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Abstract: Let (Xt) be solution of a one-dimensional McKean-Vlasov sto-
chastic differential equation with classical drift term V (α, x), self-stabilizing
term Φ(β, x) and small noise amplitude ε. Our aim is to study the esti-
mation of the unknown parameters α, β from a continuous observation of
(Xt, t ∈ [0, T ]) under the double asymptotic framework ε tends to 0 and T
tends to infinity. After centering and normalization of the process, uniform
bounds for moments with respect to t ≥ 0 and ε are derived. We then build
an explicit approximate log-likelihood leading to consistent and asymptot-
ically Gaussian estimators, under the condition that ε

√
T tends to 0, with

original rates of convergence: the rate for the estimation of α is either ε−1

or
√
Tε−1, the rate for the estimation of β is

√
T . Moreover, the estimators

are asymptotically efficient.
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4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 5825
5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5826

5.1 Proofs of Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . 5826
5.2 Proofs of Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . 5831

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5851
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5851

1. Introduction

We consider here parametric inference for a dynamical model subject to three
sources of forcing: the geometry of the state space is described by a potential
term V (α, x), a Brownian motion with small noise allows to include small ran-
dom pertubations and a self-stabilization term Φ(β, x). Such processes appear
when describing the limit behaviour of a large population of interacting particles
with an interaction function between the dynamical systems. More precisely, we
study the one-dimensional process

dXt = V (α,Xt)dt− b(θ, t, ε,Xt)dt+ εdWt, X0 = x0, (1.1)

where (Wt) is a Wiener process, x0 is deterministic and known,

b(θ, t, ε, x) =

∫
R

Φ(β, x− y)uθ,ε
t (dy) = E[Φ(β, x−Xθ,ε,x0

t )], (1.2)

uθ,ε
t (dy) := uθ,ε,x0

t (dy) is the distribution of Xt := Xθ,ε,x0

t , V : R × R → R,
Φ : R × R → R are deterministic Borel known functions and θ = (α, β) ∈
Θ = Θα × Θβ ⊂ R2 is an unknown parameter. A solution of (1.1) is the cou-

ple (Xt, u
θ,ε
t (dy))t≥0 composed of the stochastic process (Xt) and the family

of distributions (uθ,ε
t ). The function x → b(θ, t, ε, x) (see (1.2)) depends on

θ, t, ε, the starting point x0 and uθ,ε
t . When defined, the process (1.1) is a time-

inhomogeneous Markov process known as self-stabilizing diffusion, nonlinear
stochastic differential equation, or McKean-Vlasov stochastic differential equa-
tion.

These models were first described by [39] and arised in Statistical Physics
for the modeling of granular media by interacting particle systems (see e.g. [7]).
Due to their growing importance, many fundamental probabilistic tools for their
study were developed later (see e.g. [18], [48] for a survey, [5, 6, 40, 43] and many
others). [26] is concerned with small noise properties and large deviations results
for these processes.

Except [31], the statistical inference for interacting particle systems remained
unstudied for many years. Since 2010, the fields of application of these models
progressively encompassed Statistical Physics and these equations were shown
to describe collective and observable dynamics in other application fields such
as Mathematical Biology (see e.g. [4, 44]), Epidemics Dynamics (see [3, 8, 17]),
Finance (see [22] and references therein). More recently, several authors were
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concerned by statistical studies based on the direct observation of large inter-
acting particle sytems (see [16, 22]).

The convergence as N tends to infinity of systems of N interacting particles
has been investigated (propagation of chaos). One of the most important limiting
processes is the class of McKean-Vlasov diffusion processes (see e.g. [43, 48]).
Therefore, it is a worthwhile stochastic model to study from the statistical point
of view.

Inference for stochastic differential equations (SDEs) (Φ(β, x) ≡ 0) based on
the observation of sample paths on a time interval [0, T ] has been widely in-
vestigated. Authors consider continuous or discrete observations, parametric or
nonparametric inference under various asymptotic frameworks: small diffusion
asymptotics on a fixed time interval; long time interval, especially for ergodic
models; observation of n i.i.d. paths with large n. Among many studies, we refer
first to several textbooks: [29, 30, 32, 33, 34]. Second, among the many papers on
the topic, we can quote: [10, 11, 12, 13, 19, 20, 23, 24, 25, 28, 35, 47, 50, 51]. More-
over, these works have opened the field of inference for more complex stochastic
differential equations: diffusions with jumps (see e.g. [2, 41, 46]), SDEs driven by
Lévy processes (see e.g. [42]), diffusions with mixed effects (see e.g. [14, 15, 45]),
stochastic partial differential equations (see e.g. [1, 9]).

For what concerns McKean-Vlasov models, in a previous paper, [21] has in-
vestigated the estimation of (α, β) based on the continuous observation on a
fixed time interval [0, T ] of model (1.1) under the asymptotic framework ε → 0.
The assumptions on the model are those of [26]. In particular, it is assumed
that Φ(β, .) is increasing and odd. Then, it appears that, as ε → 0 with fixed
T , only α can be consistently estimated but not β. More information is needed
for β. Assuming that n i.i.d. sample paths of model (1.1) are observed on the
fixed interval [0, T ], that ε → 0 and n tends to infinity, both parameters are
estimated but they have different rates,

√
nε−1 for α,

√
n for β.

In the present paper, we consider one sample path (Xt) which is continuously
observed on [0, T ] and study the parametric inference of (α, β) for the Mc-Kean-
Vlasov model (1.1) in the new double asymptotic framework ε → 0, T → ∞. Up
to our knowledge, this framework has not been studied before. As a side result,
the inference for classical SDEs in this asymptotic framework is obtained.

In Section 2, we study probabilistic properties of the process (Xt). Let xt(α)
be the solution of the ordinary differential equation

dxt(α) = V (α, xt(α))dt, x0(α) = x0. (1.3)

We prove that all the moments of ε−1(Xt − xt(α)) are uniformly bounded in
t ≥ 0, ε ≤ 1 (Theorem 2.2), that the Gaussian approximating process of (Xt)
as ε → 0 obtained in [21] holds on R+ and that the remainder terms of this
approximation have moments uniformly bounded in t ≥ 0, ε ≤ 1 (Theorem
2.3). Moreover, Corollary 2.1 deals with the rate of the difference b(θ, t,Xt) −
Φ(β,Xt −xt(α)) as ε tends to 0. To prove these results, important assumptions
are that Φ(β, .) is increasing and odd, that V (α, .) is decreasing and that there
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is a unique x∗(α) such that V (α, x∗(α)) = 0 which is an attractive point for
(1.3). In Section 3, we define an approximate log-likelihood and study its prop-
erties together with the associated estimators as ε → 0 and T → +∞ in such a
way that ε

√
T → 0. Two cases have to be distinguished. Either Case (1), x∗(α)

depends on α, or Case (2), x∗(α) does not depend on α. In the two cases, we
obtain that the estimators of (α, β) are consistent and have different rates of
convergence. In Case (1), the estimator of α is asymptotically Gaussian with
the fast rate

√
Tε−1 while in Case (2), its rate is ε−1. In both cases, the pa-

rameter β is estimated at rate
√
T (Theorems 3.1-3.2-3.3). Finally, we prove the

asymptotic efficiency of the estimators by means of an asymptotic equivalence
of experiments property. Section 4 gives some concluding remarks. Proofs are
gathered in Section 5. Throughout the paper, we assume that ε ≤ 1.

2. Probabilistic properties

2.1. Assumptions and recap of previous results

We consider the following assumptions:

• [H0] For all α, β, the functions x → V (α, x) and x → Φ(β, x) are locally
Lipschitz.

• [H1] Either, Φ(β, .) ≡ 0 for all β, or for all β the function x → Φ(β, x)
is odd, increasing and grows at most polynomially: there exist K(β) > 0
and r(β) ∈ N such that
|Φ(β, x)− Φ(β, y)| ≤ |x− y|(K(β) + |x|r(β) + |y|r(β)), x, y ∈ R.

• [H2-k] The functions x → V (α, x) and x → Φ(β, x) have continuous partial
derivatives up to order k and these derivatives have polynomial growth:
for all α, β, and all i, i ≤ k, there exist constants k(α) > 0, k(β) > 0 and
integers γ(α) ≥ 0, γ(β) ≥ 0, such that

∀x ∈ R, |∂
iV

∂xi
(α, x)|≤k(α)(1 + |x|γ(α)), |∂

iΦ

∂xi
(β, x)|≤k(β)(1 + |x|γ(β)).

• [H3] For all α, the function x → V (α, x) is continuously differentiable and
there exists KV (α) > 0 such that for all x ∈ R, ∂V

∂x (α, x) ≤ −KV (α).
• [H4] There exists x∗(α) such that V (α, x∗(α)) = 0.

Note that the case Φ(β, x) ≡ 0 corresponds to a classical stochastic differential
equation.
Let us recall some results of [26] where Equation (1.1) is studied in the more gen-
eral case of X0 a random variable, independent of (Wt) with distribution μ. Un-

der [H0]-[H1] and [H3], if EX8q2

0 < +∞ where q = [(r(β)/2)+1], then, for all θ,
there exists a drift term b(θ, t, ε, x) = bμ(θ, t, ε, x) such that (1.1) admits a unique

strong solution (Xt = Xθ,ε,μ
t ) satisfying b(θ, t, ε, x) =

∫
R
Φ(β, x − y)uθ,ε,μ

t (dy)
and X is the unique strong solution of (1.1). Moreover, for all n ∈ {1, . . . , 4q2},
whenever EX2n

0 < +∞, supt≥0 EX
2n
t < +∞. We assume here X0 = x0 deter-

ministic, which yields that ∀n ∈ N, supt≥0 EX
2n
t < +∞. Under [H3], x∗(α) in
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[H4] is the unique value such that V (α, x∗(α)) = 0. Under [H0], [H3]-[H4], xt(α)
converges as t → +∞ to the fixed point x∗(α) with exponential rate (see also
below Proposition 3.1). Assumptions [H1] and [H3]-[H4] are especially used in
the proofs of Theorems 2.2, 2.3 and Corollary 2.1 to obtain uniform bounds.

In a previous paper, we have studied the process (Xt) on a fixed time interval
[0, T ]. Let us recall the results that we need in the sequel. First, properties of
continuity and differentiability of b(θ, t, ε, x) defined in (1.2) with respect to ε
and x at (θ, t, 0, x) can be derived from the assumptions.

Lemma 2.1 ([21]). Assume [H0]-[H1], [H2-2], [H3] and that X0 = x0 is deter-
ministic.Then,
(i) For all θ, t ≥ 0, (ε, x) → b(θ, t, ε, x) is continuously differentiable on R+×R.
(ii) limε→0 b(θ, t, ε, x) = Φ(β, x− xt(α)).
(iii) At ε = 0, ∂b

∂ε (θ, t, 0, x) = 0 and ∂b
∂x (θ, t, 0, x) =

∂Φ
∂x (β, x− xt(α)).

Property (ii) is also proved in [26].This property is strengthened in Corollary
2.1 yielding uniform closeness in t.

Next, the asymptotic properties of (Xt) on a fixed time interval [0, T ] as ε → 0
have been studied. As ε tends to 0, (Xt) converges uniformly in probability
on [0, T ] to xt(α) defined in (1.3). Due to [H1], Φ(β, 0) = 0, so that xt(α)
corresponds to the solution of (1.1) with ε = 0. Moreover, setting

a(θ, t) =
∂V

∂x
(α, xt(α))−

∂Φ

∂x
(β, 0), (2.1)

define (gt(θ)) the Ornstein-Uhlenbeck process

dgt(θ) = a(θ, t)gt(θ)dt+ dWt, g0(θ) = 0. (2.2)

Note that ∂Φ
∂x (β, 0) ≥ 0 so that, under [H3], a(θ, t) ≤ −(KV (α) +

∂Φ
∂x (β, 0)) < 0.

Then, the following expansion of (Xt) with respect to ε holds.

Theorem 2.1 ([21]). Assume [H0], [H1] and [H2-3], then

Xt = xt(α) + εgt(θ) + ε2Rε
t (θ), (2.3)

where the remainder term Rε
t (θ) has moments uniformly bounded on [0, T ].

Equation (2.2) can be solved

gt(θ) =

∫ t

0

exp (

∫ t

s

a(θ, u)du)dWs =

∫ t

0

eA(θ,t)−A(θ,s)dWs, where (2.4)

A(θ, t) =

∫ t

0

a(θ, u)du. (2.5)

To illustrate the results, consider the following explicit example.

Example 1. Let V (α, x) = −αx,Φ(β, x) = β x with α > 0, β ≥ 0. We have
b(θ, t, ε, x) = β(x− Eθ(Xt)), and Equation (1.1) writes:

dXt = −αXtdt− β(Xt − Eθ(Xt))dt+ εdWt, X0 = x0.



5816 V. Genon-Catalot and C. Larédo

We easily check that Eθ(Xt) = x0e
−αt and (1.1) can be solved explicitely:

Xt = x0e
−αt + εe−(α+β)t

∫ t

0

e(α+β)sdWs. (2.6)

The remainder term Rε
t (θ) is here equal to 0.

2.2. Statement of probabilistic results

Under the assumptions of Section 2.1, we can extend the results of [21] and
prove uniform bounds on R+, thanks to [H1] and [H3]-[H4].

Theorem 2.2. Let (Xt) denote the solution of (1.1) and xt(α) of (1.3).
(i) Assume [H0]-[H1], [H3]. Then, for all n ≥ 1, there exists a constant δ(α, n)
such that

∀ε ∈ (0, 1], ∀t ≥ 0, Eθ

(
Xt − xt(α)

ε

)2n

≤ δ(α, n).

(ii) If moreover [H2-2] and [H4] hold, there exists a constant δ(α) > 0 such
that,

∀ε ∈ (0, 1] ∀t ≥ 0, ε−2|Eθ(Xt − xt(α))| ≤ δ(α).

In the special case where V (α, x) = −αx, Eθ(Xt) = xt(α).

The following comment is important for the sequel.

Comment 2.1. The bounds δ(α, n) and δ(α) depend on θ only through α.
From the proofs, we have that δ(α, n) = (nK−1

V (α))n and that δ(α) is a function
of B(α), k(α), γ(α),K−1

V (α), where B(α) = supt≥0 |xt(α)| < +∞. These bounds
increase in each of their variables (see (5.6) and (5.9)). Thus, if these quantities
are upper bounded by constants independent of α, the bounds of Theorem 2.2
are uniform in α. This property is used in Section 3 in the proofs of consistency
for the estimators and of the asymptotic sufficiency property.

Note that, under [H0], [H3]-[H4], we easily check that (xt(α)− x∗(α))2 ≤
(x0 − x∗(α))2 exp (−2KV (α)t). Therefore xt(α) converges as t → +∞ to x∗(α)
with exponential rate. It follows immediately from Theorem 2.2 that, under
[H0]-[H1], [H3]-[H4], Xt → x∗(α) in probability as t → +∞ and ε → 0. The
Dirac measure δx∗(α) appears as the limit of the distribution of (Xt) as t → +∞
and ε → 0.

We also have that the remainder term Rε
t (θ) defined in (2.3) has moments

uniformly bounded on R+.

Theorem 2.3. Under [H0]-[H1], [H2-3], [H3]-[H4], the expansion Xt = xt(α)+
εgt(θ) + ε2Rε

t (θ) holds on R+ and Rε
t (θ) satisfies

sup
t≥0,ε∈(0,1]

Eθ|Rε
t (θ)|=O(1) and ∀p ≥ 1, sup

t≥0,ε∈(0,1]

Eθ(R
ε
t (θ)− EθR

ε
t (θ))

2p=O(1).
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Note that Eθg
2
t (θ) is uniformly bounded on R+. Indeed, using the explicit

expression of gt(θ) given in (2.4) and the property that, under [H3], for s ≤ t,
A(θ, t)−A(θ, s) ≤ −KV (α)(t− s), we get that

Eθg
2
t (θ) =

∫ t

0
exp [2(A(θ, t)−A(θ, s))]ds ≤ (2KV (α))

−1.

Define the difference (see Lemma 2.1, (ii))

D(θ, t, ε, x) = b(θ, t, ε, x)− Φ(β, x− xt(α)). (2.7)

The following corollary dealing with D(θ, t, ε,Xt) is a crucial tool for the sta-
tistical study. As for Rε

t (θ), uniform bounds hold for D(θ, t, ε,Xt).

Corollary 2.1. Assume [H0]-[H1], [H2-3], [H3]-[H4]. Then D(θ, t, ε,Xt) de-
fined in (2.7) satisfies,

sup
t∈R+, ε∈(0,1]

ε−2 |EθD(θ, t, ε,Xt)| = O(1), (2.8)

∀p ≥ 1, sup
t∈R+, ε∈(0,1]

ε−6pEθ(D(θ, t, ε,Xt)− EθD(θ, t, ε,Xt))
2p = O(1). (2.9)

Comment 2.2. The constants O(1) in Theorem 2.3 and Corollary 2.1 are
independent of θ if the constants k(α), k(β), γ(α), γ(β),K−1

V (α), B(α) are upper
bounded independently of θ (see Comment 2.1).

3. Estimation when both ε tends to 0 and T tends to infinity

We have previously obtained that α can be estimated, while β cannot be es-
timated on a fixed time interval [0, T ] (see [21]). Therefore, to estimate both
parameters, we have to combine two asymptotic frameworks. In [21], we consid-
ered n i.i.d. paths of process (1.1) with ε → 0 and n → +∞. We investigate here
the inference based on the continuous observation on [0, T ] of one sample path
ruled by (1.1) under the double asymptotic framework of ε → 0 and T → +∞.

3.1. Notations and assumptions

As it is usual in statistics, we consider the canonical space associated with the
observation of (Xt, t ∈ [0, T ]), (Ω,F , (Ft, t ∈ [0, T ]),Pθ), where Ω = C([0, T ])
is the space of continuous real-valued functions defined on [0, T ] endowed with
the Borel σ-field associated with the uniform convergence on [0, T ], (Xt, t ∈
[0, T ]) is the canonical process (Xt(ω) = ω(t)), (Ft, t ∈ [0, T ]) is the canonical

filtration and P
ε,T
θ = Pθ the distribution of (1.1) on C([0, T ]). We denote Eθ the

expectation with respect to Pθ.
In this section, we study the estimation of (α, β) from a continuous observation
(Xt, t ∈ [0, T ]) and, in addition to [H0]-[H1], [H3]-[H4], we assume

• [S0] The parameter set is Θ = Θα ×Θβ where Θα,Θβ are bounded closed

intervals. The true value of the parameter θ0 = (α0, β0) belongs to Θ̊.
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• [S1] The function (α, x) → V (α, x) (resp. (β, x) → Φ(β, x)) is defined and
continuous on Uα × R (resp. Uβ × R), and all the derivatives

(α, x) → ∂i+jV

∂xi∂αj
(α, x), (β, x) → ∂i+jΦ

∂xi∂βj
(β, x)

exist, are continuous on Uα×R (resp. Uβ×R), where Uα, Uβ are open inter-
vals containing respectively Θα,Θβ , with polynomial growth with respect
to x: there exist K > 0 and k ∈ N such that for all i, j ≥ 0,

∀(α, β) ∈ Θ, ∀x ∈ R, | ∂
i+jV

∂xi∂αj
(α, x)|+ | ∂

i+jΦ

∂xi∂βj
(β, x)| ≤ K(1 + |x|k).

• [S2] There exists KV such that: ∀α ∈ Θα,KV (α) ≥ KV > 0 (see [H3]).
• [S3] {x∗(α) = x∗(α0)} ⇒ {α = α0}.
• [S4] x0 �= x∗ and {s → V (α, xs(α0))− V (α0, xs(α0)) ≡ 0 and

s → xs(α)− xs(α0) ≡ 0} ⇒ {α = α0}.
• [S5] For all β ∈ Θβ ,

∂2Φ
∂β∂x (β, 0) �= 0.

• [S6] {∂Φ
∂x (β, 0) =

∂Φ
∂x (β0, 0)} ⇒ {β = β0}.

Assumption [S0] is standard in parametric inference and used only for consis-
tency. Assuming the existence of derivatives of any order is not necessary but
it simplifies the exposure. The uniformity of the constants K, k in [S1] is only
required for the consistency part. As Θα,Θβ are supposed to be compact, this
is not a strong assumption. Assumption [S2] is crucial for the statistical results
since the uniform bounds on R+ of the moments explicitly depend on K−1

V (α)
(see Comment 2.1 after Theorem 2.2). Assumption [S3] (resp. [S4]) is an identi-
fiability assumption for α associated with the case where the fixed point x∗(α)
depends (resp. does not depend) on α. Assumption [S5] ensures that

√
T is the

convergence rate for β. Finally [S6] is an identifiability assumption for β.
Let us state some consequences of these statistical assumptions on the results

of Section 2. By the relation V (α, x∗(α)) = 0, the function α → x∗(α) is contin-
uous so, as Θα is compact, supα∈Θα

|x∗(α)| = A < +∞. Therefore, under [S2],
supα∈Θα

supt≥0 |xt(α)| = B < +∞. In view of Comments 2.1 and 2.2, under
[S1]-[S2] all the bounds of Theorems 2.2, 2.3 and Corollary 2.1 are not only
uniform in t, ε but also in θ.

3.2. Approximate likelihood

First note that b(θ, s, ε, x) is a non random term given in (1.2) so that the
Girsanov theorem holds and the loglikelihood associated with the observation
of (Xt, t ∈ [0, T ]) is �ε,T (θ) with

ε2�ε,T (θ)=

∫ T

0

(V (α,Xs)− b(θ, s, ε,Xs)) dXs −
1

2

∫ T

0

(V (α,Xs)− b(θ, s, ε,Xs))
2
ds.

It contains the term b(θ, s, ε,Xs) which is involved for the estimation of θ.
However, for small ε, b(θ, t, ε, x) is close to Φ(β, x−xt(α)) (see Lemma 2.1, (ii)).
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Therefore, as in [21], we replace b(θ, s, ε, x) by Φ(β, x− xt(α)) and consider the
process (ξt)

dξt = [V (α, ξt)− Φ(β, ξt − xt(α))]dt+ εdWt, ξ0 = x0. (3.1)

From [26], this process is close to (Xt) for small ε and was used for getting large
deviations results. Here, we derive an approximate log-likelihood for (Xt) by
plugging the observation (Xt) in the exact log-likelihood of (ξt):

Λε,T (θ) =
1

ε2

∫ T

0

H(θ, s,Xs)dXs −
1

2ε2

∫ T

0

H2(θ, s,Xs)ds, with (3.2)

H(θ, s, x) = V (α, x)− Φ(β, x− xs(α)). (3.3)

Clearly, this approximate log-likelihood is easier to study.
Let us consider the estimators (α̂ε,T , β̂ε,T ) associated with Λε,T (θ) defined as

any solution of

(α̂ε,T , β̂ε,T ) = arg max
(α,β)∈Θα×Θβ

Λε,T (α, β). (3.4)

The general set-up for such statistical problems is to study first the gradient
vector and the Hessian matrix of θ → Λε,T (θ), i.e. its first and second partial
derivatives with respect to α and β. This yields the right normalizations to get
the associated convergence results. We obtain different rates for the two partial
derivatives

∂Λε,T

∂α (θ),
∂Λε,T

∂β (θ) and a diagonal rate matrix for the Hessian (The-

orems 3.1-3.2) so that the inference for (α, β) is a two-rate statistical problem.
Such a situation often arises for various kinds of observations in statistics of
stochastic processes (see [23, 32, 47]). This yields a specific difficulty for proving
consistency and asymptotic normality of estimators (3.4). The sketch of proof
relies on three steps. Prove that

1. α̂ε,T is consistent.
2. the sequence (α̂ε,T − α0), when suitably normalized, is Pθ0 - tight.

3. β̂ε,T is consistent.

Once the consistency is proved, asymptotic normality can be obtained from
Theorems 3.1-3.2.

3.3. Preliminary results

Let us set

�(α) = −∂V

∂x
(α, x∗(α)); �(α, β) = �(α) +

∂Φ

∂x
(β, 0). (3.5)

Note that �(α) ≥ KV (α) ≥ KV > 0 and �(α, β) ≥ �(α).

Proposition 3.1. Assume [H4], [S1], [S2]. Then (xt(α),
∂xt

∂α (α, t), ∂2xt

∂α2 (α, t))

converges to (x∗(α), dx∗

dα (α), d2x∗

dα2 (α)) exponentially fast with rate exp (−�(α)t)
as t tends to infinity.
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We also need to specify the asymptotic behaviour of functionals of the time
inhomogeneous process (gt(θ)) defined by(2.2) or (2.4).

Proposition 3.2. Assume [H1], [H4], [S1], [S2]. Then, as T → ∞,

(i) 1
T

∫ T

0
[gt(θ)]

2dt →L2(Pθ) [2�(α, β)]
−1,

(ii) 1
T

∫ T

0
gt(θ)dt →Pθ

0,
(iii) If the function h : R+ → R+ is continuous and satisfies limt→+∞ h(t) = 0,

then 1√
T

∫ T

0
gt(θ)h(t)dt →Pθ

0.

3.4. Rates of convergence

We may now consider the joint estimation of (α, β) and start by studying the
convergence of the gradient vector and the Hessian matrix of θ → Λε,T (θ).
The estimation of α varies according to the property that x∗(α) depends on α
or not. As, for all α, V (α, x∗(α)) ≡ 0, under [S1],

d

dα
(V (α, x∗(α)) =

∂V

∂α
(α, x∗(α)) +

∂V

∂x
(α, x∗(α))

dx∗

dα
(α) ≡ 0. (3.6)

By [S2], ∂V
∂x (α, x

∗(α)) = −�(α) �≡ 0. Consequently, we distinguish the two cases:

(1) dx∗

dα (α) �≡ 0 ⇔ ∂V
∂α (α, x

∗(α)) �≡ 0.

(2) dx∗

dα (α) ≡ 0 ⇔ ∂V
∂α (α, x

∗(α)) ≡ 0: x∗(α) = x∗ does not depend on α.

Let us remark that Example 1 presented in Section 2.1 belongs to Case (2).
According to these two cases, we set

D
(1)
ε,T =

(
ε√
T

0

0 1√
T

)
, D

(2)
ε,T =

(
ε 0
0 1√

T

)
,Jε,T (θ)=−

(
∂2Λε,T

∂α2 (θ)
∂2Λε,T

∂β∂α (θ)
∂2Λε,T

∂β∂α (θ)
∂2Λε,T

∂β2 (θ)

)
.

Theorem 3.1. Case (1) (dx
∗

dα (α) �≡ 0). Assume [H1], [H4], [S1], [S2] and

[S5]. Then, if ε → 0, T → +∞ in such a way that ε
√
T → 0, the following holds:

under Pθ, using (3.5) for the definition of �(α), �(α, β),

D
(1)
ε,T

⎛
⎜⎝

∂Λε,T

∂α (θ)

∂Λε,T

∂β (θ)

⎞
⎟⎠ =

⎛
⎜⎝

ε√
T

∂Λε,T

∂α (θ)

1√
T

∂Λε,T

∂β (θ)

⎞
⎟⎠ →L N2(0,J (1)(θ)), (3.7)

where

J (1)(θ) =

⎛
⎜⎝�2(α, β)

(
∂V
∂α (α,x∗(α))

�(α)

)2

0

0

(
∂2Φ
∂β∂x (β,0)

)2

2�(α,β)

⎞
⎟⎠ .

Moreover, the matrix −D
(1)
ε,TJε,T (θ)D

(1)
ε,T = J (1)(θ) + oP (1).
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The term oP (1) = oPθ
(1) is uniform with respect to θ. Assumptions [S2], [S5]

ensure that D
(1)
ε,T is the right rate matrix and that J (1)(θ) is non singular.

Theorem 3.2. Case (2) (∀α, x∗(α) = x∗). Assume [H1], [H4], [S1], [S2],
[S5] and x0 �= x∗. If ε → 0, T → +∞ with ε

√
T → 0, then under Pθ,

D
(2)
ε,T

⎛
⎜⎝

∂Λε,T

∂α (θ)

∂Λε,T

∂β (θ)

⎞
⎟⎠ =

⎛
⎜⎝ ε

∂Λε,T

∂α (θ)

1√
T

∂Λε,T

∂β (θ)

⎞
⎟⎠ →L N2(0,J (2)(θ)),

where �(α, β) is defined in (3.5) and

J (2)(θ) =

⎛
⎝
∫ +∞
0

[∂V∂α (α, xs(α)) +
∂Φ
∂x (β, 0)

∂xs

∂α (α, s))]2ds 0

0

(
∂2Φ
∂β∂x (β,0)

)2

2�(α,β)

⎞
⎠ .

Moreover, the matrix −D
(2)
ε,TJε,T (θ)D

(2)
ε,T = J (2)(θ) + oP (1).

The term oP (1) = oPθ
(1) is uniform with respect to θ. In Theorem 3.2, the

additional condition x0 �= x∗ appears as a minimal assumption. Indeed, since x∗

does not depend on α, x0 = x∗ implies that, for all α and all s ≥ 0, xs(α) = x∗

and using Assumption [S2] and (3.6), the term J (2)(θ)11 = 0. Now, if x0 �= x∗,
the integrand in J (2)(θ)11 tends to 0 as s tends to ∞. This convergence is
exponential (see Proposition 3.1), so that J (2)(θ)11 is finite. Assumptions [S2],

[S5] ensure that D
(2)
ε,T is the right rate matrix and that J (2)(θ) is non singular.

We stress that Theorems 3.1 and 3.2 show that the estimation of α and β have
different rates of convergence. While in both cases, β is estimated at rate

√
T ,

according to the assumptions α is estimated at rate
√
Tε−1 or ε−1.

We can check that these rates hold also for α when Φ(β, .) ≡ 0 (i.e. for
classical stochastic differential equations), Assumption [S5] being required only
for β. This yields the corollary stated below.

Corollary 3.1. Assume that Φ(β, .) ≡ 0 (classical stochastic differential equa-
tion) and that [H4], [S1] and [S2] hold.The contrast Λε,T (θ) is equal to the exact
log-likelihood �ε,T (α) (it depends only on α). Then, if ε → 0, T → +∞ in such

a way that ε
√
T → 0, the following holds:

If dx∗

dα (α) �≡ 0, under Pα,

ε√
T
�′T (α) →D N

(
0,

[
∂V

∂α
(α, x∗(α))

]2)
,

ε2

T
�′′T (α) →P −

[
∂V

∂α
(α, x∗(α))

]2
.

If dx∗

dα (α) ≡ 0 and x0 �= x∗, under Pα,

ε�′T (α) →D N
(
0,

∫ +∞

0

[
∂V

∂α
(α, xs(α))

]2
ds

)
,
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ε2�′′T (α) →P −
∫ +∞

0

[
∂V

∂α
(α, xs(α))

]2
ds.

Up to our knowledge, these statistical results are also new for classical sto-
chastic differential equations.

3.5. Asymptotic properties of estimators

Let us first study the consistency properties of (α̂ε,T , β̂ε,T ) defined in (3.4).
Since we are in a two-rate inference case, we first have to study, preliminary to
the statistical scheme detailed in Section 3.1, the limits under Pθ0 of the two
suitably normalized quantities, Λε,T (α, β) − Λε,T (α0, β), for all (α, β) ∈ Θ and
Λε,T (α0, β)− Λε,T (α0, β0) for all β ∈ Θβ .

Define the three functions using (3.5),

Λ
(1)
1 (α, α0, β) = −1

2
(V (α, x∗(α0))− Φ(β, x∗(α0)− x∗(α)))2 , (3.8)

Λ
(2)
1 (α, α0, β)=−1

2

∫ +∞

0

[V (α, xs(α0))−V (α0, xs(α0))−Φ(β, xs(α0)−xs(α))]
2
ds,

(3.9)

Λ2(α0, β, β0) = −1

2

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)

)2
1

2�(α0, β0)
. (3.10)

Lemma 3.1. Assume [H1], [H4], [S0], [S1], [S2]. Then, as ε → 0 and T → +∞
in such a way that ε

√
T → 0, the following holds in probability under Pθ0 :

(i) Case (1)(dx
∗

dα (α) �≡ 0). Uniformly with respect to (α, β) ∈ Θα ×Θβ,
ε2

T (Λε,T (α, β)− Λε,T (α0, β)) → Λ
(1)
1 (α, α0, β).

(ii) Case (2)(dx
∗

dα (α) ≡ 0). Uniformly with respect to (α, β) ∈ Θα ×Θβ,

ε2(Λε,T (α, β)− Λε,T (α0, β)) → Λ
(2)
1 (α, α0, β).

(iii) Both cases. Uniformly with respect to β ∈ Θβ,
1
T (Λε,T (α0, β)− Λε,T (α0, β0)) → Λ2(α0, β, β0).

Let us determine the identifiability assumptions associated with Lemma 3.1
which ensure that the above limits are nul if and only if α = α0, β = β0.
For β, the statement (iii) yields that the identifiability assumption [S6] is
straightforward in both cases since �(α0, β0) > 0 under [S2].

Consider now successively the two cases for α.

Case (1): Assume that ∀β, Λ
(1)
1 (α, α0, β) = 0. This implies

∀β, V (α, x∗(α0)) = Φ(β, x∗(α0)− x∗(α)).

The left-hand side depends on α, the right-hand side depends on α and β. As
Φ(β, .) is an increasing function, this yields that

V (α, x∗(α0)) = 0 and Φ(β, x∗(α0)− x∗(α)) = 0. (3.11)



Inference for McKean-Vlasov models 5823

Since Φ(β, x) = 0 implies x = 0, the last equality implies x∗(α) = x∗(α0). This
yields that the identifiability assumption for α is here [S3].
Consider now the case of standard SDE (Φ(β, .) ≡ 0).
The condition {V (α, x∗(α0)) = 0} only remains in (3.11). By the uniqueness of
the fixed point, this implies that x∗(α) = x∗(α0), also leading to [S3].

Case (2) (for all α, x∗(α) = x∗): If x0 = x∗, xs(α0) = xs(α) = x∗ for all s ≥ 0.

Thus, Λ
(2)
1 (α, α0, β) = 0 leading to the additional assumption x0 �= x∗.

Assume now that x0 �= x∗. The term under the integral in (3.9) converges to

0 exponentially fast (see Proposition 3.1). Hence, Λ
(2)
1 (α, α0, β) is well defined

and finite. This leads to [S4].
In the case Φ(β, .) ≡ 0, then [S4] has to be changed into:

• [S4b]: x0 �= x∗ and {s → V (α, xs(α0))− V (α0, xs(α0)) ≡ 0} ⇒ {α = α0}.

Theorem 3.3. Assume [H1], [H4], [S0]-[S2], [S5]-[S6] and that ε → 0 and
T → +∞ in such a way that ε

√
T → 0.

Case (1) (dx
∗

dα (α) �≡ 0). Assume moreover that [S3] holds. Then (α̂ε,T , β̂ε,T ) is
consistent and, under Pθ0 ,(√

T
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→LN2(0, [J (1)(θ0)]

−1), with J 1)(θ) defined in Theorem 3.1.

Case (2) (∀α, x∗(α) = x∗). Assume moreover that [S4] holds. Then (α̂ε,T , β̂ε,T )
is consistent and, under Pθ0 ,( 1

ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→LN2(0, [J (2)(θ0)]

−1), with J (2)(θ) defined in Theorem 3.2.

Let us consider several simple examples that illustrate these results.

Example 1 (continued): Let V (α, x) = −αx, Φ(β, x) = βx, α > 0, β > 0.
As x∗(α) = x∗ = 0, we are in Case (2). The contrast is equal to the exact
log-likelihood, [S5] is satisfied and as ε → 0, T → +∞ with ε

√
T → 0, applying

Theorem 3.2 yields that, under Pθ,(
ε
∂�ε,T
∂α (θ)

1√
T

∂�ε,T
∂β (θ)

)
→L N2(0,J (2)(θ)) with

J (2)(θ) =

(
x2
0

∫∞
0

(1 + sβ)2e−2αsds 0
0 1

2(α+β)

)
.

The functions Λ
(2)
1 (α, α0, β) and Λ2(α0, β, β0) are explicit.

Λ
(2)
1 (α, α0, β) = −x2

0

(α+ β)2 + α0α

4α0α(α0 + α)
(α− α0)

2, Λ2(α0, β, β0) = − (β − β0)
2

4(α0 + β0)
.
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Hence, the two identifiability assumptions [S4] and [S6] are satisfied and

( 1
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0,J (2)(θ0)

−1).

Example 2 : Consider the slightly different case V (α, x) = −αx + 1, Φ(β, x) =
βx, α > 0, β > 0. Then x∗(α) = α−1 and ∂V

∂α (α, x
∗(α)) = −α−1 �= 0. We are

in Case (1). Applying Theorem 3.1 to Λε,T , which is the exact log-likelihood,
yields(

ε√
T

∂�ε,T
∂α (θ)

1√
T

∂�ε,T
∂β (θ)

)
→L N2(0,J (1)(θ)) with J (1)(θ) =

(
(α+β)2

α4 0
0 1

2(α+β)

)
.

Assumptions [S3], [S5] and [S6] are satisfied,

Λ
(1)
1 (α, α0, β) = − (α+ β)2

2α2
0α

2
(α− α0)

2, Λ2(α0, β, β0) = − (β − β0)
2

4(α0 + β0)

and (√
T
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0,J (1)(θ0)

−1).

Example 3 : Let V (α, x) = −αx and Φ satisfying [H1], [S1], [S5], [S6]. We are in
Case (2), x∗(α) = x∗ = 0, �(α) = α and

Λ
(2)
1 (α, α0, β) = −1

2

∫ ∞

0

[x0(α0 − α)e−α0s − Φ(β, x0(e
−α0s − e−αs))]2ds

Λ2(α0, β, β0) = −1

2
(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0))

2 × 1

2(α0 +
∂Φ
∂x (β0, 0))

. (3.12)

We have Λ
(2)
1 (α, α0, β) = 0 iff x0 = x∗ or α = α0 and Λ2(α0, β, β0) = 0 iff

β = β0. Theorem 3.3 (2) yields the consistency and the asymptotic normality.

3.6. Asymptotic efficiency.

The approximate loglikelihood (3.2) corresponds to the exact loglikelihood of
the process (ξt) defined in (3.1) where we have plugged the observed process
(Xt). It is natural to wonder whether information was lost in this approach. As
in [21], we rely on the theory of asymptotic equivalence of experiments (see e.g.

[37, 38]). Recall that Pε,T
θ denotes the distribution of (Xt) satisfying (1.1) with

X0 = x0 on (Ω = C([0, T ]),F , (Ft, t ∈ [0, T ])) (see the notations introduced in

Section 3), and let Qε,T
θ be the distribution of (ξt) satisfying (3.1) with ξ0 = x0.

Set Θ = Θα ×Θβ and consider the two statistical experiments

Eε,T = (Ω,F , (Pε,T
θ )θ∈Θ) and Gε,T = (Ω,F , (Qε,T

θ )θ∈Θ).
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Let Δ(Eε,T ,Gε,T ) be their Le Cam deficiency distance. As the experiments are
defined on the same probability space, we have the upper bound:

Δ(Eε,T ,Gε,T ) ≤ Δ0(Eε,T ,Gε,T ) = sup
θ∈Θ

||Pε,T
θ −Q

ε,T
θ ||TV ,

with ||.||TV the total variation distance. By the Pinsker inequality (see e.g. [49]),

||P−Q||TV ≤
√
K(P,Q)/2,

where K(P,Q) is the Kullback-Leibler divergence of P with respect to Q. Set
p(θ, s,Xs) = V (α,Xs)− b(θ, ε, s,Xs), the Girsanov formula yields, using (3.3),

ε2 log
dPε,T

θ

dQε,T
θ

=

∫ T

0

(p(θ, s,Xs)−H(θ, s,Xs))dXs−
1

2

∫ T

0

(p2(θ, s,Xs)−H2(θ, s,Xs))ds.

Under Pε,T
θ , dXs−p(θ, s,Xs)ds = εdWs and p(θ, s,Xs)−H(θ, s,Xs) = Ds with

Ds = D(θ, s, ε,Xs) defined in (2.7). Hence,

K(Pε,T
θ ,Qε,T

θ ) =
1

2ε2
E
P
ε,T
θ

∫ T

0

D2
sds.

Now, we have

ε−2E
P
ε,T
θ

∫ T

0

D2
sds ≤

2

ε2

(∫ T

0

E
P
ε,T
θ

((Ds − E
P
ε,T
θ

Ds)
2)ds+

∫ T

0

(E
P
ε,T
θ

Ds)
2ds

)
.

Using Corollary 2.1 yields that under Pε,T
θ ,

K(Pε,T
θ ,Qε,T

θ ) ≤ ε2T C(θ),

where, by Comment 2.1 and Assumptions [S0]-[S2], C(θ) is uniformly bounded
on Θ. Thus, the Le Cam deficiency distance Δ(Eε,T ,Gε,T ) between the two
experiments converges to 0 as ε → 0 and T → +∞ under the condition ε

√
T →

0, implying that they are asymptotically equivalent.
This proves the asymptotic efficiency of our method and of the estimators.

4. Concluding remarks

In this paper, we consider the one-dimensional McKean-Vlasov process (Xt)
given by (1.1) with small noise ε, under assumptions ensuring existence and
uniqueness of solutions. We are interested in the statistical estimation of the
unknown parameters α, β present in the classical drift term V (α, x) and in the
self-stabilizing term Φ(β, x). In a previous paper ([21]), we have shown that, on
the basis of one trajectory continuously observed on a time interval [0, T ], while
it is possible to estimate consistently α as ε tends to 0, it is not possible to
estimate β if T is kept fixed. This is why in this paper, we consider the double
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asymptotic framework ε → 0 and T → +∞. This requires some additional
assumptions on the model ([H3]-[H4]). In particular, we assume that there is a
unique x∗(α) such that V (α, x∗(α)) = 0 and this value is an attractive point

for the ordinary differential equation xt(α) = x0 +
∫ t

0
V (α, xs(α))ds. We stress

that this double asymptotic framework has never been studied even for classical
stochastic differential equations (corresponding to Φ(β, .) ≡ 0).
In a first part, we study probabilistic properties of the process (Xt). We prove
that all the moments of ε−1(Xt − xt(α)) are uniformly bounded in t ≥ 0, ε ≤ 1,
that the Gaussian approximating process of (Xt) as ε → 0 obtained in [21]
holds on R+ and that the remainder terms of this approximation have moments
uniformly bounded in t ≥ 0, ε ≤ 1.
In a second part, we define a contrast (approximate loglikelihood) and prove the
consistency and asymptotic normality of the corresponding maximum contrast
estimators as ε → 0 and T → +∞ in such a way that ε

√
T → 0. For the

estimation of α, two cases have to be distinguished. Either Case (1), dx∗

dα (α) �≡ 0

or Case (2), dx∗

dα (α) ≡ 0. In Case (1), the estimator of α is asymptotically

Gaussian with the fast rate
√
Tε−1 while in Case (2), its rate is ε−1. In both

cases, the parameter β is estimated at rate
√
T . This confirms the fact that a

double asymptotic is needed for estimating both α and β on the basis of one
trajectory. We also prove the asymptotic efficiency of our estimators by means
of an asymptotic equivalence of experiments property.
Extensions of this work could be to consider multidimensional Mc-Kean-Vlasov
models of the more general form (see e.g. [43, 48]):

dXt = b(θ, t,Xt, u
θ,c
t )dt+ εσ(c, t,Xt, u

θ,c
t )dWt.

where θ, c are unknown parameters, uθ,c
t is the distribution of Xt.

Another direction would be to study, for discrete observations of McKean-Vlasov
diffusions, the estimation of both parameters in the drift and in the diffusion
coefficient as in [23, 25].

5. Appendix

5.1. Proofs of Section 2

Proof of Theorem 2.2. Let

ζt = (Xt − xt(α))/ε with distribution νεt (dz). (5.1)

We have

dζt = ε−1(V (α,Xt)− V (α, xt(α)))dt−
1

ε

(∫
Φ(β,Xt − y)uθ,ε

t (dy)

)
dt+ dWt.

Hence,

ζ2t = 2

∫ t

0

ζsdWs + 2

∫ t

0

ζs ε
−1[V (α,Xs)− V (α, xs(α)]ds
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− 2ε−1

∫ t

0

ζs

(∫
Φ(β,Xs − y)uθ,ε

s (dy)

)
ds+ t.

This implies, setting mε
2(t) := Eθζ

2
t ,

mε
2(t) = 2

∫ t

0

Eθ[ζs
1

ε
(V (α,Xs)− V (α, xs(α)))]ds (5.2)

− 2

ε

∫ t

0

Eθ[ζs

∫
Φ(β,Xs − y)uθ,ε

s (dy)]ds+ t.

Using (5.1), Φ(β,Xs−y) = Φ(β,Xs−xs−(y−xs)) = Φ(β, ε(ζs− y−xs

ε )). Hence,

2Eθ

(
ζsε

−1

∫
Φ(β,Xs − y)uθ,ε

s (dy)

)
= 2ε−1

∫
z

∫
Φ(β, ε(z − z′))ενεs(dz

′) νεs(dz)

=

∫
(z − z′)

∫
Φ(β, ε(z − z′))νεs(dz)ν

ε
s (dz

′) ≥ 0.

Differentiating (5.2) and using [H3], we get (mε
2)

′(t) ≤ −2KV (α)m
ε
2(t) + 1.

Now, we can use the following property which holds for f(.) a C1(R+,R) func-
tion: If there exists � > 0 such that

{t ≥ 0, f(t) > �} ⊂ {t ≥ 0, f ′(t) < 0} then sup
t≥0

f(t) ≤ f(0) ∨ �. (5.3)

Thus, choosing � = 1
2KV (α) yields, since mε

2(0) = 0,

sup
t≥0

mε
2(t) ≤

1

2KV (α)
. (5.4)

Let us now study mε
2n(t) := Eθζ

2n
t . We have

ζ2nt = 2n

∫ t

0

ζ2n−1
s dζs + n(2n− 1)

∫ t

0

ζ2n−2
s ds. (5.5)

Analogously, for n ≥ 1, using that Φ(β, .) is odd,

2n Eθ

(
ζ2n−1
s

1

ε

∫
Φ(β,Xs − y)uθ,ε

s (dy)

)

= 2nε−1

∫
z2n−1

∫
Φ(β, ε(z − z′))ενεs(dz)ν

ε
s (dz

′)

= n

∫
(z2n−1 − z′ 2n−1)

∫
Φ(β, ε(z − z′))νεs(dz)ν

ε
s (dz

′) ≥ 0.

The first term of dζs in (5.5) satisfies under [H3],

Eθ[ζ
2n−1
s

1

ε
(V (α,Xs)− V (α, xs(α)))] = Eθ[ζ

2n−2
s ζs

1

ε
(V (α,Xs)− V (xs(α)))]

≤ −KV (α)Eθζ
2n
s .
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Therefore, applying the Hölder inequality to f(x) = x1−1/n, we get

(mε
2n(t))

′ ≤ −2nKV (α) m
ε
2n(t) + n(2n− 1)mε

2n−2(t)

≤ −2nKV (α) m
ε
2n(t) + n(2n− 1)(mε

2n(t))
1−1/n.

Choosing δ(α, n) = ( n
KV (α) )

n, we have that, for x ≥ δ(α, n),

−2nKV (α)x+ n(2n− 1)x1−1/n < 0. Thus, as mε
2n(0) = 0, applying (5.3) yields

sup
t≥0

mε
2n(t) ≤ δ(α, n), with δ(α, n) independent of ε, β. (5.6)

It remains to study Eθ(Xt − xt(α)). We have,

Eθ(Xt − xt(α)) =

∫ t

0

Eθ (V (α,Xs)− V (α, xs(α))) ds−
∫ t

0

Eθb(θ, s, ε,Xs)ds.

Let (Xs) be an independent copy of (Xs). Then,

Eθb(θ, s, ε,Xs) = Eθ

∫
Φ(β,Xs − y)uθ,ε

s (dy) = Eθ(Φ(β,Xs −Xs)) = 0, (5.7)

since Φ(β, .) is odd and since the distribution of Xs −Xs is symmetric.
Now, a Taylor expansion at xs(α) yields

Eθ(V (α,Xs)− V (α, xs(α)) = Eθ(Xs − xs(α))
∂V

∂x
(α, xs(α)) +Rs, with

Rs =

∫ 1

0

(1− u)Eθ

(
(Xs − xs(α))

2 ∂
2V

∂x2
(α, xs(α) + u(Xs − xs(α)))

)
du.

Therefore,

f(θ, t) := EθXt − xt(α) =

∫ t

0

(EθXs − xs(α))
∂V

∂x
(α, xs(α))ds+

∫ t

0

Rs ds.

Differentiating with respect to t yields ∂f
∂t (θ, t) =

∂V
∂x (α, xt(α))f(θ, t)+Rt. Con-

sequently, using that f(θ, 0) = 0, we get

f(θ, t) =

∫ t

0

Rs exp

(∫ t

s

∂V

∂x
(α, xu(α))du

)
ds. (5.8)

Using [H2-2], |Rs|≤k(α)Eθ

(
(Xs − xs(α))

2(1 + |xs(α)|γ(α)+ |Xs − xs(α)|γ(α))
)
.

Under [H3], [H4], xt(α) is uniformly bounded on R+ by B(α) (see Comment

2.1). Using the first part, Eθ(Xt − xt(α))
2 ≤ ε2

2KV (α) . By the Hölder inequality,

Eθ|Xt − xt(α)|2+γ(α) ≤ ε2+γ(α)(mε
2+2γ(α)(t))

1− γ(α)
2+2γ(α) .

Therefore, |Rs| ≤ ε2C(α) where

C(α) = k(α)
2KV (α) (1+B(α)γ(α)+2(1+γ(α))(1+γ(α)

KV (α) )
γ(α)

1+γ(α) ) is independent of t, ε.

Hence, EθXt − xt(α) = f(θ, t) satisfies

|f(θ, t)| ≤ ε2C(α)

∫ t

0

e−KV (α)(t−s)ds ≤ C(α)

KV (α)
ε2. � (5.9)
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If V (α, x) = −αx, EθXt = x0 − α
∫ t

0
EθXsds. Thus, EθXt = x0e

−αt = xt(α).

Proof of Theorem 2.3. Recall that x → Φ(β, x) is odd so that the odd
derivatives are odd and therefore null at x = 0.

By (2.3), we have Rε
t (θ) = ε−2(Xt − xt(α) − εgt(θ)). Therefore, using (1.1),

(1.3), (2.1) and (2.2),

dRε
t (θ) =

1

ε2
(V (α,Xt)− V (α, xt(α))− b(θ, t, ε,Xt)− εa(θ, t)gt(θ)) dt

=
1

ε2
[(Xt − xt(α))a(θ, t)− εa(θ, t)gt(θ))] dt+ ν(θ, t, ε,Xt)dt

= a(θ, t)Rε
t (θ)dt+ ν(θ, t, ε,Xt)dt, Rε

0(θ) = 0, where

ν(θ, t, ε,Xt) = T1(t) + T2(t), with

T1(t) = ε−2
(
V (α,Xt)− V (α, xt(α))− (Xt − xt(α))

∂V
∂x (α, xt(α))

)
,

T2(t) = −ε−2

(∫
Φ(β,Xt − y)uθ,ε

t (dy)− ∂Φ

∂x
(β, 0)(Xt − xt(α))

)
. (5.10)

The equation satisfied by Rε
t (θ) can be solved. We get, using (2.1) and (2.4),

Rε
t (θ) =

∫ t

0

ν(θ, s, ε,Xs) exp (

∫ t

s

a(θ, u)du)ds. (5.11)

Let us first study T1(t). A Taylor expansion at point xt(α) yields, using [H2-2],

T1(t) = ε−2(Xt − xt(α))
2

∫ 1

0

(1− u)
∂2V

∂x2
(α, xt(α) + u(Xt − xt(α)))du, (5.12)

|T1(t)| ≤ k(α)ε−2(Xt − xt(α))
2(1 + |xt(α)|γ(α) + |Xt − xt(α)|γ(α)).

Therefore, since xt(α) is uniformly bounded, applying Theorem 2.2 yields that,
for all p ≥ 1,

Eθ|T1(t)|2p = O(1) uniformly on t ≥ 0, ε > 0.

For T2(t), we have −ε2T2(t)=
∫ (

Φ(β,Xt − y)− ∂Φ
∂x (β, 0)(Xt − xt(α))

)
uθ,ε
t (dy).

A Taylor expansion at point 0 yields, noting that ∂2Φ
∂x2 (β, 0) = 0,

Φ(β,Xt − y)− ∂Φ

∂x
(β, 0)(Xt − xt(α)) =

∂Φ

∂x
(β, 0)(xt(α)− y) + ρ1(Xt, y),

where

ρ1(Xt, y) =
1

2
(Xt − y)3

∫ 1

0

(1− u)2
∂3Φ

∂x3
(β, u(Xt − y))du. (5.13)

Therefore, T2(t) = −ε−2 ∂Φ
∂x (β, 0))(xt(α) − EθXt) − ε−2

∫
ρ1(Xt, y)u

θ,ε
t (dy) =

T21(t) + T22(t).
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Let us study first EθT2(t) = T21(t) + EθT22(t). For the second term, we can
write, for Xt an independent copy of Xt,

Eθ

∫
ρ1(Xt, y)u

θ,ε
t (dy)=

1

2
Eθ

(
(Xt −Xt)

3

∫ 1

0

(1− u)2
∂3Φ

∂x3
(β, u(Xt −Xt))du

)
.

Under [H2-3], x → x3 ∂3Φ
∂x3 (β, ux) is well defined and odd so that

Eθ

∫
ρ1(Xt, y)u

θ,ε
t (dy) = Eθ(ρ1(Xt, Xt)) = 0. (5.14)

Therefore, EθT22(t) = 0. For T21(t) which is deterministic, applying Theorem
2.2 (ii) yields

|T21(t)| ≤ δ(α)
∂Φ

∂x
(β, 0) = O(1) uniformly on t ≥ 0, ε > 0.

Therefore |EθT2(t)| = |T21(t)| is also uniformly bounded for t ≥ 0, ε > 0.

Consider T2(t)−EθT2(t) = T22(t). By (5.14), T22(t) = −ε−2
∫
ρ1(Xt, y))u

θ,ε
t (dy).

Hence, if (Xt) is an independent copy of (Xt),

Eθ(T2(t)− EθT2(t))
2p = ε−4pEθ(ρ1(Xt, Xt)

2p).

Now, by [H2-3] and (5.13),

Eθ(ρ1(Xt, Xt)
2p)=2−2pEθ

(
(Xt−Xt)

6p(

∫ 1

0

(1−u)2
∂3Φ

∂x3
(β, u(Xt−Xt))du)

2p

)

≤2−2pEθ

(
|Xt−Xt|6p(k(β)(1+|Xt−Xt|γ(β)))2p

)
≤k2p(β)2−1Eθ

(
|Xt−Xt|6p(1+|Xt −Xt|2pγ(β)))

)
.

By splitting Xt −Xt into Xt − xt(α) + xt(α)−Xt we get that

Eθ(ρ1(Xt, Xt)
2p) ≤ k2p(β)Eθ(2

6p−1(Xt − xt(α))
6p)

+k2p(β)Eθ(2
6p+2pγ(β)−1(Xt − xt(α))

6p+2pγ(β)) ≤ Cp(α, β)ε
6p,

where Cp(α, β) depends on p, k(β) and K−1
V (α). Applying Theorem 2.2 yields

that, uniformly on t > 0, ε > 0,

Eθ (T2(t)− EθT2(t))
2p ≤ ε2pC ′

p(α, β).

Joining these inequalities there exist constants δ(α, β), δp(α, β) such that for all
t ≥ 0, ε > 0,

Eθ|ν(θ, t, ε,Xt)| ≤ δ(α, β); Eθ (ν(θ, t, ε,Xt)− Eθν(θ, t, ε,Xt))
2p ≤ δp(α, β).

Now, using (3.5), (2.5) and [H3],
∫ t

s
a(θ, u)du = A(θ, t)−A(θ, s) ≤ −K(θ)(t−s)

with

K(θ) = K(α, β) = KV (α) +
∂Φ

∂x
(β, 0) > 0. (5.15)
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Therefore (5.11) yields that

Eθ|Rε
t (θ)| ≤

∫ t

0

Eθ|ν(θ, s, ε,Xs)|e−K(θ)(t−s)ds ≤ δ(α, β)

K(θ)
.

Consider now Eθ(R
ε
t (θ)− EθR

ε
t (θ))

2p. Equation (5.11) yields

(Rε
t (θ)−EθR

ε
t (θ))

2p≤
(∫ t

0

(ν(θ, t, ε,Xt)−Eθν(θ, t, ε,Xt))
2p

ep(A(θ,t)−A(θ,s))ds

)

×
(∫ t

0

e
p

2p−1 (A(θ,t)−A(θ,s))ds

)2p−1

.

Using the inequality for A(θ, s) yields that Mp = Eθ(R
ε
t (θ)−EθR

ε
t (θ))

2p satisfies

Mp ≤ (
2p− 1

2pK(θ)
)2p−1

∫ t

0

Eθ(ν(θ, s, ε,Xs)− Eθν(θ, s, ε,Xs)))
2pe−pK(θ)(t−s)ds.

Therefore, this expectation is uniformly bounded on t ≥ 0, ε > 0. �

Proof of Corollary 2.1 . We have that

D(θ, t, ε,Xt) =

∫
(Φ(β,Xt − y)− Φ(β,Xt − xt(α)))u

θ,ε
t (dy).

Similarly to the study T2(t), a Taylor expansion of Φ(β, .) yields, using (5.13),

Φ(β,Xt − y)− Φ(β,Xt − xt(α)) =
∂Φ

∂x
(β, 0))(xt(α)− y) + ρ1(Xt, y)− ρ2(Xt),

with

ρ2(Xt) =
1

2
(Xt − xt(α))

3

∫ 1

0

(1− u)2
∂3Φ

∂x3
(β, u(Xt − xt(α)))du. (5.16)

Therefore,D(θ, t, ε,Xt)=
∂Φ
∂x (β, 0))(xt(α)−EθXt)+

∫
ρ1(Xt, y)u

θ,ε
t (dy)−ρ2(Xt).

Using (5.14),

EθD(θ, t, ε,Xt) =
∂Φ

∂x
(β, 0)(xt(α)− EθXt)− Eθρ2(Xt).

By Theorem 2.2, Eθ|ρ2(Xt)| � ε3O(1). This yields (2.8). Moreover, as for the
upper bound of T2(t), Eθ|ρ1(Xt, Xt)|2p � Eθ|Xt −Xt|6p � ε6p.
By Theorem 2.2, uniformly on t > 0, Eθ|ρ2(Xt)|2p � Eθ|Xt−xt(α)|6p ≤ ε6pO(1).
Joining these two inequalities, we get (2.9). �

5.2. Proofs of Section 3

We start with two preliminary propositions useful for the inference.
Proof of Proposition 3.1.
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Set x1(t) = xt(α), x2(t) = ∂xt

∂α (α, t), x3(t) = ∂2xt

∂α2 (α, t) and x(t) =
[x1(t)x2(t)x3(t)]

′. Then, x(t) is solution of the ordinary differential equation

dx(t) = B(x(t))dt, B(x(t)) = [B1(x(t)) B2(x(t)) B3(x(t))]
′ (5.17)

where B1(x) = V (α, x1), B2(x) =
∂V
∂α (α, x1) +

∂V
∂x (α, x1)x2 and

B3(x) =
∂2V
∂α2 (α, x1)+[∂V∂x (α, x1)+2 ∂2V

∂x∂α (α, x1)]x2+
∂V
∂x (α, x1)x

2
2+

∂V
∂x (α, x1)x3.

We easily check that B(x∗) = 0 for x∗ = [x∗
1 x

∗
2 x

∗
3]

′ with, using (3.5) for �(α),

x∗
1 = x∗(α), x∗

2 =
1

�(α)

∂V

∂α
(α, x∗

1), (5.18)

x∗
3 =

1

�(α)

(
∂2V

∂α2
+ x∗

2[
∂V

∂x
+ 2

∂2V

∂x∂α
] + (x∗

2)
2 ∂V

∂x

)
(α, x∗

1). (5.19)

We have to compute DB(x∗) = [∂Bi

∂xj
(x∗)]1≤i,j≤3 to check if this point is asymp-

totically stable. The matrix DB(x) is triangular with diagonal elements equal
to −�(α) < 0. Thus, the eigenvalues of DB(x∗) are negative which implies that
x∗ is asymptotically stable for (5.17). Thus x(t) converges as t → +∞ to x∗

with exponential rate exp (−�(α)t) (see e.g. [27]). �
Note that α → x∗(α) is C∞ on Uα. As Θα is compact, dx∗

dα (α) and d2x∗

dα (α)
are uniformly bounded on Θα as well as x∗(α).

Proof of Proposition 3.2.
Proof of (i): Consider the process (gt) such that dgt = −λgtdt+ dWt, gt(0) = 0

with λ > 0. It is standard that gt = exp (−λt)
∫ t

0
exp (λs)dWs and that (gt) is

a positive recurrent diffusion with invariant distribution N (0, 1/(2λ)). By the

ergodic theorem, 1
T

∫ T

0
g2sds converges a.s. to (1/2λ). This implies, by the central

limit theorem for martingales, that 1√
T

∫ T

0
gsdWs converges in distribution to

N (0, (1/2λ)). Moreover, one easily gets

E(
1

T

∫ T

0

g2sds) =
1

T

∫ T

0

Eg2sds =
1

2λ
+ o(1).

We can also compute

E
1

T 2

(∫ T

0

g2sds

)2

=
1

T 2

∫
[0,T ]2

E(g2sg
2
t )dsdt.

If L(X,Y ) = N2(0,Σ) with Σ =

(
σ2 ρ
ρ τ2

)
. Then E(X2Y 2) = σ2τ2 + 2ρ2.

Applying this property to the centered Gaussian process (gt), we get that
E(g2sg

2
t ) = 2cov2(gs, gt) + Eg2sEg

2
t . Therefore,

E
1

T 2

(∫ T

0

g2sds

)2

=

(
1

T

∫ T

0

Eg2sds

)2

+ CT (λ). (5.20)
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where

CT (λ) =
2

T 2

∫
[0,T ]2

cov2(gs, gt)dsdt =
4

T 2

∫
0≤s≤t≤T

cov2(gs, gt)dsdt. (5.21)

For s ≤ t, cov(gs, gt) =
∫ s

0
e−λ(t−u+s−u)du = 1

2λ

(
eλ(s−t) − eλ(s+t)

)
.

By elementary computations, we see that CT (λ) =
1
T O(1) so that

E

(
1

T

∫ T

0

g2sds−
1

T

∫ T

0

Eg2sds

)2

→ 0.

With this direct calculus, we have obtained that 1
T

∫ T

0
g2sds →L2

1
2λ .

We rely on this approach to prove Proposition 3.2 for the process gt(θ). Using
(2.1), (2.5) and (5.15), we have that under [H3], for u ≤ t,

A(θ, t)−A(θ, u) ≤ −K(θ)(t− u). (5.22)

Moreover, by (2.4), gt(θ) =
∫ t

0
eA(θ,t)−A(θ,s)dWs.

Equations (5.20)-(5.21) hold for gt(θ),

Eθ
1

T 2

(∫ T

0

[gs(θ)]
2ds

)2

=

(
1

T

∫ T

0

Eθ[gs(θ)]
2ds

)2

+ C̃T (θ) with

C̃T (θ) =
4
T 2

∫
0≤s≤t≤T

cov2θ(gs(θ), gt(θ))dsdt. For s ≤ t, using (5.15) and (5.22)

covθ(gs(θ), gt(θ)) =

∫ s

0

eA(θ,t)+A(θ,s)−2A(θ,u)du ≤
∫ s

0

e−K(θ)(t−u+s−u)du.

Therefore C̃T (θ) ≤ CT (K(θ)). Finally, using (5.20)-(5.21),

Eθ

(
1

T

∫ T

0

[gs(θ)]
2ds− 1

T

∫ T

0

Eθ[gs(θ)]
2ds

)2

≤ CT (K(θ)) =
1

T
O(1).

Thus,
1

T

∫ T

0

[gs(θ)]
2ds− 1

T

∫ T

0

Eθ[gs(θ)]
2ds →L2 0. (5.23)

Now, the function t → ∂V
∂x (α, xt(α)) is continuous. Therefore, under [H3]-

[H4], as t → +∞, xt(α) → x∗(α), and ∂V
∂x (α, xt(α)) → ∂V

∂x (α, x
∗(α)) = −�(α) ≤

−KV (α) < 0. Therefore,

∀h > 0, ∃t0 > 0, ∀t ≥ t0, −�(α)− h <
∂V

∂x
(α, xt(α)) < −�(α) + h.

It follows, using (3.5), that for all t, s such that t ≥ s ≥ t0,

− (�(α, β) + h)(t− s) ≤ A(θ, t)−A(θ, s) ≤ −(�(α, β)− h)(t− s). (5.24)
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Choose h > 0 such that �(α, β) − h > 0. We have, using (2.4), Eθ(gt(θ)
2) =

e2A(θ,t)
∫ t

0
e−2A(θ,s)ds. Hence, Eθ(T

−1
∫ T

0
[gt(θ)]

2dt) = T1 + T2 + T3 where

T1 =
1

T

∫
0≤s≤t≤t0

e2(A(θ,t)−A(θ,s)dsdt, T3 =
1

T

∫
t0≤s≤t≤T

e2(A(θ,t)−A(θ,s))dsdt,

T2 =
1

T

∫
0≤s≤t0,t0≤t≤T

e2(A(θ,t)−A(θ,s))dsdt.

As T tends to infinity, T1 = o(1). For T2 we have,

T2 =
1

T

∫ t0

0

e−2(A(θ,s)−A(θ,t0))ds×
∫ T

t0

e2(A(θ,t)−A(θ,t0))dt.

Now, using (5.24),∫ T

t0

e2(A(θ,t)−A(θ,t0))dt ≤
∫ T

t0

e−2(�(α,β)−h)(t−t0)dt ≤ 1

2(�(α, β)− h)
.

Therefore 0 ≤ T2 ≤ 1
T O(1) and T2 → 0 as T → ∞. Consider now T3:

T3 ≤ 1

T

∫ T

t0

ds

∫ T

s

e−2(�(α,β)−h)(t−s)dt

=
1

2(�(α, β)− h)T

(
T − t0 −

1− e−2(�(α,β)−h)(T−t0)

2(�(α, β)− h)

)
.

Therefore, limT→+∞T3 ≤ 1
2(�(α,β)−h) . Analogously, limT→+∞T3 ≥ 1

2(�(α,β)+h) .

Therefore, T3 → 1
2(�(α,β) so that

Eθ

(
1

T

∫ T

0

[gt(θ)]
2dt

)
→ 1

2�(α, β)
as T → ∞.

Using (5.23), the first item is proved.

Proof of (ii): Let ZT =
∫ T

0
gt(θ)dt. Using (2.4) and interchanging the order of

integrations yields:

ZT =

∫ T

0

gt(θ)dt=

∫ T

0

eA(θ,t)

∫ t

0

e−A(θ,s)dWsdt=

∫ T

0

e−A(θ,s)dWs

∫ T

s

eA(θ,t)dt.

Therefore, ZT is centered and, using (5.22)

EZ2
T =

∫ T

0

e−2A(θ,s)ds

(∫ T

s

eA(θ,t)dt

)2

=

∫ T

0

ds

(∫ T

s

eA(θ,t)−A(θ,s)dt

)2

≤
∫ T

0

ds

(∫ T

s

e−K(θ)(t−s)dt

)2

≤
∫ T

0

ds

(
1− e−K(θ)(T−s)

K(θ)

)2

≤ T

K2(θ)
.
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Therefore, we find that EZ2
T � T and T−1ZT tends to 0 in probability as T

tends to infinity.

Proof of (iii): As limt→+∞ h(t) = 0, for all h > 0, there exists T0 > 0 such that
for all T ≥ T0, |h(t)| ≤ h. So, we split

1√
T

∫ T

0

h(s)gs(θ)ds =
1√
T

∫ T0

0

h(s)gs(θ)ds+
1√
T

∫ T

T0

h(s)gs(θ)ds

= oP (1) +
1√
T
Z(T0, T ),with

Z(T0, T ) =

∫ T

T0

h(s)eA(θ,s)

(∫ T0

0

e−A(θ,u)dWu +

∫ s

T0

e−A(θ,u)dWu

)
ds

=

∫ T0

0

e−A(θ,u)dWu

∫ T

T0

h(s)eA(θ,s)ds

+

∫ T

T0

e−A(θ,u)dWu

∫ T

u

h(s)eA(θ,s)ds = ZT,1 + ZT,2.

For the first term of Z(T0, T ), ZT,1, using (5.22) yields

|
∫ T

T0

h(s)eA(θ,s)ds| ≤ h

∫ T

T0

e−K(θ)sds ≤ h

K(θ)
e−K(θ)T0 = hOP (1).

Hence E(ZT,1)
2 = h2O(1). For the second term of Z(T0, T ), we write

E(ZT,2)
2 =

∫ T

T0

e−2A(θ,u)du

(∫ T

u

h(s)eA(θ,s)ds

)2

=

∫ T

T0

du

(∫ T

u

h(s)eA(θ,s)−A(θ,u)ds

)2

≤ h2

∫ T

T0

du

(∫ T

u

e−K(θ)(s−u)ds

)2

≤ (T − T0)h
2 1

K(θ)2
.

Therefore, for all T ≥ T0,
1
T E(Z(T0, T ))

2 � h2

T + h2. Hence,

limT→+∞
1√
T

∫ T

0
gs(θ)h(s)ds = 0. �

Proof of Theorem 3.1. Recall that H(θ, s, x) = V (α, x) − Φ(β, x − xs(α)).
Thus, using (2.7),

dXs = εdWs +H(θ, s,Xs)ds−D(θ, s, ε,Xs)ds. (5.25)

The derivatives of H with respect to the parameters are given by:

∂H

∂α
(θ, s,Xs) =

∂V

∂α
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂xs

∂α
(α, s),
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∂H

∂β
(θ, s,Xs) = −∂Φ

∂β
(β,Xs − xs(α))

∂2H

∂α2
(θ, s,Xs) =

∂2V

∂α2
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂2xs

∂α2
(α, s)

−∂2Φ

∂x2
(β,Xs − xs(α))

(
∂xs

∂α
(α, s)

)2

∂2H

∂β2
(θ, s,Xs) = −∂2Φ

∂β2
(β,Xs − xs(α)),

∂2H

∂α∂β
(θ, s,Xs) =

∂2Φ

∂x∂β
(β,Xs − xs(α))

∂xs

∂α
(α, s).

Note that for the convergence in distribution stated in Theorem 3.1, it is enough
to prove that

ε√
T

∂Λε,T

∂α
(θ) = �(α, β)

∂V
∂α (α, x

∗(α))

�(α)

WT√
T

+ oP (1), (5.26)

1√
T

∂Λε,T

∂β
(θ) = − ∂2Φ

∂β∂x
(β, 0)

1√
T

∫ T

0

gs(θ)dWs + oP (1). (5.27)

The bracket of the two stochastic integrals above is equal, up to a constant, to

T−1
∫ T

0
gs(θ)ds and tends to 0 as T tends to infinity by Proposition 3.2.

Moreover, as T−1
∫ T

0
[gs(θ)]

2ds tends to [2�(α, β)]−1, by the central limit theorem

for martingales, 1√
T

∫ T

0
gs(θ)dWs converges in distribution to N (0, [2�(α, β)]−1).

The proof of (5.26)-(5.27) relies on the following Lemma:

Lemma 5.1. Let F (θ, s, x) a continuous function on Θ×R+×R, differentiable
with respect to x and assume that there exist C > 0 and a nonnegative integer
c such that, ∀θ ∈ θ, ∀s ≥ 0,

|F (θ, s, x)| ≤ C(1 + |x|c) and |∂F
∂x

(θ, s, x)| ≤ C(1 + |x|c). (5.28)

Then, for T ≥ 1, ε ≤ 1, D(θ, s, ε, x) given in (2.7), the following holds.

(i) E
∫ T

0
(F (θ, s,Xs)− F (θ, s, xs(α)))

2ds ≤ C1(θ, F ) T ε2.

(ii) E

∣∣∣∫ T

0
F (θ, s,Xs)D(θ, s, ε,Xs)ds

∣∣∣ ≤ C2(θ, F ) T ε2.

(iii) If
∫ +∞
0

|F (θ, s, xs(α))|ds < +∞, then

E

∣∣∣∫ T

0
F (θ, s,Xs)D(θ, s, ε,Xs)ds

∣∣∣ ≤ C3(θ, F )(ε2 + ε3T ).

where the constants Ci(θ, F ) only depend on F and θ.

Note that the functions F (θ, s, x) = H(θ, s, x), ∂H
∂α (θ, s, x), ∂2H

∂α2 (θ, s, x) satisfy
(5.28) under [S1] so that Lemma 5.1 holds for these functions.
We now start the proof of (5.26)-(5.27).
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Derivative of the contrast with respect to α
Replacing dXs by its expression, we get (see (2.7), (3.2), (3.3) and (5.25)):

∂Λε,T

∂α
(θ) =

1

ε2

(∫ T

0

∂H

∂α
(θ, s,Xs)dXs −

∫ T

0

H(θ, s,Xs)
∂H

∂α
(θ, s,Xs)ds

)
.

Hence,

∂Λε,T

∂α
(θ) =

1

ε

∫ T

0

∂H

∂α
(θ, s,Xs)dWs −

1

ε2

∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds.

(5.29)
Let us define

∂H

∂α
(θ, x∗(α)) =

∂V

∂α
(α, x∗(α)) +

∂Φ

∂x
(β, 0)

dx∗

dα
(α). (5.30)

Then,

∂H

∂α
(θ, s, xs(α))−

∂H

∂α
(θ, x∗(α))

=
∂V

∂α
(α, xs(α))−

∂V

∂α
(α, x∗(α)) +

∂Φ

∂x
(β, 0)

(
∂xs

∂α
(α, s)− dx∗

dα
(α)

)
.

Therefore ∂H
∂α (θ, x∗(α)) is the limit of ∂H

∂α (θ, s, xs(α)) as s → ∞. Since we are

in Case (1), (3.6) yields using (3.5) that ∂V
∂α (α, x

∗(α)) = �(α)dx
∗

dα (α) �= 0 and

∂H

∂α
(θ, x∗(α)) = �(α, β)

dx∗

dα
(α) =

�(α, β)

�(α)

∂V

∂α
(α, x∗(α)) �= 0.

Consequently, we can write

ε√
T

∂Λε,T

∂α
(θ) =

WT√
T

∂H

∂α
(θ, x∗(α))

+
1√
T

∫ T

0

(
∂H

∂α
(θ, s, xs(α))−

∂H

∂α
(θ, x∗(α))

)
dWs (5.31)

+
1√
T

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)
dWs (5.32)

− 1

ε
√
T

(∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds

)
. (5.33)

Using Proposition 3.1 and [S1], ∂H
∂α (θ, s, xs(α))− ∂H

∂α (θ, x∗(α)) converges expo-

nentially fast to 0 so that
∫ +∞
0

(
∂H
∂α (θ, s, xs(α))− ∂H

∂α (θ, x∗(α))
)2

ds < +∞.
To study (5.31), we split

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, x∗(α))

)
dWs
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=

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)
dWs

+

∫ T

0

(
∂H

∂α
(θ, s, xs(α))−

∂H

∂α
(θ, x∗(α))

)
dWs.

Therefore, (5.31) is OP (1/
√
T ) and tends to 0. By Lemma 5.1 (i),

1

T
Eθ

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)2

ds � ε2,

so that (5.32) is OP (ε). Lemma 5.1 (ii) yields

1

ε
√
T
Eθ

∫ T

0

∣∣∣∣∂H∂α (θ, s,Xs)D(θ, s, ε,Xs)

∣∣∣∣ ds � ε
√
T ,

so that (5.33) is also oP (1) under the condition ε
√
T → 0. So we find that

ε√
T

∂Λε,T

∂α
(θ) =

WT√
T

∂H

∂α
(θ, x∗(α)) + oP (1) = �(α, β)

∂V
∂α (α, x

∗(α))

�(α)

WT√
T

+ oP (1),

which gives (5.26).

Derivative of the contrast with respect to β
We have:

∂Λε,T

∂β
(θ) =

1

ε2

∫ T

0

∂H

∂β
(θ, s,Xs)dXs −

1

ε2

∫ T

0

H(θ, s,Xs)
∂H

∂β
(θ, s,Xs)ds

= −1

ε

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))dWs (5.34)

+
1

ε2

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))D(θ, s, ε,Xs)ds

:= T1 + T2. (5.35)

Since x → ∂Φ
∂β (β, x) is an odd function, ∂Φ

∂β (β, 0) = 0, so

∂Φ

∂β
(β, x) = x

∂2Φ

∂β∂x
(β, 0) + x2

∫ 1

0

(1− u)
∂3Φ

∂β∂x2
(β, ux)du. (5.36)

Replacing x by Xs − xs(α)) = εgs(θ) + ε2Rε
s(θ) yields that

T1 = − ∂2Φ

∂β∂x
(β, 0)

(∫ T

0

gs(θ)dWs

)
− T11, with

T11 = ε

∫ T

0

Rε
s(θ)dWs
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− ε−1

∫ T

0

(Xs − xs(α))
2

∫ 1

0

(1− u)
∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))du dWs.

Thus,

1√
T
T1 = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0

gs(θ)dWs

)
− 1√

T
T11.

We have, by Theorem 2.3,

Eθ

∫ T

0

(Rε
s(θ))

2ds≤2Eθ

∫ T

0

(Rε
s(θ)−EθR

ε
s(θ))

2ds+2

∫ T

0

(EθR
ε
s(θ))

2ds � TO(1),

where O(1) does not depend on T and ε. This implies

1

T
Eθ

(
ε

∫ T

0

Rε
s(θ)dWs

)2

=
ε2

T
Eθ

∫ T

0

(Rε
s(θ))

2ds � ε2

T
× T = ε2.

Then, using [S1],

1

T
Eθ

(
ε−1

∫ T

0

(Xs − xs(α))
2

∫ 1

0

(1− u)
∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))du dWs

)2

�

1

ε2T
Eθ

(∫ T

0

(Xs − xs(α))
4(1 + (Xs − xs(α))

2c)ds

)
� 1

ε2T
× ε4T = ε2.

Therefore,

1√
T
T1 = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0

gs(θ)dWs

)
+OP (ε).

For T2, we have using (5.36),

T2 =
∂2Φ

∂β∂x
(β, 0)

1

ε2

∫ T

0

(Xs−xs(α))D(θ, s, ε,Xs)ds+

1

ε2

∫ T

0

(Xs−xs(α))
2

∫ 1

0

(1−u)
∂3Φ

∂β∂x2
(β, u(Xs−xs(α)))duD(θ, s, ε,Xs)ds.

We split D(θ, s, ε,Xs) = EθD(θ, s, ε,Xs) +D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs) and
use Corollary 2.1 and Theorem 2.2.

The main term of |T2|/
√
T is 1

ε2
√
T
|
∫ T

0
(Xs − xs(α))EθD(θ, s, ε,Xs)ds|. Taking

the expectation of this term yields

Eθ
1

ε2
√
T
|
∫ T

0

(Xs − xs(α))EθD(θ, s, ε,Xs)ds| ≤

1√
T
ε−2 sup

s,ε
|EθD(θ, s, ε,Xs)|

∫ T

0

Eθ|Xs − xs(α)|ds � 1√
T
O(1)εT.
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Finally, T2/
√
T = ε

√
TOP (1).

Therefore,

1√
T

∂Λε,T

∂β
(θ) = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0

gs(θ)dWs

)
+ oP (1).

This yields (5.27). Hence the first part of Theorem 3.1, is proved.

It remains to study the limit of

D
(1)
ε,TJε,T (θ)D

(1)
ε,T = −

(
ε2

T
∂2Λε,T

∂α2 (θ) ε
T

∂2Λε,T

∂β∂α (θ)
ε
T

∂2Λε,T

∂β∂α (θ) 1
T

∂2Λε,T

∂β2 (θ)

)
.

We have:

ε2

T

∂2Λε,T

∂α2
(θ) =

1

T

∫ T

0

∂2H

∂α2
(θ, s,Xs)dXs −

1

T

∫ T

0

H(θ, s,Xs)
∂2H

∂α2
(θ, s,Xs)ds

− 1

T

∫ T

0

(
∂H

∂α
(θ, s,Xs))

2ds = T1 + T2 + T3 with

T1 = ε
T

∫ T

0
∂2H
∂α2 (θ, s,Xs)dWs; T2 = − 1

T

∫ T

0
∂2H
∂α2 (θ, s,Xs)D(θ, s, ε,Xs)ds; T3 =

− 1
T

∫ T

0

(
∂H
∂α (θ, s,Xs)

)2
ds. For T1, we write

T1 =
ε

T

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs

+
ε

T

∫ T

0

(
∂2H

∂α2
(θ, s,Xs)−

∂2H

∂α2
(θ, s, xs(α))

)
dWs.

Noting that ∂2Φ
∂x2 (β, x) is odd,

∂2H

∂α2
(θ, s, xs(α)) =

∂2V

∂α2
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂2xs

∂α2
(α, s).

This function is uniformly bounded thanks to Proposition 3.1. Therefore, using
Lemma 5.1,

EθT
2
1 � ε2

T 2
× (T + ε2T ) =

ε2

T
(1 + ε2) = o(1).

By Lemma 5.1, Eθ(|T2|) � 1
T × ε2T = ε2.

For the last and main term T3, we write (see (5.30)):

T3 = − 1

T

∫ T

0

[(
∂H

∂α
(θ, s,Xs)

)2

−
(
∂H

∂α
(θ, s, xs(α))

)2
]
ds

− 1

T

∫ T

0

[(
∂H

∂α
(θ, s, xs(α))

)2

−
(
∂H

∂α
(θ, x∗(α))

)2
]
ds−

(
∂H

∂α
(θ, x∗(α))

)2

.
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For the first term, we use Lemma 5.1 to prove that it is oP (1). For the second

term, we use that
(
∂H
∂α (θ, s, xs(α))

)2
converges to

(
∂H
∂α (θ, x∗(α))

)2
with expo-

nential rate and this implies that this second term is o(1). Hence T3 tends to

−
(
∂H
∂α (θ, x∗(α))

)2
.

Joining these results, we have proved that
ε2

T

∂2Λε,T

∂α2
(θ) tends to

−
(
∂H
∂α (θ, x∗(α))

)2
.

Let us study
1

T

∂2Λε,T

∂β2
(θ). Using that

∂2H

∂β2
(θ, s,Xs) = −∂2Φ

∂β2
(β,Xs−xs(α))

yields

1

T

∂2Λε,T

∂β2
(θ) = − 1

εT

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))dWs

+
1

ε2T

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))D(θ, s, ε,Xs)ds

− 1

ε2T

∫ T

0

(
∂Φ

∂β
(θ,Xs − xs(α))

)2

ds = S1 + S2 + S3.

The following relation is analogous to (5.36):

∂2Φ

∂β2
(β, x) = x

∂3Φ

∂β2∂x
(β, 0) + x2

∫ 1

0

(1− u)
∂4Φ

∂β2∂x2
(β, ux)du. (5.37)

Substituting x by Xs − xs(α) = εgs(θ) + ε2Rε(s), we get that the main term of
S1 is

S11 = − 1

εT

∫ T

0

(Xs − xs(α))
∂3Φ

∂β2∂x
(β, 0)dWs = OP (

1√
T
),

as, using Proposition 3.2,(i), EθS
2
11 = OP (1/T ). For S2, we split as previously

D(θ, s, ε,Xs) = EθD(θ, s, ε,Xs) +D(θ, s, ε,Xs)−EθD(θ, s, ε,Xs) and find that
the main term of S2 is

S22 =
1

ε2T

∫ T

0

(Xs − xs(α))
∂3Φ

∂β2∂x
(β, 0)EθD(θ, s, ε,Xs)ds,

where |EθS22| � ε using Corollary 2.1 and Theorem 2.2.
The limit is obtained by S3 whose main term is (see (5.36))

S33 = − 1

ε2T

∫ T

0

(
(Xs − xs(α))

∂2Φ

∂β∂x
(β, 0)

)2

ds

= −
(

∂2Φ

∂β∂x
(β, 0)

)2
1

T

∫ T

0

g2s(θ)ds+ oP (1).

Therefore, Proposition 3.2, (i) yields that S33 tends to −
(

∂2Φ
∂β∂x (β, 0)

)2

/(2(�(α,

β)). Joining these results, we get that the same holds for 1
T

∂2Λε,T

∂β2 (θ).
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It remains to study the off diagonal term (ε/T )
∂2Λε,T

∂α∂β (θ). We have

ε

T

∂2Λε,T

∂α∂β
(θ)=

1

T

∫ T

0

∂2H

∂α∂β
(θ, s,Xs)dWs−

1

εT

∫ T

0

D(θ, s, ε,Xs)
∂2H

∂α∂β
(θ, s,Xs)ds

− 1

εT

(∫ T

0

∂H

∂β
(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
= T1 + T2 + T3

where ∂2H
∂α∂β (θ, s,Xs),

∂H
∂β (θ, s,Xs) are detailed above. As before, the main term

of T1 is 1
T

∫ T

0
∂2H
∂α∂β (θ, s, xs(α))dWs =

1
T

∫ T

0
∂2Φ
∂x∂β (β, 0)

∂xs

∂α (α, s)dWs.

Since ∂xs

∂α (α, s) is uniformly bounded, EθT
2
1 = 1

T O(1) and T1 = OP (
1√
T
).

For T2, by Lemma 5.1, |EθT2| � 1
εT ε

2T = ε.
For T3, we have, using (5.36),

T3 = − ∂2Φ

∂β∂x
(β, 0)

1

T

∫ T

0

gs(θ)
∂H

∂α
(θ, s, xs(α))ds+ oP (1).

Now, setting h(s) = ∂H
∂α (θ, s, xs(α))− ∂H

∂α (θ, x∗(α)), we have

1

T

∫ T

0

gs(θ)
∂H

∂α
(θ, s, xs(α))ds=

∂H

∂α
(θ, x∗(α))

1

T

∫ T

0

gs(θ)ds+
1

T

∫ T

0

gs(θ)h(s)ds.

Since xs(α) → x∗(α), h(s) → 0, Proposition 3.2 yields that both terms above
converge to 0.
To conclude, we have obtained

ε

T

∂2Λε,T

∂β∂α
(θ) = oP (1).

The proof of Theorem 3.1 is now complete. �

Proof of Theorem 3.2. Let us set

h(θ, s) =
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs

∂α
(α, s) =

∂H

∂α
(θ, s, xs(α)). (5.38)

Here, for the convergence in distribution, it is enough to prove

ε
∂Λε,T

∂α
(θ) =

∫ T

0

h(θ, s)dWs + oP (1) (5.39)

1√
T

∂Λε,T

∂β
(θ) =

∂2Φ

∂β∂x
(β, 0))

1√
T

∫ T

0

gs(θ)dWs + oP (1). (5.40)

Indeed, the bracket of the two stochastic integrals is equal, up to a constant, to
1√
T

∫ T

0
gs(θ)h(θ, s)ds.

We are in Case (2): using (3.6), it corresponds to ∂H
∂α (θ, x∗(α)) = 0. There-

fore, by Proposition 3.1, h(θ, s) converges exponentially fast to ∂H
∂α (θ, x∗(α)) = 0
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and
∫ +∞
0

(
∂H
∂α (θ, s, xs(α))

)2
ds < +∞. Proposition 3.2 yields that

1√
T

∫ T

0
gs(θ)h(θ, s)ds tends to 0.

Let us prove (5.39). We now have (see (5.29)):

ε
∂Λε,T

∂α
(θ) =

∫ T

0

∂H

∂α
(θ, s, xs(α))dWs+

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)
dWs

− 1

ε

∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds = T1 + T2 + T3. (5.41)

Since Eθ(T
2
1 ) < ∞, T1 →

∫ +∞
0

∂H
∂α (θ, s, xs(α))dWs as T → ∞.

By Lemma 5.1, Eθ(T
2
2 ) � ε2T = o(1) under the condition ε

√
T → 0.

As
∫ +∞
0

∣∣∂H
∂α (θ, s, xs(α))

∣∣ ds < +∞, Lemma 5.1 (iii) yields that E|T3| � ε +
ε2T = o(1).
This achieves the proof of (5.39).

The study of 1√
T

∂Λε,T

∂β (θ) is similar to its study in Theorem 3.1. The proof of

(5.40) is complete.

Now we study the limit ofD
(2)
ε,TJε,T (θ)D

(2)
ε,T =−

⎛
⎝ ε2

∂2Λε,T

∂α2 (θ) ε√
T

∂2Λε,T

∂β∂α (θ)

ε√
T

∂2Λε,T

∂β∂α (θ) 1
T

∂2Λε,T

∂β2 (θ)

⎞
⎠.

We have

ε2
∂2Λε,T

∂α2
(θ) = ε

∫ T

0

∂2H

∂α2
(θ, s,Xs)dWs −

∫ T

0

∂2H

∂α2
(θ, s,Xs)D(θ, s, ε,Xs)ds

−
∫ T

0

(
∂H

∂α
(θ, s,Xs)

)2

ds = T1 + T2 + T3.

For the first term, we write

T1=ε

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs+ε

∫ T

0

(
∂2H

∂α2
(θ, s,Xs)−

∂2H

∂α2
(θ, s, xs(α))

)
dWs.

We have that ∂2H
∂α2 (θ, s, xs(α)) =

∂2V
∂α2 (α, xs(α)) +

∂Φ
∂x (β, 0))

∂2xs

∂α2 (α, s), which is
uniformly bounded on R+. Thus,

Eθ

(
ε

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs

)2

� ε2T = o(1).

The second term of T1 is ruled by Lemma 5.1 (i) and is εoP (1). Next, Eθ|T2| �
Tε2 by Lemma 5.1 (ii).

Eθ|
∫ T

0

∂2H

∂α2
(θ, s,Xs)D(θ, s, ε,Xs)ds| � ε2T.
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Finally, we can check, using Lemma 5.1 (i), that the main term of T3 is, using

(5.38),
∫ T

0
h2(θ, s)ds, where h(θ, s) converges exponentially fast to 0. Therefore,∫ T

0

(
∂H
∂α (θ, s,Xs)

)2
ds →

∫ +∞
0

h2(θ, s)ds < +∞, so that

ε2
∂2Λε,T

∂α2
(θ) → −

∫ +∞

0

(
∂H

∂α
(θ, s, xs(α))

)2

ds.

The study of 1
T

∂2Λε,T

∂β2 (θ) is the same as for Theorem 3.1. It remains to study

ε√
T

∂2Λε,T

∂α∂β
(θ) =

1√
T

∫ T

0

∂2H

∂α∂β
(θ, s,Xs)dWs

− 1

ε
√
T

∫ T

0

D(θ, s, ε,Xs)
∂2H

∂α∂β
(θ, s,Xs)ds

− 1

ε
√
T

(∫ T

0

∂H

∂β
(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
= T1 + T2 + T3.

The proof is essentially analogous to the study of
∂2Λε,T

∂α∂β (θ) in the previous
theorem. We point out the differences.

The main term of T1 is
1√
T

∫ T

0

∂2Φ

∂x∂β
(β, 0)

∂xs

∂α
(α, s)dWs.

We are in Case (2) so that ∂xs

∂α (α, s) converges exponentially fast to dx∗

dα (α) = 0.

Therefore,
∫ +∞
0

(
∂xs

∂α (α, s)
)2

< +∞. Consequently, T1 =
1√
T
OP (1).

For T2, the main term is
1

ε
√
T

∫ T

0

D(θ, s, ε,Xs)
∂2H

∂α∂β
(θ, s, xs(α))ds.

Using that
∂2H

∂α∂β
(θ, s, xs(α)) =

∂2Φ

∂x∂β
(β, 0)

∂xs

∂α
(α, s) is integrable, we get by

Lemma 5.1 (iii),

Eθ[T2| � 1

ε
√
T
(ε2 + ε3T ) = o(1).

It remains to study T3. Using (5.36) and (5.38),

T3 = − 1

ε
√
T

(∫ T

0

∂2Φ

∂x∂β
(β, 0)(Xs − xs(α))

∂H

∂α
(θ, s, xs(α))ds

)
ds+ oP (1)

= − ∂2Φ

∂x∂β
(β, 0)

1√
T

∫ T

0

gs(θ)h(θ, s) + oP (1).

As h(θ, s) → 0 as s → ∞, 1√
T

∫ T

0
gs(θ)h(θ, s)ds = oP (1) by Proposition 3.2.

Hence,
ε√
T

∂2Λε,T

∂β∂α
(θ) = oP (1). So the proof of Theorem 3.2 is complete. �
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Proof of Lemma 5.1.
Proof of (i) A Taylor expansion yields:

F (θ, s,Xs)−F (θ, s, xs(α)) = (Xs−xs(α))

∫ 1

0

∂F

∂x
(α, xs(α)+u(Xs−xs(α)))du.

Hence

(F (θ, s,Xs)− F (θ, s, xs(α)))
2

≤ 3C2ε2
(
(Xs − xs(α))

2

ε2
(1 + sup

s≥0
|xs(α)|2c) + ε2c

(Xs − xs(α))
2+2c

ε2+2c

)
.

By Theorem 2.2, since s → xs(α) is uniformly bounded on R+ by B(α), we get

Eθ

∫ T

0

(F (θ, s,Xs)− F (θ, s, xs(α)))
2
ds

≤ 3C2ε2T
(
δ(α, 1)(1 +B2c(α)) + ε2cδ(α, 1 + c)

)
= C1(α, F )ε2T.

This achieves the proof of (i).

Proof of (ii) For the second inequality, we split

Eθ

∫ T

0

F (θ, s,Xs)D(θ, s, ε,Xs)ds = A1 +A2 +A3 +A4, with

A1 = Eθ

∫ T

0

F (θ, s, xs(α))EθD(θ, s, ε,Xs)ds,

A2 = Eθ

∫ T

0

F (θ, s, xs(α)) (D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)) ds,

A3 = Eθ

∫ T

0

(F (θ, s,Xs)− F (θ, s, xs(α)))EθD(θ, s, ε,Xs)ds,

A4 = Eθ

∫ T

0

(F (θ, s,Xs)− F (θ, s, xs(α))) (D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)) ds.

Since |xs(α)| ≤ B(α), F (θ, s, x) ≤ C(1 + |x|c), we get that
|F (θ, s, xs(α))| ≤ C(1 +Bc(α)) = C(α). Thererore, using Corollary 2.1

|A1| ≤ sup
s≥0

|EθD(θ, s, ε,Xs)|
∫ T

0

|F (θ, s, xs(α))| ds

≤ ε2T ×
[
sup
s≥0

|F (θ, s, xs(α))| ds
]
≤ C(α)ε2T

|A2| ≤
∫ T

0

|F (θ, s, xs(α))|Eθ |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)| ds



5846 V. Genon-Catalot and C. Larédo

≤ ε3[

∫ T

0

|F (θ, s, xs(α))|
[
Eθε

−6 |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)|2
]1/2

ds

� ε3T.

For A3, we have using (i),

|A3| ≤ sup
s≥0

|EθD(θ, s, ε,Xs)| × Eθ

[
T

∫ T

0

|F (θ, s,Xs)− F (θ, s, xs(α)|2
]1/2

ds

� ε2
√
T × (ε2T )1/2 � ε3T.

For A4, we write:

|A4|≤
∫ T

0
Eθ [|F (θ, s,Xs)−F (θ, s, xs(α))|| (D(θ, s, ε,Xs)−EθD(θ, s, ε,Xs)) |] ds.

We apply the Cauchy-Schwarz inequality.

Using (i), Eθ |F (θ, s,Xs)− F (θ, s, xs(α))|2 �
[
Eθ(Xs − xs(α))

2
]1/2 ≤ ε.

Therefore, by Theorem 2.2 and Corollary 2.1, |A4| � ε4T .
Finally, joining these inequalities yields (ii).

Proof of (iii) Since
∫∞
0

|F (θ, s, xs(α))| ds < ∞, we bound differently A1 and A2.

|A1| ≤ sup
s≥0

|EθD(θ, s, ε,Xs)|
∫ T

0

|F (θ, s, xs(α))| ds � ε2.

Analogously, for A2,

|A2| ≤ [

∫ T

0

|F (θ, s, xs(α))|Eθ |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)| ds

≤ sup
s≥0

(
Eθ[|D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)|2]

)1/2
∫ +∞

0

|F (θ, s, xs(α))| ds

� ε3.

The terms A3, A4 are bounded as previously. Thus |A1+A2+A3+A4| � ε2+ε3T .

It remains to look at the functionsH(θ, s, x), ∂H
∂α (θ, s, x), ∂2H

∂α2 (θ, s, x). Using [S1]-
[S2], as B = supα,t |xt(α)| < +∞, we easily check (5.28) for H(θ, s, x). By [S2]

and Proposition 3.1, supα,t |∂xt

∂α (α, t)| < +∞, supα,t |∂
2xt

∂α2 (α, t)| < +∞. There-
fore, we can check that (5.28) holds for the two other functions. �

Proof of Lemma 3.1. We have to study under Pθ0 :

ε2Λε,T (α, β) =

∫ T

0

H(θ, s,Xs)[(V (α0, Xs)ds− b(θ0, s,Xs))ds+ εdWs]

− 1

2

∫ T

0

H2(θ, s,Xs)ds = −1

2

∫ T

0

(H(θ, s,Xs)− V (α0, Xs))
2ds

+
1

2

∫ T

0

V 2(α0, Xs)ds+
4∑

i=1

Ti
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where, using (3.3), (2.7)

T1 = ε

∫ T

0

H(θ, s,Xs)dWs; T2 =

∫ T

0

H(θ, s,Xs)D(θ0, s, ε,Xs)ds

T3 = −
∫ T

0

(H(θ, s,Xs)−H(θ, s, xs(α0)))Φ(β0, Xs − xs(α0))ds

T4 = −
∫ T

0

H(θ, s, xs(α0))Φ(β0, Xs − xs(α0))ds.

Let us consider the first term of ε2Λε,T (α, β). It satisfies, using Lemma 5.1 (i)

that, under the condition ε
√
T → 0,∫ T

0

(H(θ, s,Xs)−V (α0, Xs))
2ds=

∫ T

0

(H(θ, s, xs(α0))−V (α0, xs(α0)))
2ds+oP (1).

Now, define the limit of its integrand term as s → ∞,

h∗(α, α0, β) = V (α, x∗(α0))− Φ(β, x∗(α0)− x∗(α)). (5.42)

The two cases pointed out in Section 3.4 occur here.
Case (1): ∀β, h∗(α, α0, β) �= 0 and
1
T

∫ T

0
(H(θ, s, xs(α0))− V (α0, xs(α0)))

2ds → (h∗(α, α0, β))
2.

Case (2): ∀β, h∗(α, α0, β) = 0;
∫∞
0

(H(θ, s, xs(α0))− V (α0, xs(α0)))
2ds < ∞.

The second term satisfies
∫ T

0
V 2(α0, Xs)ds =

∫ T

0
V 2(α0, xs(α0)))ds + oP (1) in

both cases. This integral converges, as T → ∞ to
∫∞
0

V 2(α0, xs(α0)))ds < ∞.

Consider now the remainder terms Ti of ε
2Λε,T (α, β).

We have Eθ0T
2
1 = ε2Eθ0

∫ T

0
[V (α,Xs)−Φ(β,Xs − xs(α))]

2ds. Using Lemma 5.1
(i) and similar tools detailed in the proof yields that Eθ0T

2
1 � ε2T . Therefore,

under the condition ε
√
T = o(1), we find that T1 = oP (1), T2 = oP (1). For T3,

applying Lemma 5.1 (i) yields that

Eθ0

∫ T

0

[H(θ, s,Xs)−H(θ, s, xs(α0))Φ(β0, Xs − xs(α0)])
2ds � Tε2

and Eθ0 |T3| = ε
√
T = oP (1).

For T4, using Theorem 2.3, Φ(β0, Xs − xs(α0)) =
∂Φ
∂x (β, 0)(εgs(θ0) + ε2Rε

s(θ0)).

Therefore T4 = ε
∂Φ

∂x
(β, 0)

∫ T

0

H(θ, s, xs(α0))gs(θ0)ds+ oP (1).

The limit, as s → ∞ of H(θ, s, xs(α0)) is h
∗(α0, α, β) defined in (5.42). There-

fore, we have to study T4

T in Case (1) and T4 in Case (2). We have

T4 = ε
∂Φ

∂x
(β, 0)[h∗(α, α0, β)

∫ T

0

gs(θ0)ds
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+

∫ T

0

(H(θ, s, xs(α0))− h∗(α, α0, β))gs(θ0)ds].

Therefore, in Case (1), by Proposition 3.2 (ii) and (iii),
T4

T
= εoP (1).

In Case (2), for all β, h∗(α0, α, β) = 0 and Proposition 3.2 (iii) yields that

T4 = ε
√
ToP (1) = oP (1).

Consider now ε2Λε,T (α0, β). Noting that h∗(α0, α0, β) = 0, T4 = oP (1). Using

that
∫ T

0
[Φ(β,Xs − xs(α))]

2ds = OP (ε
2T ), we get

ε2Λε,T (α0, β) = −1

2

∫ T

0

[Φ(β,Xs − xs(α))]
2ds+

1

2

∫ T

0

V 2(α0, Xs)ds+ oP (1)

=
1

2

∫ T

0

V 2(α0, Xs)ds+ oP (1).

Joining these results yields that, using (5.42),

Case (1): ε2

T (Λε,T (α, β)− Λε,T (α0, β)) → −1
2 (h

∗(α, α0, β))
2 = Λ

(1)
1 (α, α0, β).

Case (2): ε2(Λε,T (α, β)− Λε,T (α0, β)) → Λ
(2)
1 (α, α0, β), with

Λ
(2)
1 (α, α0, β)=−1

2

∫ +∞
0

[V (α, xs(α0))−V (α0, xs(α0))−Φ(β, xs(α0)−xs(α))]
2ds.

The uniformity of the convergence is obtained using that Θα,Θβ are compact
sets, Assumptions [S1], [S2] and Comments 2.1, 2.2.

Finally, it remains to study 1
T (Λε,T (α0, β)− Λε,T (α0, β0)).

ε2Λε,T (α0, β) =

∫ T

0

H(α0, β, s,Xs)[(H(θ0, s,Xs)−D(θ0, s, ε,Xs))ds+ εdWs]

− 1

2

∫ T

0

H2(α0, β, s,Xs)ds = −1

2

∫ T

0

(H(α0, β, s,Xs)−H(θ0, s,Xs))
2ds

+ ε

∫ T

0

H(α0, β, s,Xs)dWs −
∫ T

0

H(α0, β, s,Xs)D(θ0, s, ε,Xs)ds.

Now,H(α0, β, s,Xs)−H(θ0, s,Xs) = −(Φ(β,Xs−xs(α0))−Φ(β0, Xs−xs(α0))),

Φ(β,Xs−xs(α0))=
∂Φ

∂x
(β, 0)(Xs−xs(α0))+OP (ε) = ε

∂Φ

∂x
(β, 0)gs(θ0)+ε2OP (1).

Therefore,

1

T
(Λε,T (α0, β)− Λε,T (α0, β0)) = − 1

2T

∫ T

0

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0))

2g2s(θ0)ds

+ T1 + T2 + εOP (1),
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where T1 = 1
εT

∫ T

0
(H(α0, β, s,Xs)−H(θ0, s,Xs))dWs,

T2 = − 1
ε2T

∫ T

0
(H(α0, β, s,Xs)−H(θ0, s,Xs))D(θ0, s, ε,Xs)ds.

For T1, we have, using Theorem 2.2,

Eθ0T
2
1 =

1

ε2T 2
Eθ0

∫ T

0

(H(α0, β, s,Xs)−H(θ0, s,Xs))
2ds

� 1

ε2T 2
T supEθ0((Xs − xs(α0))

2) � 1

T
.

Therefore T1 = oP (1).
For T2, set F (Xs) = H(α0, β, s,Xs)−H(θ0, s,Xs).
Then, splitting D(θ0, s, ε,Xs) as in the proof of Lemma 5.1,

∫ T

0

F (Xs)D(θ0, s, ε,Xs)ds =

∫ T

0

F (Xs)Eθ0D(θ0, s, ε,Xs)

+

∫ T

0

F (Xs)(D(θ0, s, ε,Xs)− Eθ0D(θ0, s, ε,Xs))ds.

Using that Eθ0 |
∫ T

0
|F (Xs)|ds ≤

√
T (Eθ0

∫ T

0
F 2(Xs)ds)

1/2 ≤ εT , we get

Eθ0 |
∫ T

0

F (Xs)Eθ0D(θ0, s, ε,Xs)ds| ≤ sup
s

|Eθ0D(θ0, s, ε,Xs)|,

Eθ0

∫ T

0

|F (Xs)|ds � ε3T.

Now, we have that
Eθ0 |F (Xs)(D(θ0, s, ε,Xs)−Eθ0D(θ0, s, ε,Xs))| ≤ ε3[Eθ0(Xs−xs(α0))

2]1/2O(1).

Hence, Eθ0 |
∫ T

0
F (Xs)(D(θ0, s, ε,Xs)− Eθ0D(θ0, s, ε,Xs))ds| ≤ ε4T .

These two inequalities yield that T2 = oP (1) and finally, as T → ∞,
1
T (Λε,T (α0, β)−Λε,T (α0, β0)) = − 1

2T

∫ T

0
[∂Φ∂x (β, 0)−

∂Φ
∂x (β0, 0)]

2g2s(θ0)ds+ oP (1)

→ − 1
2�(α0,β0)

[∂Φ∂x (β, 0) −
∂Φ
∂x (β0, 0)]

2 = Λ2(α0, β, β0). Moreover, we can prove

that this convergence is uniform with respect to β ∈ Θβ . �

Proof of Theorem 3.3. We just give here a sketch of the proof. To get (i),
we prove the three steps 1-3 of [23], Section 4.4.1, that we have recalled at the
beginning of Section 3.5.

Proof of 1. Case (1): since (ε2/T )(Λε,T (α, β)−Λε,T (α0, β)) →Pθ0
Λ
(1)
1 (α, α0, β),

uniformly with respect to (α, β) where (α, β) → Λ
1)
1 (α, α0, β) is continuous, < 0,

and = 0 iff α = α0 implies the consistency of α̂ε,T .

Analogously, in Case (2), since ε2(Λε,T (α, β)−Λε,T (α0, β)) →Pθ0
Λ
(2)
1 (α, α0, β),

uniformly with respect to (α, β) implies the consistency of α̂ε,T .
Proof of 2. By (1), α̂ε,T is consistent thus Pθ0(α̂ε,T ∈ Θα) → 1 as ε tends to 0.
On the set (α̂ε,T ∈ Θα), we have:

0 =
∂Λε,T

∂α
(α̂ε,T , β̂ε,T ) = Vε,T + (α̂ε,T − α0)Nε,T , where
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Vε,T =
∂Λε,T

∂α
(α0, β̂ε,T ), Nε,T =

∫ 1

0

∂2Λε,T

∂α2
(α0 + t(α̂ε,T − α0), β̂ε,T )dt.

Thus, we have
√
Tε−1(α̂ε,T − α0) = − (ε/

√
T )Vε,T

(ε2T )Nε,T
for Case (1)and

ε−1(α̂ε,T − α0) = − εVε,T

ε2Nε,T
for Case (2).

We must prove that (ε/
√
T )Vε,T and (ε2/T )Nε,T for Case (1), εVε,T and ε2Nε,T

for Case (2), are tight under Pθ0 . This can be done using the same tools as in
Theorems 3.1 and 3.2, and using the assumption that ∂Φ

∂x (β, 0) is uniformly

bounded on Θβ and that β̂ε,T ∈ Θβ .

Proof of 3. To obtain the consistency of β̂ε,T , it is enough to prove that:

1

T
(Λε,T (α̂ε,T , β)− Λε,T (α̂ε,T , β0)) → Λ2(α0, β, β0) (5.43)

uniformly in β.
Consider first Case (1). Using (5.26), we have, setting αu = α0 + u(α̂ε,T − α0),

Λε,T (α̂ε,T , β)− Λε,T (α̂ε,T , β0) = (Λε,T (α0, β)− Λε,T (α0, β0))

+

√
T

ε
(α̂ε,T − α0)

ε√
T
R(ε, θ, T ),

with

R(ε, θ, T ) =

∫ 1

0

(
∂Λε,T

∂α
(αu, β)−

∂Λε,T

∂α
(αu, β0))du

=

√
T

ε

(∫ 1

0

(�(αu, β)− �(αu, β0))

�(αu)

∂V

∂α
(αu, x

∗(αu))du
WT√
T

+ oP (1)

)
.

Now, since α̂ε,T is consistent, the integral term converges to a constant C(θ0, β)
which is bounded. Therefore 1

T 3/2 εR(ε, θ, T ) = WT

T 3/2C(θ0, β) +
1
T oP (1) = oP (1).

Using now the tightness of ε−1
√
T (α̂ε,T − α0) yields (5.43). The uniformity in

β follows from the continuity of θ → �(θ).
For Case (2), we use (5.38)-(5.39) and

R(ε, θ, T ) =
1

ε
(

∫ T

0

∫ 1

0

(h(αu, β, s)− h(αu, β0, s)du)dWs + oP (1))

Therefore 1
T εR(ε, θ, T ) = 1

T

∫ T

0
dWs(

∫ 1

0
(h(αu, β, s) − h(αu, β0, s)du) +

1
T oP (1)

Since α̂ε,T is consistent, the integral term converges to a function F (θ0, β, s)
which is bounded uniformly in s.

Hence Eθ0(
1
T εR(ε, θ, T ))2 = 1

T 2

∫ T

0
dsEθ0(

∫ 1

0
(h(αu, β, s) − h(αu, β0, s)du)

2) �
1
T O(1). Hence, we get that (5.43) also holds in Case (2).
Under the identifiability asssumption for β, we get that in both cases the con-
sistency of β̂ε,T .

The proof of the asymptotic normality follows, by standard tools from (i)
and Theorems 3.1 and 3.2. �
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