
Electronic Journal of Statistics
Vol. 15 (2021) 1034–1084
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1808

Forecast evaluation of quantiles,

prediction intervals, and other

set-valued functionals∗

Tobias Fissler1, Rafael Frongillo2, Jana Hlavinová1
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Abstract: We introduce a theoretical framework of elicitability and iden-
tifiability of set-valued functionals, such as quantiles, prediction intervals,
and systemic risk measures. A functional is elicitable if it is the unique min-
imiser of an expected scoring function, and identifiable if it is the unique
zero of an expected identification function; both notions are essential for
forecast ranking and validation, and M - and Z-estimation. Our framework
distinguishes between exhaustive forecasts, being set-valued and aiming at
correctly specifying the entire functional, and selective forecasts, content
with solely specifying a single point in the correct functional. We establish
a mutual exclusivity result: A set-valued functional can be either selectively
elicitable or exhaustively elicitable or not elicitable at all. Notably, since
quantiles are well known to be selectively elicitable, they fail to be exhaus-
tively elicitable. We further show that the classes of prediction intervals and
Vorob’ev quantiles turn out to be exhaustively elicitable, hence not selec-
tively elicitable, but still selectively identifiable. In particular, we provide a
mixture representation of elementary exhaustive scores, leading the way to
Murphy diagrams. We establish that the shortest prediction interval and
those specified by an endpoint or midpoint in general fail to be elicitable
with respect to either notion, unless an endpoint is given via a quantile. We
end with a comprehensive literature review on common practice in forecast
evaluation of set-valued functionals.
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1. Introduction

Decision making in the presence of uncertainty is a regular task faced by many
stakeholders in society. This uncertainty may have many sources, one of which
stems from unknown or random future events. For example, in agriculture the
right time for harvesting depends on the weather in the forthcoming days; in
business, an investment decision in a production facility depends on future de-
mand; in politics, decisions for travel restrictions or lockdowns heavily depend
on the anticipated future development of a pandemic. Predicting uncertain fu-
ture events is therefore urgent and ubiquitous.
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The presence of various sorts of forecasts and society’s reliance on them calls
for a careful assessment and evaluation, basically focusing on two complemen-
tary aspects: First, are given forecasts good or reliable in absolute terms? And
second, how well have certain forecasts performed in comparison to some al-
ternative predictions, assessing their relative quality? Clearly, these questions
can only be answered ex post, given observations of the future events in ques-
tion. Then, the reliability or calibration can be assessed in terms of moment or
identification functions. Forecast comparison and ranking, in turn, commonly
employ loss or scoring functions.

To perform forecast evaluation properly, one must specify a certain quality
criterion or directive the forecasts should follow. This directive might be given
indirectly in terms of a cost, loss, or score, such that good forecasts aim to
minimise this criterion (in expectation). This directive can also be formulated
directly, e.g. as the whole probability distribution of the uncertain event, cap-
turing the entire inherent uncertainty, or as a summary measure thereof, called
a functional, such as the mean, variance, or a certain risk measure. When the
directive is formulated directly, it is crucial that the tools of forecast evaluation,
chiefly scoring and identification functions, are in line with this directive. This
alignment leads to the notions of strictly consistent scores, which are minimised
in expectation by the correctly specified forecasts, and strict identification func-
tions, whose roots in expectation are the correctly specified forecasts.

The literature on forecast evaluation has mainly focused on single-valued
functionals, such as real-valued and vector-valued point forecasts or probabilistic
forecasts, where a single correct value is specified for each possible distribution
(for technical definitions and an account of the literature, we refer to Section
2.1). Yet set-valued functionals are abound; prominent examples include quan-
tiles (see also option (ii) of the interesting discussion provided in Mizera (2010,
p. 170)), the mode, and prediction intervals, which may all be non-unique and
therefore set-valued. Applications bring many other examples, such as the set-
valued systemic risk measures introduced in Feinstein, Rudloff andWeber (2017)
which specify the entire set of capital allocations adequate to render a financial
system’s risk acceptable. Set-valued functionals also naturally arise via expecta-
tions or quantiles of random sets (Molchanov, 2017), such as from climatology
and meteorology (the area affected by a flood), reliability engineering (parts of
a machine being affected by extreme heat) or medicine (tumorous tissue in the
human body); cf. Bolin and Lindgren (2015). We discuss these applications and
several others in Section 6 with a special focus on quantiles of random sets in
Section 5.

Techniques developed to evaluate single-valued forecasts do not in general
suffice for set-valued functionals. For functionals like the mode or the α-quantile,
it is common to restrict to the set of distributions with a unique mode or α-
quantile (Heinrich, 2014; Fissler and Ziegel, 2019), yet one may be interested
in distributions with multiple modes or quantiles. Moreover, many functionals,
such as quantiles of random sets, are inherently set-valued and such a restriction
is not available, or too much of a simplification. E.g. Buansing, Golan and
Ullah (2020) consider interval-valued forecasts for interval-valued observations,
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proposing several different loss functions to evaluate their forecasts without
providing a discussion of which one is best suited for the situation at hand.
We therefore see the need for a comprehensive theoretical framework for the
evaluation of forecasts for set-valued functionals.

It turns out that already for the definition of elicitation (or identification) of
a set-valued functional, there are several possibilities, depending on the form the
forecasts take. One may ask for an arbitrary element of the functional, an arbi-
trary subset, or perhaps even the entire set itself. For the case of the α-prediction
interval, and the uniform distribution on [0, 1], these definitions correspond to
any subinterval of [0, 1] of length at least α, any set of such intervals, or the
entire set of all such intervals. Moreover, if a set-valued functional is elicitable
in one of these corresponding senses, does it continue to be elicitable if one spec-
ifies a particular element of the functional to be elicited, such as the shortest
α-prediction interval; or if it is not elicitable in one of the senses above, could
such a specification render it elicitable?

In this paper, we present a general theoretical framework to evaluate the
forecasts of set-valued functionals, which clarifies and expands upon these ques-
tions. We begin with a thorough definition of elicitability and identifiability
of set-valued functionals (Section 2). In particular, as alluded to in the above
questions, we define two types of set-valued elicitation (identification). For the
selective type, we follow Lambert and Shoham (2009) and Gneiting (2011a)
where a single-valued forecast must be among the set of correct values specified
by the functional, as is also typical for quantiles (Koenker, 2005). In contrast, the
exhaustive type more ambitiously asks one to forecast the entire set of correct
values, and requires this set to be the unique minimiser (zero) of the expected
score (identification function). We comment on the implications of the two dif-
ferent modes of forecasts and of elicitability on M -estimation and on forecast
comparison in Subsection 2.3.

The main result of this article, Theorem 3.9, states that the two types of
elicitability are mutually exclusive: a set-valued functional is either selectively
elicitable or exhaustively elicitable, or not elicitable at all, subject to mild reg-
ularity conditions. The proof follows from a refinement of the classical result
(Proposition 3.4) that elicitable functionals have Convex Level Sets (CxLS),
meaning that if two distributions have the same functional value, any mixture
of the two has the same functional value. This mutual exclusivity result is pow-
erful in its ability to rule out elicitability of one type or the other. For example,
it is natural to ask for the full set of α-quantiles of a random variable, yet as
quantiles are known to be selectively elicitable, they must fail to be exhaustively
elicitable. Interestingly, any specification of the quantile, such as the lower quan-
tile, or Value at Risk in the risk management literature, is also not elicitable in
general; see Corollary 3.15 and the discussion thereafter.

We illustrate our framework with new results for prediction intervals (Sec-
tion 4) and Vorob’ev quantiles (Section 5). Prediction intervals are a rele-
vant statistical tool that aims at issuing forecasts that account for the un-
certainty about the future outcome, reporting an interval into which a given
random variable will fall with an ex ante specified certainty or coverage α ∈
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(0, 1] rather than merely reporting a single point. They are used in a wide
range of applications, most recently e.g. in the field of epidemiology where
many forecasts of case or death counts are issued in the form of intervals,
cf. https://covid19forecasthub.org or Bracher et al. (2020) and references
therein. We show that the whole class of α-prediction intervals is exhaustively
elicitable (Theorem 4.2). While this immediately rules out their selective elic-
itability (Corollary 4.7), we consider certain interesting specifications of pre-
diction intervals. If the midpoint or an endpoint is given by a constant, this
specification is elicitable (Appendix A). However, if the midpoint or an end-
point is given via a general identifiable functional, it is in general not elicitable,
unless the endpoint is specified via a quantile (Propositions 4.10 and 4.12). We
also show that the shortest prediction interval is not elicitable in either sense
(Theorem 4.16). The results of Section 4 complement and generalise recent re-
sults established independently in Brehmer and Gneiting (2020). In Section 5
we establish the exhaustive elicitability and selective identifiability of Vorob’ev
quantiles of random closed sets. For an application to systemic risk measures, we
refer the reader to Fissler, Hlavinová and Rudloff (2021), where the theoretical
framework of this paper has been applied to establish selective identifiability,
exhaustive elicitability, and mixture representations of exhaustive scoring func-
tions, leading to Murphy diagrams. We close in Section 6 with a comprehensive
literature review on forecast evaluation for set-valued quantities, covering spatial
statistics, machine learning, engineering, climatology and meteorology, and phi-
losophy, leaving many interesting avenues for future research. Technical proofs
and further interesting results are deferred to Appendix C and B, respectively.

2. Two types of elicitability and identifiability

2.1. Scoring and identification functions for single-valued
functionals

We use the decision-theoretic framework described for example in Gneiting
(2011a); cf. Savage (1971); Osband (1985); Lambert, Pennock and Shoham
(2008); Fissler and Ziegel (2016, 2019). Let (Ω,F,P) be some complete, atomless
probability space rich enough to accommodate all random elements mentioned
in the sequel. With Y we denote an observation of interest, taking values in
some measurable space (O,O), called observation domain. Forecasts for Y are
denoted by X, taking values in a measurable space (A,A) called action domain.
We assume that the directive for an ideal forecast is given in terms of a statis-
tical functional of the (conditional) distribution F of Y (given some σ-algebra
which makes X measurable). Mathematically, this is a map T : M → A, where
M is some class of probability measures or probability distribution functions on
(O,O). All functions are tacitly assumed to be measurable. A scoring function
is a map S : A × O → R∗ := (−∞,∞]. It is negatively oriented, meaning that
a forecast x ∈ A receives the penalty S(x, y) if y ∈ O materialises. Statistically,
the relative quality of a prediction observation sequence (Xt, Yt), t = 1, . . . , N ,

https://covid19forecasthub.org
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is evaluated by S in terms of the realised score

1

N

N∑
t=1

S(Xt, Yt). (2.1)

Invoking an expected utility maximisation argument or a suitable law of large
numbers, it has been widely argued (Murphy and Daan, 1985; Engelberg, Man-
ski and Williams, 2009) that a scoring function should incentivise truthful fore-
casts in that the Bayes-act coincides with the given directive. We say that S is
incentive compatible or M-consistent for T if

S̄(T (F ), F ) ≤ S̄(x, F ) (2.2)

for all x ∈ A and F ∈ M, implicitly assuming that S̄(x, F ) :=
∫
S(x, y)dF (y)

exists. If additionally equality in (2.2) implies that x = T (F ), S is strictly M-
consistent for T . A functional that admits a strictly consistent scoring function
is called elicitable (Osband, 1985; Lambert, Pennock and Shoham, 2008). As
such, the elicitability of a functional opens the way to meaningful forecast com-
parison (Gneiting, 2011a) which is closely related to comparative backtests in
finance (Fissler, Ziegel and Gneiting, 2016; Nolde and Ziegel, 2017). Similarly,
it is crucial for M -estimation (Huber, 1967; Huber and Ronchetti, 2009) and re-
gression, such as quantile regression (Koenker and Basset, 1978; Koenker, 2005)
or expectile regression (Newey and Powell, 1987).

While scoring functions serve the purpose of forecast comparison and ranking,
we employ identification functions when it comes to forecast validation. Simi-
larly to a scoring function, an identification function is a map V : A× O → Rk

where we again make the tacit assumption that V̄ (x, F ) :=
∫
V (x, y)dF (y) ex-

ists for all x ∈ A, F ∈ M with the additional assumption that the expectation
be finite. V is an M-identification function for T if V̄ (T (F ), F ) = 0. It is a
strict M-identification function for T if additionally V̄ (x, F ) = 0 implies that
x = T (F ). In the literature on point-valued functionals, it turned out to be
appropriate that k coincides with the dimension of the forecasts (Osband, 1985;
Frongillo and Kash, 2015; Fissler and Ziegel, 2016). Since statistical practice de-
mands to evaluate the realised identification function, which is the counterpart
of (2.1) upon replacing S by V , V simply needs to map to a real vector space.
One can even be more flexible and use an infinite-dimensional space. E.g. in
Proposition 4.20 the identification function maps to R[−1,1], the space of func-
tions from [−1, 1] to R. One can also relax the requirement that the expected
identification function attains a 0 at the correctly specified forecast. It can rather
attain some predefined particular value(s)—the important requirement is that
this value be identifiable in the common sense.

In statistics and econometrics, identification functions are often called mo-
ment functions and give rise to the (generalised) method of moments (Newey
and McFadden, 1994) or Z-estimation. For a discussion of identifiability and
calibration in the context of backtesting risk measures, we refer the reader to
the insightful papers Davis (2016) and Nolde and Ziegel (2017). For a recent
general perspective on identification, see Basse and Bojinov (2020).
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2.2. Selective and exhaustive scoring and identification functions

When T is set-valued, we may write T : M → 2W , where W is some generic
space. As mentioned in the Introduction, we distinguish two types of fore-
casts with the corresponding notions of scoring and identification functions. In
decision-theoretic terms, this translates into two sensible choices for the action
domain A:

(i) A = Asel ⊆ W : The elements of the action domain Asel representing possi-
ble forecasts are points in the spaceW . Truthful reporting means that there
are generally multiple best actions, namely all selections t ∈ T (F ) ⊆ Asel

for F ∈ M. Mnemonically, we shall refer to Asel as a selective action
domain.

(ii) A = Aexh ⊆ 2W : The elements of the action domain Aexh representing
possible forecasts are subsets of the space W . Truthful reporting means
that there is a unique best action, namely the exhaustive functional T (F ) ∈
Aexh for F ∈ M. Similarly, we shall refer to Aexh as an exhaustive action
domain.

The two different choices of action domains lay claim to different levels of pre-
cision and ambition of the forecasts. For a certain functional T : M → 2W , the
connection between the choice of the selective action domain Asel ⊆ W and the
exhaustive action domain Aexh ⊆ 2W will be specified if needed for a certain
result, otherwise remaining unspecified. However, a sensible connection between
the two choices we have in mind is Asel =

⋃
B∈Aexh

B .
We continue to use the dichotomy introduced above also for scoring functions

evaluating forecasts for some set-valued functional T : M → 2W . Let M′ ⊆ M
be some generic subset.

Definition 2.1 (Consistency, elicitability). (i) A selective scoring function
Ssel : Asel × O → R∗ is M′-consistent for T : M → 2Asel if

S̄sel(t, F ) ≤ S̄sel(x, F ) ∀x ∈ Asel, ∀t ∈ T (F ), ∀F ∈ M′. (2.3)

The selective score Ssel is strictly M′-consistent for T if it is M′-consistent
for T and if equality in (2.3) implies that x ∈ T (F ). T is selectively elic-
itable on M′ if there is a strictly M′-consistent selective scoring function
for T .

(ii) An exhaustive scoring function Sexh : Aexh × O → R∗ is M′-consistent for
T : M → Aexh if

S̄exh(T (F ), F ) ≤ S̄exh(B,F ) ∀B ∈ Aexh, ∀F ∈ M′. (2.4)

The exhaustive score Sexh is strictly M′-consistent for T if it is M′-
consistent for T and if equality in (2.4) implies that B = T (F ). T is
exhaustively elicitable on M′ if there is a strictly M′-consistent exhaus-
tive scoring function for T .

Unless mentioned explicitly otherwise, we tacitly assume that all scoring func-
tions are M′-finite in the sense that S̄sel(x, F ), S̄exh(B,F ) < ∞ for all x ∈ Asel,
B ∈ Aexh, F ∈ M′.
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If we merely say that T : M → 2W is (selectively or exhaustively) elic-
itable, we mean it is (selectively or exhaustively) elicitable on M. Assuming
M-finiteness is convenient in many proofs and is a standard assumption in the
literature (Ziegel, 2016a; Fissler and Ziegel, 2016; Brehmer and Strokorb, 2019;
Wang and Wei, 2020). Note that without stipulating M-finiteness, the strict
M-consistency of a selective (exhaustive) scoring function Ssel (Sexh) already
implies that S̄sel(t, F ) ∈ R for all F ∈ M, t ∈ T (F ) (S̄exh(T (F ), F ) ∈ R for all
F ∈ M). According to Gneiting and Raftery (2007) we call any two (selective
or exhaustive) scoring functions S, S′ : A × O → R equivalent if there is some
λ > 0 and some function a : O → R such that S′(x, y) = λS(x, y) + a(y). It
is immediate to see that this equivalence relation preserves M-consistency, and
also strict M-consistency, subject to a being M-integrable. If there is no risk of
confusion, we shall drop the indices “sel” and “exh” to indicate the difference
between selective and exhaustive interpretations, respectively.

For identification functions, we again make the distinction between selective
and exhaustive identification functions to allow for a rigorous treatment of set-
valued functionals.

Definition 2.2 (Identification function, identifiability). (i) A map Vsel : Asel×
O → Rk is a selective M′-identification function for T : M → 2Asel if
V̄sel(t, F ) = 0 for all t ∈ T (F ) and for all F ∈ M′. Moreover, Vsel is a
strict selective M′-identification function for T if

V̄sel(x, F ) = 0 ⇐⇒ x ∈ T (F ), ∀x ∈ Asel, ∀F ∈ M′. (2.5)

T is selectively identifiable on M′ if it possesses a strict selective M′-
identification function.

(ii) A map Vexh : Aexh × O → Rk is an exhaustive M′-identification function
for T : M → Aexh if V̄exh(T (F ), F ) = 0 for all F ∈ M′. Moreover, Vexh is a
strict exhaustive M′-identification function for T if

V̄exh(B,F ) = 0 ⇐⇒ B = T (F ), ∀B ∈ Aexh, ∀F ∈ M′. (2.6)

T is exhaustively identifiable on M′ if it possesses a strict exhaustive M′-
identification function.

Again, we say that T : M → 2W is (selectively or exhaustively) identifiable,
if we mean that it is (selectively or exhaustively) identifiable on M.

For single-valued functionals such as the mean, the distinction between selec-
tive and exhaustive elicitability is obsolete, since any choice of an action domain
leads to a unique best action. Hence, one is actually always in the exhaustive
setting, and there is no point in mentioning this fact explicitly. Of course, we
could formally identify a point-valued functional T ′ : M → A′ with the set-
valued functional T : M → A = {{a} | a ∈ A′} where T (F ) = {T ′(F )}. Then
the following lemma holds.

Lemma 2.3. Let T ′ : M → A′ be some point-valued functional. Define the set-
valued functional T (F ) := {T ′(F )}, F ∈ M. Then T , considered as a map to the
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power set 2A
′
, is selectively elicitable (identifiable) if and only if T , considered

as a map to the exhaustive action domain A = {{a} | a ∈ A′}, is exhaustively
elicitable (identifiable). Moreover, the selective elicitability (identifiability) of
T : M → 2A

′
is equivalent to the elicitability (identifiability) of T ′.

While we are aware of contributions to the literature which consider either
the selective or the exhaustive interpretation only (see Section 6), one novelty in
the present paper is that we thoroughly study and compare these two alternative
notions, which is the content of the Section 3.

2.3. Practical implications on M-estimation and forecast
comparison

Concerning M -estimation, the two modes of elicitability appear equally power-
ful: Indeed, given an i.i.d. sample Y1, . . . , Yn ∼ F ∈ M, for a strictly consistent
selective score Ssel or strictly consistent exhaustive score Sexh for T : M → 2W ,
the corresponding M -estimators are given via

T̂sel(F ) = argmin
x∈W

1

n

n∑
i=1

Ssel(x, Yi), T̂exh(F ) ∈ argmin
B⊆W

1

n

n∑
i=1

Sexh(B, Yi),

(2.7)
where the argmin on the right hand side is a singleton in the limit, due to
the strict consistency of Sexh. From a computational angle, the minimisation
over points x ∈ W in T̂sel(F ) is practically often easier than the minimisation

over all subsets B ⊆ W in T̂exh(F ). In a regression context with i.i.d. explana-
tory variables Z1, . . . , Zn, the situation is slightly different. If T is selectively
elicitable, one can model T (FYi|Zi

) via a selective model m(Zi, θ) ∈ W , where
any correctly specified parameter θ0 ∈ Θ fulfils m(Zi, θ0) ∈ T (FYi|Zi

), where
FYi|Zi

is the conditional distribution of Yi given Zi. Exhaustive models, on the
other hand, are set-valued, M(Zi, θ) ⊆ W . Any correct parameter θ0 ∈ Θ fulfils
M(Zi, θ0) = T (FYi|Zi

). Once the different models have been formulated, the
actual approach for estimating θ0 is basically similar:

θ̂sel ∈ argmin
θ∈Θ

1

n

n∑
i=1

Ssel(m(Zi, θ), Yi), θ̂exh ∈ argmin
θ∈Θ

1

n

n∑
i=1

Sexh(M(Zi, θ), Yi).

(2.8)
So the main consequence of the classification as selectively or exhaustively elic-
itable manifests in the form of the regression model, being either point-valued
or set-valued.

Forecast comparison and ranking, in turn, is straightforward if the form of
the forecasts corresponds to the actual mode of elicitability, that is, if we have
point-valued forecasts in case of selective elicitability, or set-valued forecasts
in case of exhaustive elicitability of T . If the form of the forecasts does not
match the mode of elicitability, however, the situation appears virtually hope-
less: If the forecasts are set-valued, Bj

i for i = 1, . . . , n, j = 1, 2, but T is
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selectively elicitable, one could come up with an ad-hoc-procedure. For fixed
xj
i ∈ Bj

i for all i = 1, . . . , n, j = 1, 2, consider the average score differences
1
n

∑n
i=1 Ssel(x

1
i , Yi)− Ssel(x

2
i , Yi). If the sign is the same for all possible choices

of xj
i ∈ Bj

i and for all i = 1, . . . , n, we have a conclusive ranking. However,
ignoring the computational complexity of this ad-hoc-procedure for a moment,
and the statistical challenges of performing a uniform test, this procedure will
generally not produce a conclusive ranking. For the corresponding situation of
selective forecasts xj

i for i = 1, . . . , n, j = 1, 2 for an exhaustively elicitable
functional, an ad-hoc-procedure could consist in considering the average score
differences 1

n

∑n
i=1 Sexh({x1

i }, Yi) − Sexh({x2
i }, Yi). If one can expect the true

functional to be singleton-valued in relevant cases, this might be reasonable.
But for situations when the true functional is a proper set, e.g. for Vorob’ev
quantiles of random sets (see Section 5), this procedure will not produce rea-
sonable results.

The implications of the two modes of identifiability on Z-estimation and fore-
cast validation are similar. Notably, only the ad-hoc procedure of validating ex-
haustive forecasts Bi, i = 1, . . . , n, with a selective strict identification function
Vsel appears to have slightly less complications: The forecasts can be considered
valid if 1

n

∑n
i=1 Vsel(xi, yi) is 0 (or sufficiently close to it) for all choices xi ∈ Bi

and for all i = 1, . . . , n. Despite the additional computational complexity, this
procedure produces conclusive results.

3. Structural results

Our structural results consist of generalisations of the classical Convex Level
Sets (CxLS) property due to Osband (1985) and their immediate implications
(Section 3.1), the main result on the mutual exclusivity of selective and ex-
haustive elicitability (Section 3.2), and implications of certain specifications of
set-valued functionals in Section 3.3. The most important structural results of
Sections 3.1 and 3.2 are illustrated and summarised in Figure 1.

3.1. CxLS properties and their implications

Definition 3.1. Let T : M → 2W be a set-valued functional and M′ ⊆ M.

(i) T has the selective CxLS property on M′ if for all F0, F1 ∈ M′ and for all
λ ∈ (0, 1) such that (1− λ)F0 + λF1 ∈ M′:

T (F0) ∩ T (F1) ⊆ T
(
(1− λ)F0 + λF1

)
.

(ii) T has the selective CxLS* property on M′ if for all F0, F1 ∈ M′ and for
all λ ∈ (0, 1) such that (1− λ)F0 + λF1 ∈ M′:

T (F0) ∩ T (F1) 
= ∅ =⇒ T (F0) ∩ T (F1) = T
(
(1− λ)F0 + λF1

)
.
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Fig 1. An illustration of the most important structural results of a set-valued functional
T satisfying the proper-subset property. We abbreviate as follows: (sel)ective, (exh)austive,
(el)icitable, (id)entifiable. For two statements A and B, we write A =⇒ B to mean A implies
B, and A ←⊕→ B to mean A and B are mutually exclusive. The three implications without
a reference are standard and follow along the lines of the proof of Proposition 3.4.

(iii) T has the exhaustive CxLS property on M′ if for all F0, F1 ∈ M′ and for
all λ ∈ (0, 1) such that (1− λ)F0 + λF1 ∈ M′:

T (F0) = T (F1) =⇒ T (F0) = T
(
(1− λ)F0 + λF1

)
.

If we omit to mention the class M′ explicitly, we mean that T has the cor-
responding CxLS property on M. The exhaustive CxLS property is the most
common one in the literature, and the one used for point-valued functionals
(Steinwart et al., 2014; Bellini and Bignozzi, 2015; Delbaen et al., 2016; Wang
and Wei, 2020). The selective CxLS property follows the one proposed in Gneit-
ing (2011a), while the selective CxLS* property is novel. However, it is notewor-
thy that the recent paper Brehmer and Strokorb (2019) introduced the notion
of max-functionals. Using our notation, a real-valued functional T : M → R is
called a max-functional if for any F0, F1 ∈ M and λ ∈ (0, 1)

T
(
(1− λ)F0 + λF1

)
= max

(
T (F0), T (F1)

)
.

It is immediate that a real-valued functional T : M → R is a max-functional if
and only if the set-valued functional T+(F ) := [T (F ),∞) satisfies the selective
CxLS* property. The following implications are immediate and are illustrated
in the middle column of Figure 1.

Lemma 3.2. Let T : M → 2W be a set-valued functional and M′ ⊆ M.

(i) If T has the selective CxLS* property on M′, then it also has the selective
and the exhaustive CxLS property on M′.

(ii) If T is singleton-valued on M′, then the selective CxLS property on M′,
the exhaustive CxLS property on M′ and the selective CxLS* property on
M′ are equivalent.
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The second point of Lemma 3.2 underpins why the distinction of the CxLS
properties is obsolete for the point-valued case.

Example 3.3. Prototypical set-valued functionals of distributions over R are
α-quantiles, qα. Straightforward (graphical) considerations show that qα satis-
fies the selective CxLS* property. Further examples satisfying or violating the
respective CxLS properties from Definition 3.1 are listed in Example 3.10.

It follows from the seminal work of Osband (1985) that the exhaustive CxLS
property is necessary for exhaustive elicitability and exhaustive identifiability,
and that the selective CxLS property is necessary for selective elicitability and
selective identifiability. Under additional regularity assumptions and for real-
valued functionals, Steinwart et al. (2014) established that the CxLS property
is also sufficient for both elicitability and identifiability (which is generally not
the case for set-valued functionals; see Figure 1). A novelty is the following
necessity-result.

Proposition 3.4. If T : M → 2Asel is selectively elicitable on M′ ⊆ M, then
it satisfies the selective CxLS* property on M′.

Proof. Let F0, F1 ∈ M′, λ ∈ (0, 1) such that Fλ = (1 − λ)F0 + λF1 ∈ M′, and
suppose there exists t ∈ T (F0) ∩ T (F1). Let S : Asel × O → R∗ be a strictly
M′-consistent selective scoring function for T . Moreover, let x ∈ Asel. Note that
for i ∈ {0, 1}

S̄(x, Fi)− S̄(t, Fi)

{
= 0, if x ∈ T (Fi)

> 0, if x /∈ T (Fi)

due to the strict M′-consistency of S. This implies that

S̄(x, Fλ)− S̄(t, Fλ)

= (1− λ)
(
S̄(x, F0)− S̄(t, F0)

)
+ λ

(
S̄(x, F1)− S̄(t, F1)

)
(3.1){

= 0, if x ∈ T (F0) ∩ T (F1)

> 0, if x /∈ T (F0) ∩ T (F1).

The identity in (3.1) stems from the fact that the expected score S̄(·, ·) behaves
“linearly” in its second argument, which is the integration measure. Again,
invoking the strict M′-consistency of S, the assertion follows.

For our next result, we need to introduce a property which essentially excludes
any degenerate cases of set-valued functionals, e.g. being singleton-valued. Recall
that any point-valued functional, such as the mean functional, can be identified
with a singleton-valued functional.

Definition 3.5. A set-valued functional T : M → 2W has the proper-subset
property on M′ ⊆ M if there are F,G ∈ M′ such that

∅ 
= T (G) � T (F )

and for all ε ∈ (0, 1) there exists a λ0 ∈ (0, ε) such that (1− λ0)F + λ0G ∈ M′.
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Again, if we omit to mention the class M′ explicitly, we mean that T has the
proper-subset property on M.

Example 3.6. The proper-subset property of Definition 3.5 generally depends
very much on the choice of M′. This can be seen easily when considering qα,
the α-quantile. If M′ is the (convex) class of all distributions on R with finite
support, qα satisfies the proper-subset property. E.g., q1/2(δ0/2 + δ1/2) = [0, 1]
and q1/2(δ0/2+ δ2/2) = [0, 2]. If, on the other hand, M′ is the set of all strictly
increasing distribution functions, qα is singleton-valued, and hence clearly vio-
lating the proper-subset property.

Theorem 3.7. If T : M → Aexh satisfies the proper-subset property and the
selective CxLS* property on M′ ⊆ M, it is neither exhaustively elicitable nor
exhaustively identifiable on M′.

Proof. Assume S is a strictly M′-consistent exhaustive scoring function and
V is a strict M′-identification function for T . Let F,G ∈ M′ be such that
∅ 
= T (G) � T (F ). Then

S̄(T (F ), F )− S̄(T (G), F ) < 0 < S̄(T (F ), G)− S̄(T (G), G)

and V̄ (T (G), F ) 
= 0. The proper-subset property implies that there is a suffi-
ciently small λ0 ∈ (0, 1), such that H := (1− λ0)F + λ0G ∈ M′ and, exploiting
the selective CxLS* property yielding T (H) = T (G), we end up with

S̄(T (F ), H)− S̄(T (H), H)

= (1− λ0)
(
S̄(T (F ), F )− S̄(T (G), F )

)
+ λ0

(
S̄(T (F ), G)− S̄(T (G), G)

)
< 0,

which violates the strictM′-consistency. Note that the last inequality only holds
under the tacit assumption that S is M′-finite. Moreover

V̄ (T (H), H) = (1− λ0) V̄ (T (G), F )︸ ︷︷ ︸
�=0

+λ0 V̄ (T (G), G)︸ ︷︷ ︸
=0


= 0.

Hence, V cannot be a strict M′-identification function.

Remark 3.8. Remarkably, the combination of the selective CxLS* property
and the proper-subset property implies that there are F,G ∈ M with T (F ) 
=
T (G) such that for all λ ∈ (0, 1) it holds that T ((1−λ)F +λG) ∈ {T (F ), T (G)}.
That means, in our Theorem 3.7 we directly recover the condition of Theorem
3.3 in Brehmer and Strokorb (2019). Even though their result is stated for
real-valued functionals only, it immediately generalises to the set-valued case.
Hence, the conclusions coincide in both instances implying that T fails to be
(exhaustively) elicitable.

3.2. Mutual exclusivity

We now present our main result, which states that, for functionals satisfying
the proper-subset property, selective and exhaustive elicitability are mutually
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exclusive. The proof follows immediately from Proposition 3.4 and Theorem 3.7;
see Figure 1.

Theorem 3.9 (Mutual exclusivity). Let T : M → Aexh ⊆ 2Asel be a set-valued
functional with the proper-subset property. Then T cannot be both selectively
elicitable and exhaustively elicitable.

This result gives a broad insight into the structure of set-valued elicitability.
It basically establishes the following partition of set-valued functionals:

(1) The class of selectively elicitable functionals.
(2) The class of exhaustively elicitable functionals.
(3) The class of functionals which are not elicitable at all.

The result also gives a powerful tool to rule out elicitability without the need
for a direct argument, which in some cases may appear quite challenging a
priori. We give several example applications of Theorem 3.9 in Example 3.10.
They should be considered within the context of the practical implications on
M -estimation and forecast comparison outlined in Section 2.3.

Example 3.10. (i) Any α-quantile, α ∈ (0, 1) is selectively elicitable. If the
classM is reasonably large, then the α-quantile clearly satisfies the proper-
subset property (see Example 3.6). Hence, it fails to be exhaustively elic-
itable on such a class.

(ii) IfM is the class of distributions on R with discrete support, then the mode
functional is selectively elicitable on M with the strictly M-consistent
selective scoring function S(x, y) = 1{x 
= y} (Heinrich, 2014; Gneiting,
2017). Since the mode functional satisfies the proper-subset property on
M, it also fails to be exhaustively elicitable on M.

(iii) Any elicitable real-valued functional T : M → R induces trivial set-valued
functionals T−(F ) := (−∞, T (F )] and T+(F ) = [T (F ),∞). Clearly, the
elicitability of T is equivalent to the exhaustive elicitability of T− and T+

considered as maps to A− = {(−∞, x] |x ∈ R} and A+ = {[x,∞) |x ∈ R},
e.g. by invoking the revelation principle (Osband, 1985; Gneiting, 2011a;
Fissler, 2017). If T is not constant on M, then T− and T+ also satisfy
the proper-subset property, which means they violate the selective CxLS*
property such that they are not selectively elicitable.
Vice versa, if T+ or T− satisfies the selective CxLS* property, then T or
−T is a max-functional in the sense of Brehmer and Strokorb (2019) such
that T (and −T ) is not elicitable unless it is constant, which recovers their
Corollary 3.4.

(iv) In Fissler, Hlavinová and Rudloff (2021), the exhaustive elicitability of
the set-valued systemic risk measures defined by Feinstein, Rudloff and
Weber (2017) has been established. For a random vector Y representing
a financial system, a measure of systemic risk is defined as a collection of
capital allocations k ∈ Rd such that ρ(Λ(Y + k)) ≤ 0 where ρ is a scalar
risk measure and Λ: Rd → R a non-decreasing aggregation function. The
cash-invariance property of these risk measures implies that they satisfy
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the proper-subset property. This means that they cannot be selectively
elicitable.

(v) In Section 4, we consider the class of α-prediction intervals, i.e., of inter-
vals a random variable will fall into with a probability of at least α. We
show that, on a suitable class of probability distributions M, this class of
α-prediction intervals is exhaustively elicitable on M, and in Lemma 4.6
we construct an example showing that the proper-subset property is sat-
isfied on M. The combination of these results then rules out the selective
elicitability of the class of α-prediction intervals on M.

(vi) Theorem 4.16 shows that there are classes of distributions where the col-
lection of all shortest α-prediction intervals fails to be elicitable in either
sense—selectively and exhaustively; see Remark 4.18 for details. Up to our
knowledge, this is the first non-degenerate example of a set-valued func-
tional which is not elicitable in either sense. (Clearly, any non-elicitable
single-valued functional, such as the variance, would trivially satisfy such
a statement by virtue of Lemma 2.3).

(vii) In Section 5, we establish that Vorob’ev quantiles of random sets are se-
lectively identifiable and exhaustively elicitable. Under the additional mild
proper-subset property, which is satisfied in a lot of settings, this means
that Vorob’ev quantiles cannot be selectively elicitable.

Remark 3.11. Elicitability and identifiability have structural differences in
this context. Most importantly, as illustrated in Figure 1, while selective elic-
itability implies the selective CxLS* property, it is only possible to establish the
necessity of the selective CxLS property for selective identifiability, due to pos-
sible cancellation effects. Hence, it does not seem possible to establish a mutual
exclusivity result for selective and exhaustive identifiability in the spirit of The-
orem 3.9. However, we are unaware of a specific set-valued example (satisfying
the proper-subset property) which is identifiable in both senses.

Figure 1 also informs which of the four combinations of selective / exhaustive
elicitability / identifiability are possible, given the proper-subset property.

(i) Exhaustive elicitability and exhaustive identifiability are jointly possible.
Invoking the revelation principle for identifiability (Fissler, 2017, Proposi-
tion 2.3.2), T+ and T− from Example 3.10(iii) are a specific example for
this, given that the real-valued functional T is both elicitable and identi-
fiable.

(ii) Set-valued systemic risk measures, the class of α-prediction intervals and
Vorob’ev quantiles (Example 3.10(iv), (v), (vii)) all constitute functionals
which are exhaustively elicitable and selectively identifiable.

(iii) The usual α-quantile (Example 3.10(i)) is a prototypical example for a
selectively elicitable and selectively identifiable functional on the class of
all continuous distributions.

(iv) Notably, a combination of Proposition 3.4 and Theorem 3.7 rules out the
existence of a selectively elicitable and exhaustively identifiable functional.
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3.3. Specifications of set-valued functionals

Let us now take a look at specifications of set-valued functionals. For a set
W 
= ∅ and a set-valued functional T : M → 2W , a point-valued functional
T ′ : M → W is a specification of T if T ′(F ) ∈ T (F ) for all F ∈ M. We start
with a lemma, the proof of which is straightforward.

Lemma 3.12. Let T : M → 2A be a set-valued functional with T (F ) 
= ∅ for
all F ∈ M, and let T ′ : M → A be a specification of T .

(i) If S : A × O → R∗ is a (strictly) M-consistent selective scoring function
for T , then it is an M-consistent scoring function for T ′.

(ii) If V : A × O → R is a (strict) selective M-identification function for T ,
then it is an M-identification function for T ′.

Clearly, the scoring function S (identification function V ) that appears in
Lemma 3.12 is only strictly consistent (strict) for T ′ if T is a singleton on
M, that is, T (F ) = {T ′(F )} for all F ∈ M. This suggests the question as
to whether the specification can be elicitable (identifiable) at all, which the
following proposition is concerned with.

Proposition 3.13. Let T : M → 2A be selectively elicitable and T ′ : M → A
a specification of T . Let M1 := {F ∈ M|T (F ) = {T ′(F )}} and suppose that
M\M1 
= ∅.

Let SM (SM1) be the class of strictly M-consistent (M1-consistent) selective
scoring functions for T . If SM = SM1 , then T ′ : M → A is not elicitable.

Proof. Let S ′
M (S ′

M1
) be the class of strictly M-consistent (M1-consistent)

scoring functions for T ′. If SM1 = SM, it holds that S ′
M ⊆ S ′

M1
= SM1 = SM.

However, any S ∈ SM fails to be strictly M-consistent for T ′. Hence, S ′
M =

∅.
A common problem when applying Proposition 3.13 for practical purposes

is that most characterisation results concerning the class of strictly consistent
scoring functions, if known, typically assume regularity conditions on the scoring
functions such as continuity or differentiability; cf. Table 1 in Gneiting (2011b)
or Osband’s Principle (Osband, 1985; Fissler and Ziegel, 2016). Interestingly, an
argument similar to the one used in the proof of Theorem 3.7 leads to a result
which rules out the elicitability of specifications under very weak conditions on
the functional. In particular, it dispenses with regularity conditions on scoring
functions.

In line with Bellini and Bignozzi (2015) we call a functional T ′ from a convex
class of distributions M to some topological space A mixture-continuous if for
any F0, F1 ∈ M the map [0, 1] � λ �→ T ′((1− λ)F0 + λF1) ∈ A is continuous.

Proposition 3.14. Let M be convex and T : M → 2A, T 
= ∅, satisfy the
selective CxLS* property. Suppose there are distributions F,G,H ∈ M such
that

T (F ) ∩ T (G) = {t1}, T (F ) ∩ T (H) = {t2}, with t1 
= t2. (3.2)
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Then, any specification T ′ : M → A of T is neither elicitable nor identifiable.
Moreover, if A is a space with a Fréchet topology, that is, if for any a, b ∈ A
with a 
= b there is an open set U ⊆ A such that a ∈ U and b /∈ U , then any
specification T ′ fails to be mixture-continuous.

Proof. Let T ′ : F → A be a specification of T and suppose S′ : A × O → R∗ is
a strictly M-consistent scoring function for T ′. Let F,G,H ∈ M satisfy (3.2)
with t1 
= t2 specified there. The selective CxLS* property implies that for any
λ ∈ (0, 1) we have that t1 = T ′((1 − λ)F + λG) and t2 = T ′((1 − λ)F + λH).
Then, for t0 = T ′(F ) we have that t0 
= t1 or t0 
= t2. Without loss of generality,
assume t0 
= t1. Therefore, the map γ : [0, 1] → A, λ �→ T ′((1 − λ)F + λG) is
neither injective nor constant, such that Lemma B.1 in Fissler and Ziegel (2019)
implies that T ′ is not identifiable.

Using the fact that t0 = T ′(F ) and t1 = T ′((1 − λ)F + λG), t0 
= t1 for all
λ ∈ (0, 1), we can directly use Brehmer and Strokorb (2019, Theorem 3.3) to
conclude that there is no strictly M-consistent (and M-finite) score for T .

Finally, if A has a Fréchet topology, γ is not continuous, which shows that T ′

is not mixture-continuous. Indeed, let U ⊂ A be an open set such that t0 ∈ U ,
but t1 /∈ U . Then γ−1(U) = {0}, which is not open in [0, 1].

We would like to emphasise that the mere failure of mixture-continuity of T ′

does not rule out its elicitability. Indeed, Proposition 2.2 in Fissler and Ziegel
(2019) (cf. Proposition 3.4 in Bellini and Bignozzi (2015)) only rules out the
existence of a continuous strictly consistent scoring function for T ′.

Corollary 3.15. Let M be a convex class of distributions such that (3.2) is
satisfied for the α-quantile, α ∈ (0, 1). Then no specification of the α-quantile is
elicitable.

Proof. Since the α-quantile is selectively elicitable (see e.g. Gneiting (2011b)),
the claim is directly implied by Proposition 3.14.

Note that (3.2) is satisfied for the α-quantile e.g. if M contains all distribu-
tions with finite support. Corollary 3.15 thus rules out the elicitability of the
lower quantile, known as Value at Risk in quantitative risk management, the
upper quantile (note that the upper quantile is a max-functional in the sense of
Brehmer and Strokorb (2019) such that the non-elicitability follows with Corol-
lary 3.4 therein), or the specification introduced in the recent preprint Aronow
and Lee (2018), relative to such classes.

Notably, Proposition 3.14 rules out the elicitability with an M-finite score,
which also translates to Corollary 3.15. Relaxing this condition and looking at
the 0- and 1-quantile, we arrive at functionals which are both selectively and
exhaustively elicitable, which is the content of Subsection 4.4.

4. Prediction intervals

A common task for the statistical forecaster is to report an interval [a, b] ⊆ R into
which future observations of a given real-valued random variable Y will fall with
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at least a specified coverage probability α ∈ (0, 1], that is, P(Y ∈ [a, b]) ≥ α.
Thereby, the inherent uncertainty of the actual outcome is captured. Any such
interval will be referred to as an α-prediction interval.

The literature on evaluating prediction intervals considers reports for these
functionals typically in the exhaustive sense, meaning that an interval is re-
ported rather than a single point.1 Gneiting and Raftery (2007, Sections 6.2
and 9.3) consider consistent exhaustive scores for the central α-prediction inter-
val or ‘equal-tailed’ α-prediction intervals; cf. Greenberg (2018) for a discussion
of these scores and Bracher et al. (2020) for a timely application of interval
forecasts in the context of epidemiology. This basically amounts to a prediction
of a pair of quantiles at the (1 − α)/2- and (1 − (1 − α)/2)-level. If one fixes a
certain coverage of, say, α, this ansatz can be generalised to construct consistent
scoring functions for a non-central α-prediction interval of which the endpoints
are specified in terms of quantiles at level β and β + α, where β ∈ (0, 1 − α).
Schlag and van der Weele (2015) also consider exhaustive scoring functions for
interval-valued predictions. However, they start with a certain scoring func-
tion of appeal to them and do not thoroughly characterise the functional which
is elicited by this scoring function. We refer to Askanazi et al. (2018) for an
overview of interval forecasts, in which, however, mostly impossibility results
are presented.

There is typically a whole class of α-prediction intervals for Y , resulting in
a collection of subsets of R. In Section 4.2 we show that this whole class of
α-prediction intervals is exhaustively elicitable, subject to sensible conditions
on the class of distributions. As a direct consequence of Theorem 3.9, it is not
selectively elicitable. This fact imposes a substantial challenge to the sound eval-
uation of single arbitrary α-prediction intervals without imposing any further
restrictions. On the other hand, imposing such further restrictions, it is well
known that an α-prediction interval given by two quantiles as its endpoints can
be elicited due to the elicitability of the individual quantiles, if the quantiles are
singletons on the respective class of probability distributions. Such an interval
is a particular specification of the class of α-prediction intervals, and one might
wonder about the elicitability (identifiability) of other specifications. In Section
4.3, we discuss the elicitability and identifiability of several specifications of the
class of α-prediction intervals, with largely negative results.

Our results are nicely complemented by the very recent and independently
developed preprint Brehmer and Gneiting (2020). They essentially study the
subclass of α-prediction intervals with exact coverage α, and show that this
subclass fails to be selectively elicitable; see Remark 4.8 for details. Furthermore,
they establish properties on homogeneous and translation invariant scores for
the central α-prediction interval (or ‘equal-tailed’ α-prediction interval) and

1Reporting a single point in an α-prediction interval does not bear much information
such that selective forecasts are of no practical interest. Concerning exhaustive forecasts,
any interval can be identified with its endpoints and therefore the exhaustive elicitability
(identifiability) is equivalent to the elicitability (identifiability) of a single vector, making use
of the so called revelation principle, originating from Osband (1985, p. 9); see Gneiting (2011a,
Theorem 4).
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show some complementary impossibility results on the shortest α-prediction
interval.

4.1. Notation

Let M0 be the class of Borel probability distributions on R where we delib-
erately overload notation and identify the corresponding Borel measures with
their cumulative distribution functions. Let Ū := {(a, b)ᵀ ∈ R̄2 | a ≤ b}, where
R̄ : = R ∪ {−∞,∞}, and U := {(a, b)ᵀ ∈ R2 | a ≤ b}. For any F ∈ M0 and for
any (a, b)ᵀ ∈ Ū , we set F ([a, b]) := F ([a, b]∩R) = F (b)− F (a−) where F (b) :=
F ((−∞, b]) if b < ∞ and F (∞) := F (R) = 1, and F (a−) := F ((−∞, a)). For
β ∈ [0, 1] and F ∈ M0, recall the definition of the β-quantile, qβ(F ), and the
lower β-quantile, q−β (F ), of F as

qβ(F ) := {t ∈ R̄ |F ((−∞, t)) ≤ β ≤ F ((−∞, t])} ,
q−β (F ) := inf qβ(F ) = inf{t ∈ R̄ |β ≤ F ((−∞, t])} .

We introduce the following subclasses of M0: Let Minc be the class of strictly
increasing distribution functions, Mcont the class of continuous distributions,
and Minc,cont := Minc ∩Mcont. Naturally, the fact that F ∈ Minc implies that
the support of F is whole R. However, to allow for the treatment of distributions
with bounded support, we define the class of α-pseudo-increasing distributions
Mα,inc for α ∈ (0, 1]. For any F ∈ M0 we say that F ∈ Mα,inc if and only if

#qα(F ) = #q1−α(F ) = 1, and (4.1)

∀a ∈ R s.t. F (a−) < 1− α : #qα+F (a−)(F ) > 1 =⇒ qF (a−)(F ) = {a}, (4.2)

where the notation #A denotes the cardinality of a set A. This means that
F ∈ Mα,inc if and only if its α- and (1− α)-quantiles are singletons, and if for
any β ∈ (0, 1− α) the β-quantile or the (β + α)-quantile are singletons.

For any α ∈ (0, 1] and upon identifying any non-empty interval [a, b] ⊆ R

with the vector of its endpoints (a, b)ᵀ ∈ Ū , we formally introduce the class of
α-prediction intervals for a distribution F ∈ M0 as

Iα(F ) := {(a, b)ᵀ ∈ Ū |F ([a, b]) ≥ α} . (4.3)

Clearly, (a, b)ᵀ ∈ Iα(F ) implies that (a−x1, b+x2)
ᵀ ∈ Iα(F ) for all x1, x2 ≥ 0.

That is, Iα(F ) is an upper set with respect to the ordering cone C := (−∞, 0]×
[0,∞). Moreover, Iα(F ) is non-empty since F (R) = 1 ≥ α, implying that
(−∞,∞)ᵀ ∈ Iα(F ). Therefore, we introduce the natural maximal exhaustive
action domain for reports for Iα as U = {∅ 
= A ⊆ Ū |A = A + C}, with the
usual definition of the Minkowski sum. Moreover, for any F ∈ M0, we introduce
several functions closely connected to Iα(F ): First, the function

Γα(F ) : {a ∈ R̄ |F (a−) ≤ 1− α} → (−∞,∞],

a �→ Γα(F )(a) = inf{b ≥ a |F ([a, b]) ≥ α} = q−α+F (a−)(F ) (4.4)
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Fig 2. Graphs of Γ0.95(F1) (red solid), F1 = N (0, 0.22), and Γ0.95(F2) (blue dashed), F2 =
N (−1, 0.62). In light grey, the shortest 0.95-prediction interval of F1 with lower endpoint −1
is depicted.

gives the upper endpoint of the shortest α-prediction interval with lower end-
point a; see Figure 2 for an illustration.

Lemma 4.1. (i) For all F ∈ M0 and for all a ∈ R̄ such that F (a−) ≤ 1−α
it holds that F

(
[a,Γα(F )(a)]

)
≥ α.

(ii) For all F ∈ M0 the function Γα(F ) is increasing and left-continuous.
(iii) For F ∈ Minc, cont the function Γα(F ) is strictly increasing and continu-

ous.
(iv) For F ∈ Mα, inc it holds that lima→−∞ Γα(F )(a) = q−α (F ), and that

Γα(F )−1({∞}) ∈ {∅, q1−α(F )}, which means that ∞ is attained at most
once.

Proof. (i) follows from the right continuity of F . (ii) is implied by the fact that
the functions a �→ F (a−) and β �→ q−β (F ) are increasing and left-continuous.

For (iii) recall that for F ∈ Minc, cont, both a �→ F (a−) and β �→ q−β (F ) are
strictly increasing and continuous. Finally, for (iv) note that for F ∈ Mα, inc,
β �→ q−β (F ) is continuous at α and 1 − α. Since lima→−∞ F (a−) = 0, the first
assertion follows. For the latter, if there is no a ∈ R such that F (a−) = 1−α, the
function Γα(F ) is clearly finite. If there is some a0 ∈ R such that F (a0−) = 1−α
then a0 ∈ q1−α(F ) = {q−1−α(F )} such that it is unique. Γα(F )(q−1−α(F )) =

q−1 (F ) = ∞ if and only if the support of F is unbounded from above. As
q1−α(F ) is a singleton, for all b < a0 it holds that F (b−) < F (a0−). Then
α+F (b−) < 1 and therefore Γα(F )(b), being the lower (α+F (b−))-quantile of
F , is finite.



1054 T. Fissler et al.

Similarly to Γα(F ), we introduce for F ∈ M0 the map dα(F ) : R → [0,∞],

m �→ dα(F )(m) = inf{c ≥ 0 |F ([m− c,m+ c]) ≥ α}, (4.5)

which gives (half of) the length of the shortest α-prediction interval of F , centred
atm. Again, a continuity argument yields that the infimum is attained such that
F
(
[m−dα(F )(m),m+dα(F )(m)]

)
≥ α. Moreover, for α < 1, dα(F ) takes finite

values only.
Note that Iα(F ) corresponds to the epigraph of Γα(F ), given by

epi Γα(F ) := {(a, b)ᵀ ∈ Ū | b ≥ Γα(F )(a), F (a−) ≤ 1− α}, F ∈ M0 ,

which also guarantees the (Borel-) measurability of the set Iα(F ). We also
introduce the graph of Γα(F ) as

graphΓα(F ) :=
{(

a,Γα(F )(a)
)ᵀ ∈ Ū |F (a−) ≤ 1− α

}
, F ∈ M0 .

Finally, we introduce the subclass U∗ ⊆ U of sets which can be written in form
of epigraphs of left-continuous functions γ : [−∞, b] → (−∞,∞], for some b ∈ R

such that γ−1({∞}) ∈ {∅, {b}} and such that lima→−∞ γ(a) = γ(−∞).

4.2. Elicitability and identifiability of the class of α-prediction
intervals

One of the main results of this paper is as follows.

Theorem 4.2. For α ∈ (0, 1] the following assertions hold:

(i) The functional M0 � F �→ graphΓα(F ) is selectively identifiable on
Minc, cont with the strict selective Minc, cont-identification function

Vsel : U × R → R, (x, y) �→ Vsel(x, y) = 1{y ∈ [x1, x2]} − α.

Moreover on M0, Vsel is still a selective M0-identification function for
graphΓα(·) and it is oriented in the sense that for all F ∈ M0 it holds
that V̄ (x, F ) ≥ 0 if and only if x ∈ Iα(F ).

(ii) Let μ be a finite, σ-additive, nonnegative measure on U . The function
Sexh : U × R → R

Sexh(A, y) = −
∫
A∩U

Vsel(x, y) dμ(x) = αμ(A)− μ
(
((−∞, y]× [y,∞)) ∩A

)
(4.6)

is an M0-consistent exhaustive scoring function for Iα.
(iii) If additionally μ is positive on U ,2 then the restriction of Sexh to U∗ × R

is strictly Mα,inc-consistent for Iα, rendering the class of α-prediction
intervals exhaustively elicitable on Mα,inc.

2That means any nonempty open subset of U has positive measure under μ.
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Proof. Part (i) follows from Lemma 4.1 and standard arguments. For part (ii)
let F ∈ M0, A

∗ = Iα(F ) and A ∈ U . Then, using a Fubini argument, we obtain

S̄exh(A,F )− S̄exh(A
∗, F ) =∫

(A∗\A)∩U

V̄sel(x, F ) dμ(x)−
∫

(A\A∗)∩U

V̄sel(x, F ) dμ(x) ≥ 0. (4.7)

The inequality is easily established by recalling that V̄sel(x, F ) ≥ 0 if and only
if x ∈ A∗. The proof of part (iii) is deferred to Appendix C.

Note that in part (iii), the fact that qF (x1−)(F ) is a singleton whenever
#qα+F (x1−)(F ) > 1, implied by F ∈ Mα,inc, plays an important role. If this were
not the case, we would obtain rectangles of points x ∈ Iα(F ) with V̄sel(x, F ) = 0
with positive measure under μ, namely qF (x1−)(F )× qα+F (x1−)(F ). This would
mean that our exhaustive scoring function fails to distinguish between the cor-
rect forecast and one that does not contain some of the points within this rect-
angle. The reasoning behind why the α- and (1 − α)-quantiles are required to
be singletons is similar.

For α = 1, note that Mα,inc only contains distributions with support R.
But in that case, Iα is constant, namely {R} for all distributions, and thus not
interesting. We will therefore exclude the case α = 1 from further discussion.

Remark 4.3. Imposing the normalisation condition S(A, y) ≥ 0 with equality
if and only if A = Iα(δy) = [−∞, y] × [y,∞], it is straightforward to construct
a score equivalent to the one in (4.6) given by

Sμ(A, y) = Sexh(A, y)− Sexh([−∞, y]× [y,∞], y)

= (1− α)μ
(
(−∞, y]× [y,∞)

)
+ αμ(A)− μ

(
((−∞, y]× [y,∞)) ∩A

)
= (1− α)μ

(
((−∞, y]× [y,∞)) \A

)
+ αμ(A \ ((−∞, y]× [y,∞))

)
.

(4.8)

From this stage, one can easily construct a family of elementary scores, Su :=
Sδu , u ∈ U , given by (4.8). As a consequence of Theorem 4.2, these elementary
scores are Mα, inc-consistent for Iα. Clearly, Sμ(A, y) =

∫
Su(A, y)μ(du) which

is a mixture representation in the spirit of Ehm et al. (2016). This opens the way
to the powerful tool of Murphy diagrams u �→ Su(A, y) discussed there as well.
In order to avoid the necessity of choosing a measure μ, one instead considers the
elementary scores in (4.8) over different values of the parameter u ∈ U . In the
one-dimensional case discussed in Ehm et al. (2016) as well as in the case of the
class of α-prediction intervals, one can easily visualise the values of the expected
score differences graphically. With the possibly increasing dimensionality of the
space u comes from, the illustrative accessibility of this approach gets more
involved. We discuss an example with possibly higher dimension in Section 5.
For an illustration of 2-dimensional Murphy diagrams, we refer the reader to
Fissler, Hlavinová and Rudloff (2021).

Intuitively, the class of α-prediction intervals, Iα(F ), of a distribution F
contains a great deal of information about F itself. So one might wonder if
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it is possible to recover F , knowing Iα(F ). If so, this would mean that Iα
actually constitutes a bijection. And consequently, the exhaustive elicitabil-
ity of Iα would directly follow from the existence of strictly proper scoring
rules for probabilisitic forecasts (Gneiting and Raftery, 2007), invoking the
revelation principle (Osband, 1985; Gneiting, 2011a). The following proposi-
tion asserts that Iα is not a bijection, which underlines the novelty of Theo-
rem 4.2.

Proposition 4.4. For α ∈ (0, 1) the functional Iα is not injective on Mα,inc.

Proof. Assume first that α = 1/n for some integer n > 1. For any a ∈ [0, 1]
define the distribution Fa ∈ Mα,inc with density fa(y) = 1 − a cos(2πny) for
y ∈ [0, 1] and fa(y) = 0 otherwise. For all a ∈ [0, 1] and x ∈ [0, 1 − α], observe

that
∫ x+α

x
fa(y)dy = α − a

∫ x+1/n

x
cos(2πny)dy = α. Hence, we have Iα(Fa) =

{(x, x + α)ᵀ : x ∈ [0, 1 − α]} ∪ {(z, α)ᵀ : z ≤ 0} ∪ {(1 − α, z)ᵀ : z ≥ 1} for all
a ∈ [0, 1], violating injectivity of Iα.

Otherwise, let β := 1%α > 0, where a%b := a− b�a/b�, the real analog of the
modulus for a, b ∈ R, a, b > 0. For all 0 ≤ a ≤ β/(α− β), define the probability
density

fa(y) =

⎧⎪⎨⎪⎩
0 y /∈ [0, 1]

1− a(α/β − 1) y%α ≤ β

1 + a y%α > β.

Thus, f0 is the uniform density on [0, 1], and for a > 0, fa raises and lowers
the density according to where y falls modulo α. Letting Fa ∈ Mα,inc be the
corresponding probability measure, we will show that Iα(Fa) = Iα(F0) for all
a > 0. We again see that Iα(F0) = {(x, x+ α)ᵀ : x ∈ [0, 1− α]} ∪ {(z, α)ᵀ : z ≤
0} ∪ {(1 − α, z)ᵀ : z ≥ 1}. For Fa, note that the Lebesgue measure of the set
{y ∈ [x, x + α] : y%α ≤ β} is exactly β for all x. Thus, when x ∈ [0, 1 − α],
we have Fa([x, x + α]) = β(1 − a(α/β − 1)) + (α − β)(1 + a) = β − a(α −
β) + (α − β) + a(α − β) = α, as desired. The cases [z, α] and [1 − α, z] follow
immediately.

Remark 4.5. Variants of prediction intervals other than connected intervals
might also be natural to consider, e.g., wrapped intervals (allowing intervals
of the form (−∞, b] ∪ [a,∞) where b < a), unions of intervals, and most gen-
erally, any measurable prediction set. In Appendix B, we show that most of
these generalisations are indeed bijective with F . That means their exhaustive
elicitability follows directly from the existence of strictly proper scoring rules
for probabilisitic reports and the revelation principle. One exception is the case
of wrapped intervals when α is rational, as the construction in the first case
of Proposition 4.4 applies, and injectivity fails. (When α is irrational, repeat-
edly wrapping intervals corresponds to an irrational rotation, from which one
can compute a dense set of quantiles such that one can again invoke the rev-
elation principle to obtain exhaustive elicitability.) We claim that the class of
wrapped prediction intervals with a rational α is exhaustively elicitable under
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Fig 3. Illustration of the proper-subset property of Iα. Left panel: Graphs of Γ0.75(F1) (red
solid), F1 = Unif([0, 1]), and Γ0.75(F2) (blue dashed), F2 = Unif([−0.5, 1.8]). Right panel:
Graphs of Γ0.05(F1) (red solid), F1 = δ0, and Γ0.05(F2) (blue dashed), F2 = δ0/2 + δ1/2.

mild assumptions on the underlying class of distributions, using a similar inte-
gral construction as the one in Theorem 4.2.

In order to use Theorems 3.9 and 4.2 to conclude that Iα is not selectively
elicitable on Mα,inc it is essential to show that Iα satisfies the proper-subset
property on Mα,inc.

Lemma 4.6. Iα satisfies the proper-subset property on Mα,inc for α ∈ (0, 1).

Proof. We first show the claim for α ∈ [1/2, 1). We determine Iα(F ) for F =
Unif([b, c]), a uniform distribution on [b, c], b < c. One easily verifies that
Γα(Unif([b, c]))(a) = max(a, b) + α(c − b) for a ≤ c − α(c − b). For larger a,
Γα(Unif([b, c])) is not defined. A straightforward calculation shows that for any
b < 0 and any 1−b(1−α)/α ≤ c ≤ 1−bα/(1−α), the domain of Γα(Unif([b, c])) is
contained in the domain of Γα(Unif([0, 1])) and Γα(Unif([b, c])) ≥ Γα(Unif([0, 1]))
where the two functions do not coincide. As a result ∅ 
= Iα(Unif([b, c])) �

Iα(Unif([0, 1])); see the left panel of Figure 3. Moreover, any convex mixture of
two uniform distributions is an element of Mα,inc.

For α ∈ (0, 1/2), it holds that Iα(δ0) = [−∞, 0] × [0,∞] while Iα(δ0/2 +
δ1/2) =

(
[−∞, 0]× [0,∞]

)
∪
(
[−∞, 1]× [1,∞]

)
; see the right panel of Figure 3.

Note that even though there are λ ∈ (0, 1) such that (1−λ)δ0+λ(δ0/2+δ1/2) /∈
Mα,inc, the proper-subset property is still satisfied.

Corollary 4.7. For α ∈ (0, 1), the class Iα of α-prediction intervals is not
selectively elicitable on Mα,inc.

Proof. This is a direct combination of Theorems 3.9, 4.2, and Lemma 4.6.

Remark 4.8. Corollary 4.7 is related to the impossibility result established in
Brehmer and Gneiting (2020, Section 3.1), that the ‘guaranteed coverage interval
at level α’ (GCIα) is not selectively elicitable; see also Lambert and Shoham
(2009, Proposition 7.6) for a related result. Roughly speaking, GCIα coincides
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with the topological boundary of I1−α, or graphΓ1−α. Even though there is an
obvious bijection between GCIα and I1−α = epi Γ1−α, one cannot invoke the
revelation principle here. It would only hold for exhaustive elicitability and not
for selective elicitability. Therefore, even though the results are closely related,
they are complementary.

4.3. Prediction interval with an endpoint or the midpoint given by
an identifiable functional

In some situations, one might be interested in prediction intervals with one end-
point or the midpoint specified as some (identifiable) functional. The simplest
situation arises if the midpoint or an endpoint is simply a constant; we defer
the discussion of this simple situation to Appendix A. Apart from constants,
the most natural such functionals appear to be the mean or the median for
the midpoint, while also other quantiles or expectiles might be interesting. If
one endpoint is specified in terms of some quantile, the other endpoint must
be a quantile itself and the elicitability of the vector is obvious and well known
(if the quantiles are both singletons); see e.g. Gneiting and Raftery (2007) or
Proposition 4.9, which recalls this result for the sake of completeness. On the
other hand, we can show that there are no twice continuously differentiable
strictly consistent exhaustive scoring functions (see Propositions 4.10 and 4.12)
for other functionals under mild conditions. In the case of the midpoint given
by an identifiable functional, this even holds for the quantile. This gives rise to
the conjecture that such intervals are in general not elicitable. Despite their fail-
ure of being (smoothly) elicitable, these functionals are still identifiable, there-
fore possessing the CxLS property. This leads to the novel observation that, in
the multivariate setting, the equivalence of the CxLS property with identifia-
bility and elicitability established for one-dimensional functionals in Steinwart
et al. (2014) fails to hold. Moreover, it is an interesting manifestation of the
general gap between the classes of strict identification functions and strictly
consistent scoring functions for multivariate functionals, which has been dis-
cussed in detail in Dimitriadis, Fissler and Ziegel (2020). This gap arises from
classical integrability conditions: Identification functions may fail to possess an
antiderivative.

We only address the case of the left endpoint given by an identifiable func-
tional and remark that the right endpoint case works mutatis mutandis.

Proposition 4.9. Let QIα,β : M → U be a prediction interval given by two
lower quantiles, i.e. QIα,β(F ) =

(
q−β (F ), q−α+β(F )

)ᵀ ∈ U with β ∈ (0, 1 − α).
The following assertions hold:

(i) QIα,β is identifiable on any subclass M of M0 such that for all F ∈ M
and for γ ∈ {β, α+ β} it holds that qγ(F ) = {q−γ (F )} and F

(
q−γ (F )

)
= γ.

A strict M-identification function is given by

V : U × R → R2, V (z1, z2, y) =
(
1{y ≤ z1} − β,1{y ≤ z2} − α− β

)ᵀ
.
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(ii) QIα,β is elicitable on any subclass M of M0 such that for all F ∈ M and
for γ ∈ {β, α+ β} it holds that qγ(F ) = {q−γ (F )}. Any sum of two strictly
M-consistent scoring functions for the respective quantiles is a strictly
M-consistent scoring function for QIα,β.

Note that, in fact, essentially any strictly consistent scoring function for
QIα,β is a sum of two strictly consistent scoring functions for the respective
quantiles; see Fissler and Ziegel (2016, Proposition 4.2); cf. Fissler and Ziegel
(2021). Recently, Brehmer and Gneiting (2020, Theorem 3.1) characterised all
translation invariant or positively homogeneous consistent scores for the central
α-prediction interval.

Choosing β = 0, reporting QIα,β would boil down to reporting the lower
α-quantile, such that elicitability holds if the α-quantile is a singleton and iden-
tifiability holds if additionally F

(
q−α (F )

)
= α. For the case β = 1−α, the second

component of QIα,β is the essential supremum. We refer to Subsection 4.4 for
elicitability results.

Interestingly, Proposition 4.9 together with the mutual exclusivity result of
Theorem 3.9 implies that there cannot be a scoring function R × R → R such
that the expected score is minimised on an interval between two quantiles,
subject to very mild conditions on the class of distributions M (such that the
proper-subset property is satisfied for QIα,β).

In Proposition 4.9, we ensured the existence of the α-prediction interval by
restricting the range of β. Similarly, one has to restrict the class of probability
distributions suitably to ensure the existence of an interval with the demanded
coverage when the left endpoint is given by some general identifiable functional
l : M → R where M is some subclass of M0. To assure that there is enough
mass above l(F ), we write Ml = {F ∈ M|F (l(F )−) ≤ 1− α}. For a midpoint
specification in terms of an identifiable functional m : M → R, such a restriction
is not necessary.

Proposition 4.10. Let α ∈ (0, 1). Let l : M → R be an identifiable functional
with a strict M-identification function Vl : R × R → R. Set b : Ml → [0,∞),
defined as b(F ) =

(
Γα(F )(l(F )) − l(F )

)
/2, which is half of the length of the

shortest α-prediction interval with lower endpoint l, and set Tl : = (l, b)ᵀ : Ml →
R× [0,∞). Then the following assertions hold:

(i) Tl is identifiable on Ml ∩Minc, cont with a strict identification function

V : R×[0,∞)×R→R2, V (z1, z2, y)=
(
Vl(z1, y),1{y ∈ [z1, z1+2z2]}−α

)ᵀ
.

(ii) Assume that Ml is such that

(a) Ml ∩Minc, cont is convex;

(b) for any z ∈ R × (0,∞) there are F1, F2, F3 ∈ Ml ∩ Minc, cont such
that 0 is in the interior of the convex hull of the set

{
V̄ (z, Fi) | i ∈

{1, 2, 3}
}
⊂ R2;

(c) V̄ (·, F ) is continuously differentiable on R× (0,∞) for all F ∈ Ml ∩
Minc, cont;
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(d) for any (l∗, b∗)ᵀ ∈ R × (0,∞) there are distribution functions Fi ∈
Ml ∩Minc, cont with densities fi, i ∈ {1, 2, 3, 4}, such that

(l(Fi), b(Fi))
ᵀ = (l∗, b∗)ᵀ ∀i ∈ {1, 2, 3, 4},

V̄ ′
l (l

∗, F1) = V̄ ′
l (l

∗, F2) = V̄ ′
l (l

∗, F3),

f1(l
∗ + 2b∗) = f2(l

∗ + 2b∗),

f1(l
∗ + 2b∗) 
= f3(l

∗ + 2b∗),

f1(l
∗) 
= f2(l

∗),

V̄ ′
l (l

∗, F4) 
= 0.

Then there is no strictly Ml ∩Minc, cont-consistent scoring function S for
Tl such that S̄(·, F ) is twice continuously differentiable on R × (0,∞) for
any F ∈ Ml ∩Minc, cont.

Proof. See Appendix C.

Points (a), (b) and (d) are basically richness assumptions on the class Ml ∩
Minc, cont, which are needed to establish necessary conditions on the shape of
possible strictly consistent scoring functions via Osband’s principle; see Fissler
and Ziegel (2016, Theorem 3.2). In particular, (b) and (d) in combination with
the convexity stipulated under (a) constitute a surjectivity condition where (b)
additionally assumes that the expected identification function may vary enough.
Point (c) is a pure smoothness assumption which is needed since the proof
exploits first and second order conditions. In concrete situations, e.g. when Ml∩
Minc, cont is the class of finite Gaussian mixtures and l is the mean functional,
these conditions can be verified by straightforward calculations.

Remark 4.11. If l is a lower β-quantile with β < 1 − α, one can choose
Vl(x, y) = 1{y ≤ x} − β. In this case V̄l(x, F ) = F (x)− β and V̄ ′

l (x, F ) = f(x),
thus there cannot be two distribution functions F1, F2 ∈ Ml ∩ Minc, cont with
V̄ ′
l (l

∗, F1) = V̄ ′
l (l

∗, F2) and f1(l
∗) 
= f2(l

∗). Hence, the elicitability of an interval
given by two lower quantiles does not contradict Proposition 4.10.

Proposition 4.12. Let α ∈ (0, 1). Let m : M → R be an identifiable functional
with a strict M-identification function Vm : R × R → R. Set b : M → [0,∞),
defined as b(F ) = dα(F )(m(F )), which is half of the length of the shortest α-
prediction interval with midpoint m(F ), and set Tm = (m, b)ᵀ : M → A :=
R× [0,∞). Then the following assertions hold:

(i) Tm is identifiable on M ∩ Minc, cont with a strict identification function
V : R× [0,∞)× R → R2,

V (z1, z2, y) =
(
Vm(z1, y),1{y ∈ [z1 − z2, z1 + z2]} − α

)ᵀ
.

(ii) Assume that M is such that assumptions (a), (b) and (c) from Propo-
sition 4.10 hold, mutatis mutandis. Moreover, suppose that (d) for any
(m∗, b∗)ᵀ ∈ R×(0,∞), there are distribution functions Fi,∈ M∩Minc, cont
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with densities fi, i ∈ {1, 2, 3, 4}, such that

(m(Fi), b(Fi))
ᵀ = (m∗, b∗)ᵀ ∀i ∈ {1, 2, 3, 4},

V̄ ′
m(m∗, F1) = V̄ ′

m(m∗, F2) = V̄ ′
m(m∗, F3),

f1(m
∗ + b∗) + f1(m

∗ − b∗) = f2(m
∗ + b∗) + f2(m

∗ − b∗),

f1(m
∗ + b∗) + f1(m

∗ − b∗) 
= f3(m
∗ + b∗) + f3(m

∗ − b∗),

f1(m
∗ + b∗)− f1(m

∗ − b∗) 
= f2(m
∗ + b∗)− f2(m

∗ − b∗),

V̄ ′
m(m∗, F4) 
= 0.

Then there is no strictly M∩Minc, cont-consistent scoring function S for
Tm such that S̄(·, F ) is twice continuously differentiable on R× (0,∞) for
any F ∈ M∩Minc, cont.

Proof. See Appendix C.

4.4. Shortest prediction intervals

In the context of probabilistic forecasts, Gneiting, Balabdaoui and Raftery
(2007, p. 243) proposed the paradigm of “maximizing the sharpness of the pre-
dictive distribution subject to calibration”, continuing: “Calibration refers to
the statistical consistency between the distributional forecasts and the observa-
tions and is a joint property of the predictions and the events that materialize.
Sharpness refers to the concentration of the predictive distributions and is a
property of the forecasts only.” Following this rationale, a particularly well-
motivated restriction of Iα is the shortest prediction interval SIα, meaning a
prediction interval of minimal length (sharp) subject to achieving a coverage
of at least α (calibrated). This is in line with the decision-theoretic derivation
of the ‘prescriptive optimal interval forecast’ given in Askanazi et al. (2018,
Section 2.2): “restrict attention to correctly-calibrated intervals, and then pick
the shortest (on average).” In this subsection, we will study the elicitability
of SIα.

Let us first consider the case α = 1, where the shortest α-prediction interval
of F ∈ M is SI1(F ) = ((ess inf(F ), ess sup(F ))ᵀ, which is possibly of infinite
length. Here, ess inf and ess sup are the essential infimum and supremum, respec-
tively, defined by sup q0 and inf q1, where qα is the quantile functional. Thus, to
understand the elicitability of SI1, it suffices to study the elicitability of ess inf
and ess sup.

To this end, let g : R → R be an increasing and bounded function, and set
g(±∞) = limx→±∞ g(x). Recall that for α ∈ (0, 1) an M0-consistent selective
score for the α-quantile is given by Sα(x, y) = (1{y ≤ x} − α)

(
g(x) − g(y)

)
. If

qα is surjective on M in the sense that for any x ∈ R there exists an F ∈ M
such that x ∈ qα(F ), then Sα becomes strictly M-consistent if and only if
g is strictly increasing. Now consider the following generalisations of Sα for
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α ∈ {0, 1}, clearly failing to be M-finite in general:

S0(x, y) = ∞ · 1{y < x}+ g(y)− g(x), (4.9)

S1(x, y) = ∞ · 1{y > x}+ g(x)− g(y). (4.10)

Interestingly, if g is constant, S0 becomes a strictly M0-consistent selective
scoring function for q0, and S1 for q1. On the other hand, if g is strictly increas-
ing, they become strictly M0-consistent for the essential infimum and essential
supremum, respectively, and the elicitability of SI1 then follows.

Proposition 4.13. SI1 can be elicited on M0 with non M0-finite, strictly M0-
consistent score S((a, b)ᵀ, y) = ∞ · 1{y /∈ [a, b]} + g(b) − g(a) where g : R → R

is strictly increasing and bounded.

Proof. We have S̄((a, b)ᵀ, F ) = ∞ if F ([a, b]) < 1, and g(b) − g(a) otherwise.
Clearly, this is the sum of the strictly consistent functions for the essential
supremum and infimum given in (4.9) and (4.10).

Remark 4.14. Since q0 = (−∞, sup q0] and q1 = [inf q1,∞), the scores S0

and S1 can be directly used to construct strictly consistent exhaustive scoring
functions for q0 and q1, respectively, by invoking the revelation principle. Thus,
the 0-quantile and 1-quantile are both selectively and exhaustively elicitable.
Theorem 3.9 does not apply here as Theorem 3.7 only holds for scoring func-
tions whose expectation is always finite. Moreover, if we were to impose that all
scores be finite in expectation, a common assumption in the literature (Fissler
and Ziegel, 2016; Brehmer and Strokorb, 2019; Wang and Wei, 2020), Proposi-
tion 3.14 would apply, implying the non-elicitability of ess inf and ess sup, recov-
ering a result established in the proof of Ziegel (2016a, Corollary 4.3). Hence,
while the result for SI1 is positive, it is narrowly so, as it leans heavily on the
ability to assign infinite expected scores.

Turning now to the case α ∈ (0, 1), we first observe that the shortest α-
prediction interval is necessarily bounded: by a simple continuity argument for
the probability measure F ∈ M, there is some C > 0 (depending on F ) such
that (−C,C)ᵀ ∈ Iα(F ). For F ∈ M and α ∈ (0, 1), we may therefore define

SIα(F ) =
{
(a, b)ᵀ ∈ Iα(F ) | b− a ≤ d− c for all (c, d)ᵀ ∈ Iα(F ), c, d ∈ R

}
.

(4.11)
For many distributions F , such as the uniform distribution on [0, 1], SIα(F ) con-
tains more than a single element, so we again must formally distinguish between
exhaustive and selective reports. Importantly, Lemma 4.15, proven in Appendix
C, asserts that SIα(F ) is always non-empty, meaning that each distribution has
at least one shortest α-prediction interval.

Lemma 4.15. For all α ∈ (0, 1] and for all F ∈ M it holds that SIα(F ) 
= ∅.
The following theorem gives a comprehensive negative result of the elicitabil-

ity of SIα for α ∈ (0, 1).

Theorem 4.16 (Shortest α-prediction interval). (i) For α∈ (0, 1), the short-
est α-prediction interval SIα is not selectively elicitable on any class M



Forecast evaluation of set-valued functionals 1063

containing (a) all distributions with bounded Lebesgue densities, or (b) all
distributions on N0 which are unimodal with mode k for some k ≥ 1.
The same assertion holds even if we remove the restriction that scores be
M-finite.

(ii) For α ∈ (0, 1], the shortest α-prediction interval SIα is not exhaustively
elicitable (with M-finite scores) on any class M such that for some x 
=
y ∈ R, {(1− λ)δx + λδy |λ ∈ [0, 1]} ⊆ M.

Proof. (i) If (b) holds, the assertion is an immediate consequence of Brehmer
and Gneiting (2020, Theorem 3.5).

Suppose that (a) holds. Inspired by the argument given in Frongillo and
Kash (2012, Section 4.2), let α ∈ (0, 1) and G1, G2, G3 ∈ M be the uniform
distributions on the intervals [0, 1], [1, 2], and [3, 1+2/α], respectively. Let F0 =
αG1 + (1− α)G3 and F1 = 1

2αG1 +
1
2αG2 + (1− α)G3, and define x0 = (0, 1)ᵀ,

x1 = (0, 2)ᵀ, so that we have {x0} = SIα(F0) and {x1} = SIα(F1). Now define
Fλ = (1− λ)F0 + λF1; by construction, {x1} = SIα(Fλ) for all 0 < λ ≤ 1.

Now suppose for a contradiction that some scoring function S was strictly
M-consistent for SIα. Here, we also dispense with the assumption that S is
M-finite. We first argue S̄(xi, Gj) < ∞ for all i ∈ {0, 1} and j ∈ {1, 2, 3}. Let
F ′ = αG1+εG2+(1−α−ε)G3 for ε = 1

2 min(α, 1−α). The case i = 0 follows as
x0 ∈ SIα(F

′), so S̄(x0, F
′) = αS̄(x0, G1)+εS̄(x0, G2)+(1−α−ε)S̄(x0, G3) < ∞,

and thus each term must be finite. For i = 1, observing x1 ∈ SIα(F1), the same
reasoning gives the result. We conclude that S̄(xi, Fj) < ∞ for i, j ∈ {0, 1}, as
all constituent terms are finite.

Define the function γ : [0, 1] → R by γ(λ) = S̄(x0, Fλ)−S̄(x1, Fλ). Expanding
by linearity of expectation, we have γ(λ) = (1 − λ)(S̄(x0, F0) − S̄(x1, F0)) +
λ(S̄(x0, F1) − S̄(x1, F1)). We conclude that γ is a continuous function as all
terms above are finite. By strict M-consistency, we now have γ(λ) > 0 for
0 < λ ≤ 1 and γ(0) < 0, contradicting the continuity of γ. (Cf. Frongillo and
Kash (2012, Corollary 4.12).)

(ii) Without loss of generality, we assume that the mixtures Fλ = (1−λ)δ0+
λδ1 are inM for all λ ∈ [0, 1]. Using again the convention to identify any interval
[a, b] with the vector of its two endpoints (a, b)ᵀ, we obtain for β ∈ (0, 1/2] and
γ ∈ (1/2, 1]

SIβ(Fλ) =

⎧⎪⎨⎪⎩
{(0, 0)ᵀ}, λ ∈ [0, β),

{(0, 0)ᵀ, (1, 1)ᵀ}, λ ∈ [β, 1− β],

{(1, 1)ᵀ}, λ ∈ (1− β, 1],

SIγ(Fλ) =

⎧⎪⎨⎪⎩
{(0, 0)ᵀ}, λ ∈ [0, 1− γ],

{(0, 1)ᵀ}, λ ∈ (1− γ, γ),

{(1, 1)ᵀ}, λ ∈ [γ, 1].

Clearly, for α ∈ (0, 1], SIα is non-constant on {Fλ |λ ∈ [0, 1]} and attains
only finitely many values. Therefore, as a direct consequence of Brehmer and
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Strokorb (2019, Corollary 3.5), SIα there is no strictly M-consistent and M-
finite exhaustive score for SIα.

While Theorem 4.16 (i) considers the question of selective elicitability of SIα
and is in line with the findings of Brehmer and Gneiting (2020) (where our
results complement theirs since the classes M considered are different and since
we can dispense with the assumption of M-finiteness), there is no counterpart
to part (ii) in the literature, dedicated to the exhaustive elicitability of SIα.

Remark 4.17. The classes M specified in (i) and (ii) of Theorem 4.16 are not
contained in Mα,inc, which makes it hard to thoroughly compare the results of
Theorem 4.16 with Theorem 4.2. The elicitability of SIα on Mα,inc remains an
open problem, though we conjecture a negative result.

This should also be compared with the discussion of Brehmer and Gneiting
(2020, Condition 3.7 and Theorem 3.8). The class considered in their Theorem
3.8 is also not contained in Mα,inc. In particular, they also leave open the
problem of elicitability on classes of distributions with strictly positive Lebesgue
densities.

Remark 4.18. On any class M satisfying the conditions of Theorem 4.16 (i)
and (ii) SIα fails to be selectively elicitable and exhaustively elicitable. This
yields an interesting set-valued functional which fails to be elicitable in either
sense.

Remark 4.19. One may also consider general prediction regions rather than
merely intervals, in which case a natural object to study is the α-prediction
region with smallest Lebesgue-measure. One can employ a very similar argument
to the one used in the proof of Theorem 4.16 (ii) to rule out the exhaustive
elicitability (with an M-finite score) of the class of α-prediction regions with
minimal Lebesgue measure, denoted by SRα. Indeed, again writing Fλ = (1 −
λ)δ0 + λδ1, we obtain for β ∈ (0, 1/2] and γ ∈ (1/2, 1]

SIβ(Fλ)=

⎧⎪⎨⎪⎩
{{0}}, λ∈ [0, β),

{{0}, {1}}, λ∈ [β, 1−β],

{{1}}, λ∈ (1−β, 1],

SIγ(Fλ)=

⎧⎪⎨⎪⎩
{{0}}, λ∈ [0, 1− γ],

{{0, 1}}, λ∈ (1− γ, γ),

{{1}}, λ∈ [γ, 1].

The rest of the argument follows the lines of the proof.

Proposition 4.20. The shortest α-prediction interval is selectively identifiable
on Minc, cont in the following sense. Let [−1, 1]R denote the space of all functions
R → [−1, 1], and define the function-valued identification function V : U ×R →
[−1, 1]R by

R � a �→ V
(
(x1, x2)

ᵀ, y
)
(a) = 1{y ∈ [x1 + a, x2 + a]} − α ,

for (x1, x2)
ᵀ ∈ U and y ∈ R. Then for any F ∈ Minc, cont and any (x1, x2)

ᵀ ∈ U
it holds that (x1, x2)

ᵀ ∈ SIα(F ) if and only if

V̄
(
(x1, x2)

ᵀ, F
)
(a) ≤ 0 ∀a ∈ R and V̄

(
(x1, x2)

ᵀ, F
)
(0) = 0 . (4.12)
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Proof. Let F ∈ Minc, cont and (x1, x2)
ᵀ ∈ U such that (4.12) holds. The equality

V̄
(
(x1, x2)

ᵀ, F
)
(0) = 0 implies that (x1, x2)

ᵀ ∈ Iα(F ) and x2 = Γα(F )(x1) such
that there is no shorter α-prediction interval for F with a lower endpoint of
x1. The condition V̄

(
(x1, x2)

ᵀ, F
)
(a) ≤ 0 for all a ∈ R means that all other

intervals [x1 + a, x2 + a] with the same length either fail to be an α-prediction
interval (corresponding to a strict inequality), or they are also an α-prediction
interval (corresponding to equality), but with the same logic as above, there
cannot be a shorter one with the same lower endpoint x1 + a. Hence, we can
conclude that (x1, x2)

ᵀ ∈ SIα(F ). Vice versa, if (x1, x2)
ᵀ ∈ SIα(F ), then (4.12)

is immediate.

In closing, we would like to remark that for multivariate observations, a gen-
eralisation from prediction intervals to prediction regions is mandatory. If we
do not impose any restrictions other than measurability, say, we can still ob-
tain a selective identifiability result in the spirit of Theorem 4.2 (i). For other
similar extensions of our results, Remark 4.19 points into a negative direction
for the smallest prediction regions. For considerations analogue to the ones in
Subsection 4.3 one would need to impose further restrictions on the shape of the
regions (e.g. one might consider balls with a certain centre and radius) to ask
sensible questions. This is beyond the scope of the current project. On the other
hand, the following section elaborates on a complementary direction of Vorob’ev
quantiles, which only become interesting in a multivariate / spatial setting.

5. Vorob’ev quantiles

As Azzimonti et al. (2021) point out, the “problem of estimating the set of inputs
that leads a system to a particular behavior is common in many applications”,
and they explicitly mention the fields of reliability engineering and climatology
(see references therein). In such a context, the quantity of interest is a random
set Y. This set could specify the region of a blackout in a country, the area
affected by an avalanche in the mountains or tumorous tissue in the human
body. In many situations such as extreme weather events, e.g. floods, storms
or heatwaves, the random set Y is specified in terms of an excursion set {z ∈
Rd | ξz ≥ t}, t ∈ R, of some random field (ξz)z∈Rd . One of the main tasks in
mathematical statistics is to construct confidence intervals or confidence regions
in Rd from a random sample. Consequently, such confidence regions may also
be considered as random sets. Functionals of interest are various expectations of
Y as described in the comprehensive textbook Molchanov (2017), notably, the
Vorob’ev expectation (Chevalier et al., 2013), the distance average expectation
(Azzimonti et al., 2016) and conservative estimates based on Vorob’ev quantiles
(Azzimonti et al., 2021).

In this section, we shall focus on Vorob’ev quantiles and shall notably es-
tablish exhaustive elicitability results and related selective identifiability results
under reasonable conditions. In that respect, it generalises and extends the
known result that the symmetric difference in measure is an exhaustive consis-
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tent scoring function for the median; see Proposition 2.2.8 in Molchanov (2017)
and below for details.

To settle some notation, we work again on some suitable complete, atom-
less probability space (Ω,F,P). Let E be some generic separable Banach space
equipped with its Borel σ-algebra, with the Euclidean space as a leading exam-
ple. Let μ be some σ-finite non-negative reference measure on E and let U be
the family of closed subsets of E. We shall use the convention to denote any
subset of E with a capital latin letter, with the additional distinction that a
random set will be denoted with a bold capital letter.

Definition 5.1 (Random closed set). Y : Ω → U is called a random closed set
if for all compact sets K ⊆ E

{ω |Y(ω) ∩K 
= ∅} ∈ F.

In decision-theoretic terminology, that means that our observation domain
O coincides with U. In line with Definition 5.1 and following Molchanov (2017,
Chapter 1), we equip U with the σ-algebra generated by the family B(U) :=
{U ∈ U : U ∩K 
= ∅, K ∈ K} where K is the collection of all compact subsets
of E. Consequently, we shall identify the distribution FY of a random closed
set Y with its capacity functional. That is, we set FY : K → [0, 1], FY(K) =
P(Y ∩ K 
= ∅). As before, let M denote some generic class of distributions
K → [0, 1].

While FY characterises the whole (joint) distribution of a random closed set
Y, its restriction to singletons, in some sense, specifies the marginal distributions
of Y. This restriction is called coverage function pY : E → [0, 1] and is formally
defined as

pY(u) := FY({u}) = P(u ∈ Y).

Finally, we can define the Vorob’ev quantiles of closed random sets.

Definition 5.2 (Vorob’ev quantile). The upper excursion set of pY at level
α ∈ [0, 1],

Qα(Y) := {u ∈ E | pY(u) ≥ α} ,
is called the Vorob’ev α-quantile of Y.

The Vorob’ev α-quantile plays a special role in the context of confidence
regions. Suppose Y = gα(Y1, . . . , Yn) where Y1, . . . , Yn are i.i.d. random vec-
tors in Rm following some parametric distribution F (θ), θ ∈ Θ ⊆ Rk, and
gα : (R

m)n → U is a measurable map. In this context, E clearly corresponds to
Θ. Then one can say thatY constitutes an α-confidence region for the parameter
θ if θ ∈ Qα(Y) for all θ ∈ Θ.

As pY is an upper semicontinuous function (Molchanov, 2017), Qα(Y) is
a closed set in E. Therefore, in a decision-theoretic terminology, we set the
exhaustive action domain to be U and the selective action domain to be E.
Moreover, for further reference, define the sets

Q>
α (Y) = {u ∈ E | pY(u) > α}, Q=

α (Y) = {u ∈ E | pY(u) = α}.
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Note that the measurability of these sets is implied by the upper-semicontinuity
(and thus measurability) of pY. It goes without saying that the quantities Qα,
Q>

α and Q=
α are law-invariant functionals in that they only depend on the dis-

tribution FY of a random closed set Y, and, a fortiori, on its coverage function
pY. Therefore, we shall consider them as maps defined on some generic class of
distributions M.

Proposition 2.2.8 in Molchanov (2017) establishes that the symmetric differ-
ence in measure

S1/2 : U× U → R, S1/2(X,Y ) = 1
2μ(X�Y ) (5.1)

is anM-consistent exhaustive scoring function for the Vorob’ev medianQ1/2(Y) :
M → U. Other Vorob’ev quantiles solve a restricted minimisation problem;
see Proposition 4 in Azzimonti et al. (2021). More precisely, for α ∈ [0, 1],
Qα = Qα(Y) it holds that

E
[
1
2μ(Qα�Y)

]
≤ E

[
1
2μ(M�Y)

]
for all measurable sets M ⊆ E such that μ(M) = μ(Qα). To arrive at a consis-
tent scoring function for a general α ∈ [0, 1], we first introduce a strict selective
M-identification function for Q=

α .

Proposition 5.3. For α ∈ [0, 1], the function Vα : E × U → R, Vα(u, Y ) =
1Y (u)−α, is a strict selective M-identification function for Q=

α . Moreover, Vα

is oriented in the sense that for all u ∈ E and for all F ∈ M

V̄α(u, F )

⎧⎪⎨⎪⎩
> 0, u ∈ Q>

α (F )

= 0, u ∈ Q=
α (F )

< 0, u /∈ Qα(F ).

Proof. The proof follows directly from the definition of pY.

This oriented strict M-identification function for Q=
α turns out to be the

main building block in the construction of an exhaustive M-consistent scoring
function for Qα. The rationale is akin to the ones presented for the scalar case in
Ziegel (2016b) or Dawid (2016), and the multivariate case in Fissler, Hlavinová
and Rudloff (2021, Section 3.2).

Proposition 5.4. Let U0 : = {M ∈ U |μ(M) < ∞}. For any α ∈ [0, 1] with

Qα(F ) ∈ U0 for all F ∈ M the function S̃α : U0 × U → R

S̃α(X,Y ) = −
∫
X

Vα(u, Y )μ(du) = αμ(X)− μ(Y ∩X) (5.2)

is an M-consistent exhaustive scoring function for Qα. More precisely, it holds
that for all F ∈ M

argmin
X∈U

EF

[
S̃α(X,Y)

]
(5.3)

= {X ∈ U0 | ∃D ⊆ E measurable : Q>
α (F ) ⊆ D ⊆ Qα(F ) and μ(X�D) = 0} .
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Proof. First note that—if we extend S̃α to the family of measurable subsets of
E with finite measure—it holds that for any such D ⊆ E we have S̃α(X,Y ) =

S̃α(D,Y ) whenever μ(X�D) = 0. Now, let X ∈ U0 such that μ(X�D) = 0
for some measurable Q>

α (F ) ⊆ D ⊆ Qα(F ). Then, invoking Robbin’s Theorem
(Molchanov, 2017, Theorem 1.5.16), it holds that for any M ∈ U0 and any
F ∈ M

EF

[
S̃α(M,Y)− S̃α(X,Y)

]
= EF

[
S̃α(M,Y)− S̃α(D,Y)

]
=

∫
D

EF [Vα(u,Y)]μ(du)−
∫
M

EF [Vα(u,Y)]μ(du)

=

∫
Q>

α (F )\M

V̄α(u, F )μ(du)−
∫

M\Qα(F )

V̄α(u, F )μ(du) ≥ 0,

where the last inequality follows from the orientation of Vα. Moreover, the in-
equality is strict if and only if μ(Q>

α (F ) \ M) + μ(M \ Qα(F )) > 0, which
establishes equality in (5.3). Indeed, for any M ∈ U with μ(Q>

α (F )\M)+μ(M \
Qα(F )) = 0 choose D = (M ∩ Qα(F )) ∪ Q>

α (F ). Then D is measurable and it
can be easily verified that Q>

α (F ) ⊆ D ⊆ Qα(F ). Moreover, D\M = Q>
α (F )\M

and M \D = M \Qα(F ), so that μ(M�D) = 0.

Proposition 5.4 and in particular the equality in (5.3) exactly quantify by how

much the score S̃α fails to be strictly consistent for Qα. Moreover, in contrast to
the symmetric difference in measure in (5.1), the score S̃α in (5.2) assumes both
negative and positive values in general. Imposing the normalisation condition
that Sα(Y, Y ) = 0 for all Y ∈ U, which implies the non-negativity of Sα, the

score S̃α in (5.2) is equivalent to

Sα(X,Y ) = S̃α(X,Y ) + (1− α)μ(Y ) = αμ(X \ Y ) + (1− α)μ(Y \X).

Moreover, one can see that one really retrieves the symmetric difference in mea-
sure for α = 1/2. The following theorem states conditions for the strict consis-
tency of Sα. In the sequel we denote the closure of any set M ⊆ E with cl(M)
and its interior with int(M).

Theorem 5.5. Let α ∈ [0, 1].

(i) For any u ∈ E the elementary score Sα,u : U× U → [0,∞),

Sα,u(X,Y ) = α1X\Y (u) + (1− α)1Y \X(u), (5.4)

is a non-negative exhaustive M-consistent scoring function for Qα.
(ii) Let π be a σ-finite non-negative measure on E. Then the map Sα,π : U ×

U → [0,∞],

Sα,π(X,Y ) =

∫
Sα,u(X,Y )π(du) = απ(X \ Y ) + (1− α)π(Y \X) (5.5)

is a non-negative exhaustive M-consistent scoring function for Qα.
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(iii) If M is such that Qα(F ) = cl(Q>
α (F )) and Qα(F ) = cl(int(Qα(F )) for all

F ∈ M, then Qα is exhaustively elicitable on M.
Moreover, for any σ-finite positive measure π (that is, π assigns positive
mass to all open non-empty sets) on E such that EF [π(Y)] < ∞ and
π(Qα(F )) < ∞ for all F ∈ M, the restriction of Sα,π defined in (5.5)
to the family U′ : = {U ∈ U |U = cl(int(U))} is a strictly M-consistent
exhaustive scoring function for Qα.

To prove this theorem, we will need an auxiliary result that we introduce
now.

Lemma 5.6. If for two sets A,B ⊆ E it holds that A = cl(int(A)) and B =
cl(int(B)), then A�B 
= ∅ implies int(A�B) 
= ∅.

Proof. Let A,B as above and assume that there is some x ∈ A�B. Without loss
of generality assume x ∈ A\B. Since x ∈ A, there is a sequence (an)n∈N ⊆ int(A)
converging to x. Moreover, since B is closed and x /∈ B, there is some m ∈ N

such that for all n ≥ m it holds that an /∈ B. Thus, for all n ≥ m we have
an ∈ int(A) \B = int(A)∩Bc ⊆ A∩Bc. Since the interior of a set is the union
of all of its open subsets, ∅ 
= int(A) ∩Bc ⊆ int(A ∩Bc).

Proof of Theorem 5.5. The proof of (i) follows along the lines of the proof of
Proposition 5.4 upon setting μ = δu. Note that with this choice of μ, any set
is of finite measure. Point (ii) is a direct consequence of the nonnegativity and
consistency of Sα,u(X,Y ).

For (iii), let F ∈ M such that EF [π(Y)] < ∞ and note that for any M ∈ U′

with π(M) = ∞, we have S̄α,π(M,F ) = ∞. Therefore it suffices to consider
M ∈ U′ with π(M) < ∞ and one can invoke the equality in (5.3). If Qα(F )
is the topological closure of Q>

α (F ), then X = Qα(F ) is the only closed set
such that Q>

α (F ) ⊆ X ⊆ Qα(F ). For any other closed set M ∈ U′ we therefore
obtain that X�M 
= ∅. This implies that int(X�M) 
= ∅ and therefore, since
π is positive, π(X�M) > 0.

The orientation of the selective identification function Vα directly implies
order-sensitivity in the sense of Nau (1985) or Fissler and Ziegel (2019) with
respect to the partial order induced by the subset relation.

Proposition 5.7. Let α ∈ [0, 1]. Then any exhaustive M-consistent scoring
function Sα,π for Qα of the form (5.5) is order-sensitive. That means for any
F ∈ M and for any A,B ∈ U such that Qα(F ) ⊆ A ⊆ B or B ⊆ A ⊆ Qα(F ) it
holds that S̄α,π(A,F ) ≤ S̄α,π(B,F ).

It is worth to explore further connections between mixture representation of
consistent scoring functions established for Vorob’ev quantiles in Theorem 5.5
and the corresponding mixture representation in the one-dimensional case, which
was introduced and discussed in Ehm et al. (2016). Indeed, the elementary scores
introduced there,

SQ
α,θ(x, y) = (1 {y < x} − α) (1 {θ < x} − 1 {(θ < y}) , x, y, θ ∈ R
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can be rewritten as α1[x,∞)\[y,∞)(θ) + (1−α)1[y,∞)\[x,∞)(θ). Of course, we can
identify the reals x, y with the corresponding sets X = [x,∞) and Y = [y,∞),
which shows that we end up with the form given in (5.4). For further analogy,
let Z be a real-valued random variable. This induces a random closed set Z =
[Z,∞). Then it holds that Qα(Z) = [q−α (Z),∞). As discussed in Example 3.10
(iv), the elicitability of q−α (Z) is equivalent to the exhaustive elicitability of
[q−α (Z),∞). One can easily check that for a positive measure H on R,

S(x, y) =

∫
SQ
α,θ(x, y)H(dθ)

is a strictly consistent exhaustive scoring function for [q−α (Z),∞) if and only if
the closure of Q>

α (Z) = (q+α (Z),∞), where q+α (Z) is the upper α quantile of Z,
corresponds to Qα(Z) = [q−α (Z),∞). That is, if and only if the α-quantile of Z
is unique. This retrieves the first condition in part (iii) of Theorem 5.5. Note
that in the case of a one-dimensional quantile, the second condition is equivalent
to q−α (Z) = q+α (Z), too. However, in the case of Vorob’ev quantiles it is more
involved and does not follow from the first condition in general. This structural
difference also highlights the importance of a thorough framework for dealing
with set-valued functionals.

Remark 5.8. While we use a ‘bottom-up’ approach to construct our exhaustive
scoring functions, exploiting oriented identification functions to come up with
an integral construction or mixture-representation, Meng et al. (2020) pursue
a complementary ‘top-down’ ansatz: They ‘disintegrate’ scoring rules for multi-
variate probabilisitic forecasts, such as energy scores, to come up with exhaustive
scoring functions for level sets (or excursion sets). For particular situations, the
two approaches lead to similar results: E.g. their equation (24) turns out to be
a special case of (5.2) upon considering the random set Y = {z ∈ Rd | z ≥ y},
where y is an Rd-valued random vector.

6. Connections to forecast evaluation in the literature

We would like to close the paper with a comprehensive literature review of dif-
ferent practices of treating forecasts for set-valued functionals. We think that
these various perspectives illustrate the advantage our unified theoretical frame-
work on set-valued forecast evaluation, with the thorough distinction between a
selective and an exhaustive mode, entails. At the same time, these perspectives
offer numerous starting points for further research projects to uncover their
behaviour in terms of the classification into selectively elicitable functionals,
exhaustively elicitable functionals, and functionals failing to be elicitable at all.

6.1. Statistical forecast evaluation

While Lambert, Pennock and Shoham (2008) only consider real-valued function-
als where the distinction between selective and exhaustive scoring functions is
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superfluous, the influential paper Gneiting (2011a) treats functionals as poten-
tially set-valued; cf. Lambert and Shoham (2009); Bellini and Bignozzi (2015).
However, only the concept of selective scoring functions with the correspond-
ing notion of (strict) consistency and elicitability are given. Presumably, the
motivation for doing so was induced by the quantile-functional as one of the
most prominent examples of a set-valued functional. To the best of our knowl-
edge, forecasts for the quantile are exclusively considered in the selective sense
(Koenker, 2005; Komunjer, 2005; Gneiting, 2011b), in which they are elicitable.
The reason for not considering them in the exhaustive sense might lie in the im-
possibility of establishing corresponding elicitability results, of which the first
formal proof—to the best of our knowledge—is given in this paper.

Buansing, Golan and Ullah (2020) construct interval-valued forecasts for
interval-valued observations. Yet, their directive is not explicitly specified in
terms of a functional. Also, they evaluate the accuracy of their forecasts in
terms of various loss functions without providing a discussion of which one is
best suited for such an assessment.

The recent preprint Brehmer and Gneiting (2020) considers elicitability for
the class of predictive intervals and certain specifications thereof through the
lens of the selective notion.

6.2. Statistical theory and risk measurement

Quantiles and expectiles (Newey and Powell, 1987) of univariate distributions
are well known (selectively) elicitable functionals. In the literature on quantita-
tive risk management, they are also common scalar risk measures. There are dif-
ferent competing attempts to generalise them to a multivariate setting. We refer
the reader to two recent and insightful papers and the corresponding references
therein: Hamel and Kostner (2018) introduce multivariate quantiles taking the
form of convex sets, and Daouia and Paindaveine (2019) introduce hyperplane-
valued multivariate M -quantiles with a particular focus on hyperplane-valued
multivariate expectiles. For both approaches, it remains an intriguing open ques-
tion whether these functionals are selectively elicitable, exhaustively elicitable
or not elicitable at all.

The newly established framework has been applied in Fissler, Hlavinová and
Rudloff (2021), providing exhaustive elicitability results and selective identi-
fiability results for set-valued systemic risk measures introduced in Feinstein,
Rudloff and Weber (2017).

6.3. Spatial statistics

As mentioned at the beginning of Section 5, estimating set-valued quantities is a
common endeavour in spatial statistics. In that context, forecasts and estimates
are commonly considered with what we call an exhaustive angle. Interesting
open theoretical questions besides Vorob’ev quantiles are to consider other func-
tionals, notably expectations, of random sets presented in the book Molchanov
(2017).
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One area of particular interest in spatial statistics is meteorology and clima-
tology. In these disciplines, forecast evaluation is more commonly known under
the term forecast verification. We refer the reader to the comprehensive overview
paper Dorninger et al. (2018). Besides simply comparing a set-valued forecast
and a set-valued observation as outlined above, there are also more involved
situations covered. E.g. acknowledging the spatio-temporal structure of many
processes such as precipitation, one might evaluate probabilistic forecasts for the
marginal distributions of the random field of interest at certain grid points, using
the neighbourhood method (see Dorninger et al. (2018) for references). Assessing
the entire joint distribution of the random field seems extremely ambitious and
we are unaware of any verification method at the moment.

6.4. Regression and machine learning

Recent literature on isotonic regression embraces the idea of explicitly mod-
elling functionals as set-valued; see Jordan, Mühlemann and Ziegel (2019) and
Mösching and Dümbgen (2020), where the two papers consider these functionals
in the selective sense.

Kivaranovic, Johnson and Leeb (2020) examine how to obtain prediction in-
tervals with deep neural networks. In the area of machine learning, the recent
paper Gao et al. (2019) considers set-valued regression as well, however, con-
sidering finite sets only. The observations (or response variables) Yt are finite
subsets of some label space S, which is assumed to be at most countably infi-
nite. Denoting the regressors with Xt ∈ Rp then they are interested in finding
a function m : Rp → {I | I ⊆ S, |I| < ∞} such that m(Xt) is reasonably close
to Yt. However, they do not explicitly specify the loss function they use for the
regression problem. In an orthogonal direction, Zaheer et al. (2017) consider the
case of set-valued regressors rather than set-valued responses, which does not
lead to the question of an appropriate choice of loss function with set-valued
arguments.

6.5. Philosophy

Within a more philosophical strand of literature about credences, i.e., subjective
probabilities of degrees of belief, Mayo-Wilson and Wheeler (2016) argue that
imprecise credences about the probability of a binary event can be represented
as subsets of the unit interval [0, 1]; cf. Seidenfeld, Schervish and Kadane (2012).
They consider numerical accuracy measures, being functions of the set-valued
credence and the binary outcome. In this regard, they consider scoring functions
taking sets as arguments. However, this ansatz is distinct from our focus since we
consider forecasts for functionals which are inherently set-valued and dispense
with a discussion of subjective probabilities, whereas they consider set-valued
forecasts for a functional which is actually real-valued, namely the probability
of a binary event.
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Appendix A: Prediction intervals with a fixed endpoint or midpoint

We consider α-prediction intervals where one endpoint or the midpoint of the
interval is fixed a priori at some point a ∈ R or c ∈ R, respectively. We only
address the case of the left endpoint being fixed—the case of the right endpoint
follows mutatis mutandis. Clearly, if the position of the interval is specified in
this sense, reporting such an interval boils down to reporting a one-dimensional
quantity, e.g., the other endpoint or the length of the interval. For a fixed end-
point, however, the existence of such a prediction interval is in general no longer
guaranteed (there might not be enough mass on the right of the lower endpoint),
and one needs to specify the class of distribution functions more carefully. There-
fore, for some fixed α ∈ (0, 1) and using the notation from Section 4, we intro-
duce Ma,0 = {F ∈ M0 |F (a−) ≤ 1 − α} for some fixed a ∈ R. Moreover,
let Ma,α,inc be the subset of distributions in Ma,0 such that qα+F (a−)(F ) is a
singleton (with Γα(F )(a) being its unique element). We start with an endpoint
specification.

Proposition A.1. (i) On Ma,0 ∩Minc, cont the functional F �→ Γα(F )(a) ∈
[a,∞] is identifiable with a strict Ma,0 ∩Minc, cont-identification function

V : [a,∞]× R → R, V (x, y) = 1{y ∈ [a, x]} − α.

(ii) On Ma,α,inc the functional F �→ Γα(F )(a) ∈ [a,∞] is elicitable. An Ma,0-
consistent scoring function is given by S : [a,∞]× R → R

S(x, y) =

∫
[x,∞)

V (z, y)dμ(z) = αμ([x,∞))− μ
(
[x,∞) ∩ [y,∞)

)
1{y ≥ a}

(A.1)

where μ is a non-negative finite measure on R. If moreover μ is positive,
S is also strictly Ma,α,inc-consistent.

Proof. The proof follows along the lines of the proof of Theorem 4.2.

Remark A.2. A non-negative equivalent version of the score in (A.1) is given
via

S̃(x, y) = 1{y ≥ a}
(
(1− α)μ

(
[y,∞) \ [x,∞)

)
+ αμ

(
[x,∞) \ [y,∞)

))
+ 1{y < a}αμ

(
[x,∞)

)
(A.2)

= 1{y ≥ a}
((

1{y ≤ x} − α
)(
h(y)− h(x)

))
+ 1{y < a}αh(x) ,

where h : (−∞,∞] → R is a decreasing function given by h(t) = μ([t,∞)) such
that h(+∞) = 0. Besides the obvious interpretation of the first line of (A.2)
in the context of mixture representation, it is remarkable to see the structural
similarity to a standard quantile score in the second line of (A.2), which is of the
form

(
1{y ≤ x}−α

)(
h(y)− h(x)

)
. In fact, if the whole support of F lies above
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a, the right endpoint of the resulting interval is the α-quantile. If F assigns
positive mass to (−∞, a), there is a correction term accounting for the fact that
the α-quantile would not be sufficient to achieve the required coverage anymore.
Note that without the correction term, one is in the setting of Theorem 5 in
Gneiting (2011a) with w(y) = 1{y ≥ a}. This would correspond to forecasting
the α-quantile of F truncated at a, i.e., loosely speaking the point under which
α · 100% of the mass above a is located. The aim, however, is to report a point
such that α · 100% of the whole mass is between a and the reported point.

Proposition A.3. For some m ∈ R consider the functional bm : F �→ dα(F )(m)
∈ [0,∞), specifying half of the length of the shortest α-prediction interval with
midpoint m. Then the following assertions hold:

(i) bm is identifiable on Minc, cont with a strict identification function

V : [0,∞)× R → R, (x, y) �→ V (x, y) = 1{y ∈ [m− x,m+ x]} − α.

(ii) bm is elicitable on Minc, cont. If μ is a finite non-negative measure on
[0,∞), then S : [0,∞)× R → R

S(x, y) =

∫
[0,x)

V (z, y)dμ(z) = μ
(
[0, x) ∩ [|y −m|,∞)

)
− αμ

(
[0, x)

)
(A.3)

is an Minc, cont-consistent scoring function for bm. It is strictly Minc, cont-
consistent if μ is positive.

Proof. The proof follows along the lines of the proof of Theorem 4.2.

Remark A.4. A non-negative equivalent version of the score in (A.3) is given
via

S̃(x, y) = μ
(
[0, x) ∩ [|y −m|,∞)

)
− αμ

(
[0, x)

)
+ αμ

(
[0, |y −m|)

)
=

(
1{|y −m| ≤ x} − α

)(
g(x)− g(|y −m|)

)
,

where g : [0,∞) → R is an increasing function given by g(t) = μ([0, t)) such that
g(0) = 0. Again we see the structural similarity to a standard quantile score in
the second line. In particular, we see that bm corresponds to the α-quantile of
the distribution of |Y −m|.

Appendix B: Injectivity results for prediction interval variants

Again, we use the the notation from Section 4. For simplicity, let us consider
the class Mc ⊆ M0 of probability measures with single-valued quantiles in
the range (0, 1), i.e., supported on an interval (potentially all of R) and whose
CDFs are strictly increasing on that interval. We first observe that if a functional
value T (F ) uniquely determines a dense set of quantiles for F , then T must be
injective.
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Lemma B.1. For some set W , let T : Mc → 2W and let Q ⊆ (0, 1) be dense.
If for all F ∈ Mc, the value of T (F ) uniquely determines the values of qβ(F )
for all β ∈ Q, then T is injective.

Proof. By definition of Mc, we have qβ(F ) = F−1(β) for all F ∈ Mc and β ∈
(0, 1). As F is continuous and strictly monotone, its inverse is also continuous
on (0, 1) and strictly monotone. Thus, specifying the values of F−1 on a dense
subset of (0, 1) uniquely specifies F−1 and thus F .

For α ∈ (0, 1] we will now define the collection Cα(F ) of all α-prediction
sets of F , as well as unions of two prediction intervals I2

α(F ) and wrapped
intervals Iw

α (F ). Recall the definition Ū := {(a, b)ᵀ ∈ R̄2 | a ≤ b}, where R̄ : =
R ∪ {−∞,∞}. In what follows, we will overload notation and interpret I ∈ Ū
as a closed interval, so for example if I = (a, b)ᵀ we have F (I) = F ([a, b] ∩ R).

Cα : Mc → 2B(R), F �→ {B ∈ B(R) : F (B) ≥ α} ,
I2
α : Mc → 2B(R), F �→ {(I1, I2) ∈ Ū2 : F (I1 ∪ I2) ≥ α} ,

Iw
α : Mc → 2B(R), F �→ Iα(F ) ∪ {(I1, I2) ∈ I2

α(F ) : I1 = (a,∞)ᵀ,

I2 = (−∞, b)ᵀ, a ≥ b} .

We first show injectivity of I2
α, and thus Cα. We will routinely rely on the

bijection between the above I2
a and the functional I2

=α : Mc → 2B(R) defined
by I2

=α(F ) = {(I1, I2) ∈ I2
α : F (I1 ∪ I2) = α}. It is clear that I2

α(F ) can be
constructed from I2

=α(F ) and vice versa, by adding or removing nested intervals.
In particular, I2

α is injective if and only if I2
=α is.

Proposition B.2. I2
α is injective for all α ∈ (0, 1).

Proof. We will instead show injectivity of the functional I2
=α. Let F ∈ Mc, and

consider first the case α ≤ 1/2. Given I2
=α(F ), we will show how to compute

the quantiles qk,n := F−1(kα/2n) for all k ∈ N, n ∈ N0 such that kα/2n ∈
(0, 1), at which point the result will follow from Lemma B.1. We first show
the result for k ≤ 2n; the other values will follow from the observation that
F ((qk,n, qk+2n,n]) = α.

As a base case, consider n = 0 and k = 1. The value q1,0 defines the unique
interval of the form (−∞, q1,0] such that F ((−∞, q1,0]) = α. Thus, we may take
any (I1, I2) ∈ I2

=α(F ) with I1 = (−∞, a)ᵀ and I2 = (a, b)ᵀ and set q1,0 = b.
Now assume the value of qk,n = F−1(kα/2n) is known for all 1 ≤ k ≤ 2n; we

will show how to compute qk,n+1 for all 1 ≤ k ≤ 2n+1. We will show that there
is a unique triple of intervals of the form I1 = (−∞, x)ᵀ, I2 = (x, q1,n)

ᵀ, I3 =
(q1,0, y)

ᵀ such that (I1, I3), (I2, I3) ∈ I2
=α(F ). For existence, take x = q1,n+1 and

y = q2n+1+1,n+1. For uniqueness, we have F (I1)+F (I2) = α/2n by definition of
q1,n, and F (I1) + F (I3) = F (I2) + F (I3) = α by definition of I2

=α, from which
we conclude F (I1) = F (I2) = α/2n+1. Thus, we must have x = q1,n+1, and the
value of y follows. This triple therefore uniquely determines q1,n+1. To recover
the other values of k, observe that for all k ≤ 2n we trivially have q2k,n+1 = qk,n,
and the unique I ′k = (qk,n, z)

ᵀ with (I ′k, I3) ∈ I2
=α(F ) satisfies z = q2k+1,n+1.



1076 T. Fissler et al.

When α > 1/2, we may proceed with the previous construction replacing α
with β = 1 − α, as follows. We now let qk,n := F−1(kβ/2n) for all k, n ∈ N

such that kβ/2n ∈ (0, 1). Again, we first show how to compute these values for
1 ≤ k ≤ 2n, as the other values follow from the observation that F ((−∞, qk,n]∪
[qk+2n,n,∞)) = α.

The base of the induction defines q1,0 = x from the unique interval I =
(x,∞)ᵀ such that F (I) = α. To induct, we again ask for intervals I1 = (−∞, x)ᵀ,
I2 = (x, q1,n)

ᵀ, I3 = (q1,0, y)
ᵀ such that (I1, I3), (I2, I3) ∈ I2

=α(F ), with the same
argument as before replacing α with β. Finally, for all 1 ≤ k ≤ 2n we again have
q2k,n+1 = qk,n, and the unique I ′k = (qk,n, x)

ᵀ with (I ′k, I3) ∈ I2
=α(F ) gives

x = q2k+1,n+1.

Corollary B.3. Cα is injective for all α ∈ (0, 1).

Proposition B.4. Let α ∈ (0, 1). Iw
α is injective if and only if α is irrational.

Proof. First, consider irrational α ∈ (0, 1). As in Proposition B.2, we will instead
show injectivity of Iw

=α : Mc → 2B(R), F �→ I=α(F )∪{(I1, I2) ∈ I2
=α(F ) : I1 =

(−∞, b)ᵀ, I2 = (a,∞)ᵀ, b ≤ a}, where naturally I=α(F ) = {I ∈ Ia(F ) : F (I) =
α}.

For any q ∈ (0, 1), suppose we have established x = F−1(q). If q + α ≤ 1,
then by taking I ∈ Iw

=α(F ) with I = (x, y)ᵀ for some y ∈ R, we may conclude
F (y) = q+α. If q+α > 1, then by taking (I1, I2) ∈ Iw

=α(F ) with I1 = (x,∞)ᵀ,
I2 = (−∞, y) for some y ∈ R, we may conclude F (y) = q + α − 1 ∈ (0, 1).
In both cases, therefore, the values of F−1(q) and Iw

=α(F ) together determine
the value of F−1((q + α)%1), where a%b := a− b�a/b� is the real modulus (see
Proposition 4.4).

Let x1 ∈ R be defined by (−∞, x1)
ᵀ ∈ Iw

=α(F ), so that F (x1) = α. Pro-
ceeding as above, for all k ∈ N, we may determine the values xk ∈ R by
F (xk) = kα%1. As α is irrational, the set {kα%1 : k ∈ N} is dense in (0, 1),
concluding the proof.

Now consider rational α ∈ (0, 1), so that α = k/n for some k, n ∈ N, k < n.
For any 0 ≤ b < 1/(2πn) define the cumulative distribution function Fb by
Fb(y) = y + b sin(2πny) for y ∈ [0, 1]. Then for all y ∈ [0, 1− α], we have

Fb(y + α)− Fb(y) = α+ b sin(2πn(y + k/n))− b sin(2πny) = α .

For 1− α < y ≤ 1, let z = y + α− 1. Then

Fb(1)− Fb(y) + Fb(z)− Fb(0)

= (1− y) + b
(
sin(2πn)− sin(2πny)

)
+ z + b

(
sin(2πnz)− sin(0)

)
= (1− y + z) + b

(
sin(2πnz)− sin(2πny)

)
= α+ b

(
sin(2πn(1 + z))− sin(2πny)

)
= α+ b

(
sin(2πn(y + k/n))− sin(2πny)

)
= α .
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We conclude, for all 0 ≤ b < 1/(2πn), that

Iw
=α(Fb) = {(y, y + α)ᵀ : y ∈ [0, 1− α]} ∪ {(y, α)ᵀ : y ≤ 0}

∪ {(1− α, y)ᵀ : y ≥ 1} ∪ {((y,∞)ᵀ, (−∞, y + α− 1)ᵀ) : y ∈ [1− α, 1]} .

Since Iw
α is in turn determined by Iw

=α, it also fails to be injective for rational
α.

Appendix C: Omitted technical proofs

Proof of Theorem 4.2(iii). Let μ be positive, F ∈ Mα,inc, A
∗ = Iα(F ) ∈ U∗

and A ∈ U∗ such that A 
= A∗. Let γ : [−∞, b] → (−∞,∞] and γ∗ : [−∞, b∗] →
(−∞,∞], b, b∗ ∈ R, such that A = epi γ and A∗ = epi γ∗. We first show that
int((A�A∗)∩U) 
= ∅. If b 
= b∗, it is obvious that int((A�A∗)∩U) 
= ∅, due to
the fact that γ and γ∗ are left-continuous and since γ and γ∗ assume infinity at
most at b and b∗, respectively. Now assume that b = b∗. If γ(−∞) 
= γ∗(−∞),
then the right-continuity at −∞ implies that there is some a ∈ R such that
γ(x) 
= γ∗(x) for all x ∈ (−∞, a). Hence int((A�A∗) ∩ U) 
= ∅. Finally, if
there is some a ∈ (−∞, b] such that γ(a) 
= γ∗(a), then the left-continuity
implies that there is some ε > 0 such that γ 
= γ∗ on (a − ε, a]. Hence, again
int((A�A∗) ∩ U) 
= ∅.

Since V̄ (x, F ) < 0 for x /∈ A∗, we obtain a strict inequality in (4.7) if int((A\
A∗)∩U) 
= ∅. Otherwise, consider any x ∈ int((A∗ \A)∩U) 
= ∅. If V̄ (x, F ) > 0
for all such x, we are done. Suppose there is some (x1, x2)

ᵀ ∈ int((A∗ \A) ∩U)
such that V̄ (x1, x2, F ) = 0. We show that there exists some δ > 0 such that
V̄ (·, F ) > 0 on the open rectangle (x1 − δ, x1) × (γ∗(x1), x2). First note that
there is some δ > 0 such that (x1−δ, x1)×(γ∗(x1), x2) ⊂ int((A∗\A)∩U), since
the latter set is open and since both A and A∗ are upper sets with ordering cone
(−∞, 0]× [0,∞). Therefore, it is sufficient to show that for all z1 ∈ (x1 − δ, x1)
it holds that V̄ (z1, γ

∗(x1), F ) = F ([z1, γ
∗(x1)])−α > 0. If V̄ (x1, x2, F ) = 0 that

means that F ((γ∗(x1), x2]) = 0. Therefore, [γ∗(x1), x2] ⊆ qα+F (x1−)(F ). Since
F ∈ Mα,inc, that means that qF (x1−)(F ) = {x1}. It is straightforward to see
that for all z1 ∈ (x1 − δ, x1) we have that F (z1−) < F (x1−). Hence,

F ([z1, γ
∗(x1)])− α = F (γ∗(x1))− F (z1−)− α > F (γ∗(x1))− F (x1−)− α ≥ 0 .

The claim follows.

Proof of Proposition 4.10. Part (i) follows from the fact that Vl is a strict iden-
tification function for l and from the strict monotonicity and continuity of
F ∈ Ml ∩Minc, cont.

For (ii) suppose S is a strictlyMl∩Minc, cont-consistent scoring function for Tl

such that S̄(·, F ) is twice differentiable on R×(0,∞) for all F ∈ Ml∩Minc, cont.
Assumptions (a), (b) and (c) and a slight adaptation of Fissler and Ziegel (2016,
Theorem 3.2, Corollary 3.3) imply the existence of a function h : R× (0,∞) →
R2×2 with differentiable components hij such that

∇xS̄(x, F ) = h(x)V̄ (x, F ), for all x ∈ R× (0,∞), F ∈ Ml ∩Minc, cont,
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where V is the strict Ml-identification function from part (i). For any F ∈ Ml

and x ∈ R × (0,∞), the Hessian ∇2
xS̄(x, F ) must be symmetric and, for x =

Tl(F ), it must be positive semidefinite. We obtain

∂iS̄(x, F ) = hi1(x)V̄l(x1, F ) + hi2(x)(F (x1 + 2x2)− F (x1)− α)

for i = 1, 2. From the symmetry of the Hessian it follows that

∂2h11(x)V̄l(x1, F ) + ∂2h12(x)(F (x1 + 2x2)− F (x1)− α) + 2h12(x)f(x1 + 2x2)

= ∂1h21(x)V̄l(x, F ) + h21(x)V̄
′
l (x1, F ) + ∂1h22(x)(F (x1 + 2x2)− F (x1)− α)

+ h22(x)(f(x1 + 2x2)− f(x1)).

At x = Tl(F ) this yields

2h12(Tl(F ))f(l(F ) + 2bl(F ))

= h21(Tl(F ))V̄ ′
l (l(F ), F ) + h22(Tl(F ))(f(l(F ) + 2bl(F ))− f(l(F ))).

The existence of F1, F2 ∈ Ml∩Minc, cont as in assumption (d) for any (l∗, b∗)ᵀ ∈
R × (0,∞) as well as the surjectivity of Tl implicitly implied via (a) and (b)
yield that h22 ≡ 0. Furthermore, the existence of F3 ∈ Ml ∩ Minc, cont as in
assumption (d) for any (l∗, b∗)ᵀ ∈ R× (0,∞) together with the surjectivity of T
implies that h12 ≡ 0. Finally, the existence of F4 ∈ Ml ∩Minc, cont as assumed
implies h21 ≡ 0.

Now, for any x ∈ R× (0,∞) let F ∈ Ml ∩Minc, cont be such that l(F ) 
= x1.
Since Vl is a strict identification function for l, V̄l(x1, F ) 
= 0 and we obtain
∂2h11(x) = 0. Therefore, there is a function g : R → R such that h11(x) = g(x1)
for all x ∈ R× (0,∞). In summary, we obtain that

∇xS̄(x, F ) =

(
g(x1)V̄l(x1, F )

0

)
,

which implies that S̄(·, F ) is constant in x2 and S cannot be strictly consistent
for Tl.

Proof of Proposition 4.12. Part (i) follows from the fact that Vm is a strict M-
identification function for m and from the strict monotonicity and continuity of
F ∈ M∩Minc, cont.

For (ii) suppose S is a strictly M ∩ Minc, cont-consistent scoring function
for Tm such that S̄(·, F ) is twice differentiable on R × (0,∞) for all F ∈
M ∩ Minc, cont. Using exactly the same arguments as in the proof of Propo-
sition 4.10, we can derive the existence of a function h : R× (0,∞) → R2×2 with
differentiable components hij such that

∇xS̄(x, F ) = h(x)V̄ (x, F ), for all x ∈ R× (0,∞), F ∈ M∩Minc, cont,

where V is the strict M∩Minc, cont-identification function from part (i). Again,
for any x ∈ R × (0,∞) and F ∈ M ∩ Minc, cont, the Hessian ∇2

xS̄(x, F ) must
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be symmetric and, for x = Tm(F ), it must be positive semidefinite. We obtain
that

∂iS̄(x, F ) = hi1(x)V̄l(x1, F ) + hi2(x)(F (x1 + x2)− F (x1 − x2)− α)

for i = 1, 2. From the symmetry of the Hessian it follows that

∂2h11(x)V̄m(x1, F ) + ∂2h12(x)(F (x1 + x2)− F (x1 − x2)− α)

+ h12(x)(f(x1 + x2) + f(x1 − x2))

= ∂1h21(x)V̄m(x1, F ) + ∂1h22(x)(F (x1 + x2)− F (x1 − x2)− α)

+ h21(x)V̄
′
m(x1, F ) + h22(x)(f(x1 + x2)− f(x1 − x2)).

At x = Tm(F ) this yields

h12(Tm(F ))(f(m(F ) + bm(F )) + f(m(F )− bm(F )))

= h21(Tm(F ))V̄ ′
m(m(F ), F )

+ h22(Tm(F ))(f(m(F ) + bm(F ))− f(m(F )− bm(F ))).

The existence of F1, F2 as in assumption (d) for any (m∗, b∗)ᵀ ∈ R × (0,∞)
and the surjectivity of Tm implicitly given via (a) and (b) imply that h22 ≡ 0.
Furthermore, the existence of F3 as in assumption (d) together with the surjec-
tivity of Tm implies that h12 ≡ 0. Finally, the existence of F4 as assumed implies
h21 ≡ 0. The rest of the argument follows as in the proof of Proposition 4.10.

Proof of Lemma 4.15. For α=1, note that SI1(F )= {(ess inf(F ), ess sup(F ))ᵀ}.
Now let α ∈ (0, 1). First note that SIα(F ) 
= ∅ if and only if the function h(x) :=
Γα(F )(x)−x attains its infimum over the interval P := {x ∈ R |F (x−) ≤ 1−α}
where we note that P is closed, bounded from above and unbounded from below.

Assume that Γα(F ) is continuous. Then h is continuous, too. Since
Γα(F )(x) ≥ x, m := infx∈P h(x) ≥ 0. The tightness of F implies that m < ∞.
From the definition of the infimum, there is a sequence (xn)n∈N ⊆ P with
h(xn) → m. If this sequence is bounded from below, there is a convergent
subsequence (xnk

)k∈N with limit x ∈ P and the continuity of h implies that
h(xnk

) → h(x), thus the infimum is attained. If (xn)n∈N is not bounded from
below, there is a divergent subsequence (xnl

)l∈N. But then Lemma 4.1 (iv) im-
plies that h(xnl

) → ∞ 
= m, which is a contradiction.
Finally assume that Γα(F ) fails to be right-continuous such that h is also

not continuous. h is discontinuous at x if and only if Γα(F ) has a jump at x.
Jumps of Γα(F ) can be caused by two situations, namely if F has jumps or if
F has flat spots. Both of them can occur at most countably many times (see
e.g. Theorem 2.1 in Shorack (2006)) which means that Γα(F ) can have at most
countably many jumps. Let I = {1, 2, . . . , n0} for some n0 ∈ N or I = N be
some index set such that (ai)i∈I is the collection jump points of Γα(F ) with
corresponding jump sizes (ji)i∈I . For all i ∈ I and any ε ∈ (0, ji/2] it holds that
Γα(F )(ai + ε) ≥ Γα(F )(ai) + ji and consequently that h(ai + ε) > h(ai). Thus,
if h attains its minimum, it is not in any of the intervals (ai, ai + ji/2), i ∈ I.
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Now define the sequence of functions hi in the following way: Set h0 := h. For
any i ∈ I, if hi−1 is continuous at ai, set hi = hi−1, else

hi(x) =

{
uix+ vi, x ∈ (ai, ai + ji/2)

h(x), otherwise,

where ui = 2(h(ai + ji/2) − h(ai))/ji and vi = h(ai) − uiai. It can easily be
verified that hi is continuous on [ai, ai+ ji/2) and moreover that hi(x) > hi(ai)
for all x ∈ [ai, ai + ji/2). Therefore if hi−1 attains its infimum at x∗ ∈ R, so
does hi and hi−1(x

∗) = hi(x
∗). The pointwise limiting function h∗ of (hi)i∈N is

a continuous function that, by an earlier argument, attains its infimum over P .
By the construction of the functions hi, h also attains its infimum over P , at
the same point as h∗.

Acknowledgements

We would like to express our sincere gratitude to Tilmann Gneiting and Jo-
hanna Ziegel for insightful discussions about the topic, to Alexander Jordan
who helped to coin the terminology of exhaustive versus selective elicitability in
a joint discussion, to Dario Azzimonti, Zied Ben Bouallègue, Seamus Bradley,
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