŵi(1−
Ti){Yi − m̂0(Xi)} + m̂0(Xi)]. Note that we adopted the bandwidth formula

h̃ = ĥ × N1/5 × N−2/7 in all the numerical experiments, which is to under-
smooth the data and make the asymptotic bias negligible. As an illustration,
we have provided this point-wise confidence interval in the real-data example.
See the 95% confidence bands for AIPW(KRR) and Proposed in Figure 4. In
addition, we also evaluated the performance of this proposed confidence interval
in the simulation study for IPW and Proposed weighted estimators with LM
and KRR augmentations. Figures 5 and 6 show the results for N = 100 and
N = 200 respectively. As we can see, Proposed provides better coverage but
shorter intervals compared to AIPW in most cases. When N = 200, the em-
pirical coverage probability of Proposed is more than 90% in Settings 1 and 2.
In Settings 3 and 4 where the outcome mean functions are more complex, the
empirical coverage probability of Proposed is more than 85%. We also provide
the simulation results with respect to the L2 loss for N = 200 in Table 5. The
results lead to the same conclusion as that in Table 2.

Another way is to use the bootstrap. More specifically, let (X∗
1 , T

∗
1 , Y

∗
1 ), . . . ,

(X∗
N , T ∗

N , Y ∗
N ) be the bootstrap sample. Construct the weights based on this

bootstrap sample and obtain a corresponding kernel regression estimator, de-
noted τ̂∗. Now repeat the bootstrap procedure B times, this yields B estimators
τ̂∗(1), . . . , τ̂

∗
(B). Then we can estimate the variance of τ(v) by the sample variance

of the B replicated estimators.
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Fig 4. Estimated PCATEs of maternal smoking on birth weight as a function of mother’s
age with their corresponding 95% confidence bands presented in dashed lines: the left panel is
the result for AIPW(KRR) and the right panel is the result for Proposed.

Fig 5. Empirical coverage probability (ECP) and average length (AL) of point-wise 95%
confidence intervals for four estimators (AIPW(LM), AIPW(KRR), Proposed(LM) and Pro-
posed(KRR)) within the middle region of the domain of variable v in four simulation settings
when N = 100.
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Fig 6. Simulation results for the confidence interval when N = 200. See detailed description
in Figure 5.

Table 5

Simulation results for N = 200. See detailed description in Table 2.

Setting 1 Setting 2 Setting 3 Setting 4
Augmentation Method AISE MeISE AISE MeISE AISE MeISE AISE MeISE

No IPW 295.059 (191.48) 40.148 47.912 (3.88) 26.544 100.085 (10.22) 49.672 66.008 (5.43) 37.677
ATERKHS 53.154 (2.63) 38.109 29.547 (1.42) 19.077 62.47 (2.39) 47.714 41.315 (1.73) 29.371
Proposed 6.153 (0.42) 2.445 2.048 (0.46) 1.041 5.439 (0.36) 2.484 2.383 (0.15) 1.454

LM IPW 1.129 (0.1) 0.771 0.882 (0.04) 0.705 3.574 (0.53) 1.918 2.809 (0.22) 1.734
ATERKHS 1.069 (0.03) 0.92 0.926 (0.02) 0.808 2.916 (0.08) 2.476 2.526 (0.08) 2.167
Proposed 0.742 (0.02) 0.645 0.656 (0.02) 0.59 1.581 (0.04) 1.391 1.155 (0.03) 1.015

REG 0.61 (0.01) 0.562 0.574 (0.01) 0.536 4.376 (0.05) 4.214 3.965 (0.03) 3.906
KRR IPW 0.952 (0.03) 0.794 0.833 (0.04) 0.684 2.267 (0.15) 1.492 1.64 (0.07) 1.248

ATERKHS 1.077 (0.03) 0.947 0.897 (0.02) 0.803 2.456 (0.1) 1.878 1.81 (0.05) 1.575
Proposed 0.777 (0.02) 0.688 0.652 (0.02) 0.579 1.87 (0.09) 1.320 1.331 (0.04) 1.116

REG 0.692 (0.02) 0.624 0.57 (0.01) 0.538 2.06 (0.09) 1.562 1.463 (0.04) 1.250

Appendix E: Proofs of Theorems

Through out the proof, we use x̌ to represent a generic vector in X , and use
v̌ ∈ V to represent the sub-vector of x̌ that is of interest.

E.1. Proof of Theorem 5.1

For simplicity, we introduce additional notations. Define γi := Tiw
∗
i − 1, where

w∗
i = 1/π(Xi) for i = 1, . . . , N , and H(1) := {u ∈ H : ‖u‖H ≤ 1}. By Lemma

2.1 of [28], there exists a constant b such that supu∈H(1) |u|∞ ≤ b.

We replace 1
Nhd1

∑N
j=1 K(

Vj−v
h ) in SN,h(w

∗, u) with its expectation gh(v)
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and obtain

S̃N,h(w
∗, u) :=

∥∥∥∥∥ 1

gh(·)

{
1

Nhd1

N∑
i=1

γiu(Xi)K

(
Vi − ·
h

)}∥∥∥∥∥
2

2

. (E.1)

We first show that gh is lower bounded. By Assumption 7, without loss of
generality, we consider h ≤ 1. By Assumption 6, there exists a constant c1 such
that

gh(v) = E

{
1

hd1
K

(
Vi − v

h

)}
=

1

hd1

∫
I

K

(
V − v

h

)
g(V )dV

=

∫
(zh+v)∈[0,1]d1

K(z)g(zh+ v)dz

≥ C3

∫
(zh+v)∈[0,1]d1

K(z)dz ≥ C3

∫
(z+v)∈[0,1]d1

K(z)dz

≥ C3 min

{∫
[0,1/2]d1

K(z)dz,

∫
[−1/2,0]d1

K(z)dz

}
≥ c1.

(E.2)

Then, we have

S̃N,h(w
∗, u) ≤ 1

infv∈[0,1]d1 g
2
h(v)

1

h2d1

∥∥∥∥∥ 1

N

N∑
i=1

γiu(Xi)K

(
Vi − ·
h

)∥∥∥∥∥
2

2

≤ 1

c21h
2d1

∥∥∥∥∥ 1

N

N∑
i=1

γiu(Xi)K

(
Vi − ·
h

)∥∥∥∥∥
2

2

.

(E.3)

Below, we will establish the bound of
∣∣∣N−1

∑N
i=1 γiu(Xi)K {(Vi − v)/h}

∣∣∣ uni-
formly for any u ∈ HN for a given v. To start with, we define

Fh,v :=

{
f : f(x̌) = u(x̌)K

(
v̌ − v

h

)
;u ∈ H(1)

}
, ‖f‖N :=

√√√√ 1

N

N∑
i=1

f2(Xi),

Kh :=

{
K

(
· − v

h

)
: v ∈ [0, 1]d1

}
, σKh,N := sup

ṽ∈[0,1]d1

√√√√ 1

N

N∑
i=1

K2

(
Vi − ṽ

h

)
.

The next lemma provides an entropy bound for the space Fh,v.

Lemma B.1. For any fixed h and v, there exists a constant A > 0, such that

H(δ,Fh,v, ‖ · ‖N )

{
= 0 if δ > 2bσKh,N

≤ Aσα
Kh,N

δ−α otherwise
.
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Proof. For any f1, f2 ∈ Fh,v, we have ‖f1 − f2‖N ≤ ‖f1‖N + ‖f2‖N ≤ 2bσKh,N .
Therefore, H{δ,Fh,v, L

2(PN )} = 0, when δ > 2bσKh,N . By [7], we have H{ε,
H(1), ‖ · ‖∞} ≤ Aε−α for some constant A > 0. Therefore, the covering number
N{ε,H(1), ‖ · ‖∞} ≤ exp(Aε−α). Consider N ⊂ H(1) as the ε-net of H(1) with
respect to ‖ · ‖∞. By definition, for any u ∈ H(1), there exists a u0 ∈ N , such
that

sup
x∈[0,1]d

|u(x)− u0(x)| ≤ ε. (E.4)

Consider Nv := {f : f(x̌) = u(x̌)K{(v̌ − v}/h);u ∈ N}. Then, for any f ∈
Fh,v, there exists a f0 ∈ Nv, such that

‖f − f0‖2N =
1

N

N∑
i=1

∣∣∣∣u(Xi)K

(
Vi − v

h

)
− u0(Xi)K

(
Vi − v

h

)∣∣∣∣
2

=
1

N

N∑
i=1

K2

(
Vi − v

h

)
|u(Xi)− u0(Xi)|2

≤ sup
x∈[0,1]d

|u(x)− u0(x)|2
1

N

N∑
i=1

K2

(
Vi − v

h

)

≤ ε2σ2
Kh,N

.

The last inequality is due to (E.4) and N−1
∑N

i=1 K
2 {(Vi − v)/h} ≤ σ2

Kh,N
.

Therefore, we have

N (εσKh,N ,Fh,v, ‖ · ‖N ) ≤ N{ε,H(1), ‖ · ‖∞} ≤ exp
(
Aε−α

)
.

The conclusion follows by taking δ = εσKh,N .

Then, we study the concentration property of the terms σKh,N and
∑N

i=1

K{(Vi − ṽ)/h}/(Nhd1).

Lemma B.2. Under Assumptions 5–7, there exist constants c2, c3, c4 > 0 de-
pending on C2, C3, A1 and ν1, such that, for all sufficiently large N , the fol-
lowing hold:

Eσ2
Kh,N

≤ c3h
d1 , (E.5)

P(σ2
Kh,N

≥ 2tc3h
d1) < c exp

{
−c2tNhd1

}
, t ≥ 1, (E.6)

P

(
sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1

Nhd1

N∑
i=1

K

(
Vi − ṽ

h

)
− gh(ṽ)

∣∣∣∣∣ ≥ tc1

)
≤ c exp

{
−c4tNhd1

}
,

(E.7)
for 1

2 ≤ t < 1.
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Proof. Take ri, i = 1, . . . , n, as independent Rademacher random variables. We
have

Eσ2
Kh,N

= E sup
v∈[0,1]d1

1

N

N∑
i=1

K2

(
Vi − ṽ

h

)

≤ E sup
ṽ∈[0,1]d1

EK2

(
Vi − ṽ

h

)
+ E sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K2

(
Vi − ṽ

h

)
− EK2

(
Vi − ṽ

h

)∣∣∣∣∣
= sup

ṽ∈[0,1]d1
EK2

(
Vi − ṽ

h

)
+ E sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K2

(
Vi − ṽ

h

)
− EK2

(
Vi − ṽ

h

)∣∣∣∣∣
≤ sup

ṽ∈[0,1]d1
EK2

(
Vi − ṽ

h

)
+ 2E sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

riK
2

(
Vi − ṽ

h

)∣∣∣∣∣
≤ sup

ṽ∈[0,1]d1
EK2

(
Vi − ṽ

h

)
+ 8C2E sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

riK

(
Vi − ṽ

h

)∣∣∣∣∣ .
The second last inequality is due to the symmetrization inequality from Theorem
2.1 in [25], while the last inequality is due to the contraction inequality from
Theorem 2.3 in [25]. Next, we bound the Rademacher complexity

E‖RN‖Kh
:= E sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

riK

(
Vi − ṽ

h

)∣∣∣∣∣ .
Since Kh ⊂ K, from the entropy bound in Assumption 5 for K, we have

N (ε,Kh, ‖ · ‖N ) ≤ A1ε
−ν1 . Define σ2

Kh
:= supṽ∈[0,1]d1 EK

2{(Vi − ṽ)/h}. By
applying Theorem 3.12 in [25], we have

E‖RN‖Kh
≤ c

[√
ν1
N

σKh

√
log

A1C2

σKh

+
ν1C2

N
log

A1C2

σKh

]
, (E.8)

where c > 0 is an universal constant. Next, we have

σ2
Kh

= sup
ṽ∈[0,1]d1

∫ 1

0

K2

(
v − ṽ

h

)
g(v)dv

= hd1 sup
ṽ∈[0,1]d1

∫
(zh+ṽ)∈[0,1]d1

K2(z)g(zh+ ṽ)dz,

≤ C3h
d1 sup

ṽ∈[0,1]d1

∫
(zh+ṽ)∈[0,1]d1

K2(z)dz (E.9)

≤ C2
2h

d1 , (E.10)

where (E.9) and (E.10) are due to g(·) ≤ C3 and K(·) ≤ C2; (E.10) is valid for
h ≤ 1. Since

∫
[0,1]d1

K2(z)dz > 0, we have σ2
Kh

� hd1 .
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Therefore, there exists a constant c3 > 0 depending on C2, C3, ν1 and A1,
such that

Eσ2
Kh,N

≤ σ2
Kh

+ 8C2E‖RN‖Kh

≤ σ2
Kh

+ 8C2c

[√
ν1
N

σKh

√
log

A1C2

σKh

+
ν1C2

N
log

A1C2

σKh

]

≤ c3h
d1 .

The last inequality is due to Assumption 7 and it is valid for all large enough
N .

From Talagrand’s inequality (Theorem 2.5 in [25]), and

sup
ṽ∈[0,1]d1

EK4

(
V − ṽ

h

)
≤ C4

2h
d1 ,

we have for any t ≥ 1,

P(σ2
Kh,N

≥ 2tc3h
d1) ≤ c exp

{
−c2tNhd1

}
,

where c > 0 is an universal constant and c2 > 0 is a constant depending on C2,
C3, ν1 and A1.

Also, by adopting symmetrization inequality again, there exists a constant
c5 > 0 depending on A1, ν1 and C2 such that

E sup
ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K

(
Vi − ṽ

h

)
− EK

(
Vi − ṽ

h

)∣∣∣∣∣ ≤ 2E‖RN‖Kh

≤ 2c

[√
ν1
N

σKh

√
log

A1C2

σKh

+
ν1C2

N
log

A1C2

σKh

]
(E.11)

≤ c5N
−1/2hd1/2

√
log(1/hd1),

where the last inequality is due to Assumption 7, and the first term of (E.11)
is dominant for large enough N .

By Talagrand’s inequality, for any t > 0, we have

P

(
sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K

(
Vi − ṽ

h

)
− EK

(
Vi − ṽ

h

)∣∣∣∣∣ ≥ c5
hd1/2

N1/2

√
log(1/hd1) + t

)

≤ c exp

(
−1

c

N2t2

Ṽ + ntC2

)
,

where Ṽ := NC2
2h

d1 + 16C2c5N
1/2hd1/2

√
log(1/hd1) ≤ 2NC2

2h
d1 , for all large

enough N .
Take t = t′c1h

d1 − c5N
−1/2hd1/2

√
log(1/hd1), for 1/2 ≤ t′ < 1. For all large

enough N , we have t ≥ t′c1h
d1/2. Therefore, we have

P

(
sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1

Nhd1

N∑
i=1

K

(
Vi − ṽ

h

)
− gh(ṽ)

∣∣∣∣∣ ≥ t′c1

)
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= P

(
sup

ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K

(
Vi − ṽ

h

)
− EK

(
Vi − ṽ

h

)∣∣∣∣∣ ≥ t′c1h
d1

)

≤ c exp
{
−c4t

′Nhd1
}
,

where c > 0 is universal constant and c4 > 0 is a constant depending on C2, C3,
A1 and ν1.

Next, we derive the bound for |
∑N

i=1 γif(Xi)/N | uniformly for all f ∈ Fh,v.

Lemma B.3. Under Assumptions 2-7, there exists constants c6, c7 > 0 depend-
ing on b, C2, A, C1 and α such that with probability at least 1 − c exp (−c6t),
∀f ∈ Fh,v, we have

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ t

{
N− 1

2 ‖u‖
2−α
2p

2 hd1( 1
2−

2−α
4p ) +N− 2

2+αh
d1α
2+α

}
,

for any t ≥ c7 and p ≥ 1.

Proof. Because E(γ̃i | Xi) = 0 and γi | Xi, i = 1, . . . , n, are bounded sub-
Gaussian random variables, there exists a constant σγ > 0 depending on C1,
such that E {exp(λγ)|X = x} ≤ exp(λ2σ2

γ/2) for all x.
Define Fh,v(δ) := {f ∈ Fh,v : ‖f‖2 ≤ δ} for δ > 0. We begin by deriving

an upper bound for E[supf∈Fh,v(δ)

∑N
i=1 γif(Xi)/N ]. Conditioned on Xi, i =

1, . . . , N ,
∑N

i=1 γif(Xi)/
√
N is a sub-Gaussian process with respect to the met-

ric space (Fh,v, dist), where dist
2(f1, f2) =

σ2
γ

N

∑N
i=1(f1(Xi)−f2(Xi))

2 for f1, f2 ∈
Fh,v. Therefore, by Dudley’s entropy bound, and Lemma B.1, for any δ > 0, we
have

E

{
sup

f∈Fh,v(δ)

1√
N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ | Xi, i = 1, . . . , N

}

≤ c

∫ 2σγδN

0

√
H(τ,Fh,v, ‖ · ‖N )dτ,

where δ2N = supf∈Fh,v(δ)

∣∣∣ 1
N

∑N
i=1 f

2(Xi)
∣∣∣.

Taking expectations on both sides and using Lemma B.1, there exists a con-
stant c8 > 0 depending on A, σγ , α and c3 such that

E sup
f∈Fh,v(δ)

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ c√
N

E

∫ 2σγδN

0

√
H(τ,F , ‖ · ‖N )dτ

≤ c√
N

E

∫ 2σγδN

0

A1/2σ
α/2
Kh,N

τ−α/2dτ

≤ cA1/2

√
N

1

1− α/2
Eσ

α/2
Kh,N

(2σγδN )1−α/2



4366 J. Wang et al.

=
cA1/2

√
N

(2σγ)
1−α/2

1− α/2
Eσ

α/2
Kh,N

δ
1−α/2
N (by Hölder’s Inequality)

≤ cA1/2

√
N

(2σγ)
1−α/2

1− α/2
(EδN )1−α/2(EσKh,N )α/2 (by Jensen’s Inequality)

≤ cA1/2

√
N

(2σγ)
1−α/2

1− α/2
(Eδ2N )

1−α/2
2 (Eσ2

Kh,N
)α/4 (by (E.5) in Lemma B.2)

≤ cA1/2

√
N

(2σγ)
1−α/2

1− α/2
(Eδ2N )

1−α/2
2 (c3h

d1)α/4

≤ c8N
−1/2hd1α/4(Eδ2N )

1−α/2
2

Next, we derive an upper bound for Eδ2N . By symmetrization and contraction
inequalities, we have

Eδ2N ≤ δ2 + 2E sup
f∈Fh,v(δ)

∣∣∣∣∣ 1N
N∑
i=1

f2(Xi)− Ef2(Xi)

∣∣∣∣∣
≤ δ2 + 2E sup

f∈Fh,v(δ)

∣∣∣∣∣ 1N
N∑
i=1

rif
2(Xi)

∣∣∣∣∣
≤ δ2 + 8bC2E sup

f∈Fh,v(δ)

∣∣∣∣∣ 1N
N∑
i=1

rif(Xi)

∣∣∣∣∣ ,
where ri, i = 1, . . . , n, are independent Rademacher random variables. Applying
the entropy bound from Lemma B.1 and with Theorem 3.12 in [25], we have

E sup
f∈Fh,v(δ)

∣∣∣∣∣ 1N
N∑
i=1

rif(Xi)

∣∣∣∣∣ ≤ c9 max

{
hd1α/4

√
N

δ1−α/2,
hd1α/(2+α)

N2/(2+α)

}

for some constant c9 > 0 depending on A, b, C2, α.
We now combine the above results. Also, as Assumption 7 indicates, for some

constants c10 > 0 depending on α,C2, b, cγ , A, we have

E sup
f∈Fh,v(δ)

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣
≤ c10 max

{
N−1/2hd1α/4δ1−α/2, N−2/(2+α)hd1α/(2+α)

}
.

When δ ≥ N
−1
2+αh

d1α

2(2+α) , E supf∈F(δ)
1
N

∑N
i=1 γif(Xi) ≤

c10N
−1/2hd1α/4δ1−α/2; By Talagrand concentration inequality, for t ≥ 1, there

exists a constant c11 > 0 depending on C2, b, α, C1, A, such that

P

(
sup

f∈Fh,v(δ)

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ > 2c10t
hd1α/4

N1/2
δ1−α/2

)
≤ c exp

{
−c11th

d1α/2δ−α
}
.
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When δ < N
−1
2+αh

d1α

2(2+α) , E supf∈Fh,v(δ)
| 1N

∑N
i=1 γif(Xi)| ≤

c10N
−2/(2+α)hd1α/(2+α). Then there exists a constant c12 > 0 depending on

C2, b, α, C1, A, such that for t ≥ 1,

P

(
sup

f∈Fh,v(δ)

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ > 2c10tN
−2
2+αh

d1α
2+α

)
≤ c exp

{
−c12tN

α
2+αh

d1α
2+α

}
.

Take ξN,h = N
−1
2+αh

d1α

2(2+α) . It is easy to see that ‖f‖22 ≤ b2C2
2h

d1 for every
f ∈ Fh,v. We now apply the peeling technique. Take t′ = 22−α/2c10t. When
‖f‖2 > ξN,h, there exists a constant c13 > 0 depending on C2, b, α, C1, A, such
that

P

⎛
⎝ sup

f∈Fh,v :ξN,h≤‖f‖2≤C2bhd1/2

1
N

∣∣∣∑N
i=1 γif(Xi)

∣∣∣
‖f‖1−α/2

2

≥ t′N−1/2hd1α/4

⎞
⎠

≤

⌈
log

ξN,hhd1/2

C2b

⌉
∑
s=1

P

(
sup

f∈Fh,v:2−sC2bhd1/2≤‖f‖2≤2−s+1C2bhd1/2

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣
≥ t′N−1/2hd1α/4(2−sC2bh

d1/2)1−α/2
)

=

⌈
log

ξN,h
√

h

C2b

⌉
∑
s=1

P

(
sup

f∈Fh,v :2−sC2bh1/2≤‖f‖2≤2−s+1C2bh1/2

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣
≥ 2tc10N

−1/2hd1α/4(2−s+1C2bh
d1/2)1−α/2

)

≤
∞∑
s=1

c exp{−c11th
d1α/2(2−s+1C2bh

d1/2)−α}

=

∞∑
s=1

c exp{−c11t(2
−s+1C2b)

−α} ≤ c exp (−c13t
′) .

Therefore, with probability at least 1− c exp(−c13t
′), we have ∀f ∈ Fh,v,

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ t′
(
N−1/2hd1α/4‖f‖1−α/2

2 +N− 2
2+αh

d1α
2+α

)
, (E.12)

for any t′ ≥ 22−α/2c10.
By Hölder’s inequality,

‖f‖22 = ‖f2‖1 ≤ ‖u2(·)‖p
∥∥∥∥K2

(
V − ·
h

)∥∥∥∥
q

≤ (b2p−2)
1
p ‖u‖

2
p

2 h
d1
q ,

where p, q ≥ 1 such that 1/p + 1/q = 1. Plugging this result into (E.12) and
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taking t = t′ max{b2, 1}, we finally get ∀f ∈ Fh,v

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ t

{
N− 1

2 ‖u‖
2−α
2p

2 h
d1α
4 +

(2−α)d1
4q +N−2/(2+α)hd1α/(2+α)

}
,

with probability at least 1 − exp(−c6t) for t ≥ c7, where c6, c7 > 0 are some
constants depending on b, C2, A, C1 and α.

We then relates ‖u‖2 to ‖u‖N in the next lemma.

Lemma B.4. There exist constants c14, c15 > 0 depending on b and α, such
that for t ≥ c14, we have with probability at least 1− exp(−c15tN

α/(2+α)),

∀u ∈ H(1) ‖u‖22 ≤ t(c15N
− 2

2+α + ‖u‖2N ).

Proof. Take ri, i = 1, . . . , n, as independent rademacher random variables. From
the proof of Lemma B.1, we know N (ε,H(1), ‖ · ‖∞) ≤ Aε−α for some constant
A > 0. Therefore, by Theorem 3.12 in [25], we have

E sup
u∈H(1),‖u‖≤δ

∣∣∣∣∣ 1N
N∑
i=1

riu(Xi)

∣∣∣∣∣ ≤ c16

(
N

−1
2 δ1−

α
2 +N

−1
1+α/2

)
,

where c16 > 0 is a constant depending on b and α.
Next, we will adopt Theorem 3.3 in [6]. Note that

Var
{
u2(Xi)

}
≤ E

{
u4(Xi)

}
≤ b2‖u‖22.

Take ψ(z) := 4c16b
3
(
N−1/2z

2−α
4 b(α−2)/2 +N−1/(1+α/2)

)
, T (u) = b2‖u‖22 and

B = b2 in Theorem 3.3 of [6]. It is easy to verify that ψ(z) is non-decreasing and
ψ(z)/

√
z is non-increasing. In addition, we can also verify the condition that for

every z,

b2E sup
u∈H(1),T (u)≤z

∣∣∣∣∣ 1N
N∑
i=1

riu
2(Xi)

∣∣∣∣∣ ≤ 4b3E sup
u∈H(1),T (u)≤z

∣∣∣∣∣ 1N
N∑
i=1

riu(Xi)

∣∣∣∣∣ ≤ ψ(z).

Then we will find the fixed points z∗ of ψ(z) (i.e., the solution of ψ(z) = z).
It can be shown that z∗ = c15N

−2/(2+α) for some constant c15 depending on
α and b. Therefore, Theorem 3.3 in [6] shows that with probability at least
1− exp(−tNz∗),

∀u ∈ H(1) ‖u‖22 ≤ t(z∗ + ‖u‖2N ),

with t > c14 and a constant c14 > 0 depending on b and α.

From Lemmas B.3 and B.4, we can see that for any t1, t2 ≥ max{c7, c14, 1},
with probability at least 1 −

{
c exp(−c6t1) + exp(−c14t2N

α/(2+α))
}
, we have

∀f ∈ Fh,v,

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ t1t2

{
N

−1
2 (‖u‖N )

2−α
2p h(

1
2−

2−α
4p )d1 +N

−2
2+αh

d1α
2+α
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+N
−1
2 − 2−α

2p(2+α)h(
1
2−

2−α
4p )d1

}
. (E.13)

Let s ≥ 1. Note that {u/‖u‖H : ‖u‖N ≤ 1} ⊆ H(1). Using (E.13), we have,
with probability at least 1−

{
c exp(−c6t1) + exp(−c14t2N

α/(2+α))
}
, uniformly

for all u ∈ H with ‖u‖N ≤ 1,

1

N

∣∣∣∣∣
N∑
i=1

γi
u(Xi)

‖u‖H
K

(
Vi − v

h

)∣∣∣∣∣ ≤ t1t2

{
N

−1
2

∥∥∥∥ u

‖u‖H

∥∥∥∥
2−α
2p

N

h(
1
2−

2−α
4p )d1 +N

−2
2+αh

d1α
2+α

+N
−1
2 − 2−α

2p(2+α)h(
1
2−

2−α
4p )d1

}
1

N

∣∣∣∣∣
N∑
i=1

γiu(Xi)K

(
Vi − v

h

)∣∣∣∣∣ ≤ t1t2

{
N

−1
2 ‖u‖1−

2−α
2p

H h(
1
2−

2−α
4p )d1 + νN,h‖u‖H

}
,

(E.14)

where νN,h := N−2/(2+α)hd1α/(2+α) +N
−1
2 − 2−α

2p(2+α)h(
1
2−

2−α
4p )d1 , p ≥ 1. Next, we

define

L(N, h, p, u) := N− 1
2 ‖u‖1−

2−α
2p

H h(
1
2−

2−α
4p )d1 + νN,h‖u‖H, (E.15)

for any N > 1, h > 0, p ≥ 1 and u ∈ H.
Now we are able to bound SN,h(w

∗, u) by the following lemma.

Lemma B.5. Under Assumptions 2-7, we have

sup
u∈HN

SN,h(w
∗, u)

h−2d1 {L2(N, h, p, u)} = Op(1),

where L is defined in (E.15), p ≥ 1, h > 0 can depend on N .

Proof. First, take

Q(v) := sup
u∈HN

∣∣∣∣∣
1
N

∑N
i=1 γiu(Xi)K

(
Vi−v
h

)
L(N, h, p, u)

∣∣∣∣∣ .
Due to (E.14), we can show that for any t ≥ max{c7, c14, 1},

Q(v) ≤ t2,

with probability at least 1− 2c exp(−c6t) for large enough N .

Take c̃(k) = (max{c7, c14, 1})4k. From the above upper bound for Q(v), we
have for any v ∈ [0, 1]d1 and any integer k ≥ 1,

E
{
Q2(v)

}k
=

∫ ∞

0

P
{
Q(v)2k > t

}
dt =

∫ ∞

0

P

{
Q(v) > t

1
2k

}
dt

≤ c̃(k) +

∫ ∞

c̃(k)

2c exp(−c6t
1
4k )dt
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= c̃(k) + 4k

∫ ∞

max{c7,c14,1}
2c exp(−c6t

′)(t′)4k−1dt′

≤ c̃(k) + c17kΓ(4k),

where c17 > 0 is a constant depending on c6. Note that for any fixed positive k,
c̃(k) and kΓ(k) are bounded.

From (E.3), we have for t > 0 and positive integer k,

P

(
sup

u∈HN

c21h
2d1 S̃N,h(w

∗, u)

L2(N, h, p, u)
≥ t

)
≤ P

({∫
[0,1]d1

Q2(v)dv

}
≥ t

)

≤
E

[∫
[0,1]d1

Q2(v)dv
]k

tk
≤

E

[∫
[0,1]d1

Q2k(v)dv
]

tk
(by Jensen’s inequality)

≤
∫
[
0, 1]d1EQ2k(v)dv

tk
≤ 2k(c̃(k) + c17kΓ(4k))

tk
≤ c18(k)

tk
,

where c18(k) > 0 is a constant depending on k. Then we have

sup
u∈HN

h2d1 S̃N,h(w
∗, u)

L2(N, h, p, u)
= Op(1).

From (E.7) in Lemma B.2, we can see that with probability at least 1 −
c exp {−c4t

′Nh}, where 1
2 ≤ t′ ≤ 1,

∀ṽ ∈ [0, 1]d1 ,

∣∣∣∣∣ 1

Nh

N∑
i=1

K

(
Vi − ṽ

h

)
− gh(ṽ)

∣∣∣∣∣ ≤ t′c1 ≤ t′gh(ṽ)

1

Nh

N∑
i=1

K

(
Vi − ṽ

h

)
− gh(ṽ) ≥ −t′gh(ṽ)

1
Nh

∑N
i=1 K

(
Vi−ṽ
h

)
gh(ṽ)

≥ 1− t′ (E.16)

gh(ṽ)
1

Nh

∑N
i=1 K

(
Vi−ṽ
h

) ≤ 1

1− t′

Therefore,

sup
u∈HN

SN,h(w
∗, u)

h−2d1L2(N, h, p, u)

≤ sup
u∈HN

S̃N,h(w
∗, u)

h−2d1L2(N, h, p, u)
sup

ṽ∈[0,1]d1

{
gh(ṽ)

1
Nhd1

∑N
i=1 K

(
Vi−ṽ
h

)
}2

= Op(1)

Next, we control the penalty term RN,h(w
∗) through the following lemma.
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Lemma B.6. Under Assumptions 2-7, we have

RN,h(w
∗) = Op(h

−d1).

Proof. Take

R̃N,h(w
∗) :=

∫
[0,1]d1

1

gh(v)2

{
1

Nh2d1

N∑
i=1

Tiw
∗
i
2K2

(
Vi − v

h

)}
dv.

Notice that Tiw
∗
i
2 is upper bounded by C2

1 . By (E.6) in Lemma B.2,

sup
ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

Tiw
∗
i
2K2

(
Vi − ṽ

h

)∣∣∣∣∣ ≤ C2
1 sup
ṽ∈[0,1]d1

∣∣∣∣∣ 1N
N∑
i=1

K2

(
Vi − ṽ

h

)∣∣∣∣∣
= C2

1σ
2
Kh,N

≤ 2C2
1c3th

d1 ,

with probability at least 1− c exp(−c2tNhd1) for t ≥ 1. Therefore, we have

R̃N,h(w
∗) ≤

∫
[0,1]d1

1

g2h(v)
dv

{
1

h2d1
2C2

1c3th
d1

}
≤ 2C2

1c
2
3

c21
th−d1 , (E.17)

with probability at least 1 − c exp(−c2tNhd1/c). Combining with the results
from (E.16), we have

RN,h(w
∗) ≤ R̃N,h(w

∗)

{
sup

ṽ∈[0,1]d1

gh(ṽ)
1

Nh

∑N
i=1 K

(
Vi−ṽ
h

)
}2

= Op(h
−d1)

Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Take u∗ = argmaxu∈HN

{
SN,h(w

∗, u)− λ1‖u‖2H
}
. Its ex-

istence is shown in Section B.
Due to (3.6), we have the following basic inequality:

SN,h(ŵ,m1) + λ1‖u∗‖2H‖m1‖2N + λ2RN,h(ŵ)‖m1‖2N
≤ SN,h(w

∗, u∗)‖m1‖2N + λ1‖m1‖2H + λ2RN,h(w
∗)‖m1‖2N . (E.18)

From Lemmas B.5 and B.6, we have RN,h(w
∗) = Op(h

−d1) and

SN,h(w
∗, u∗) = Op

{
N−1‖u∗‖2−

2−α
p

H h(−1− 2−α
2p )d1 + ν2N,hh

−2d1‖u∗‖2H
}

for all p ≥ 1.
We now compare different scenarios of (E.18).
Case 1: Suppose that SN,h(w

∗, u∗)‖m‖2N is the largest in the right-hand side
of (E.18).

If ‖m‖N �= 0, we have

λ1‖u∗‖2H ≤ Op

{
N−1‖u∗‖2−(2−α)/p

H h−1− 2−α
2p

}
+Op

(
ν2N,hh

−2‖u∗‖2H
)
.
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By Assumptions 3 and 7, we can see that

ν2N,hh
−2 = N− 4

2+αh(
2α

2+α−2)d1 +N−1− 2−α
p(2+α)h(1−

2−α
2p −2)d1

= (N−1h−d1)
4

2+α + (N−1h−d1)(h− d1
2 N− 1

2+α )
2−α
p

= O(N−1h−d1) = O(λ1).

Thus it suffices to consider λ1‖u∗‖2H ≤ Op{N−1‖u∗‖2−(2−α)/p
H h(−1+α−2

2p )d1}.
Then we have

‖u∗‖H ≤ λ
− p

(2−α)

1 Op

{
N− p

(2−α)h(−
p

(2−α)
− 1

2}d1

)
,

and

SN,h(ŵ,m) ≤ λ
−2p+(2−α)

(2−α)

1 Op

(
N

−2p
(2−α)h(

−2p
(2−α)

−1)d1

)
‖m‖2N .

If ‖m‖N = 0 we have SN,h(ŵ,m) = 0 ≤ λ
−2p+(2−α)

(2−α)

1 Op

(
N

−2p
(2−α)h(

−2p
(2−α)

−1)d1

)
‖m‖2N .

Case 2: Suppose that λ1‖m‖2H is the largest in right-hand side of (E.18).
Then we have SN,h(ŵ,m) ≤ 3λ1‖m‖2H = Op(λ1)‖m‖2H.

Case 3: Suppose that λ2RN,h(w
∗) is the largest in right-hand side of (E.18).

Then we have SN,h(ŵ,m) ≤ 3λ2 Op(h
−d1)‖m‖2N = Op(λ2h

−d1)‖m‖2N .
Combining these cases, we have

SN,h(ŵ,m1) = max

{
min

{
λ

−2p+(2−α)
(2−α)

1 Op

(
N

−2p
(2−α)h(

−2p
(2−α)

−1)d1

)
‖m1‖2N : p ≥ 1

}
,

Op(λ1)‖m1‖2H,Op(λ2h
−d1)‖m1‖2N

}
. (E.19)

Next, we compare the first two components of (E.19). We can see that as
long as

2p

2− α
log(λ−1

1 N−1h−d1) ≤ log hd1 ,

the second component is dominant. Note that log hd1 < 0 as h → 0. Because
of the condition that λ−1

1 = O(Nhd1), the inequality is valid as long as p ≥
2−α
2

log hd1

log(λ−1
1 N−1h−d1 )

. So we can pick any p ≥ max{1, 2−α
2

log hd1

log(λ−1
1 N−1h−d1 )

} to

have the best order Op(λ1)(‖m‖2H + ‖m‖2N ).
Then, we compare the first and the third components of (E.19). Similar to

the previous analysis, as long as

2p

2− α
log(λ−1

1 N−1h−d1) ≤ log(λ2λ
−1
1 ),

the third component is dominant. Due to the condition that λ−1
1 = O(Nhd1),

the inequality is valid if p ≥ 2−α
2

log λ2λ
−1
1

log(λ−1
1 N−1h−d1 )

. So we can pick any p ≥

max{1, 2−α
2

log λ2λ
−1
1

log(λ−1
1 N−1h−d1 )

} to have the best order Op(λ2h
−d1)‖m‖2N .
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Finally, we conclude that

SN,h(ŵ,m1) = Op(λ1‖m1‖2N + λ1‖m1‖2H + λ2h
−d1‖m1‖2N ).

Moreover, further suppose that λ−1
2 = O(λ−1

1 h−d1). From (E.18), by replacing
m with a constant function and applying the similar analysis as above, we can
conclude that RN,h(ŵ) = Op(h

−d1).

E.2. Proof of Theorem 5.2

Proof. First, we have∥∥∥∥∥ 1

N

N∑
i=1

TiŵiYiKh (Vi, ·)− μ1

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

N

N∑
i=1

(Tiŵi − 1)Kh (Vi, ·)m(Xi)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

TiŵiKh(Vi, ·)εi

∥∥∥∥∥
2

(E.20)

+

∥∥∥∥∥ 1

N

N∑
i=1

m(Xi)Kh(Vi, ·)− μ1

∥∥∥∥∥
2

. (E.21)

Since ‖m1‖2 ≤ b‖m1‖H < ∞ and ‖m1‖N = ‖m1‖2 + Op(1), we have∥∥∥∥∥ 1

N

N∑
i=1

(Tiŵi − 1)Kh (Vi, ·)m1(Xi)

∥∥∥∥∥
2

= {SN,h(ŵ,m1)}1/2

=Op(λ
1/2
1 ‖m1‖N + λ

1/2
1 ‖m1‖H + λ

1/2
2 h−d1/2‖m1‖N )

=Op(λ
1/2
1 ‖m1‖H + λ

1/2
2 h−d1/2‖m1‖2) + Op(λ

1/2
1 + λ

1/2
2 h−d1/2)

due to Theorem 5.1 and the conditions of λ1 and λ2.
For the second term in (E.20), we have E(εi | Ti, ŵi, Xi, i = 1, . . . , N) = 0.

Then, we have

E

⎧⎨
⎩
∥∥∥∥∥ 1

N

N∑
i=1

TiŵiKh(Vi, ·)εi

∥∥∥∥∥
2

2

| Ti, ŵi, Xi, i = 1, . . . , N

⎫⎬
⎭

=

∫ 1

0

E

⎧⎨
⎩
[
1

N

N∑
i=1

TiŵiKh(Vi, v)εi

]2

| Ti, ŵi, Xi, i = 1, . . . , N

⎫⎬
⎭ dv

=

∫ 1

0

1

N2

N∑
i=1

E
{
Tiŵ

2
iK

2
h(Vi, v)ε

2
i | Ti, ŵi, Xi, i = 1, . . . , N

}
dv

≤σ2
0

N

∫ 1

0

1

N

N∑
i=1

Tiŵ
2
iK

2
h(Vi, v)dv =

σ2
0

N
RN,h(ŵ).
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Therefore, we have

E

⎧⎪⎨
⎪⎩

∥∥∥ 1
N

∑N
i=1 TiŵiKh(Vi, ·)εi

∥∥∥2

2

RN,h(ŵ)
| Ti, Xi, i = 1, . . . , N

⎫⎪⎬
⎪⎭ ≤ σ2

0

N
,

E

⎧⎪⎨
⎪⎩

∥∥∥ 1
N

∑N
i=1 TiŵiKh(Vi, ·)εi

∥∥∥2

2

RN,h(ŵ)

⎫⎪⎬
⎪⎭ ≤ σ2

0

N
,

∥∥∥ 1
N

∑N
i=1 TiŵiKh(Vi, ·)εi

∥∥∥2

2

RN,h(ŵ)
= σ2

0 Op(
1

N
).

From the condition of λ2, and the result from Theorem 5.1 that RN,h(ŵ) =
Op(h

−d1), we have∥∥∥∥∥ 1

N

N∑
i=1

TiŵiKh(Vi, ·)εi

∥∥∥∥∥
2

= Op(N
−1/2h−d1/2).

As for (E.21), it has a form of a typical Nadaraya–Watson estimator. By
Theorem 5.44 in [44], we have

E

∥∥∥∥∥ 1

N

N∑
i=1

m(Xi)Kh(Vi − ·)− μ1

∥∥∥∥∥
2

2

= O(N−1h−d1).

Therefore, we have∥∥∥∥∥ 1

N

N∑
i=1

m(Xi)Kh(Vi − ·)− μ1

∥∥∥∥∥
2

2

= Op(N
−1h−d1).

Overall, conclusion follows.

E.3. Proof outline of Theorem 5.3

To obtain the rate, the entropy bound in Lemma B.1 needs to be modified
to the bigger function class Fh := {f : f(x̌) = u(x̌)K( v̌−v

h ), u ∈ {u ∈ H :
‖u‖H ≤ 1}, v ∈ [0, 1]d1}. This can be done by combining the entropy bound for
{u ∈ H : ‖u‖H ≤ 1} and Assumption 5(b). One can show that

H(δ,Fh, ‖ · ‖N )

{
= 0 if δ > 2bσKh,N

≤ Aσα
Kh,N

δ−α + log(A1ε
−ν1) otherwise

.

Then by adopting this entropy bound, the results in Lemma B.3 will be modified
to that ∀f ∈ Fh,

1

N

∣∣∣∣∣
N∑
i=1

γif(Xi)

∣∣∣∣∣ ≤ t

{
N− 1

2 ‖u‖
2−α
2p

2 hd1( 1
2−

2−α
4p )

(
log

1

h

)1/2

+N− 2
2+αh

d1α
2+α log

1

h

}
,
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for any t ≥ c1, and p ≥ 1 with probability at least 1 − c exp (−c6t). Then the
remaining argument is similar to those in the proof of Theorems 5.1 and 5.2.

E.4. Proof of Theorem 5.4

Proof. Following the same proof structure of Theorem 5.1, by replacing m with
a constant function z of value 1, we have

SN,h(ŵ, z) + λ1‖u∗‖2H + λ2RN,h(ŵ) ≤ SN,h(w
∗, u∗) + λ1‖z‖2H + λ2RN,h(w

∗).

By the condition of λ1 such that λ−1
1 = Op(N

−1h−d1), we have RN,h(ŵ) =
Op(λ

−1
2 λ1 + h−d1). Since λ−1

2 λ1 = O(h−d1),

RN,h(ŵ) = Op(h
−d1).

Again, following the same proof structure of Theorem 5.1, note that ê ∈ H,
by replacing m with ê, we have

SN,h(ŵ, ê) + λ1‖u∗‖2H‖ê‖2N + λ2RN,h(ŵ)‖ê‖2N ≤
SN,h(w

∗, u∗)‖ê‖2N + λ1‖ê‖2H + λ2RN,h(w
∗)‖ê‖2N .

By the condition of λ1 such that λ−1
1 = Op(N

−1h−d1), we can obtain

SN,h(ŵ, e) = Op(λ1‖e‖2N + λ1‖e‖2H + λ2h
−d1‖e‖2N ).

Therefore,∥∥∥∥∥ 1

N

N∑
i=1

K̃h(Vi, ·)m̂(Xi) +
1

N

N∑
i=1

TiŵiK̃h(Vi, ·){Yi − m̂(Xi)} − μ1

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

N

N∑
i=1

(Tiŵi − 1)Kh (Vi, ·) e(Xi)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

TiŵiKh(Vi, ·)εi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

m(Xi)Kh(Vi, ·)− μ1

∥∥∥∥∥
2

≤{SN,h(ŵ, e)}1/2 +Op(N
−1/2)R

1/2
N,h(ŵ) +Op(N

−1/2h−d1/2)

≤Op(λ
1/2
1 ‖e‖N + λ

1/2
1 ‖e‖H + λ

1/2
2 h−d1/2‖e‖N ) +Op(N

−1/2h−d1/2)

≤Op(N
−1/2h−d1/2 + λ

1/2
1 ‖e‖N + λ

1/2
1 ‖e‖H + λ

1/2
2 h−d1/2‖e‖N ).
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