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Abstract: We establish statistical properties of random-weighting meth-
ods in LASSO regression under different regularization parameters λn and
suitable regularity conditions. The random-weighting methods in view con-
cern repeated optimization of a randomized objective function, motivated
by the need for computationally efficient uncertainty quantification in con-
temporary estimation settings. In the context of LASSO regression, we
repeatedly assign analyst-drawn random weights to terms in the objective
function, and optimize to obtain a sample of random-weighting estimators.
We show that existing approaches have conditional model selection con-
sistency and conditional asymptotic normality at different growth rates of
λn as n → ∞. We propose an extension to the available random-weighting
methods and establish that the resulting samples attain conditional sparse
normality and conditional consistency in a growing-dimension setting. We
illustrate the proposed methodology using synthetic and benchmark data
sets, and we discuss the relationship of the results to approximate nonpara-
metric Bayesian analysis and to perturbation bootstrap methods.
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1. Introduction

Consider the well-studied linear regression model with fixed design

Y = βμ1n +Xβ + ε, (1.1)

where Y = (y1, . . . , yn)
′ ∈ R

n is the response vector, 1n is a n × 1 vector of
ones, X ∈ R

n×pn is the design matrix, β is the vector of regression coefficients,
and ε = (ε1, . . . , εn)

′ is the vector of independent and identically distributed
(i.i.d.) random errors with mean 0 and variance σ2

ε . Without loss of generality,

we assume that the columns of X are centered, and take β̂μ = Ȳ , in which case
we can replace Y in (1.1) with Y − Ȳ 1n, and concentrate on inference for β.
Again, without loss of generality, we also assume Ȳ = 0. Let β0 ∈ R

pn be the
true model coefficients with q non-zero components, where q ≤ min(pn, n). Note
that Y , X and ε are all indexed by sample size n, but we omit the subscript
whenever this does not cause confusion.

Recall, the LASSO estimator is given by

β̂LAS
n := argmin

β

n∑
i=1

(yi − x′
iβ)

2 + λn

pn∑
j=1

|βj |, (1.2)

for a scalar penalty λn (Tibshirani, 1996), where x′
i is the ith row of X. The

LASSO is a canonical example in the broad class of penalized inference pro-
cedures; for the purpose of uncertainty quantification in such models, Newton,
Polson and Xu (2021) developed the random-weighting approach as a straight-
forward technique to leverage advances in optimization. They reported good
performance in high-dimensional regression, trend-filtering and deep learning
applications. In particular, their random-weighting version of (1.2) is

β̂w
n := argmin

β

⎧⎨⎩
n∑

i=1

Wi(yi − x′
iβ)

2 + λn

pn∑
j=1

W0,j |βj |

⎫⎬⎭ , (1.3)

where the analyst first chooses a distribution FW with P (W > 0) = 1 and

E(W 4) < ∞, and constructs Wi
iid∼ FW for all i = 1, 2, · · · , n. The precise

treatment of penalty-associated weightsW0 = (W0,1, · · · ,W0,pn) induces several
random-weighting variations, the simplest of which has

W0,j = 1 ∀ j, (1.4)

or the penalty terms all share a common random weight

W0,j = W0 ∀ j, where (W0,Wi)
iid∼ FW ∀ i, (1.5)
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and the most elaborate of which has all entries

(W0,j ,Wi)
iid∼ FW ∀ i, j. (1.6)

Regardless of our treatment of the weights, (1.3) yields independent and iden-

tically distributed draws from the conditional distribution of β̂w
n given data when

we repeatedly realize weight vectors in silico by one of the random-weighting
mechanisms. A computational benefit for uncertainty quantification is that ran-
dom weighting is readily parallelized. Though useful inference tools already exist
for LASSO regression (e.g., Friedman, Hastie and Tibshirani, 2010), we focus on
this well-studied model in order to extend random-weighting theory and also to
guide work for more complex settings where random weighting may be readily
applied (Newton, Polson and Xu, 2021). In the present study we investigate the
asymptotic properties of (1.3), with attention on properties of the conditional
distribution given data. By allowing different rates of growth of the regulariza-
tion parameter λn, and under suitable regularity conditions, we prove that the
random-weighting method has the following properties:

• conditional model selection consistency (for both growing pn and fixed p)
• conditional consistency (for fixed pn = p)
• conditional asymptotic normality (for fixed pn = p)

for all three weighting schemes (1.4), (1.5) and (1.6). We find there is no common
λn that would allow random-weighting samples to have conditional sparse nor-
mality (i.e., simultaneously to enjoy conditional model selection consistency and
to achieve conditional asymptotic normality on the true support of β) even un-
der fixed pn = p setting. Consequently, we propose an extension to the random-
weighting framework (1.3) by adopting a two-step procedure in the optimization
step as laid out in Algorithm 2. We prove that a common regularization rate
λn allows two-step random-weighting samples to achieve conditional sparse nor-
mality and conditional consistency properties under growing pn setting.

After setting regularity conditions and notation in Section 2, we report our
main distributional results for random weighting in Section 3. Asymptotic tech-
niques from Knight and Fu (2000), Zhao and Yu (2006) and Liu and Yu (2013)
guide our calculations. Extensive simulations and application to a benchmark
data set illustrate how two-step random weighting under schemes (1.4), (1.5)
and (1.6) compares with both Bayesian and bootstrap methods for uncertainty
quantification (Section 4). In Section 5 we comment on our findings in relation
to the perturbation bootstrap (e.g., Das and Lahiri, 2019) and also to recent
nonparametric Bayesian work that has renewed interest in the operating char-
acteristics of random-weighting (Lyddon, Walker and Holmes, 2018; Lyddon,
Holmes and Walker, 2019; Fong, Lyddon and Holmes, 2019). Detailed proofs
are presented in Appendix A.



Random weighting 3433

2. Problem setup

We assume throughout that the unknown number of truly relevant predictors,
q, is fixed, that

E(ε4i ) < ∞ ∀ i, (2.1)

and all pn predictors are bounded, i.e. ∃ M1 > 0 such that

|xij | ≤ M1 ∀ i = 1, . . . , n ; j = 1, . . . , pn, (2.2)

where xij refers to the (i, j)th element of X.
Without loss of generality, we partition β0 into

β0 =

[
β0(1)

β0(2)

]
,

where β0(1) refers to the q × 1 vector of non-zero true regression parameters,
and β0(2) is a (pn − q) × 1 zero vector. Similarly, we partition the columns of
the design matrix X into

X =
[
X(1) X(2)

]
which corresponds to β0(1) and β0(2) respectively.

We consider both fixed-dimensional (pn = p) and growing-dimensional (pn
increases with n) settings. In the growing dimensional setting, we assume that
for some M2 > 0,

α′

[
X ′

(1)X(1)

n

]
α ≥ M2 ∀ ‖α‖2 = 1. (2.3)

Note that assumptions (2.2) and (2.3), coupled with the fact that q is fixed,
ensure that 1

nX
′
(1)X(1) is invertible ∀ n, a fact that we rely on in this paper.

Meanwhile, for fixed-dimensional (pn = p) setting, we assume that rank(X) =
p and there exists a non-singular matrix C such that

1

n
X ′X =

1

n

n∑
i=1

xix
′
i → C as n → ∞, (2.4)

where xi is the ith row of the design matrix X.
Comments on assumptions: The fixed-q assumption is commonly found
in Bayesian linear-model literature, such as Johnson and Rossell (2012), and
Narisetty and He (2014). Since we intend to compare the random-weighting ap-
proach with posterior inference, we make the fixed-q assumption to align with
existing Bayesian theory. The finite-moment assumption (2.1) of ε is commonly
found in literature (e.g., Camponovo, 2015; Das and Lahiri, 2019) is weaker than
the normality assumption commonly specified under a Bayesian approach (e.g.,
Park and Casella, 2008; Johnson and Rossell, 2012; Narisetty and He, 2014).



3434 T. L. Ng and M. A. Newton

Assumption (2.2) can also be found in some seminal papers, such as Zhao and
Yu (2006) and Chatterjee and Lahiri (2011a), and in fact, can be (trivially)
achieved by standardizing the covariates. Assumption (2.3) is equivalent to pro-
viding a lower bound to the minimum eigenvalue of 1

nX
′
(1)X(1). This eigenvalue

assumption is very common in both frequentist and Bayesian literature, such as
Zhao and Yu (2006) and Narisetty and He (2014). Finally, assumption (2.4) is
common in the LASSO literature under fixed p setting, which can be traced back
to Knight and Fu (2000) and Zhao and Yu (2006). This assumption basically
explains the relationship between the predictors under a fixed design model, and
can be interpreted as the direct counterpart to the variance-covariance matrix
of X under a random design model. For the case of growing pn, assumption
(2.4) is no longer appropriate since the dimension of 1

nX
′X grows.

Probability Space: There are two sources of variation in the random-weighting
setup (1.3), namely the error terms ε and the user-defined weights W . In this
paper, we consider a common probability space with the common probability
measure P = PD × PW , where PD is the probability measure of the observed
data Y1, Y2, · · · , and PW is the probability measure of the triangular array of
random weights (e.g., Mason and Newton, 1992). The use of product measure
reflects the independence of user-defined W and data-associated ε. We focus
on the conditional probabilities given data, that is, given the sigma-field Fn

generated by ε:

Fn := σ(Y1, . . . , Yn) = σ(ε1, . . . , εn).

The study of convergence of these conditional probabilities P ( · |Fn) under a
weighted bootstrap framework is not new; see, for example, Mason and Newton
(1992) and Lyddon, Holmes and Walker (2019). We now outline some definitions
and notations in this respect.

Conditional Convergence Notations: Let random variables (or vectors)
U, V1, V2, . . . be defined on (Ω,A). We say Vn converges in conditional prob-
ability a.s. PD to U if for every δ > 0,

P (‖Vn − U‖ > δ|Fn) → 0 a.s. PD

as n → ∞. The notation a.s. PD is read as almost surely under PD, and means
for almost every infinite sequence of data Y1, Y2, · · · . For brevity, this conver-
gence is denoted

Vn
c.p.−→ U a.s. PD.

Similarly, we say Vn converges in conditional distribution a.s. PD to U if for
any Borel set A ⊂ R,

P (Vn ∈ A|Fn) → P (U ∈ A) a.s. PD

as n → ∞. For brevity, this convergence is denoted

Vn
c.d.−→ U a.s. PD.
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In addition, for random variables (or vectors) V1, V2, . . . and random variables
U1, U2, . . ., we say

Vn = Op(Un) a.s. PD

if and only if, for any δ > 0, there is a constant Cδ > 0 such that a.s. PD,

sup
n

P
(
‖Vn‖ ≥ Cδ|Un|

∣∣∣Fn

)
< δ;

whereas

Vn = op(Un) a.s. PD

if and only if
Vn

Un

c.p.−→ 0 a.s. PD.

Other Notation: Following the usual convention, denote Φ{.} as the cumula-
tive distribution function of the standard normal distribution. For two random
variables U and V , the expression U ⊥ V is read as “U is independent of V ”.
Denote ‖ · ‖2 and ‖ · ‖F as the l2 norm and Frobenius norm respectively. Let 1k

and Ik be k × 1 vector of ones and k × k identity matrix respectively for some
integer k ≥ 2. Besides that, for any two vectors u and v of the same dimension,
we denote u ◦ v as the Hadamard (entry-wise) product of the two vectors. In
addition, define[

Cn(11) Cn(12)

Cn(21) Cn(22)

]
:=

1

n
X ′X =

1

n

[
X ′

(1)X(1) X ′
(1)X(2)

X ′
(2)X(1) X ′

(2)X(2)

]
.

Notice that an immediate consequence of Assumption (2.4) is that

Cn(ij) → Cij ∀ i, j = 1, 2,

where C11 is invertible. Furthermore, denote μW and σ2
W as the mean and

variance of the random weight distribution FW . Let Dn = diag(W1, . . . ,Wn),
and define[

Cw
n(11) Cw

n(12)

Cw
n(21) Cw

n(22)

]
:=

1

n
X ′DnX =

1

n

[
X ′

(1)DnX(1) X ′
(1)DnX(2)

X ′
(2)DnX(1) X ′

(2)DnX(2)

]
.

Notice thatDn does not contain any penalty weightsW0,j . For weighting scheme
(1.6), the penalty weightsW0 = (W0,1, · · · ,W0,pn) could also be partitioned into

W0 =

[
W0(1)

W0(2)

]
,

which corresponds to the partition of β0. For ease of notation, define

Zw
n(1) =

1√
n
X ′

(1)Dnε,
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Zw
n(2) =

1√
n
X ′

(2)Dnε,

Zw
n(3) = Cn(21)C

−1
n(11)Z

w
n(1) −Zw

n(2),

C̃w
n = Cw

n(21)

(
Cw

n(11)

)−1

− Cn(21)C
−1
n(11).

Finally, the function sgn(·) maps positive entry to 1, negative entry to −1 and

zero to zero. An estimator β̂ is said to be equal in sign to the true parameter
β0, if

sgn(β̂) = sgn(β0),

and is denoted as
β̂

s
= β0.

3. Main results

3.1. One-step procedure

We investigate the asymptotic properties of random-weighting draws (1.3) ob-
tained from Algorithm 1, which coincides with the weighted Bayesian bootstrap
method considered by Newton, Polson and Xu (2021). For convenience, we shall
call this the “one-step procedure” to distinguish it from the extended framework
that we shall discuss in Section 3.2.

Algorithm 1: Random-Weighting in LASSO regression
Input :

• data: D = (y, X)

• regularization parameter: λn

• number of draws: B

• choice of random weight distribution: FW

• choice of weighting schemes: (1.4), (1.5) or (1.6)

Output : B parameter samples {β̂w,b
n }Bb=1

for b = 1 to B do
Draw i.i.d. random weights from FW and substitute them into (1.3) ;

Store β̂w,b
n obtained by optimizing (1.3) ;

end

First, we establish the property of conditional model selection given data.
In particular, we are interested in the conditional probability of the random-
weighting samples matching the signs of β0. Notably, sign consistency is stronger
than variable selection consistency, which requires only matching of zeros. Nev-
ertheless, we agree with Zhao and Yu (2006)’s argument of considering sign
consistency – it allows us to avoid situations where models have matching ze-
roes but reversed signs, which hardly qualify as correct models. We begin with
a result that establishes the lower bound for this conditional probability.
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Proposition 3.1. Suppose pn ≤ n and rank(X) = pn. Assume (2.1), (2.2) and
(2.3). Furthermore, assume the strong irrepresentable condition (Zhao and
Yu, 2006): there exists a positive constant vector η such that∣∣∣Cn(21)

(
Cn(11)

)−1
sgn

(
β0(1)

)∣∣∣ ≤ 1pn−q − η, (3.1)

where 0 < ηj ≤ 1 ∀ j = 1, . . . , pn − q, and the inequality holds element-wise.
Then, for all n ≥ pn,

P
(
β̂w
n (λn)

s
= β0

∣∣Fn

)
≥ P

(
Aw

n ∩Bw
n

∣∣Fn

)
,

where

(a) for weighting scheme (1.4),

Aw
n ≡

{∣∣∣∣(Cw
n(11)

)−1
(
Zw

n(1) −
λn

2
√
n
sgn

[
β0(1)

])∣∣∣∣≤√
n
∣∣β0(1)

∣∣ element-wise

}
Bw

n ≡
{∣∣∣∣C̃w

n

(
Zw

n(1) −
λn

2
√
n
sgn

[
β0(1)

])
+Zw

n(3)

∣∣∣∣ ≤ λn

2
√
n
η element-wise

}
;

(b) for weighting scheme (1.5),

Aw
n ≡

{∣∣∣∣(Cw
n(11)

)−1
(
Zw

n(1) −
λnW0

2
√
n

sgn
[
β0(1)

])∣∣∣∣≤√
n
∣∣β0(1)

∣∣ element-wise

}
Bw

n ≡
{∣∣∣∣C̃w

n

(
Zw

n(1)−
λnW0

2
√
n

sgn
[
β0(1)

])
+Zw

n(3)

∣∣∣∣ ≤ λnW0

2
√
n

η element-wise

}
;

(c) for weighting scheme (1.6),

Aw
n ≡

{ ∣∣∣∣(Cw
n(11)

)−1
(
Zw

n(1) −
λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

])∣∣∣∣
≤

√
n
∣∣β0(1)

∣∣ element-wise

}
Bw

n ≡
{ ∣∣∣∣C̃w

n

(
Zw

n(1) −
λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

])
+Zw

n(3)

∣∣∣∣
≤ λn

2
√
n

(
W0(2)−

∣∣∣Cn(21)

(
Cn(11)

)−1
W0(1) ◦ sgn

[
β0(1)

]∣∣∣) element-wise

}
.

The rank(X) = pn ≤ n assumption in Proposition 3.1 ensures that the
random-weighting setup (1.3) has a unique solution (Osborne, Presnell and
Turlach, 2000). For a random-design setting, the rank(X) = pn ≤ n assumption
can be replaced with the assumption that X is drawn from a joint continuous
distribution (Tibshirani, 2013).

The strong irrepresentable condition (3.1) can be seen as a constraint on the
relationship between active covariates and inactive covariates, that is, the total
amount of an irrelevant covariate “represented” by a relevant covariate must be
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strictly less than one. Similar to Zhao and Yu (2006)’s argument, Aw
n refers to

recovery of the signs of coefficients for β0(1), and Bw
n further implies obtaining

β̂w
n(2) = 0 given Aw

n . The regularization parameter λn continues to play the
role of trade-off between Aw

n and Bw
n : higher λn leads to larger Bw

n but smaller
Aw

n , which forces the random-weighting method to drop more covariates, and
vice versa. Meanwhile, larger η in (3.1), which could be interpreted as lower
“correlation” between active covariates and inactive covariates, increases Bw

n

but does not affect Aw
n , thus allowing the random-weighting method to better

select the true model. Zhao and Yu (2006) also gave a few sufficient conditions
that ensure the following designs of X satisfy condition (3.1):

• constant positive correlation,
• bounded correlation,
• power-decay correlation,
• orthogonal design, and
• block-wise design.

Again, we would like to highlight the fact that conditional on Fn, the ran-
domness of Aw

n and Bw
n derives from the random weights instead of ε. Besides

that, notice how the presence of different penalty weights in weighting scheme
(1.6) affects the strong irrepresentable condition (3.1) in Bw

n . We will see how
these different weighting schemes affect the constraints on pn and λn in order
to achieve conditional model selection consistency.

Theorem 3.1. (Conditional Model Selection Consistency) Assume as-
sumptions in Proposition 3.1.

(a) Under weighting schemes (1.4) and (1.5), if there exists 1
2 < c1 < c2 <

1.5− c1 and 0 ≤ c3 < min{2(c2− c1), 2c1− 1} for which λn = O (nc2) and
pn = O (nc3), then as n → ∞,

P
(
β̂w
n (λn)

s
= β0

∣∣Fn

)
→ 1 a.s. PD.

(b) Under weighting scheme (1.6), if (Wi,W0,j)
iid∼ Exp(θw) for some θw > 0,

and if η = 1pn−q, and if there exists 1
2 < c1 < c2 < 1.5− c1 and 0 ≤ c3 <

min{ 2
3 (c2 − c1), 2c1 − 1} for which λn = O (nc2) and pn = O (nc3), then

as n → ∞,

P
(
β̂w
n (λn)

s
= β0

∣∣Fn

)
→ 1 a.s. PD.

Theorem 3.1 could be interpreted as the “concentration” of the conditional
distribution of signs of β̂w

n around the neighborhood of the true signs of β as
n → ∞. Comparing the three weighting schemes, we can see that assigning ran-
dom weights on the penalty term further impedes how fast pn could increase with
n while achieving conditional model selection consistency, especially when the
penalty terms do not share a common random weight in weighting scheme (1.6).
This adversely affects/violates the strong irrepresentable assumption (3.1), un-
less under a stringent condition where η = 1. One sufficient condition for η = 1
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would be zero correlation between any relevant predictor and any irrelevant
predictor, i.e. Cn(21) = 0 for all n.

We also point out that the conditional model selection consistency property
under a fixed dimensional (pn = p) setting could be easily obtained by taking
c3 = 0 in Theorem 3.1.

The next two results concern with the properties of conditional consistency
and conditional asymptotic normality of the random-weighting samples under
a fixed-dimension (pn = p) setting.

Theorem 3.2. Suppose pn = p is fixed. Assume (2.1), (2.2) and (2.4).

(a) (Conditional Consistency) If
λn

n
→ 0, then for all three weighting

schemes (1.4), (1.5) and (1.6),

β̂w
n

c.p.−→ β0 a.s. PD.

(b) If
λn

n
→ λ0 ∈ (0,∞), then(

β̂w
n − β0

)
c.d.−→ argmin

u
g(u) a.s. PD,

where

g(u) = μWu′Cu+ λ0

p∑
j=1

Wj |β0,j + uj |

and

(i) Wj = 1 for all j under weighting scheme (1.4),

(ii) Wj = W0 for all j and W0 ∼ FW under weighting scheme (1.5),

(iii) Wj
iid∼ FW under weighting scheme (1.6).

In other words, the conditional distribution of β̂w
n concentrates in the neigh-

borhood of argminu g(u) as the sample size increases. In fact, for part (b)(i) of
Theorem 3.2, conditional convergence in probability takes place since g(u) is not
a random function (i.e., does not involve any non-degenerate random variables).

Theorem 3.3. (Asymptotic Conditional Distribution) Suppose pn = p is

fixed. Assume (2.1), (2.2) and (2.4). Let β̂SC
n be a strongly consistent estimator

of β in the linear model (1.1) such that for en = Y −Xβ̂SC
n ,

1√
n
X ′en → 0 a.s. PD. (3.2)

If q = p and
λn√
n
→ λ0 ∈ [0,∞), then

√
n
(
β̂w
n − β̂SC

n

)
c.d.−→ argmin

u
V (u) a.s. PD,
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where

V (u) = −2u′Ψ+ μWu′Cu+ λ0

p∑
j=1

Wj [uj sgn(β0,j)] ,

for Ψ ∼ N
(
0, σ2

Wσ2
εC
)
, and

(i) Wj = 1 for all j under weighting scheme (1.4),
(ii) Wj = W0 for all j, W0 ∼ FW and W0 ⊥ Ψ under weighting scheme (1.5),

(iii) Wj
iid∼ FW and Wj ⊥ Ψ for all j under weighting scheme (1.6).

In particular, if λ0 = 0, then for all three weighting schemes (1.4), (1.5) and
(1.6),

√
n
(
β̂w
n − β̂SC

n

)
c.d.−→ N

(
0 ,

σ2
Wσ2

ε

μ2
W

C−1

)
a.s. PD.

The OLS estimator β̂OLS
n and the standard LASSO estimator β̂LAS

n (λ∗
n) with

λ∗
n = o(

√
n) are two qualified candidates for β̂SC

n to satisfy the conditions in
Theorem 3.3. (Note that λ∗

n does not necessarily have to be the same as the
λn that we use for the random-weighting approach.) Firstly, due to Assumption

(2.4), β̂OLS
n is strongly consistent (Lai, Robbins and Wei, 1978), and

X ′eOLS
n =

(
X ′Y −X ′X(X ′X)−1X ′Y

)
= 0.

Meanwhile, since E(|εi|) < ∞ for all i and λ∗
n = o(

√
n), β̂LAS

n (λ∗
n) is strongly

consistent (Chatterjee and Lahiri, 2011a), and the KKT conditions ensure that

1√
n

∥∥X ′eLAS
n

∥∥
2
=

1√
n

∥∥∥X ′
(
y −Xβ̂LAS

n

)∥∥∥
2
≤ λ∗

n
√
p√

n
→ 0 a.s. PD.

We also point out that centering on the true regression parameter

√
n
(
β̂w
n − β0

)
.

results in additional terms that depend on the sample path of realized data
{y1, y2, · · · }. Consequently, convergence in conditional distribution almost surely
under PD (just like the result in Theorem 3.3) could not be achieved. We refer
readers to Remark A.1 in the Appendix for more details.

On the other hand, a more sophisticated argument is needed to establish
the asymptotic conditional distribution for the case of 0 < q < p. First, note
that for j ∈ {j : β0,j = 0}, √nβ̂SC

n,j has an asymptotic normal distribution
(denoted Zj) under PD. By the Skorokhod representation theorem, there exists

random variables Un,j and Uj such that Un,j
d
=

√
nβ̂SC

n,j , Uj
d
= Zj , and Un,j →

Uj a.s. PD. Then, for (λn/
√
n) → λ0 ∈ [0,∞),

√
n
(
β̂w
n − β̂SC

n

)
c.d.−→ argmin

u
V ∗(u) a.s. PD, (3.3)
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where

V ∗(u) =− 2u′Ψ+ μWu′Cu

+ λ0

p∑
j=1

Wj

[
uj sgn(β0,j)1{β0,j �=0} + (|Uj + uj | − |Uj |) 1{β0,j=0}

]
,

for Ψ and {Wj}1≤j≤p defined in Theorem 3.3.

The results presented above fulfill our first objective to study and extend
the asymptotic properties of the “one-step” random-weighting procedure that
was considered by Newton, Polson and Xu (2021). However, we also recognize
that the current “one-step” random-weighting setup (1.3) in Algorithm 1 does
not produce random-weighting samples that have conditional sparse normality
property. From Theorems 3.1 and 3.3, it is evident that even under a fixed
dimensional (pn = p) setting, the random weighting samples achieve conditional
model selection consistency when λn = O (nc) for some 1

2 < c < 1, whereas
conditional asymptotic normality happens when λn = o (

√
n).

Unsurprisingly, this finding about (lack of) conditional sparse normality ap-
proximation coincides with many existing Bayesian and frequentist results. For
instance, in the Bayesian framework, Theorem 7 of Castillo, Schmidt-Hieber
and van der Vaart (2015) proved that the Bayesian LASSO approach (Park and
Casella, 2008) could not achieve asymptotic sparse normality for any one given
λn due to the conflicting demands of sparsity-inducement and normality approx-
imation on the regularization parameter λn. In the frequentist setting, Liu and
Yu (2013) pointed out that there does not exist one λn that allows a standard
LASSO estimator (1.2) to simultaneously achieve model selection and asymp-
totic normality. Consequently, many variations of “two-step” LASSO estimators
(e.g., Zou (2006)’s ALasso), and their corresponding bootstrap procedures (e.g.,
Das, Gregory and Lahiri (2019)’s perturbation bootstrap of ALasso) were in-
troduced to overcome this shortcoming.

3.2. Two-step procedure

To overcome the regularization problem, we propose an extension to random
weighting in LASSO regression. We retain the random-weighting framework
of repeatedly assigning random-weights and optimizing the objective function
(1.3), except we propose optimization in two-steps: In step one, we optimize

min
β

⎧⎨⎩
n∑

i=1

Wi(yi − x′
iβ)

2 + λn

pn∑
j=1

W0,j |βj |

⎫⎬⎭ (3.4)

to select variables. Let Ŝw
n ⊆ {1, · · · , pn} be the set of variables being selected

in (3.4), and let (Ŝw
n )

c be the set of discarded variables. In addition, denote

XŜw
n
as the n× |Ŝw

n | submatrix of X whose columns correspond to the selected
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variables in (3.4). Then, in step two, we obtain our random-weighting samples
by solving

β̂w
n :=

⎡⎢⎣ β̂w
n,Ŝw

n

β̂w
n,(Ŝw

n )c

⎤⎥⎦ :=

⎡⎢⎣
(
X ′

Ŝw
n

DnXŜw
n

)−1

X ′
Ŝw
n

DnY

0

⎤⎥⎦ , (3.5)

where the partition of β̂w
n corresponds to Ŝw

n and
(
Ŝw
n

)c
.

Algorithm 2: Random-Weighting in LASSO+LS regression
Input :

• data: D = (y, X)

• regularization parameter: λn

• number of draws: B

• choice of random weight distribution: FW

• choice of weighting schemes: (1.4), (1.5) or (1.6)

Output :

• B sets of selected variables {Ŝw,b
n }Bb=1

• B parameter samples {β̂w,b
n }Bb=1

for b = 1 to B do
Draw i.i.d. random weights from FW and substitute them into (1.3) ;

Optimize (3.4) to obtain Ŝw,b
n ;

Based on the selected set of variables Ŝw,b
n , obtain β̂w,b

n by solving (3.5) ;

end

For convenience, we shall refer to this proposed extension as a “two-step pro-
cedure”, which is laid out in detail in Algorithm 2. This extension can be seen as
the random-weighting version of Liu and Yu (2013)’s LASSO+LS procedure, i.e.,
a LASSO step (1.2) for variable selection followed by a least-square estimation
for the selected variables. (Belloni and Chernozhukov (2013) had also studied
the finite-sample and asymptotic properties of the post-LASSO OLS estimator.)

We shall denote this unweighted two-step LASSO+LS estimator as β̂LAS+LS
n ,

and let Ŝn be the set of variables selected (in the first step) by this estimator.

Notice that Ŝn and Ŝw
n may be different due to the presence of random-weights

in the selection step of (3.4). The superscript w of Ŝw
n helps to remind readers

that the set of selected variables in (3.4) could change with different sets of
assigned random weights.

In this subsection, we adopt the same assumptions as we did in Theorem 3.1,
including the fact that pn ≤ n and X is full rank for all n. Thus XŜw

n
is full

rank and consequently,

X ′
Ŝw
n

DnXŜw
n

is also full rank and is invertible for all n.
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For ease of presentation, we introduce a bit of additional notation. Let S0 be
the true set of relevant variables. To be consistent with our previous notation, we
remind readers that S0 = {1, · · · , q} without loss of generality, and XS0 = X(1).

We also partition β̂w
n and β̂LAS+LS

n into

β̂w
n =

⎡⎢⎣β̂w
n(1)

β̂w
n(2)

⎤⎥⎦ and β̂LAS+LS
n =

⎡⎢⎣β̂
LAS+LS
n(1)

β̂LAS+LS
n(2)

⎤⎥⎦
respectively, which correspond to the partition of β0 =

[
β0(1) β0(2)

]′
. We ob-

serve that if Ŝw
n = S0, then

β̂w
n,Ŝw

n

= β̂w
n(1) and β̂w

n,(Ŝw
n )c

= β̂w
n(2) = β0(2) = 0.

Similarly, if Ŝn = S0, then

β̂LAS+LS

n,Ŝn
= β̂LAS+LS

n(1) and β̂LAS+LS

n,(Ŝn)c
= β̂LAS+LS

n(2) = β0(2) = 0.

We are now ready to establish the conditional sparse normality property of
the two-step random-weighting samples (3.5) under growing pn setting with
appropriate regularity conditions.

Theorem 3.4. (Conditional Sparse Normality) Adopt all regularity as-
sumptions as stated in Theorem 3.1 (including assumptions about the different
rates of λn and pn for weighting schemes (1.4), (1.5) and (1.6)). Furthermore,

assume μW = 1 and Cn(11) → C11 for some nonsingular matrix C11. Let β̂w
n

be the two-step random-weighting samples defined in (3.5), and let β̂LAS+LS
n be

the unweighted two-step LASSO+LS estimator (i.e. a LASSO variable selection
step (1.2) followed by least-squares estimation for the selected variables). Then,

P
(
Ŝw
n = S0

∣∣Fn

)
→ 1 a.s. PD,

and √
n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
c.d.−→ Nq

(
0 , σ2

Wσ2
εC

−1
11

)
a.s. PD.

Theorem 3.4 highlights the improvement brought about by the extended
random-weighting framework as compared to the original “one-step” proce-
dure considered by Newton, Polson and Xu (2021). With a common regular-
ization parameter λn (and all regularity conditions that apply), the two-step
random-weighting samples attain conditional model selection consistency and
achieve conditional asymptotic normality (by centering at the unweighted two-
step LASSO+LS estimator) on the true support S0 under growing pn setting.
We note that the rate of convergence for selection above is relatively slow (see
Lemma A.11 in the Appendix). In any case, the theorem assures that appropri-
ate confidence intervals constructed from the two-step random-weighting sam-
ples have coverage that converges to the nominal value.
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We conclude this section by establishing that the random-weighting samples
from the two-step procedure also achieve the conditional consistency property
under growing pn setting. This could be viewed as an improvement to the result
that we have in Theorem 3.2(a) which applies to fixed dimensional setting only.

Theorem 3.5. (Conditional Consistency) Adopt all regularity assumptions
as stated in Theorem 3.1 (including assumptions about the different rates of λn

and pn for weighting schemes (1.4), (1.5) and (1.6)). Let β̂w
n be the two-step

random-weighting samples defined in (3.5). Then∥∥∥β̂w
n − β0

∥∥∥
2

c.p.−→ 0 a.s. PD.

Theorem 3.5 indicates a concentration of the conditional distribution of β̂w
n

near β0 with increasing sample size given almost any data set.

3.3. Remarks

The two-step random-weighting procedure is a valid bootstrap procedure for
Liu and Yu (2013)’s LASSO+LS estimator β̂LAS+LS

n under growing pn setting.
Using very similar regularity assumptions, Liu and Yu (2013) showed that their
LASSO+LS method gives consistent model selection under PD, and

√
n
(
β̂LAS+LS
n(1) − β0(1)

)
converges toN

(
0 , σ2

εC
−1
11

)
under PD. Hence, based on Theorem 3.4, by fulfilling

the appropriate regularity assumptions and drawing random weights from FW

with unitary mean and variance (μW = σ2
W = 1), the conditional distribution

of the two-step random-weighting samples β̂w
n converges to the same distribu-

tional limit of the LASSO+LS estimator under PD. This enables the two-step
random-weighting procedure to produce bootstrap samples that provide valid
distributional approximation to the LASSO+LS estimator. It also assures that
the coverage of confidence intervals constructed from the random weighting
samples (e.g. by percentile method) will converge to the nominal coverage.

We point out that by capitalizing on the sub-Gaussian nature of ε, Liu and Yu
(2013)’s proposed residual bootstrap procedure for their LASSO+LS estimator
works under high-dimensional setting where pn grows nearly exponential with
sample size n. On the other hand, in this paper, we only require finite fourth
moment assumptions for both error term ε and random weights W , and our
random-weighting procedure only allows pn to grow at a polynomial rate of
o(
√
n).

Similarly, under fixed dimensional (pn = p) setting where β0 is not sparse
(i.e. q = p), our one-step random-weighting approach in Algorithm 1 could also

be a valid bootstrap procedure for the standard LASSO estimator β̂LAS
n (λn).

Specifically, Knight and Fu (2000) proved that for (λn/
√
n) → λ0 ∈ [0,∞),

√
n
(
β̂LAS
n (λn)− β0

)
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converges to the same distributional limit stated in Theorem 3.3 under PD.
However, for the case where q < p, the one-step random-weighting procedure no
longer provides valid distributional approximation to β̂LAS

n (λn), as evident from
the Skorokhod argument. This mimics the asymptotic conditional distribution
of the LASSO parametric residual bootstrap (Knight and Fu, 2000).

4. Numerical experiments

We perform simulation studies and data analysis using R (R Core Team, 2019);
all source code is available at the Github public repository: https://github.com/
wiscstatman/optimizetointegrate/tree/master/Tun.

4.1. Simulation

A simulation study of one-step random-weighting procedures (Algorithm 1) was
previously reported (Newton, Polson and Xu, 2021), and so here we study per-
formance of the two-step random-weighting procedure (Algorithm 2) for all three
weighting schemes (1.4), (1.5) and (1.6) – denoted RW1, RW2 and RW3 respec-
tively – in several experimental settings, and compare it with:

• Bayesian LASSO (Park and Casella, 2008), which can be easily imple-
mented with R package monomvn (Gramacy, Moler and Turlach, 2019)

• parametric residual bootstrap (Knight and Fu, 2000), which is a very com-
mon and easily implementable bootstrap procedure in LASSO regression.
We denote this method as RB thereafter.

We drew inspiration from Das and Lahiri (2019), Liu and Yu (2013) and
Newton, Polson and Xu (2021) in setting up our simulation schemes. Specifically,
we consider 8 simulation settings as tabulated in Table 1. In all settings, the
generative state β0 = (β0,1, · · · , β0,p)

′ is defined as β0,j = (3/4) + (1/4)j for
j = 1, · · · , q and β0,j = 0 for j = q+1, · · · , p. The predictors xi are drawn from
p-variate normal distribution with different covariance structures. Σ(1) has the
following structure

Σ
(1)
i,j = 1{i=j} + 1{i �=j} ×

(
0.3|i−j|1{i≤q}1{j≤q}

)
for 1 ≤ i, j ≤ 10. (4.1)

Σ(3) also has the same structure as (4.1), except that it has larger dimension
p = 50. Meanwhile, Σ(2) has the following structure: for 1 ≤ i, j ≤ 10,

Σ
(2)
i,j = 1{i=j} + 1{i �=j} ×

[
0.41{i≤q}1{j≤q} + 0.5

(
1− 1{i≤q}1{j≤q}

)]
.

We verify that only simulation settings 5 and 6 violate the strong irrepresentable
condition (3.1), whereas the other six simulation settings satisfy assumption
(3.1). By simulating i.i.d. εi and xi, we generate yi = xiβ0+ εi for i = 1, · · · , n.

Purpose of simulation setup: The even-numbered simulation settings
share the same specifications as their odd-numbered counterparts except with

https://github.com/wiscstatman/optimizetointegrate/tree/master/Tun
https://github.com/wiscstatman/optimizetointegrate/tree/master/Tun
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Table 1

Simulation Settings

Setting n p q εi xi ∼ Np(0,Σ)

1 100 10 6 N(0, 1) Σ = Σ(1)

2 500 10 6 N(0, 1) Σ = Σ(1)

3 100 10 6 χ2
2 − 2 Σ = Σ(1)

4 500 10 6 χ2
2 − 2 Σ = Σ(1)

5 100 10 6 N(0, 1) Σ = Σ(2)

6 500 10 6 N(0, 1) Σ = Σ(2)

7 100 50 6 N(0, 1) Σ = Σ(3)

8 500 50 6 N(0, 1) Σ = Σ(3)

larger sample size n (e.g. Setting 2 versus Setting 1, Setting 4 versus Setting 3,
et cetera). Simulation Settings 3 and 4 are used as an example of cases where
the error term ε is no longer normally distributed, whereas Simulation Settings
5 and 6 are set up to illustrate the situations where the strong irrepresentable
condition (3.1) is violated. Finally, we increase the dimension p of predictors
by five-fold in Settings 7 and 8 to compare performances in higher-dimensional
setting.

For each simulation setting, we generate T = 500 independent datasets. For
each simulated data set, we draw B = 1000 posterior/bootstrap samples from
the 5 aforementioned methods: Bayesian LASSO (BLASSO), two-step random-
weighting with schemes (1.4), (1.5) and (1.6), and residual bootstrap. For the
Bayesian LASSO procedure, we specify a 2000 burn-in period. In addition,
Bayesian LASSO imposes a noninformative marginal prior on σ2

ε , π(σ
2
ε ) ∼ 1/σ2

ε ,
and a Jeffrey’s prior on λn. To induce sparsity in the MCMC samples of β, the
posterior distribution is sampled by a Reversible Jump Markov Chain Monte
Carlo (RJMCMC) algorithm (Green, 1995), with a uniform prior specified on
the number of non-zero coefficients to be included in the model. For the three
random-weighting schemes, all i.i.d. random weights are drawn from a standard
exponential distribution. The regularization parameter λn is chosen via cross-
validation using Liu and Yu (2013)’s (unweighted) LASSO+LS procedure, and
then the same λn is used to draw the 1000 random-weighting samples according
to Algorithm 2. We note that the optimization step (3.4) can be easily computed
using R package glmnet (Friedman, Hastie and Tibshirani, 2010). Meanwhile
for residual bootstrap, its regularization parameter λRB

n is chosen via cross-
validation using standard LASSO, and values of λRB

n are thereafter fixed for all
bootstrap computations on the same dataset.

For each of the five aforementioned methods, we obtain {β̂(b,t)
j } that repre-

sents the jth component of sampled/bootstrapped β in the bth iteration for the
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Fig 1. Simulation: Sampling distribution of conditional (on data) probabilities of selecting
β1 and β7 among T = 500 simulated data sets in 8 simulation settings by the 5 methods:
MCMC via Bayesian LASSO, two-step random-weighting approach using weighting schemes
(1.4) (denoted RW1), (1.5) (denoted RW2) and (1.6) (denoted RW3), and LASSO residual
bootstrap (denoted RB).

tth simulated data set, where j = 1, · · · , p, and b = 1, · · · , B, and t = 1, · · · , T .
To be precise, we have{

β̂
(b,t)
j(MCMC), β̂

(b,t)
j(RW1), β̂

(b,t)
j(RW2), β̂

(b,t)
j(RW3), β̂

(b,t)
j(RB)

}
that correspond to the sampled/bootstrapped β’s of the five aforementioned
methods, but for brevity we drop the subscripts whenever it does not cause any
confusion, since each method is subject to the same performance evaluation. We
then assess the performances of each of these five methods – BLASSO, RW1,
RW2, RW3 and RB – in each of the 8 simulation settings using the following
comparison criteria:



3448 T. L. Ng and M. A. Newton

Table 2

Empirical coverage q̂j and average width l̂j (in parentheses) of the two-sided 90% CI for the
first 10 variables in Simulation Setting 8, using the five approaches: MCMC via BLASSO,
two-step random-weighting approach using weighting schemes (1.4) (denoted RW1), (1.5)
(denoted RW2) and (1.6) (denoted RW3), and LASSO residual bootstrap (denoted RB).

β0,j MCMC RW1 RW2 RW3 RB

1.00
0.918 0.878 0.882 0.906 0.344
(0.161) (0.152) (0.152) (0.16) (0.153)

1.25
0.908 0.88 0.876 0.904 0.588
(0.169) (0.158) (0.159) (0.168) (0.16)

1.50
0.894 0.864 0.868 0.886 0.578
(0.168) (0.158) (0.158) (0.165) (0.16)

1.75
0.918 0.886 0.892 0.9 0.596
(0.168) (0.159) (0.159) (0.165) (0.16)

2.00
0.922 0.894 0.882 0.898 0.556
(0.168) (0.159) (0.159) (0.164) (0.16)

2.25
0.886 0.866 0.872 0.874 0.35
(0.161) (0.151) (0.152) (0.157) (0.153)

0.00
1 1 1 1 0.998

(0.04) (0.016) (0.096) (0.099) (0.023)

0.00
1 0.998 1 1 1

(0.041) (0.018) (0.097) (0.1) (0.024)

0.00
1 1 1 1 1

(0.04) (0.015) (0.097) (0.099) (0.023)

0.00
0.998 1 1 1 1
(0.04) (0.015) (0.097) (0.1) (0.023)

• Conditional (on data) probability of selecting the jth variable where j =
1, · · · , p. Specifically, for each simulated data set t = 1, · · · , T , we keep
track of

p̂
(t)
j :=

1

B

∣∣∣{b : β̂(b,t)
j �= 0

}∣∣∣ .
We note that the computation of p̂

(t)
j is sensible because all the five meth-

ods (including BLASSO with RJMCMC implementation) induce sparsity
in the sampled/bootstrapped β’s.

• Coverage and average width of the two-sided 90% credible/confidence in-
terval (CI) for the jth variable where j = 1, · · · , p. Specifically, denote
r̂
(t)
0.05,j and r̂

(t)
0.95,j as the 5th percentile and 95th percentile of the empirical

distribution of {β̂(b,t)
j }1≤b≤B. Then, the average width (across T = 500

simulated data sets) of the two-sided 90% CI for the jth variable is com-
puted as

l̂j :=
1

T

T∑
t=1

(
r̂
(t)
0.95,j − r̂

(t)
0.05,j

)
,



Random weighting 3449

and its corresponding empirical coverage is calculated as

q̂j :=
1

T

∣∣∣{t : r̂(t)0.05,j ≤ β0,j ≤ r̂
(t)
0.95,j

}∣∣∣ .
Firstly, as expected, performance improves with larger sample size n, such as

higher coverage probabilities and narrower CI’s. Secondly, we note that the two-
step random-weighting approach, especially weighting schemes (1.4) and (1.5)
– denoted RW1 and RW2, outperforms the LASSO residual bootstrap (denoted
RB) in all performance measures.

In Figure 1, we show the sampling distributions of
{
p̂
(t)
1

}
1≤t≤T

and{
p̂
(t)
7

}
1≤t≤T

among the T = 500 simulated data sets in the 8 simulation settings

for all the five methods. Recall that the first variable corresponds to β0,1 = 1
and the seventh variable corresponds to β0,7 = 0. Sampling distribution of con-
ditional (on data) probabilities of selecting other relevant predictors is similar
to that of the first variable, and sampling distribution of conditional proba-
bilities of selecting other irrelevant predictors is similar to that of the seventh
variable. In all 8 simulation settings, all methods almost always select the first
variable, except for RW3 in Simulation Settings 5 and 6, due to the violation
of condition (3.1). However, similar to MCMC, the two-step random-weighting
schemes (especially RW1) have lower conditional probabilities of selecting the
seventh variable (which is an irrelevant predictor) than the LASSO RB. This
illustrates that the two-step random-weighting approach is more capable of dis-
carding irrelevant variables as compared to LASSO residual bootstrap. Only in
Simulation Settings 5 and 6 do we see similarly high conditional probabilities of
selecting the seventh variable among RW1, RW2, RW3 and RB, due to violation
of condition (3.1).

Empirical coverage and average width of the two-sided 90% CI’s for relevant
predictors (i.e. β0,j �= 0) paint a similar story. For illustration, the empirical

coverage q̂j and average width l̂j (in parentheses) of the two-sided 90% CI
for the first 10 variables, i.e. for j = 1, · · · , 10, in Simulation Setting 8, are
tabulated in Table 2. Generally, average widths of CI’s are similar among all
five methods in all but two simulation settings, where RW3 has much wider
90% CI’s in Simulation Settings 5 and 6. Interestingly, empirical coverage for
MCMC and random-weighting samples is similar and close to 90%, but the
LASSO residual bootstrap samples always have the lowest empirical coverage,
especially in Simulation Settings 7 and 8, where their empirical coverage is only
around 30%–40%.

In addition, we obtain the total variation distance between empirical cumula-
tive distribution function (ecdf) of MCMC samples and ecdf of samples produced
by one of the other four methods – the two-step random-weighting (RW1, RW2
and RW3) and residual bootstrap (RB). The intent is to assess how well the
random-weighting methods approximate the MCMC-approximated posterior.
Specifically, for the jth variable in the tth simulated data set, let

F̂
(t)
j(MCMC) = ecdf of

{
β̂
(b,t)
j(MCMC)

}
1≤b≤B

,
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Fig 2. Simulation: Sampling distribution of total variation distance between the random-
weighting distribution and a Bayesian posterior (averaged across all β’s) among T = 500
simulated data sets in 8 simulation settings between ecdf of MCMC samples and ecdf of
samples from each of the 4 methods: two-step random-weighting approach using weighting
schemes (1.4) (denoted RW1), (1.5) (denoted RW2) and (1.6) (denoted RW3), and LASSO
residual bootstrap (denoted RB).

and let F̂
(t)
j(.) be the ecdf of samples produced by one of the other 4 methods:

RW1, RW2, RW3 or RB. Note that the ecdf’s are easily obtained via the function
ecdf in R base package (R Core Team, 2019). Then, for each of the 4 methods,
we keep track of the total variation (averaged across all p variables) for each
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Table 3

Variables in Boston Housing Data Set

Abbreviation Variable
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitrogen oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted mean of distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per $10,000
ptratio pupil-teacher ratio by town
Black proportion Black residents by town
lstat lower status of the population (percent)

simulated data set t = 1, · · · , T :

TV(t) =
1

p

p∑
j=1

1

2

∑
ω∈Ω

∣∣∣F̂ (t)
j(MCMC)(ω)− F̂

(t)
j(.)(ω)

∣∣∣ ,
where the inner summation is approximated using a trapezoidal rule with an
interval width of 0.001.

Figure 2 displays the sampling distribution of total variation distance between
the random-weighting distribution and a Bayesian posterior (averaged across all
β’s), {TV (t)}1≤t≤T , among the T = 500 simulated data sets in the 8 simulation
settings for the 4 methods: RW1, RW2, RW3 and RB. Generally, larger sample
size n leads to smaller total variations. Moreover, in all simulation settings, RW1
and RW2 have smaller total variations than that of RB, which illustrates the
viability of the two-step random-weighting samples to approximate posterior
inference. RW3 has larger total variations especially in Settings 5 and 6, where
the strong irrepresentable condition (3.1) is violated. This illustrates the need for
restrictive regularity assumption for weighting scheme (1.6) that we highlighted
in part (c) of Theorem 3.1.

4.2. Benchmark data example

To further illustrate the two-step random-weighting methodology, we apply it
to the often-analyzed Boston Housing data set, which is available in the R
package MASS (Venables and Ripley, 2002). Data from n = 506 housing prices in
the suburbs of Boston are available, with response the median value of owner-
occupied homes in $1000’s, and with 13 variables (p = 13) listed in Table 3.

Again, we apply Bayesian LASSO, the random-weighting approach for all
three weighting schemes (1.4), (1.5) and (1.6) according to Algorithm 2, as
well as the parametric residual bootstrap method (Knight and Fu, 2000) with
B = 1000. We use the same prior specifications as well as RJMCMC imple-
mentation for Bayesian LASSO as we did in our simulation studies. For the
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Fig 3. Boston Housing data example: Marginal posterior/conditional distribution plots for
β = (β1, · · · , β13)′ sampled from the 5 methods – MCMC via Bayesian LASSO, the two-step
random-weighting approach using weighting schemes (1.4) (1.5) and (1.6) (denoted RW1,
RW2 and RW3 respectively), as well as the parametric residual bootstrap (denoted RB).
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random-weighting approach, random weights are drawn from a standard ex-
ponential distribution, and the regularization parameter is chosen with cross-
validation using Liu and Yu (2013)’s unweighted LASSO+LS procedure (i.e.
2-step cross-validation). Meanwhile, for residual bootstrap, its regularization
parameter is chosen via cross-validation using standard LASSO.

Figure 3 shows the marginal posterior distributions of β’s sampled from
MCMC as well as the marginal conditional (on data) distributions of β’s ob-
tained from the random-weighting methods and the parametric residual boot-
strap. For most of the coefficients, there is very good agreement among the
methods. One notable feature is that the parametric residual bootstrap ap-
proach induces the least sparsity among all five methods for variables indus and
age. In addition, Bayesian LASSO appears to introduce slightly more sparsity
than the random-weighting schemes for the variable age. Besides that, random-
weighting with different penalty weights (1.6) appears to produce lower outliers
for variables crim, indus and ptratio.

5. Discussion

The findings above extend what is known about asymptotic conditional sampling
distribution of random-weighting solutions in LASSO regression, and thereby
contribute to our understanding of uncertainty quantification in penalized esti-
mation settings. Because random weighting is readily deployed in contemporary
applications involving large-scale optimization, further work is warranted that
sheds more light on the random-weighting approach and its links with bootstrap
and Bayesian approaches.

Connection to bayes

Our foray into random-weighting asymptotics was motivated in part by re-
newed interest in the algorithm from the perspective of Bayesian nonparametric
learning and generalized Bayesian analysis: Bissiri, Holmes and Walker (2016);
Lyddon, Walker and Holmes (2018); Lyddon, Holmes and Walker (2019); Fong,
Lyddon and Holmes (2019); Pompe (2021). We have not pursued those connec-
tions here, considering for example technical difficulties in working the appro-
priate prior distributions, but rather have focused on asymptotic conditional
sampling theory.

Perturbation bootstrap (in general)

Whilst the random-weighting approach has a Bayesian justification, its resem-
blance to existing bootstrap algorithms, especially the perturbation bootstrap,
warrants a comparison with non-Bayesian bootstrap literature. The (naive) per-
turbation bootstrap was introduced by Jin, Ying and Wei (2001) as a method
to estimate sampling distributions of estimators related to U -process-structured



3454 T. L. Ng and M. A. Newton

objective functions. Chatterjee and Bose (2005) established first-order distri-
butional consistency of a generalized perturbation bootstrap technique in M-
estimation where they allowed both n → ∞ and pn → ∞. That paper also
pointed out that for broader classes of models, the generalized bootstrap method
is not second-order accurate without appropriate bias-correction and studen-
tization. In particular, the work in (naive) perturbation bootstrap resembles
the Bayesian NPL objective function (Fong, Lyddon and Holmes, 2019). Sub-
sequently, Minnier, Tian and Cai (2011) proved the first-order distributional
consistency of the perturbation bootstrap for Zou (2006)’s Adaptive LASSO
(ALasso) and Fan and Li (2001)’s smoothly clipped absolute deviation (SCAD)
under fixed-p setting in order to construct accurate confidence regions for ALasso
and SCAD estimators. Again, their work has the flavor of Bayesian Loss-NPL
(Fong, Lyddon and Holmes, 2019) where the loss function is either ALasso or
SCAD. More recently, Das, Gregory and Lahiri (2019) extended the work of
Minnier, Tian and Cai (2011) by introducing a suitably Studentized version of
modified perturbation bootstrap ALasso estimator that achieves second-order
correctness in distributional consistency even when pn → ∞.

Bootstrapping for LASSO

Various bootstrap techniques have been considered to construct confidence re-
gions for standard LASSO estimators in (1.2) under different model settings,
including fixed or random design, as well as homoscedastic or heteroscedastic
errors ε. Knight and Fu (2000) first considered the residual bootstrap under
fixed design and homoscedastic error. Chatterjee and Lahiri (2010) presented a
rigorous proof for the heuristic discussion of Knight and Fu (2000)’s Section 4
to show that the LASSO residual bootstrap samples fail to be distributionally
consistent unless β0 is not sparse, for which Knight and Fu (2000) invoked the
Skorokhod’s argument. Subsequently, Chatterjee and Lahiri (2011b) rectified
the shortcoming by proposing a modified residual bootstrap method by thresh-
olding the Lasso estimator. Meanwhile, Camponovo (2015) proposed a modified
paired-bootstrap technique and established its distributional consistency to ap-
proximate the distribution of Lasso estimators in linear models with random
design and heteroscedastic errors. Recently, Das and Lahiri (2019) considered
the perturbation bootstrap method for Lasso estimators under both fixed and
random designs with heteroscedastic errors. Since centering on the thresholded
Lasso estimator (c.f. Chatterjee and Lahiri, 2011b) resulted in distributional
inconsistency of the naive perturbation bootstrap, Das and Lahiri (2019) pro-
ceeded with a suitably Studentized version of modified perturbation bootstrap
(c.f. Das, Gregory and Lahiri (2019)) to rectify the shortcoming.

Comparison and contribution of our paper

Interestingly, the setup of naive perturbation bootstrap in Das and Lahiri (2019)
mimics the proposed random-weighting approach (1.3) in LASSO regression
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with weighting scheme (1.4), but there remain some differences in our approach.
Das and Lahiri (2019) also considered heteroscedastic error term ε, which we do
not consider in this paper. Meanwhile, the weighting schemes considered in this
paper are slightly more flexible, since we also consider the cases where indepen-
dent random weights are also assigned on the LASSO penalty term in weighting
schemes (1.5) and (1.6). The random weights in Das and Lahiri (2019)’s per-
turbation bootstrap are restricted to independent draws from distribution with
σ2
W = μ2

W , whereas we consider any positive random weights with finite fourth
moment. Furthermore, our extended random-weighting framework in Section 3.2
attains conditional sparse normality property under growing pn setting, whereas
Das and Lahiri (2019)’s (modified) perturbation bootstrap method achieves dis-
tributional consistency under fixed dimensional (pn = p) setting.

Appendix A

We present the key steps of the proofs for all the theorems and proposition in this
paper. More detailed derivations are furnished in Ng (2022). Many subsequent
proofs rely on this following result.

Lemma A.1. Let U1, U2, · · · be any i.i.d. random variables with E(Ui) = 0 and
E[(Ui)

2] = σ2 < ∞. Then for any bounded sequence of real numbers {ki} and
for any 1

2 < c < 1,

1

nc

n∑
i=1

kiUi
a.s.−→ 0.

Proof. This lemma is a slight generalization of Theorem 2.5.8 of Durrett (2010).
Apply the same techniques in Durrett (2010)’s proof to obtain the result; oth-
erwise, see Ng (2022) for more details.

Lemma A.2. Assume assumptions (2.2) and (2.3). Then,∥∥∥∥(Cw
n(11)

)−1
∥∥∥∥
2

= Op(1).

Proof. Due to assumptions (2.2) and (2.3) and that q is fixed, Cn(11) is invertible
for all n. It is also easy to verify that Cw

n(11) is invertible for every n. Next,

Cw
n(11) = Cn(11) +

1

n
X ′

(1)(Dn − μW In)X(1)

where the Strong Law of Large Numbers ensures that

1

n
X ′

(1)(Dn − μW In)X(1)
a.s.−→ 0

due to assumption (2.2). Since Cn(11) is invertible for all n, we have∥∥∥∥(Cw
n(11)

)−1
∥∥∥∥
2

=
∥∥∥(Cn(11) + o(1)

)−1
∥∥∥
2
= O(1) a.s.
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In fact, if we assume Cn(11) → C11 for some nonsingular matrix C11 in Lemma
A.2, then by the Strong Law of Large Numbers and Continuous Mapping The-
orem, (

Cw
n(11)

)−1 a.s.−→ 1

μW
C−1

11 .

Lemma A.3. Assume assumptions (2.2) and (2.3). For any 1
2 < c1 < 1, if ∃

0 ≤ c3 < 2c1 − 1 for which pn = O(nc3), then∥∥∥n1−c1C̃w
n

∥∥∥
2
= op(1).

Proof. Let

H = X(1)C
−1
n(11)Cn(12) −X(2).

Then

n1−c1C̃w
n =

1

nc1
H ′(μW In −Dn)X(1)

(
Cw

n(11)

)−1

.

Due to assumptions (2.2) and (2.3) and that q is fixed, every element of the
matrix H is bounded. Let hij and xij be the (i, j)th element of H and X(1)

respectively. For 0 ≤ c3 < 2c1 − 1, by Lemma A.1,

1

nc1− c3
2

n∑
i=1

hk,ixi,l(Wi − μW )
a.s.−→ 0

for every k = 1, · · · , pn − q and l = 1, · · · , q. Thus,∥∥∥∥ 1

nc1
H ′(μW In −Dn)X(1)

∥∥∥∥2
2

≤
∥∥∥∥ 1

nc1
H ′(μW In −Dn)X(1)

∥∥∥∥2
F

=

pn−q∑
k=1

q∑
l=1

[
1

n
c3
2

× 1

nc1− c3
2

n∑
i=1

hk,ixi,l(μW −Wi)

]2
= O(pn)× o

(
n−c3

)
= o(1) a.s..

Finally, by Lemma A.2,∥∥∥n1−c1C̃w
n

∥∥∥
2
≤
∥∥∥∥ 1

nc1
H ′(μW In −Dn)X(1)

∥∥∥∥
2

∥∥∥∥(Cw
n(11)

)−1
∥∥∥∥
2

= op(1).

Lemma A.4. Suppose that pn = p is fixed. Assume (2.2) and (2.4). Then, as
n → ∞,

μW

n
X ′DnX

a.s.−→ μWC.
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Proof. Due to assumption (2.2), the Strong Law of Large Numbers gives

1

n
X ′(Dn − μW In)X =

1

n

n∑
i=1

(Wi − μW )xix
′
i

a.s.−→ 0,

where xi is the ith row of X. Then, due to assumption (2.4),

1

n
X ′DnX =

1

n
X ′(Dn − μW In)X +

μW

n
X ′X

a.s.−→ 0+ μWC = μWC.

An immediate consequence of Lemma A.4 is that when p is fixed,

Cw
n(ij)

a.s.−→ μWCij ∀ i, j = 1, 2.

We remind readers that in this paper, we consider a common probability space
P = PD×PW , which correspond to the two sources of randomness (ε,W ). Note
that the product probability space highlights the fact that the random weights
W are drawn independently from the data D. The rest of the proofs deals with
convergence of conditional probabilities/distributions (given data, i.e. given Fn)
for expressions containing ε, where the convergence takes place almost surely
under PD (i.e. for almost every data set). See Mason and Newton (1992) for
relevant background.

Lemma A.5. Assume (2.1). Then

ε′Dnε

n

c.p.−→ μWσ2
ε a.s. PD.

Proof. Clearly,

1

n

n∑
i=1

ε2i → σ2
ε a.s. PD.

Due to assumption (2.1),

1

n

n∑
i=1

ε4i = O(1) a.s. PD,

which leads to

1

n2

n∑
i=1

E(ε4iW
2
i

∣∣Fn) =
1

n2

n∑
i=1

ε4iE(W
2
i ) =

σ2
W + μ2

W

n

(
1

n

n∑
i=1

ε4i

)
→ 0 a.s. PD.

Hence, by the Weak Law of Large Numbers (e.g., Theorem 1.14(ii) of Shao
(2003)),

ε′Dnε

n
=

1

n

n∑
i=1

ε2i (Wi − μW ) +
μW

n

n∑
i=1

ε2i
c.p.−→ 0+ μWσ2

ε = μWσ2
ε a.s. PD.
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Lemma A.6. Assume (2.1), (2.2) and (2.3). Then for any c > 0,

1

nc
Zw

n(1) = op(1) a.s. PD.

Proof. Let xij be the (i, j)th element of X(1). Then, we can rewrite

(
1

nc

∥∥∥Zw
n(1)

∥∥∥
2

)2

=
1

n2c

q∑
j=1

(
1√
n

n∑
i=1

εixji(Wi − μW ) +
μW√
n

n∑
i=1

εixji

)2

=

q∑
j=1

(
1

n
1
2+c

n∑
i=1

εixji(Wi − μW ) +
μW

n
1
2+c

n∑
i=1

εixji

)2

.

Due to assumptions (2.1) and (2.2) and that FW has finite fourth moment, we
could deploy the Lindeberg’s Central Limit Theorem∑n

i=1 εixji(Wi − μW )√
σ2
W

∑n
i=1 ε

2
ix

2
ji

c.d.−→ N(0, 1) a.s. PD;

see Ng (2022) for more details on how the Liapounov sufficient condition is
satisfied a.s. PD. Subsequently, for all j = 1, · · · , q,

1√
n

n∑
i=1

εixji(Wi − μW )

=

√√√√σ2
W

n

n∑
i=1

ε2ix
2
ji ×

∑n
i=1 εixji(Wi − μW )√
σ2
W

∑n
i=1 ε

2
ix

2
ji

= Op(1) a.s. PD,

and hence,

1

n
1
2+c

n∑
i=1

εixji(Wi − μW ) = op(1) a.s. PD.

Finally, by assumption (2.2) and Lemma A.1,

μW

n
1
2+c

n∑
i=1

εixji → 0 a.s. PD

for all j = 1, · · · , q. Since q is fixed,(
1

nc

∥∥∥Zw
n(1)

∥∥∥
2

)2

= op(1) a.s. PD,

and the result follows.
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If we assume that Cn(11) → C11 for some nonsingular matrix C11 in Lemma
A.6, notations could be simplified in the preceding proof by using Cramer-Wold
device. We point out to readers that the Cn(11) → C11 assumption is required in
Theorem 3.4 but not in Theorem 3.1. The following proof contains some interim
results that will be utilized in the proof of Theorem 3.4.

Specifically, let xi(1) be the ith row of X(1). Then, for every z ∈ R
q,

z′
[

1√
n
X ′

(1)(Dn − μW In)ε

]
=

1√
n

n∑
i=1

εi(Wi − μW )z′xi(1)

=

√√√√σ2
W

n

n∑
i=1

ε2i
(
z′xi(1)

)2 × ∑n
i=1 εi(Wi − μW )z′xi(1)√
σ2
W

∑n
i=1 ε

2
i

(
z′xi(1)

)2 .

Now,

1

n

n∑
i=1

ε2i
(
z′xi(1)

)2
= z′

(
1

n

n∑
i=1

ε2ixi(1)x
′
i(1)

)
z

= z′

(
σ2
εCn(11) +

1

n

n∑
i=1

(
ε2i − σ2

ε

)
xi(1)x

′
i(1)

)
z

→ z′ (σ2
εC11

)
z a.s. PD

due to assumption (2.2) and the Strong Law of Large Numbers. Next, by as-
suming (2.1) and (2.2) and that FW has finite fourth moment, we could deploy
the Lindeberg’s Central Limit Theorem∑n

i=1 εi(Wi − μW )z′xi(1)√
σ2
W

∑n
i=1 ε

2
i

(
z′xi(1)

)2 c.d.−→ N(0, 1) a.s. PD;

see Ng (2022) for more details on how the Liapounov sufficient condition is
satisfied a.s. PD. Then, by Slutsky’s Theorem, for every z ∈ R

q,

z′
[

1√
n
X ′

(1)(Dn − μW In)ε

]
c.d.−→ N

(
0 , z′ (σ2

Wσ2
εC11

)
z
)
.

and by Cramer-Wold device,

1√
n
X ′

(1)(Dn − μW In)ε
c.d.−→ Nq

(
0 , σ2

Wσ2
εC11

)
,

Since assumption (2.2) and Lemma A.1 ensure that for any c > 0,

1

n
1
2+c

X ′
(1)ε → 0 a.s. PD,
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we finally have

1

nc
Zw

n(1) =
1

nc

[
1√
n
X ′

(1)(Dn − μW In)ε

]
+

μW

n
1
2+c

X ′
(1)ε = op(1) a.s. PD.

Lemma A.7. Assume (2.1), (2.2) and (2.3).

(a) If there exists 1
2 < c1 < c2 < 1.5 − c1 and 0 ≤ c3 < 2(c2 − c1) for which

pn = O(nc3), then

1

nc2− 1
2

∥∥∥Zw
n(3)

∥∥∥
2
= op(1) a.s. PD.

(b) If there exists 1
2 < c1 < c2 < 1.5 − c1 and 0 ≤ c3 < 2

3 (c2 − c1) for which
pn = O(nc3), then

pn − q

nc2− 1
2

∥∥∥Zw
n(3)

∥∥∥
2
= op(1) a.s. PD.

Proof. By using assumptions (2.1) and (2.2) and that FW has finite fourth
moment, we could deploy the Lindeberg’s Central Limit Theorem∑n

i=1 hjiεi(Wi − μW )√
σ2
W

∑n
i=1 h

2
jiε

2
i

c.d.−→ N (0, 1) a.s. PD;

see Ng (2022) for more details on how the Liapounov sufficient condition is
satisfied a.s. PD. Thus, for all j = 1, · · · , pn − q,

1√
n

n∑
i=1

hjiεi(Wi − μW )

=

√√√√σ2
W

n

n∑
i=1

h2
jiε

2
i ×

∑n
i=1 hjiεi(Wi − μW )√
σ2
W

∑n
i=1 h

2
jiε

2
i

= Op(1) a.s. PD,

which leads to

1

nc1

n∑
i=1

hjiεi(Wi − μW ) = op(1) a.s. PD,

whereas Lemma A.1 ensures that

1

nc1

n∑
i=1

hjiεi → 0 a.s. PD.

Therefore, for part (a) of Lemma A.7,(
1

nc2− 1
2

∥∥∥Zw
n(3)

∥∥∥
2

)2
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=
n2c1−1

n2c2−1

pn−q∑
j=1

(
1

nc1

n∑
i=1

hjiεi(Wi − μW ) +
1

nc1

n∑
i=1

hjiεi

)2

= O
(
n2(c1−c2)

)
× op (n

c3) a.s. PD

= op(1) a.s. PD

since c3 < 2(c2 − c1).
For part (b) of Lemma A.7,(

pn − q

nc2− 1
2

∥∥∥Zw
n(3)

∥∥∥
2

)2

= O
(
n2(c1−c2+c3)

)
× op (n

c3) a.s. PD

= op(1) a.s. PD

since c3 < 2
3 (c2 − c1).

Lemma A.8. Assume (2.2) and that pn = p is fixed. Then

1

n
X ′Dnε

c.p.−→ 0 a.s. PD.

Proof. Let xi and xij be the ith row and (i, j)th element of X respectively. Due
to assumption (2.2),

1

n
X ′ε → 0 a.s. PD,

and for all j = 1, · · · , p,

1

n2

n∑
i=1

E

(
x2
jiε

2
iW

2
i

∣∣∣Fn

)
=

1

n2

n∑
i=1

x2
jiε

2
iE(W

2
i )

≤ M2
1 (σ

2
W + μ2

W )

n

(
1

n

n∑
i=1

ε2i

)
→ 0 a.s. PD.

Hence, by the Weak Law of Large Numbers (e.g., Theorem 1.14(ii) of Shao
(2003)),

1

n
X ′(Dn − μW In)ε =

1

n

n∑
i=1

εi(Wi − μW )xi
c.p.−→ 0 a.s. PD.

Finally,

X ′Dnε

n
=

1

n
X ′(Dn − μW In)ε+

μW

n
X ′ε

c.p.−→ 0 a.s. PD.
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Lemma A.9. Suppose that pn = p is fixed. Assume (2.1), (2.2), (2.4), and

1√
n
X ′en → 0 a.s. PD,

where en is the residual of the strongly consistent estimator β̂SC
n of the linear

model (1.1). Then,

1√
n
X ′Dnen

c.d.−→ Np

(
0, σ2

Wσ2
εC
)

a.s. PD.

Proof. Due to assumption (2.4),

σ2
ε

n
X ′X → σ2

εC.

Since β̂SC
n is a strongly consistent estimator of β in (1.1), we have(

β̂SC
n − β0

)
→ 0 a.s. PD.

Let xi be the i
th row ofX, and let ei be the i

th element of en. Due to assumption
(2.2) and Lemma A.1 and the fact that β̂SC

n is strongly consistent,

1

n

n∑
i=1

(e2i − σ2
ε )xix

′
i =

1

n

n∑
i=1

([
x′
i

(
β0 − β̂SC

n

)
+ εi

]2
− σ2

ε

)
xix

′
i

=
1

n

n∑
i=1

(ε2i − σ2
ε )xix

′
i

+
2

n

n∑
i=1

εi

[
x′
i

(
β0 − β̂SC

n

)]
xix

′
i

+
1

n

n∑
i=1

[
x′
i

(
β0 − β̂SC

n

)]2
xix

′
i

→ 0 a.s. PD,

which leads to

1

n

n∑
i=1

e2ixix
′
i =

1

n

n∑
i=1

(e2i − σ2
ε )xix

′
i +

σ2
ε

n
X ′X → σ2

εC a.s. PD. (A.1)

Now for every z ∈ R
p, consider

z′
[

1√
n
X ′(Dn − μW In)en

]
=

1√
n

n∑
i=1

ei(Wi − μW )(z′xi)
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=

√√√√σ2
W

n

n∑
i=1

e2i (z
′xi)2 ×

∑n
i=1 ei(Wi − μW )(z′xi)√
σ2
W

∑n
i=1 e

2
i (z

′xi)2
.

From (A.1), we have

1

n

n∑
i=1

e2i (z
′xi)

2 = z′

(
1

n

n∑
i=1

e2ixix
′
i

)
z → z′ (σ2

εC
)
z a.s. PD.

Due to assumptions (2.1) and (2.2), as well as the fact that β̂SC
n is strongly

consistent and FW has finite fourth moment, we could deploy the Lindeberg’s
Central Limit Theorem∑n

i=1 ei(Wi − μW )(z′xi)√
σ2
W

∑n
i=1 e

2
i (z

′xi)2
c.d.−→ N(0, 1) a.s. PD;

see Ng (2022) for more details on how the Liapounov sufficient condition is
satisfied a.s. PD. Then, by Slutsky’s Theorem, for every z ∈ R

p,

z′
[

1√
n
X ′(Dn − μW In)en

]
c.d.−→ N

(
0 , z′ (σ2

Wσ2
εC
)
z
)

a.s. PD,

and by Cramer-Wold device,

1√
n
X ′(Dn − μW In)en

c.d.−→ Np

(
0 , σ2

Wσ2
εC
)

a.s. PD.

Finally,
1√
n
X ′Dnen

c.d.−→ Np

(
0 , σ2

Wσ2
εC
)

a.s. PD

since by assumption (3.2),

μW√
n
X ′en → 0 a.s. PD.

We are now ready to prove the main results presented in the main text. The
proof of Proposition 3.1 is similar to that of Proposition 1 of Zhao and Yu
(2006).

Proof of Proposition 3.1. First, we note that since rank(X) = pn, where pn ≤ n,
the solution to (1.3) is unique by Osborne, Presnell and Turlach (2000) and
Tibshirani (2013). We begin with weighting scheme (1.6). Results for the other
two simpler weighting schemes could then be easily inferred.

β̂w
n = argmin

β

{
1

n
(Y −Xβ)′Dn(Y −Xβ) +

λn

n

pn∑
j=1

W0,j |βj |
}

= argmin
β

{
1

n
[ε−X(β − β0)]

′Dn[ε−X(β − β0)]
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+
λn

n

pn∑
j=1

W0,j |β0,j + βj − β0,j |
}
.

Therefore,

(β̂w
n − β0)

= argmin
un

{
1

n
(ε−Xun)

′Dn(ε−Xun) +
λn

n

pn∑
j=1

W0,j |β0,j + un,j |
}

= argmin
un

{
u′
n

(
X ′DnX

n

)
un − 2u′

n

(
X ′Dnε

n

)
+

ε′Dnε

n

+
λn

n

pn∑
j=1

W0,j |β0,j + un,j |
}
.

The term (ε′Dnε)/n could be dropped since for every n, it does not contain un

and Lemma A.5 ensures that it converges in conditional probability to a finite
limit. Differentiating the first two terms with respect to un yields

1

n
{2X ′DnXun − 2X ′Dnε} =

1

n

{
2
√
n
[
Cw

n

(√
nun

)
−Zw

n

]}
.

For j = 1, · · · , pn, considering sub-differentials of the penalty term with respect
to un,j yields {

λn

n W0,j × sgn (β0,j + un,j) for β0,j + un,j �= 0
λn

n W0,j × [−1, 1] for β0,j + un,j = 0

=

{
λn

n W0,j × sgn
(
β̂w
n,j

)
for β̂w

n,j �= 0
λn

n W0,j × [−1, 1] for β̂w
n,j = 0

Note that β̂w
n = ûn + β0, which can be partitioned into

β̂w
n =

[
β̂w
n(1∗)

β̂w
n(2∗)

]
,

where β̂w
n(1∗) consists of non-zero elements of β̂w

n , and β̂w
n(2∗) = 0. The asterisk

here is to distinguish the partition of random-weighting samples β̂w
n from the

true partition of β0. It follows that

2
√
n
[
Cw

n

(√
nûn

)
−Zw

n

]
= 2

√
n

{[
Cw

n(11∗) Cw
n(12∗)

Cw
n(21∗) Cw

n(22∗)

]
×
√
n

[
ûn(1∗)
ûn(2∗)

]
−
[
Zw

n(1∗)
Zw

n(2∗)

]}
.
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Note that ûn(2∗) does not necessarily equal to 0 unless the partition of the

random-weighting samples β̂w
n coincides with the true partition of β0. As a

consequence of the Karush-Kuhn-Tucker (KKT) conditions, we have

Cw
n(11∗)

[√
nûn(1∗)

]
+ Cw

n(12∗)
[√

nûn(2∗)
]
−Zw

n(1∗) = − λn

2
√
n
W0(1) ◦ sgn

(
β̂w
n(1∗)

)
(A.2)

and ∣∣∣Cw
n(21∗)

[√
nûn(1∗)

]
+ Cw

n(22∗)
[√

nûn(2∗)
]
−Zw

n(2∗)

∣∣∣ ≤ λn

2
√
n
W0(2) (A.3)

element-wise. Meanwhile, we also note that{∣∣ûn(1)

∣∣ < ∣∣β0(1)

∣∣} =
{
ûn(1) <

∣∣β0(1)

∣∣}⋂{
ûn(1) > −

∣∣β0(1)

∣∣}
=
{
β̂w
n(1) < β0(1) +

∣∣β0(1)

∣∣}⋂{
β̂w
n(1) > β0(1) −

∣∣β0(1)

∣∣} ,

where all inequalities hold element-wise. Thus, β̂w
n(1) < 0 element-wise if β0(1) <

0 element-wise, and vice versa. In other words,{
sgn

(
β̂w
n(1)

)
= sgn

(
β0(1)

)}
⊇
{∣∣ûn(1)

∣∣ < ∣∣β0(1)

∣∣ element-wise
}
. (A.4)

Therefore, by (A.2), (A.3), (A.4), and uniqueness of solution for the random-
weighting setup (1.3), if there exists ûn such that the following equation and
inequalities hold:

Cw
n(11)

[√
nûn(1)

]
−Zw

n(1) = − λn

2
√
n
W0(1) ◦ sgn

(
β0(1)

)
(A.5)

− λn

2
√
n
W0(2) ≤ Cw

n(21)

[√
nûn(1)

]
−Zw

n(2) ≤
λn

2
√
n
W0(2) element-wise (A.6)∣∣ûn(1)

∣∣ < ∣∣β0(1)

∣∣ element-wise, (A.7)

then we have sgn
(
β̂w
n(1)

)
= sgn

[
β0(1)

]
and ûn(2) = β̂w

n(2) = β0(2) = 0, ie.

β̂w
n

s
= β0,

and

P

(
β̂w
n

s
= β0

∣∣∣∣Fn

)

≥ P

( {∣∣∣Cw
n(21)

[√
nûn(1)

]
−Zw

n(2)

∣∣∣ ≤ λn

2
√
n
W0(2) element-wise

}
⋂{

Cw
n(11)

[√
nûn(1)

]
−Zw

n(1) = − λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

]}
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⋂{∣∣ûn(1)

∣∣ < ∣∣β0(1)

∣∣ element-wise
} ∣∣∣∣Fn

)
.

Now we proceed to simplify these equation and inequalities (A.5), (A.6) and
(A.7). Equation (A.5) can be re-written as

√
nûn(1) =

(
Cw

n(11)

)−1
[
Zw

n(1) −
λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

]]
. (A.8)

Substituting inequality (A.7) into equation (A.8) above leads to Aw
n . Replace

the expression
W0(1) ◦ sgn

[
β0(1)

]
in equation (A.8) with W0sgn

[
β0(1)

]
and sgn

[
β0(1)

]
for weighting schemes (1.5)

and (1.4) respectively to obtain Aw
n .

Next, substituting equation (A.8) into inequality (A.6) and simple arithmetic
yield

B̃w
n ≡

{ ∣∣∣∣C̃w
n Zw

n(1) +Zw
n(3) −

λn

2
√
n
Cw

n(21)

(
Cw

n(11)

)−1

W0(1) ◦ sgn
[
β0(1)

]∣∣∣∣
− λn

2
√
n

∣∣∣Cn(21)C
−1
n(11)W0(1) ◦ sgn

[
β0(1)

]∣∣∣
≤ λn

2
√
n

(
W0(2) −

∣∣∣Cn(21)C
−1
n(11)W0(1) ◦ sgn

[
β0(1)

]∣∣∣) element-wise

}
for weighting scheme (1.6). Now, observe that Bw

n ⊆ B̃w
n , since (LHS of Bw

n ) ≥
(LHS of B̃w

n ) element-wise. Thus,

P

(
β̂w
n

s
= β0

∣∣∣∣Fn

)
≥ P

(
Aw

n ∩ B̃w
n

∣∣Fn

)
≥ P

(
Aw

n ∩Bw
n

∣∣Fn

)
.

For weighting scheme (1.5),

B̃w
n ≡

{ ∣∣∣∣C̃w
n Zw

n(1) +Zw
n(3) −

λnW0

2
√
n

Cw
n(21)

(
Cw

n(11)

)−1

sgn
[
β0(1)

]∣∣∣∣
− λnW0

2
√
n

∣∣∣Cn(21)C
−1
n(11)sgn

[
β0(1)

]∣∣∣
≤ λnW0

2
√
n

(
1pn−q −

∣∣∣Cn(21)C
−1
n(11)sgn

[
β0(1)

]∣∣∣) element-wise

}
.

(A.9)

Now, observe that Bw
n ⊆ B̃w

n , since (LHS of Bw
n ) ≥ (LHS of B̃w

n ) element-wise,

whereas (RHS of Bw
n ) ≤ (RHS of B̃w

n ) element-wise due to the Irrepresentable
condition (3.1). Therefore,

P

(
β̂w
n

s
= β0

∣∣∣∣Fn

)
≥ P

(
Aw

n ∩ B̃w
n

∣∣Fn

)
≥ P

(
Aw

n ∩Bw
n

∣∣Fn

)
.

For weighting scheme (1.4), substitute W0 = 1 in (A.9) and the result follows.
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Proof of Theorem 3.1. From Proposition 3.1,

P
(
β̂w
n (λn)

s
= β0

∣∣Fn

)
≥ P

(
Aw

n

⋂
Bw

n

∣∣Fn

)
= 1− P

[
(Aw

n )
c
⋃

(Bw
n )

c ∣∣Fn

]
≥ 1−

{
P
[
(Aw

n )
c ∣∣Fn

]
+ P

[
(Bw

n )
c ∣∣Fn

] }
.

We now investigate the conditional probabilities P
[
(Aw

n )
c ∣∣Fn

]
and P

[
(Bw

n )
c ∣∣Fn

]
separately. All three weighting schemes (1.4), (1.5) and (1.6) share very similar
P
[
(Aw

n )
c ∣∣Fn

]
. We start off with the most general version (1.6) of the weighting

schemes. Results for the other two simpler weighting schemes could then be
easily inferred. For ease of notation, let

zn = [zn,1, · · · , zn,q]′ :=
(
Cw

n(11)

)−1
(
Zw

n(1) −
λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

])
.

Note that
λn

2n
W0(1) ◦ sgn

[
β0(1)

] p−→ 0.

Hence, by Lemmas A.2 and A.6,

P [(Aw
n )

c |Fn] = P

⎛⎝ q⋃
j=1

{
|zn,j | >

√
n |β0,j |

}∣∣∣∣Fn

⎞⎠
≤

q∑
j=1

P

(
1√
n
|zn,j | > |β0,j |

∣∣∣∣Fn

)
→ 0 a.s. PD,

because for all j = 1, · · · , q, we have |β0,j | > 0 but

1√
n
|zn,j | = op(1) a.s. PD.

For weighting schemes (1.5) and (1.4), replace the expression

W0(1) ◦ sgn
[
β0(1)

]
with W0sgn

[
β0(1)

]
and sgn

[
β0(1)

]
respectively to obtain the same result

P [(Aw
n )

c |Fn] → 0 a.s. PD.

We now turn our attention to P
[
(Bw

n )
c ∣∣Fn

]
, where weighting scheme (1.6)

is markedly different – and derived separately – from weighting schemes (1.4)
and (1.5). We first consider weighting scheme (1.5), and then infer the result for
weighting scheme (1.4) as a special case. For ease of notation, define

ζn = [ζn,1, · · · , ζn,pn−q]
′
:= Zw

n(3),
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νn = [νn,1, · · · , νn,pn−q]
′
:= C̃w

n

(
Zw

n(1) −
λnW0

2
√
n

sgn
[
β0(1)

])
.

Then, for any ξ > 0,

P
[
(Bw

n )
c ∣∣Fn

]
= P

⎛⎝pn−q⋃
j=1

{
|ζn,j + νn,j | >

λn

2
√
n
ηj

} ∣∣∣∣∣Fn

⎞⎠
≤ P

⎛⎝pn−q⋃
j=1

{
|ζn,j | >

λn

2
√
n
ηj − ξ

} ∣∣∣∣∣Fn

⎞⎠+ P

⎛⎝pn−q⋃
j=1

{|νn,j | > ξ}
∣∣∣∣∣Fn

⎞⎠
≤ P

⎛⎝pn−q⋃
j=1

{
|ζn,j | >

λnW0

2
√
n

ηj − ξ

} ∣∣∣∣∣Fn

⎞⎠+ P
(
‖νn‖2 > ξ

∣∣∣Fn

)
.

Since
λnW0

n1.5−c1
sgn

[
β0(1)

]
= op(1),

we have, by Lemmas A.3 and A.6,

‖νn‖2 ≤
∥∥∥n1−c1C̃w

n

∥∥∥
2

∥∥∥∥ 1

n1−c1
Zw

n(1) −
λnW0

2n1.5−c1
sgn

[
β0(1)

]∥∥∥∥
2

= op(1) a.s. PD,

and thus,

P
(
‖νn‖2 > ξ

∣∣∣Fn

)
= o(1) a.s. PD.

Now, let

η∗ = min
1≤j≤pn−q

ηj ,

and note that 0 < η∗ ≤ 1 from assumption (3.1). Then,

P

⎛⎝pn−q⋃
j=1

{
|ζn,j | >

λnW0

2
√
n

ηj − ξ

} ∣∣∣∣∣Fn

⎞⎠
≤ P

(∥∥ζn∥∥2 >
λnW0

2
√
n

η∗ − ξ

∣∣∣∣∣Fn

)

= P

(
1

nc2− 1
2

(∥∥ζn∥∥2 + ξ
)
>

λnW0

2nc2
η∗

∣∣∣∣∣Fn

)
= o(1) a.s. PD,

because
λnW0

2nc2
η∗ = Op(1)
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whereas part (a) of Lemma A.7 ensures that

1

nc2− 1
2

(∥∥ζn∥∥2 + ξ
)
= op(1) a.s. PD.

Thus, for weighting scheme (1.5), we have just shown that

P
[
(Bw

n )
c ∣∣Fn

]
= o(1) a.s. PD.

For weighting scheme (1.4), take W0 = 1 and repeat the preceding steps to
obtain the same result.

Now, for weighting scheme (1.6), define

νn = [νn,1, · · · , νn,pn−q]
′
:= C̃w

n

(
Zw

n(1) −
λn

2
√
n
W0(1) ◦ sgn

[
β0(1)

])
,

γn = [γn,1, · · · , γn,pn−q]
′
:= Cn(21)C

−1
n(11)W0(1) ◦ sgn

[
β0(1)

]
.

and for any ξ > 0,

P
[
(Bw

n )
c ∣∣Fn

]
= P

⎛⎝pn−q⋃
j=1

{
|ζn,j + νn,j | >

λn

2
√
n

(
W0(2),j − |γn,j |

)} ∣∣∣∣∣Fn

⎞⎠
≤ P

⎛⎝pn−q⋃
j=1

{
|ζn,j | >

λn

2
√
n

(
W0(2),j − |γn,j |

)
− ξ

} ∣∣∣∣∣Fn

⎞⎠+ P
(
‖νn‖2 > ξ

∣∣∣Fn

)
.

Again,
λn

n1.5−c1
W0(1) ◦ sgn

[
β0(1)

]
= op(1),

so, by Lemmas A.3 and A.6,

P
(
‖νn‖2 > ξ

∣∣∣Fn

)
= o(1) a.s. PD.

Notice how the penalty weights W0(1) and W0(2) upend the strong irrepre-
sentable condition (3.1). Specifically,

P
(
W0(2),j − |γn,j | < 0

)
> 0,

which then renders the probability bound to be unhelpful. Instead, notice that
from the strong irrepresentable condition (3.1),

γn,j ≤ (1− η∗)× max
1≤j≤q

W0(1),j

for all j = 1, · · · , q. We focus on the more restrictive case where

η∗ = 1 ⇐⇒ η = 1pn−q,
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which leads to a more meaningful probability bound. Then, γn,j = 0 for all
j = 1, · · · , q, and

P

⎛⎝pn−q⋃
j=1

{
|ζn,j | >

λn

2
√
n
W0(2),j − ξ

} ∣∣∣∣∣Fn

⎞⎠
≤ P

(∥∥∥ζn∥∥∥
2
>

λn

2
√
n

(
min

1≤j≤pn−q
W0(2),j

)
− ξ

∣∣∣∣∣Fn

)

= P

(
1

nc2− 1
2

(∥∥ζn∥∥2 + ξ
)
>

λn

2nc2

(
min

1≤j≤pn−q
W0(2),j

) ∣∣∣∣∣Fn

)

For the case of exponential random weights

FW (w) = 1− e−θww

for some θw > 0, we immediately have(
min

1≤j≤pn−q
W0(2)j

)
∼ Exp ((pn − q)θw) .

Then, by part (b) of Lemma A.7,

P

(
1

nc2− 1
2

(∥∥ζn∥∥2 + ξ
)
>

λn

2nc2

(
min

1≤j≤pn−q
W0(2),j

) ∣∣∣∣∣Fn

)

= P

(
W < θw

2nc2

λn

pn − q

nc2− 1
2

(∥∥ζn∥∥2 + ξ
)∣∣∣Fn

)
where W ∼ Exp(1)

= o(1) a.s. PD,

and we have just shown that

P
[
(Bw

n )
c ∣∣Fn

]
= o(1) a.s. PD

for weighting scheme (1.6).
Finally,

P
(
β̂w
n (λn)

s
= β0

∣∣Fn

)
≥ 1−

{
P
[
(Aw

n )
c ∣∣Fn

]
+ P

[
(Bw

n )
c ∣∣Fn

] }
= 1− o(1) a.s. PD

for all three weighting schemes (1.4), (1.5) and (1.6).

Proof of Theorem 3.2. From the proof of Proposition 3.1,

(β̂w
n − β0)
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= argmin
u

{
u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnε

n

)
+

ε′Dnε

n

+
λn

n

p∑
j=1

W0,j |β0,j + un,j |
}

:= argmin
u

gn(u).

By Lemmas A.4, A.5 and A.8, for λn

n → λ0 ∈ [0,∞), Slutsky Theorem gives

gn(u)
c.d.−→ g(u) + μWσ2

ε a.s. PD.

Note that for weighting schemes (1.5) and (1.6), g(u) is a random function
as it contains random weights. Since gn(u) is convex and g(u) has a unique
minimum, it follows from Geyer (1996) that

argmin
u

gn(u)
c.d.−→ argmin

u

{
g(u) + μWσ2

ε

}
= argmin

u
g(u) a.s. PD.

For weighting schemes (1.4), g(u) is not a random function. Instead, we note
that since gn(u) is convex, it follows from pointwise convergence of conditional
probability that

β̂w
n − β0 = Op(1).

For any compact set K, by applying the Convexity Lemma (Pollard, 1991),

sup
u∈K

∣∣gn(u)− g(u)− μWσ2
ε

∣∣ c.p.−→ 0 a.s. PD.

Therefore, (
β̂w
n − β0

)
= argmin

u
gn(u)

c.p.−→ argmin
u

g(u) a.s. PD.

Finally, for all three weighting schemes, if λ0 = 0, argminu g(u) = 0, i.e.

β̂w
n

c.p.−→ β0 a.s. PD.

Proof of Theorem 3.3. Let en be the residual that corresponds to the strongly
consistent estimator β̂SC

n of the linear regression model (1.1), and define

Qn(z) :=
∥∥∥D 1

2
n (y −Xz)

∥∥∥2
2
+ λn

p∑
j=1

W0,j |zj |,

which leads to

Qn

(
β̂SC
n +

1√
n
u

)
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=

∥∥∥∥D 1
2
n

(
en − 1√

n
Xu

)∥∥∥∥2
2

+ λn

p∑
j=1

W0,j

∣∣∣∣β̂SC
n,j +

1√
n
uj

∣∣∣∣ ,
and

Qn

(
β̂SC
n

)
=
∥∥∥D 1

2
n

(
Y −Xβ̂SC

n

)∥∥∥2
2
+ λn

p∑
j=1

W0,j

∣∣∣β̂SC
n,j

∣∣∣
=
∥∥∥D 1

2
nen

∥∥∥2
2
+ λn

p∑
j=1

W0,j

∣∣∣β̂SC
n,j

∣∣∣ .
Now, define

Vn(u) := Qn

(
β̂SC
n +

1√
n
u

)
−Qn

(
β̂SC
n

)
,

and note that

argmin
u

Vn(u) = argmin
u

Qn

(
β̂SC
n +

1√
n
u

)
=

√
n
(
β̂w
n − β̂SC

n

)
.

Notice that Vn(u) can be simplified into

u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnen√

n

)
+

λn√
n

p∑
j=1

W0,j

(∣∣∣√nβ̂SC
n,j + uj

∣∣∣− ∣∣∣√nβ̂SC
n,j

∣∣∣) ,
where its penalty term can be expanded into

λn√
n

p∑
j=1

W0,j pn(uj)

:=
λn√
n

p∑
j=1

W0,j

{ ∣∣∣√n
[
β0,j +

(
β̂SC
n,j − β0,j

)]
+ μj

∣∣∣
−
∣∣∣√n

[
β0,j +

(
β̂SC
n,j − β0,j

)]∣∣∣ }
For β0,j �= 0, (

β̂SC
n,j − β0,j

)
→ 0 a.s. PD,

and hence
√
nβ0,j dominates uj for large n. Thus, it is easy to verify that

pn(uj) converges to ujsgn (β0,j) for all j ∈ {j : β0,j �= 0}. Thus, by Lemmas A.4
and A.9, if q = p, Slutsky Theorem ensures that

Vn(u)
c.d.−→ V (u) := μWu′Cu− 2u′Ψ+ λ0

p∑
j=1

Wj [uj sgn(β0,j)] a.s. PD,

where Ψ has a N
(
0, σ2

Wσ2
εC
)
distribution, and
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(i) Wj = 1 for all j under weighting scheme (1.4),
(ii) Wj = W0 for all j, W0 ∼ FW and W0 ⊥ Ψ under weighting scheme (1.5),

(iii) Wj
iid∼ FW and Wj ⊥ Ψ for all j under weighting scheme (1.6).

Since Vn(u) is convex and V (u) has a unique minimum, it follows from Geyer
(1996) that

√
n
(
β̂w
n − β̂SC

n

)
= argmin

u
Vn(u)

c.d.−→ argmin
u

V (u) a.s. PD

when q = p. In particular, if λ0 = 0,

argmin
u

V (u) =
1

μW
C−1Ψ ∼ N

(
0,

σ2
Wσ2

ε

μ2
W

C−1

)
.

However, if 0 < q < p, then for j ∈ {j : β0,j = 0}, pn(uj) is back to∣∣∣√nβ̂SC
n,j + μj

∣∣∣− ∣∣∣√nβ̂SC
n,j

∣∣∣ ,
which depends on the sample path of realized data. This necessitates the Sko-
rokhod argument, thus leading to the penalty term in (3.3).

We need the following lemma to prove Theorem 3.4:

Lemma A.10. Consider Liu and Yu (2013)’s unweighted two-step LASSO+LS

estimator β̂LAS+LS
n , with its corresponding set of selected variables denoted as

Ŝn. Adopt assumptions (2.2), (2.3) and (3.1). If there exists 1
2 < c1 < c2 < 1

and 0 ≤ c3 < 2(c2 − c1) for which λn = O (nc2) and pn = O (nc3), then as
n → ∞,

P
(
Ŝn = S0

∣∣∣Fn

)
→ 1 a.s. PD.

Proof. The first step (i.e. the variable selection step) of obtaining β̂LAS+LS
n is

effectively the standard LASSO procedure. Thus, by assumption (3.1), from the
proof of Proposition 1 of Zhao and Yu (2006), we obtain{

Ŝn = S0

}
⊇ {An ∩Bn}

and thus

P
(
Ŝn = S0

∣∣∣Fn

)
≥ P

(
An ∩Bn

∣∣Fn

)
,

where

An ≡
{∣∣∣∣∣C−1

n(11)

X ′
(1)ε√
n

∣∣∣∣∣ ≤ √
n

(∣∣β0(1)

∣∣− λn

2n

∣∣∣C−1
n(11)sgn

(
β0(1)

)∣∣∣) element-wise

}

Bn ≡
{∣∣∣∣ 1√

n

[
Cn(21)C

−1
n(11)X

′
(1) −X ′

(2)

]
ε

∣∣∣∣ ≤ λn

2
√
n
η element-wise

}
.
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Next, we want to show that

P
(
Ac

n

∣∣Fn

)
→ 0 a.s. PD and P

(
Bc

n

∣∣Fn

)
→ 0 a.s. PD

such that

P
(
Ŝn = S0

∣∣∣Fn

)
≥ 1−

[
P
(
Ac

n

∣∣Fn

)
+ P

(
Bc

n

∣∣Fn

)]
→ 1 a.s. PD.

First, by assumptions (2.2) and (2.3), C−1
n(11) = O(1) for all n, whereas

λn

2n
C−1

n(11)sgn
(
β0(1)

)
→ 0.

By Lemma A.1, for any 1
2 < c′ < 1,

1

nc′
X ′

(1)ε → 0 a.s. PD =⇒ 1

nc′− 1
2

(
C−1

n(11)

X ′
(1)ε√
n

)
→ 0 a.s. PD.

For ease of notation, let

z = [z1, · · · , zq]′ := C−1
n(11)

X ′
(1)ε√
n

.

Then, for any 1
2 < c′ < 1,

P
(
Ac

n

∣∣Fn

)
≤

q∑
j=1

P
(
|zj | >

√
n [|β0,j |+ o(1)]

∣∣∣Fn

)
=

q∑
j=1

P

(
|zj |

nc′− 1
2

> n1−c′
[
|β0,j |+ o(1)

]∣∣∣Fn

)
→ 0 a.s. PD.

Next, using the same notations that we introduced in the proofs of Lemma A.7
and Theorem 3.1, let

H = X(1)C
−1
n(11)Cn(12) −X(2),

and let
η∗ = min

1≤j≤pn−q
η,

where assumption (3.1) ensures that 0 < η∗ ≤ 1. Again, due to assumptions (2.2)
and (2.3) and that q is fixed, every element in the matrix H is bounded. Let hij

be the (i, j)th element of H. Again, by Lemma A.1, for all j = 1, · · · , pn − q,

1

nc1

n∑
i=1

hjiεi → 0 a.s. PD
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for 1
2 < c1 < 1. Consequently, we have

P
(
Bc

n

∣∣Fn

)
= P

⎛⎝pn−q⋃
j=1

{∣∣∣∣∣ 1√
n

n∑
i=1

hjiεi

∣∣∣∣∣ > λn

2
√
n
ηj

}∣∣∣∣∣Fn

⎞⎠
≤ P

(∥∥∥∥ 1√
n
H ′ε

∥∥∥∥
2

>
λn

2
√
n
η∗

∣∣∣∣∣Fn

)

= P

(
1

nc2− 1
2

∥∥∥∥ 1√
n
H ′ε

∥∥∥∥
2

>
λn

2nc2
η∗

∣∣∣∣∣Fn

)
,

where (
1

nc2− 1
2

∥∥∥∥ 1√
n
H ′ε

∥∥∥∥
2

)2

=
n2c1−1

n2c2−1

pn−q∑
j=1

(
1

nc1

n∑
i=1

hjiεi

)2

= O
(

1

n2(c2−c1)

)
× o (nc3) a.s. PD

= o(1) a.s. PD

because c3 < 2(c2 − c1) and
1
2 < c1 < c2 < 1, whereas

λn

2nc2
η∗ = O(1).

Hence P
(
Bc

n

∣∣Fn

)
→ 0 almost surely under PD and the result follows.

Note that the constraints on c1, c2 and c3 in Lemma A.10 cover the more re-
strictive constraints found in Theorem 3.1. Therefore, the result in Lemma A.10
still holds under the assumptions of Theorem 3.1.

The following version of Sherman–Morrison–Woodbury matrix-inversion iden-
tity (e.g., Equation (26) of Henderson and Searle (1981)) will come in handy
later: For any square matrices A and B of conformal sizes where A is invertible,
we have

(A+B)−1 = A−1 −A−1BA−1
(
I +BA−1

)−1
. (A.10)

Proof of Theorem 3.4. Since the first-step is in fact equivalent to the one-step
procedure, Theorem 3.1 immediately gives us

P
(
Ŝw
n = S0

∣∣Fn

)
≥ P

(
β̂w
n

s
= β0

∣∣Fn

)
→ 1 a.s. PD,

while Lemma A.10 immediately gives us

P
(
Ŝn = S0

∣∣Fn

)
→ 1 a.s. PD.

Conditional on
{
Ŝw
n = S0

}
and

{
Ŝn = S0

}
, since Y = X(1)β0(1) + ε,

β̂w
n(1) − β̂LAS+LS

n(1)
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=
(
X ′

(1)DnX(1)

)−1

X ′
(1)DnY −

(
X ′

(1)X(1)

)−1

X ′
(1)Y

=
(
X ′

(1)DnX(1)

)−1

X ′
(1)Dnε−

(
X ′

(1)X(1)

)−1

X ′
(1)ε

=
(
Cw

n(11)

)−1 X ′
(1)(Dn − In)ε

n
−
[
C−1

n(11) −
(
Cw

n(11)

)−1
]
X ′

(1)ε

n
,

which leads to

√
n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
=
(
Cw

n(11)

)−1 X ′
(1)(Dn − In)ε√

n
−
[
C−1

n(11) −
(
Cw

n(11)

)−1
]
X ′

(1)ε√
n

.

Based on the (alternative) proof of Lemma A.2, we have seen that(
Cw

n(11)

)−1 a.s.−→ C−1
11 ,

and from the (alternative) proof of Lemma A.6, we could deploy Slutsky’s The-
orem to obtain(

Cw
n(11)

)−1 X ′
(1)(Dn − In)ε√

n

c.d.−→ Nq

(
0 , σ2

Wσ2
εC

−1
11

)
a.s. PD.

Meanwhile, we deploy the matrix inversion identity (A.10) by taking A = Cn(11)

and

B =
1

n
X ′

(1)(Dn − In)X(1)

to obtain (
Cw

n(11)

)−1

=

[
Cn(11) +

1

n
X ′

(1)(Dn − In)X(1)

]−1

= A−1 −A−1BA−1
(
Iq +BA−1

)−1
.

Then,[
C−1

n(11) −
(
Cw

n(11)

)−1
] X ′

(1)ε√
n

= C−1
n(11)

[
X ′

(1)(Dn − In)X(1)

n

]
C−1

n(11)

[
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1

n(11)

]−1
X ′

(1)ε√
n

= C−1
n(11)

[
X ′

(1)(Dn − In)X(1)

n1−c

]
C−1

n(11)

[
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1

n(11)

]−1
X ′

(1)ε

n
1
2
+c

,

where Lemma A.1 and assumption (2.2) ensure that for any 0 < c < 1
2 ,

1

n1−c
X ′

(1)(Dn − In)X(1)
a.s.−→ 0
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and
X ′

(1)ε

n
1
2+c

→ 0 a.s. PD.

Since Cn(11) is invertible for all n, we have

C−1
n(11) → C−1

11 ,

and [
Iq +

(
X ′

(1)(Dn − In)X(1)

n

)
C−1

n(11)

]−1

= Cn(11)

(
Cw

n(11)

)−1

a.s.−→ C11C
−1
11

= Iq.

Hence, [
C−1

n(11) −
(
Cw

n(11)

)−1
]
X ′

(1)ε√
n

c.p.−→ 0 a.s. PD.

Consequently, conditional on
{
Ŝw
n = S0

}
and

{
Ŝn = S0

}
, Slutsky’s Theorem

ensures that

√
n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
c.d.−→ Nq

(
0 , σ2

Wσ2
εC

−1
11

)
a.s. PD.

Finally, for any t ∈ R,

P
(√

n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
≤ t

∣∣∣Fn

)
≤P

(√
n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
≤ t ,

{
Ŝw
n = S0, Ŝn = S0

} ∣∣∣Fn

)
+ P

(
Ŝw
n �= S0

∣∣∣Fn

)
+ P

(
Ŝn �= S0

∣∣∣Fn

)
where

P
(
Ŝw
n �= S0

∣∣∣Fn

)
→ 0 a.s. PD and P

(
Ŝn �= S0

∣∣∣Fn

)
→ 0 a.s. PD,

and

P
(√

n
(
β̂w
n(1) − β̂LAS+LS

n(1)

)
≤ t ,

{
Ŝw
n = S0, Ŝn = S0

} ∣∣∣Fn

)
→ P (Z ≤ t)

almost surely under PD for Z ∼ Nq

(
0 , σ2

Wσ2
εC

−1
11

)
.

Proof of Theorem 3.5. Since Y = X(1)β0(1)+ε, by conditioning on
{
Ŝw
n = S0

}
,

we have β̂w
n(2) = β0(2) = 0, and

β̂w
n(1) − β0(1) =

(
X ′

(1)DnX(1)

)−1

X ′
(1)DnY − β0(1)
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=
(
X ′

(1)DnX(1)

)−1

X ′
(1)Dnε

=
(
Cw

n(11)

)−1 X ′
(1)Dnε

n
c.p.−→ 0 a.s. PD

by Lemmas A.4 and A.6. Finally, for any ξ > 0,

P
(∥∥∥β̂w

n − β0

∥∥∥
2
> ξ

∣∣∣Fn

)
≤ P

(∥∥∥β̂w
n − β0

∥∥∥
2
> ξ , Ŝw

n = S0

∣∣∣Fn

)
+ P

(
Ŝw
n �= S0

∣∣Fn

)
→ 0 a.s. PD.

Remark A.1. Consider Theorem 3.3 with centering on β0

√
n
(
β̂w
n − β0

)
.

Using the same technique in the proof of Theorem 3.3, we work with

Vn(u) := Qn

(
β0 +

1√
n
u

)
−Qn (β0)

which can be simplified into

u′
(
X ′DnX

n

)
u− 2u′

(
X ′Dnε√

n

)
+

λn√
n

p∑
j=1

W0,j

(∣∣√nβ0,j + uj

∣∣− ∣∣√nβ0,j

∣∣) .
Again, assumption 2.4 ensures convergence of the first term, whereas argument
for the penalty term in the proof of Theorem 3.3 still applies to the third term.
However, the second term has

X ′Dnε√
n

=
1√
n
X ′ (Dn − μW In) ε+

1√
n
X ′ε,

where
1√
n
X ′ (Dn − μW In) ε = Op(1) a.s. PD,

but (X ′ε)/(
√
n) is asymptotically normal under PD (Knight and Fu, 2000).

Thus, conditional on Fn, (X
′Dnε)/(

√
n) depends on the sample path of realized

data {y1, y2, · · · }, thus causing
√
n
(
β̂w
n − β0

)
to be unable to achieve conver-

gence in conditional distribution almost surely under PD.

Lemma A.11 (Rate of Convergence). Adopt all assumptions in Theorem 3.4.
If there exists 0 < c4 < 1

2 such that

0 ≤ c3 < min{2(c2 − c1) , 2c1 − 1} − c4
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under weighting schemes (1.4) and (1.5), or

0 ≤ c3 < min

{
2

3
(c2 − c1)−

c4
3
, 2c1 − 1− c4

}
under weighting schemes (1.6), then

P
(
Ŝw
n �= S0

∣∣Fn

)
= o

(
n−c4

)
a.s. PD.

Proof. The result is immediate by extracting the additional n−c4 factor from the
proofs of Lemmas A.3 and A.7 as well as Theorem 3.1. In particular, from the
proofs of Lemma A.6 and Theorem 3.1, it is clear that the rate of convergence
of P [(Aw

n )
c|Fn] is faster than that of P [(Bw

n )
c|Fn], whereas the conditions in

Lemma A.11 ensure that P [(Bw
n )

c|Fn] = o (n−c4) a.s. PD. Finally,

P
(
Ŝw
n �= S0

∣∣Fn

)
≤ P [(Aw

n )
c|Fn] + P [(Bw

n )
c|Fn] = o

(
n−c4

)
a.s. PD.
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