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Abstract: We consider nonparametric estimation of an accelerated fail-
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right, and regressors are not mean independent of the error component.
This dependence can arise, for instance, because of measurement error. We
achieve identification and conduct estimation using a vector of instrumen-
tal variables. Censoring is independent of the response variable given the
instruments. We consider settings in which regressors are continuously dis-
tributed. However, the instruments may or may not be continuous, and
we show how various independence restrictions allow us to identify and
estimate the unknown function of interest depending on the nature of in-
struments. We provide rates of convergence of our estimator and showcase
its finite sample properties in simulations.
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1. Introduction

We consider identification and estimation of the following nonparametric accel-
erated failure-time (AFT) model in log form

T = ϕ(Z) + U, (1.1)

when the conventional assumption that E(U | Z) = 0 no longer holds due to
potential dependence between U and Z. This dependence can arise for several
reasons: measurement error, omitted variables, or simultaneity.

For instance, when analyzing the effect of systolic blood pressure as a possible
risk factor for developing cardiovascular diseases, measurement error is often an
issue due to time constraints and other unobservable factors in routine care. This
measurement error can bias, in an unknown direction, statistical evaluations of
this effect [10].

Similarly, recent studies have tried to uncover the relation between unemploy-
ment status and body mass index (BMI) to explain the elevated morbidity and
mortality among job seekers [see 43, among others]. In particular, one may be
interested in understanding how BMI affects spells of unemployment duration.
However, it is plausible that there are individual characteristics, unobserved to
the statistician, that may determine both the length of unemployment spells and
the subject’s physical well-being. This simultaneity issue may render estimators
based on the standard assumption that E [U | Z] = 0 inconsistent.

Moreover, T is often not fully observed, and we assume it is subject to random
right censoring, C. In particular, we consider a setting in which one observes
Y = T ∧ C and δ = 1I (T ≤ C).

Our analysis focuses on the regression function ϕ when the regressor Z is re-
stricted to have a continuous distribution with respect to the Lebesgue measure.
To achieve identification and carry on estimation, we rely on a vector of instru-
mental variables, W , which are taken to satisfy some independence restrictions
with respect to the error term. In the examples provided above, plausible instru-
mental variables are given by the same measurement run on parents or relatives.
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For instance, parents’ BMI is often used as an instrument for an individual’s
own BMI [see, e.g., 51, among others]. Similarly, genetic markers can be used
as a source of exogenous variation to help the identification of causal effects in
these settings [69].

In this paper, we consider that the censoring variable C is independent of
T given the exogenous instruments, W . We thus exclude unobservable factors
that affect both T and C simultaneously. Upon additional exclusion restrictions
that we discuss below, we can recover the unknown function ϕ.

We consider two settings, depending on the properties of W . In the first
setting, we takeW to be mean independent of the error term, i.e., E [U | W ] = 0.
We recover the regression function ϕ by solving the following integral equation

E(V | W ) = E(ϕ(Z) | W ), (1.2)

where V is an appropriate transformation of the censored response Y [see, e.g.,
48, 66, among others]. Identification in this setting requires, among other things,
W to be continuously distributed. One can then recover an estimator of ϕ by
replacing population objects in equation (1.2) with sample counterparts.

In a second setting, we consider the stronger assumption that U ⊥⊥ W , i.e.,
W is independent of U , and E(U) = 0. Independence is equivalent to

SU |W (u | w) = SU (u) ∀u,w, (1.3)

where SU |W (u | w) and SU (u) are the conditional and unconditional survivor
functions of U , respectively [14, 27, 26]. Both survivor functions can be consis-
tently estimated using the conditional and unconditional Kaplan-Meier estima-
tors to take censoring into account [22, 46, 68]. Upon additional conditions that
guarantee the consistency of the product-limit estimator, censoring can be very
easily handled in this setting, and it does not require any major modification of
the estimation procedure.

In parametric models, the assumption of independence is often justified by
efficiency considerations. One can decrease the variance of a parametric esti-
mator by taking one step towards the Maximum Likelihood Estimator [63, 65].
In this nonparametric setting, the stronger assumption of independence simply
allows us to relax the relevance condition and accommodate settings in which
W may only be binary or discrete.

In both cases, an additional technical difficulty for implementation and for
the derivation of the asymptotic properties is that the resulting estimators are
the solution, respectively, of a linear and a nonlinear ill-posed inverse problem.
Hence, besides the smoothing step, which is common in nonparametric regres-
sions, we have a further regularization step [see 28, 45].

Popular regularization approaches in the literature include Tikhonov regu-
larization [24, 38, 67]; Landweber-Fridman regularization [34, 36, 50]; and a
more recent method based on finite-dimensional approximations of the function
space, which has become popular in econometrics [so-called sieve regularization,
see, e.g., 19, 41, 62].
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In this paper, we consider regularization through the Landweber-Fridman
(LF) approach. In finite samples, the relative advantage of LF regularization is
that it iteratively approximates the inverse of a conditional expectation opera-
tor. Thus, it avoids exact inversion of large matrices necessary, for instance, in
Tikhonov regularization. Compared to sieve regularization, it does not require
that the unknown function is well approximated by just a few terms of its series
expansion [see, e.g., 19].

We provide a detailed explanation of the implementation of the Nonpara-
metric IV estimator with LF regularization, and we derive an upper bound on
the L2 loss. We show that, under our identification assumptions, the random
right-censoring does not affect the properties of the estimator. That is, the rate
of convergence is the same as when the dependent variable is fully observed.
When the instrument is mean independent, this result holds upon an appropri-
ate choice of the bandwidth parameter.

The estimator based upon mean-independence is a linear estimator and thus
relatively straightforward to implement. The L2 rates are minimax under weak
conditions on the smoothing and regularization parameters [20]. By contrast, the
nonlinearity of the estimation procedure based on independence introduces some
significant theoretical and practical difficulties. The LF procedure relies upon
a first-order linear approximation of the nonlinear problem. Hence, regularity
conditions only hold in the vicinity of the true solution. Moreover, the loss
function can be decomposed into two parts: one which is due to estimation and
can be handled similarly as in the case with mean-independence; and another
one due to the nonlinearity of the inverse problem. The latter determines the
convergence of our estimator and, in certain instances, can be controlled to reach
the same rates as in the linear case. Whether these rates are minimax remains
an open question, to the best of our knowledge.

Related work has considered the estimation of duration models with endo-
geneity and (possibly random) right-censoring. Frandsen [35] discusses nonpara-
metric identification and estimation of a model with a binary endogenous treat-
ment variable and a binary instrument, independent of the error term [see also
70]. More recently, Beyhum et al. [6] analyze a nonparametric duration model
with endogenous treatment. They provide identification and estimation based
on an instrumental variable assumption when the outcome is randomly censored
on the right. Their estimator is also a solution to a nonlinear inverse problem,
although they avoid ill-posedness by restricting the endogenous treatment to be
discrete. They also discuss partial identification of the treatment effect when
censoring is fixed. Sant’Anna [64] provides a nonparametric test of treatment
effect heterogeneity for a binary treatment variable in cases where the treatment
is assigned independently of the potential outcome conditional on observables.
He also assumes that outcome and censoring are independent conditional on the
treatment. He also allows for the treatment to be endogenous. Our work con-
tributes to this literature by allowing the treatment variable to be continuous
and potentially endogenous. However, all these papers assume that the effect of
the treatment is heterogeneous, which is ruled by the additive separability of
our model. This would be an interesting contribution, that we defer to further
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research.

2. Identification

2.1. Framework

We consider a random element (T, Z,W ) with T ∈ R, Z ∈ R
p, and W is a q-

dimensional random vector, with q ≥ p. We let F denote the joint distribution
of the random vector (T, Z,W ); and L2

Z or L2
W , the spaces of functions of Z or

W , respectively, that are square-integrable with respect to F . Depending on the
setting, we will impose additional restrictions on the distribution of (Z,W ).

We analyze the model

Y = T ∧ C = (ϕ(Z) + U) ∧ C, ϕ ∈ L2
Z , (2.1)

with δ = 1I (T ≤ C), and C ∈ R. We maintain the following assumption.

Assumption 2.1. T ⊥⊥ C | W .

This assumption allows any relations between the unobserved response and
the censoring variable to happen through observable components. For instance,
the restriction in Assumption 2.1 holds when the censoring variable can be
written as C = ψ(W, ν), with ν ⊥⊥ (T, Z,W ). When Z is exogenous, that is
W = Z, Assumption 2.1 reduces to the standard exclusion restriction commonly
imposed in AFT regressions with random censoring [see 48].

In the following, we let S·|W (· | w) be the survivor function conditional on W .
Our identification strategy is based on the following assumption about SC|W (C |
w).

Assumption 2.2. Let T be the support of T , such that supt∈T |t| = T0 < ∞.
For every w, we have that SC|W (T0 | w) > ε, for a constant ε > 0.

Assumption 2.2 implies that the supremum of T is not censored with pos-
itive probability. This condition is relatively standard in this literature, and
point identification of the parameters of interest is not possible without a sim-
ilar restriction, to the best of our knowledge. For instance, when T represents
unemployment spells and a randomly assigned interview determines censoring,
Assumption 2.2 implies that the longest duration of a spell is finite and that
interviews can be conducted late enough to guarantee that at least some of the
individuals with the longest spell are interviewed after they found employment.
If Assumption 2.2 does not hold, one can only hope to identify ϕ for those t
which are in the interior of the support of C [6]. Assumption 2.2 is violated, in
particular, when censoring is fixed (see Remark 1 below).

2.2. Case 1: U is mean independent of W

We first treat the case in which E(U | W ) = 0 and the joint distribution of
(T, Z,W ) is absolutely continuous with respect to the Lebesgue measure.
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Define the following random variable

V =
δY

SC|W (Y | W )
, (2.2)

where SC|W is the survivor function of C conditional on W . We have Y = T ,
whenever δ = 1.

To achieve identification of the function ϕ, we consider the following assump-
tion.

Assumption 2.3. E(ϕ(Z) | W ) = 0 implies ϕ = 0, almost surely.

This completeness condition is an unsettled assumption for identification in
nonparametric instrumental regressions. The terminology used is in analogy
with the notion of complete statistic [see, e.g., 52], and it is sometimes referred
to as a strong identification condition [see, e.g., 31]. When the pair (Z,W )
is continuously distributed, Andrews [3] has derived a class of distributions for
which completeness holds generically, in a sense defined within that paper. Some
additional results about completeness that rely on stronger restrictions on the
DGP are provided in D’Haultfoeuille [25]. When completeness fails, Babii and
Florens [4] and Florens et al. [32] show that the estimator may still converge to
the minimal norm solution.

Under the conditions above, we have the following proposition.

Proposition 2.1. Under Assumptions 2.1-2.3, the regression function, ϕ, is
identified.

Proof. From the definition of V , and when Assumptions 2.1 and 2.2 hold, we
directly have that

E(V | W ) = E

(
δY

SC|W (Y | W )
| W
)

= E(T | W ) = E(ϕ(Z) | W ).

Let ϕ1 and ϕ2, two possible solutions to the integral equation E(T − ϕ(Z) |
W ) = 0. Then we must have that E(ϕ1(Z) − ϕ2(Z) | W ) = 0. By Assumption
2.3, this is only true if and only if ϕ1 = ϕ2, almost surely. This concludes the
proof.

Remark 1 (Identification with fixed censoring). When censoring is fixed, one
could achieve point identification of the function ϕ (up to location) as follows.
Let ε = T − E [T |W ], with ε ⊥⊥ W . Then we can identify E [T |W ] using the
approach in Lewbel and Linton [53]. Finally, ϕ can be identified by solving the
linear integral equation E [T |W ] = E [ϕ(Z)|W ], if Assumption 2.3 holds. The
additional assumption that ε ⊥⊥ W is strong and might be justified only in
specific settings [15].

2.3. Case 2: U is independent of W

We now turn to the case when U ⊥⊥ W with E(U) = 0.
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The joint distribution of (T, Z) is still restricted to be absolutely continuous
with respect to the Lebesgue measure. However, we do not impose any condition
on the distribution of W . Therefore, we can identify the function ϕ with purely
discrete instruments. Our presentation is largely based on Centorrino et al. [14],
Dunker [26], and Dunker et al. [27], who consider identification and estimation
in a similar model without random censoring.

We rewrite the independence condition as follows:

F (t, z | w) = ∂

∂z1
· · · ∂

∂zp
P (T ≥ t, Z ≥ z | W = w), (2.3)

and

F (t, z) =
∂

∂z1
· · · ∂

∂zp
P (T ≥ t, Z ≥ z), (2.4)

where, roughly speaking F is a survivor function in terms of t, and the negative
of the density as a function of z.

The independence restriction, therefore, implies that∫
F (ϕ(z) + u, z | w)dz =

∫
F (ϕ(z) + u, z)dz. (2.5)

We notice that, conceptually, nothing changes compared to the case when
T is fully observed, at least for identification purposes. The error term U still
has a well-defined (conditional and unconditional) survivor function. The main
difference with the existing approach will be tackled in estimation, where the
standard nonparametric estimators are replaced with Kaplan-Meier estimators.

Equation (2.5) may be written as

A(ϕ†) =

∫
[F (ϕ†(z) + u, z | w)− F (ϕ†(z) + u, z)] dz = 0, (2.6)

which defines a nonlinear integral equation of the first kind, where ϕ† is its true
solution.

Identification of ϕ† is more complex in this context. In particular, given the
nonlinear nature of the integral equation, we have to consider both conditions
for global and local identification. We focus here on the latter that are easier
to derive and are more easily interpretable. Interested readers can refer to Cen-
torrino et al. [14], Chernozhukov and Hansen [21], and Fève et al. [30], for a
discussion of global identification conditions in this context.

Our discussion of local identification is based on the linearization of the oper-
ator A(·). We provide mild sufficient conditions such that its Fréchet derivative
exists and it is well-behaved. This discussion of local identification will lead us
to impose, among others, a condition that is similar to the one in Assumption
2.3.

We start by assuming the following.

Assumption 2.4. F (t, z | w) and F (t, z) are differentiable with respect to t.
Their first partial derivatives with respect to t are the conditional density and the
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density, denoted fT,Z|W (t, z | w) and fT,Z(t, z). These densities are continuous
and have continuous and uniformly bounded first partial derivatives with respect
to their first argument.

Under the conditions in Assumption 2.4, the nonlinear operator A is Fréchet
differentiable, and its Fréchet derivative A′

ϕ(ϕ̃) satisfies

A′
ϕ(ϕ̃) = −

∫ (
fT,Z|W (ϕ(z) + u, z | w)− fT,Z(ϕ(z) + u, z)

)
ϕ̃(z)dz, (2.7)

where A′
ϕ(ϕ̃) denotes the derivative of A at ϕ as a linear function of ϕ̃.

The nonlinear operator A is defined on the centered functions in L2
Z and

valued in L2
U×W . The mean of ϕ can be identified by noticing that E(T ) =

E(ϕ(Z)), as long as E(U) = 0. Therefore, we restrict our attention to the space
of L2 centered functions of Z, without loss of generality.

The Fréchet derivative A′
ϕ operates between L2

Z and L2
U×W , and, under the

conditions in Assumption 2.4 is a continuous linear operator for any ϕ. Under
additional minor regularity conditions, it is also a Hilbert Schmidt operator,
and thus compact and bounded [see 11].

We let D(A) be the domain of A, and for some finite constant R > 0, let

BR(ϕ†) ≡ {ϕ ∈ L2
Z : ‖ϕ− ϕ†‖ < R}. (2.8)

We have the following definition.

Definition 2.1 (17). The model T = ϕ(Z) + U is locally identified on BR(ϕ†)
when U ⊥⊥ W and E(U) = 0, if

(i) The operator A is Fréchet differentiable.
(ii) A′

ϕ is a one-to-one linear operator.
(iii) There exist a finite constant M ′ > 0, which depends on R, such that, for

all ϕ ∈ BR(ϕ†),

‖A(ϕ)−A(ϕ†)−A′
ϕ†(ϕ− ϕ†)‖ ≤ M ′‖ϕ− ϕ†‖2.

Fréchet differentiability of the operator helps control the behavior of our non-
linear problem in the vicinity of the true solution. We further take the Fréchet
derivative to be injective, which is tantamount to a rank condition on A′

ϕ† [see

17, Assumption 1, p. 788]. Finally, we need to restrict the amount of nonlinear-
ity that is allowed for the ill-posed inverse problem at hand [see 17, Assumption
2, p. 789]. The last condition can be proven, using uniform boundedness of the
first derivative of the conditional and marginal pdfs with respect to their first
argument. We omit the proof for brevity. The last statement also follows from
a Lipschitz continuity condition on A′

ϕ† [26].
Let

E = {ϕ ∈ L2
Z : E(ϕ) = 0}.

We consider the following Assumptions.
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Assumption 2.5 (Conditional completeness). Let ϕ ∈ E. Then

E(ϕ(Z) | U = u,W = w)
a.s.
= E(ϕ(Z) | U = u) ⇒ ϕ

a.s.
= 0.

Assumption 2.6 (Scalability). For every ϕ ∈ BR(ϕ†), we can write,

A′
ϕ = Gϕ†,ϕA

′
ϕ† ,

where {Gϕ†,ϕ, ϕ ∈ BR(ϕ†)} is a family of bounded operators, such that

‖Gϕ†,ϕ − I‖ ≤ M‖ϕ− ϕ†‖,

with 0 < M < ∞.

Assumption 2.5 states that the projection of ϕ under L2
U×W differs from the

projection of ϕ under L2
U except if ϕ is constant. Moreover, this constant is

equal to 0, under the additional assumption E(U) = 0.
This condition, under independence, is immediately implied by the complete-

ness condition in Assumption 2.3. This is because, under the independence con-
dition E(E(ϕ(Z) | U) | W ) = E(ϕ(Z)) = 0, for all ϕ ∈ E . Therefore

E(ϕ(Z) | W ) = E(ϕ(Z)− E(ϕ(Z)) | W )

=E(E(ϕ(Z) | W,U)− E(ϕ(Z) | U) | W ) = 0,

which finally implies E(ϕ(Z) | W,U) = E(ϕ(Z) | U), where equalities are
intended almost surely. However, the inverse is not true in general: conditional
completeness does not imply completeness.

Assumption 2.5 implies condition (ii) in Definition 2.1. To further clarify its
role, we consider the following example from Dunker et al. [27].

Example 1. Let us assume that

(
U
Z

)
| W ∼N

((
0
0

)
,

(
1 ρ(W )
ρ(W ) 1

))
and W ∈ {0, 1}. If ρ(0) �= ρ(1), Assumption 2.5 is verified and the model
Y = ϕ(Z) + U (U ⊥⊥ W and E(ϕ(Z)) = 0) is locally identified [see 27, for
a formal proof ].

Assumption 2.6 of scalability is proven in Centorrino et al. [14], under more
primitive conditions on the conditional expectation operator. This assumption
implies condition (iii) in Definition 2.1 (see also 27, 39).

We thus revisit the conditions in Definition 2.1 to obtain the following.

Proposition 2.2. If the operator A is Fréchet differentiable and Assumptions
2.1, 2.2, 2.5 and 2.6 hold, then the separable NPIV model is locally identified
on BR(ϕ†) if U ⊥⊥ W .

3. Estimation

3.1. Framework

We observe an IID sample {(Yi, δi, Zi,Wi), i = 1, . . . , n} from the joint distribu-
tion of the random vector (Y, δ, Z,W ). We take the supports of Z and W , when
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continuous, to be compact. In particular, we restrict the support of (Z,W ) to
be the unit hypercube of dimension p+ q, without loss of generality. One could
allow for the support of the data to be unbounded. However, this substantially
complicates the proof [see 9, for convergence results in sieve Nonparametric IV
when the data have unbounded support].

In the following, we also let K(v) be a standard univariate kernel function,
such as Gaussian or Epanechnikov. We also let Kh(·) = K(h−1·), and Kh(v) =∏

j Kh(vj), the standard product kernel, for a scalar bandwidth h. Below we
focus mainly on the practical implementation of our estimation procedure. As
in any other nonparametric framework, we face the issue of selecting smoothing
parameters. However, in nonparametric regressions with instrumental variables,
we come across two kinds of ‘smoothing parameters’. Namely, the bandwidth
used for kernel estimates; and N , the number of iterations, used to regularize
the ill-posed inverse problem. Separately, these two problems are standard, and
several adaptive rules have been proposed. In the nonparametric instrumental
regression setting, bandwidths and the regularization parameter compensate
for one another. There likely exists a set of jointly ‘optimal’ choices for these
two elements. However, this is a topic we do not tackle in this paper [see 12,
for additional results on the selection of the tuning parameters in linear ill-
posed inverse problems]. Below we thus consider data-driven procedures for the
choice of tuning parameters that, although not optimal in the sense of oracle
minimization of a given risk function, behave reasonably well in practice.

3.2. Case 1: U is mean independent of W

The estimation procedure is based on equation (2.2), where the conditional
survivor function SC|W is replaced by a generalization of a Kaplan-Meier type
estimator [48, 66]; and on equation (1.2). To estimate the former, we follow the
approach of Beran [5] [see also 22, 37, 68]. The latter can be cast as a linear
integral equation of the first kind [49].

Beran’s (1981) estimator of the conditional survivor function can be written
as follows

ŜC|W (y | w) =
n∏

i=1

{
1− KhS

(Wi − w)∑n
l=1 1I (Yl ≤ Yi)KhS

(Wl − w)

}1I (Yi≤y,δi=0)

, (3.1)

where hS is a bandwidth parameter. This estimator reduces to the standard
Kaplan and Meier [46] estimator when the weights are all equal to n−1. We
provide conditions for the strong uniform consistency of this estimator in Section
4.

Further, let A be the following conditional expectation operator

(Aϕ)(w) = E(ϕ(Z) | W = w),

such that A : L2
Z → L2

W , and r(w) = E(V | W = w). Similarly, let

(A∗ψ)(z) = E(ψ(W ) | Z = z),
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such that A∗ : L2
W → L2

Z is the adjoint of the operator A [see 24, among others].
This notation allows us to express equation (1.2) as follows

Aϕ = r. (3.2)

Assumption 2.3 implies that the operator A is injective and therefore invert-
ible. Under this condition, a unique solution to this problem exists, as shown
in Proposition 2.1. However, the solution obtained by inverting the conditional
expectation operator directly is not stable, and therefore we are faced with a
linear ill-posed inverse problem. Heuristically, one could interpret the problem
stated in equation (3.2) as a system of equations, in which the (infinite dimen-
sional) matrix A is singular [13]. As discussed in the introduction, we explore
the properties of our estimators using a Landweber-Fridman regularization ap-
proach.

The intuition underlying this regularization method is as follows. Equation
(3.2) can be equivalently written as

A∗Aϕ = A∗r.

With simple algebra, one can show that the last identity also implies cA∗r =
[I − (I − cA∗A)]ϕ, where c ∈ (0, 1) is an arbitrary constant, which satisfies
‖cA∗A‖ < 1, with ‖ · ‖ being the operator norm. The solution ϕ thus needs to
satisfy the following recursive identity

ϕ = cA∗r + (I − cA∗A)ϕ.

An exact solution for ϕ would be given by the infinite sum

ϕ = c

∞∑
k=0

(I − cA∗A)kA∗r. (3.3)

A regularized solution is obtained by stopping this infinite sum after N terms:

ϕN = c

N−1∑
k=0

(I − cA∗A)kA∗r. (3.4)

Similarly, equation (3.4) can be expressed recursively as

ϕk = ϕk−1 + cA∗(r −Aϕk−1), for k = 1, . . . , N, (3.5)

with ϕ0 = 0.
The regularized estimator of ϕ is obtained by replacing r, A, and A∗ in

equation (3.5) by consistent nonparametric estimators and using a stopping rule
to determine the total number of iterations, N . Equation (3.4) is a solution of
a linear optimization problem. We start iterating from N = 1, with ϕ1 = cA∗r.
For k = 1, 2, 3, . . . , the iterative scheme converges towards the true solution as
long as

‖ϕk − ϕk−1‖ ≤c‖A∗(r −Aϕk−1)‖ = c‖A∗A (ϕ− ϕk−1) ‖
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≤c‖A∗A‖‖ϕ− ϕk−1‖ < ‖ϕ− ϕk−1‖.

Hence, we need to select c in such a way that c‖A∗A‖ < 1. This condition implies
that our iterative scheme is a contraction. Notice that ‖A∗A‖ = ‖A‖2 = 1, as
A is a conditional expectation operator, and its norm is equal to 1. Therefore,
any c < 1 would guarantee convergence of our iteration scheme. Besides this
restriction, the specific choice of c does not matter for our purposes, and the
solution is insensitive to it. As in Engl et al. [28, p. 155], we can rewrite equation
(3.2) in a way that Acϕ =

√
cr, with Ac =

√
cA, and

ϕk = ϕk−1 +A∗
c

(√
cr −Acϕk−1

)
,

with A∗
c =

√
cA∗. This converges if A∗

cAc is a contraction. That is, as long
as ‖A∗

cAc‖ < 1, which is the same condition as above. Values of c closer to
the upper bound result in larger steps and fewer iterations for convergence. By
contrast, if c is close to 0, the number of iterations can be extraordinarily large
and, albeit precise, reaching the solution would require greater computational
time. In our numerical experiment and empirical application, we use c = 0.5.

Below we outline the practical implementation of our estimator.

1. We compute the kernel weighted estimator of SC|W (y | w), ŜC|Z(y | w), as
in equation (3.1), using local constant weights and bandwidth parameter
hS . We then construct the dependent variable

V̂i =
δiYi

ŜC|W (Yi | Wi)
.

2. For the estimation of r(w) = E(V | W = w) and all the other population
objects hereafter, we advocate using local polynomial regressions. While
our asymptotic properties are developed using generalized kernels [see 61]
to control the behavior of the estimator at the boundaries of the support,
these are seldom used in practice. Local polynomial regressions are sim-
pler to implement and do not have any boundary effects [29]. To simplify
our exposition and without loss of generality, we consider local linear fit-
ting. Let V̂ to be the n × 1 vector of the generated dependent variable;
K̄W,hW

(w), the n× n diagonal matrix of kernel weights at the point w,

K̄W,hW
(w) = diag (KhW

(W1 − w) , . . . , . . . ,KhW
(Wn − w)) ,

where hW is a bandwidth parameter; and W(w) an n×2 matrix with i-th
row equal to (1,Wi − w). We write

r̂(w) = e′1
(
W(w)′K̄W,hW

(w)W(w)
)−1
(
W(w)′K̄W,hW

(w)V̂
)
= M(w)V̂,

with e′1 = (1, 0) and M(w) a 1× n vector.
3. Next, we estimate the two conditional expectation operators, A and A∗.

Both operators are linear and can therefore be approximated by linear
smoothers. To construct an estimator of A using local linear regressions,
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Fig 1. Stopping function ||r̂− Â−1ϕ̂k,−1||2, where k is the iteration index, for one draw from
the simulated DGP in Section 5, n = 500, optimal stopping iteration N = 12.

we stack in a matrix of dimension n × n, the vectors M(Wi), for all i =
1, . . . , n, in a way that

Â = [M(W1)
′, . . . ,M(Wn)

′]
′
.

As above, we let

K̄Z,hZ
(z) = diag (KhZ

(Z1 − z) , . . . , . . . ,KhZ
(Zn − z)) ,

and Z(z) a matrix with i-th row equal to (1, Zi − z). We finally have

M(z) =e′1
(
Z(z)′K̄Z,hZ

(z)Z(z)
)−1

Z(z)′K̄Z,hZ
(z)

Â∗ = [M(Z1)
′, . . . ,M(Zn)

′]
′
.

4. Given estimators of r, A and A∗, we start our iteration scheme from ϕ̂1 =
cÂ∗r̂. We compute each subsequent iteration as

ϕ̂k+1 = ϕ̂k + cÂ∗(r̂ − Âϕ̂k), for k = 1, . . . , N − 1.

5. To determine when to stop iterating, we adopt the cross-validation crite-
rion developed in Centorrino [12]. We compute the leave-one-out version
of ϕ̂k, denoted ϕ̂k,−1. Then we let

CV (ϕ̂k,−1) = ||r̂ − Â−1ϕ̂k,−1||2,

for k = 1, 2, . . . . This function’s typical shape can be observed in Figure
1 (this is the stopping function for one draw from the simulated DGP in
Section 5, n = 500).

Equation (3.5) involves unknown density, distribution, and conditional mean
functions, which are consistently estimated using locally weighted kernel ap-
proaches. We employ Gaussian kernels and select the bandwidth parameters,
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{hS , hW , hZ}, by Silverman’s rule-of-thumb. This procedure delivers a consis-
tent estimator of the unknown function ϕ.

Remark 2 (Additional Confounders). In many empirical settings, it is common
to have additional observable confounders, X ∈ R

d, which may be continuous or
discrete and should be included in the regression model. The statistical model is

Ti = ϕ(Zi, Xi) + Ui, for i = 1, . . . , n,

with E [Ui|Wi, Xi] = 0, and Assumptions 2.1 and 2.2 must now hold conditional
on (W,X). Because of theoretical considerations that will be explained in more
detail below, it is not possible to modify the definition of the operators to include
the additional exogenous variables. However, as explained in Hall and Horowitz
[38], we can obtain an estimator of the function for every fixed value of Xi and
then smooth it with respect to it. That is,

ϕ̂k(z, x) = ϕ̂k−1(z, x) + c

n∑
i=1

[A∗(r −Aϕk−1)] (z,Xi)Mi(x),

where Mi(·) is the i-th elements of a mixed kernel projection vector [54], which
depends on an additional bandwidth, hX , and is defined as above.

This estimation strategy suffers from the well-known curse of dimensionality.
As an alternative, one could consider a partially linear specification, ϕ(Z,X) =
ϕ0(Z) + Xβ [1, 33]; or a varying coefficient specification ϕ(Z,X) = ϕ0(Z) +
Xϕ1(Z) [16]. The latter is desirable and naturally arises when X is purely dis-
crete.

3.3. Case 2: U is independent of W

Estimation in the independent case proceeds similarly as above.
An estimator of the conditional cdf of the error term can be obtained using

Beran’s (1981) approach as in equation (3.1). An estimator of the unconditional
survivor function can instead be obtained using a smoothed version of the simple
Kaplan-Meier estimator.

The Landweber-Fridman estimator of ϕ† is based on a recursive definition as
above

ϕ̂k+1 = ϕ̂k − cÂ′∗
ϕ̂k

(Â(ϕ̂k)), (3.6)

where k = 0, 1, 2, . . . is an integer, and N > 0 is the total number of iterations;
Â(ϕ̂k) is an estimator of A(ϕ) computed at the point ϕ̂k; Â

′∗
ϕ̂k

is an estimator
of the adjoint operator of the Fréchet derivative, and c < 1 is a strictly positive
constant that determines the size of the step between consecutive iterations.

An additional step for implementation is to derive a closed-form expression
for A′∗

ϕ . Recall that A
′
ϕ is a linear operator from L2

Z into L2
U×W . Therefore, A′∗

ϕ

is a linear operator from L2
U×W into L2

Z which ought to satisfy the following
relation
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∫ ∫ [
A′

ϕ(ϕ̃)
]
(u,w) ψ(u,w)fU,W (u,w)dudw

=

∫
ϕ̃(z)

[
A′∗

ϕ (ψ)
]
(z)fZ(z)dz ∀ϕ̃ ∈ L2

Z , ψ ∈ L2
U×W ,

with

∫ ∫ [
A′

ϕ(ϕ̃)
]
(u,w) ψ(u,w)fU,W (u,w)dudw

=−
∫ ∫ ∫

ϕ̃(z)ψ(u,w)
[
fT,Z|W (ϕ(z) + u, z | w)

−fT,Z(ϕ(z) + u, z)] fU (u)fW (w)dzdwdu.

From some elementary computations, we get

(
A′∗

ϕψ
)
(z) =−

∫ ∫
ψ(u,w) [fT,Z,W (ϕ(z) + u, z, w)

−fT,Z(ϕ(z) + u, z)fW (w)]
fU (u)

fZ(z)
dudw,

which reduces to

(
A′∗

ϕψ
)
(z) = −E [(ψ(u,w)− EWψ(u,W )) fU (u) | Z = z] , (3.7)

where EW denotes the expectation taken with respect to the marginal distribu-
tion of W .

Let us now describe the practical implementation of this algorithm. In the
following, we let T̄ to be the estimator of the mean of T obtained by integrat-
ing the uncensored observations with respect to the empirical Kaplan-Meier
distribution.

• We select an initial value ϕ0. Different choices of the initial conditions
are possible. We may take ϕ0 equal to the nonparametric estimation of
the conditional expectation of T given Z, obtained as in Dabrowska [22].
This is not a consistent estimator if Z is endogenous but in many cases,
the endogeneity bias is not too strong, and E(Y | Z) may be a reasonable
starting value. Another possible choice is to solve the linear problem E(V |
W ) = E(ϕ(Z) | W ) as detailed above. If ϕ† is identified under the mean
independence condition, this solution is a consistent estimator, and we
conjecture that imposing the independence restriction should improve the
properties of this estimator. If ϕ† is under-identified this estimation gives
an approximation [see 4, 32]. Finally, one could use a linear or nonlinear
parametric instrumental variable estimator.

• At each iteration k ≥ 0, we compute the estimated centered residuals

Ûki = Yi − ϕ̂k(Zi)− T̄ +
1

n

n∑
i=1

ϕ̂k(Zi), (3.8)
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where T̄ is the sample mean of the random variable T estimated from
the censored observations Y = T ∧ C [66]. Notice that this location nor-
malization of the residuals correctly identifies the location of the function
ϕ, under the assumption that E(U) = 0. Â(ϕ̂k) can be taken to be the
difference between the conditional product-limit estimator of the distribu-
tion of U given W , and the unconditional product-limit estimator of the
distribution of U . That is, we let

ŜU |W (u | w) =
n∏

i=1

{
1− KhS

(Wi − w)∑n
l=1 1I (Ûkl ≤ Ûki)KhS

(Wl − w)

}1I (Ûki≤u,δi=1)

,

(3.9)
and

ŜU (u) =

n∏
i=1

{
1− 1

n− i+ 1

}1I (Ûki≤u,δi=1)

, (3.10)

so that finally

Â(ϕ̂k)(u,w) = ŜU |W (u | w)− ŜU (u). (3.11)

If W is discrete, the conditional cdf may be computed by sorting with
respect to the different (finite) values of W , allowing us to reach faster
convergence rates. We provide a more detailed description of the latter
case in Section 5. Finally,

Â′∗
ϕ̂k

(Â(ϕ̂k)) = −

n∑
i=1

r(Ûki,Wi)f̂Ûk
(Ûki)KhZ

(Zi − z, z)

n∑
i=1

KhZ
(Zi − z, z)

, (3.12)

where

r(Ûki,Wi) = Â(ϕ̂k)(Ûki,Wi)−
1

n

n∑
i=1

Â(ϕ̂k)(Ûji,Wi),

with tuning parameter hZ , and with f̂Ûk
being a nonparametric density of

the residuals at iteration k, whose construction is discussed in more detail
below. Bandwidth parameters are chosen by Silverman’s rule-of-thumb.
Finally, we take c = 0.5 as discussed above.

• An important component in the construction of the estimator of the ad-
joint operator is f̂Ûk

(Ûki), the nonparametric estimator of the density
of the error term. As our observations are right-censored, we follow the
approach in Marron and Padgett [57], and Mielniczuk [59], and use the
following estimator

f̂Ûk
(Ûki) =

1

nhU

n∑
i=1

KhU
(Ui − u, u)ΔF̂Ûk

(Ui),
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Fig 2. Stopping function ||Â(ϕ̂k)||2, where k is the iteration index, for one draw from the
simulated DGP in Section 5, n = 500, optimal stopping iteration N = 27.

where F̂Ûk
is the Kaplan-Meier estimator of the distribution of U in itera-

tion k, and ΔF̂Ûk
(Ui) are its finite differences. The rate of convergence of

this estimator is the same as the usual nonparametric density estimator
under standard assumptions.

• The last point is the choice of the stopping rule. This choice is crucial,
as the regularization of the ill-posed inverse problem is provided by the
stopping rule. It is common in the mathematical literature to adopt the
so-called Morozov’s discrepancy principle [see 8, 45, 60]. This principle
leads to iterate up to N0 > 0, such that

‖Â(ϕ̂N0−1)‖2 > τδ ≥ ‖Â(ϕ̂N0)‖2, (3.13)

where δ is a noise that is usually known, and τ is a positive constant,
which depends on the properties of the known operator A. In this problem,
however, we have an additional estimation error because of a nonparamet-
rically generated regressor [56], which may blow our variance further as
N → ∞. We, therefore, proceed as follows. We fix a maximum number of
iterations, Nmax, based on the asymptotic theory derived below. We then
check the norm of Â(ϕ̂k), at each iteration j = 0, 1, 2, . . . , Nmax, and take
N0 as the iteration where the norm reaches its minimum. Otherwise, we
take N0 = Nmax. The typical shape of this function can be seen in Figure
2 (this is the stopping function for one draw from the simulated DGP in
Section 5, n = 500).

Remark 3 (Additional Confounders). Adding additional confounders, X ∈ R
d,

to the model with independent instruments requires more careful consideration
of the underlying independence assumptions. One could potentially assume that
U ⊥⊥ W |X, with E [U |X] = 0, in a way that still allows for arbitrary het-
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eroskedasticity of U wrt X. The identifying restriction thus becomes

[A(ϕ†)] (u,w, x) =

∫
[F (ϕ†(z, x) + u, z | x,w)− F (ϕ†(z, x) + u, z | x)] dz = 0,

with the adjoint operator of the Fréchet derivative written as(
A′∗

ϕψ
)
(z, x) = −E

[
(ψ(u,w, x)− EWψ(u,W, x)) fU |X(u|x) | Z = z,X = x

]
.

The final estimator can be written as

ϕ̂k+1(z, x) = ϕ̂k(z, x)− c

n∑
i=1

[
Â′∗

ϕ̂k
(Â(ϕ̂k))

]
(z,Xi)Mi(x),

where Mi(·) is defined as in Remark 2. This approach requires an estimator
of the conditional density of U given X at each iteration, which suffers from
the curse of dimensionality and may result in very slow rates of convergence. A
potential alternative is to use the more restrictive assumption that U ⊥⊥ (X,W )
and E(U) = 0, together with a flexible semi-parametric structure.

4. Rates of convergence

4.1. Framework

We briefly give the main result about the rate of convergence of our estimators.
Our proofs are based on results by Engl et al. [28, Section 6.1], Carrasco et al.
[11, Section 3], Johannes et al. [44], Florens et al. [34], Dunker et al. [27], Dunker
[26], and Centorrino et al. [14].

We start by collecting assumptions that are common across the various frame-
works. To clarify our notations, we let

Kh (hu, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
K+(u, 1) if h ≤ t ≤ 1− h

K+

(
u, t

h

)
if 0 ≤ t ≤ h

K−
(
u, 1−t

h

)
if 1− h ≤ t ≤ 1

0 otherwise

,

to be a generalized kernel with correction at the endpoints as defined in Müller
[61], where K+(·, t) and K−(·, t) are functions supported on [−1, t] × [0, 1] and
[−t, 1] × [0, 1], respectively, and K+(u, 1) = K−(u, 1) = K(u), where K is a
standard kernel function.

Assumption 4.1. The univariate generalized kernel function Kh(·, ·) satisfies
the following properties:

(i) It has order � ≥ 2.
(ii) For each t ∈ [0, 1], Kh(h·, t) is supported on [(t− 1)/h, t/h] ∩ K, where K

is a compact interval that does not depend on t and:

sup
h>0,t∈[0,1],u∈K

| Kh(hu, t) |< ∞
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(iii) K+(·, t) and K−(·, t) are Lipschitz continuous.
(iv) Kh(h·, 1) = K(·) is a Lipschitz continuous and symmetric kernel function

with compact support.

4.2. Case 1: U mean independent of W

For this section, we let

r̂(w) =

∑n
i=1 KhW

(Wi − w,w) V̂i∑n
i=1 KhW

(Wi − w,w)
,

Â =

(
KhW

(Wi −Wl,Wl)∑n
i=1 KhW

(Wi −Wl,Wl)

)n

i,l=1

Â∗ =

(
KhZ

(Zi − Zl, Zl)∑n
i=1 KhZ

(Zi − Zl, Zl)

)n

i,l=1

where KhW
(·, ·) is a multivariate generalized kernel function as defined above,

and V̂i = δiYi/ŜC|W (Yi | Wi). Estimators of the operators A and A∗ are con-
structed as n× n matrices of kernel weights.

We also need the following additional assumptions.

Assumption 4.2. The random vector (T,C, Z,W ) is characterized by its joint
distribution F , which is absolutely continuous with respect to the Lebesgue mea-
sure.

Assumption 4.3.

(i) The joint density fZW (z, w) is λ ≥ 2 times differentiable and uniformly
bounded away from 0 and ∞.

(ii) The joint and the marginal densities of (Z,W ) satisfy

∫ ∫ [
fZW (z, w)

fZ(z)fW (w)

]2
fZ(z)fW (w) < ∞.

Assumption 4.4. The conditional mean E(V | W ) is at least ρ ≥ 2 times
differentiable with respect to both its arguments and the conditional variance of
V given W is uniformly bounded on [0, 1]q.

Assumption 4.5. The smoothing parameters satisfy hS , hW , hZ → 0,
(nhq

S)
−1 logn → 0 and (nhp

Zh
q
W )−1 logn → 0.

Assumption 4.2 requires the random vector (T,C, Z,W ) to have continuous
density. Our identification results do not hold if the censoring variable does not
have sufficient variation. This implies that the joint distribution of (Y, Z,W )
is also continuous, which is a standard condition invoked in the literature on
nonparametric instrumental regressions [see 24, 41]. Assumption 4.3(i) imposes
smoothness restrictions on the joint density of the random vector (Z,W ). The
conditions in Assumption 4.3(ii)-(iii) imply that A and A∗ are compact and
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injective. In particular, Condition (ii) entails that A and A∗ admit a singular
value decomposition, with their singular values having zero as a limit point. This
property generates the ill-posedness of the inverse problem defined by equation
(3.2). We distinguish two cases: when the singular values of A∗A converge to
zero at a polynomial rate, we say that the inverse problem is mildly ill-posed,
while if they have an exponential rate of convergence, we say that the problem
is severely ill-posed. The degree of ill-posedness is related to the smoothness of
the joint density of (Z,W ). In practice, the smoother the joint density is, the
more the function ϕ is blurred when integrated with respect to it, and the more
difficult the estimation problem becomes. The following example shows how the
decay of the singular values of A and A∗ is related to the joint distribution of
(Z,W ).

Example 2 (The Normal Case). Suppose that (Z,W ) ∈ R
2 is jointly normal

with mean zero and covariance matrix given by:(
1 ρ
ρ 1

)
,

with | ρ |< 1. This implies that the conditional distribution of Z given W = w
is normal with a mean equal to ρw and a variance equal to 1 − ρ2. Therefore,
the eigenvectors associated to the operator A are Hermite polynomials, and its
singular values are given by ρj, for j = 0, 1, 2, . . . . As j → ∞, the eigenvalues
are converging to zero at an exponential rate. In this jointly normal case, the
inverse problem is therefore severely ill-posed.

Remark 4. The conditions in Assumptions 4.2 and 4.3(ii) do not hold when
Z and W have elements in common, i.e., there are other observed confounders
X included in the regression model. In this case, one can proceed as discussed
in Remarks 2 and 3 above. The conditions in Assumptions 4.2 and 4.3(ii) will
then have to hold for the densities conditional on X = x.

Assumption 4.4 is a smoothness condition on the conditional expectation of
V given W , and the second part is tantamount to the requirement that V is
square-integrable.

Finally, Assumptions 4.5, along with the conditions on the kernel function
in Assumption 4.1 and the differentiability conditions in Assumption 4.3(i) are
used to show the uniform consistency of the nonparametric estimators of the
joint and marginal densities of (Z,W ), and of the conditional survival function
SC|W [22, 68].1

We obtain the following.

Proposition 4.1. Under Assumptions 4.1-4.5, when � ≥ ρ, and � ≥ λ, the
following holds

1Gonzalez-Manteiga and Cadarso-Suarez [37] also provide uniform consistency results for
Beran’s generalization of the Kaplan-Meier estimator. However, their results rely on the ad-
ditional condition that nh2ρ+q

n → 0, which, as explained in 68, excludes the optimal choice of
bandwidth.
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(i) Estimation of r.

||r̂ − Âϕ||2 = OP

(
1

nhq
W

+
1

nhq
S

+ h2ρ
W + h2ρ

S

)
,

which implies ||r̂ − Âϕ||2 = OP (n
−2ρ/(2ρ+q)), provided hS = O(hW ), and

hW = O(n−1/(2ρ+q));
(ii) Estimation of the operator A:

||Â−A||2 ∼ ||Â∗ −A∗||2 = OP

(
n− 2λ

2λ+p+q

)
.

The first part of the proposition gives the rate of convergence for the nonpara-
metric estimator r̂. The dependent variable is estimated using standard kernel
regressions, so that a projection argument, which is standard in this literature,
makes us conclude that the first step estimation of the conditional survivor func-
tion is negligible, provided the bandwidth hS is chosen accordingly. Notice that
this choice of bandwidth allows us to achieve the same rate for the estimation
of E(T |W ) as if T was fully observed, and therefore map the results that follow
into the class of standard nonparametric IV estimators. We argue that such a
requirement is easily satisfied by taking hS = hW . That is, we use the same
bandwidth to estimate the conditional survivor function and the conditional
expectation. A proof of the first part of the Proposition is given in Appendix,
under additional assumptions on the asymptotic representation of ŜC|W .

The second part of the Proposition follows from the results in Darolles et al.
[24]. The rate of convergence for the estimation of the operators is standard
in nonparametric econometrics. As the operators are effectively estimators of
conditional densities, their rates of convergence are those of the nonparametric
estimator of the joint density of (Z,W ).

Denote by R the range of an operator. We present the main convergence rate
in the following Theorem.

Theorem 4.1. Under the assumptions and result of Proposition 4.1, we have

(i) Either the following strong source condition holds

∃, β > 0 such that ϕ ∈ R(A∗A)
β
2 , (4.1)

and
||ϕ̂N − ϕ||2 = OP

(
Nn− 2ρ

2ρ+q + n− 2λ
2λ+p+q N1−β +N−β

)
.

If λ
2λ+p+q ≥ ρ

(2ρ+q)(β+1) , this value is minimized for N0 �
(
n

2ρ
2ρ+q

) 1
β+1

and
||ϕ̂N0 − ϕ||2 = OP

(
n− 2ρβ

(2ρ+q)(β+1)

)
.

(ii) or the following weak source condition holds

∃β > 0 such that ϕ ∈ R(− log(A∗A))−
β
2 (4.2)
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and

||ϕ̂N − ϕ||2 = OP

(
Nn− 2ρ

2ρ+q + n− 2λ
2λ+p+q N(log(N)−β) + (log(N))−β

)
.

For a small constant ε > 0 such that, ε < 2ρ
2ρ+q and λ

2λ+p+q ≥ ρ
2ρ+q − ε

2 ,

this value is minimized for N0 � n
2ρ

2ρ+q−ε and

||ϕ̂N0 − ϕ||2 = OP

(
(log(n))−β

)
.

The strong and weak source conditions link the smoothness properties of the
conditional expectation operators, A and A∗ with the smoothness properties of
the function ϕ. The first part of the theorem establishes the convergence rates
for the mildly ill-posed problem, which are polynomial in the sample size. In the
second part, we instead provide the rates for the severely ill-posed case, which
are instead polynomial in the logarithm of the sample size. This is a standard
result in the literature, as the super-smoothness of the joint density implies that
the data contain very little information about the function ϕ, and a large sample
is required to obtain a precise estimate [see 20].

For the mildly ill-posed problem, we note that our rate is the rate of esti-
mation of E(V | W ) at a power β

β+1 smaller than 1 which we may view as the
cost of the resolution of the inverse problem. Note that one advantage of the
Landweber-Fridman method is that β is not constrained by the qualification of
the method, such as in the Tikhonov regularization where β is limited by 2 (see
the Appendix for a formal definition).

Remark 5 (Minimax rates). When the inverse problem is mildly ill-posed, the
eigenvalues of the operator A∗A decay geometrically at a speed equal to 2a, with
a > 0. If s > 0 is the smoothness of the function ϕ, then ρ = s+a, and β = s/a.
Therefore, our rates of convergence would be equal to

||ϕ̂N0 − ϕ||2 = OP

(
n− 2s

2s+2a+q

)
,

where q is the dimension of W . If p = q, that is, we have as many instruments
as endogenous variables, then this rate is minimax [18, 20].

When the inverse problem is severely ill-posed, the rate of convergence is
dominated by the bias term, which converges at a logarithmic rate. The rate is
minimax for the given choice of the tuning parameters.

4.3. Case2: U independent of W

For nonlinear inverse problems, iteration methods like the one used here would
in general not converge globally. We prove local convergence by appropriately re-
stricting the initial condition and controlling the behavior of the Fréchet deriva-
tive of the operator Â. We assume the following.

Assumption 4.6. Let BR(ϕ0) to be a ball of radius R < ∞ around the initial
condition, such that BR(ϕ0) ⊂ D(A). We have

ϕ† ∈ BR(ϕ0).
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Assumption 4.7. A and Â are Fréchet differentiable, with A′ and Â′ bounded
linear operators.

We also impose the following additional Assumptions.

Assumption 4.8.

(i) The conditional probability density function fT,Z|W (t, z | w) and the den-
sity function fT,Z(t, z) are λ ≥ 2 times continuously differentiable and
uniformly bounded away from ∞.

(ii) The densities fZW (z, w), fZ(z) and fW (w) are uniformly bounded away
from 0 and ∞.

Assumption 4.9. The density of the error term fU (u) is absolutely continuous
with respect to the Lebesgue measure, and λ ≥ 2 times continuously differen-
tiable.

Assumption 4.10. Let �n a real sequence that is either bounded or diverges
slowly to ∞ with n. The density of the error term, U , satisfies

κn = inf
|u|≤�n

fU (u) > 0,

with κn → 0, as n → ∞.

Assumption 4.11. The smoothing parameters satisfy hU , hW , hZ → 0, and
(nhp

Zh
q
WhU )

−1 lnn → 0.

Assumption 4.8 is a standard regularity condition of conditional and uncondi-
tional densities. Part (ii) is not restrictive as long as we maintain that the joint
support of (Z,W ) is compact. Assumption 4.9 restricts the density of the error
term to be continuous and differentiable. Finally, Assumptions 4.10 and 4.11
are used for the uniform consistency of the nonparametric density estimators.
One crucial difference of this estimator compared to the one we have previously
described is that it involves estimating the density of the error term at each
iteration. While it is plausible to assume that the support of the independent
variables is bounded, such an assumption would be too restrictive for the error
component U . Assumption 4.10 helps us accommodate possibly unbounded sup-
port of the error, following the approach of Hansen [40]. We choose the points
u in expanding sets of the form {u :| u |≤ �n}.

We let the following hold.

Assumption 4.12. We have that

E‖Â(ϕ)−A(ϕ)‖2 =O(δ2n(�, λ, q))

E‖Â′∗
ϕ −A′∗

ϕ ‖2 =O(γ2
n(�, λ, p, q)),

with δn(�, λ, q), γn(�, λ, p, q) → 0, as n → ∞.

In the following, to simplify notations, we shall remove the dependence of δn
and γn from the parameters {�, λ, p, q}. We leave the values of δn and γn unspec-
ified as they depend on the nature of the instrumental variable. For instance, if
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the instruments are binary, and their dimension q is relatively small compared
to the sample size, one can sort the sample in a way to obtain δn � n−1/2. On
the contrary, if W ∈ R

q is continuous, � ≥ λ and one uses a standard nonpara-
metric estimator for conditional distribution as in Li and Racine [55], then we
have that δn � n−λ/(2λ+q). This high-level assumption holds under Assump-
tions 2.1 and 2.2, and further regularity conditions similar to the ones provided
in Assumptions 4.1 and 4.8-4.11.

Finally, we need to further restrict the local behavior of the Fréchet deriva-
tive, its adjoint, and their estimators. In practice, this is done by extending
Assumption 2.6 to the estimators of the Fréchet derivative and its adjoint. This
is presented in more detail in Appendix.

We also make two additional assumptions.

Assumption 4.13 (Strong source condition).

∃, β > 0 such that ϕ0 − ϕ† ∈ R(A′∗
ϕ†A

′
ϕ†)

β
2 ,

Assumption 4.14 (Tuning parameters). The tuning parameters satisfy the
following restrictions

(i)
(δn ∨ γn)

h2
Uκn

√
N−1 ln(N)

= O(1).

(ii) For β ≤ 1/2, {
(h2

uκn)
−1N−β/2 = O(1) if β < 1/2

(h2
uκn)

−1N1/4 ln(N) = O(1) if β = 1/2
.

(iii) There exists β∗ ∈ (1/2, 1), such that

N (β∗−1)/2

h2
uκn

= O(1).

Assumption 4.13 is a source condition. Differently from the statement of
Theorem 4.1, the source condition is not assumed on the function ϕ† directly,
but rather on the difference between our initial condition and the true solution.
This is due to the local nature of our estimation procedure. Similarly, when
the inverse problem is nonlinear, we cannot allow for a weak source condition.
This is because the error accumulates across iterations at a polynomial rate.
Therefore, when the regularization bias only decreases at a logarithmic rate,
the Landweber-Fridman algorithm cannot converge. Assumption 4.14 imposes
restrictions on the tuning parameters. All restrictions depend on the unknown
regularity of the ill-posed inverse problem which is determined by β. Proposing
a data-driven procedure for the choice of these parameters is an essential step
to be pursued in future research.

The following Theorem contains the main result of this Section.
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Theorem 4.2. Let Assumptions 2.1-2.2, 2.4-2.6, 4.1, and 4.6-4.14 hold. Then

‖ϕ̂N − ϕ†‖2 = OP

(
Nδ2n + γ2

nN
1−β +D2(N)

)
,

where,

D(N) =

{
N−β/2 for β ≤ β∗

(h2
uκn)

−1N−β/2 otherwise
.

Otherwise, if Assumptions 4.14(i) and 4.14(iii) do not hold, and we only have
(δn ∨ γn)

√
N ln(N) = O(1), then

‖ϕ̂N − ϕ†‖2 = OP

(
1

h4
uκ

2
n

(
Nδ2n + γ2

nN
1−β +N−β

))
,

The result of this Theorem gives an upper bound on the mean square error
of our estimator.

For β ≤ β∗, as defined in Assumption 4.14(iii), the upper bound is the same
one we get in Theorem 4.1(i), under a strong source condition. However, for
β > β∗, we cannot reach the same upper bound. Heuristically, we have an
additional term, (h2

Uκn)
−1, due to the estimation of the density of the error

term. When β = 1, the regularization bias that accumulates across iterations
converges to zero exactly as 1/N , and thus the term 1/(Nh4

Uκ
2
n) dominates.

The same effect holds for any β close enough to 1, or, more precisely, for any
β > β∗.

The same heuristic does not apply to the other terms in the decomposition
when we can choose hU large enough and N small enough so that the nonlinear-
ity error does not dominate. The condition in Assumption 4.14(i) on the tuning
parameters serves exactly this purpose.

The last statement in the Theorem applies if we cannot choose N → ∞ slow
enough to satisfy the conditions in Assumptions 4.14(i) and 4.14(iii). In this
case, N satisfies √

Nδn ∨ γnN
− β−1

2 � N−β/2,

which would be equivalent to the optimal choice of the regularization parameter
for the linear ill-posed inverse problem in Theorem 4.1. However, in this case,
the rate of convergence is slower because of the additional term (h4

uκ
2
n)

−1.
A potential way to let hU go to zero more slowly is to use higher-order kernels,

which is what we advocate in practice.

Example 3. Let us consider the case in which both Z and W are continuous
and scalar. We further take kernels of order � ≥ λ ∧ 2. In this case, Â(ϕ) is an
estimator of the conditional cdf of U given the instrument W , so that one could
take

δ2n � (hWn)−1 + h2λ
W .

Let hW � n− 1
2λ+1 , in a way that δn � n− λ

2λ+1 . Similarly, Â′
ϕ is a conditional

expectation operator, and

γ2
n � (h2

Zn)
−1 + h2λ

Z � n− 2λ
2λ+2 ,
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where the last equivalence follows by taking hZ � n− 1
2λ+2 .Thus, δn ∨ γn = γn.

Let us take hU � n−1/(2λ+1). The condition on the growth of the number of
iterations becomes

κ−1
n n−( λ

2λ+2− 2
2λ+1 )

√
N ln(N) = O(1),

which requires λ > 2, with N → ∞. The result of Theorem 4.2 finally implies

‖ϕ̂N − ϕ†‖2 = OP

(
Nn− 2λ

2λ+1 + n− 2λ
2λ+3N

1−β
2 +D2(N)

)
,

where the unknown value of β determines the optimal convergence of the regu-
larization constant, N .

Having established the rate of convergence of the proposed estimator, we now
turn to an assessment of its finite-sample performance.

5. Finite-sample behavior

We consider a Monte Carlo simulation based on the framework of Darolles et al.
[24] and Florens et al. [34]. The data generating process is as follows

T = ϕ(Z) + U,

where the function ϕ(z) is taken to be equal to ϕ1(z) = −(2z−1)2 and ϕ2(z) =
−1.75 exp(− | 2z − 1 |), respectively.

We generate a bivariate instrumental variable W = (W1,W2) from a trun-
cated normal distribution in [−1, 1]2, with covariance matrix equal to[

1 0.3
0.3 1

]
.

We then let

Z =
1

1 + exp (2(W1 +W2) + (W1 +W2) ∗ ζ + ζ)
,

U =− (ζ − 0.1) + ε,

where ζ ∼ N(0.1, 0.42), and ε ∼ N(0, 0.252). This generates dependence between
U and Z in such a way that E(U | Z) �= 0, while obviously E(U | W ) = 0, as
W is taken to be independent of U in this example.

We consider two separate scenarios for the censoring variable C. In the first
case, we take C to be independent of all other variables in the model. We
generate C from a normal distribution with mean equal to the 90th percentile
of T , and variance equal to the variance of T . In the second case, we simulate
ν ∼ N(μν , 0.25

2), where μν is twice the 90th percentile of T . We thus have that
ν ⊥⊥ (T, Z,W ), and we take C = Zν.

For each simulated DGP, about 20% of the observations is censored.
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Fig 3. Nonparametric IV with E [U |W ] = 0 (solid gray line) vs nonparametric regression
with E [U |Z] = 0 (dashed black line) for M = 1000 Monte Carlo replications and n = 500
observations. The solid black line indicates the true function and the dashed gray line are the
95% simulated confidence intervals for the Nonparametric IV estimator.

We first look at estimation under the mean independence condition E(U |
W ) = 0. Figure 3 plots the median of the estimated function (solid gray line),
and a simulated 95% confidence interval (dashed gray line) for M = 1000 simu-
lated samples of size n = 500 drawn from these DGPs. The black dashed-dotted
line is the nonparametric regression estimator under the assumption of mean
independence [i.e., E(U | Z) = 0, see 22, 23]; and the solid black line is the true
regression function. We can notice how the simple nonparametric regression es-
timator is never fully contained in the 95% confidence bands, and it can highly
distort marginal effects at every point of the support of Z. Numerical compari-
son of the Mean Integrated Squared Error (MISE) of the simple nonparametric
regression against our nonparametric instrumental variable estimator confirms
the graphical results (see Table 1). We point out that, as the sample size in-
creases, the relative improvement of the MISE becomes larger. This has to be
expected, as the simple nonparametric regression is inconsistent in this setting.

Finally, we consider M = 1000 Monte Carlo replications for increasing sam-
ple sizes n = {250, 500, 1000}. For each replication, we use the nonparametric
estimator outlined above to estimate ϕ(z). The stopping rule used is the one
described above. The constant for the Landweber-Fridman iteration was set at
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Table 1

MISE of the nonparametric regression estimator with E [U |Z] = 0 relative to the
instrumental variable estimator with E [U |W ] = 0.

C ⊥⊥ (T, Z,W ) C ⊥⊥ T | W
ϕ1(z) ϕ2(z) ϕ1(z) ϕ2(z)

250 1.906 2.153 1.919 2.061
500 2.455 2.626 2.400 2.526
1000 3.408 3.172 3.217 3.125

0.5. All bandwidths for the conditional mean objects were selected via Silver-
man’s rule-of-thumb. We consider local linear estimators of conditional means
and operators, as described in Section 3, and we provide the MISE of ϕ̂(z)
with respect to the unfeasible estimator ϕ̃(z) for each replication. The unfeasi-
ble estimator is defined as the estimator of ϕ that would be obtained if T was
observed without censoring. We report summary results in Table 2, along with
the median number of iterations N required for convergence.

We can observe from Table 2 that the feasible estimator has reasonable prop-
erties compared to the unfeasible one. In most cases, the ratio between the
median MISE tends to 1 as n increases, and as predicted by our theoretical
results. As we take a larger proportion of censored observations, we can expect
our estimator to approach more slowly the unfeasible one.

Table 2

MISE relative to the unfeasible estimator with E [U |W ] = 0 and median number of
iterations, N .

C ⊥⊥ (T, Z,W ) C ⊥⊥ T | W
ϕ1(z) ϕ2(z) ϕ1(z) ϕ2(z)

n MISE N MISE N MISE N MISE N
250 1.53 8 1.09 11 1.67 8 1.13 11
500 1.64 10 1.06 15 1.90 10 1.08 14
1000 1.64 12 1.05 21 2.01 12 1.05 20

We also consider the same DGP when estimation is carried using an inde-
pendence restriction. We keep the same data generating process as above. As
we have noticed, our continuous instruments satisfy the restriction of indepen-
dence, so that our estimator can be implemented using this stronger restriction
as described in Section 3.

We can also directly compare the performance of the estimator under mean
independence and independence. The latter restriction carries more information
about the data generating process. However, rates of convergence can be slower
due to the nonlinear ill-posed inverse problem. Moreover, as instruments are con-
tinuous, the linear estimator under mean independence is consistent. Finally, we
conjecture that taking only one iteration from the mean independence estimator
towards independence should be sufficient to achieve the smallest MISE. This is
in parallel with the scoring method in Maximum likelihood estimation [63, 65].
In that approach, any consistent estimator of the unknown parameter reaches
the efficiency bound by taking a one-step deviation towards the Maximum Like-
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lihood estimator.
We can therefore assess a) how sensitive the performance of the estimation

procedure is to various choices of the initial condition; b) test if our conjecture
holds, at least in a limited simulation setting.

The results of this comparison are reported in Table 3 for various sample
sizes.

The table is divided into four sub-tables. The first one refers to the estimator
under mean independence. The second refers to the estimator under indepen-
dence when the initial value is taken to be the local linear estimator of the
conditional expectation of Y given Z, ϕ̂LL. The third sub-table considers the
performance when the initial condition is the estimator under mean indepen-
dence, ϕ̂MI . Finally, the last sub-table considers the performance of the inde-
pendence estimator when we simply take a one-step deviation from ϕ̂MI . For
each sample size and type of simulation, we report the MISE and the median
number of iterations N performed. For the latter estimator, the median number
of iterations is always equal to 1, and it is therefore not reported. The median
mean square error is multiplied by a factor of 100, for the convenience of the
reader.

As expected, the performances of all estimators improve as the sample size
increases. The properties of the estimators under mean independence are better
than those of the estimator under independence. This may also be due to a
choice of tuning parameters that is not optimal in the latter case. This would
require further research that is beyond the scope of this work.

There does not appear to be a substantial difference in the properties of the
estimator under independence when we take different initial conditions. The
median mean square error does not change dramatically, and neither does the
median number of iterations.

Finally, we find some evidence in favor of our conjecture, at least in our
simulation study. That is, taking a one-step iteration using the independence
restriction has, in some cases, better performance than taking multiple itera-
tions.

Finally, we consider a Monte-Carlo simulation in which we replace the two
continuous instruments with a single binary instrument, W , generated from a
Bernoulli distribution with parameter equal to 0.5.

We then independently generate a normal random variable, ε ∼ N
(
0, 0.252

)
,

and a uniform random variable, ω. We then let

ζ = log

(
ω

1− ω

)
,

in a way that ζ follows a standard logistic distribution. Furthermore

Z =
1

1 + exp
(
− (−0.5W+ζ+ζW )

2

) ,
U =− 0.4ζ + ε,
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Table 3

MISE and median number of iterations, N , with U ⊥⊥ W and W continuous.

C ⊥⊥ (T, Z,W ) C ⊥⊥ T | W
ϕ1(z) ϕ2(z) ϕ1(z) ϕ2(z)

n MISE N MISE N MISE N MISE N
E(U | W ) = 0 250 0.53 8 1.01 11 0.58 8 1.05 11

500 0.32 10 0.66 15 0.38 10 0.67 14
1000 0.20 12 0.45 21 0.24 12 0.46 20

U ⊥⊥ W 250 0.62 30 0.76 27 0.61 30 0.78 29
ϕ0 = ϕ̂LL 500 0.34 39 0.48 34 0.33 39 0.49 33

1000 0.19 50 0.33 43 0.19 49 0.32 34

U ⊥⊥ W 250 0.65 28 0.89 27 0.63 28 0.91 29
ϕ0 = ϕ̂MI 500 0.35 36 0.52 35 0.34 38 0.54 39

1000 0.20 50 0.33 46 0.19 51 0.33 52

U ⊥⊥ W 250 0.59 1.07 0.61 1.10
One-step from ϕ̂MI 500 0.32 0.69 0.34 0.70

1000 0.19 0.47 0.21 0.47

Otherwise, we keep the same specifications of the regression function ϕ and the
censoring variable C.

In this example, the estimation of the operator A is obtained by sorting the
sample according to the values of the instrument W and obtaining an estimator
for both survivor functions. Our estimators need to satisfy Assumption 4.7.
Hence, we do not directly employ the Kaplan-Meier estimator, but its kernel
smoothed version [see 47, 58, among others]. We let ŜU |W (u | W = 1) and

ŜU |W (u | W = 0) be the estimators of the survivor function of U conditional on
W = 1 and W = 0, respectively.

Let ψ(u,w) = ŜU |1(u)− ŜU |0(u). One can write the estimator of the adjoint
operator A∗′

ϕ in the following form

(
Â′∗

ϕ†ψ
)
(z) = −

∑n
i=1 ψ(u,w)f̂U (u)KhZ

(Zi − z, z)∑n
i=1 KhZ

(Zi − z, z)
,

with ψ ∈ L2
U×W , and f̂U (u) a nonparametric estimator of the density of U as

explained in Section 3.
In this case, the model is not identified under the mean independence restric-

tion, as the completeness condition in Assumption 2.3 fails. As a matter of fact,
the restriction E(ϕ(Z) | W ) = 0 reduces to∫

ϕ(z)fZ|W (z | w = 0)dz =

∫
ϕ(z)fZ|W (z | w = 1)dz = 0

which cannot imply ϕ = 0, except when Z is also binary, or when ϕ is a two-
parameter function in Z.

Results for this simulation exercise are reported in Table 4. As above, the
MISE is multiplied by a factor of 100.

The performance of our estimator worsens compared to the case where we
have two continuous instruments, which may be expected. Nonetheless, we can
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Table 4

MISE and median number of iterations, N , with U ⊥⊥ W and W binary.

C ⊥⊥ (T, Z,W ) C ⊥⊥ T | W
ϕ1(z) ϕ2(z) ϕ1(z) ϕ2(z)

n MISE N MISE N MISE N MISE N
250 4.00 21 9.48 52 10.94 38 9.21 94
500 1.27 12 6.70 47 3.92 24 7.89 149
1000 0.48 8 6.00 64 1.50 17 7.32 213

appreciate how the MISE decreases as the number of observations increases.
Moreover, the median number of iterations taken is often larger than above,
which may be related to the fact that the information contained in each single
iteration step is much smaller in this context.

Appendix A

Proof of Proposition 4.1. We only prove the first part of the Proposition, which
is specific to this paper. The proof of the second part is identical to Darolles
et al. [24] and Florens et al. [34], and it is omitted here for brevity.

We introduce the following additional notations

HC|W (y | w) =P (C ≤ y | W = w)

Hδ
C|W (y | w) =P (C ≤ y, δ = 0 | W = w),

where the definition of these objects should be apparent. Under Assumption
2.2, we immediately obtain that HC|W (y | w) < 1 and Hδ

C|W (y | w) < 1. We
make use of the following Lemma.

Lemma A.1 (68). Let Assumptions 2.2, 4.1(iii) and 4.5 hold. Further, suppose
that the functions HC|W and Hδ

C|W are twice continuously differentiable on C ×
[0, 1]q. Then

F̂C|W (y | w)−FC|W (y | w) = SC|W (y | w)− ŜC|W (y | w)

=

n∑
i=1

KhS
(Wi − w,w)∑n

i=1 KhS
(Wi − w,w)

ξy,w(Yi, δi) +OP

((
logn

nhq
S

)3/4
)
,

on C × [0, 1]q, as n → ∞, with

ξy,w(Yi, δi) =SC|W (y | w)
{∫

C

1I(Yi ≤ s)−HC|W (s | w)
(1−HC|W (s | w))2 dHδ

C|W (s | w)

+
1I(Yi ≤ y, δi = 0)−Hδ

C|W (y | w)
1−HC|W (y | w)

−
∫
C

1I(Yi ≤ s, δi = 0)−Hδ
C|W (s | w)

(1−HC|W (s | w))2 dHC|W (s | w)
}
,
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with

sup
(y,ỹ,w,w̃):y,ỹ<∞;w,w̃∈[0,1]q

| ξy,w(ỹ, w̃) |<∞.

We let

r̃(w) =

∑n
i=1 KhW

(Wi − w,w)Vi∑n
i=1 KhW

(Wi − w,w)
,

with

Vi =
δiYi

SC|W (Yi | Wi)
.

We therefore decompose(
r̂ − Âϕ

)
(w) = (r̂ − r̃) (w) +

(
r̃ − Âϕ

)
(w),

where
||r̃ − Âϕ||2 = OP

(
n− 2ρ

2ρ+q

)
,

directly, under Assumption 4.4 [see 24, 34]. We are therefore left with the term
r̂ − r̃. After simple computations, this difference can be rewritten as

(r̂ − r̃) (w)

=

∑n
i=1 KhW

(Wi − w,w) δiYi

(
1

ŜC|W (Yi|Wi)
− 1

SC|W (Yi|Wi)

)
∑n

i=1 KhW
(Wi − w,w)

=

∑n
i=1 KhW

(Wi − w,w)Vi

(
SC|W (Yi|Wi)−ŜC|W (Yi|Wi)

SC|W (Yi|Wi)

)
∑n

i=1 KhW
(Wi − w,w)

+

∑n
i=1 KhW

(Wi − w,w)Vi

(
[SC|W (Yi|Wi)−ŜC|W (Yi|Wi)]

2

ŜC|W (Yi|Wi)SC|W (Yi|Wi)

)
∑n

i=1 KhW
(Wi − w,w)

=

n∑
i=1

[
KhW

(Wi − w,w)∑n
i=1 KhW

(Wi − w,w)
Vi×

⎛
⎜⎜⎜⎜⎝
∑n

j=1

KhS
(Wj−Wi,Wi)∑n

j=1 KhS
(Wj−Wi,Wi)

ξYi,Wi
(Yj , δj) +OP

((
logn
nh

q
S

)3/4
)

ŜC|W (Yi | Wi)
(1 + oP (1))

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ,

where the last step follows from Lemma A.1 and Assumption 4.5.
Therefore, we have that

‖r̂ − r̃‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑n
i=1 KhW

(Wi − w,w)Vi

⎛
⎜⎜⎝
∑n

j=1

KhS
(Wj−Wi,Wi)∑n

j=1
KhS

(Wj−Wi,Wi)
ξYi,Wi

(Yj ,δj)

ŜC|W (Wi|Wi)

⎞
⎟⎟⎠

∑n
i=1 KhW

(Wi − w,w)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
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=

(
1

inf(y,w):y<∞;w∈[0,1]q | ŜC|W (y | w) |

)2

×

∥∥∥∥∥∥∥∥
∑n

i=1 KhW
(Wi − w,w)Vi

∑n
j=1

KhS
(Wj−Wi,Wi)∑n

j=1 KhS
(Wj−Wi,Wi)

ξYi,Wi
(Yj , δj)∑n

i=1 KhW
(Wi − w,w)

∥∥∥∥∥∥∥∥

2

= OP (1)

∥∥∥∥∥∥∥∥
∑n

i=1 KhW
(Wi − w,w)

∑n
j=1

KhS
(Wj−Wi,Wi)∑n

j=1 KhS
(Wj−Wi,Wi)

ξYi,Wi
(Yj , δj)Vi∑n

i=1 KhW
(Wi − w,w)

∥∥∥∥∥∥∥∥

2

,

where the last step follows from the conditions in Assumptions 4.3(i), 4.4(iii)
and 4.5, which imply the uniform convergence of the conditional Kaplan-Meier
estimator [22]; and Assumption 2.2, which implies that the conditional survivor
function is almost surely bounded away from 0.

Directly from the results in Darolles et al. [24], we obtain that∥∥∥∥∥∥∥∥
∑n

i=1 KhW
(Wi − w,w)

∑n
j=1

KhS
(Wj−Wi,Wi)∑n

j=1 KhS
(Wj−Wi,Wi)

ξYi,Wi
(Yj , δj)Vi∑n

i=1 KhW
(Wi − w,w)

∥∥∥∥∥∥∥∥

2

≤
(

1

infw:w∈[0,1]q | f̂W (w) |

)2

×

∥∥∥∥∥∥
1

nhq
W

n∑
i=1

KhW
(Wi − w,w)

n∑
j=1

1
n
KhS

(Wj −Wi,Wi)
1
n

∑n
j=1 KhS

(Wj −Wi,Wi)
ξYi,Wi

(Yj , δj)Vi

∥∥∥∥∥∥
2

= OP (1)

∥∥∥∥∥∥
1

nhq
W

n∑
i=1

KhW
(Wi − w,w)

n∑
j=1

1
nh

q
S

KhS
(Wj −Wi,Wi)

f̂W (Wi)
ξYi,Wi

(Yj , δj)Vi

∥∥∥∥∥∥
2

≤ OP (1)

(
1

infw:w∈[0,1]q | f̂W (w) |

)2

×

∥∥∥∥∥∥
1

n2hq
W hq

S

n∑
i=1

KhW
(Wi − w,w)

n∑
j=1

KhS
(Wj −Wi) ξYi,Wi

(Yj , δj)Vi

∥∥∥∥∥∥
2

= OP (1)

∥∥∥∥∥∥
1

nhq
W

n∑
j=1

(
1

nhq
S

n∑
i=1

KhW
(Wi − w,w)KhS

(Wj −Wi,Wi)Vi

)
ξYi,Wi

(Yj , δj)

∥∥∥∥∥∥
2

,

where f̂W (w) is the Nadaraya-Watson estimator of the density of W using
generalized kernels as defined in Assumption 4.1. We now consider

1

n2hq
Whq

S

n∑
j=1

n∑
i=1

KhW
(Wi − w,w)KhS

(Wj −Wi,Wi)ViξYi,Wi
(Yj , δj)

=
1

n2hq
W hq

S

n∑
i=1

n∑
j=1,j �=i

KhW
(Wi − w,w)KhS

(Wj −Wi,Wi)ViξYi,Wi
(Yj , δj)

+
1

n2hq
Whq

S

n∑
i=1

KhW
(Wi − w,w)KhS

(0,Wi)ViξYi,Wi
(Yi, δi)

=
1

n2hq
W hq

S

n∑
i=1

n∑
j=1,j �=i

KhW
(Wi − w,w)ViKhS

(Wj −Wi,Wi)E
[
ξYi,Wi

(Yj , δj)|Wj

]
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+
1

n2hq
W hq

S

n∑
i=1

n∑
j=1,j �=i

KhW
(Wi − w,w)ViKhS

(Wj −Wi,Wi)×

(
ξYi,Wi

(Yj , δj)− E
[
ξYi,Wi

(Yj , δj)|Wj

])
+

1

n2hq
W hq

S

n∑
i=1

KhW
(Wi − w,w)KhS

(0,Wi)ViξYi,Wi
(Yi, δi)

=I + II + III.

Let

E [III] =
1

nhq
W hq

S

E
[
KhW

(Wi − w,w)KhS
(0,Wi)E

[
ViξYi,Wi

(Yi, δi)|Wi

]]

=
1

nhq
Sh

q
W

∫
KhW

(Wi − w,w)KhS
(0,Wi)E

[
ViξYi,Wi

(Yi, δi)|Wi

]
fW (Wi)dWi

=
1

nhq
S

∫
K (hWu,w)KhS

(0, w + hW u)×

E
[
ViξYi,Wi

(Yi, δi)|Wi = w + hW u
]
fW (w + hWu)du

=O

(
1

nhq
S

)
,

and

V ar (III) =
1

n3h2q
W h2q

S

V ar
(
KhW

(Wi − w,w)KhS
(0,Wi)ViξYi,Wi

(Yi, δi)
)

≤ 1

n3h2q
W h2q

S

E
(
K2

hW
(Wi − w,w)K2

hS
(0,Wi)E

[
V 2
i ξ2Yi,Wi

(Yi, δi)|Wi

])

=O

(
1

(nhq
S)

2

1

nhq
W

)
,

where the conclusion follows by the usual change of variable, the uniform bound-
edness of the kernel function, Lemma A.1 and Assumption 4.4. Using a similar
argument, we have that

1

hq
S

E [KhS
(Wj −Wi,Wi)E [ξYi,Wi(Yj , δj)|Wj ] |Yi,Wi] = O (hρ

S) ,

which directly implies

‖I‖2 = OP

(
h2ρ
S

)
.

Finally,

V ar (II) ≤ 1

nh2q
W h2q

S

E
[
KhW

(Wi − w,w)KhW
(Wi′ − w,w)ViVi′×

KhS
(Wj −Wi,Wi)KhS

(Wj −Wi′ ,Wi′ )
(
ξYi,Wi

(Yj , δj)− E
[
ξYi,Wi

(Yj , δj)|Wj

])
×(

ξYi′ ,Wi′ (Yj , δj)− E
[
ξYi′ ,Wi′ (Yj , δj)|Wj

])]
+

1

n2h2q
W h2q

S

E
[
K2

hW
(Wi − w,w)V 2

i K2
hS

(Wj −Wi,Wi) ×

(
ξYi,Wi

(Yj , δj)− E
[
ξYi,Wi

(Yj , δj)|Wj

])2]
,
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where the remaining terms are zero by the law of iterated expectations. By the
usual change of variable, Assumption 4.4 and Lemma A.1, one can show that

V ar (II) = O

(
1

nhq
S

+
1

nhq
S

1

nhq
W

)
= O

(
1

nhq
S

)
+ o

(
1

nhq
S

)
.

The result of the Proposition follows from Markov inequality, and the assump-
tion hS = O(hW ).

Proof of Theorem 4.1. We just give the main steps of the proof. More details
can be found in Carrasco et al. [11] and Centorrino [12]. Let us denote by
R a generic positive constant. To reduce the notational burden, we use the
notation Φβ(N), where Φβ(N) = N−β , under the strong source condition, and
Φβ(N) = (log(N))−β under the weak source condition, respectively. As the
operator A∗A is compact and thus admits a singular value decomposition, we
also use the notation Φβ(A

∗A) to signify that the function Φβ is applied to the
singular values of A∗A. Finally, the source condition implies that we can write
ϕ = Φβ/2(A

∗A)v, with v ∈ L2
Z , and ‖v‖ ≤ R.

We first recall the following definition.

Definition A.1 (Qualification). A regularization procedure, gN , is said to have
qualification of order κ > 0, if:

sup
0<a≤‖A‖2

| 1− agN (a) | aη ≤ RN−η, (A.1)

for 0 < η ≤ κ.

In particular, the Landweber-Fridman regularization has qualification equal
to ∞, in the sense that for every η > 0, the inequality in equation (A.1) holds
with

1− agN (a) = (1− ca)N .

Moreover, we need the following.

Assumption A.1. There exist two positive constants R and η such that:

sup
N−1≤a≤‖A‖2

Φβ/2(a)

aη
≤ RΦβ/2(N)Nη. (A.2)

Definition A.1 and Assumption A.1 together imply that

sup
0<a≤‖A‖2

| (1− ca)N | Φβ/2(a)

= sup
0<a≤‖A‖2

| (1− ca)N | aη
Φβ/2(a)

aη

≤ sup
0<a≤‖A‖2

| (1− ca)N | aη sup
0<a≤‖A‖2

Φβ/2(a)

aη
≤ RΦβ/2(N).
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This result is used repeatedly in the proof below. We have

ϕ̂N − ϕ = c

N−1∑
j=0

(I − cÂ∗Â)jÂ∗(r̂ − Âϕ)

+ c

N−1∑
j=0

(I − cÂ∗Â)jÂ∗Âϕ− c

N−1∑
j=0

(I − cA∗A)jA∗Aϕ

+ c

N−1∑
j=0

(I − cA∗A)jA∗Aϕ− ϕ

= I + II + III.

Given the source condition and the qualification of Landweber-Fridman regu-
larization, we directly have that ||III||2 = OP (Φβ(N)). Moreover

||I||2 = OP

⎛
⎝||c

N−1∑
j=0

(I − cÂ∗Â)jÂ∗||2||r̂ − Âϕ||2
⎞
⎠

= OP

(
Nn− 2ρ

2ρ+q

)
,

directly from the result in Proposition 4.1, and with hS = OP (hW ). Finally,
thanks to

N−1∑
j=0

(I − cA∗A)jA∗A = I − (I − cA∗A)N

we have:

||II||2 = ||
[
(I − cÂ∗Â)N − (I − cA∗A)N

]
ϕ||2.

By using the Taylor theorem for integer powers of positive operators in Bhatia
and Sinha [7], which applies provided c < 1, we obtain

[(I−cÂ∗Â)N − (I − cA∗A)N ]ϕ = N
(
Â∗Â−A∗A

)
(I − cA∗A)N−1ϕ

+O
(
N(N − 1)‖

(
Â∗Â−A∗A

)
(I − cA∗A)N−2ϕ‖2

)
.

We ignore for the moment the remainder of the Taylor expansion, which is
shown to be negligible under identical conditions. We thus have

||II||2 = ‖N
(
Â∗Â−A∗A

)
(I − cA∗A)N−1ϕ‖2

≤ N2‖Â∗ −A∗‖2‖A(I − cA∗A)N−1ϕ‖2

+N2‖A∗
(
Â−A

)
(I − cA∗A)N−1ϕ‖2

= ||IIa||2 + ||IIb||2.
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Therefore,

||IIa||2 = OP

(
n− 2λ

2λ+p+q NΦβ(N)
)
,

which follows directly from the result of Proposition 4.1 and Assumption A.1;
and

||IIb||2 = N2
〈
A∗
(
Â−A

)
(I − cA∗A)N−1ϕ,A∗

(
Â−A

)
(I − cA∗A)N−1ϕ

〉
= N2

〈(
Â−A

)
(I − cA∗A)N−1ϕ,AA∗

(
Â−A

)
(I − cA∗A)N−1ϕ

〉
≤ N2‖

(
Â−A

)
(I − cA∗A)N−1ϕ‖‖AA∗

(
Â−A

)
(I − cA∗A)N−1ϕ‖

≤ R2N2‖
(
Â−A

)
(I − cA∗A)N−1Φβ/2(A

∗A)‖×

‖AA∗
(
Â−A

)
(I − cA∗A)N−1Φβ/2(A

∗A)‖

≤ R2N2‖
(
Â−A

)
(I − cA∗A)N−1Φβ/2(A

∗A)‖×

‖(I − cA∗A)N−1Φβ/2(A
∗A)A∗A‖

≤ R2N2‖Â−A‖2‖(I − cA∗A)N−1Φβ/2(A
∗A)(A∗A)1/2‖2

= OP

(
n
− 2λ

2λ+p+q NΦβ(N)

)
,

where the last result follows from Proposition 4.1 and Assumption A.1. We
finally notice that the reminder of the Taylor expansion can be treated in
the same way. It can be therefore proven that the reminder is of the order

n− 4λ
2λ+p+q N2Φ2β(N), and thus negligible under the conditions given in the state-

ment of the Theorem. Finally,

||II||2 = OP

(
n− 2λ

2λ+p+q NΦβ(N)
)
.

The result of the theorem follows.

Proof of Theorem 4.2. To obtain uniform consistency of the nonparametric es-
timators, we must impose some additional assumptions. These are listed below.
Without loss of generality, we use the word density irrespective of W being
discrete or continuous.

The marginal density of W can be estimated by different methods depending
on the nature and the dimension of the instrument. Therefore, we suppose that
there is a function d(·), such that

f̂W (w) =
1

n

n∑
i=1

d(Wi − w).

This function could be a kernel for continuous or discrete variables [see 2, 54]; or
a product of indicator functions for purely discrete instruments. Then we define

f̂Z(z) =
1

n

n∑
i=1

KhZ
(Zi − z, z)
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f̂U (u) =
1

n

n∑
i=1

KhU
(Ui − u, u)ΔF̂U (Ui)

f̂T,Z(t, z) =
1

n

n∑
i=1

KhU
(Yi − t, t)KhZ

(Zi − z, z)ΔF̂T (Yi)

f̂T,Z,W (t, z, w) =
1

n

n∑
i=1

KhU
(Yi − t, t)KhZ

(Zi − z, z) d(Wi − w)ΔF̂T (Yi)

f̂T,Z|W (t, z | w) = f̂T,Z,W (t, z, w)

f̂W (w)
.

We first list lemmas that are useful to prove the main result of the theorem.
Some of the results of this section are taken from Centorrino et al. [14] and are
given without proof.

It is convenient to recall that, for any functions ϕ, ϕ̃ ∈ L2
Z , and ψ ∈ L2

U×W ,
we can write (

Â′
ϕϕ̃
)
(u,w) =

∫
â(ϕ(z) + u, z, w)ϕ̃(z)dz

(
Â′∗

ϕψ
)
(z) =

∫ ∫
â∗(ϕ(z) + u, z, w)ψ(u,w)dudw,

where we take

â(ϕ(z) + u, z, w) =f̂T,Z|W (ϕ(z) + u, z | w)− f̂T,Z(ϕ(z) + u, z)

â∗(ϕ(z) + u, z, w) =
f̂T,Z,W (ϕ(z) + u, z, w)f̂U (u)− f̂T,Z(ϕ(z) + u, z)f̂W (w)f̂U (u)

f̂Z(z)
,

to be the operator kernels of Â′
ϕ and Â′∗

ϕ , respectively. When W is a discrete
variable, integrals can be replaced by sums, where appropriate, and we use the
integral notation without loss of generality.

We state the following Lemma.

Lemma A.2 (Centorrino et al. [14]). Let Assumptions 4.12 and 4.8-4.11 hold,
ϕ̃ ∈ L2

Z and ψ ∈ L2
U×W . There exist operators Gϕ†,ϕ̂k

and G∗
ϕ†,ϕ̂k

such that

(
Â′

ϕ̂k
ϕ̃
)
(u,w) =

(
Gϕ†,ϕ̂k

Â′
ϕ† ϕ̃
)
(u,w),(

Â′∗
ϕ̂k

ψ
)
(z) =

(
Â′∗

ϕ†G
∗
ϕ†,ϕ̂k

ψ
)
(z),

and

‖Gϕ†,ϕ̂k
− I‖ ≤ �1κ

−1
n ‖ϕ̂k − ϕ†‖,

‖G∗
ϕ†,ϕ̂k

− I‖ ≤ �2(h
2
uκn)

−1‖ϕ̂k − ϕ†‖

where I is the identity operator, �1, �2 < ∞, positive constants, and κn is such
that (h2

uκn)
−1(δn ∨ γn) → 0, as n → ∞.
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Among other things, this lemma implies that

‖Â(ϕ̂k)− Â(ϕ†)− Â′
ϕ† (ϕ̂k − ϕ†) ‖ ≤ ‖

(
Â′

ϕ̂k
− Â′

ϕ†

)
(ϕ̂k − ϕ†) ‖

=‖
(
Gϕ†,ϕ̂k

− I
)
Â′

ϕ† (ϕ̂k − ϕ†) ‖ ≤ �1κ
−1
n ‖ϕ̂k − ϕ†‖‖Â′

ϕ† (ϕ̂k − ϕ†) ‖.

This condition implies (but it is not implied by) a Lipschitz continuity con-
dition on Â′ [see 26, 42, 45].

We will also use the following results below.

Lemma A.3 (Kaltenbacher et al. (2008, Lemma 2.9, p. 17)). Let a and b be
non-negative. Then there is a positive constant M(a, b) independent of N so that

N−1∑
j=0

(N − j)−a(j + 1)−b ≤ M(a, b)N1−a−bD(N),

with

D(N) =

⎧⎪⎨
⎪⎩
1, a ∨ b < 1

ln(N), a ∨ b = 1

Na∨b−1, a ∨ b > 1

.

Lemma A.4 (Kaltenbacher et al. (2008, Lemma 2.10, p. 18)). Let A be a com-
pact operator such that c‖A‖2 ≤ 1, with A∗ be its adjoint. Further let s ∈ [0, 1],
and N ≥ 0, an integer. Then the following estimates hold

|| (I − cA∗A)N (A∗A)s || =O
(
(N + 1)−s

)
,∥∥∥∥∥c

N−1∑
k=0

(I − cA∗A)j (A∗A)s
∥∥∥∥∥ =O

(
N1−s

)
.

We now turn to the proof of the main result of the Theorem. We have

ϕ̂N − ϕ† = ϕ̂N−1 − ϕ† − cÂ′∗
ϕ̂N−1

(
Â(ϕ̂N−1)

)
= ϕ̂N−1 − ϕ† − cÂ′∗

ϕ̂N−1

(
Â(ϕ̂N−1)− Â(ϕ†)

)
− cÂ′∗

ϕ̂N−1

(
Â(ϕ†)−A(ϕ†)

)
= ϕ̂N−1 − ϕ† − cÂ′∗

ϕ†

(
Â(ϕ̂N−1)− Â(ϕ†)

)
− c
(
Â′∗

ϕ̂N−1
− Â′∗

ϕ†

) (
Â(ϕ̂N−1)−A(ϕ†)

)
− cÂ′∗

ϕ†

(
Â(ϕ†)−A(ϕ†)

)
= ϕ̂N−1 − ϕ† − cÂ′∗

ϕ† Â
′
ϕ†

(
ϕ̂N−1 − ϕ†

)
− cÂ′∗

ϕ†

(
Â(ϕ̂N−1)− Â(ϕ†)− Â′

ϕ† (ϕ̂N−1 − ϕ†)
)

− c
(
Â′∗

ϕ̂N−1
− Â′∗

ϕ†

) (
Â(ϕ̂N−1)−A(ϕ†)

)
− cÂ′∗

ϕ†

(
Â(ϕ†)−A(ϕ†)

)
,

where the second line follows from A(ϕ†) = 0. By replacing iteratively ϕ̂j , for
all k = 0, . . . , N − 2, and letting êk = ϕ̂k − ϕ†, for all k = 0, 1, 2, . . . , we finally
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obtain

êN =
(
I − cÂ′∗

ϕ†Â
′
ϕ†

)N (
ϕ0 − ϕ†

)
− c

N−1∑
k=0

(
I − cÂ′∗

ϕ†Â
′
ϕ†

)k
Â′∗

ϕ†

(
Â(ϕ†)−A(ϕ†)

)

− c

N−1∑
j=0

(
I − cÂ′∗

ϕ†Â
′
ϕ†

)N−k−1

Â′∗
ϕ†

(
Â(ϕ̂k)− Â(ϕ†)− Â′

ϕ† êk

)

− c

N−1∑
k=0

(
I − cÂ′∗

ϕ†Â
′
ϕ†

)N−k−1 (
Â′∗

ϕ̂k
− Â′∗

ϕ†

)(
Â(ϕ̂k)−A(ϕ†)

)
= I + II + III + IV.

The first two terms are similar as in the asymptotic expansion of Landweber-
Fridman regularization for linear inverse problems (see the proof of Theorem
4.1). By contrast, the terms in III and IV come from the nonlinearity of the
inverse problem in our framework. As a matter of fact, these latter terms are
identically zero when the ill-posed inverse problem is linear. To control these
terms, we use the main result provided in Lemma A.2.

Let δn and γn to be defined as in Assumption 4.12. We again use the letter
R to denote a strictly positive constant, which may take different values in
different instances. We start by considering the term in I. It follows from the
strong source condition that

||I||2 ≤ 2||
[(

I − cÂ′∗
ϕ†Â

′
ϕ†

)N
−
(
I − cA′∗

ϕ†A
′
ϕ†

)N]
(A′∗

ϕ†A
′
ϕ†)

β/2v||2

+ 2||
(
I − cA′∗

ϕ†A
′
ϕ†

)N
(A′∗

ϕ†A
′
ϕ†)

β/2v||2

= 2||Ia||2 + 2||Ib||2.

Under the same conditions outlined earlier, ||Ib||2 = OP

(
N−β

)
, and

||Ia||2 = OP

(
γnN

(1−β)/2
)
.

Similarly, for II, we have

||II||2 ≤ ||c
N−1∑
j=0

(
I − cÂ′∗

ϕ†Â
′
ϕ†

)j
Â′∗

ϕ† ||
2||Â(ϕ†)−A(ϕ†)||2 = OP

(
Nδ2n

)
.

We now control the nonlinear terms following the approach in Centorrino
et al. [14]. Let(

E||III||2
)1/2

≤ c

N−1∑
k=0

(
E

∥∥∥∥(I − cÂ′∗
ϕ† Â

′
ϕ†

)N−k−1
Â′∗

ϕ†

∥∥∥∥2 ||Â(ϕ̂k)− Â(ϕ†)− Â′
ϕ† (ϕ̂k − ϕ†)||2

)1/2
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≤ cRκ−1
n

N−1∑
k=0

(N − k)−1/2
(
E||êk||4E||Â′

ϕ† êk||
4
)1/4

,

where the second inequality follows from Lemma A.4 with s = 0.5. Similarly,(
E||IV ||2

)1/2

=

⎛
⎝E

∥∥∥∥∥c
N−1∑
k=0

(
I − cÂ′∗

ϕ† Â
′
ϕ†

)N−k−1
Â′∗

ϕ†

(
G∗

ϕ̂k,ϕ†
− I
) (

Â(ϕ̂k)−A(ϕ†)
)∥∥∥∥∥

2
⎞
⎠

1/2

≤ c

N−1∑
k=0

(
E

∥∥∥∥(I − cÂ′∗
ϕ† Â

′
ϕ†

)N−k−1
Â′∗

ϕ†

∥∥∥∥2 ∥∥∥Gϕ̂k,ϕ† − I
∥∥∥2 ∥∥∥Â(ϕ̂k)−A(ϕ†)

∥∥∥2
)1/2

≤ cR(h2
uκn)

−1
N−1∑
k=0

(N − k)−1/2

(
E ‖êk‖2

∥∥∥Â(ϕ̂k)−A(ϕ†)
∥∥∥2)1/2

≤ cR(h2
uκn)

−1
N−1∑
k=0

(N − k)−1/2

(
E ‖êk‖4 E

∥∥∥Â′
ϕ† êk

∥∥∥4)1/4

+ cR(h2
uκn)

−1
N−1∑
k=0

(N − k)−1/2

(
E ‖êk‖4 E

∥∥∥Â(ϕ†)−A(ϕ†)
∥∥∥4)1/4

≤ cR(h2
uκn)

−1
N−1∑
k=0

(N − k)−1/2

(
E ‖êk‖4 E

∥∥∥Â′
ϕ† êk

∥∥∥4)1/4

+ cRδn(h
2
uκn)

−1
N−1∑
k=0

(N − k)−1/2
(
E ‖êk‖4

)1/4

= O
(
h−2
u

(
E||III||2

)1/2)
+ cRδn(h

2
uκn)

−1
N−1∑
k=0

(N − k)−1/2
(
E ‖êk‖4

)1/4
.

The last result implies

E||III||2 = o
(
E||IV ||2

)
,

so that the convergence of the nonlinearity term is dominated by the terms in
IV .

We prove the result of the Theorem by induction. We let

E ‖êk‖2 =O
(
(k + 1)δ2n + (k + 1)1−βγ2

n + (k + 1)−β
)

E
∥∥∥Â′

ϕ† êk

∥∥∥2 =O
(
δ2n + (k + 1)−βγ2

n + (k + 1)−β−1
)
,

and for an integer l ≥ 1(
E ‖êk‖2l

)1/2l
=O
(
E ‖êk‖2

)1/2
(
E
∥∥∥Â′

ϕ† êk

∥∥∥2l)1/2l

=O

(
E
∥∥∥Â′

ϕ† êk

∥∥∥2)1/2

.

The final result is established by controlling the remaining terms. We have(
E||III||2

)1/2
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≤ Rκ−1
n

(
δ2n

N−1∑
k=0

(N − k)
−1/2

(k + 1)
1/2

+ γ2
n

N−1∑
k=0

(N − k)
−1/2

(k + 1)1/2−β +

N−1∑
k=0

(N − k)
−1/2

(k + 1)−β−1/2

)
,

and we analyze these terms one by one.
First

δ2n

N−1∑
k=0

(N − k)
−1/2

(k + 1)1/2 ≤ Rδ2n

(
N−1∑
k=0

(N − k)
−1

)1/2(N−1∑
k=0

(k + 1)

)1/2

≤ Rδ2nN(ln(N))1/2.

Similarly,

γ2
n

N−1∑
k=0

(N − k)
−1/2

(k + 1)1/2−β ≤ Rγ2
n

{
N1−β(ln(N))1/2 β ∈ (0, 1/2)

N1−β β ∈ [1/2, 1]
.

The condition in Assumption 4.14(iii) is enough to control the latter terms so
that they are both negligible asymptotically. For the bias component, we have
instead

N−1∑
k=0

(N − k)
−1/2

(k + 1)−β−1/2 ≤ R

⎧⎪⎨
⎪⎩
N−β 0 < β < 1/2

N−1/2 ln(N) β = 1/2

N−1/2 1/2 < β ≤ 1

.

Thus(
E||III||2

)1/2
= O

(
κ−1
n

(
δ2nN(ln(N))1/2 + γ2

nN
1−β(ln(N))1/2

+ N−β/2(Nβ/21I (β < 1/2) +N−β/2 ln(N)1I (β = 1/2) +N (β−1)/2)
))

.

In an analogous fashion, one can prove that

δn(h
2
uκn)

−1
N−1∑
k=0

(N − k)
−1/2

(
E ‖êk‖4

)1/4
≤ Rδn(h

2
uκn)

−1
(
δnN(ln(N))1/2 + γnN

1−β/2(ln(N))1/2 +N (1−β)/2
)
.

So that finally,

(
E||IV ||2

)1/2
= O

(
h−2
u

(
E||III||2

)1/2
+ δn(h

2
uκn)

−1
(
δnN(ln(N))1/2 + γnN

1−β/2(ln(N))1/2 +N (1−β)/2
))

.
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Because of the restriction imposed in Assumption 4.14(i), we have that

Nδ2n(h
2
uκn)

−1(ln(N))1/2 �
√
Nδn

δnγn(h
2
uκn)

−1N1−β/2(ln(N))1/2 �γnN
(1−β)/2

δn(h
2
uκn)

−1N (1−β)/2 =o(N−β/2),

Finally, we need to bound the term h−2
u

(
E||III||2

)1/2
. The bias component

can be controlled as follows: for β < 1/2, it is enough to have (h2
uκn)

−1N−β/2 =
O(1), and, for β = 1/2, we need (h2

uκn)
−1N−1/4 ln(N) = O(1). However, for

β > 1/2, this requires

(h2
uκn)

−1N (β−1)/2 = O(1),

which, for β ≤ 1 and h2
uκn = o(1), cannot be satisfied for all β’s. Therefore,

we say there exists a β∗ < 1, such that the condition above is satisfied. This is
equivalent to the condition given in Assumption 4.14(iii). Finally, reasoning as
above,

δ2n(h
2
uκn)

−1N(ln(N))1/2 �
√
Nδn

γ2
n(h

2
uκn)

−1N1−β(ln(N))1/2 =o
(
γnN

(1−β)/2
)
.

The result of the Theorem follows from Markov’s inequality.
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