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Abstract: We obtain explicit p-Wasserstein distance error bounds be-
tween the distribution of the multi-parameter MLE and the multivari-
ate normal distribution. Our general bounds are given for possibly high-
dimensional, independent and identically distributed random vectors. Our
general bounds are of the optimal O(n~1/2) order. Explicit numerical con-
stants are given when p € (1,2], and in the case p > 2 the bounds are
explicit up to a constant factor that only depends on p. We apply our
general bounds to derive Wasserstein distance error bounds for the mul-
tivariate normal approximation of the MLE in several settings; these be-
ing single-parameter exponential families, the normal distribution under
canonical parametrisation, and the multivariate normal distribution under
non-canonical parametrisation. In addition, we provide upper bounds with
respect to the bounded Wasserstein distance when the MLE is implicitly
defined.
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1. Introduction

The asymptotic normality of the maximum likelihood estimator (MLE), under
regularity conditions, is one of the most fundamental and well-known results in
statistical theory. However, progress has only been made very recently on the
problem of deriving error bounds for the distance between the distribution of the
MLE, under general regularity conditions, and its limiting normal distribution.
This is in part due to the fact that the MLE is in general a nonlinear statistic
for which classical techniques for distributional approximation, such as Stein’s
method [41], are difficult to apply directly, although, amongst other works, [12]
and [35] have obtained optimal order Berry-Esseen-type bounds for quite broad
classes of nonlinear statistics.

In recent years, however, there have been a number of contributions to the
problem of quantifying the closeness of the MLE to its asymptotic normal distri-
bution. Under general regularity conditions, [4] used Stein’s method to obtain an
explicit O(n~'/2) bound, where n is the sample size, between the distribution of
the single-parameter MLE and the normal distribution in the bounded Wasser-
stein metric (this and all other probability metrics mentioned in this paper will
be defined in Section 2.2). In the special case that the MLE can be expressed as
a suitably smooth function of a sum of independent and identically distributed
(i.i.d.) observations, [3] obtained bounds that sharpen and simplify those of [4].
The results of [4] were extended by [1] to quantify the closeness between the
multi-parameter MLE and its limiting multivariate normal distribution. How-
ever, the added technical difficulties of multivariate normal approximation by
Stein’s method meant that these bounds were given in a smooth test function
metric (we also define this metric in Section 2.2) that is weaker than the bounded
Wasserstein metric. Under the requirement that the statistic of interest can be
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expressed as a sum of independent random elements, [35] used the delta method
to establish uniform and non-uniform Kolmogorov distance bounds on the rate
of convergence to normality for various statistics, including the single-parameter
MLE. The bounds obtained were of the optimal O(n~'/2) order. The recent pa-
per [34] subsequently extended the results of [35] to cover general regularity
conditions and settings in which the MLE is not necessarily a function of the
sum of independent random terms. The nonuniform bounds of [34] are the only
such bounds in the literature for the normal approximation of the MLE.

In this paper, we obtain, under general regularity conditions, optimal or-
der O(n~'/?) bounds on the distance between the distribution of the multi-
parameter MLE and its limiting multivariate normal distribution, with respect
to the p-Wasserstein metric. A general 1-Wasserstein distance bound appears
in Theorem 4, and a simpler bound for the single-parameter MLE is given in
Theorem 5. We provide p-Wasserstein distance analogues of these bounds in
Theorem 6. These results are a technical advancement over the works of [4] and
[1], because the 1-Wasserstein metric is a strictly stronger metric than those
used in these works, and the p-Wasserstein metric (p > 1) is a stronger metric
still (provided it is well-defined for the probability distributions under consider-
ation). Moreover, Wasserstein distances are natural and widely used probability
metrics that have many applications in statistics (see [32]). Our bounds also
remove an additional constant e that appears in the bounds of [4] and [1], and
further comparisons between our bounds are given in Remark 3.2. In obtaining
our bounds, we use Stein’s method and in particular make use of the very recent
advances in the literature on optimal (or near-optimal) order Wasserstein dis-
tance bounds for the multivariate normal approximation of sums of independent
random vectors; see the recent works [9, 13, 17, 18, 19, 36, 44] for important con-
tributions to this body of research. Our results to some extent complement this
literature by giving optimal order Wasserstein distance bounds for multivari-
ate normal approximation in the much more general setting of the MLE under
general regularity conditions, which is in general a nonlinear statistic. In fact,
to the best of our knowledge, this paper contains the first examples of optimal
order Wasserstein distance bounds for the multivariate normal approximation
of nonlinear statistics.

The work of [34] is significant in that the bounds are given in the Kolmogorov
metric, which is a technically demanding metric to work in when applying Stein’s
method, and is particularly important in statistics, as bounds in this metric can
be used, for example, to construct conservative confidence intervals. It should be
noted, however, that, as already mentioned, Wasserstein distances have many
applications in statistics [32], and, as observed by [6], the Wasserstein distance
between probability distributions has the theoretically desirable property of tak-
ing into account not only the amounts by which their probabilities differ, as is
the case in the Kolmogorov distance, but also where these differences take place.
For the single-parameter case, our results complement those of [34] by giving
bounds in another important probability metric, and have the advantage of be-
ing explicit, whilst those of [34] are (in the case of uniform bounds) of the form
Cn~'2, where C is an unspecified constant that does not involve n. For the
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multi-parameter MLE, one can extract explicit sub-optimal order O(n~/%) Kol-
mogorov distance bounds for the multivariate normal approximation from our
1-Wasserstein distance bounds (see inequality (2.14)). It should be noted that
a similar procedure can be used to extract Kolmogorov distance bounds from
those of [1], although, as a consequence of the weaker metric used in that work,
these are of the worse order (’)(n‘l/s) (see Remark 2.2). For the time being,
to the best of our knowledge, the O(n~'/4) Kolmogorov distance bounds for
the multi-parameter MLE that can be deduced from our Wasserstein distance
bounds have the best dependence on n in the current literature.

The rest of the paper is organised as follows. In Section 2, we present the
setting of the paper. This includes the notation, regularity conditions for our
main results, definitions of the probability metrics used in the paper and a rela-
tionship between the 1-Wasserstein and Kolmogorov metrics, and we also recall
some results from the literature on Stein’s method for normal and multivariate
normal approximation. In Section 3, we state and prove our main results. The-
orem 4 provides an optimal order Wasserstein distance bound on the closeness
between the distribution of the multi-parameter MLE and its limiting multivari-
ate normal distribution. We also present a simplified bound in the univariate
case (Theorem 5). Theorem 6 provides p-Wasserstein distance analogues of the
bounds of Theorems 4 and 5. In Section 4, we apply the results of Section 3 in
the settings of single-parameter exponential families, the normal distribution un-
der canonical parametrisation, and the multivariate normal distribution under
non-canonical parametrisation. In addition, we provide upper bounds for cases
where the MLE cannot be expressed analytically with respect to the bounded
Wasserstein distance. In Section 4.5, we carry out a simulation study to assess
the accuracy of our bounds. Some technical proofs, examples, and calculations
are postponed to Appendix A.

2. Setting
2.1. Regularity conditions

The notation that is used throughout the paper is as follows. The parameter
space is © C R? equipped with the Euclidean norm. Let 8 = (61,0s,...,04)7
denote a parameter from the parameter space, while 8y = (6p.1,600.2,...,60.4)"
denotes the true, but unknown, value of the parameter. For X = (X1, Xo,...,
X ,,) being i.i.d. random vectors in R?, ¢t € Z*, we denote by f(x;|0) the proba-
bility density (or mass) function of X ;. The likelihood function is L(0;x) =
[T, f(z:|0), where * = (x1,@2,...,x,). Its natural logarithm, called the
log-likelihood function, is denoted by £(0;x) = log L(0;x). We shall write
V = (0;991’ cee %)T to denote the gradient operator with respect to the un-
known parameter vector 6. A maximum likelihood estimate (not seen as a ran-
dom vector) is a value in the parameter space which maximises the likelihood
function. For many models, the MLE as a random vector exists and is also

unique, in which case it is denoted by 6,,(X), the MLE for 6y based on the
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sample X. A set of assumptions that ensure existence and uniqueness of the
MLE are given in [27]. This is known as the ‘regular’ case. However, existence
and uniqueness of the MLE cannot be taken for granted; see [8] for an example
of non-uniqueness. We shall write E to denote the expectation with respect to
0y, and Eg to denote the expectation with respect to 6.

Let us now present standard regularity conditions under which asymptotic
normality of the MLE holds [14]:

(R.C.1) The densities defined by any two different values of € are distinct.

(R.C.2) For all @ € ©, Eg [V (¢(0; X))] = 0.

(R.C.3) The expected Fisher information matrix for a single random vector
1(0) is finite and positive definite. For r, s € {1,2,...,d}, its elements
satisfy

82
00,00,

nl1(0)]s = Eo | 2-0(6: X)L 1(0: X)} —Eo [

20, a0, 00; X)] .

This condition implies that nI(0) is the covariance matrix of V(£(0;
X)).

(R.C.4) For any 8y € © and for X denoting the support of the data, there exists
€0 > 0 and functions M,.¢(x) (they can depend on 6y), such that for
60 = (01,04,...,04) and r,s,t, € {1,2,...,d}, the third order partial
derivatives ﬁgﬁetew; @) exist almost surely in the neighbourhood
|60; — 60| <eo,g=1,2,...,d, and satisfy

83

90.90.90. ; < ] T ] ] = e o e
56,96.90, 03 %)| < Mrst(@), Ve € X, [6; =0, <co, §=1,....d,

with E[M,..(X)] < .

In addition to these regularity conditions, [14] assumes that the true value 6
of @ is interior to the parameter space © C R¢, which is compact. Throughout
this paper, we shall instead assume that the parameter space © C R? is open.
Conditions (R.C.1), (R.C.3) and (R.C.4) are stated explicitly on page 118 of
[14]. We have expressed (R.C.4) slightly differently to how it is stated in [14], so
that our presentation is consistent with that from the book [10] and a similar
regularity condition (R.C.4’) of [1], which are both referred to in our paper.
Condition (R.C.2) is not stated on page 118 of [14], but is crucial to the proof
and is implied by equation (4.32) on page 124 of [14] in which an interchange
in the order of integration and differentiation is assumed.

The asymptotic normality of the MLE was first discussed by [16]. Here,
with the above regularity conditions, we present the following statement of the
asymptotic normality of the multi-parameter MLE for i.i.d. random vectors; for
the independent but not necessarily identically distributed case see [22].

Theorem 1 (Davison [14]). Let X1, X5,..., X, be i.i.d. random vectors with
probability density (or mass) functions f(x;|0), where @ € © C RY, and ©
is compact. Assume that the MLE 0,(X) exists and is unique and that the
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reqularity conditions (R.C.1)-(R.C.4) hold. Let Z ~ MVN (0, 1), where 0 is
the d x 1 zero vector and 14 is the d x d identity matriz. Then

Va1(80)]? (8(X) — 60) —— Z.

A quantitative version of Theorem 1 was obtained by [1] (in the i.i.d. setting)
under slightly stronger regularity conditions, these being (R.C.1)—(R.C.3) and
the following condition (R.C.4’). Before presenting this condition, we introduce
some notation. Let the subscript (m) € {1,...,d} denote an index for which

the quantity \én(w)(m) — 6p,(m)| is the largest among the d components:
(m) is such that |én($)(m) — 0o, (m)| > 00 (x); — 60,4, Vi€ {1,...,d}.

Let )
Qm) = Q(m) (X, 00) := 0,(X) (m) — b0, (m)- (2.1)

(R.C.4’) The log-likelihood £(0;x) is three times differentiable with respect to
the unknown vector parameter @ and the third order partial deriva-
tives are continuous in 6. In addition, for any 6y € © there ex-
ists 0 < € = €(6o) and functions My (x), Vk,j,l € {1,2,...,d},

3 .
such that |W€(0,w)’ < Myji(x) for all @ € © with |0; — 6y ;| <
e, Vj € {1,2,...,d}. Also, for Q) as in (2.1), assume that
E[(Mp1(X))* [ 1Qm)| < €] < o0,

In Theorems 4 and 6, we shall work with the same regularity conditions as [1],
but with (R.C.4’) replaced by the following condition (R.C.4” (p)). Before stating
condition (R.C.4”(p)), we introduce some terminology. We say that M (0;x) is
monotonic in the multivariate context if for all fixed 61,65, ..., 0, and = we have
that, for each s € {1,2,...,d},

03—>M(él,ég,...,93_1,08,§s+1,...,0~d;m) (22)

is a monotonic function.

(R.C.47(p)) All third order partial derivatives of the log-likelihood ¢(8; x) with
respect to the unknown vector parameter 0 exist. Also, for any
6 € © and for X denoting the support of the data, we assume
that for any j,1,q € {1,2,...,d} there exists a function My;(6; x),
which is monotonic in the sense defined in (2.2), such that

93
- t0; < (p-
90,00,00; U(0; )| < Mg;(0;x), VaeX,
and
max E[ (én(X)l — 90’1)(9An(X)q —0p.q) X

é'me{én (X)NL 700,77),}
me{1,2,...,d}
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X My;(0; X)|"] < oo (2.3)

In the univariate d = 1 case we drop the subscripts and write
M(6;x).

We include reference to the variable p in the name of our condition (R.C.4” (p))
to emphasis the fact that the integrability condition (2.3) depends on p, the order
of the Wasserstein distance under consideration. In the case p = 1, correspond-
ing to the classical 1-Wasserstein distance, we shall simply write (R.C.4”).

Remark 2.1. For brevity, in this remark we discuss the condition (R.C.4”); sim-
ilar comments apply to the more general condition (R.C.4”(p)). The motivation
for introducing (R.C.4”) is that in the proof of Theorem 4 it allows us to bound
one of the remainder terms in the 1-Wasserstein metric, which would not be pos-
sible if instead working with (R.C.4) or (R.C.4"). Conditions (R.C.4), (R.C.4)
and (R.C.4”) each require all third order partial derivatives of £(6;x) to exist.
Each condition then also involves an integrability condition involving a function
that dominates the absolute value of these partial derivatives in a certain way.
For a given MLE, verifying the integrability conditions in (R.C.4") and (R.C.4")
each have extra difficulty compared to (R.C.4): (R.C.4’) involves a conditional
expectation, whilst for (R.C.4”) the expectations in (2.3) involve the MLE. In
Section 4, we give some examples in which the MLE takes a relatively simple
form, for which the verification of (R.C.4”) follows from elementary calculations,
and is simpler to work with than the integrability condition involving condi-
tional expectations in (R.C.4’). For complicated MLEs it inevitably becomes
more involved to verify (R.C.4”). In Appendix A.1, we give an illustration of
how (R.C.4”) can be verified for more complicated MLEs using the example of
the inverse gamma distribution. A comparison between (R.C.4’) and (R.C.4”) in
the context of obtaining error bounds for the distance between the distribution
of the MLE and the multivariate normal distribution is given in Remark 3.2.

In the case of univariate i.i.d. random variables we work with (R.C.4”) and
the following simpler regularity conditions:

(R1) The densities defined by any two different values of 6 are distinct.

(R2) The density f(x|0) is three times differentiable with respect to 6, the third
derivative is continuous in 6, and [ f(z|6) dz can be differentiated three
times under the integral sign.

(R3) i(bp) # 0, where i(0) is the expected Fisher information for one random
variable.

These regularity conditions are the same as those used in [10] and [4] with
the exception that (R.C.4”) is replaced by a univariate version of (R.C.4) and
(R.C.4%), respectively.

2.2. Probability metrics

Let X and Y be R%valued random vectors. Fix p > 1 and suppose that
E[|X|?] < oo and E[|Y|P] < oo, where | - | denotes the usual Euclidean norm.
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Then the p-Wasserstein distance between the distributions of X and Y is de-
fined by

dw, (X,Y) = (inf E[|X' — Y'["])"/", (2.4)

where the infimum is taken over all joint distributions of X’ and Y that have
the same law as X and Y, respectively. In the case p = 1, corresponding to the
1-Wasserstein distance, we shall drop the subscript 1 and write dyw. The infimum
in (2.4) is actually a minimum in that there exists a pair of jointly distributed
random variables (X*,Y™) with £(X™) = £(X) and L(Y ™) = L(Y') such that

dw,(X,Y) = (E|X* - Y |))"/"

(see Chapter 6 of [42] and Lemma 1 of [28]). By Hoélder’s inequality, it follows
that, if 1 < p < g, then

dw,(X,Y) < dy, (X, Y) (2.5)

for all X and Y such that E[|X|?] < co and E[|Y]7] < oo (see again Chapter 6
of [42] and Lemma 1 of [28]).

The 1-Wasserstein metric and several other probability metrics used in this
paper can be conveniently expressed as integral probability metrics. For R?-
valued random vectors X and Y, integral probability metrics are of the form

dy(X,Y) := sup [E[A(X)] — E[A(Y)]| (2.6)

heH
for some class of functions H. At this stage, we introduce some notation. For
vectors @ = (ai,...,aq) € R® and b = (by,...,b) € RY, we write a < b
provided a; < b; for i = 1,...,d. For a three times differentiable function
h:R? — R (denoted by h € C3(R?)), we abbreviate |h|; := maxiHO%ih |, |hl2 ==

, provided these quantities

2 3
max;, H 69:?8wj hH and ‘h|3 = maXi’jakH E):ria(?vjazk h
are finite. Here (and elsewhere) ||| := || ||o denotes the usual supremum norm

of a real-valued function. For a Lipschitz function h : R? — R we denote

h(x) — h(y
[|h||Lip = sup M
TH#y IIB - y|
With this notation in place, taking
Hi = {1(- < 2)|z € RY}, (2.7
Hw = {h: R - R|h is Lipschitz, ||h|Li, < 1}, (2.8
Hyw = {h: R — R | h is Lipschitz, ||h| < 1 and ||h||Lip < 1}, (2.9
Hio={h:RY > R|hec C*R?) with |h|; <1, 5 =1,2}, (2.10
Hoa23=1{h: R 5 R|h e C3*R?) with ||h]| <1 and |h[; <1,j=1,2,3}

(2.11)

in (2.6) gives the Kolmogorov, 1-Wasserstein and bounded Wasserstein dis-
tances, which we denote by dk, dw and dpw, respectively, as well as smooth test
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function metrics, which we denote by d; 2 and dg,1,2,3. In all the above notation,
we supress the dependence on the dimension d. Of the works mentioned in the
Introduction, the results of [34] are given in the Kolmogorov metric, [3] and
[4] work in the bounded Wasserstein metric, and [1] works in the smooth test
function dp 1 2,3 metric. It is evident that dyw and dp 1,23 are weaker than the
dw metric.

We now note the following important relations between the Kolmogorov met-
ric and the 1-Wasserstein and bounded Wasserstein metrics, respectively. Let Y
be any real-valued random variable and Z ~ N(0,1). Then by [40, Proposition
1.2] (see also [11, Theorem 3.3]) and [33, Proposition 2.4], we have that

1/4
(Y, Z) < (%) NI ) (2.12)

1
These bounds in terms of dw (Y, Z) and dpw (Y, Z), respectively, are best pos-
sible up to a constant factor [35, p. 1026]. Hence, our forthcoming O(n~1/2)
1-Wasserstein distance bounds for the asymptotic normality of the single-para-
meter MLE and O(n~'/2) bounded Wasserstein distance bounds both yield
O(n~'/*) Kolmogorov distance bounds via (2.12) and (2.13), respectively. As
dw < dw, for p > 1, bounds given with respect to the p-Wasserstein distance
similarly imply such bounds.

For the multi-parameter case, the following generalisation of (2.12) due to
[25] is available. Let Z ~ MVN(0, I;), d > 1. Then, for any R%valued random

vector Y,
dx(Y,Z) <\/2(\/2logd + 2)\/dw(Y, Z). (2.14)

A similar bound with the slightly bigger multiplicative constant of 3(log(d +
1))'/4 had previously been obtained by [5]. For an analogous relationship be-
tween the 1-Wasserstein and convex distances in R¢ see [30].

Remark 2.2. In the univariate case, the same argument to that used in the proof
of Corollary 4.2 of [20] can be used to show that there exists a universal constant
C' (which can be found explicitly) such that dx(Y,Z) < C’(d071,273(Y, Z))1/4.
Using the approach of [5] with a multivariate analogue of the smoothing function
of [20] would also lead to a bound of the form dx (Y, Z) < C(d0,1’273(Y7 Z))1/4,
for d > 1. Consequently, the O(n~'/2) bounds in the dg 23 metric of [1] for
the multivariate normal approximation of the multi-parameter MLE only yield
O(n~1/#) bounds in the Kolmogorov metric, whilst our O(n~1/2) 1-Wasserstein
distance bounds lead to O(n~1/*) Kolmogorov distance bounds.

2.3. Wasserstein distance bounds by Stein’s method

Optimal order @(n~'/?) 1-Wasserstein distance bounds for the normal approxi-
mation of sums of independent random variables via Stein’s method date as far
back as [15]. We shall make use of the following result.
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Theorem 2 (Reinert [38]). Let &y, ..., &, bei.i.d. random variables with E[¢1] =
0, Var(¢1) = 1 and E[|€1]?] < oo. Denote W = ﬁ Sor & and let Z ~N(0,1).
Then

1
vn

Only very recently have optimal order Wasserstein distance bounds been
obtained for multivariate normal approximation of independent random vectors.
There has been quite a lot of activity on this topic over the last few years,
and amongst the bounds from this literature we use a bound of [9] given in
Theorem 3 below. This is on account of the weak conditions, simplicity, and
good dependence on the dimension d that is sufficient for our purposes. It should
be noted, however, that there are bounds in the literature that have a better
dependence on the dimension d; see, for example, [13], in which, in the case of
the 2-Wasserstein distance, the fourth moment condition of [9] is replaced by
a Poincaré inequality condition. If we were to use such a bound with improved
dependence on d in the derivation of our general bounds of Theorems 4 and 6, it
would, however, make no difference to the overall dependence of the bound on
the dimension d. We also note that in the univariate case, optimal order n=1/2 p-
Wasserstein distance bounds have been obtained for the normal approximation
of sums of independent random variables without the use of Stein’s method; see
[39] and references therein.

The bound (2.16) below is not stated in [9], but is easily obtained from the
bound (2.15) (which is given in [9]) by an application of Hélder’s inequality.
The bound (2.18) is also not stated in [9], but is again easily obtained from the
bound (2.17) (which is given in [9]) by this time applying the basic inequality
(Z?Zl aj)r < grt ijl aj, where ay,...,aq >0 and r > 2.

For a d x d matrix A, let ||A||F = \/Z?:l Z?:l |a; ;|2 be the Frobenius norm.

dw (W, Z) < —=(2+E[|&1]*]).

Theorem 3 (Bonis [9]). Let &;,...,€&, be ii.d. random vectors in RY with
E[¢,] = 0 and E[¢,€]] = 1. Let W = ﬁ S & and let Z ~ MVN(0, 1).

Suppose that E[|€,]*] < co. Then

d1/4
NG TG (2.15)

14d5/4
< 7 maxi<j<dy/E[E] 1, (2.16)

where & ; is the j-th component of §;.
Suppose now that E[|&,[PT2] < oo for p > 2. Then there exists a constant
Cp > 0 depending only on p such that

dwz(Wa Z) <

Cyp T 2 p+27\ /P
dw, (W, 2) < 2 (\/IELG. €716 Pl + (Bl ) ) (2.17)

< £ (d5/4maX1§j§d B¢ ]+ d'/* T Pmax < j<qa (E[|&1

C p+27\ /P
N I (218)
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3. Main results and proofs

For ease of presentation, let us now introduce the following notation:

W = V/n[I(80)]'/2(8(X) — 6),
Q)= Q)(X.00) = 0,(X); b0y, G € {L.2,...d),
62 .
le _ le (907X) = ME(OO;X) + Tl[I(OO)]lja ]al € {172’ t "d}’ (3.19)

‘72‘7(” 90):[(90)]71/2,
Zvjk log(f(X400)), ie€{1,2,...,n}, je{1,2,...,d}.
90,

Notice that, using condition (R.C.3), E[T};] =0 for all j,l € {1,2,...,d}.
A general 1-Wasserstein distance error bound for the multivariate normal
approximation of the multi-parameter MLE is given in the following theorem.

Theorem 4. Let X = (X1,Xs,...,X,) be i.i.d. Rt-valued, t € Z", random
vectors with probability density (or mass) function f(x;|0), for which the true
parameter value is Oy and the parameter space © is an open subset of RY. Assume
that the MLE exists and is unique and that (R.C.1)-(R.C.3), (R.C.4”) are sat-
isfied. In addition, for V as m (3 19), assume that E[|[V'V (log (f(X1]00))) [*] <
oo, where V = (891 305 8.)T. Also, assume that E[Q?] < oo for all | €

{1,2,...,d} and IE[Té] < oo forall j,l € {1,2,...,d}. Then

dw(W, Z) < %(Kl(eo) + KQ(O()) + K3(00)), (320)

where

K1(60) = 14d*/" max \/E[] ]

Ka(00) = zzwzﬁﬁz

k=1j=1
1 - -
=5 ZZ Vi Z Z Yo E|QQuMey(6;X)|. (3.21)
k=1 j=1 =1 g=1 énle{én(x)m790.m,}

me{1,2,...,d}

The following theorem is a simplification of Theorem 4 for the single-para-
meter MLE.

Theorem 5. Let X = (X1, Xa,...,Xy) be i.i.d. random variables with proba-
bility density (or mass) function f(x;|0), for which the true parameter value is
0o and the parameter space © is an open subset of R. Assume that the reqularity

conditions (R1)-(R3), (R.C.4”) are satisfied and that the MLE, 0,,(X), eists
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and is unique. Assume thatEH%logf(Xl\Go)ﬁ] < 00, Var(d92 log f(X1|60)) <
0o and EB[(0,(X) — 60)2] < 0. Let Z ~ N(0,1). Then
)

aww.2) < {2+ Hl)]mEHC%logﬂXlwo)

1 d2 -
+ v <@logf(X1|90)) VE[(0.(X) - 6)°]
1 ~
+ 5y (El0.() = 002 (03: )|
+E[(6.(X) - 90)2M(én(X);X>\)}. (3.22)

p-Wasserstein distance analogues of the bounds of the above two theorems
are given in the following theorem.

Theorem 6. Let p > 2. Let X = (X1,Xs,...,X,) be i.i.d. Rt-valued, t €
Z*, random wvectors with probability density (or mass) function f(x;|0), for
which the true parameter value is @y and the parameter space © is an open
subset of RY. Assume that the MLE exists and is unique and that (R.C.1)-
(R.C.3), (R.C.4”(p)) are satisfied. In addition, for V as in (3.19), assume that
E[[VV (log (f(X1|60))) |PT?] < oco. Also, assume that E[|Qi|*"] < oo for all
le{1,2,...,d} and E[|T};|*"] < oo for all j,l € {1,2,...,d}. Then

dwp(W,Z) < T(Kl p(eo) +K2p(00) + K3 p(OO)) (323)
where

Ky p(80) = G (¢ ma \JBIEL ] +d/> /7 (ElJe,,[+)").

Ka,(80) = d* 3/”(ZZIVkJ|PZ¢ Qi1 /E[ mm)

k=1 j=1

g [ A 4 d )
Ksp(00) = ( SN > [Vies [P %

F=1 =L =1 471§, {0, (X ) 00, }
me{1,2,...,d}

- 1/p
]EHQququj(O;Xﬂp]) : (3.24)

and Cp > 0 is a constant depending only on p.

In the case p = 2, we have the following simpler bound with an explicit
constant:

dwz(W, Z) < % (Kl (00) + K272(90) + K372(00)), (325)

where K1(0y) is defined as in Theorem 4.
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Remark 3.1. (1) Let us demonstrate that the bound (3.20) of Theorem 4 is
of the optimal order O(n~'/2); similar considerations show that the bounds of
Theorems 5 and 6 are O(n~'/?). Firstly, we have that for all j = 1,2,...,d,
E[¢} ;] = O(1), and therefore K(89) = O(1). Here and throughout the paper,
O(1) is understood as smaller than a constant which does not depend on n,
but may depend on the dimension d. Assuming that [I(0y)]~! = O(1), we have
that E[Q?] = O(n™!) for all [ = 1,2,...,d. To see this, note that because W
is asymptotically standard multivariate normally distributed, it follows that, as
n — 0o,

COV(W) [( )]1/200‘/(@”()())[]‘(00)]1/24)1—d7

and therefore Cov(8,,(X)) — L[1(60)]7!, as n — oo, from which we read off
that E[Q?] = O(n™!) for all | = 1,2,...,d. Also, using condition (R.C.3) and
that X1, Xo,..., X, are independent we have that

2
E[T2] = ZVar( oo B! (Xl60)) = (o),

Therefore K5(80) = O(1). Since £(0;z) = Y I log(f(x;|0)), we have that
£(0; ) = O(n) and therefore M;;(0;x) = O(n). As we also have that

m

E[Q?] = O(n™!') (and so E|Q,Q,| = O(n~') by the Cauchy-Schwarz inequal-
ity) it seems intuitive that E|QiQqMqy; (6; X)| = O(1). However, this cannot
be guaranteed because My;; (0 X)) is random. If we additionally assume that

E[Q}] < oo foralll=1,2,...,d and

maXémE{én(X)m,700,7n,}E[(Mqu (é7 X))Q} < 0
me{l,2,...,d}

for all j,1,q € {1,2,...,d} then we are guaranteed that E|Q;Q, ql](O X)| =
O(1), meaning that K3(0p) = O(1). This is because My;(0;x) = O(n), and
E[Q}] = O(n™2) for all | = 1,2,...,d, provided [I(80)]~! = O(1). To see this,
note that, by the asymptotic normality of the MLE, we have that, for all [ =
1, 0,(X)1—00, 3 N(0,21.), as n — oo, where I, = Y0 ([1(80)])y;.
Hence, E[Q}] = E[(0,(X); — 60,4)*] — 3. I2, as n — oo. Here we used that, for
Y ~ N(0,0?), E[Y*] = 30%. Two applications of the Cauchy-Schwarz inequality
then give
= 1/4 ~ 1/2
E|QiQqMq;(0; X)| < (E[QIE[Qy]) " (E[(Mq;(8; X))*)
Since K1(6g), K2(00) and K3(0y) are all O(1) as n — oo, it follows that the
bound in Theorem 4 is O(n~1/2).

(2) In general £(0;x) and log(f(x;|0¢)) will depend on the dimension d (and
therefore so will ij and Mg (0; ), for example), and therefore it is difficult to
make precise general statements regarding the dependence of the bound (3.20)
of Theorem 4 on the dimension d. However, it is clear that the term K3(6y) has

= 0(1).
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a very poor dependence on the dimension d. Assuming that My;(0;x) = O(1)
and Vi; = O(1), we have that K3(6p) = O(d*2%).

This poor dependence on the dimension is a consequence of the crude in-
equality (3.32) used in the proof of Theorem 4 below, which we now state:

E[QiQqMq;(685; X)| < Zéme{én(z)m,eo,m} E’QquMqu(0~§ X)
me{l,2,...,d}

. (3.26)

where 05 = (651,05 2,---,054)T, and 6 ; := 05 ;(x) = a;0; + (1 — a;)0(x);,
a; € (0,1), 5 = 1,2,...,d. (We also introduce the monotonicity assump-
tion on Mg, to obtain inequality (3.32).) Inequality (3.26) is useful in that
the expectations in the sum are easier to bound directly than the quantity
E|Q1QyMy;(85; X)|, but this comes at the cost of having a sum with 2¢ terms,
resulting in a poor dependence on the dimension d. However, as is demonstrated
in the examples of Section 4, when the number of dimensions is low, inequality
(3.26) (which leads to the term K3(6y)) is very useful as the computation of the
expectations in the sum are often straightforward.

Remark 3.2. Theorem 2.1 of [4] gives a bounded Wasserstein bound on the
distance between the distribution of the single-parameter MLE and the normal
distribution, and Theorem 2.1 of [1] gives a bound on the distance between the
distribution of multi-parameter MLE and the multivariate normal distribution
with respect to the do ;2,3 metric. Both bounds are of the optimal O(n‘1/2)
order. We now give further comparisons between our bounds and those of [4]
and [1].

Theorem 2.1 of [4] holds under the same regularity conditions as our Theorem
4, but with condition (R.C.4") instead of (R.C.4”) Condition (R.C.4’) introduces
a constant e. This causes two complications in the bound of [4]. Firstly, some ad-
ditional conditional expectations (which involve €) must be estimated; secondly,
€ appears in other terms in the bound and so in applications of the bound e
must later be optimised. Our bound (3.22) has no such complications and in
most applications we would expect that the expectations that must be esti-
mated in our bound are easier to work with than those of [4], and ultimately
lead to better bounds (even when given in a stronger metric). Indeed, in Section
4.1 we apply Theorem 4 to derive 1-Wasserstein distance bounds for the nor-
mal approximation of the MLE of the exponential distribution in the canonical
and non-canonical parametrisations, and we find that in both cases our bounds
outperform those that were obtained by [4].

Theorem 2.1 of [1] also holds under the same regularity conditions as our
Theorem 4, but with condition (R.C.4’) instead of (R.C.4”). The bound of [1]
therefore has similar complications to the bound of [4], and overall the bound
of [1] takes a more complicated form than our bound (3.20) in Theorem 4.
For small dimension d, we would therefore expect our bound to be preferable
to that of [1] and lead to better bounds in applications. However, as noted in
Remark 3.1, the term K3(0) of bound (3.20) has a very poor dependence on
the dimension d; much worse than the bound of [1]. In applications in which the
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dependence on the dimension is more important than the choice of metric, the
bound of [1] may therefore be preferable to our bound (3.20).

Proof of Theorem 4. By the triangle inequality we have that

WM%msw(%ﬁvwwxnz>wmom%JVW%ﬂw>

“Ri+Rs. (3.27)
We now proceed to find upper bounds for the terms R; and Rs.

The term R; is readily bounded by an application of Theorem 3. We have
V(€(00; X)) =>",V(log(f(X;|00))) and we can write S = ﬁ Yo &, for

€ = VV (log (f(X60))), i = 1,2,...,n, being i.i.d. random vectors in R%
From the regularity condition (R.C.3), it follows that E[§;] = 0. In addition,
using (R.C.3), we have that due to the symmetry of V,

Var (S) = —VZ {Var (V(log(f(X|00))}V = VI(0o)V = I,.

Therefore, from Theorem 3 (using that dw < dyw,) we have that

14d°/4 Ki1(6o)
<
B < N 12524 El&] = v

where &5 = 4, Vg (log (f(X1]60)))-
Now we turn our attention to the more involved part of the proof, that of

bounding 2. We begin by obtaining a useful expression for W Vn[I(6o)] /2%
(6,,(x) — 65). From the definition of the MLE we have that 5 5(9 (r);x) =0

forallk =1,2,...,d. A second order Taylor expansion of %Z( n(x); ) around
0y gives that

d 92 )
j; Qj mg(eo; m) = _a—akg(eo; 33)

1 P&
~ 3. ZQjquf(e;m) o (3:28)

6=0;

<
HM&
I

q=1

Here 65 = (05 1,05 2, -, 05 4)T, where 65 ; :== 05 ;(z) = a;; + (1 — a;)f(x);,
€ (0,1), 5 = 1,2,...,d. Adding now 2?21 n[1(60)]k;Q; on both sides of
(3.28), we obtain

8
n[1(60)]k;Q; = %,+Z@%

Jj=1 j=1

d d
1 o3
52220 000,00, &) |gg (32

Jj=lg=1

'M@
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The equality above holds for all k =1,2,...,d, which means that, for [I (00)][1‘]
denoting the j-th column of the matrix 1(6y),

where we multiplied both sides by ﬁ[l(@o)]_l/2 = ﬁf/
Now, from the integral probability metric representation of the 1-Wasserstein
distance we have that

Ry = sup |E[W(W)] — E[h(n"Y2VV (£(80; X)))]|.
Let h € Hyw. Then, by (3.30),
[E[A(W)] — El[h(n™/2VV (¢(80; X)))]|

1 V{Z%( < (Bo; )> +n[I(90)hﬂ>

< [IAllLipE

and, by the triangle inequality,

[E[h(W)] - E[h( TRV (U(60; X))

< 1Py { ZZZ Vi [EQu T,

k=1j=11=1
1 d d d d 83
5;; ij;;E’QquW“O;X) ‘9:93 }
_ Ihlp -
o35 i 3 Rle Bl
| o )
+§ZZE|Qqu qlj 00, )| }a (3.31)

=1 g=1

where M, (0; ) is as in the condition (R.C.4”). In obtaining the final inequality
we used the Cauchy-Schwarz inequality.
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Let us now focus on bounding E|Q;Q,Mq;(05; X)|. As My, is a monotonic
function in the sense defined in (2.2), we have that, for all x € X

Mqij (06(@); ) < maxs (5, (@),,.6,,,} Mati (05 2).
me{l,2,...,d}
Therefore

B1QUQu My (95 X)) < E|QUQumas, o5, x,. 0,y Mas X))
me{1,2,...,d}

< E‘Ql@q Zéyne{é"(x)m,gmm} My (6; X)’
me{1,2,....d}

= {0} ElQIQ M5 (B: X)) (3.32)
me{l,2,...,d}

3.31) gives the bound
00; X)))]|

Applying inequality (3.32) to

(
[E[A(W)] — E[h(n~"/2VV (¢

1 d d B
GYY Y Heaue)|
m E{én(x)mﬁo,m}

me{l,2,...,d}

I
—_
2
Il
—_
D

= %(I@(Go) + K3(60)),

Since h € Hw we have that [|h|Lip, < 1, and therefore Ry < ﬁ(KQ(OO) +

K3(60)). Finally, combining our bounds for R; and R; yields inequality (3.20).
|

Proof of Theorem 5. The proof is exactly the same as that of Theorem 4 with
the exception that the term R; in (3.27) is bounded using Theorem 2, rather
than Theorem 3. |

Proof of Theorem 6. The proof is similar to that of Theorem 4. Let p > 2. By
the triangle inequality we have that

dw, (W, Z) < d, (%W (660 X)), z) +dw, (w, VYo X)))
=: RL;D + Rg’p.

The term R;, can be bounded similarly to how we bounded R; in the proof
of Theorem 4. In the case p = 2 we obtain the same bound K;(6) for R; o,
and for the case p > 2 the only way our argument changes is that we apply
inequality (2.18), rather than inequality (2.16).
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To bound Rj ), we note that the random vectors W and VV (£(60; X))
are defined on the same probability space and thus provide a couphng of them.

It therefore follows from the definition of the p-Wasserstein distance that
1 1 p1\ /P
Rop=dw, (W,—=VV (£(00; X)) ) < |E||W - —=VV (£(6; X :
2.p Wp< ’\/ﬁ ( ( 05 ))) —( H \/ﬁ ( ( 05 )) :|>

Substituting (3.30) into this bound and using the triangle inequality now gives
that

) d d_d_
Ry, < 7 <]EKZZZ Vi QiTi5]

1A 4 a4 53 1\ /P
+§ZZZZ kaQqum (65 X) ) D
k=1j=11=1 q—1
1 d d pp\ /P
<—<[(E Vi, Q1T
< ((EE 5o )
3

ka 6(98§X)

p1\ /P
Qquae 96,00, ) D }
We now apply the inequality (Zd a;) <dt Z] L %, where ay, ..., a4 >0
and r > 2, to get

1/p
Ry < T{ds 3/P<ZZ|V@V”ZE 1QuT;"] )

k=1 j=1

d4—4/p o3
(ZZ |VkapZZ]EHQquW€(93;X)

k=1 j=1 =1 qg=1

d d
g%{df’-?‘“ﬂ(ZDvmiw [QuPP1y/El T|>
k=1 j=1
dA-4/p d d d d ~
4 (zzzz S [Tl

'm,e{én(X)'nueO,nL}
me{1,2,...,d}

HQqu ats ( 9 X > }

(K2,p(00) + K3,,(60)),

)

b
Il
—
<
Il
Jul
Il
—
Q
Il
—_
D

\/—

where in obtaining the second inequality we used the Cauchy-Schwarz inequality
and a similar argument to the one used to obtain inequality (3.32). Summing
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up our bounds for R, and Ry p, in the cases p > 2 and p = 2, yields the desired
bounds (3.23) and (3.25), respectively. [ |

4. Examples

In this section, we apply the general theorems of Section 3 to obtain explicit
optimal O(n~1/2) Wasserstein distance bounds for the multivariate normal ap-
proximation of the MLE in several important settings. Each of the examples
given is of interest in its own right and taken together the examples provide a
useful demonstration of the application of the general theorems to derive explicit
bounds for particular MLEs of interest. Our focus in this section is mostly on
obtaining bounds with respect to the 1-Wasserstein metric, although we do de-
rive some bounds with respect to the 2-Wasserstein metric. It should be noted,
however, that p-Wasserstein (p > 1) analogues of each of the bounds derived in
this section can be obtained through an application of Theorem 6; see Corollary
2 for a 2-Wasserstein distance bound for the normal approximation of the ex-
ponential distribution under canonical parametrisation. In Section Proposition
1 we provide an upper bound with respect to the bounded Wasserstein distance
for cases where the MLE cannot be expressed analytically.

4.1. Single-parameter exponential families

The distribution of a random variable, X, is said to be a single-parameter ex-
ponential family distribution if the probability density (or mass) function is of
the form

f(@]0) = exp {k(0)T(z) — A(0) + S(2)} Lizeny, (4.33)

where the set B = {x : f(x]0) > 0} is the support of X and does not depend on
0; k(0) and A(0) are functions of the parameter; T'(z) and S(z) are functions
only of the data. Many popular distributions are members of the exponential
family, including the normal, gamma and beta distributions.

The choice of the functions k(#) and T(X) is not unique. If k(0) = 6 we
have the so-called canonical case. In this case € and T'(X) are called the natural
parameter and natural observation [10]. It is often of interest to work under
the canonical parametrisation due to appealing theoretical properties that can,
for example, simplify the theory and computational complexity in generalised
linear models. In fact, as noted in Remark 4.1 below, our general (4.34) bound
in Corollary 1 for the normal approximation of the MLE for exponential family
distributions simplifies in the canonical case. Canonical parametrisations are
important in, amongst other examples, Gaussian graphical models [26] and pre-
cision matrix estimation [29].

Corollary 1. Let X1, Xs,..., X, be i.i.d. random variables with the probabil-
ity density (or mass) function of a single-parameter exponential family distri-

bution, as given in (4.33). Assume that (R1)-(R3) are satisfied and that the
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MLE ezists. Assuming that k'(00) # 0 and denoting by D(0) = ’2,/—((%), then with
= /ni(6p)( —0o) and Z ~ N(0,1), it holds that

(1) If (R.C.47) is satisfied and for M(0,x) as in (R.C.4”), then

dw (W, 2) <
E[

T(X1) = D@)P] , [K"(60)
[Var(T(X1)))*? i(fo)

ﬁ{“

s (B0 = 0070 (00X + B30 - 00)2010(): )] |
(4.34)
(2) If (R.C.47(2)) is satisfied and for M(6,x) as in (R.C.47(2)), then
s (,2) < 2|t 60 BT ()~ DiGa))T
& O (5 5y 1/4 - Y
T i) <E[(9”(X) b0’ ) ( Kz_: X’)]}> D
+5 ;(00) (E[(én(X) — 00)4 (M (8 X))?]
+E[0,00 - 00 010, 0:207) ] @)

In both (1) and (2) above, i(6y) = Var (<5 log f(X1|00)) = [k’ (60)]*Var(T'(X1))
which is positive.

Proof. (1): We have that

Hlogf X1]6o)

] K (60)PE [|T(X1) - D(60)[?]

and

Var (;; log f(X190)) = Var (K" (60)T(X1) — A" (60))

= [K"(60)]” Var (T'(X1)) ,

and applying these formulas to the bound (3.22) yields the bound (4.34).

(2): Using the general result in (3.25) and the expression of K1 (6p) as in (3.21),
we have in this specific case for d = 1 that

K (00) = 2(1;))41& [(;elogf(&l@o)) ]
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14[k' (6o)]2
- %\/E[(T(Xl) — D(6o))"]. (4.36)

With respect to Ks 2(0p) as in (3.24), we have that

Koalth) = o (2[0.00) —0)")) (B[00 00 ) miten)])
K/ 00)] (1 i
= (B0 - 00)

x (E [( é{T(Xi) - E[T(X,»)]}) T ) " (4.37)

Combining (4.36) and (4.37) with the general result of (3.25) leads to the upper
bound in (4.35). n

Remark 4.1. In the canonical case, k" (6y) = 0 and the second term of the bounds
in (4.34) and (4.35) vanishes. Also, in this specific case, % log f(x]|0) = —A"(0)
and i(6g) = A”(6p). In addition, % log f(x|0) = —A®)(0) is independent of the
random variables. This will make it easier to find a monotonic function M (6)
as in (R.C.4”) and (R.C.47(2)), which will be a bound for n|A®)(g)].

We give two examples using the exponential distribution, firstly, in its canon-
ical form, and then, in Appendix A.2 under a change of parametrisation. The
example given in the appendix is given for purely illustrative purposes, as an
improved bound can be obtained directly by Stein’s method.

In the case of X7, X, ..., X,, exponentially distributed Exp(#), i.i.d. random
variables where 6 > 0, the probability density function is

f(1‘|9) = 06Xp{_91‘}1{$>0} = eXp{log9 - 91‘}1{w>0}
= exp {k(0)T(z) — A(0) + S(2)} Lizeny,

where B = (0,00), # € © = (0,00), T(z) = —z, k(0) = 0, A(9) = —logh
and S(z) = 0. Hence Exp(0) is a single-parameter canonical exponential family

distribution. The MLE is unique and given by 6, (X) = %

Corollary 2. Let X1,Xo,..., X, be i.i.d. random variables that follow the
Exp(6y) distribution. Let W = \/ni(00)(0n(x) — 0p) and Z ~ N(0,1). Then,

(1) Forn > 2,

541456 /n(n+2) 2
dw (W, Z) < . 4,
wiW.2) < — =+ ooy T (4.38)
(2) Forn >4,
42 1 [1144n* + 202803 + 157602 + 480n1"/2
sz (W7 Z)

=R am T D -2 -3 m 1)
(4.39)
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Remark 4.2. The rate of convergence of the bounds (4.38) and (4.39) is n~'/2
and the bounds do not depend on the value of §y. A bound with such properties
was also obtained by [4] in the bounded Wasserstein metric. Despite working in
a stronger metric, in the case of the 1-Wasserstein metric result of (4.38), we
are able to give smaller numerical constants than [4].

It should be noted that the exact values for dw (W, Z) and dw, (W, Z) do not
depend on 6y. This is because a simple scaling argument usmg the fact that
i(6p) = % shows that the distribution of W = /ni(fp)( — 6p) does not
involve 6. Hence, it is a desirable feature of our bounds that they do not depend
on .

Proof. Straightforward steps can be followed in order to prove that the assump-
tions (R1)—(R3), (R.C.4”), and (R.C.47(2)) hold for this example. We will not
show that here. The log-likelihood function is

((00; ) = —nA(Bo) + k(6o) > T(x;) = n(log by — 6oT),
i=1
and its third derivative is given by £ (6p; x) = —nA®)(0y) = 22. We see that

|03 (0; x)| = 22, which is a decreasing function with respect to 9, and therefore
conditions (R.C.4”) and (R.C.4”(2)) that are necessary for the results in (4.38)
and (4.39), respectively, are satisfied with M (0, x) = 3—?. We now proceed to
separately prove results (1) and (2) of Corollary 2.

For (1): Basic calculations of integrals show that E[|T(X1)—D(6,)[*] = E[|
X1|3] < 2“191& In addition, since T'(z) = z, we have that Var( ( 1)
); W

Var(X;) = 02 and therefore for the first term of the upper bound in (4.34
have that

ei
)

1 E[|T(X1) — D(0)’]\ _ 4.41456
ﬁ<2+ [Var(T'(X1))]*/? ) vnoo (1.40)

According to Remark 4.1, the second term of the bound in (4.34) vanishes.
Finally, we consider the third term. Recall that we can take M (6, z) = 2%. We
know that since X; ~ Exp(fy), i = 1,2,...,n, we have that X ~ G(n,nfy),
with G(a, 8) being the gamma distribution with shape parameter o and rate
parameter /3. Using now the fact that én(m) = %, the results in pp. 70-73 of [24]
give that, for n > 2,

(62() — 60 M (60: X)| = 2_”114:{ (% - oo> } - % (4.41)
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=2nE[X +65X° — 200 X?]

_2n 1+ (n+1)(n+2) 72n+1
0o n? n

2(n+2)

Applying the results of (4.40), (4.41) and (4.42) to (4.34) and using that i(6y) =
g7, yields result (1) of the corollary.
0

For (2): For the first term of the upper bound in (4.35) we have, since i(fy) = &

and k(6p) = 6y, that 03
Y 17 1403 1\*
m[k (00)12\/E[(T(X1) —D(60)" ] = TnO ]E{(Xl - %) ]

= 4—\/25 (4.43)

where we used that the fourth central moment of X ~ Exp(fy) is given by
E[(X — %)4] = 2r. The second term in (4.35) vanishes due to k”(6) = 0. With
0
respect to the third term, since £(3)(fy;x) = %, we take M (6p;x) = %. We
0 0
have already mentioned that 6,,(X) = + and X ~ G(n, nf). Therefore, simple
calculations yield

B )

05 I\ X
_ 4n?(3n? + 46n + 24)
CR2(n—1)(n—2)(n—3)(n—4) (4.44)
and
4

E[(6n(X) — 00)"(M (0,(X); X))*] = W]EK% - 00) (X)G}
=4nE [05(X)° — 463(X)® + 6605 (X)* — 460(X)* + (X)?]
_ 4(283n* + 461n3 + 370n? + 120n) . (4.45)

192
ntg;

Applying now the results of (4.43), (4.44) and (4.45) to (4.35) and using that the
second term of the bound in (4.35) vanishes, yields result (2) of the corollary.
Note that the inequality n=* < [(n —1)(n — 2)(n — 3)(n — 4)] 71, for any n > 4,
has also been used. ]

4.2. The normal distribution under canonical parametrisation

The distribution of a random variable X is said to be a canonical multi-para-
meter exponential family distribution if, for n € R?, the probability density (or
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mass) function takes the form

F(aln) —eXp{Zm (m) + S(a >}1{meg},

where B = {x : f(z|n) > 0}, the support of X, does not depend on n; A(n) is a
function of the parameter n; and Tj(z) and S(z) are functions of only the data.
Here, we apply Theorem 4 in the case that X;, Xo,..., X, are i.i.d. random
variables following the N(u, 02) distribution, an exponential family distribution.
Let ;
I p
_ T _
Mo = (m,m2)" = (ﬁ’ ;) ) (4.46)
be the natural parameter vector. The MLE for n, exists, it is unique and equal
to

N(X) = (1, 72)" = . <1 X)T

7 S (X - x)T A2
This can be seen from the invariance property of the MLE and the result of
[14, p. 116] in which the MLEs for p and o2 are given. In Corollary 3, we
give an explicit bound on the 1-Wasserstein distance between the distribution
of 7)(X) and its limiting multivariate normal distribution. As 7(X) is a non-
linear statistic, this result demonstrates the power of our general theorems of
Section 3; to the best of our knowledge no other such optimal order bounds have
been given for multivariate normal approximation of non-linear statistics in the
1-Wasserstein metric.

Corollary 3. Let X1, Xa, ..., X, be i.i.d. N(u,0?) random variables. Let m be
as in (4.46), and for ease of presentation we denote o := a(m,m2) = m (1 +
VD2 + 3. Let W = /alI(n)]'*((X) — 1y) and Z ~ MVN(0, I5). Then,
form > 9,

189
avn

1
+ ——Bm + 407 + 3772)[

V2an

tw(W.2) < 22 (150 v n -+ )+ 22 (104 3?72>)1/2

Uit
206 1286 393 1792
+ + 2] + 2 ]

Viiom M nt
(4.47)

Remark 4.3. A bound of order O(n~'/?) on the distance between W =
Vi[I(ng)]'/?(7(X) — no) and Z in the weaker dg 1 2,3 metric was given in [1].
Aside from being given in a stronger metric, our bound has the advantage of tak-
ing a simpler form with a better dependence on the parameters 7; and 7. The
numerical constants in our bound and that of [1] are of the same magnitude.
In deriving the bound (4.47) we made no attempt to optimise the numerical
constants and instead focused on giving a clear proof and simple final bound.

The following lemma will be used in the proof of Corollary 3. The proof is
given in Appendix A.3.
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Lemma 1. Let Q; =1; —n;, i = 1,2. Then, forn > 9,

10nf

1 69587}
EQI) < =1, EIQ3 < (6 +1053), E[Qf) < =T

n2

)

1 2
E[Q3] < ;(5886% +1170073),  E[QTQ3] < %(6400771 +9023n2),

and
31 7 2
En_s ) EU_G ) Erf]_4 < VRl
%)< 5 BHC < e Bl < g

E[R3) < m + 303, E[f3] < 69nf + 153n3,
|772|] |772| [ﬁg] 1 773 2, 4
El—%| <=, E|5|<—5mn+2n El=| <= +2n3).
[ 0 o Al g ), Bl )

Proof of Corollary 3. The first and second-order partial derivatives of the loga-
rithm of the normal density function are given by

0 77% 0 12
9 — L2 9 oy 2
om og f(z1]ng) T+ 2771 + gl o og f(z1|ng) = =1 T
0? 1 n3 0? 1
on? o8 f{w1lmo) (277% " 277?)’ o3 o8 fwimo) = =g,

0? 9? M2

] ] — 4.4

IO og f(x1|ng) = B0 og f(x1|n) (4.48)

23

Therefore, the expected Fisher information matrix for one random variable is

2
1 (-+5 B
1 =—m 1 4.49
(n5) 2771(_@ ). (4.49)
m
and simple calculations give that

toag =7 = 2 (O Y,

M2 m (14 m) + 13

where a = n; (1 + \/n_l)Q + 12 is defined as in the statement of the corollary.
We now set about bounding dw (W, Z) by applying the general bound (3.20).
To this end, we first note that Ks(,) = 0 due to the fact that E[T;%] = 0, for
all , j € {1,2}. This follows from the definition of T}; in (3.19) and the results
of (4.48) and (4.49).

We now focus on bounding K (n). Let

d B ) 4
Ry =8| (X Vi e Xabma)) ) | =12
k=1 ’

Then

RMEK[ (1+\/_)(+ZT]21X12)+\/?71772<X12777721)>T
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2
2m
(4.50)

32 4 2 1 772 ) ]
1+ m)E|| X — — +n B
{771( 1) K 1 2 4771 1772

< —

8(a*+b*). In terms of the parameters m
). Therefore

where we used the inequality (a—i—b) <
and 7, we have that p = 52 and o? = QL so that Xy ~ N(zk, 2n
4
2 3
El(x, -2 | =2
K ' 2771) } ant’

and a longer calculation using standard formulas for the lower order moments

of the normal distribution gives that
30m3 | 3

)]
Ell x2_- — _ 12 —E[(X2 — (62 + 12
K T (X7 — (0 + %))
— 600° + 2400547 1+ 480"yt = 12 4
dnf — omy o And
Substituting these formulas into (4.50) gives that
30m3 377%) 4 3 }
+——=<tTmne =
172 477%

32
R11<—{7761+ 7714(
7TV ny 4t

32
< S+ ym)?* (1577% + 30mn5 + 772)

We bound R similarly
1 775 2
Rio= —E —+ = - X
e (o
4
)]
2m

+(771(1+\/77_1)+"5)<
g%{nw%EK‘Xl 2 An?
) 1)

+(m(1+\/771)+n§)4E[(X1 -

3 3
2{ (1573 + 30mn3 + 3n5) + 8(ni (1 + v/m)* +n5) - W}
1

IN

32
o2
Combining our bounds for R;; and R; 2 gives that

Ui
{ 3 (1901 = 30mm5 +913) + 60 (1+ Ve >}
(]E[(kz:f/j,kaiokIOg(f(Xlwo)))‘*})l/z

Ki(ny) = 14-2°/% max
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14 -25/4.1/32
< —FF X

o

+

3015 9n§>” ?
1 77%

((1 i) (1502 + 30y + 1503) +

< 18 <15(1 + /) (m + n3)? + 3771 <1o+ 3”2)>1/2. (4.51)

m

We now bound K3(n,), as given by

K3<no>=§;z WYY Y E@QMy X))

1=1 =1 7, € {71 (X ) m M0,m }
me{1,2}

[Vis| Z Z Ry (4.52)

1 =1 g=1

1l
“ﬂ‘{w
M w

ES
Il

17

Here the superscript My;; in R, “;J emphasises the fact the quantity depends on
the choice of dominating funct1on Mg;;. In bounding K3(n,) we first note the
following inequalities which will simplify the final bound:

CO

i ind 2 3/2 3
[Virl + |Var| = /= (01> (Lt /i) + mliel) < S+ 208 + 5,

~ ~ 2 3 3
Via| + Vool = [ = (mlme| + m (1 + Vi) +n3) < 5m + 20t + 53,

which can be seen to hold from several applications of the simple inequality
ab < 1(a®+0%).
From the formulas in (4.48) we readily obtain that

0? n  3nms 03

—fl(nx)=— + v aalimz) =0,

on} (m; @) ni o 20t On3 ;)
03 o3 03 nmne

i) = ————— (g x =——,

MFoma tms ) Omon20m (m:) a0} (m:2) Uit
o3 o3 o3

—l(n;x) = ———l(n; x ——Al(n;x

Omon3 () On20m10n2 () = on30m () 2ny

Therefore we can take

n  3nns
o 2y

Mioa(0, ) = M212(0, ) = Mao1 (0, x) =

n od ~ n
MllQ(n, 513) = .1\4-121(1’]7 :]j) = _[\4'211(,’77 m) _ "’;]32|’

n ~
2 M222(T’,m) =0.
1

)
=

At this stage we note that R)3% = 0 and that R{}% = R"1'? and R)?Y =

M221 Mlll M211 A1112 M212
Ry 3% . Therefore we only need to bound Ry1Y, Ry Y, Ri{%5, Ry and
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RM:22 1n order to bound each of these terms, we must consider four cases:

(A) 7 = (11, 72), (B) @ = (11,12), (C) 71 = (i, 772) and (D) 7 = (1, 7p2)- It will
be convenient to write Riwm’A = E‘QquMqu((nl, n2); X)|,

Riwl“f’ Rfﬂlff ¢ and Rfﬂlff’D defined in the obvious manner.
We first bound Ri\f[f}f. We consider the four case (A), (B), (C) and (D), and

bound the terms by using the Cauchy-Schwarz inequality and the bounds of
Lemma 1:

n  3nn? 1
R4 = E[Q?<—3 + ")] < 5 (15m: + 3113),
w ny 2n3 Un

n Snn _ Snn

1

—2(221171 + 126772)
m

Mi11,C n 3m72 n 3n R
Rl 1,1 — E[Cﬁ (? + 27742 )} < ?E[Qﬂ + 27’4 ]E[Q%]E[U%]
1 1 1

10 2
771 2 o \/ 695877 (6977 + 153n3) < p (1050771 + 1548n3),
3
R = E{Q%(% "”Qﬂ < VEQER; ) +
i
1
< —/6958 x 7+ —2\/6958 x 2(n? +2n3) < —2(398171 + 251775).
m 203 Uh
Thus,
1684  1928n32
RMi « 222 2B

n?

Similar calculations (which are given in Appendix A.3) show that

168 494 386 74602

Rtz < 108 A94Ima| - par,, 386 TAGm;
o Vv m o m m
122 146 116 164

Ritry < 12 1ml - gy 16 100
o Vv m = m 771

Applying these bounds to (4.52) yields the following bound:

1 1684 192872 386 74612
31 + 4ni + 33 {<—+ +{ =+
o/ o A3 | (= n} moont

168 494 122 146 386 74672
+(+ |772|)+(+|"2>+(+;72>
NI M Vi m m Uh

K3(ng) <
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116 164n32 122 146
() ()
m m NG m

1 206 1286 393[na| 1792132
= —— (3 +4n? + 3n3 [— - + - . (4.53
e i +3m) =+ o 0 p (4.53)
Finally, summing up the bounds (4.51) and (4.53) completes the proof. |

4.3. The multivariate normal distribution under non-canonical
parametrisation

4.8.1. Diagonal covariance matriz

Let X1,...,X,, beiid. MVN(u, X) random variables, where gt = (1, ..., tp)7
and ¥ = diag(o{,...,07). Here @g = (1, ..., iy, 07, .. .,02)T. The density func-
tion here is

1 (@ — )
f(x|0) = exp{—z(z'z—g)}, = (z1,...,2p)7 € R
@m)e/2, [o? - o2 7;

=1 ?

For 1 < j < p, let Xj denote the sample mean of X ;,..., X, ;. Then it is
well-known in this case that the MLE is unique and equal to

) B 1 n . 1 n . T
0,(X) = <X1, X ;(XM X% ;(X,,J, X,) > :

Let W = /n[I(60)]/? (9n (X)) — 6). Then it is readily checked that all the
assumptions of Theorem 4 are met and so an application of the bound (3.20)
would yield a bound of the form dw (W, Z) < Cn~'/?, where Z ~ MVN(0, Iop),
for some constant C' that does not depend on n. However, the term K3(6¢) has
a very poor dependence on the dimension d and would be tedious to compute.
Instead, we take advantage of the particular representation of the MLE to derive
a neat optimal O(n~'/2) 1-Wasserstein distance (and 2-Wasserstein distance)
bound with good dependence on the dimension. In deriving this bound we make
use of Theorem 3.

Theorem 7. Let X1,...,X, be i.i.d. MVN(u,X) random vectors, where p =
(1, pp)T and $ = diag(o?,...,02). Let W = /n[1(60)]"/?(6,(X) — 6o)
and Z ~ MVN(0, I5,). Then

dw (W, Z) < dw,(W, Z) < 56\/% (4.54)

Remark 4.4. Corollary 3.1 of [2] gave a bound in the weaker d; » metric for the
case that X1,..., X, arei.i.d. N(u,0?) random variables. Theorem 7 generalises
the setting from p = 1 to p > 1 and gives a bound in the stronger 1-Wasserstein



Wasserstein distance bounds for the vector MLE 5787

distance. Our bound shows that the MLE converges in distribution to the mul-
tivariate normal distribution for even large p provided p < n. We believe that
the dependence on the dimension p in our bound is optimal, and this seems to
be supported by empirical results in Section 4.5.

Proof. The inequality dw (W, Z) < dw,(W,Z) is immediate from (2.5), and
the rest of the proof is devoted to bounding dw., (W', Z). We begin by recalling
the standard result that the expected Fisher information matrix is given by

1 1 1 1
1(6y) = di ey Ty T ey —
(0) lag((f%, ’0'%720'%7 u20_;4)>7

and therefore

1 1 1 1
1(00)]"/? = dia (—,...,—, )
[(0)] g o1 op \/50_% \/50'%

Now, for 1 < i < n, write X; = (X;1,...,X; )7, and define the standardised
random variables V; ; = (X, ; — p;)/05, 1 <i<n,1<j<p Forl<j<p,
let X; and Y; denote the sample means of Xj ;,...,X,; and Y1 ;,...,Y, ;. A
simple calculation gives the useful equation

n n

Z(Xi,j - X;)? = Z(Xi,j — 13)? —n(X; — py)*.

i=1 i=1

Putting all this together gives that W' can be written as W = (Wy, ..., Wy,)T,
where, for 1 < j < p,

IR P R VR I
Wj*ﬁ;#*%gym

J

and

It will be useful to define V' = (V4,...,Va,)T, where, for 1 < j <p,

V=W, and Vig,=— i:yi?j_l
jg=W; an J+p—\/ﬁi:1 NG

We now note that X1,... X,, £ 3" (X;1—X1)%,..., 2 3" [ (Xi,—X,)? are
independent (see Section 3b.3 of [37]), from which it follows that W7, ..., Wy, are
independent. As the infimum in the definition (2.4) of the 2-Wasserstein distance

is attained, for each j = 1, ..., 2p we may construct a probability space on which
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the random variables W and Z7 with L(W}) = L(W;) and L(Z}) = L(Z;)
are such that dw, (W;, Z;) = /E[(W} — Z7)?]. By independence, on taking the

product of these probabilities spaces, we can construct random vectors W* =
(Wi,...,Ws,)T and Z* = (Z7,...,Z5,)T with E(W*) L(W) and L(Z") =

L(Z) such that dw,(W,Z) = \/E[|W"* — Z*|?]. Therefore

dw,(W,Z) = \/E[|[W" — Z"]]

I
N
=
3

!
N

I
g
U

5
=
N

(4.55)

For j =1,...,p, W; ~ N(0,1), and so dw,(W;,Z;) =0 for j = 1,...,p. Now
suppose j € {p+1,...,2p}. Then, by the triangle inequality,

dw,(Wj, Z;) < dw,(W;,Vj) + dw,(Vj, Z;). (4.56)

By the definition of the 2-Wasserstein distance,

dw,(Wj, Z;) < E[((i Yi?\/; - %(ﬁ) - j Yi?\/; 1)?

where we used that Y; ~ N(0, 1), so that E[(Y;)*] = .
To bound dyy, (V}, Z i), we apply Theorem 3 in the univariate case d = 1. We
can write V; = % Z:.L:l &i.j, where & 5, ..., &, ; are i.i.d. random variables with

&= %(Y?1 1),4=1,...,n. We note that that the assumptions E[¢; ;] =0

and E[¢] ;] = 1 are satisfied. Applying the bound (2.15) of Theorem 3 now
yields, forj:p+1 c,2p,

dW?(VﬂZ])S \/_ gl,] \/—\/ \/ _1
144/15

v
where we used that Y7 ; =¢ Z ~ N(0,1), and the final equality follows from
an application of standard formulas for moments of the normal distribution.

Substituting our bounds for dw, (W}, V;) and dw, (V}, Z;) into (4.56) gives that,
forj=p+1,...,2p,
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and plugging this bound into (4.55) yields

2
dw,(W,Z) < \/p<\/§+ 14\/ﬁ> % < 56\/%

as required. [

4.3.2. The general case

Let X1,..., X, be iid. MVN(u,X) random vectors, where g = (p1,..., )7
and X = (CTZ'J). Here 00 = (,U,l, sy Mp; 0115445 01,py---0Oply--- aap,p)T- The
density function here is

1 1 Tv—1
f(me):mexp{—i(x—ﬂ) by (:c—u)},
x = (x1,...,2p)7T € R

It is well-known in this case that the MLE is unique and equal to 8, (X) =
(X, L300 (X —X) (X, — X)T)". Since the covariance matrix ¥ and its MLE
estimator 3 are symmetric, for the purpose of presenting a multivariate normal
approximation for the MLE we restrict 8¢ to only include o;;, i > j, and
9n(X) to only include the estimators &; j, ¢ > j. This restricted MLE has
p+ (5) = p(p+3)/2 parameters. As in diagonal case, we could apply Theorem 4
to obtain a optimal order O(n~'/?) 1-Wasserstein distance bound, but we prefer
to proceed as we did there and exploit the particular representation of the MLE
in deriving our bound.

The proof of the following theorem follows a similar basic approach to that of

Theorem 7, again making use of Theorem 3, although as the components of the
random vector W are now no longer independent our calculations are a little
more involved, as we cannot reduce the problem to the univariate case as we
did in proving Theorem 7. We defer the proof to Appendix A.4. For a matrix
147 let ||A||max = maxi’j |am-|.
Theorem 8. Let X1,...,X,, be i.i.d. MVN(u, X) random vectors, where p =
(M1, t1p)T and X = (0y5) € RP*P is positive semi-definite. Let 6,.(X) be the
MLE restricted in the manner as described above. Let W = /n[I(09)]'/? (én(X)
—00) and Z ~ MVN(0, I,,,13)/2). Write 02 = maxi<j<p0j; (the largest vari-
ance in the covariance matriz ). Then

1
AW (W, 2) < (02T O0)] 2 +15.1" 4 (8) 02 1(00)]* o)

4-4. Implicitly defined MLEs

In order to be calculated, the general upper bound on the 1-Wasserstein distance
of interest, as expressed in Theorem 4, requires a closed-form expression for the
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MLE. In this section, we explain how an upper bound on the weaker bounded
Wasserstein distance can be obtained when the MLE is implicitly defined. Our
strategy is split into two steps; first, put the dependence of the bound on the
MLE only through the mean squared error (MSE), E[Z?Zl Q3] with Q; as in
(3.19), and secondly discuss how upper bounds can be obtained for the MSE.
In addition to the regularity conditions needed in Theorem 4, in order to attain
an upper bound on the bounded Wasserstein distance when the MLE is not
expressed analytically, we replace assumption (R.C.4”) by (Con.1) as below:

(Con.1) For € > 0 and for all 8 € O,

63
sup ——— log f(x1]|0)| < My, 4.57
0:10,—00.4|<c | 00£00;00; (116) h (4.57)
vqe{l1,2,...,d}

where Mj,;; = My;:(0o) only depends on 6.

Theorem 4 provides an upper bound on the 1-Wasserstein distance between the
distribution of the MLE and the multivariate normal distribution. In Proposition
1 below, we put the dependence of the upper bound in (3.20) on the MLE only
through the MSE, E[Y_¢_, Q2.

Proposition 1. Let X = (X1, Xo,...,X,,) be i.i.d. Rt-valued, t € ZT, random
vectors with probability density (or mass) function f(x;|0), for which the true
parameter value is Oy and the parameter space © is an open subset of R, Assume
that the MLE ezists and is unique, but cannot be expressed in a closed-form, and
that (R.C.1)-(R.C.3) and (Con.1) are satisfied. In addition, for V as in (3.19),

assume that E[|VV (log (f(X1]60))) |*] < oo, where V = (6101’ cees aed) Then,

for € > 0 being a positive constant, as in (Con.1), that need not depend on the
sample size n, and with W as in (3.19),

dow (W, Z) < —=K1(6o)

d R d 9 d
k=11=1 i=1 =1
2 d \/ﬁ d d d
+§E[ZQ?]+TZZ| lk|ZZMkmz {ZQ?} (4.58)
Jj=1 k=11=1 m=1i=1 j=1

where K1(09) is as in (3.21).
Remark 4.5. There is a well-developed theory to verify the bound

S%pE[h/ﬁ(én(X) —00)|"] < o0

for any p > 0 in general settings (see Chapter III, Sections 1 and 3 of [23], and
Sections 3-4 of [43]). Using such results, we can deduce that the bound (4.58)
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is of the optimal order O (n~/2); notice that the positive constant e need not
depend on n and its choice could be optimised in examples. In addition, we note
that the bound (4.58) has a better dependence on the dimension d than the 1-
Wasserstein distance bound of Theorem 4. To be more precise, assuming that
Vir = O(1) and Mpym; = O(1) it can be seen that (4.58) is of order O(d®), while
the 1-Wasserstein distance bound (3.20) is of the much larger order O(d*2%).

Remark 4.6. Condition (Con.1) in (4.57) is non-restrictive and is satisfied by
various distributions for which the MLE of their parameters cannot be expressed
analytically. Here, we give two examples:

1. Gamma distribution: With «, 8 > 0 and 8 = («, 8)7 being the vector

parameter, the probability density function is f(z|0) = %x" le=P,
x > 0. We have that
i1 .
O i+l logf(x‘e) —¢j(04),VJ €L ) 863 logf(ac\e) ﬁ3a
o3 o3 1
90208 log f(2]6) =0, - 90052 log f(z]0) = —g (4.59)
where, for any z € C\ {0,—1,—2,...}, the polygamma function v,,(z) is

defined by ¥, (z) = ddz%(w(z)), with ¥(z) = %(log I'(z)) denoting the
digamma function. The polygamma function has the series representation
(differentiate both sides of formula 5.15.1 of [31])

m—+1 - 1
Um(z) = (=1)"F m!,;m’ (4.60)

which holds for any m > 1 and any z € C\ {0,—1,—2,...}. It is easy to
see that for x > 0, |¢)2(z)| is a decreasing function of = and, using (4.59),
(Con.1) is satisfied with M2 =0 and

sup =3
0:10,—00,4|<e€ 89
vae{1,2}

logf(:vlle)‘ < [a(a — )] = Myn,

sup 03
0:10,—00,q|<€ 80
vae{1.2)

log f(:c1|0)‘ 5 = M2,

3

sup
0:10,—00,q|<€ 89 802

vae{1,2}

10gf($1|0)’ (ﬂ—e)Q :M122.

2. Beta distribution: The probability density function is
F(a + 5) a—1

z|0) = ————==x 1— )%t
R
with o, 8 > 0 and z € (0,1). Hence, for j,k € Z*
i+l

Dod 1 log f([0) = tpj(a + B) — 1 (a),
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j+1
ggirt 08 f(@10) = ¥s(a+ B) —;(5),
ok+i
kOB log f(x|0) = Ypyj—1(a+ B), (4.61)

where as in the case of the gamma distribution, ¢;(-) is the polygamma
function defined in (4.60). (Con.1) is again satisfied with

83
sup | ou F016)] < (e + 8= 20 + la(a — O = M
0:10,—00.4|<c | 007
vqe{1,2}
3
sup | 108 1(116)| < (e + 5 20+ 4205 ] = Mo,
0:10,—00.4|<c | 005
Vge{1,2}
03 o3
sup ———log f(x 0‘: sup ———log f(x 0‘
0:10,—00. 4| <c | 001003 g f(@1/6) 0:10,—00 4| <c | 007002 g f(@16)
Vqe{1,2} Vqe{1,2}

< |2+ B — 2€)| = My2z = M.

Proof of Proposition 1. With V and W as in (3.19), we obtain through the
method of proof of Theorem 4, that

dow (W, Z) < de(%f/V (£(00; X)) ,Z) + dow (W7 %Vv (E(eo;X))>
(4.62)

For the first quantity on the right-hand side of the result in (4.62), we obtain
using Theorem 3 that

L
\/ﬁ
< %Kuoo). (4.63)

m(iw (£(60: X)) ,Z) < dwa(

7 VV (£(00; X)), z>

With respect to the second term in (4.62), note that

dpw (W, %Vv (E(HO;X))>
=, S ‘E[h(W)} -E [h (%f/v (¢ (8o; X)))] ’ : (4.64)

For h € Hpw and with V and Q; as in (3.19), for ease of presentation let us
denote by

1 - d d 82
Ry (60; ) = mvzlzfzj@q (V (89j66q£(0;w)‘9—03)> ’
J=1q=
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Dy = D00 X 1) i (W) = (= (760605 2) + Ra(00: X) ). (469

Dy = D(60; X, h) := h(%f/ (V(£(B0;x))) + Ri(Oo; 33))

1 -~
n (27 (v 6w x0) .
where 6 is as in (3.28). Using the above notation and the triangle inequality,
1 -~
W)~ & [0 (=79 (00 X)) || = 101+ i)
< E[D:| +E|[Ds|. (4.66)

Since W' is as in (3.19), then for Af; denoting the j-th row of a matrix A, a
first order multivariate Taylor expansion gives that

j=1 v

—ﬁf/m {;;Qk@l ( (aek:ae “e; ”’)‘e—es» })

Using (3.29) component-wise and the Cauchy-Schwarz inequality, we have that,
for Tj; as in (3.19),

d
ARSI Z( i [[2(60))F] | (Ba(X) — 60) — =TV (1000 X))

d d
Bipi| < e S5 vl 3 | /BlogEi). (167

Since E[T;] =0, Vj,k € {1,2,...,d}, we have that

E|D1| < [|Alluip ZWMZ\/ (@3] \/Var 59 a0, 1ng(X1|‘90)>

k=11=1
< ||h|\L1pZZ|Vlk|ZM Q2] \IZVar(aa 30 logf(X1|00)>
k=11=1
(4.68)

where the inequality trivially holds since the variance of a random variable is
always non-negative. Now, using that (Z‘;:l aj)? < d(zgzl af) for a; € R,

yields
(3 yEa) <3 mia
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Taking square roots in both sides of the above inequality and applying this
inequality to (4.68) yields

d d d d
- 02 )
E[Dq| < ||h||Lip\/EZ Z MkJ ZVM(W log f(Xlao)) J ]E[ZQJ} .
k=1 I=1 i=1 j=1
(4.69)
To bound now E |Dy|, with Dy as in (4.65), we need to take into account that
ﬁfjﬁﬁg(e; x) oo is in general not uniformly bounded and there is a positive

probability that the T\/ILE will be outside an e-neighbourhood of the true value of
the parameter. For € > 0, the law of total expectation and Markov’s inequality
yield

E[Ds| < 2[|R[|P (IQqn)| > €) + E [|Daf | |Qmy| < €]

< 2y [Zcﬂ FE[1Ds] Q] < . (4.70)

where for the subscript (m) € {1,...,d} it holds that

() is such that |0, (x) m) = Oo,my| > 0n(x); — 6050, Vje{l,...,d},

and Q) = Qm)(X,00) = én(X)(m) — 0y (m)- It remains now to bound
E [|D,] | |Q(m)| < €] by a quantity whose dependence on the MLE is merely
through the MSE. A first-order Taylor expansion and (3.30) yield

||h||L1p
D ) 0: X 471
|Da| = ZZ‘WZZQJQaeaeae “ )’ : (471)
k=11=1 j=1lv=1
Therefore, from (4.70) and (4.71) we have that
d
2||h h|lLi
sy < 20l Q?] || ”“’ZZ\V 5
j=1 k=1 1=1
XEL < e QJQ“ae 39 7, X)‘ezog Q| <€}’
and using (Con.1), we have that
h
j=1
d d d d
nllh i ~
+*F”2'LPZZ|VHC|E{ZZ|QJ4QAMW Qo <e]
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Simple calculations lead to

d d
DD Qi@ My = ZQ%HZ Z 1Q511Qi| M

=11i=1 i=1 j=i+1

AN

and using that 2a8 < a? + 2, Vo, B € R,

d d d—1 d
DD 1QiQi] My, < ZQ M+ 3 Y (@2 + Q2 My,
j=11i=1 i=1 j=i+1

d d

=D @) Miji

j=1 =1

d d d

j=1  m=1i=1

Using (4.72) and Lemma 4.1 from [1], yields
d
d d d d d
h||Lip ~
+ Yol " PRI S BN am
k=11=1 m=1 i=1 Jj=1

Hence, from (4.62), (4.63), (4.66), (4.69) and (4.73) and using that ||h|| < 1 and
Hh||;le <1 for h € Hpw, we obtain the upper bound (4.58), which depends on
6,,(X) only through the MSE, E[Zj 1 Q3. |

4.5. Empirical results

In this section, we investigate, through a simulation study, the accuracy of our
bounds given in Sections 4.1 —4.3. We carried out the study using R. For the ex-
ponential distribution with # = 1 under canonical and non-canonical parametri-
sation (this bound is given in Appendix A.2) and the normal distribution under
canonical parametrisation with n = (1,1)T, we calculated our bound and es-
timated the true value of dw(W,Z) for sample sizes n = 107, j = 1,2,3,4
(Tables 1 — 3). For the multivariate normal distribution under non-canonical
parametrisation with diagonal covariance matrix we studied the dependence of
dw(W,Z) on the dimension p with n = 1000 fixed and p = o = 1 for all
1 <k < p (Figure 1).

Calculating our bounds is straightforward, but estimating the 1-Wasserstein
distance dw (W, Z) is more involved. For a given example and given sample
size n, we simulated N realisations of the distributions of W and Z to obtain
the empirical distribution functions of both distributions. We then used the R
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package transport to compute the 1-Wasserstein distance between these two
empirical distributions. As we simulated the distributions, we only obtained
an estimate for the 1-Wasserstein distance dw (W, Z), although this estimate
improves as N increases. To mitigate the random effects from the simulations,
we repeated this K = 100 times and then took the sample mean to obtain
our estimate ciW(W7 Z). We used N = 10* for all simulations, except for the
multivariate normal distribution under non-canonical parametrisation for which
we used N = 10 on account of the many simulations for the 99 values of the
dimension p.

TABLE 1
Simulation results for the Exp(1) distribution under canonical parametrisation

n | dw (W, 2) | Bound | Error

10 0.351 2.303 | 1.952

100 0.100 0.649 | 0.548

1000 0.034 0.203 | 0.169

10,000 0.020 0.064 | 0.044
TABLE 2

Simulation results for the Exp(1) distribution under non-canonical parametrisation

n | CZW(I/V7 Z) | Bound | Error | Bound using Theorem 2

10 0.103 7.499 | 7.396 0.321
100 0.036 1.498 | 1.463 0.101
1000 0.021 0.458 | 0.437 0.032
10,000 0.017 0.144 | 0.127 0.010
TABLE 3
Simulation results for the N(1,1) distribution under canonical parametrisation
n | dw (W, Z) | Bound Error
10 1.032 | 8962.830 | 8961.798
100 0.224 | 2834.296 | 2834.072
1000 0.083 896.283 896.200
10,000 0.057 283.430 283.373

From the tables we see that at each step we increase the sample size by a
factor of ten, the value of the upper bound drops by approximately a factor of
v/10, which is expected as our bounds are of order O (n_l/Q). The simulated

1-Wasserstein distances JW(W, Z) do not decrease by a factor of roughly /10
for larger sample sizes, because the approximation errors resulting from taking a
finite value of N become more noticeable when the value of dy (W, Z) decreases.

Our bounds for the exponential distribution perform reasonably well, par-
ticularly in the canonical parametrisation case. In Table 2 for the exponential
distribution under non-canonical parametrisation we also provide the bound ob-
tained from a direct application of Theorem 2 (this is inequality (A.77)), which
as expected is an order of magnitude better than our bound resulting from
the general approach. The bounds for the normal distribution under canonical
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Fic 1. Simulated values of dw (W, Z) in the setting of Theorem 7 when the dimension p
varies in the set {2,3,4,...,100}.

parametrisation are much bigger than for the exponential distribution. This is a
result of the increased complexity of this example and the fact that we sacrificed
best possible constants in favour of a simpler proof and compact final bound.

Figure 1 shows the behaviour of the simulated 1-Wasserstein distance (jw(W,
Z) for the multivariate normal distribution with diagonal covariance matrix with
pr = oi = 1,1 < k < p, when the dimension p varies from 2 up to 100. Here our
focus was on the dependence on the dimension for fixed n, so we chose a small
sample size n = 1000 to reduce the computational complexity of the simulations.
Figure 1 also contains a log-log plot. Across all 99 data points there is clearly not
a straight line fit, but after the value 3.8 for log(p) (the 45th data point), we start
to see some stabilisation towards a straight line. We obtained a slope of 0.576
between the 70th and 99th data points, which reduced to 0.569 between the
90th and 99th data points. The results from these simulations suggest that the
slope is converging down to 0.5, which would be consistent with the theoretical
O(p'/?) scaling of our bound (4.54).

Appendix A: Further examples, proofs and calculations

A.1. Verifying (R.C.4”) for the inverse gamma distribution

Let X1, Xo,..., X, be ii.d. inverse gamma random variables with parameters
a > 0 and 8 > 0 and probability density function
fz|a, B) = F’B()a)x_a_l exp{ — g}, x> 0.

In this appendix, we verify condition (R.C.4”) for the single-parameter MLE
for the inverse gamma distribution (fixed « or fixed ). The purpose is to give
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an illustration of how (R.C.4”) can be verified for more complicated MLEs than
those considered in Section 4. To keep the calculations manageable, we focus on
the single-parameter case.

For the moment, let 6 denote the unknown parameter, either a or . Recall
that in the single-parameter case condition (R.C.4”) is

(0, (X) — 00)* M (6; X)| < o

MaXGe (5, ()60} &
We shall verify the stronger (and, in this case, simpler to verify) condition that
R ~ 2
E[(0n(X) = 00) Jmaxe 5, x).6,} E[(M (8; X)) 7] < o0,

which implies (R.C.4”) by the Cauchy-Schwarz inequality. It should be noted
that provided E[(én(X) — 60)*] < oo, the argument of part (1) of Remark
3.1 shows that this quantity is order O(n~2). In verifying that the expecta-
tions involving the monotonic dominating function M are finite, we shall see,
as expected, that these expectations are order O(n?). Therefore the final term
in bound (3.22) of Theorem 5 is of the desired order O(1). An application of
Theorem 5, and further calculations to bound the other (simpler) terms would
confirm that we obtain a Wasserstein distance bound with O(n~'/2?) convergence
rate.

1. Unknown B, fixred a = . The log-likelihood function is
n n
L(B;x) = naglog B+ nlogl'(ag) — (ap + 1) Zlogxi - ﬁZx;l,
i=1 i=1

from which we readily obtain the unique MLE B = =" __ Note that 3 4

n x-1l-

i=1 7
G, where G ~ G(nag, nagfp), which can be seen from standard properties of
the gamma distribution and the relation that if X ~ Inv.G(a, 3), then X1 ~
G(a, 8). Therefore

E[(B — B0)Y] < 8(E[BY] + 8L) = 8(E[G™] 4 B83) < 00, for ag > 4n~ 1.

We have that ¢®)(8;x) = Qgg‘O, and so we may take M (S;x) = 2%# We have

2 2
_4na0

E[(M (Bo; X))*] = I E[(M(B; X))?] = 4n*afE[G°] < oo,

and, moreover, E[(M(8; X))?] = O(n?), since E[GS] = O(1).
2. Unknown «, fized B = By. The log-likelihood function is

(o) = nalog By + nlogl(a) — (e + 1) Zlogmi - BOfol,
i=1 i=1
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and differentiating gives
¢(0s@) = nlog By + nib(a) — > log i,
i=1

where ¢(z) = L (logT'(z)) is the digamma function. The unique MLE is thus

given by
. (1 X;
a=1 1(5;10(%(%))’

where 1) ~1(z) is the inverse digamma function. In verifying (R.C.4”), we shall
make use of the following inequality of [7]:

1

1
_ -1 T4 - R. A.74
log(1+e*1)<w () <e"+ =, z€ (A.74)

2
Let us first show that E[(& — ap)?] < oo. We have that E[(& — ap)?] <

8(E[&*] + af), so it suffices to prove that E[a¢*] < co. By the upper bound in
(A.74),

Ela"] < E[(exp{%gbg (%)} i %ﬂ
coenf ) )

1 XA 11 4/npn 1
_§+]ELI:[1(%) }—§+@(E[X1 ])" < oo, forag>4n~t,

where we used that Xi,...,X,, are ii.d. in the final equality, and in the final
step we used that, for X ~ Inv.G(a, §), E[X"] < oo for a > 7.

We have that £®)(a;x) = —niba(a), where y(z) = %(1/}(37)) is a poly-
gamma function. From the infinite series representation ¢ (z) = =2 72 ((k +
z)73, x > 0 (differentiate both sides of formula 5.15.1 of [31]), it follows that
—1o(x) a positive, monotone strictly decreasing function of z on (0, c0). We may
therefore take M (a; &) = —nibs(a). As in the case of unknown § and fixed o =
o, it is immediate that E[(M (ap; X))?] < oo, and that this quantity is O(n?).
We now focus on the more involved task of showing that E[(M (&; X))?] < oco.
We begin by noting the elementary inequality —(z) < 2273 +272, 2 > 0 [21].
On using this inequality we obtain

E[(M(é; X))’ = n®E[(¢2(&))?]

2 1\?
2
S"E[(CNQH

<2n®(4E[a"°) + E[a™1]).
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Using the lower bound of (A.74) followed by the elementary inequality log(1 +
e *) <log2+ |z|, z € R, we obtain that, for m = 4,6,

Eja—™] < E{<1og2+ %‘ Zzn;log (%)Dm} (A.75)

which is finite because E[|log(X;)|¥] < oo, for k = 1,...,6. Moreover, it is
readily seen from (A.75) that E[a~%] = O(1) and E[a~%] = O(1). We therefore
conclude that E[(M(4; X))?] < oo, and that this quantity is of the expected
order O(n?).

A.2. Exponential distribution: the non-canonical case

Let X1, Xo,...,X, be iid. random variables from the Exp (%) distribution
with probability density function

1 1 1
f(z]0) = 5exp {_§$} 1250} = €xp {—10g9 — aw} 1ip>0)
= exp {k(0)T'(z) — A(0) + S(2)} 1{zeBy,

where B = (0,00), § € © = (0,00), T(z) = —z, k(f) = §, A(f) = logf and
S(xz) = 0. Thus, Exp( ) is a non-canonical exponential family distribution. The
MLE is unique and equal to 6, (X) = X.

Corollary 4. Let Xy, X, -+, X, be i.i.d mndom variables that follow the

Exp(%) distribution. Let W Vv/ni(6o)(0 —0o) and Z ~ N(0,1). Then,
forn >3,
10.41456 4n*%(n +6 6
dw (W, Z) < n(n+6) (A.76)

Vi - Dm-2)n—-3)  w

Remark A.1. (1) This example is given for purely illustrative purposes, as
an improved bound can be obtained directly by Stein’s method. Define S =
w = \/— Yo Y, where V; = 090 are i.i.d. zero mean and unit vari-
ance random variables. Therefore, by Theorem 2,

4.41456
Voo

However in order to apply Stein’s method directly, we require the quantity
= /ni(fo)( — 6p) to be a sum of independent random variables. The

general theorems obtamed in this paper are, however, applicable whatever the

form of the MLE is, as long as the regularity conditions are met.

(2) Like the bound of Corollary 2 for the exponential distribution under canon-

ical parametrisation, the bound (A.76) of Corollary 4 is of order O(n~'/?) and

does not depend on 6. These features are shared by the bound (A.77) obtained

dw (W, Z) < % (2 + %]EHXl _ 90|3}> < (A77)
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by a direct application of Stein’s method. A bound with these features was also
obtained by [4] in the weaker bounded Wasserstein metric. Despite being given
in a stronger metric, our bound has numerical constants that are an order of
magnitude smaller.

Proof. Tt is straightforward to show that 6, (X) = X and that the conditions
(R1)—(R3), (R.C.4”) are satisfied for this specific example. The log-likelihood
function is

0(Bo; ) = —nA(0o) + k(00) > T(x;) = n(log00 N ZO)

i=1

We have that
2 6z

93 94

2n

3T
S -

103 (0; )| = n L+

b

which is a decreasing function with respect to 6, and therefore condition (R.C.4")
is satisfied with M (0; z) = 2 ‘1 + 8 | Basic calculations of integrals show that
E[|T(X1) — D(00)]] = E[|6 — X1|°] < 2.4145603. In addition, since T'(z) = ,
we have that Var(T(X;)) = Var(X;) = 63 and therefore for the first term of the
upper bound in (4.34), we have that

i<2 E[|T(X1)—D(9o)l3}> 441456 (A.78)

Vn [Var(T(X1))]>/? Vn

Now, consider the second term. The quantity E[(X — 6)?] is calculated using

the results in p. 73 and the equations (3.38), p. 70 of [24] along with the fact
A~ — — 2

that 6,(X) = X ~ G(n, %) We obtain that E[(X — 6)?] = %0. We also have

that i(6y) = 2, and therefore

.
66

|k/l(90)| - — - 3 :l
Ji(00) % (T(Xl))\/]E[(Hn(X) 60)°] 7 (A.79)

Finally, we work on the third term. Since X ~ G(n, %) and % ~ Inv.G(n, %)

(where Inv.G denotes the inverse gamma distribution), we have that

(B(X) — 00)>M (60: X)| = 2E[ (X — 60)° (3K + 60) ]

E
0

2n = - _
= 1 {3E[X?] = 500E[X?] + 6GE[X] + 03 }
0

~ 2n [3n(n+1)(n+2)03  5n(n+ 1)6; o
% n3 - n2 + 26
_ 4(2n+3)

=== (A.80)
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and, for n > 3,

E

(0(X) — 00)2M(0,(X); X)| = SnE l(XX_i?t%)] — 8nE [i_ L% 2_"0]

8n n n? 2n?
:E_T(%*%nmma%‘wnm%>
8n2(n + 6)

T m—1)(n—-2)(n—23) (A.81)

Applying the results of (A.78), (A.79), (A.80) and (A.81) to (4.34), and using
that i(fg) = 5z, yields the desired bound. N
0

A.3. Further calculations from the proof of Corollary 3

Proof of Lemma 1. Let us first note the standard result that X and S (Xi —
X ) % are independent, which follows from Basu’s theorem. We also have that X ~
N(y, %2) and 53" (X — X)2 ~ X%n—l)’ the chi-square distribution with
n — 1 degrees of freedom. We therefore have that 7)) =4 5=V and 72 =4 UV,

where U ~ N(u, %2) and V ~ Inv—x%k1 are independent. All expectations as
given in the lemma can therefore be computed exactly using the formulas

2 3 2
E[U] = p, E[U?] = p® + %, E[U%) = p® + 2,
n n
622 34
]E[U4]:u4+ﬂ+%,
n n
1
E[VF] = , k=1,2,..., n>2k+1,
L e P P oy g n ek
EVH =m-1)n+1)---(n+2k—-3), k=1,2,..., n>1,

and then expressing the resulting expression in terms of the canonical parametri-
sation (11,72) = (52z, 4 ). (Here the expectations E[V*] and E[V ~*], follow

2027 o2
from the standard formula that, for Y ~ X% E[Y™] = 27”%, r >0,

r)’

m > —5 and the identity I'(z + 1) = zI'(x).) As an example,

E[Q1] = E[77] — 2mE[in] + n}
_ nin’ _ 2nin
 (n=3)(n—-5) n-3

77%(271 + 15)

(n—3)(n—5)

+ 03

To obtain the compact bound for E[Q?] as stated in the lemma, we note that

f(n) = % is a decreasing function of n for n > 9 with f(10) = 10.
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Similar calculations show that, for n > 9,

~ 2mn+ (2n 4 15)n, n1(12n? + 516n + 945)

2 471
B = - N ey s w9
E[Q] 12n2n? + 12n(2n + 63)n1n2 + 3(4n? + 172n + 315)n3

2= (n—3)(n—5)(n—"T7)(n—9) ’

and, by the Cauchy-Schwarz inequality, E[Q?Q3] < /E[Q]]E[Q3]. We also have
that, for n > 9,

(n—=1)(n+1)(n+3)---(n+13)

E[ﬁfs} = 77?”8 )
E[ﬁl_ﬁ]: (n—l)(n+1)(gl+3)~~(n+9)’
nyn®
L (n=1)(n+1)(n+3)(n+5)
e ,
1
2 27,]
E[#2] = n 2, 4N
4 12mn?  129%
Elf4] = n 4 2 1
L]l e o e o ey (”2+ w2 )
gli2] - (r=Dn+ L
$ - n2n3 )
L7 ] Uit
ki -1 1 3 5 2
] - oD e oes) (20
R nmn n
4 2 2
Up _(n—l)(n+1)(n+3)(n—|—5) 4 mmns 12n3
]E_ﬁ_§_ = 17?”4 772+12—n =+ n2 .

From these formulas we are able to obtain compacts bounds for all expectations
given in the lemma, that are valid for n > 10, using a similar argument to the
one we used to bound E[Q?]. We round up all numerical constants to the nearest
integer We further simplify the bounds for E[Q3], E[#3] and E[#3/7]] using the
inequality ab < 1 (a® + b?). |
Bounding the terms Ry'?y, RY'12 . RY?2 and RY'3%.

R

2n|772] 10, |

ity —elartie] < S
1

n _ 7 221|n
RMzB E[Q% ﬁ?'] < el BEQUEL ] < oy o058t - < 22 2|
1

n|n n N 1
Ryt = IE[ i 7'7?3'} < 5V EIQUIELB] < 77%\/6958711‘(771 +313)
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< 1002 (61 + 1093) < —— + 2L
277% 1( 2) \/m m
n n .
R = BT —E| i@y < 5 y/EIQIQ3IEG; ]
1
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A.4. Proof of Theorem 8

Proof. Let W = \/n(0,(X) — 6y), so that W = [I(6)]*/>W. Now, for 1 <
i <mn, write X; = (X;1,...,X;,)T7, and define the centered random variables
Yii=Xi;j—p;,1<i<n, 1<j<p.For1<j<p, leth andffj denote the
sample means of X ;,..., X, jand Yy ;,...,Y}, ;. A simple calculation gives the
useful equation

n n

S (Xij—X)? = (X — y)? = n(X; — ).

i=1 i=1

Putting this together gives that W can be written as W = (Wl, cee Wp(p+3)/2)T,
where, for 1 < j <p,

~ 1 o 1o
Wj:%;Xi’j_Mj:%;Y;’j’

and, for p+1 < j < p(p+3)/2, we associate Wj with an ordering of the random
variables W}, o which are given, for 1 < ¢ <k < p, by

1

Wie =
n

D (X = 1) (Ko = o) = o0) = V(X — ) (Xe — p1e)

i

Bl

=

1 « _
== (YikYie — oke) — VnYiYe.
1

Bl

i=
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Now define V = (V4 .. .,‘7,,(1,+3)/2)T, where, for 1 < j<pand 1 <{¢<k<p,
~ ~ 1 &
Vi=W; and Vi,= 7 ;(Yi,kyi,é — Okt),

(here we associate ‘N/j, p+1<j<p(p+3)/2, with an ordering of 17;6,47 1<1<
k <p) and let V = [[(8,)]'/?V.
Let h € Hw. Then

E[n(W)] - E[1(Z)] = (E[(W)] — E[A(V)]) + (E[n(V)] — E[A(Z)])
=: R + Rs. (A82)

Now write [1(8¢)]'/? = (a; ;). The remainder R; is readily bounded by applying
the mean value theorem:

[Ba| < [IA]LipE

Yo D aGm VY

1<E<j<p1<r<qg<p
< Y Y VAl (80 ma max E[(Y))
1<k<j<p1<r<q<p
o212 (80)]"?[lmax
vn ’
where in the second step we used the triangle inequality and the Cauchy-Schwarz
inequality, and that [|h||Lip < 1, since h € Hw

Now we bound Ry. We can write V' = \/ﬁ Yo &, where &, ..., &, are iid.

random vectors, and V = ﬁ Dy Ei, where él, e ,En are i.i.d. random vectors
with & = [I(60)]'/?¢;. Here the components of &, are given by &, ; = Y1,

1<5<p, and!;‘l(kg)—YlkYM—akg,1<€<k<p,where ford+1<j<
p(p+3)/2 we associate £, j with an ordering of £, (k0 L <L <k <p. We begin
by showing that the assumptions of Theorem 3 are met, that is E[£;] = 0 and
E[£,£]] = I(p+3)/2- The components of(f1 are given by £1 j=7Y1;and 6 ko)1 =
Y1 4Y1.0 — 0k We can immediately sce that E[¢,] = [I(80)]"/?E[€,] = 0. Let us
now show that E[£,£]] = Ip(p+3)/2- As the MLE is asymptotically multivariate

normally distributed we have that W 4z ,as n — oo (with an abuse of
notation, as we have not indexed W with n). We have just shown that Ry — 0,
as n — 0o, (again with the same abuse of notation) for all h € #H;. Therefore by
(A.82) we have that V/ % Z, as n — oco. Therefore E[VVT] = I,p13)/2 + o(1),
as n — oo. But since &, ..., &, are i.i.d. we have that E[£,£]] = E[VVT]. Since
E[£,£]] does not involve n, we deduce that E[€,£€]] = I,(pt3)/2-

Now we obtain the bound

E[([1(80)]'/%61,5)"] = E[(p(pf:)/z am&ﬂﬂ

q=1
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4 4
pi(p+3) :
<=4 | [1(80)]"/% | fnax - MaX1 <t <p(p+3)/2ELEL ]
4 4
+3
= P 0] 2 10505

As the assumptions of Theorem 3 are satisfied, we may apply inequality (2.16)
to obtain the bound

14(p(p + 3)/2)>* ( p*(p + 3)* Yz
Ry < o o 17(00)) [ - 1050
P4 (p + 3)13/ 40| [1(80)] /2|2

max"*

151
NG

Finally, combining the bounds for Ry and Ry gives the bound for dw (W, Z) as
stated in the theorem. ]

<
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