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Abstract: Change point detection in high dimensional data has found
considerable interest in recent years. Most of the literature either designs
methodology for a retrospective analysis, where the whole sample is al-
ready available when the statistical inference begins, or considers online
detection schemes controlling the average time until a false alarm. This
paper takes a different point of view and develops monitoring schemes for
the online scenario, where high dimensional data arrives successively and
the goal is to detect changes as fast as possible controlling at the same
time the probability of a type I error of a false alarm. We develop a se-
quential procedure capable of detecting changes in the mean vector of a
successively observed high dimensional time series with spatial and tem-
poral dependence. The statistical properties of the method are analyzed in
the case where both, the sample size and dimension tend to infinity. In this
scenario, it is shown that the new monitoring scheme has asymptotic level
alpha under the null hypothesis of no change and is consistent under the
alternative of a change in at least one component of the high dimensional
mean vector. The approach is based on a new type of monitoring scheme
for one-dimensional data which turns out to be often more powerful than
the usually used CUSUM and Page-CUSUM methods, and the component-
wise statistics are aggregated by the maximum statistic. For the analysis
of the asymptotic properties of our monitoring scheme we prove that the
range of a Brownian motion on a given interval is in the domain of attrac-
tion of the Gumbel distribution, which is a result of independent interest in
extreme value theory. The finite sample properties of the new methodology
are illustrated by means of a simulation study and in the analysis of a data
example.
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1. Introduction

As digital transformation processes have accelerated during the last decades,
new technologies like smartphones or car sensors are able to gather large amounts
of data. Due to this development companies, states, research institutes etc. face
the problem to manage, monitor and examine huge data sets, which regularly
exceed the means of traditional tools. Thus the demand for so-called big data
technology is steadily growing and thereby the requirement for theoretical foun-
dation has put a lot of attention at the topic of high dimensional statistics in
recent years.

Especially, the topic of change point analysis or detection of structural breaks
has regained attraction and numerous authors have started to embed commonly
used multivariate methods into a high dimensional framework or even develop
new methodology from scratch. Among many others, high dimensional change
point problems have been considered by Cho and Fryzlewicz (2015), Wang and
Samworth (2018), who develop methodology to identify multiple change points
by a (wild) binary segmentation algorithm under sparsity assumptions. Jirak
(2015b) and Dette and Gösmann (2018) aggregate component-wise CUSUM-
statistics by the maximum functional to detect structural breaks in a sequence of
means of a high dimensional time series. Lévy-Leduc and Roueff (2009) analyze
internet traffic data, by applying a compenent-wise CUSUM-test to dimension-
reduced censored data.

Enikeeva and Harchaoui (2019) employ the Euclidean norm of the CUSUM-
process to obtain a linear and a scan statistic of χ2-type, that is minimax-
optimal under the regime of independent Gaussian observations. Change point
problems in high dimensional covariance matrices are studied by Wang et al.
(2017), Avanesov and Buzun (2018) and Dette et al. (2018) using (wild) binary
segmentation, multiscale methods and U-statistics, respectively. U-statistics are
also used by Wang et al. (2019) and Wang and Shao (2020) to develop testing
and estimation methodology for a structural break in the mean.

All listed references on high dimensional change point problems have in com-
mon that the proposed methods are designed for a retrospective or offline anal-
ysis, where the whole sample is already available when the statistical inference
is commenced. In contrast to this, sequential change point detection deals with
methods that are applicable for monitoring data in a so-called online scenario.
In such a setup, data arrives steadily and methods are constructed to detect
changes as fast as possible, while the problem is reevaluated with each new data
point. Starting with the seminal paper of Wald (1945) on the sequential proba-
bility ratio test, an enormous amount of literature has been published discussing
the problem from different perspectives. Several concepts have been proposed to
model the situation of online monitoring and we discuss the different paradigms
addressing the sequential change point problem in more detail at the end of this
introduction.

To the authors best knowledge, a common feature of most of the literature on
sequential change point detection consists in the fact that it does not consider
the time and spatially dependent high dimensional scenario, where the dimen-
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sion of the data increases with the sample size. The purpose of the present
paper is to address this problem in the context of detecting changes in the
mean. For this purpose, we follow the paradigm of Chu et al. (1996), which
provides a model for online change point detection, such that the probability
of a type I error (false alarm) can be controlled (asymptotically). We develop
a sequential algorithm in the high dimensional regime aggregating component-
wise sequential detection schemes by the maximum statistic. For the individual
components we use a novel monitoring procedure, which screens for all possible
positions of the change point and takes into account that the change does not
necessarily occur in the first observations after the initial sample – see Section 2
for more details. A nice feature of this approach consists in the fact that the
limiting distribution of the statistic used to monitor each component (after ap-
propriate standardization) is given by the range of the Brownian motion, that
is M = max0≤t≤q W (t) − min0≤t≤q W (t), where W is a Brownian motion on
the interval [0, q] and 0 < q < 1 is a known constant. The distribution of the
random variable M appears as the weak limit of the range of cumulative sums of
i.i.d. random variables with variance 1 [see Feller (1951)], and we will show that
it belongs to the domain of attraction of the Gumbel distribution. This result
is of independent interest in extreme value theory and allows us to aggregate
component-wise statistics by the maximum.

As a consequence we can develop a sequential monitoring scheme in the high
dimensional regime using the quantiles of the Gumbel distribution. For this pur-
pose, we combine Gaussian approximations tools for high dimensional statistics
[see Chernozhukov et al. (2013); Zhang and Cheng (2018)] and show that the
statistic can be approximated by a counterpart computed from Gaussian ob-
servations with the same long-run correlation structure as the observed time
series. Using Gaussian comparison and anti-concentration inequalities we show
that this statistic is sufficiently close to the maximum of ranges of dependent
Brownian motions. Finally, we use Poisson approximation via the Chen-Stein
method to eliminate the independence condition, such that the new result for
the independent case can be applied. As the rates of most convergence results
in extreme value theory are known to be rather slow, we also propose a simple
bootstrap procedure, which improves the performance of the sequential moni-
toring scheme for sample sizes. To our best knowledge, our paper provides the
first rigorous analysis of a sequential change point detector in the high dimen-
sional regime for the model introduced by Chu et al. (1996). For the sake of
transparency we concentrate on changes in the high-dimensional mean vector,
but we expect that our approach can be extended to linear regression models
with a high-dimensional parameter. Here the sequential paradigm proposed by
Chu et al. (1996) has been considered by Horváth et al. (2004) and Dette and
Gösmann (2019) for fixed dimension, among others (see also Kaul et al., 2019;
Wang et al., 2021, for some results on retrospective change point analysis in the
high dimensional regime).

The remaining part of this paper is organized as follows. We conclude this
introduction with a discussion and comparison of the different philosophies in
sequential change point detection. In Section 2, we introduce the specific testing
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problem under consideration and present the new monitoring procedure for
structural breaks in the sequence of means from a high dimensional time series.
Section 3 is devoted to our main results and to the analysis of the asymptotic
properties of the new procedure. In particular, we prove that the maximum of
the individual test statistics converges weakly (with increasing dimension and
initial sample size) to a Gumbel distribution. These results are used to show that
the monitoring scheme has asymptotic level α and is consistent. In Section 4,
we investigate the finite sample properties of the new procedures by means of a
simulation study and illustrate potential applications in a data example. Finally,
all proofs are deferred to Appendix A in the online supplement.

Related literature – two paradigms in sequential change point detec-
tion

In the remaining part of this section, we briefly discuss two ways of mod-
elling the problem of sequential change point detection, which have developed
rather independently in the last 25 years. The list of references cited below is
by no means complete, because both modelling approaches have been used in-
tensively in the literature. Rather it represents a selective choice of the authors
with the goal to put the approach proposed in this paper in the appropriate
context. Sequential change point detection in the high dimensional scenario,
where the dimension increases with the sample size, has barely been studied in
the liteature, where some of the relevant exceptions are cited below.

The different models in the literature are used to address different criteria
for quantifying the propensity of a detection scheme to cause false alarms. The
traditional Statistical Process Control (SPC)-approach has its focus on a fast
change point detection, where the average time from monitoring start to a false
alarms is controlled.

On the other hand, if the costs of a false alarm are heavy, for instance if
a large portfolio has to be restructured in portfolio management, it might be
more reasonable to control the probability of a false alarm. While from an
application point of view the criteria are strongly related, different mathematical
models have to be used to analyze the statistical properties. The SPC-approach
uses models from classical sequential analysis (often independent observations)
and some of the relevant literature is given in part (B) of this section. As an
alternative Chu et al. (1996) introduced a model to control asymptotically the
probability of a false alarm, which requires an initial stable sample. The related
literature for this model is described in part (A) of this section. The purpose of
the present paper is to develop a monitoring scheme in this model, where the
dimension is allowed to grow with the sample size (at a polynomial order).

The SPC- and the approach proposed in Chu et al. (1996) have been devel-
oped rather independently during the last two decades and usually a manuscript
either focuses on the one or on the other. One reason for this development is
their different focus in the sequential change point problem and probably other
ones are mathematical reasons. The very recent work of Yu et al. (2020) pro-
vides a brief theoretical comparison of both methods in the univariate setting
with independent sub-Gaussian observations and also indicates the mathemat-
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ical difficulties of such a comparison. The authors argue that (for their specific
model) controlling the type I error over a fixed monitoring period only results
in minor extra costs for the expected detection delay and “...suggest that upper
bounding the overall type I error might be better.” However, their model does
not include a stable initial set, such that no asymptotic investigations can be
carried out.

In general, methods developed in the SPC-paradigm often base upon the
premise, that certain statistical parameters, for instance the mean before a
change, are exactly known from a long-lasting stable period (Phase I). The
procedure for the actual monitoring (Phase II) is then calibrated using these
exact parameters; see Chen et al. (2020) for a recent example in the context of
high dimensional means. While such a proceeding might be reasonable in some
applications like manufacturing control, in other fields like econometrics, this is
unrealistic as a large stable set might be rarely available. In this context, the
approach of Chu et al. (1996) might be advantageous, as the size of the stable set
is treated as a parameter (sample size) and quantities derived from this set are
handled as estimators. The problem of separate Phase I and Phase II has also
been discussed in the SPC-literature; see Hawkins et al. (2003) or Ross (2014)
among others, who discuss SPC-type procedures updating the initial estimates.

(A) Controlling the type I error Chu et al. (1996) propose a sequential
paradigm, such that the type I error can be controlled (asymptotically). It is
based on the premise of an initial stable data set, that has to be available
before monitoring commences. Their main idea is to invoke invariance principles,
such that the probability of a false alarm can be controlled over a possibly
infinite monitoring time – asymptotically as the size of the initial set grows.
This modelling approach also allows for the estimation of model parameters,
such as the (long-run) variance or coefficients in regression models if covariates
are present, and therefore may have advantages for applications, where temporal
dependence is present. The literature distinguishes between the open-end and
closed-end scenario. A closed-end scenario is associated with a fixed endpoint,
where monitoring has to be eventually stopped even if no change was detected
before. An open-end scenario does not postulate an endpoint meaning that
monitoring can (theoretically) continue forever if no change is detected.

Since its introduction, this paradigm has found considerable attention in
the literature on change point detection. For example, Horváth et al. (2004),
Hušková and Koubková (2005) and Aue et al. (2006) consider changes in the
parameters of linear models with statistics based on residuals. For independent
identically distributed (i.i.d.) data, Kirch (2008) and Hušková and Kirch (2012)
propose several bootstrap procedures for sequential change point detection in the
mean and in the parameters of linear regression models. A MOSUM-approach,
which employs a moving monitoring window in linear models is introduced by
Chen and Tian (2010), while Ciuperca (2013) proposes a generalization of the se-
quential CUSUM statistic to non-linear models. Fremdt (2014) uses the so-called
Page-CUSUM, which scans for changes through the already available monitor-
ing data and is more efficient to detect later changes than the classical sequential
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CUSUM scheme. Hoga (2017) proposes an �1-norm to detect structural breaks
in the mean and variance of a multivariate time series and Dette and Gösmann
(2019) develop an amplified scanning method combined with self-normalization.
Otto and Breitung (2019) define a Backward CUSUM statistic based on recur-
sive residuals in a linear model. Unifying frameworks are provided in Kirch and
Kamgaing (2015) and Kirch and Weber (2018) and a theory based on U-statistic
is established in Kirch and Stoehr (2019). We also refer to the recent review of
sequential procedures in Section 1 of Anatolyev and Kosenok (2018).

(B) Statistical Process Control The traditional approach, partially known
as Statistical Process Control (SPC), can be traced back to the seminal papers
of Page (1954, 1955). So-called Control Charts have been the first methods de-
veloped in this area and their typical field of application was quality control for
manufacturing processes. In this spirit, these methods are made to guarantee
a quick change point detection, for which regular false alarms are necessarily
accepted. Thus, procedures developed in the SPC-context are commonly ana-
lyzed by two quantities. The average run length (ARL) measures the expected
time until a false alarm is raised under the null hypothesis of no change. Its
counterpart is the expected detection delay (EDD) necessary to raise an alarm
under the alternative. It can be regarded as an analogue to classical hypothesis
testing theory, that only one of these key quantities can be optimized while the
other is only kept bounded. Since Page (1954) numerous authors have followed
this approach, for instance, Hinkley (1971), Moustakides (1986) or Nikiforov
(1987), and we delegate the reader to review papers by Woodall and Mont-
gomery (1999) or Lai (2001) and the more recent monograph of Tartakovsky
et al. (2014), where the state of the art is discussed. In a discussion paper Mei
(2008) demonstrates that the average run length (ARL) might not be an appro-
priate criterion as a measure of false detection if the observations are dependent.
The author and the discussants propose several alternatives.

Although the (basic) SPC-approach is relatively old, many authors have been
constantly working on this problem from various perspectives. In particular,
there also exist several papers developing online monitoring procedures for new
situations arising in the information age. For instance Tartakovsky et al. (2006),
Mei (2010), Zou et al. (2015) investigate multi-sensor change point problems and
Chu and Chen (2018) propose an algorithm based on nearest neighbour infor-
mation for non-euclidean data. Most of this work investigates multivariate data,
where the dimension is assumed to be fixed, and imposes rather strong assump-
tions to investigate the ARL and EDD (such that of independent identically
distributed observations).

On the other hand, there also exist a few references considering the high di-
mensional case, where the dimension is large compared to the sample size. Xie
and Siegmund (2013) develop a mixture procedure to monitor parallel streams
of data for a change point without assuming a spatial structure. Soh and Chan-
drasekaran (2017) combine a filtered derivative approach with convex optimiza-
tion to develop a scalable and statistically efficient monitoring scheme for high
dimensional sparse signals, while Chen et al. (2020) monitor for mean changes
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across coordinates by a sophisticated aggregation technique. These three con-
tributions assume independent normal distributed observations without spatial
dependence.

While these assumptions are helpful to obtain some basic understanding of
the properties of a procedure, they might be too restrictive in applications,
in particular in economics. Our approach differs substantially from these high
dimensional frameworks. We use the modelling approach by Chu et al. (1996) to
(asymptotically) control the probability of a type I error in the high dimensional
regime. Moreover, we neither assume Gaussian nor independent observations to
analyze the theoretical properties of the proposed monitoring procedure.

2. Sequential monitoring of high dimensional time series

Let {Xt}t∈Z denote a time series of random vectors in R
d with mean vectors

μt := (μt,1, . . . , μt,d)
� = E[Xt] := E[(Xt,1, . . . , Xt,d)

�] .

We take the sequential point of view and are interested in monitoring for changes
in the vectors μ1,μ2, . . . . Following Chu et al. (1996) we assume that a historic
or initial data set, say X1, . . . ,Xm, is available, which is known to be mean
stable. Starting with observation Xm+1 we will sequentially test for a change in
the mean vector in the monitoring period. The corresponding testing problem
is therefore given by the hypotheses

H0 : μ1 = · · · = μm = μm+1 = μm+2 = · · ·
vs. H1 : ∃k∗ ∈ N, s.t. μ1 = · · · = μm = · · · = μm+k∗−1 �= μm+k∗ = · · · .

(2.1)

In the present paper, we consider a closed-end scenario where the procedure
stops after m+ Tm observations even if no change has been detected [see Aue
et al. (2012), Wied and Galeano (2013) among many others]. The factor T
determines the length of the monitoring period compared to the size of the
initial training set m and so the hypotheses in (2.1) read as follows

H0 : μ1 = · · · = μm = μm+1 = μm+2 = · · · = μm+Tm (2.2)

vs. H1 : ∃k∗ ∈ {1, . . . , Tm}, s.t. μ1 = · · · = μm+k∗−1 �= μm+k∗ = · · · = μm+Tm.

In the following, we will develop a sequential detection scheme which is capable
to distinguish between the hypotheses given in (2.2) in a high dimensional setting
where the dimension d of the mean vector is increasing with the initial sample
size m. To be precise, we denote by

μ̂j
i (h) =

1

j − i+ 1

j∑
t=i

Xt,h

the estimator of the mean in component h ∈ {1, . . . , d} from the subsample
Xi,h, . . . , Xj,h. Following Gösmann et al. (2020), we consider the statistic

Êm,h(k) =
k−1
max
j=0

k − j√
mσ̂h

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣ (2.3)
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at time point m+ k in a single component h, where σ̂2
h denotes an appropriate

estimator of the unknown long-run variance

σ2
h =

∑
t∈Z

Cov(X0,h, Xt,h)

in the hth component (explicit conditions for the existence of the long-run
variance are given in Section 3). Note that Êm,h(k) is a weighted CUSUM
statistic to detect a change point in the sequence of means corresponding to
the data Xm+1,h, . . . , Xm+k,h. A structural break in the sequence of means
μm+1,h, μm+2,h, . . . is detected as soon as the sequence

w(1/m)Êm,h(1), w(2/m)Êm,h(2), . . .

exceeds a given threshold, that is w(k/m)Êm,h(k) > c
(h)
α , where w is a suitable

weight function and the critical value c
(h)
α is chosen based on the desired test level

α. Following Aue and Horváth (2004), Wied and Galeano (2013) and Fremdt
(2014), we will work with the commonly used weight function w(t) = 1/(1 + t),
throughout this paper.

Remark 2.1. (1) Note that most of the literature investigates sequential de-
tectors based on the differences∣∣∣μ̂m+k

m+1(h)− μ̂m
1 (h)

∣∣∣ (2.4)

and the corresponding detection schemes are usually called (ordinary)
CUSUM tests [see Chu et al. (1996), Horváth et al. (2004), Aue et al.
(2006)]. Another part of the literature focuses on detectors based on the
differences ∣∣∣μ̂m+k

m+j+1(h)− μ̂m
1 (h)

∣∣∣ for j = 0, . . . , k − 1 (2.5)

and the corresponding detection schemes are usually called Page-CUSUM
tests [see Fremdt (2014, 2015), Kirch and Weber (2018)]. The use of the
differences

∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣ is motivated by the likelihood principle

[see Dette and Gösmann (2019)]. Compared to the differences in (2.4)
it avoids the problem that the estimator μ̂m+k

m+1(h) may be corrupted by
observations before the change point, which could lead to a loss of power.
Compared to the differences in (2.5) the use of μ̂m+j

1 (h) instead of μ̂m
1 (h)

may avoid a loss in power in cases of a small initial sample and a rather late
change point. The advantages of detection schemes based on the differences∣∣μ̂m+k

m+j+1(h)−μ̂m+j
1 (h)

∣∣ against ordinary sequential CUSUM and the Page-
CUSUM procedures have been recently demonstrated by Gösmann et al.
(2020).

(2) Several authors consider the more general class of weight functions wγ(t) =

(t + 1)−1
(

t
t+1

)−γ
for γ ∈ [0, 1/2) [see for instance Horváth et al. (2004),

Aue et al. (2006) or Kirch and Weber (2018)]. The weight function w(t) =
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1/(1 + t) is obtained for γ = 0 and was proven to be preferable to γ > 0
in many situations except for changes that occur almost immediately [see
Kirch and Weber (2018)]. It is most likely, that the theoretical results of
this paper remain correct in the case γ > 0.

(3) Note that the individual statistics w(k/m)Êm,h(k) correspond to the spe-
cial case of Gösmann et al. (2020) with γ = 0 in dimension one. As further
the mean functional μ is linear, straightforward calculations show that its
running maximum until time m+ t can be equivalently written as

t
max
k=1

w(k/m)Êm,h(k) =

√
m

σ̂h

(
t

max
k=0

μ̂m+k
1 (h)−

t
min
k=0

μ̂m+k
1 (h)

)
,

which is in some sense simpler and less computationally demanding. Nev-
ertheless, we stick with the original representation from (2.3), which – in
the authors’ view – is more intuitive due to the observable data separation.
Further, it offers some substantial advantages in the proofs regarding the
truncation and Gaussian approximation steps as well as for the proof of
consistency under the alternative.

In order to control the probability of erroneously deciding for a structural
break in the component h during the monitoring period, one has to determine
the probability

P

(
Tm
max
k=1

w(k/m)Êm,h(k) > c(h)α

)
.

For fixed h ∈ {1, . . . , d} we can employ a result of Gösmann et al. (2020) who
showed that (under appropriate assumptions), as m → ∞,

Tm
max
k=1

w(k/m)Êm,h(k)
D
=⇒ M = max

0≤t≤q(T )
W (t)− min

0≤t≤q(T )
W (t) , (2.6)

where the symbol
D
=⇒ denotes weak convergence, q(T ) = T/(T + 1) and W

is a standard one-dimensional Brownian motion. Note that T is the parameter
controlling the length of the monitoring period [see the hypotheses in (2.2)]. M
is known in the probability literature as the range of the Brownian motion on
the interval [0, q(T )] and its distribution appears as the weak limit of the range
of cumulative sums of i.i.d. random variables with variance 1 [see Feller (1951)].

For a detection of a change point in the complete mean vector we propose
to aggregate the statistics for the different spatial dimensions h = 1, . . . , d.
More precisely, we consider the maximum of the different components, that
is maxdh=1 w(k/m)Êm,h(k), and reject the (closed-end) null hypothesis H0 :
μ1 = · · · = μm+Tm of no structural break in the high dimensional means
μ1, . . . ,μm+Tm if this quantity exceeds a given threshold, that is

T̂m,d :=
Tm
max
k=1

d
max
h=1

w(k/m)Êm,h(k) > cd,α . (2.7)

Here the critical value cd,α is chosen appropriately such that (asymptotically)
the probability of erroneously deciding for a change point is controlled. In the
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following section, we investigate the weak convergence of the statistic T̂m,d.
These results will be used to define critical values cd,α in (2.7) (one by asymptotic
theory and one by bootstrap), such that the monitoring procedure is consistent
and at the same time controls the probability of the type I error, that is

lim sup
m,d→∞

PH0

(
T̂m,d > cd,α

)
≤ α and lim

m,d→∞
PH1

(
T̂m,d > cd,α

)
= 1 . (2.8)

Remark 2.2. In this paper, we consider mean based detectors corresponding
to ordinary least squares estimation. We expect that similar results can be
obtained using robust estimates such as M -estimates considered by Chochola
et al. (2013). For example, the median has been discussed as a special case in
Dette and Gösmann (2019) and Gösmann et al. (2020).

3. Main results

In this section, we derive the asymptotic properties of the proposed detector
defined in (2.7) in the high dimensional setting where sample size and dimension
tend to infinity and we allow for temporal as well as spatial dependencies in the
data. In particular, we establish as a consequence of Theorem 3.6 below – in
case of constant mean vectors – the weak convergence

ad
(
T̂m,d − bd

) D
=⇒ G as m, d → ∞ ,

where ad, bd are suitable sequences and G is a standard Gumbel random variable
with c.d.f. FG(x) = exp(− exp(−x)), x ∈ R. As inevitable in high dimensional
time series analysis, we require assumptions on the relation between the (initial)
sample size and the dimension as well as assumptions on the dependence struc-
ture to control the dependence between components at different time points
uniformly.

Throughout this paper, we assume that the observations are drawn from the
array {Xt,h}t∈Z,h∈N, for which we suppose the location model

Xt,h = μt,h + et,h , t ∈ Z, h ∈ N , (3.1)

where μt,h = E[Xt,h] is the expectation of the h component and the centered
array {et,h}t∈Z,h∈N is given as a physical system [see e.g. Wu (2005)], that is

et,h = gh(εt, εt−1, . . . ) , t ∈ Z, h ∈ N . (3.2)

The underlying sequence of innovations {εt}t∈Z consists of i.i.d. random vari-
ables with values in some arbitrary measure space S and the functions gh :
S
N :→ R are assumed to be measurable. Note that, by the definition above,

the random variables {et,h}t∈Z,h∈N are (strictly) stationary with respect to the
time index t, such that for any fixed dimension d the multivariate time series{
et =

(
et,1, et,2, et,3, . . . , et,d

)�}
t∈Z

is stationary. The data generating model

defined by formula (3.2) has received a lot of attention in recent years [see for
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example Wu and Zhou (2011), Liu et al. (2013), El Machkouri et al. (2013),
Berkes et al. (2014) among many others]. It covers the major part of prevalent
time series models like autoregressive or moving average processes. Further-
more, it also allows for a natural measurement of temporal dependence which
is constructed as follows. Let ε′0 be an independent copy of ε0 and define

X ′
t,h = μt,h + gh(εt, εt−1, . . . ε1, ε

′
0, ε−1, . . . )

as a counterpart of Xt,h where ε0 is replaced by ε′0. If p ≥ 1 we denote by
‖X‖p = E[|X|p]1/p the ordinary Lp-norm of a real-valued random variable X
(assuming its existence). If ‖et,h‖p < ∞, the coefficients

ϑt,h,p :=
∥∥Xt,h −X ′

t,h

∥∥
p

measure the influence of innovation ε0 on Xt,h and thereby quantify the (tempo-
ral) dependence within the system {et,h}t∈Z,h∈N defined by (3.2). If ‖et,h‖p < ∞
for some p ≥ 2 we define the covariances of cross-components by φt,h1,h2 :=
Cov(X0,h1 , Xt,h2), φt,h := φt,h,h and the long-run covariances and variances by

γh1,h2 :=
∑
t∈Z

φt,h1,h2 and σ2
h := γh,h , (3.3)

respectively. If σh1 , σh2 > 0, let additionally

ρh1,h2 :=
γh1,h2

σh1σh2

(3.4)

denote the long-run correlations. It will be crucial for the asymptotic consider-
ations to control the coefficients ϑt,h,p and the correlations ρh1,h2 for increasing
time t and spatial distance |h1 − h2|, respectively. This will be formulated in
Assumptions 3.3 and 3.4 below. Before we state these precisely, we begin with
two assumptions on the relation between sample size and dimension and on the
tail behavior of the errors in model (3.1).

Assumption 3.1 (Assumption on the dimension) There exist constants D > 0
and CD > 0 , such that

(D1) m1/CD ≤ d ≤ CD mD.

Assumption 3.2 (Structural assumptions) The random variables et,h in model
(3.1) have bounded exponential moments, that is: there exists a positive se-
quence Bm, such that

(S1) maxdh=1 E
[
exp

(
|e1,h|/Bm

)]
≤ Ce ,

where Bm ≤ mB with constants B < 3/8 and Ce > 1.

Assumption 3.3 (Temporal dependence) There exist constants p > 2D + 4,
β ∈ [0, 1), Cϑ > 0 such that for all t ∈ N0

(TD1) suph∈N ϑt,h,p ≤ Cϑβ
t .
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Further, assume that for a positive constant cσ the long-run variances defined
in (3.3) are uniformly bounded from below, that is

(TD2) cσ ≤ infh∈N σh .

Assumption 3.4 (Spatial dependence) There exist a sequence rm converging
to zero, and a constant ρ+ ∈ [0, 1), such that the long-run correlations defined
in (3.4) fulfill

(SD1) |ρi,j | ≤
(
log |i− j|

)−2
r|i−j| whenever |i− j| ≥ 2,

(SD2) supi,j: |i−j|≥1 |ρi,j | ≤ ρ+ < 1 .

Let us briefly discuss the assumptions above. Assumptions of the type (D1)
are quite common in high dimensional change point problems. For example, Ji-
rak (2015b), Wang and Samworth (2018) and Dette and Gösmann (2018) also
assume a polynomial upper bound on the growth of the dimension with the
sample size. The lower bound in (D1) is needed for an intermediate trunca-
tion step in our proofs where we employ the Fuk–Nagaev inequality in order
to obtain the Gaussian approximation. Conditions like Assumption 3.2 and 3.3
are both indispensable ingredients for Gaussian approximation results in high
dimensional statistics and will be used in the proofs of our main results. Here
Assumption 3.2 controls the tail behavior of the observations [see also Cher-
nozhukov et al. (2013, 2019)], while Assumption 3.3 states a sufficiently weak
temporal dependence and a lower bound for the (long-run) variances [see Zhang
and Cheng (2018)]. Assumption 3.4 controls the long-run correlations between
different components. The fact that the correlations ρi,j are sufficiently small for
a large distance |i−j| is crucial to obtain the desired extreme value convergence.
Both parts, (SD1) and (SD2), are in line with those proposed for the retrospec-
tive change point method of Jirak (2015b). We point out, that the results of this
paper remain correct in the case, where condition (SD1) in Assumption 3.4 is
only satisfied after an appropriate permutation of the spatial components. This
feature reflects the fact, that the proposed maximum aggregation is invariant
with respect to the order of the components.

3.1. Monitoring using asymptotic quantiles

In this section, we develop the asymptotic theory to define a quantile in the
monitoring scheme (2.7). Our first result provides the basis for the proof of the
main Theorem 3.6 of this section. It is stated here because of its independent
interest. It shows that the distribution of the maximum of dependent copies of
the random variable M in (2.6) is in the domain of attraction of the Gumbel
distribution if the dependence structure is sufficiently weak.

Theorem 3.5 Let (W1, . . . ,Wd)
� be a d-dimensional Brownian motion with

correlation matrix Σd = (ρ
(d)
i,j )1≤i,j≤d whose entries satisfy sup1≤i<j≤d |ρ

(d)
i,j | ≤

ρ+ ∈ [0, 1). Assume that there exists a sequence Ld, such that ρ
(d)
i,j = 0 if |i−j| >
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Ld and

Ld = o(dΔ) for some Δ <

⎛⎝1− ρ+

√
2− ρ2+

1− ρ2+

⎞⎠2

as d → ∞ . (3.5)

Further, denote for q ∈ (0, 1] and h = 1, . . . , d by Mh = max0≤t≤q Wh(t) −
min0≤t≤q Wh(t) the range of the Brownian motion Wh in the interval [0, q].
Then we obtain for d → ∞

ad

(
d

max
h=1

Mh − bd

)
D
=⇒ G ,

where G denotes a standard Gumbel distributed random variable with cdf FG(x)=
exp(− exp(−x)). The scaling sequences ad, bd are given by

ad =

√
2 log d

q
and bd =

√
2q log d−

√
q (log log d− log 16

π )

2
√
2 log d

. (3.6)

In the proof of Theorem 3.6 below, we will use a Gaussian approximation
which leads to the maximum of the ranges Mh such that Theorem 3.5 can
be applied. As indicated by (2.8), the limit distribution of the statistic T̂m,d

defined in (2.7) has to be derived for the case m, d → ∞ in order to determine
an appropriate asymptotic critical value. For this purpose, recall the definition
of Êm,h(k) in (2.3) and define by

Tm,d :=
d

max
h=1

Tm
max
k=1

w(k/m)
σ̂h

σh
Êm,h(k)

=
d

max
h=1

Tm
max
k=1

w(k/m)
k−1
max
j=0

k − j√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣

a version of the statistic T̂m,d, where all component-wise long-run variance esti-
mators σ̂h have been replaced by the (unknown) true long-run variances σh.

In the remainder of this paper, we will work with the sequences ad, bd defined
in (3.6) with q := q(T ) = T/(T+1). The following theorem yields the asymptotic
distribution of Tm,d as m, d → ∞.

Theorem 3.6 Suppose that the null hypothesis H0 defined in (2.2) holds. Under
the Assumptions 3.1- 3.4 it follows that

ad
(
Tm,d − bd

) D
=⇒ G , as m, d → ∞ ,

where G denotes a standard Gumbel random variable.

Note that due to the choice of ad, bd the limit distribution does not depend
on the monitoring parameter T , which controls the length of the monitoring
period, while the statistic T̂m,d does depend on T .

Given Theorem 3.6 our final task is to identify suitable long-run variance
estimators to obtain the asymptotic distribution of T̂m,d. We will identify a
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general condition on the estimators in Assumption 3.7, which guarantees that
all true long-run variances {σ2

h}h=1,...,d in the statistic Tm,d can be replaced by
their corresponding estimators. Explicit estimators satisfying this assumption
are constructed in Remark 3.8.

Assumption 3.7 Suppose that there exists a long-run variance estimator σ̂h =
σ̂h(m) based only on the stable initial set, such that P

(
maxdh=1 |σ̂h − σh| ≥

m−δσ
)
≤ c′σm

−C′
σ , where c′σ is a sufficiently large constant and C ′

σ > 0, δσ > 0
are sufficiently small constants.

Remark 3.8. In the field of sequential change point detection it is common to
use only the initial stable data for the estimation of the long-run variance as this
ensures that the estimate cannot be corrupted by a change [see for instance Aue
et al. (2012), Wied and Galeano (2013) or Fremdt (2014) among many others]. It
follows from Jirak (2015b) that Assumption 3.7 holds for the standard long-run
variance estimators

σ̂2
h,strd = φ̂0,h + 2

Hm∑
t=1

φ̂t,h , h = 1, . . . , d , (3.7)

where φ̂t,h denotes the lag t auto-covariance estimator in component h, that is

φ̂t,h :=
1

m− t

m∑
i=t+1

(
Xi,h − μ̂m

1 (h)
)(
Xi−t,h − μ̂m

1 (h)
)
. (3.8)

The bandwidth parameter Hm in (3.7) is bounded by mη for some η = η(p,D)
that fulfills constraints with respect to the constants D and p from Assump-
tions 3.1 and 3.3 [see Assumption 2.2 in Jirak (2015b)].

Corollary 3.9 If the null hypothesis H0 defined in (2.2) holds and the Assump-
tions 3.1- 3.4 and 3.7 are satisfied, it follows that

ad
(
T̂m,d − bd

) D
=⇒ G , as m, d → ∞ .

where G denotes a standard Gumbel random variable. In particular, T̂m,d/
√
log d

converges in probability to
√

2q(T ).

If g1−α denotes the (1−α) quantile of the standard Gumbel distribution, we
obtain from Corollary 3.9 that the sequential procedure defined by (2.7) with
cd,α := g1−α/ad + bd has asymptotic size α, i.e.

lim
m,d→∞

PH0

(
T̂m,d >

g1−α

ad
+ bd

)
= α . (3.9)

The next theorem yields consistency of this monitoring scheme under the alter-
native hypothesis of a change in the mean vector.
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Theorem 3.10 Under the alternative hypothesis H1 defined in (2.2), assume
that there is a component h∗ and a time point k∗ = k∗(m) such that√

m

logm
·
∣∣μm+k∗−1,h∗ − μm+k∗,h∗

∣∣ → ∞ and lim sup
m→∞

k∗

m
< T . (3.10)

If Assumptions 3.1- 3.4 and 3.7 are satisfied, it follows that

lim
m,d→∞

PH1

(
T̂m,d >

g1−α

ad
+ bd

)
= 1 .

Condition (3.10) shows that the test is able to detect alternatives which
converge to the null hypothesis at the rate of m−1/2 up to a factor cm

√
logm

with a sequence (cm)m∈N tending to ∞ at an arbitrary slow rate. This factor is
needed to address for the high dimensional setting. In view of Assumption 3.1,
the factor

√
m/ logm may be replaced with

√
m/ log d in (3.10), since they of

the same order. Note also the time m + k∗ of the change is not permitted to
be close to the end m +mT , which reflects the necessity to have a reasonably
large sample after the change point such that the corresponding means can be
estimated with sufficient precision.

Remark 3.11. In this paper, we used the maximum statistic for the aggregation
of the different components, which has been used before for other problems [see,
for example, Tartakovsky et al. (2006)]. Alternative statistics for aggregation
could be used as well and there are numerous possibilities to choose from. The
choice of the statistic depends on the type of alternative, which one is interested
in. For example, robust schemes as proposed by Mei (2010) are based on the
sum of (weighted) local statistics. In the present context, such a statistic reads
as

d∑
h=1

Tm
max
k=1

w(k/m)Êm,h(k) ,

which we suspect to be asymptotic Gaussian under appropriate standardiza-
tion. It has been argued (mainly by simulations) that maximum-type statistics
are more effective than sums when potential changes occur in only a few data
streams [see Mei (2010); Xie and Siegmund (2013); Zou et al. (2015)]. On the
other hand, when the change occurs in a moderate or large number of compo-
nents, sum-type statistics outperform the maximum. We also refer to the work
Fan et al. (2015) and Kock and Preinerstorfer (2019) for techniques to boost
the power of testing high-dimensional parameters.

An improvement could also be obtained using the spatial information to
construct a detector from the individual components. In the context of offline
change point detection such a strategy was proposed by Wang and Samworth
(2018) for the case of independent Gaussian data (in time and space), where
sample splitting is used to estimate “optimal directions”. They also indicate how
the methodology can be extended to either temporally or spatially independent
Gaussian data. In principle, such a strategy could be used in online monitoring of
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(non-Gaussian) time and stationary dependent data with a stable initial sample.
Alternatively, one could partition the estimate of the covariance matrix from the
first step into blocks of highly correlated elements, aggregate the components
corresponding to each block by a sum and finally calculate the maximum of
sums corresponding to the different blocks. As indicated by the discussion in
Wang and Samworth (2018) a theoretical analysis of such a two stage procedure
in the general case considered in this paper is very difficult (maybe intractable).
Moreover, independently of the theoretical aspects, some care is necessary, if
such strategies are used in applications. In particular, it requires estimates of
the covariance structure with sufficient precision. If the estimates from the first
step have a too large variability adapted aggregation schemes may perform worse
than non-adapted. To our knowledge, this phenomenon has not been discussed
in the context of aggregation of statistics from individual components of high
dimensional time series but it is well known in other circumstances such as
adaptive designs – see, for example, Dette et al. (2013). For high dimensional
time series it is difficult to obtain estimates of the (long-run) covariances with
sufficient precision such that it can be used in a two-step procedure. Therefore
we do not recommend the use of an adaptive aggregation in this context.

3.2. Bootstrap quantiles

Equation (3.9) and Theorem 3.10 show that the new sequential testing proce-
dure (2.7) with cd,α = g1−α/ad + bd has asymptotic level α and is consistent.
However, the approach so far is based on an approximation of the distribution
of the statistic by a Gumbel distribution featuring the well-known disadvan-
tage that the convergence rates in such limiting results are rather slow. As a
consequence for small sample sizes, these quantiles may yield slightly imprecise
approximations in practical applications. To tackle this problem, we will propose
a bootstrap procedure. Note that the development of resampling procedures in
the sequential regime is a difficult problem. On the one hand, critical values can
be computed only from the initial stable sample, but this set can be too small
to obtain reliable values. On the other hand, one can compute new critical val-
ues with each new data point, which is computationally expensive and can be
corrupted by an undetected structural break. Therefore, both approaches have
natural advantages and disadvantages. For i.i.d. data Kirch (2008) proposes a
bootstrap procedure for sequential detection of a structural break in the mean
of an one-dimensional sequence by a combination of both methods following
ideas of Steland (2006). Nevertheless, the construction of bootstrap methodol-
ogy for sequential change point detection in the high dimensional regime remains
challenging.

To be precise, note that by Lemma A.2 and A.3 used in the proof of Theo-
rem 3.6 in the online supplement we obtain the approximation

P

(
ad

(
Tm,d − bd

)
≤ x

)
− P

(
ad

(
T (Z)
m,d − bd

)
≤ x

)
= o(1) . (3.11)
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Here the statistic T (Z)
m,d is the counterpart of Tm,d computed from standard

Gaussian random variables Zt,h, which are independent in time and have spa-
tial dependence structure Cov

(
Z0,h, Z0,i

)
= ρh,i, where ρh,i are the long-run

correlations defined in (3.4). In view of the approximation (3.11), it is therefore
reasonable to obtain the quantiles for the statistic Tm,d from those of the statistic

T (Z)
m,d , which can easily be simulated if the correlations ρh,i were known. These

parameters can be straightforwardly estimated from the initial stable data set
X1, . . . ,Xm.

Compared to a bootstrap procedure continuously performed during monitor-
ing, this idea exhibits two important advantages. Firstly, it ensures that the
correlation estimates cannot be corrupted by a mean change, that may occur
during the monitoring period. Secondly, it requires less computational effort,
as the quantile is only computed once before monitoring is commenced. This is
of vital importance in a high dimensional setup, where the method on its own
is already quite expensive and resampling and/or repeated estimations during
monitoring may quickly exceed the computational resources.

Before discussing the technical details of this resampling procedure, we state
a necessary assumption regarding the precision of the estimates of the long-run
covariances.

Assumption 3.12 Suppose that there exists a long-run covariance estimator
γ̂h,i = γ̂h,i(m) based on the stable initial data set X1, . . . ,Xm, such that
P
(
maxdh,i=1

∣∣γ̂h,i − γh,i
∣∣ ≥ m−δγ

)
≤ cγm

−Cγ , where cγ is a sufficiently large
constant and Cγ > 0, δγ > 0 are sufficiently small constants.

Remark 3.13. A canonical choice for a long-run covariance estimator that
satisfies Assumption 3.12, is the standard estimator

γ̂h,i,strd = φ̂0,h,i +

Hm∑
t=1

φ̂t,h,i +

Hm∑
t=1

φ̂t,i,h ,

where Hm is an appropriate bandwidth and the involved cross-components co-
variance estimators are given by φ̂t,h,i := (m − t)−1

∑m
j=t+1

(
Xj,h − μ̂m

1 (h)
)(

Xj−t,i− μ̂m
1 (i)

)
. Note that these definitions are natural extensions of the long-

run variance and auto-covariance estimators in (3.7) and (3.8), respectively.
Therefore one can use similar arguments as given in Jirak (2015b) (for the veri-
fication of Assumption 3.7) to prove the consistency stated in Assumption 3.12.

In the following, denote by X = σ(X1, . . . ,Xm) the σ-algebra generated by
the initial sample and let P|X ,Cov|X denote the conditional probability and
covariance with respect to X . To define the bootstrap statistic, let{

Ẑt =
(
Ẑt,1, . . . , Ẑt,d

)�}
t=1,...,m+Tm

(3.12)

denote centered random vectors, that are – conditionally on X – independent
and Gaussian distributed with covariance structure

Cov|X

(
Ẑt,h, Ẑt,i

)
= ρ̂h,i , (3.13)
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where ρ̂h,i are correlation estimators canonically defined by ρ̂h,i = γ̂h,i/(σ̂hσ̂i)
for h �= i and

ρ̂h,h = 1. Note that by the definition in (3.13) the random vectors preserve
the (estimated) spatial correlation structure of the time series. Next, denote the

component-wise mean estimators for subsamples of {Ẑt,h}m+Tm
t=1 by ẑji (h) :=

(j − i+ 1)−1
∑j

t=i Ẑt,h and the final bootstrap statistic by

T̂ (Z)
m,d :=

Tm
max
k=1

d
max
h=1

k−1
max
j=0

w(k/m)(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ . (3.14)

Once the correlation estimates ρ̂h,i are computed, the conditional distribution

of T̂ (Z)
m,d can be approximated by Monte-Carlo simulations with arbitrary preci-

sion, generating replicates of {Ẑt,h}h=1,...d
t=1,...,m+mT . Thus, provided with a batch of

realizations of the statistic T̂ (Z)
m,d , one can compute the corresponding empirical

quantile for the desired test level and launch the sequential procedure with this
bootstrap quantile instead of the (possibly less precise) Gumbel quantile. The
following result yields the validity of our proposed bootstrap procedure.

Theorem 3.14 (Bootstrap consistency) Under the Assumptions 3.1–3.4 and
3.12 we have

sup
x∈R

∣∣∣∣P|X

(
ad

(
T̂ (Z)
m,d − bd

)
≤ x

)
− PH0

(
ad

(
T̂m,d − bd

)
≤ x

)∣∣∣∣ = oP(1) ,

where PH0 denotes the probability under the null hypothesis of no change in any
component.

Combining Theorem 3.14 with Corollary 3.9 and Theorem 3.10, it follows that
the use of the quantiles of the bootstrap distribution in (2.7) yields a consistent
monitoring scheme, which keeps its pre-specified nominal level.

Remark 3.15. Note that the bootstrap procedure uses correlation estimates
from the stable sample, but does not use these estimates for the aggregation of
the componentwise detectors in the monitoring scheme.

We conclude this section by presenting a detailed algorithm to monitor for
non-simultaneous change points in the mean vector of a high dimensional time
series at test level α. For this purpose, we denote the set of all components
without a change in the mean by

Sd :=
{
h ∈ {1, . . . , d}

∣∣ μ1,h = μ2,h = · · · = μm+Tm,h

}
.

For the complement set Sc
d = {1, . . . , d} \ Sd let k∗h ∈ {1, . . . ,mT} denote the

time of change in the component h ∈ Sc
d within the monitoring period, that is

μ1,h = · · · = μm,h = · · · = μm+k∗
h−1,h �= μm+k∗

h,h
= · · · = μm+Tm,h .

Note that, in this model, there is still at most one change point per component,
however we allow the change times to be different among components. For what
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follows, recall the construction of the bootstrap statistic from Section 3.2. The
algorithm below is capable of identifying the sets Sd and Sc

d, see Theorem 3.17
below.

Algorithm 3.16.

Step 1: Either choose the quantile q1−α using the approximation by the Gum-
bel distribution, that is q1−α = g1−α, where g1−α is the (1−α)-quantile
of the Gumbel distribution or, alternatively, obtain the quantile from
the bootstrap as follows:

Step 1.1: Compute the long-run correlation estimates
(
ρ̂i,j

)d
i,j=1

from

the initial set X1, . . . ,Xm.

Step 1.2: Based on these estimates, generate N independent real-
izations of the Gaussian vectors (Ẑt,1, . . . , Ẑt,d)

� with co-

variance structure
(
ρ̂i,j

)d
i,j=1

for t = 1, . . . ,m + Tm and

compute the corresponding bootstrap statistics

ad
(
T̂ (Z)
m,d (1)− bd

)
, ad

(
T̂ (Z)
m,d (2)− bd

)
, . . . , ad

(
T̂ (Z)
m,d (N)− bd

)
defined in (3.14).

Step 1.3: Compute q1−α as the empirical (1−α)-quantile of the sam-
ple {

ad

(
T̂ (Z)
m,d (n)− bd

)}
n=1,...,N

.

Step 2: Initialize Ŝd,α := {1, . . . , d} and set k = 1.

Monitoring: While k ≤ Tm compute the statistics Êm,h(k). If the
inequality

max
h∈Ŝd,α

w(k/m)Êm,h(k) >
q1−α

ad
+ bd

holds, reject the null hypothesis in favor of the alternative. Eliminate
the components that led to the rejection, i.e.

Ŝd,α ←− Ŝd,α \
{
h ∈ Ŝd,α

∣∣ w(k/m)Êm,h(k) >
q1−α

ad
+ bd

}
and continue monitoring for k ←− k+1 with the remaining components
in Ŝd,α.

Step 3: If there was no rejection during monitoring, decide for the null hypoth-
esis of no change in the mean vector. In case of rejections, decide for
the alternative of a change in at least one component. Then, it holds
that

Ŝd,α =
{
h ∈ {1, . . . , d}

∣∣∣ Tm
max
k=1

w(k/m)Êm,h(k) ≤
q1−α

ad
+ bd

}
(3.15)

and the components remaining in this set are assumed as mean stable.
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The following theorem states, that Algorithm 3.16 is able to separate the sets
Sd and Sc

d correctly.

Theorem 3.17 Let Assumptions 3.1-3.4 and 3.12 be satisfied and assume that
Algorithm 3.16 was launched either with the Gumbel or with the bootstrap quan-
tile. The set Ŝd,α defined in (3.15) satisfies

lim sup
m,d→∞

P

(
Sd ⊂ Ŝd,α

)
≥ 1− α . (3.16)

If further√
m

logm
min
h∈Sc

d

|μm+k∗
h−1,h − μm+k∗

h,h
| → ∞ and lim sup

m,d→∞
max
h∈Sc

d

k∗h
m

< T,

(3.17)

then

lim
m,d→∞

P

(
Sd ⊃ Ŝd,α

)
= 1 . (3.18)

By Theorem 3.17, the set Ŝd,α contains all the components without a change
in the mean with high probability. It may also contain components in which the
change in the mean is so small that it cannot be reliably detected. However, if
we assume that that all changes in the mean are large enough and not too close
to the monitoring end [see (3.17)], then Ŝd,α = Sd with high probability. That
is, one detects all components exhibiting a change point without causing a false
alarm.

4. Finite sample properties

In this section, we investigate the finite sample properties of the new monitoring
schemes by means of a simulation study and illustrate potential applications in
a data example.

4.1. Simulation study

In our simulation study we consider the following models:

(M1) Xt,h = θt,h , (M2) Xt,h = 0.1Xt−1,h + εt,h ,
(M3) Xt,h = ηt,h + 0.3ηt−1,h − 0.1ηt−2,h , (M4) Xt,h = ε̃t,h ,

where {θt,h}t∈N,h∈N is an array of i.i.d. random variables that follow a χ2
10/

√
20-

distribution, {εt,h}t∈N,h∈N is an array of i.i.d. standard Gaussian random vari-
ables, {ηt,h}t∈N,h∈N is an array of i.i.d. Laplace(0,1) distributed random variables
and {ε̃t,h}t∈N,h∈N are random variables, such that the d-dimensional vectors{
ε̃t = (ε̃t,1, . . . , ε̃t,d)

�}
t∈Z

are i.i.d., centered Gaussian random vectors with co-

variance structure Cov(ε̃1,j , ε̃1,i) = 1/(|j−i|+1). For the alternative hypothesis,
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we also consider the models (M1)-(M4) and add a shift in the mean, at some
point m+ k∗, that is

X
(δ,A)
t,h =

{
Xt,h if t < m+ k∗ ,

Xt,h + δ · I{h ∈ A} if t ≥ m+ k∗ ,
(4.1)

where I denotes the indicator function, A is the set of spatial components af-
fected by the change and δ is the size of the change. In order to examine the
influence of both parameters on the procedure, we will consider different values
of δ and three different choices of the set A below.

For the long-run variance estimation, we use the quadratic spectral kernel
estimator [see Andrews (1991)] in each component, that is

σ̂2
h :=

∑
|t|≤m−1

k
( t

Hm

)
φ̂t,h , (4.2)

with the empirical auto-covariances φ̂t,h := m−1
∑m

i=t+1

(
Xi,h−μ̂m

1 (h)
)(
Xi−t,h−

μ̂m
1 (h)

)
and underlying kernel

k(x) :=
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

In particular, we employ the implementation of the estimator (4.2) provided by
the R-package ‘sandwich’ [see Zeileis (2004)] and select the bandwidth param-
eter as Hm = log10(m). Note that we only use the stable set X1, . . . ,Xm for
the estimation of the long-run variance, which avoids corruption from observa-
tions after the potential change point under the alternative [see the discussion
in Remark 3.8]. All results presented in this section are based on 1000 simula-
tion runs and for the AR(1)-process (M2) we employ a burn-in sample of 200
observations. The test level is always fixed at α = 0.05.

In Table 1 and 2, we illustrate the finite sample properties of the detection
scheme (2.7) under the null hypothesis for different choices of the sample size
m, the dimension d and the length of the monitoring period determined by T .
The results in Table 1 are based on the weak convergence in Corollary 3.9 and
therefore we use the critical value cd,α = g1−α/ad + bd in (2.7), where g1−α is
the quantile of the Gumbel distribution.

The results in Table 2 are obtained by the bootstrap procedure as described
in Step 2 of Algorithm 3.16 in the online supplement. We note that the use
of (any) sequential monitoring scheme in a simulation study is computationally
demanding, in particular for a high dimensional setup. In our case, we have to es-
timate the spatial correlation structure in each simulation run and then simulate

the quantile of the distribution of the statistic T̂ (Z)
m,d defined in (3.14). Of course,

this is no problem in data analysis as in this case the monitoring procedure
has only to be conducted once, but it requires large computational resources
in a simulation, where the same procedure is repeated 1000 times. Therefore,
in order to reduce the computational complexity of the bootstrap approach in
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Table 1

Approximation of the nominal level by the detector defined in (2.7) for different choices of
initial sample size m, dimension d and monitoring duration m · T . Critical values are

obtained from Corollary 3.9 (approximation by Gumbel distribution). The nominal level is
α = 0.05.

m=100 m=200 m=500
T model d=100 d=200 d=200 d=500 d=200 d=500

1

(M1) 10.4% 13.7% 6.7% 10.2% 4.5% 6.1%
(M2) 7.4% 11.3% 8.0% 9.4% 4.1% 4.9%
(M3) 5.8% 7.6% 4.2% 7.4% 3.6% 3.2%
(M4) 4.2% 7.3% 4.1% 5.6% 2.8% 3.8%

2

(M1) 9.9% 12.9% 7.7% 10.5% 3.8% 6.6%
(M2) 9.0% 11.2% 7.5% 9.2% 5.0% 4.4%
(M3) 5.7% 7.4% 4.6% 5.1% 2.3% 2.8%
(M4) 4.7% 7.3% 5.2% 7.0% 3.0% 3.7%

4

(M1) 10.9% 16.6% 8.9% 11.1% 5.0% 5.5%
(M2) 9.1% 12.6% 7.7% 9.5% 3.8% 5.4%
(M3) 6.0% 8.4% 4.6% 5.6% 2.4% 2.9%
(M4) 6.3% 7.2% 5.2% 5.8% 2.7% 5.5%

Table 2

Approximation of the nominal level using the detector defined in (2.7) for different choices
of initial sample size m and dimension d. Critical values are computed by the bootstrap with

spatial independence. The nominal level is α = 0.05.

m=100 m=200 m=500
T model d=100 d=200 d=200 d=500 d=200 d=500

1

(M1) 9.7% 13.1% 7.3% 8.5% 9.8% 8.4%
(M2) 6.9% 11.1% 8.1% 7.0% 8.1% 6.8%
(M3) 5.2% 7.5% 4.2% 5.6% 6.4% 4.7%
(M4) 4.0% 7.0% 4.1% 4.9% 6.4% 5.5%

the simulation study, we do not estimate the spatial correlation structure for
the bootstrap but employ temporal and spatial independent Gaussian random
variables to generate the bootstrap statistics defined in (3.14). With this adap-
tion, the quantiles are fixed within each column of Table 2, which makes the
simulation study practicable. Moreover, it can easily be seen from the theory
developed in Section 3 that the use of these quantiles also yields a consistent test
in (2.7). Here we point to Lemma A.1 in Appendix A in the online supplement.

In Table 1, we observe a reasonable approximation of the nominal level by the
asymptotic test in many cases, which becomes more accurate with larger initial
sample size m and dimension d. For instance, consider the model (M2) for the
choice T = 2, where we have obtained a type I error of 9.0% form = d = 100 and
7.5% for m = d = 200. This finally reduces to an appropriate approximation of
4.4% for the choice m = d = 500. As common for high dimensional procedures,
the relation of sample size m and dimension d has a severe impact on the
performance of the monitoring procedure. For example, an empirical type I
error of 4.2% was measured for model (M4) with m = d = 100 and T = 1,
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which increases to 7.3% if the dimension is set to d = 200. This effect becomes
weaker, when the sample size is generally increased.

In Table 2, we display the type I error for the method where the quantiles
are calculated by the bootstrap as described above. For the sake of brevity, we
focus on the case T = 1, as the results obtained for different choices of T in
Table 1 are similar. We observe a very reasonable approximation of the desired
test level and – compared to the results in Table 1 – some improvement by
the bootstrap procedure for small sample sizes. In particular, application of the
bootstrap is recommended in cases where m and d are relatively small, where
the approximation of the nominal level using the quantiles from the Gumbel
distribution is rather imprecise, while the extra computational costs for the
bootstrap are still tolerable.

To analyze the performance of the sequential procedure under the alternative
hypothesis we consider the model (4.1), where the processes Xt,h are defined by
(M1)-(M4). We distinguish between the following three scenarios:

(A1) The change occurs only in one component. This corresponds to the choice
A = {1}.

(A2) The change occurs in 50% of the components, i.e. A = {1, . . . , d/2}.
(A3) The change occurs in all components, i.e. A = {1, . . . , d}.

For the sake of brevity and readability, we focus on the case T = 1 under the
alternative and only consider change positions in the middle of the monitor-
ing period, i.e. we fix k∗ = m/2. In Figures 1 and 2, we display the rejection
probabilities of the detection rule (2.7) for these scenarios, different values of
the change, different sample sizes and dimensions. The critical values in (2.7)
are given by cd,α = q/ad + bd, where q is the quantile obtained by the spatial
independent bootstrap, which appears more accurate than the quantiles derived
from the Gumbel distribution.

The results can be summarized as follows. In all considered scenarios the
new monitoring procedure (2.7) for a change in the high dimensional mean
vector has reasonable power under the alternative, and in all cases the type
II error approaches zero for an increasing size δ of the change. As expected,
the power is lower under alternative (A1), where the change occurs in only one
coordinate. To give an example, consider model (M1) and (M2) corresponding
to the left columns in Figures 1 and 2. The results for the different alternatives
(A1), (A2) and (A3) can be found in the first, second and third rows of the
figures, respectively. If the sample size and dimension are given by m = 100
and d = 100 we observe from Figure 1 that for δ = 0.7 the power for model
(M1) and (M2) under alternative (A1) is approximately given by 0.25, while
it is close to one under alternative (A2). Interestingly, the differences between
alternatives (A2) and (A3) are not so strong, but they are still clearly visible.
For instance, a comparison between the left parts of the second and third row
of Figure 2 shows that the power of the detection scheme (2.7) in model (M1)
for δ = 0.3 is approximately 0.88 for alternative (A2) and 0.99 for alternative
(A3).
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Fig 1. Simulated power of the monitoring scheme (2.7) for different size δ of the change,
sample size m = 100 and dimension d = 100. Left panels: Solid line (M1), dashed line (M2).
Right panels: Solid line (M3), dashed line (M4). The nominal level is α = 0.05.

The differences between the four data generating models are in general not
substantial with one exception. In model (M3) under alternative (A1) the power
of the detection scheme (2.7) is considerably smaller [see the first rows in Figure 1
and Figure 2].

We summarize the discussion of the finite sample properties emphasizing
that our numerical results have supported the theoretical findings developed in
Section 3 in all cases under consideration.

4.2. Data example

In this section, we illustrate potential applications of the new monitoring scheme
in a data example. For this purpose, we consider a data set sampled in hydrol-
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Fig 2. Simulated power of the monitoring scheme (2.7) for different size δ of the change,
sample size m = 200 and dimension d = 200. Left panels: Solid line (M1), dashed line (M2)
Right panels: Solid line (M3), dashed line (M4). The nominal level is α = 0.05.

ogy, which consists of the average daily flows measured in m3/sec of the river
Chemnitz at Göritzhain in Saxony, Germany, for the years 1909-2013.

This data has been previously analyzed in the (retrospective) change point
literature by Sharipov et al. (2016), who developed methodology for detect-
ing change points in functional data. The data set consists of a sample of
n = 105 observations with dimension d = 365, such that each vector Xt =
(Xt,1, . . . , Xt,365)

� contains the daily average flows of one (German) hydrolog-
ical year, which lasts from 1st of November to 31st of October. For instance,
the data point X1,1 represents the daily average flow of the 1st of November
1909, while X105,365 is the same key figure for the 31st of October 2014. By
this transformation, Sharipov et al. (2016) located a change in the annual flow
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Table 3

Structural breaks detected in the river flow data for a test level of α = 0.05 (left column)
and α = 0.01 (right column). The column ‘year’ specifies the (hydrological) year after which
the rejection occurred. For instance 1945 means that the data from the hyrodological year

01st of November 1945 to 31st of October 1946 was already under consideration.

α = 0.05 α = 0.01
component year component year component year component year

101 1945 54, 209 1995 101 1945 280 2009
252, 253 1953 264 1996 252, 253 1953 54, 215 2012
249, 251 1954 285, 286, 287 2001 249 1957 209 2013

247 1957 92 2002 105 1960
105 1960 99,192 2003 189 1977

189, 191 1977 138 2004 191 1979
104 1979 280, 283 2009 100 1980

100, 190 1980 44 2010 104 1986
102 1986 55, 214, 215, 216 2012 53 1995

53, 57 1993 199 2013 285, 286, 287 2001

curves in the year 1964. Dette and Gösmann (2018) propose a retrospective test
for relevant changes in a high dimensional time series. They consider the same
data and locate 4 different mean changes that exceed a test threshold of 0.63
and are traced back to the dates 10th of July 1950, 18th of March 1956, 23rd of
December 1965, 7th of February 1979, which correspond to spatial components
252, 137, 53, 99, respectively.

Based on these prior analyses, we consider the first 35 observations as our
initial stable data set and will use the remaining 70 observations as the moni-
toring period corresponding to a choice of m = 35 and T = 2. From the initial
set X1, . . . ,X35 the spatial correlation structure is estimated via the implemen-
tation of the estimator based on the quadratic spectral kernel provided in the
R-package ‘sandwich’ [see Zeileis (2004)]. By the bootstrap in Algorithm 3.16
the quantiles are obtained as q0.99 = 7.43 and q0.95 = 4.93, for which we conduct
our monitoring method. During the monitoring period, we proceed as precisely
described in Algorithm 3.16: If the detection scheme rejects the null hypothesis
of no change at a certain time point, we report the corresponding component(s)
as unstable and remove it/them from the sample. Afterwards, we continue mon-
itoring with the remaining components until there is another rejection or the
end of the monitoring period is attained.

The results of this procedure are displayed in Table 3 for the test levels
α = 0.01 and α = 0.05 and can be summarized as follows. For a test level of 0.05
more unstable components (33) are identified than for 0.01 (17 components).
Naturally, all breaks identified by the lower test level, are also detected by the
other one, while the time of detection is sometimes earlier in the latter case. As
the data exhibits (positive) spatial correlation, breaks partially occur in clusters,
for example consider components 285, 286 and 287, for which both test levels
detect changes or components 214, 215 and 216, for which changes are found at
test level 0.05. Apparently, these clusters have to be considered as one change
affecting several components, for instance a flood event or a new seasonal effect.

It is worth mentioning, that our findings match three out of four unstable
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Fig 3. Average daily flows for the dates 23rd of December (spatial component 53, upper row),
7th of February (spatial component 99, middle row) and 10th of July (spatial component 252,
lower row). Vertical dashed lines indicate the time points at which a break was detected by
the sequential method with a test level of 5%.

components identified by the threshold procedure of Dette and Gösmann (2018).
Namely, we refer to components 53, 99, 252, which are likewise identified to
contain a break by our sequential analysis. To illustrate the data set, we finally
display the average daily flow over the years for these three components in
Figure 3. The plots indicate that the break in component 252 (10th of July)
is most probably caused by a huge outlier in the hydrological year starting in
November 1953, which leads to an immediate rejection. This observation can
be easily linked to a flood event in Saxony in summer of 1954 [see for instance
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Schröter et al. (2013)]. For the components 53 (23rd of December) and 99 (7th
of February), a visual inspection of the plots indicates actual structural changes.

Appendix A: Proofs of main results

Let us first introduce some necessary notation, which will be frequently used
throughout this section. The symbol � denotes an inequality up to a constant,
which does not depend on size m of the training sample and the dimension d.
For two sequences en and fn, we write en ∼ fn, whenever fn/en → 1 as n → ∞.

Let q ∈ (0, 1]. By FM we denote the distribution function of the range of
a (standard) Brownian motion, that is M = maxt∈[0,q] W (t) − mint∈[0,q] W (t),
which can be found in Borodin and Salminen (1996), page 146, and is given by

FM(x) =

⎧⎨⎩1 + 4
∞∑
k=1

(−1)kkErfc
( kx√

2q

)
if x > 0 ,

0 otherwise ,

where Erfc = 1 − Erf denotes the complementary error function. Using the
elementary property Erf(x) = 2Φ(x

√
2)− 1 we obtain

FM(x) = 1 + 8

∞∑
k=1

(−1)kkΦ
(
− kx

√
q

)
for x > 0 , (A.1)

where throughout this paper Φ denotes the cumulative distribution function of
a standard normal distribution.

A.1. Some preliminary results

We will begin with an auxiliary result. In Lemma A.1 we investigate the weak
convergence of the maximum of independent identically distributed random vari-
ables with the same distribution as the random variable M defined in (2.6).

Lemma A.1 Let q ∈ (0, 1] and M ′
1,M

′
2, . . . be independent identically dis-

tributed random variables with

M ′
1

D
= max

0≤t≤q
W (t)− min

0≤t≤q
W (t) ,

where W denotes a standard Brownian motion. Then, as d → ∞, it holds that

ad

(
d

max
h=1

M ′
h − bd

)
D
=⇒ G ,

where G is a standard Gumbel distributed random variable and ad and bd are
given by

ad =

√
2 log d

q
and bd =

√
2q log d−

√
q (log log d− log 16

π )

2
√
2 log d

.
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Proof of Lemma A.1. The desired extreme value convergence will be derived
from the distribution function of M ′

1, which is given by FM in (A.1). Observe,
that FM is twice differentiable with derivatives (for x > 0)

F ′
M
(x) =

4
√
2

√
πq

∞∑
k=1

(−1)k+1k2 exp
(
− k2x2

2q

)
,

F ′′
M
(x) =

4
√
2

√
πqq

∞∑
k=1

(−1)kk4x exp
(
− k2x2

2q

)
,

where we used that the series converge uniformly on all intervals [ε,∞) for ε > 0
and therefore term by term differentiation is allowed. Thus, by Theorem 1.1.8
from de Haan and Ferreira (2006) the distribution function FM is in the domain
of attraction of the Gumbel distribution if

lim
x→∞

(1− FM(x))F
′′
M
(x)

(F ′
M
(x))2

= −1 . (A.2)

Next, we prove (A.2). To this end, note that by the definition of the compli-
mentary error function, we obtain for x > 0

x
(
1− FM(x)

)
exp

(x2

2q

)
= 4

∞∑
k=1

(−1)k+1kxErfc
( kx√

2q

)
exp

(x2

2q

)
= A1(x) +A2(x) ,

(A.3)

where the two summands on the right-hand side are given by

A1(x) =
8√
π

∫ ∞

x√
2q

exp(−τ2)dτ · x exp
(x2

2q

)
,

A2(x) =
8√
π

∞∑
k=2

(−1)k+1kx

∫ ∞

kx√
2q

exp(−τ2)dτ · exp
(x2

2q

)
.

We will treat the two summands of the last display separately. For the first
summand we obtain that

lim
x→∞

A1(x) =
8√
π

lim
x→∞

∫∞
x√
2q

exp(−τ2)dτ

x−1 exp
(−x2

2q

)

=
8√
π

lim
x→∞

−1√
2q

exp
(−x2

2q

)
−x−2 exp

(−x2

2q

)
− 1

q exp
(−x2

2q

) = 4

√
2q√
π

by L’Hôspital’s rule. For the second summand of the last display in (A.3) note
that∣∣∣√π

8
A2(x)

∣∣∣ ≤ ∞∑
k=2

kx

∫ ∞

kx√
2q

exp(−τ2)dτ · exp
(x2

2q

)
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≤
√
2q

∞∑
k=2

∫ ∞

kx√
2q

τ exp(−τ2)dτ · exp
(x2

2q

)
=

√
q

2
exp

(−x2

2q

) ∞∑
k=2

exp
(
− (k2 − 2)x2

2q

)
(x≥1)

≤
√

q

2
exp

(
−x2

2q

) ∞∑
k=2

exp

(
− k2 − 2

2q

)
= o(1) as x → ∞ .

Combining the last statements with the decomposition in (A.3) yields

lim
x→∞

x
(
1− FM(x)

)
exp

(x2

2q

)
= 4

√
2q√
π

. (A.4)

For the denominator of (A.2) note that

lim
x→∞

F ′
M
(x) exp

(x2

2q

)
=

4
√
2

√
πq

+ lim
x→∞

4
√
2

√
πq

∞∑
k=2

(−1)k+1k2 exp
(
− (k2 − 1)x2

2q

)
=

4
√
2

√
πq

,

(A.5)

where we used that for x ≥ 1

∞∑
k=2

k2 exp
(
− (k2 − 1)x2

2q

)
≤ exp

(−x2

2q

) ∞∑
k=2

k2 exp
(
− (k2 − 2)

2q

)
= o(1),

as x → ∞. Using similar arguments we obtain

lim
x→∞

x−1F ′′
M
(x) exp

(x2

2q

)
=
−4

√
2

√
πqq

+ lim
x→∞

4
√
2

√
πqq

∞∑
k=2

(−1)kk4 exp
(
− x2(k2 − 1)

2q

)
=

−4
√
2

√
πqq

.

(A.6)

Combining (A.4), (A.5) and (A.6), it follows that

lim
x→∞

(1− FM(x))F
′′
M
(x)

(F ′
M
(x))2

=

lim
x→∞

x(1− FM(x)) exp
(x2

2q

)
lim
x→∞

F ′′
M
(x)

x
exp

(x2

2q

)
lim
x→∞

(
F ′
M
(x) exp

(x2

2q

))2
= −1,

which completes the proof of (A.2). By definition of the maximum domain of
attraction, (A.2) is equivalent to the existence of sequences ad > 0, bd such that

ad

(
d

max
h=1

M ′
h − bd

)
D
=⇒ G as d → ∞ .
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Our next goal is to find an explicit formula for these sequences, for which we
will employ Proposition 3.3.28 in Embrechts et al. (1997). Therefore consider
the distribution function

H(x) := 1− 4

√
2q√
π
x−1 exp

(
− x2/(2q

)
, x > x0 .

Note that we can rewrite equation (A.4) as

lim
x→∞

(1− FM(x))
(
4

√
2q√
π
x−1 exp

(
− x2/(2q

))−1

= 1

and thereby obtain the tail-equivalence

lim
x→∞

1− FM(x)

1−H(x)
= 1 .

Thus, by Proposition 3.3.28 in Embrechts et al. (1997) we have to find sequences
ad, bd such that limd→∞ Hd(a−1

d x + bd) = FG(x) for all x ∈ R. Since H has
Weibull-like tails, a possible choice of the norming sequences is given in Table
3.4.4 in Embrechts et al. (1997):

bd =
√
2q log d+

1

2
√
2q log d

(
− q log

(
2q log d

)
+ 2q log

√
32q

π

)
a−1
d = q(2q log d)−1/2 .

After simplification we get the desired result

ad =

√
2 log d

q
and bd =

√
2q log d−

√
q (log log d− log 16

π )

2
√
2 log d

,

which finishes the proof of Lemma A.1.

A.2. Proof of Theorem 3.5

Let q ∈ (0, 1] and recall the definition of Mh in Theorem 3.5. By Theorem 1 from
Arratia et al. (1989) in the form as presented in Lemma A.4 in Jiang (2004) we
obtain for any x ∈ R the inequality∣∣∣∣P(

d
max
h=1

Mh ≤ ud(x)

)
− exp(−λ)

∣∣∣∣ ≤ (
1 ∧ λ−1)(Λ1 + Λ2 + Λ3

)
, (A.7)
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with λ =
∑d

h=1 P
(
Mh > ud(x)

)
and

Λ1 =

d∑
i=1

∑
1≤j≤d

|i−j|≤Ld

P
(
Mi > ud(x)

)
P
(
Mj > ud(x)

)
,

Λ2 =

d∑
i=1

∑
1≤j≤d

j 
=i, |i−j|≤Ld

P
(
Mi > ud(x),Mj > ud(x)

)
,

Λ3 =
d∑

i=1

E

∣∣∣P(Mi > ud(x) |σ
(
Mj : |i− j| > Ld

))
− P(Mi > ud(x)

)∣∣∣ ,

where ud(x) = x/ad + bd and σ
(
Mj : |i − j| > Ld

)
denotes the σ-algebra

generated by the set
{
Mj : |i − j| > Ld

}
. In the remainder of the proof we fix

x ∈ R and due to ad, bd → ∞ we can assume that d is sufficiently large such that

ud(x) > 0. Further let M ′
1,M

′
2, . . . be i.i.d. random variables with M ′

1
D
= M1.

With Lemma A.1 we have

lim
d→∞

P

(
d

max
h=1

M ′
h ≤ ud(x)

)
= lim

d→∞

(
P
(
M1 ≤ ud(x)

))d

= exp
(
− exp(−x)

)
. (A.8)

As bd → ∞ and limx→0
x

log(1−x) = −1, (A.8) yields

λ =

d∑
h=1

P
(
Mh > ud(x)

)
= dP

(
M1 > ud(x)

)
=− d log

(
1− P

(
M1 > ud(x)

)) (
1 + o(1)

)
=−

(
log

(
P(M1 ≤ ud(x))

d
)) (

1 + o(1)
)
→ exp(−x) as d → ∞ .

(A.9)

To treat Λ1, note that (A.9) yields for d → ∞

1− FM(ud(x)) ∼
exp(−x)

d
. (A.10)

Since Ld = o(d) by assumption, we obtain

Λ1 = 2dLd

(
1− FM(ud(x))

)2 ∼ 2
Ld

d
exp(−2x) = o(1) . (A.11)

To derive the asymptotic properties of Λ2, observe the bound

Λ2 ≤ 2dLd max
1≤i<j≤d

ρi,j=0, |i−j|≤Ld,

P
(
Mi > ud(x),Mj > ud(x)

)
+ 2dLd max

1≤i<j≤d
ρi,j 
=0, |i−j|≤Ld,

P
(
Mi > ud(x),Mj > ud(x)

)
,

(A.12)
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where throughout this proof we write ρi,j instead of ρ
(d)
i,j for simplicity. Note,

that in case of ρi,j = 0 it holds by (A.10), as d → ∞ ,

P
(
Mi > ud(x),Mj > ud(x)

)
=

(
P
(
M1 > ud(x))

)2 ∼
(
exp(−x)

d

)2

,

which implies that the first summand on the right-hand side in (A.12) vanishes.
To treat the other one, we follow the idea in Lemma B.11 from Jirak (2015a)
and use that a comparison of the covariance structures of the two Gaussian
processes yields{(

Wi(t),Wj(t)
)}

t≥0

D
=

{(
Wi(t),

√
1− ρ2i,jW

′
j(t) + ρi,jWi(t)

)}
t≥0

,

where W ′
j is a standard Wiener process that is independent ofWi. Consequently,

it also holds that

(Mi,Mj)
D
=

(
Mi, sup

0≤t≤q
sup

0≤s≤t

∣∣∣√1−ρ2i,j
(
W ′

j(t)−W ′
j(s)

)
+ ρi,j

(
Wi(t)−Wi(s)

)∣∣∣)
and by the triangle inequality

sup
0≤t≤q

sup
0≤s≤t

∣∣∣√1− ρ2i,j
(
W ′

j(t)−W ′
j(s)

)
+ ρi,j

(
Wi(t)−Wi(s)

)∣∣∣
≤

√
1− ρ2i,j sup

0≤t≤q
sup

0≤s≤t

∣∣W ′
j(t)−W ′

j(s)
∣∣+ |ρi,j | sup

0≤t≤q
sup

0≤s≤t
|Wi(t)−Wi(s)|

D
=

√
1− ρ2i,jM

′
j + |ρi,j |Mi ,

where M ′
j has the same distribution as Mj but is independent of Mi. Now, we

obtain for δ ∈ (0, 1) and ε = δ
(

1
|ρi,j | − 1

)
,

P
(
Mi > ud(x),Mj > ud(x)

)
≤ P

(
Mi > ud(x),

√
1−ρ2i,jM

′
j + |ρi,j |Mi > ud(x)

)
=

∫ ∞

ud(x)

P

⎛⎝M ′
j ≥

ud(x)− y|ρi,j |√
1− ρ2i,j

⎞⎠PMi(dy)

≤
∫ ud(x)

(
1

|ρi,j |
−ε

)
ud(x)

P

⎛⎝M ′
j ≥

ud(x)− y|ρi,j |√
1− ρ2i,j

⎞⎠PMi(dy)

+ P

(
Mi > ud(x)

(
1

|ρi,j | − ε
))

=: P
(1)
ij + P

(2)
ij .

First, we bound P
(2)
ij . To this end, recall from (A.4) that

P(M1 > x) ∼ Kx−1 exp(−x2/(2q)) , x → ∞ , (A.13)
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where K = 4
√
2q√
π
. By |ρi,j | ≤ ρ+ < 1 we obtain

P
(2)
ij = P

(
Mi > ud(x)

(
1

|ρi,j | (1− δ) + δ
))

≤ P

(
Mi > ud(x)

(
1
ρ+

(1− δ) + δ
))

∼ K
1

ud(x)
(

1
ρ+

(1− δ) + δ
) exp

(
− ud(x)

2

2q

(
1
ρ+

(1− δ) + δ
)2)

≤ 1

2
exp

(
− ud(x)

2

2q

(
ρ−1
+ (1− δ) + δ

)2)
,

(A.14)

where the last inequality holds for sufficiently large d depending on ρ+ since

ud(x) → ∞. As regards P
(1)
ij , we have

P
(1)
ij ≤ P

(
M1 > ud(x)

)
P

(
M1 > ud(x)

ε|ρi,j |√
1−ρ2

i,j

)
= P

(
M1 > ud(x)

)
P

(
M1 > ud(x)δ

1−|ρi,j |√
1−ρ2

i,j

)
≤ P

(
M1 > ud(x)

)
P

(
M1 > ud(x)δ

1−ρ+√
1−ρ2

+

)
,

where we used that the map x �→ (1 − x)/
√
1− x2 is decreasing on [0, 1). Em-

ploying again (A.13), we conclude for sufficiently large d

P
(
M1 > ud(x)

)
P

(
M1 > ud(x)δ

1−ρ+√
1−ρ2

+

)
∼ K2

√
1− ρ2+

ud(x)2δ(1− ρ+)
exp

(
−ud(x)

2

2q

(
1 + δ2(1−ρ+)2

1−ρ2
+

))
≤ 1

2
exp

(
−ud(x)

2

2q

(
1 + δ2(1− ρ+)

2
))

.

(A.15)

Combining (A.14) and (A.15) we get

P
(
Mi > ud(x),Mj > ud(x)

)
≤ exp

(
− ud(x)

2

2q
min(f(δ), g(δ))

)
,

where the functions f, g are defined by f(δ) =
(
ρ−1
+ (1 − δ) + δ

)2
and g(δ) =

1 + δ2(1 − ρ+)
2. Next, we will optimize this bound in δ ∈ (0, 1). Observe that

f(0) > g(0) and f(1) < g(1). Since f is decreasing on [0, 1] while g is increasing
on [0, 1], we deduce by continuity of f and g that there exists a unique δ� ∈ (0, 1)
such that f(δ�) = g(δ�). Solving this equation, we find that

δ� =
1−

√
2ρ2+ − ρ4+

1− ρ+ − ρ2+ + ρ3+
and g(δ�) = 1 +

(
1−

√
2ρ2+ − ρ4+

)2

(1− ρ2+)
2

.

Thus, it follows that

2dLd max
1≤i<j≤d

ρi,j 
=0 ,|i−j|≤Ld

P
(
Mi > ud(x),Mj > ud(x)

)
≤ 2dLd exp

(
− ud(x)

2

2q
g(δ�)

)
.
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Using the definition of ud(x) we deduce for any Δ < g(δ�)− 1,

dLd exp
(
− ud(x)

2

2q
g(δ�)

)
≤ dLd exp

(
− (Δ + 1) log d

)
= d−ΔLd,

provided d is sufficiently large. By the assumption in (3.5) there exists a Δ ∈
(0, g(δ�) − 1) such that d−ΔLd → 0 as d → ∞, which together with (A.12)
establishes Λ2 → 0.

Due to ρi,j = 0 for |i − j| > Ld we obtain that the Gaussian processes
Wi and Wj are already independent whenever |i − j| > Ld [see for instance
Billingsley (1999)] and therefore we have that Λ3 = 0. The assertion now follows
by combining this fact with (A.7), (A.9), (A.11) and Λ2 → 0.

A.3. Proof of Theorem 3.6

Throughout this proof, we will work with the sequences ad, bd defined in (3.6)
with q = T/(T +1) = q(T ). Recall that the detector (2.7) is based on differences
of component-wise mean estimators

μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)

and we may without loss of generality assume E[Xt,h] = 0 throughout the proof.
First, we introduce some necessary notations. Analogously to Theorem 3.5 let(
W1, . . . ,Wd

)�
denote a d-dimensional Brownian motion on the interval [0, q(T )]

with correlations:

Corr
(
Wh(t),Wi(t)

)
= ρ̃h,i := ρh,i · I{|h− i| ≤ Ld} , (A.16)

where ρh,i denotes the long-run correlation defined in (3.4) and Ld := dΔ → ∞
is a sequence, where

Δ <

⎛⎝1− ρ+

√
2− ρ2+

1− ρ2+

⎞⎠2

and ρ+ is the constant from Assumption 3.4. Note that ρ̃h,i depends on d only
through the indicator I{|h− i| ≤ Ld}. Denote again by

Mh := max
t∈[0,q(T )]

Wh(t)− min
t∈[0,q(T )]

Wh(t) = max
t∈[0,q(T )]

max
s∈[0,t]

∣∣Wh(s)−Wh(t)
∣∣

the range of Wh. For 0 < c < T define additionally the truncated version

Mh(c) = max
t∈[q(c),q(T )]

max
s∈[0, q(q−1(t)−c)]

∣∣Wh(s)−Wh(t)
∣∣ , (A.17)

where q(x) = x/(x+1), q−1(x) = x/(1− x) and consider the overall maxima of
these quantities,

Wd =
d

max
h=1

Mh and Wd(c) =
d

max
h=1

Mh(c) . (A.18)
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Recall the definition of the Gaussian statistic T̂ (Z)
m,d in (3.14) based on the random

variables {Ẑt,h}h=1,...,d
t=1,...,m+mT defined in (3.12). We introduce two additional sets

of independent, centered Gaussian random vectors{
Zt=

(
Zt,1, . . . , Zt,d

)�}
t=1,...,m+mT

and
{
Z̃t=

(
Zt,1, . . . , Zt,d

)�}
t=1,...,m+mT

with spatial covariance structures

Cov
(
Zt,h, Zt,i

)
= ρh,i and Cov

(
Z̃t,h, Z̃t,i

)
= ρ̃h,i , (A.19)

where ρh,i and ρ̃h,i are the long-run correlations and truncated long-run corre-
lations defined in (3.4) and (A.16), respectively.

Next, we define analogues of the statistic T̂ (Z)
m,d in (3.14) by

T (Z)
m,d :=

d
max
h=1

Tm
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣zm+k
m+j+1(h)− zm+j

1 (h)
∣∣∣ ,

T̃ (Z)
m,d :=

d
max
h=1

Tm
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣z̃m+k
m+j+1(h)− z̃m+j

1 (h)
∣∣∣ , (A.20)

where

zji (h) :=
1

j − i+ 1

j∑
t=i

Zt,h and z̃ji (h) :=
1

j − i+ 1

j∑
t=i

Z̃t,h . (A.21)

For a constant 0 < c < T , such that cm ∈ N, we will now consider truncated

versions of the statistics Tm,d, T (Z)
m,d , T̂

(Z)
m,d and T̃ (Z)

m,d defined by

Tm,d(c) :=
d

max
h=1

Tm
max

k=cm+1

k−cm−1
max
j=0

(k − j)w(k/m)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣ ,

T (Z)
m,d (c) :=

d
max
h=1

Tm
max

k=cm+1

k−cm−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣zm+k
m+j+1(h)− zm+j

1 (h)
∣∣∣ ,

T̂ (Z)
m,d (c) :=

d
max
h=1

Tm
max

k=cm+1

k−cm−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ,

T̃ (Z)
m,d (c) :=

d
max
h=1

Tm
max

k=cm+1

k−cm−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣z̃m+k
m+j+1(h)− z̃m+j

1 (h)
∣∣∣ .
(A.22)

Finally, recall the definition

ud(x) = x/ad + bd , x ∈ R , (A.23)

with the sequences ad and bd given by (3.6) with the adaptation q = q(T ).

The proof of Theorem 3.6 is now split into the following five Lemmas. If these
are proven, then the claim is a consequence of Theorem 3.5.
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Lemma A.2 (Truncation) For any sufficiently small constant t0 > 0 and for
fixed x ∈ R we have∣∣∣∣P(Tm,d ≤ ud(x)

)
− P

(
Tm,d(t0) ≤ ud(x)

)∣∣∣∣ = o(1) as m, d → ∞ .

Lemma A.3 (Gaussian approximation) For t0 > 0 it holds that

sup
x∈R

∣∣∣∣P(Tm,d(t0) ≤ x
)
− P

(
T (Z)
m,d (t0) ≤ x

)∣∣∣∣ = o(1) as m, d → ∞ .

Lemma A.4 (Relaxation of correlation structure) For t0 > 0 it holds that

sup
x∈R

∣∣∣∣P(T̃ (Z)
m,d (t0) ≤ x

)
− P

(
T (Z)
m,d (t0) ≤ x

)∣∣∣∣ = o(1) as m, d → ∞ .

Lemma A.5 (Discretization of limit process) For t0 > 0 and fixed x ∈ R it
holds that∣∣∣∣P(T̃ (Z)

m,d (t0) ≤ ud(x)
)
− P

(
Wd(t0) ≤ ud(x)

)∣∣∣∣ = o(1) as m, d → ∞ .

Lemma A.6 (Removing truncation) For fixed x ∈ R and any sufficiently small
constant t0 > 0 it holds that∣∣∣∣P(Wd(t0) ≤ ud(x)

)
− P

(
Wd ≤ ud(x)

)∣∣∣∣ = o(1) as m, d → ∞ .

Proof of Lemma A.2. First, note that

Tm,d =
d

max
h=1

Tm
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣

= max

{
Tm,d(t0) ,

d
max
h=1

Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)w(k/m)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣,

d
max
h=1

t0m
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣} .

Hence, we obtain∣∣∣P(Tm,d(t0) ≤ ud(x)
)
− P

(
Tm,d ≤ ud(x)

)∣∣∣ ≤ P1(x) + P2(x) , (A.24)

where

P1(x) = P

(
d

max
h=1

Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣ ≥ ud(x)

)
,

P2(x) = P

(
d

max
h=1

t0m
max
k=1

k−1
max
j=0

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣ ≥ ud(x)

)
.
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and we additionally used that w(k/m) ≤ 1. We will treat the summands on the
right-hand side of the last display separately. For the term P1(x) note that

P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣ ≥ ud(x)

)
≤ P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)

∣∣∣ ≥ ud(x)

2

)
+ P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+j
1 (h)

∣∣∣ ≥ ud(x)

2

)
.

(A.25)

Using stationarity and Assumption 3.3 (TD2), we have

P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)

∣∣∣ ≥ ud(x)

2

)
≤

Tm∑
k=t0m+1

P

⎛⎝ k−1
max

j=k−t0m

∣∣∣ m+k∑
i=m+j+1

Xi,h

∣∣∣ ≥ √
mcσud(x)

2

⎞⎠ .

Observing (3.6) and Lemma B.1, we obtain the following bound for the last
display, which holds uniformly for 1 ≤ h ≤ d

Cp
Tt0m

2−p/2

cpσud(x)p
+ CpTm exp

(
−cp

c2σud(x)
2

4t0

)
� m2−p/2

(log(d))p/2
+md−C̃p/t0 ,

where C̃p > 0 is a sufficiently small constant. The second summand on the
right-hand side of (A.25) can be estimated similarly, that is

P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
mσh

∣∣∣μ̂m+j
1 (h)

∣∣∣ ≥ ud(x)

2

)
≤ P

(
Tm+m
max
j=1

∣∣∣ j∑
i=1

Xi,h

∣∣∣ ≥ cσ
√
m

t0

ud(x)

2

)

� Cp
tp0(T + 1)m1−p/2

cpσud(x)p
+ Cp exp

(
−cp

c2σud(x)
2

4t20(T + 1)

)
� m1−p/2

(log(d))p/2
+ d−C̃p/t

2
0 ,

where C̃p > 0 is again a sufficiently small constant. Hence, we obtain by As-
sumption 3.1, (A.25) (observing p > 2D + 4) that

P1(x) � dm2−p/2

(log(d))p/2
+md1−

C̃p
t0

� mD+2−p/2

(log(d))p/2
+m1+(1−C̃p/t0)/CD = o(1)

(A.26)

if t0 > 0 is chosen sufficiently small. Analogously, we obtain for the second
summand on the right-hand side of (A.24) with a possibly smaller constant
t0 > 0, that

P2(x) = o(1) , (A.27)
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where we have used the following two inequalities which are a consequence of
Lemma B.1

P

(
t0m
max
k=1

k−1
max
j=0

(k − j)√
mσh

∣∣∣μ̂m+k
m+j+1(h)

∣∣∣ ≥ ud(x)

2

)

≤
t0m∑
k=1

P

⎛⎝ k−1
max
j=0

∣∣∣ m+k∑
i=m+j+1

Xi,h

∣∣∣ ≥ √
mcσ

ud(x)

2

⎞⎠
≤

t0m∑
k=1

P

⎛⎝t0m−1
max
j=0

∣∣∣ m+t0m∑
i=m+j+1

Xi,h

∣∣∣ ≥ √
mcσ

ud(x)

2

⎞⎠
� Cp

t20m
2−p/2

cpσ(log(d))p/2
+ Cpt0m exp

(
−cp

c2σud(x)
2

4t0

)
� m2−p/2

(log(d))p/2
+md−C̃p/t0

and

P

(
t0m
max
k=1

k−1
max
j=0

(k − j)√
mσh

∣∣∣μ̂m+j
1 (h)

∣∣∣ ≥ ud(x)

2

)
≤ P

(
t0m+m
max
j=1

∣∣∣ j∑
i=1

Xi,h

∣∣∣ ≥ √
mcσ
t0

ud(x)

4

)

� Cp
(t0 + 1)tp0m

1−p/2

cpσ(log(d))p/2
+ Cp exp

(
−cp

c2σud(x)
2

4(t0 + 1)t20(T + 1)

)
� m1−p/2

(log(d))p/2
+ d

− C̃p

(t0+1)t20 .

Combining (A.26) and (A.27) the assertion of Lemma A.2 now follows from
(A.24).

Proof of Lemma A.3. We will use a Gaussian Approximation provided in Corol-
lary 2.2 of Zhang and Cheng (2018). For this purpose we introduce the notation

vm,k,j,h :=
(k − j)w(k/m)

σh
√
m

(
μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
)
,

with k = t0m+1, . . . , Tm; j = 0 . . . , k− t0m− 1 and h = 1, . . . , d. We stack all
these quantities together in one vector

V+ := (vm,t0m+1,0,1, vm,t0m+2,0,1, vm,t0m+2,1,1, . . . ,

vm,Tm,Tm−t0m−1,1, vm,t0m+1,0,2, . . . , vm,Tm,Tm−t0m−1,d)
�.

Next define the vector

V = (V1, V2, . . . , VdV
)� :=

(
V �
+ ,−V �

+

)�
and denote its dimension by dV . Observe that by construction the identity

dV
max
i=1

Vi = Tm,d(t0) =
d

max
h=1

Tm
max

k=mt0+1

k−mt0−1
max
j=0

(k − j)w(k/m)

σh

√
m

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣
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holds, where we use the fact that V contains both, the positive and negative
version of all random variables which appear in the maximum in the definition
of the statistic Tm,d(t0). Further note that the dimension of V is bounded by

dV ≤ 2d(Tm)2. (A.28)

By the construction above each component Vi corresponds either to vm,k,j,h or
to −vm,k,j,h for some combination k, j, h. Hence, it can be represented by

Vi =
1√
m

m(T+1)∑
t=1

X∗
t,i

with

X∗
t,i =

⎧⎪⎪⎨⎪⎪⎩
at,m,k,j

σh
Xt,h for 1 ≤ i ≤ dV /2 ,

−at,m,k,j

σh
Xt,h for dV /2 + 1 ≤ i ≤ dV ,

(A.29)

where the indices k, j, h correspond to i according to the construction of the
vector V and the coefficients at,m,k,j are given by

at,m,k,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t > m+ k ,

a
(1)
m,k := w(k/m) if m+ j < t ≤ m+ k ,

a
(2)
m,k,j := − (k − j)w(k/m)

(m+ j)
if t ≤ m+ j .

(A.30)

Using the fact w(k/m) = 1/(1 + k/m) and 1 ≤ k ≤ mT , we obtain

1

T + 1
≤ w(k/m) = a

(1)
m,k ≤ 1 (A.31)

and as t0m ≤ k − j and j ≤ k ≤ Tm it follows that

t0
(T + 1)2

≤ |a(2)m,k,j | =
∣∣∣∣ (k − j)w(k/m)

m+ j

∣∣∣∣ ≤ T , (A.32)

which yields by definition of at,m,k,j in (A.30) the upper bound

|at,m,k,j | ≤ T+ := max{T, 1} . (A.33)

Moreover, the temporal dependence structure of the dV -dimensional time series{
(X∗

t,1, . . . , X
∗
1,dV

)�
}
t∈Z

still satisfies the concept of physical dependence as

X∗
t,i = g∗t,i(εt, εt−1, . . .)
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with

g∗m,t,i(εt, εt−1, . . .) :=

⎧⎪⎪⎨⎪⎪⎩
at,m,k,j

σh
gh(εt, εt−1, . . .) for 1 ≤ i ≤ dV /2 ,

−at,m,k,j

σh
gh(εt, εt−1, . . .) for dV /2 + 1 ≤ i ≤ dV ,

(A.34)

where the indices k, j, h correspond to i according to the construction of the
vector V .

In the following let (V̇
(z)
1 , . . . , V̇

(z)
dV

)� denote a centered Gaussian distributed
vector with the same covariance structure as V . Next, recall the definition of
the Gaussian random variables {Zt,h}h=1,...,d

t=1,...,m+mT in (A.19) and let

Z∗
t,i =

⎧⎪⎨⎪⎩
at,m,k,jZt,h for 1 ≤ i ≤ dV /2 ,

−at,m,k,jZt,h for dV /2 + 1 ≤ i ≤ dV .

Further define the vector V (z) = (V
(z)
1 , . . . , V

(z)
dV

)� by

V
(z)
i :=

1√
m

m(T+1)∑
t=1

Z∗
t,i i = 1, . . . , dV .

We now proceed as follows:

Step 1: Show that for some (sufficiently small) constant C̃1 > 0

sup
x∈R

∣∣∣P( dV
max
i=1

V̇
(z)
i ≤ x

)
− P

(
dV
max
i=1

V
(z)
i ≤ x

)∣∣∣ � m−C̃1 .

Step 2: Establish that for some (sufficiently small) constant C̃2 > 0

sup
x∈R

∣∣∣P( dV
max
i=1

Vi ≤ x
)
− P

(
dV
max
i=1

V̇
(z)
i ≤ x

)∣∣∣ � m−C̃2 . (A.35)

If both steps have been proven, the claim of Lemma A.3 follows from the identity

dV
max
i=1

V
(z)
i = T (Z)

m,d (t0) .

Proof of Step 1: As we aim to compare the maxima of the two Gaussian
distributed vectors V (z) and V̇ (z) we will apply Lemma B.3. Therefore, we
analyze the covariance structures of V (z) and V̇ (z) [or equivalently V ]. Let
i1, i2 ∈ {1, . . . , dV /2} with corresponding indices h1, j1, k1 and h2, j2, k2 accord-
ing to equation (A.29). For the calculation we assume without loss of generality
that j1 ≤ j2 and use the notation kmin = min{k1, k2}, kmax = max{k1, k2}
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and j2 ∧ k1 = min{j2, k1}. Further we use the convention
∑k

i=j βi = 0, when-

ever k < j. For the covariance of the components of the vector V (z) note that
temporal independence yields

Cov
(
V

(z)
i1

, V
(z)
i2

)
=

1

m

m+kmin∑
t=1

Cov
(
at,m,k1,j1Zt,h1 , at,m,k2,j2Zt,h2

)

=
1

m

m+j1∑
t=1

Cov
(
at,m,k1,j1Zt,h1 , at,m,k2,j2Zt,h2

)

+
1

m

m+(j2∧k1)∑
t=m+j1+1

Cov
(
at,m,k1,j1Zt,h1 , at,m,k2,j2Zt,h2

)

+
1

m

m+kmin∑
t=m+(j2∧k1)+1

Cov
(
at,m,k1,j1Zt,h1 , at,m,k2,j2Zt,h2

)
.

Using the definition in (A.30) and (A.19), we obtain

Cov
(
V

(z)
i1

, V
(z)
i2

)
=

a
(2)
m,k1,j1

a
(2)
m,k2,j2

mσh1σh2

(m+ j1)γh1,h2

+
a
(1)
m,k1

a
(2)
m,k2,j2

mσh1σh2

(
(j2 ∧ k1)− j1

)
γh1,h2

+
a
(1)
m,k1

a
(1)
m,k2

mσh1σh2

(kmin − j2)γh1,h2 I{j2 < kmin} .

(A.36)

Similar calculations also yield

Var
(
V

(z)
i1

)
= Cov

(
V

(z)
i1

, V
(z)
i1

)
=

(
a
(2)
m,k1,j1

)2 (m+ j1)

m
+

(
a
(1)
m,k1

)2 k1 − j1
m

and from (A.31) and (A.32) it follows that

t20
(T + 1)4

+
t0

(T + 1)2
≤ Var

(
V

(z)
i1

)
≤ T 3 + T . (A.37)

By the same arguments we obtain for the covariance structure of the components
of the vector V̇ (z) [note that we cannot use temporal independence here]:

Cov
(
V̇

(z)
i1

, V̇
(z)
i2

)
= Cov

(
1√
m

m+k1∑
t=1

X∗
t,i1 ,

1√
m

m+k2∑
t=1

X∗
t,i2

)

=

4∑
�=1

Cov
(
S
(1)
� , S

(2)
�

)
+

4∑
�,j=1
�
=j

Cov
(
S
(1)
� , S

(2)
j

)
,

(A.38)
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where the terms in the last line are defined for u = 1, 2 by

S
(u)
1 =

1√
m

m+j1∑
t=1

X∗
t,iu , S

(u)
2 =

1√
m

m+(j2∧k1)∑
t=m+j1+1

X∗
t,iu ,

S
(u)
3 =

1√
m

m+kmin∑
t=m+(j2∧k1)+1

X∗
t,iu , S

(u)
4 =

1√
m

m+kmax∑
t=m+kmin+1

X∗
t,iu .

We will now treat the two sums on the right-hand side of (A.38) separately and

show that the first sum is close to Cov
(
V

(z)
i1

, V
(z)
i2

)
, while the second vanishes

sufficiently fast. Using that by construction, either S
(1)
4 = 0 or S

(2)
4 = 0, we

obtain that

4∑
�=1

Cov
(
S
(1)
� , S

(2)
�

)
=

a
(2)
m,k1,j1

a
(2)
m,k2,j2

mσh1σh2

m+j1∑
t=1

m+j1∑
s=1

Cov
(
Xt,h1 , Xs,h2

)

+
a
(1)
m,k2

a
(2)
m,k2,j2

mσh1σh2

m+(j2∧k1)∑
t=m+j1+1

m+(j2∧k1)∑
s=m+j1+1

Cov
(
Xt,h1 , Xs,h2

)

+
a
(1)
m,k1

a
(1)
m,k2

mσh1σh2

m+kmin∑
t=m+(j2∧k1)+1

m+kmin∑
s=m+(j2∧k1)+1

Cov
(
Xt,h1 , Xs,h2

)

=
a
(2)
m,k1,j1

a
(2)
m,k2,j2

mσh1σh2

m+j1∑
t=−m−j1

(
m+ j1 − |t|

)
φt,h1,h2

+
a
(1)
m,k2

a
(2)
m,k2,j2

mσh1σh2

(j2∧k1)−j1∑
t=−(j2∧k1)+j1

(
(j2 ∧ k1)− j1 − |t|

)
φt,h1,h2

+
a
(1)
m,k1

a
(1)
m,k2

mσh1σh2

I
{
kmin > j2 ∧ k1

} kmin−(j2∧k1)∑
t=−kmin+(j2∧k1)

(
kmin − (j2 ∧ k1)− |t|

)
φt,h1,h2 ,

where we used the notation φt,h1,h2 := Cov(X0,h1 , Xt,h2). Combining the bounds
in (A.31) and (A.32) with (A.36) and Assumption 3.3 (TD2), we deduce that∣∣∣∣Cov (V (z)

i1
, V

(z)
i2

)
−

4∑
�=1

Cov
(
S
(1)
� , S

(2)
�

)∣∣∣∣ ≤ CT,t0

c2σm

[∑
t∈Z

min{|t|,m+ j1}|φt,h1,h2 |

+
∑
t∈Z

min{|t|, (j2 ∧ k1)− j1}|φt,h1,h2 |+
∑
t∈Z

min{|t|, kmin − (j2 ∧ k1)}|φt,h1,h2 |
]

≤ 3CT,t0

c2σm

∑
t∈Z

|t||φt,h1,h2 | ,

where the constant CT,t0 depends on T and t0 only and we used the definition of
γh1,h2 in (3.3). Using Assumption 3.3 (TD1) and Lemma E4 from Jirak (2015b)
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it follows that

sup
h1,h2∈N

∑
t∈Z

|t||φt,h1,h2 | < ∞ , (A.39)

which yields ∣∣∣∣Cov (V (z)
i1

, V
(z)
i2

)
−

4∑
�=1

Cov
(
S
(1)
� , S

(2)
�

)∣∣∣∣ � 1

m
, (A.40)

where the involved constant is independent of i1 and i2 [or equivalently of
j1, j2, k1, k2, h1 and h2]. Next, we treat the second sum on the right-hand of
(A.38). For that purpose, note that for arbitrary points in time p1 < p2 < p3 <
p4, it holds that∣∣∣∣Cov ( p2∑

t=p1

Xt,h1 ,

p4∑
s=p3

Xs,h2

)∣∣∣∣ ≤ p2∑
t=1

p4∑
s=p2+1

∣∣∣Cov (Xt,h1 , Xs,h2

)∣∣∣
=

p2∑
t=1

p4∑
s=p2+1

|φs−t,h1,h2 | =
p2∑
t=1

p4−t∑
s=p2−t+1

|φs,h1,h2 |

≤
p2∑
t=1

p4∑
s=p2−t+1

|φs,h1,h2 | =
p4∑
s=1

p2∑
t=p2−s+1

|φs,h1,h2 | =
p4∑
s=1

s|φs,h1,h2 | .

(A.41)

Using the upper bound for the coefficients at,m,k,j in (A.33), the uniform bound
in (A.39) and that all the pairs of the sums under consideration are non-
overlapping as treated above in (A.41), we obtain directly that

4∑
�,j=1
i 
=j

Cov
(
S
(1)
� , S

(2)
j

)
� 1

m
, (A.42)

where the constant is again independent of i1, i2. Combining the estimates (A.40)
and (A.42), we conclude

Δm :=
dV
max

i1,i2=1

∣∣∣∣Cov (V (z)
i1

, V
(z)
i2

)
− Cov

(
V̇

(z)
i1

, V̇
(z)
i2

)∣∣∣∣ � 1

m
. (A.43)

Due to (A.37) we can now apply Lemma B.3, which gives

sup
x∈R

∣∣∣P( dV
max
i=1

V
(z)
i ≤ x

)
−P

(
dV
max
i=1

V̇
(z)
i ≤ x

)∣∣∣ � Δ1/3
m max

{
1, log

(
dV /Δm

)}2/3

� max
{
Δ1/2

m , Δ1/2
m

∣∣ log dV ∣∣+Δ1/2
m

∣∣ logΔm

∣∣}2/3

.

Using (A.28) and Assumption 3.1 the assertion of Step 1 follows.
Proof of Step 2: Corollary 2.2 of Zhang and Cheng (2018) yields the Gaussian
approximation in (A.35) if the following three conditions hold uniformly in t
and i (or equivalently in t, k, j, h).
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(i) There exist a constant b ∈ [0, 1/11) and a deterministic sequence B∗
m �

m(3−17b)/8 such that

dV � exp((Tm)b) and E

[
exp

(
|X∗

t,i|/B∗
m

)]
≤ Ce ,

where Ce > 1 is the constant from Assumption 3.2 (S1).
(ii) With β as in Assumption 3.3 (TD1) it holds

∞∑
�=u

sup
t∈Z

∥∥g∗t,i(εt, εt−1, . . .)−g∗t,i(εt, εt−1, . . . , εt−�+1, ε
′
t−�, εt−�−1, . . .)

∥∥
p

� βu,

where ε′t−l is an independent copy of εt−�.

(iii) There exist positive constants c1, c2 such that c1 ≤ Var
(
Vi

)
≤ c2.

Therefore the proof of Lemma A.3 is completed by establishing these conditions.
Proof of (i): By (A.28) and Assumption 3.1 (D1) the inequality dV � exp((Tm)b)
holds for any b > 0. Due to Assumption 3.2 and the upper bound on |at,m,k,j |
in (A.33) we obtain that

|X∗
t,i|

D
=

|at,m,k,j |
σh

|X1,h| ≤
T+

cσ
|X1,h|.

Defining B∗
m :=

T+

cσ
Bm � mB, where Bm is the sequence from Assumption 3.2

and B < 3/8, it follows that

E

[
exp

(
|X∗

t,i|/B∗
m

)]
= E

[
exp

(
|at,m,k,j ||Xt,h|/(σhB

∗
m)

)]
≤ E

[
exp

(
|X1,h|/Bm

)]
≤ Ce .

As dV � exp((Tm)b) holds for any b > 0, we can choose b to be sufficiently
small such that B < (3− 17b)/8 < 3/8.
Proof of (ii): In view of (A.34), (A.33), Assumption 3.3 (TD1) and the station-
arity of {εt}t∈Z we obtain

∞∑
�=u

sup
t∈Z

∥∥g∗m,t,i(εt, εt−1, . . .)− g∗m,t,i(εt, εt−1, . . . , εt−�+1, ε
′
t−�, εt−�−1, . . .)

∥∥
p

=

∞∑
�=u

sup
t∈Z

|at,m,k,j |
σh

∥∥gh(ε�, ε�−1, . . .)− gh(ε�, ε�−1, . . . , ε1, ε
′
0, ε−1, . . .)

∥∥
p

≤ T+

cσ

∞∑
�=u

ϑ�,h,p ≤ T+Cϑ

cσ

∞∑
�=u

β� � βu .

Proof of (iii): The assertion follows by combining (A.37) and (A.43).

Proof of Lemma A.4. From the proof of Lemma A.3, recall the definition of the

Gaussian vector V (z) =
(
V

(z)
1 , . . . , V

(z)
dV

)�
, which fulfills the identity

T (Z)
m,d (t0) =

dV
max
i=1

V
(z)
i .
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Applying again the vectorization technique as introduced in the proof of Lemma

A.3, we can define analogously a Gaussian vector for the statistic T̃ (Z)
m,d in (A.22).

Recall the definition of z̃ji in (A.21) and introduce the notation

ṽm,k,j,h :=
(k − j)w(k/m)√

m

(
z̃m+k
m+j+1(h)− z̃m+j

1 (h)
)
, (A.44)

with k = t0m+1, . . . , Tm and j = 0 . . . , k− t0m− 1 and h = 1, . . . , d. We stack
all these quantities together in one vector, this is

Ṽ
(z)
+ := (ṽm,t0m+1,0,1, ṽm,t0m+2,0,1, ṽm,t0m+2,1,1, . . . ,

ṽm,Tm,Tm−t0m−1,1, ṽm,t0m+1,0,2, . . . , ṽm,Tm,Tm−t0m−1,d)
�.

Next let Ṽ (z) =
((

Ṽ
(z)
+

)�
, −

(
Ṽ

(z)
+

)�)�
with dimension dV and denote its

components by

Ṽ (z) = (Ṽ
(z)
1 , Ṽ

(z)
2 , . . . , Ṽ

(z)
dV

)� .

By construction of Ṽ (z) we have

T̃ (Z)
m,d =

dV
max
i=1

Ṽ
(z)
i .

The covariance structure of V (z) was already calculated in (A.36) and is given
by

Cov
(
V

(z)
i1

, V
(z)
i2

)
=

a
(2)
m,k1,j1

a
(2)
m,k2,j2

m
(m+ j1)ρh1,h2

+
a
(1)
m,k1

a
(2)
m,k2,j2

m

(
(j2 ∧ k1)− j1

)
ρh1,h2

+
a
(1)
m,k1

a
(1)
m,k2

m
ρh1,h2(kmin − j2)I{j2 < kmin} ,

(A.45)

where k1, j1, h1 and k2, j2, h2 are the corresponding indices to i1 and i2, respec-
tively, and we use the notation kmin = min{k1, k2}. A similar calculation for the

vector Ṽ (z) gives

Cov
(
Ṽ

(z)
i1

, Ṽ
(z)
i2

)
=

a
(2)
m,k1,j1

a
(2)
m,k2,j2

m
(m+ j1)ρ̃h1,h2

+
a
(1)
m,k1

a
(2)
m,k2,j2

m

(
(j2 ∧ k1)− j1

)
ρ̃h1,h2

+
a
(1)
m,k1

a
(1)
m,k2

m
ρ̃h1,h2(kmin − j2)I{j2 < kmin} .

(A.46)
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Note that by definition of the truncated correlations in (A.16) the quantities
in (A.45) and (A.46) coincide, whenever |h1−h2| ≤ Ld. Therefore we obtain for
the maximum difference of the covariances,

Δm :=
dV
max

i1,i2=1

∣∣∣∣Cov (V (z)
i1

, V
(z)
i2

)
− Cov

(
Ṽ

(z)
i1

, Ṽ
(z)
i2

)∣∣∣∣ ≤ CT sup
h1,h2=1...,d
|h1−h2|>Ld

|ρh1,h2 | ,

where CT is a constant depending on T only, as we used that j1, j2, k1, k2 ≤ mT
and the upper bound in (A.33). Assumption 3.4 (SD1) and Ld = dΔ now yields

Δm � log−2(Ld)rLd
= o

(
log−2(d)

)
.

Due to (A.37), we can apply Lemma B.3, which gives

sup
x∈R

∣∣∣∣P( dV
max
i=1

V (z) ≤ x
)
−P

(
dV
max
i=1

Ṽ
(z)
i ≤ x

)∣∣∣∣ � Δ1/3
m max

{
1, log

(
dV /Δm

)}2/3

≤ max
{
Δ1/2

m , Δ1/2
m

∣∣ log dV ∣∣+Δ1/2
m

∣∣ logΔm

∣∣}2/3

.

In view of (A.28) and Assumption 3.1 (D1), the proof of Lemma A.4 is com-
pleted.

Proof of Lemma A.5. We use similar arguments as given in the proof of Lemma
B.7 of Jirak (2015b). Let {W ′

h}h∈N denote an independent copy of the sequence
of Brownian motions {Wh}h∈N defined in (A.16). Recalling the notation (A.21)
we obtain the representation

T̃ (Z)
m,d (t0) =

d
max
h=1

Tm
max

k=t0m+1

k−mt0−1
max
j=0

1√
m(1+k/m)

∣∣∣∣ m+k∑
t=m+j+1

Z̃t,h − k − j

m+ j

m+j∑
t=1

Z̃t,h

∣∣∣∣ .
To investigate the quantities in the maximum we note that

1√
m(1 + k/m)

∣∣∣∣ m+k∑
t=m+j+1

Z̃t,h − k − j

m+ j

m+j∑
t=1

Z̃t,h

∣∣∣∣
=

1√
m(1 + k/m)

∣∣∣∣m+k∑
t=1

Z̃t,h − m+ k

m+ j

m+j∑
t=1

Z̃t,h

∣∣∣∣
D
=

1

1 + k/m

∣∣∣∣Wh(k/m+ 1)− m+ k

m+ j
Wh(j/m+ 1)

∣∣∣∣
=

1

1 + k/m

∣∣∣∣Wh(
k
m+1)−Wh(1)− m+k

m+j

(
Wh(

j
m+1)−Wh(1)

)
− k−j

m+jWh(1)

∣∣∣∣
D
=

1

1 + k/m

∣∣∣∣Wh(k/m)− m+ k

m+ j
Wh(j/m)− k − j

m+ j
W ′

h(1)

∣∣∣∣
=

1

(1 + k/m)(1 + j/m)

∣∣∣∣(1 + j/m)
{
Wh(k/m)− k/mW ′

h(1)
}
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− (1 + k/m)
{
Wh(j/m)− j/mW ′

h(1)
}∣∣∣∣ , (A.47)

where in all steps the correlation structure of {Wh}h∈N is preserved. A calcula-
tion of the covariance kernel implies the identity (in distribution){

Wh(t)− tW ′
h(1)

}
t≥0, h∈N

D
=

{
(1 + t)Wh

( t

t+ 1

)}
t≥0, h∈N

.

Applying this to (A.47) yields

1

(1 + k/m)(1 + j/m)

∣∣∣∣(1 + j/m)
{
Wh(k/m)− k/mW ′

h(1)
}

− (1 + k
m )

{
Wh(

j
m )− j

mW ′
h(1)

}∣∣∣∣ D
=

∣∣∣∣Wh

( k

m+ k

)
−Wh

( j

m+ j

)∣∣∣∣.
This now gives

Tm
max

k=t0m+1

k−mt0−1
max
j=0

1√
m(1 + k/m)

∣∣∣∣ m+k∑
t=m+j+1

Z̃t,h − k − j

m+ j

m+j∑
t=1

Z̃t,h

∣∣∣∣
D
=

Tm
max

k=t0m+1

k−mt0−1
max
j=0

∣∣∣∣Wh

( k

m+ k

)
−Wh

( j

m+ j

)∣∣∣∣
= max

j,k∈{1,...,Tm}
k−j>mt0

∣∣∣∣Wh

( k

m+ k

)
−Wh

( j

m+ j

)∣∣∣∣ =: Mh,m(t0) ,

which is the discrete counterpart of the random variableMh(t0) defined in (A.17).
Observing the identity

Mh(t0) = max
t∈[q(t0), q(T )]

max
s∈[0, q(q−1(t)−t0)]

∣∣Wh(t)−Wh(s)
∣∣

= max
t∈[q(t0), q(T )]

max
s∈[0, q−1(t)−t0]

∣∣Wh(t)−Wh(q(s))
∣∣

= max
t∈[t0,T ]

max
s∈[0,t−t0]

∣∣∣∣Wh

( t

t+ 1

)
−Wh

( s

s+ 1

)∣∣∣∣ ,
the inequality Mh,m(t0) ≤ Mh(t0) already yields

P

(
T̃ (Z)
m,d (t0) ≤ ud(x)

)
= P

(
d

max
h=1

Mh,m(t0) ≤ ud(x)

)
≥ P

(
d

max
h=1

Mh(t0) ≤ ud(x)

)
= P

(
Wd(t0) ≤ ud(x)

)
for all x ∈ R. So it remains to find a suitable upper bound for

P

(
T̃ (Z)
m,d (t0) ≤ ud(x)

)
− P

(
Wd(t0) ≤ ud(x)

)
≥ 0 . (A.48)
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Observing the inequality (which holds for all y ∈ R)

P

(
Wd(t0) ≤ ud(x)

)
≥ P

(
T̃ (Z)
m,d (t0) ≤ ud(x)− y,

∣∣T̃ (Z)
m,d (t0)−Wd(t0)

∣∣ < y
)

≥ P

(
T̃ (Z)
m,d (t0) ≤ ud(x)− y

)
− P

(∣∣T̃ (Z)
m,d (t0)−Wd(t0)

∣∣ > y
)

the left-hand side in (A.48) is bounded by

P

(
T̃ (Z)
m,d (t0) ≤ ud(x)

)
−P

(
T̃ (Z)
m,d (t0) ≤ ud(x)−y

)
+P

(∣∣T̃ (Z)
m,d (t0)−Wd(t0)

∣∣ > y
)
.

We now choose yd = m−1/3. Then the claim is a consequence of the following
two assertions:

(i) P

(∣∣T̃ (Z)
m,d (t0)−Wd(t0)

∣∣ > yd

)
= o(1) ,

(ii) P

(
T̃ (Z)
m,d (t0) ≤ ud(x)

)
− P

(
T̃ (Z)
m,d (t0) ≤ ud(x)− yd

)
= o(1) ,

which will be proven below to complete the proof of Lemma A.5. To show (i),
note that due to the time reversal and scaling properties of Brownian motions,
it holds for all k ≤ Tm, 1 ≤ h ≤ d

max
t∈[(k−1)/m, k/m]

∣∣∣Wh

( t

t+ 1

)
−Wh

( k/m

1 + k/m

)∣∣∣
D
= max

λ∈
[
0, k

m+k− k−1
m+k−1

] ∣∣∣Wh

( k/m

1 + k/m
− λ

)
−Wh

( k/m

1 + k/m

)∣∣∣
D
= max

λ∈[0, k
m+k− k−1

m+k−1 ]

∣∣∣Wh(λ)
∣∣∣ ≤ max

0≤λ≤1/m

∣∣∣Wh(λ)
∣∣∣ D
= max

0≤λ≤1

∣∣Wh(λ)
∣∣/√m ,

which yields

P

(∣∣T̃ (Z)
m,d (t0)−Wd(t0)

∣∣ > yd

)
= P

(
d

max
h=1

Mh(t0)−
d

max
h=1

Mh,m(t0) > yd

)
=P

(
d

max
h=1

max
t∈[t0, T ]

max
s∈[0, t−t0]

∣∣∣∣Wh

( t

t+ 1

)
−Wh

( s

s+ 1

)∣∣∣∣
− d
max
h=1

Tm
max

k=t0m+1

k−mt0−1
max
j=0

∣∣∣∣Wh

( k

m+ k

)
−Wh

( j

m+ j

)∣∣∣∣ > yd

)
≤P

(
d

max
h=1

Tm
max

k=t0m+1

k−mt0−1
max
j=0

max
t∈[(k−1)/m, k/m]

max
s∈[j/m, (j+1)/m]

∣∣∣Wh(
t

t+1 )−Wh(
s

s+1 )
∣∣∣

− d
max
h=1

Tm
max

k=t0m+1

k−mt0−1
max
j=0

∣∣∣∣Wh

( k/m

1 + k/m

)
−Wh

( j/m

1 + j/m

)∣∣∣∣ > yd

)
≤P

(
d

max
h=1

Tm
max

k=t0m+1

k−mt0−1
max
j=0

max
t∈[(k−1)/m, k/m]

max
s∈[j/m, (j+1)/m]∣∣∣∣Wh

( t

t+ 1

)
−Wh

( s

s+ 1

)
−Wh

( k/m

1 + k/m

)
−Wh

( j/m

1 + j/m

)∣∣∣∣ > yd

)
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≤P

(
2

d
max
h=1

Tm
max
k=1

max
t∈[(k−1)/m, k/m]

∣∣∣Wh

( t

t+ 1

)
−Wh

( k/m

1 + k/m

)∣∣∣ > yd

)
≤

d∑
h=1

Tm∑
k=1

P

(
sup

0≤λ≤1
|Wh(λ)| > yd

√
m/2

)
≤ dTm

4√
2πyd

e−y2
dm/8 ,

where we have used the elementary bound [see for instance Karatzas and Shreve
(1991)]

P

(
sup

0≤λ≤1
|Wh(λ)| ≥ z

)
≤ 4√

2πz
e−z2/2 .

This yields (i) since by Assumption 3.1 (D1) the choice of yd gives my2d = m1/3.

To obtain the estimate (ii), recall the definition of the Gaussian vector Ṽ (z) =(
Ṽ

(z)
1 , . . . , Ṽ

(z)
dV

)�
in the proof of Lemma A.4, which yields the identity

dV
max
i=1

Ṽ
(z)
i = T̃ (Z)

m,d (t0) .

For each component Ṽ
(z)
i of Ṽ (z) there are indices k, j, h such that

Ṽ
(z)
i = ṽm,k,j,h ,

where ṽm,k,j,h is s defined in (A.44). Thus, we obtain the following bounds for

the variance of the components of Ṽ (z):

Var
(
ṽm,k,j,h

)
=

(
(k − j)w(k/m)

)2

m
Var

(
z̃m+k
m+j+1(h)− z̃m+j

1 (h)
)

=

(
(k − j)w(k/m)

)2

m

[
Var

(
z̃m+k
m+j+1(h)

)
+Var

(
z̃m+j
1 (h)

)]
≥ mt20

(1 + T )2
Var

(
z̃m+j
1 (h)

)
=

mt20
(m+ j)(1 + T )2

≥ t20
(1 + T )3

and

Var
(
ṽm,k,j,h

)
≤ mT 2

(1 + T )2

( 1

k − j
+

1

m

)
≤ T 2

(1 + T )2
1 + t0
t0

.

Using these bounds, we can apply Lemma B.2 which yields

P

(
T̃ (Z)
m,d (t0) ≤ ud(x)

)
− P

(
T̃ (Z)
m,d (t0) ≤ ud(x)− yd

)
= P

(
− yd ≤ T̃ (Z)

m,d (t0)− ud(x) ≤ 0

)
≤ sup

z∈R

P

(∣∣∣T̃ (Z)
m,d (t0)− z

∣∣∣ ≤ yd

)
≤ CT,t0 · yd

(√
2 log(d) +

√
max{1, log(σ�/yd)}

)
= o(1) ,

such that the assertion of Lemma A.5 follows by the choice of yd.
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Proof of Lemma A.6. First, recall the definition of Wd and Wd(t0) in (A.18)
and note that

Wd =
d

max
h=1

max
t∈[0,q(T )]

max
s∈[0,t]

∣∣Wh(s)−Wh(t)
∣∣

= max

{
Wd(t0) ,

d
max
h=1

max
t∈[0,q(t0)]

max
s∈[0,t]

∣∣Wh(s)−Wh(t)
∣∣ ,

d
max
h=1

max
t∈[q(t0),q(T )]

max
s∈[q(q−1(t)−t0),t]

∣∣Wh(s)−Wh(t)
∣∣}

≤ max

{
Wd(t0) ,

d
max
h=1

max
|t−s|≤t0

s,t∈[0,q(T )]

|W (t)−W (s)|
}

as q(t0) ≤ t0 and t− q(q−1(t)− t0) ≤ t0. Hence, we obtain

P
(
Wd(t0) ≤ ud(x)

)
− P

(
Wd ≤ ud(x)

)
≤ P

(
d

max
h=1

max
|t−s|≤t0

s,t∈[0,q(T )]

|Wh(t)−Wh(s)| > ud(x)

)

≤ d P

(
max

|t−s|≤t0
s,t∈[0,q(T )]

|W1(t)−W1(s)| > ud(x)

)
.

To control this probability we define an overlapping decomposition of the inter-
val [0, q(T )] by

Ij := [jt0, (j + 2)t0] , j = 0, 1, 2, . . . , �q(T )/t0� − 2 .

Observing that the length of Ij is 2t0 we obtain

P

(
max

|t−s|≤t0
s,t∈[0,q(T )]

|W1(t)−W1(s)| > ud(x)

)

≤

q(T )/t0�−2∑

j=1

P

(
max

|t−s|≤t0
s,t∈Ij

|W1(t)−W1(s)| > ud(x)

)

≤ q(T )

t0
P

(
max

|t−s|≤t0
s,t∈[0,2t0]

|W1(t)−W1(s)| > ud(x)

)

≤ q(T )

t0
P

(
max

s,t∈[0,2t0]
|W1(t)−W1(s)| > ud(x)

)
=
q(T )

t0
P

(
max

s,t∈[0,q(T )]
|W1(t)−W1(s)| > ud(x) ·

√
q(T )/(2t0)

)
≤q(T )

t0
P

(
max

s,t∈[0,q(T )]
|W1(t)−W1(s)| > c

√
log(d)q(T )/(2t0)

)
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as for fixed x (3.6) yields, that there exists a positive constant c <
√
2q(T ),

such that ud(x) ≥ c ·
√

log(d) for d sufficiently large. Using the representation
of the distribution function FM in (A.1) we obtain

P

(
d

max
h=1

max
|t−s|≤t0

s,t∈[0,q(T )]

|Wh(t)−Wh(s)| > ud(x)

)

≤ d
q(T )

t0

[
1−FM

(
c
√
log(d)q(T )/(2t0)

)]
and L’Hôspital’s rule gives

lim
d→∞

d
[
1− FM

(
c
√
log(d)q(T )/(2t0)

)]
= c

√
q(T )/(2t0) lim

d→∞
d
F ′
M

(
c
√
log(d)q(T )/(2t0)

)
2
√

log(d)

≤ c
√
q(T )/(2t0) lim

d→∞
dF ′

M

(
c
√
log(d)q(T )/(2t0)

)
.

Now substituting d = exp
( 2y2t0
c2q(T )

)
yields that the last display can be written

as

c
√
q(T )/(2t0) lim

y→∞
exp

( 2y2t0
c2q(T )

)
F ′
M
(y) ,

which by assertion (A.5) tends to zero for sufficiently small t0 > 0 and thus
completes the proof of Lemma A.6.

A.4. Proof of Theorem 3.10

Denote the size of the change by Δμm = |μm+k∗−1,h∗ − μm+k∗,h∗ | and the
centered observations in component h∗ by

X
(c)
t,h∗ := Xt,h∗ − E[Xt,h∗ ] .

Observe the following lower bound

T̂m,d =
d

max
h=1

Tm
max
k=1

w(k/m)Êm,h(k)
h=h∗

≥ Tm
max
k=1

w(k/m)Êm,h∗(k)

k=mT
≥ w(T )Êm,h∗(mT ) =

1

1 + T

Tm−1
max
j=0

mT − j√
mσ̂h

∣∣∣μ̂m+mT
m+j+1(h

∗)− μ̂m+j
1 (h∗)

∣∣∣
j=k∗−1

≥ 1

1 + T

mT − k∗ + 1√
mσ̂h

∣∣∣μ̂m+mT
m+k∗ (h∗)− μ̂m+k∗−1

1 (h∗)
∣∣∣

≥ 1

1 + T

{
mT − k∗ + 1√

mσ̂h
Δμm (A.49)
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−
∣∣∣∣ 1√

mσ̂h

m+mT∑
t=m+k∗

X
(c)
t,h∗ − mT − k∗ + 1√

mσ̂h(m+ k∗ − 1)

m+k∗−1∑
t=1

X
(c)
t,h∗

∣∣∣∣} .

The consistency of the long-run variance estimator σ̂h, Assumption 3.3, the
FCLT in Theorem 3 of Wu (2005) and the Continuous Mapping Theorem show
that∣∣∣∣ 1√

mσ̂h

m+mT∑
t=m+k∗

X
(c)
t,h∗ − mT − k∗ + 1√

mσ̂h(m+ k∗ − 1)

m+k∗−1∑
t=1

X
(c)
t,h∗

∣∣∣∣
≤ max

s∈[0,T ]

∣∣∣∣ 1√
mσ̂h

m+mT∑
t=m+�ms�+1

X
(c)
t,h∗ − mT − �ms�√

mσ̂h(m+ �ms�)

m+�ms�∑
t=1

X
(c)
t,h∗

∣∣∣∣
D
=⇒ max

s∈[0,T ]

∣∣W (1 + T )−W (1 + s)− T − s

1 + s
W (1 + s)

∣∣ , (A.50)

whereW is a standard one-dimensional Brownian motion. Next, note that (A.49)
gives that

P

(
ad

(
T̂m,d − bd

)
> g1−α

)
= P

(
T̂m,d >

g1−α

ad
+ bd

)

≥ P

(
−

∣∣∣∣ 1√
mσ̂h

m+mT∑
t=m+k∗

X
(c)
t,h − mT − k∗ + 1√

mσ̂h(m+ k∗ − 1)

m+k∗−1∑
t=1

X
(c)
t,h

∣∣∣∣ >(g1−α

ad
+ bd

)
(T + 1)− mT − k∗ + 1√

mσ̂h
Δμm

)
.

By Assumption 3.1, (D1) and (3.6) we obtain bd �
√
logm. Applying now (3.10)

we get (g1−α

ad
+ bd

)
(T + 1)− mT − k∗ + 1√

mσ̂h
Δμm

P
=⇒ −∞ . (A.51)

Combining (A.50), (A.51) with an application of Slutsky’s Theorem shows that

the probability P
(
ad

(
T̂m,d − bd

)
> g1−α

)
tends to 1, which completes the proof.

A.5. Proof of Corollary 3.9

The result is obtained analogously to the corresponding parts of Theorem 2.5
in Jirak (2015b) or Theorem 3.11 in Dette and Gösmann (2018). Therefore the
proof is omitted.

A.6. Proof of Theorem 3.14

Recall the definition of ud(x) = x/ad+ bd, Zt,h, Ẑt,h, T (Z)
m,d , T

(Z)
m,d (c) and T̂ (Z)

m,d (c)
in (A.23), (A.19), (3.13), (A.20) and (A.22), respectively. The proof of Theo-
rem 3.14 is based on the following three Lemmas.
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Lemma A.7 For the constant Cγ from Assumption 3.12 it holds that

mCγ
d

max
h,i=1

∣∣ρ̂h,i − ρh,i
∣∣ = oP(1) .

Proof. First, note that Lemma E.4 from Jirak (2015a) implies the existence of
a global constant Cσ > 0, such that suph∈N σh ≤ Cσ. Next, Assumption 3.3 and
the Cauchy-Schwarz inequality imply that

(i) maxdh,i=1 γh,i ≤ σhσi ≤ C2
σ ,

(ii) mindh=1 σ̂h ≥ mindh=1 σh −maxdh=1 |σ̂h − σh| ≥ cσ −maxdh=1 |σ̂h − σh| ,
(iii) maxdh,i=1 |σ̂hσ̂i − σhσi| ≤ maxdh,i=1 σ̂i|σ̂h − σh|+ Cσ maxdh=1 |σ̂h − σh|

≤ Cσ maxdh=1 |σ̂h − σh|2 + 2Cσ maxdh=1 |σ̂h − σh| .
Combining (i), (ii) and using again Assumption 3.3 gives

d
max
h,i=1

∣∣∣∣ γ̂h,iσ̂hσ̂i

∣∣∣∣ ≤ 1(
cσ − d

max
h=1

|σ̂h − σh|
)2 ·

(
C2

σ +
d

max
h,i=1

∣∣γ̂h,i − γh,i
∣∣) = OP(1) .

Thus we obtain the upper bound

d
max
h,i=1

∣∣ρ̂h,i − ρh,i
∣∣ ≤ d

max
h,i=1

∣∣∣∣ γ̂h,iσ̂hσ̂i
− γ̂h,i

σhσi

∣∣∣∣+ d
max
h,i=1

∣∣∣∣ γ̂h,i − γh,i
σhσi

∣∣∣∣
≤ 1

c2σ

d
max
h,i=1

∣∣∣∣ γ̂h,iσ̂hσ̂i

∣∣∣∣∣∣σ̂hσ̂i − σhσi

∣∣+ 1

c2σ

d
max
h,i=1

∣∣γ̂h,i − γh,i
∣∣

� OP(1)
d

max
h=1

|σ̂h − σh|2 +OP(1)
d

max
h=1

|σ̂h − σh|+
d

max
h,i=1

∣∣γ̂h,i − γh,i
∣∣ .

The assertion of Lemma A.7 now follows from Assumption 3.12.

Lemma A.8 There exists a sufficiently small constant t0 > 0, such that for
x ∈ R it holds∣∣∣∣P|X

(
T̂ (Z)
m,d (t0) ≤ ud(x)

)
− P|X

(
T̂ (Z)
m,d ≤ ud(x)

)∣∣∣∣ = oP(1) , as m, d → ∞ .

Proof. We provide a (stochastic) version of the proof of Lemma A.2. First note
that

T̂ (Z)
m,d =

d
max
h=1

Tm
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣μ̂m+k
m+j+1(h)− μ̂m+j

1 (h)
∣∣∣

= max

{
T̂ (Z)
m,d (t0) ,

d
max
h=1

Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)w(k/m)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ,

d
max
h=1

t0m
max
k=1

k−1
max
j=0

(k − j)w(k/m)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣} .

Hence, we obtain∣∣∣P|X

(
T̂ (Z)
m,d (t0) ≤ ud(x)

)
− P|X

(
T̂ (Z)
m,d ≤ ud(x)

)∣∣∣ ≤ P1(x) + P2(x) ,
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where the random variables P1(x) and P2(x) are defined by

P1(x) = P|X

(
d

max
h=1

Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
,

P2(x) = P|X

(
d

max
h=1

t0m
max
k=1

k−1
max
j=0

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
and we additionally used that w(k/m) ≤ 1. To complete the proof, it suffices
by Markov’s inequality to establish that

E[P1(x)] = o(1) and E[P2(x)] = o(1) .

To prove these assertions, observe the bounds

E[P1(x)] = P

(
d

max
h=1

Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
≤

d∑
h=1

P

(
Tm
max

k=t0m+1

k−1
max

j=k−t0m

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
(A.52)

and

E[P2(x)] = P

(
d

max
h=1

t0m
max
k=1

k−1
max
j=0

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
≤

d∑
h=1

P

(
t0m
max
k=1

k−1
max
j=0

(k − j)√
m

∣∣∣ẑm+k
m+j+1(h)− ẑm+j

1 (h)
∣∣∣ ≥ ud(x)

)
.

(A.53)

The terms in (A.52) and (A.53) can now be controlled by the same arguments
as given in the proof of Lemma A.2.

Lemma A.9 For x ∈ R it holds, as m, d → ∞,∣∣∣∣P|X

(
T̂ (Z)
m,d ≤ ud(x)

)
− PH0

(
Tm,d ≤ ud(x)

)∣∣∣∣ = oP(1) . (A.54)

Proof. Observing Lemmas A.2, A.3, A.8, the assertion of Lemma A.9 follows, if
we can establish that∣∣∣∣P|X

(
T̂ (Z)
m,d (t0) ≤ ud(x)

)
− P

(
T (Z)
m,d (t0) ≤ ud(x)

)∣∣∣∣ = oP(1) , (A.55)

To obtain this, we will reuse the vector technique applied in the proof of
Lemma A.3. From the proof of this Lemma recall the definition and construction

of the Gaussian vector V (z) =
(
V

(z)
1 , . . . , V

(z)
dV

)�
which fulfilled the identity

dV
max
i=1

V
(z)
i = T (Z)

m,d (t0) .
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Analogously we construct a vector V̂ (z) =
(
V̂

(z)
1 , . . . , V̂

(z)
dV

)�
from

{
Ẑt,h

}
, such

that

dV
max
i=1

V̂
(z)
i = T̂ (Z)

m,d (t0) .

The covariance structure of V (z) was already calculated in Lemma A.3. Repeat-
ing these steps for the conditional covariance structure of V̂ (z) with respect to
X , we directly obtain that

dV
max

i1,i2=1

∣∣∣Cov (V (z)
i,1 , V

(z)
i,2

)
− Cov|X

(
V̂

(z)
i,1 , V̂

(z)
i,2

)∣∣∣ � d
max
h,i=1

∣∣ρ̂h,i − ρh,i
∣∣. (A.56)

In the remainder of the proof we use the notation Δρ = maxdh,i=1

∣∣ρ̂h,i−ρh,i
∣∣. In

view of (A.56), we are able to apply the Gaussian comparison inequality from
Lemma B.3, which gives

sup
x∈R

∣∣∣∣P|X

(
T̂ (Z)
m,d (t0) ≤ x

)
− P

(
T (Z)
m,d ≤ x

)∣∣∣∣
= sup

x∈R

∣∣∣∣P|X

(
dV
max
i=1

V̂
(z)
i ≤ x

)
− P

(
dV
max
i=1

V
(z)
i ≤ x

)∣∣∣∣
≤ CΔ1/3

ρ ·max
{
1, log

(
dV /Δρ

)}2/3

.

Due to Lemma A.7 and Assumption 3.1 the upper bound in the last display is
of order oP(1), which proves (A.55).

Final step in proof of Theorem 3.14. To obtain the theorem’s assertions, note
that from Corollary 3.9 we already know that

ad
(
T̂m,d − bd)

D
=⇒ G ,

and as the Gumbel distribution has a continuous c.d.f., Polya’s theorem [see
Serfling (2009), p. 18] directly implies convergence in Kolmogorov-metric, that
is

sup
x∈R

∣∣∣∣P(ad(T̂m,d − bd) ≤ ud(x)
)
− P

(
G ≤ x

)∣∣∣∣ = o(1) . (A.57)

On the other hand, combining (A.54) with Theorem 3.6 implies that

ad
(
T̂ (Z)
m,d − bd)

D
=⇒ G , (A.58)

conditional on X in probability. So a conditional version of Polya’s theorem
gives

sup
x∈R

∣∣∣∣P|X

(
ad

(
T̂ (Z)
m,d − bd) ≤ ud(x)

)
− P

(
G ≤ x

)∣∣∣∣ = oP(1) .

By (A.57) and (A.58) the proof of Theorem 3.14 is complete.
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A.7. Proof of Theorem 3.17

Denote the centered observations by

X
(c)
t,h = Xt,h − E[Xt,h] .

We first prove assertions (3.16) and (3.18) using the Gumbel quantile g1−α.
Proof of (3.16): It holds that

P

(
Sd ⊂ Ŝd,α

)
= P

(
max
h∈Sd

Tm
max
k=1

w(k/m)Êm,h(k) ≤ g1−α/ad + bd

)
= PH0

(
max
h∈Sd

Tm
max
k=1

w(k/m)Êm,h(k) ≤ g1−α/ad + bd

)
≥ PH0

(
d

max
h=1

Tm
max
k=1

w(k/m)Êm,h(k) ≤ g1−α/ad + bd

)
−→ 1− α ,

where we applied Corollary 3.9 for the last convergence.
Proof of (3.18): First, note that:

P

(
Sc
d ⊂ Ŝc

d,α

)
= P

(
min
h∈Sc

d

Tm
max
k=1

w(k/m)Êm,h(k) > g1−α/ad + bd

)
. (A.59)

We have the lower bound

min
h∈Sc

d

Tm
max
k=1

w(k/m)Êm,h(k) ≥ min
h∈Sc

d

w(T )Êm,h(Tm)

≥ min
h∈Sc

d

Tm− k∗h − 1√
mσ̂h(T + 1)

∣∣μ̂m+Tm
m+k∗

h
− μ̂

m+k∗
h−1

1

∣∣ ≥ A1 −A2 ,

where the terms A1 and A2 are given by

A1 = min
h∈Sc

d

Tm− k∗h + 1√
mσ̂h(T + 1)

∣∣μm+k∗
h−1 − μm+k∗

h

∣∣ ,
A2 = max

h∈Sc
d

1√
mσ̂h(T + 1)

∣∣∣∣ m+Tm∑
t=m+k∗

h

X
(c)
t,h − mT − k∗h + 1

m+ k∗h − 1

m+k∗
h−1∑

t=1

X
(c)
t,h

∣∣∣∣ .
Therefore the probability given in (A.59) has the lower bound

P
(
ad(A1 − 2bd)− ad(A2 − bd) > g1−α

)
.

Using Corollary 3.9 we obtain

ad
(
A2 − bd

)
(A.60)

≤ ad

(
d

max
h=1

Tm
max
k=1

w(k/m)
k−1
max
j=0

∣∣∣∣ m+k∑
t=m+j+1

X
(c)
t,h − k − j

m+ j

m+j∑
t=1

X
(c)
t,h

∣∣∣∣− bd

)
=OP(1) .

Further it holds by (3.17) that for m sufficiently large

Tm− max
h∈Sc

d

k∗h > c ,
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where c > 0 is a sufficiently small constant. By Assumptions 3.3 and 3.12 we
have

1
d

max
h=1

σ̂h

≥ 1

Cσ +
d

max
h=1

|σ̂h − σh|
P

=⇒ 1

Cσ

and (3.6) shows that bd �
√
logm and ad → ∞. Combining this with the

assertions above yields

ad
(
A1 − 2bd

)
(A.61)

� ad

(√
m

1
d

max
h=1

σ̂h

min
h∈Sc

d

∣∣μm+k∗
h−1 − μm+k∗

h

∣∣− 2bd

)
P

=⇒ ∞ .

A combination of (A.60) and (A.61) now proves (3.18).
To complete the proof of Theorem 3.17 it remains to discuss the case, where

bootstrap quantiles

q̂m,1−α := inf
{
x ∈ R

∣∣∣ P|X

(
ad

(
T̂ (Z)
m,d − bd

)
≤ x

)
≥ α

}
,

are used in the algorithm. Fortunately, it follows from Theorem 3.14 combined
with Lemma 21.2 and (the arguments from) Lemma 23.2 in van der Vaart (1998)
that

q̂m,1−α
P

=⇒ g1−α .

An application of Slutsky’s Lemma to the statements above then completes the
proof of Theorem 3.17.

Appendix B: Technical auxiliary results

We require the following Nagaev-type inequality as given in the online supple-
ment of Jirak (2015b) which is a version of Theorem 2 in Liu et al. (2013). In
particular the reader should note that the bound is independent of h.

Lemma B.1 Under Assumption 3.3 it holds for x ≥ C ′
p

√
n

P

(
n

max
k=1

∣∣∣ k∑
t=1

Xt,h − E[Xt,h]
∣∣∣ > x

)
≤ Cp

n

xp
+ Cp exp

(
− cp

x2

n

)
,

where the constants cp, Cp, Cp>0 depend on p and the sequence
{
suph∈N ϑt,h,p

}
t∈N

only.

As an immediate consequence of the bound

n
max
k=1

∣∣∣ n∑
t=k

Xt,h − E[Xt,h]
∣∣∣ ≤ 2

n
max
k=1

∣∣∣ k∑
t=1

Xt,h − E[Xt,h]
∣∣∣ ,
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Lemma B.1 holds with adjusted constants also for the reversed partial sum
maximum.

The following inequality is Lemma 2.1 in Chernozhukov et al. (2013).

Lemma B.2 Let Z = (Z1, . . . , Zd)
� be a centered Gaussian vector with covari-

ance matrix ΣZ whose diagonal entries are bounded by two constants σ� and σu,
that is

0 < σ� ≤ ΣZ
j,j ≤ σu

for j = 1, . . . , d . Then for δ > 0 it holds that

sup
z∈R

P

(∣∣∣ d
max
h=1

Zh − z
∣∣∣ ≤ δ

)
≤ Cσδ

(√
2 log(d) +

√
max{1, log(σ�/δ)}

)
,

where the constant Cσ > 0 depends on σ� and σu only.

The next tool is Lemma 3.1 from Chernozhukov et al. (2013).

Lemma B.3 Let U = (U1, . . . , Ud)
� and V = (V1, . . . , Vd)

� denote two cen-
tered, d-dimensional Gaussian vectors with covariance matrices ΣU and ΣV ,
respectively. Further assume that there are two constants c1, C1 > 0, such that
for all j = 1, . . . , d

c1 ≤
∣∣ΣU

j,j

∣∣ ≤ C1 .

Denote the maximum entry-wise distance of both covariance matrices by

Δ :=
d

max
i,j=1

∣∣ΣU
i,j − ΣV

i,j

∣∣ .
Then it holds that

sup
x∈R

∣∣∣P( d
max
i=1

Ui ≤ x
)
− P

(
d

max
i=1

Vi ≤ x
)∣∣∣ ≤ CΔ1/3 ·max

{
1, log

(
d/Δ

)}2/3

,

where the constant C > 0 depends on c1 and C1 only.
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