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Abstract: Consider the following semiparametric transformation model
Λθ(Y ) = m(X)+ε, where X is a d-dimensional covariate, Y is a univariate
response variable and ε is an error term with zero mean and independent
of X. We assume that m is an unknown regression function and that {Λθ :
θ ∈ Θ} is a parametric family of strictly increasing functions. Our goal
is to develop two new estimators of the transformation parameter θ. The
main idea of these two estimators is to minimize, with respect to θ, the L2-
distance between the transformation Λθ and one of its fully nonparametric
estimators. We consider in particular the nonparametric estimator based on
the least-absolute deviation loss constructed in Colling and Van Keilegom
(2019). We establish the consistency and the asymptotic normality of the
two proposed estimators of θ. We also carry out a simulation study to
illustrate and compare the performance of our new parametric estimators
to that of the profile likelihood estimator constructed in Linton et al. (2008).
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1. Introduction

Transforming the data is a very common practice in statistics in order to im-
prove the performance of a model or to interpret in an easier way a model.
Transformation models can be encountered in a lot of various contexts, like in
survival analysis and in quantile regression for example. In survival analysis,
we mention the seminal works of Cox (1972) and Bennett (1983), who intro-
duced respectively the Cox proportional hazards model and the proportional
odds model to examine the effect of covariates on the survival time. The ‘Box-
Cox quantile regression model’, based on the Box and Cox (1964) transform, is
very popular in quantile regression, see Buchinsky (1995), Machado and Mata
(2000), Mu and He (2007), and Fitzenberger et al. (2010), among others.

Historically speaking, transformations of the response variable go back to the
simple linear regression model Y = Xtβ + ε, where Y is a dependent variable,
X is a vector of explanatory variables, β is a vector of unknown regression pa-
rameters and ε is the error term. This model relies on heavy assumptions and
the violation of one or several of these assumptions could lead to inconsistent
or inefficient estimation of the corresponding parameters and also to wrong pre-
dictions of the response Y . As a possible solution to this problem, Box and Cox
(1964) introduced a parametric family of power transformations and suggested
that this power transformation, when it is applied to the response variable Y ,
might induce additivity of the effects, homoscedasticity and normality of the
new error term and reduce skewness and hence satisfy as much as possible the
assumptions of the new linear regression model. Note that the Box and Cox
(1964) transformation also includes as special cases the logarithm, the square
root, the inverse and the identity.

The class of transformations introduced by Box and Cox (1964) has been
generalized, see for example the Yeo and Johnson (2000) transform. We also
mention the book of Carroll and Ruppert (1988), the review paper of Sakia
(1992) and the papers of Zellner and Revankar (1969), John and Draper (1980),
Bickel and Doksum (1981) and MacKinnon and Magee (1990) for more classes
of transformations and more details on this topic.

In the literature on transformation models the regression function and the
transformation of the response can be either parametric or nonparametric. The
above mentioned papers all consider regression models which assume a paramet-
ric form for both functions. In the context of nonparametric transformations and
parametric regression functions, we mention the work of Horowitz (1996), who
proposed nonparametric estimators of the transformation and the cumulative
distribution function of the error term and the work of Chen (2002), who pro-
posed a rank-based estimator of the transformation that has the advantage of
not involving nonparametric smoothing.

Next, in the context of fully nonparametric transformation models of the
form Λ(Y ) = m(X) + ε, where Λ(·) and m(·) are respectively an unknown
transformation and an unknown regression function, Chiappori et al. (2015)
and more recently Colling and Van Keilegom (2019) constructed fully nonpara-
metric estimators of the transformation Λ. The main motivation of the estima-
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tors constructed in Colling and Van Keilegom (2019) with respect to the ones
constructed in Chiappori et al. (2015), was to avoid kernel smoothing on Y
since this can work badly in practice if the distribution of Y is very skewed.
Their main idea was to rewrite the transformation Λ(Y ) as Γ(U), where Γ is an
increasing function, U = [FY (Y )−FY (0)]/[FY (1)−FY (0)] and FY (·) is the dis-
tribution function of Y , and to construct estimators based on kernel smoothing
of U , which works globally better since U is uniformly distributed. We also men-
tion the work of Breiman and Friedman (1985) who constructed an algorithm
for estimating the different components of the same model when the regression
function m is supposed to be additive.

In fully nonparametric contexts that are slightly different from that of the
previous model, we would also like to mention the works of Horowitz (2001)
and Jacho-Chavez et al. (2010) among others, who proposed nonparametric
estimators of a generalized additive model with an unknown link function.

In this paper, we will focus on a model that assumes a parametric form for
the transformation function, while the regression function is left unspecified,
i.e., we will consider a semiparametric transformation model of the following
form:

Λθ(Y ) = m(X) + ε , (1)

where m(·) is an unknown regression function, Λθ is a transformation belonging
to a parametric family of strictly increasing functions and θ ∈ Θ where Θ is a
compact subset of Rk. We will denote by θ0 the true but unknown value of θ.
Moreover, we assume that X is a d-dimensional covariate with compact support
χ, Y is a univariate response variable with support Y and the error term ε has
zero mean and is independent of X. We also introduce the following notations:
m(x, θ) = E[Λθ(Y )|X = x], m(x, θ0) = m(x), ε(θ) = Λθ(Y ) − m(X, θ) and
ε(θ0) = ε. Finally, let FX , Fε(θ), fX and fε(θ) be the distribution and density
functions of X and ε(θ). We assume that we have randomly drawn an iid sample
(X1, Y1), . . . , (Xn, Yn) from model (1), where the components of Xi are denoted
by (Xi1, . . . , Xid) for i = 1, . . . , n.

Linton et al. (2008) extensively studied the semiparametric transformation
model (1) and proposed two estimation methods for the unknown true parameter
vector θ0: a profile likelihood method and a mean squared distance from inde-
pendence method. Moreover, they established the asymptotic properties of these
two estimators and showed in their simulation study that the profile likelihood
estimator outperforms the other one. The main idea of the profile likelihood
method is to maximize the log-likelihood function of the vector (X,Y ) with
respect to θ, after having replaced all unknown functions in the likelihood by
nonparametric estimators. Then, the profile likelihood estimator of θ is defined
by

θ̂PL = argmax
θ∈Θ

n∑
i=1

{
log f̂ε(θ)(Λθ(Yi)− m̂(Xi, θ)) + log Λ′

θ(Yi)

}
, (2)

where m̂(·, θ) and f̂ε(θ)(·) are suitable nonparametric estimators of m(·, θ) and
fε(θ)(·) respectively and Λ′

θ(y) =
∂
∂yΛθ(y).
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In the literature we can find several other contributions on the semiparametric
transformation model (1). First, we mention the work of Vanhems and Van Kei-
legom (2019) who studied the estimation of this model when some of the regres-
sors are supposed to be endogenous. Next, we refer to Colling and Van Keilegom
(2016), Colling and Van Keilegom (2017) and Kloodt and Neumeyer (2017), who
developed tests for the parametric form of the regression function based on the
error distribution function, the integrated regression function and a L2-distance
between the nonparametric and the parametric fits ofm, respectively, while Alli-
son et al. (2018) and Kloodt and Neumeyer (2017) constructed significance tests
for the explanatory variables in the model based on Fourier-type conditional
expectations and on U -statistics, respectively. Moreover, Hušková et al. (2018)
proposed tests for the validity of the model involving characteristic functions
and Colling et al. (2015) and Heuchenne et al. (2015) studied nonparametric es-
timators of the error density and the error distribution respectively. Finally, we
also mention the work of Neumeyer et al. (2016) who introduced estimators of
the different components of a heteroscedastic transformation model and proved
the asymptotic normality of these estimators.

In this paper, our goal is to construct two new estimators of the transfor-
mation parameter θ0 in the context of a semiparametric transformation model
of the form (1). These estimators will be competitors of the profile likelihood

estimator θ̂PL introduced in (2). The main idea of the new estimators of θ0 is
to minimize, with respect to θ, the L2-distance between the transformation Λθ

and one of its fully nonparametric estimators. In Section 2, we will explain in
more detail the intuition behind our two new estimators of θ0, while we will
give their exact definitions in Section 3. Next, in Section 4, we will present the
theorems that establish the consistency and the asymptotic normality of these
two estimators. A simulation study comparing the performance of our new es-
timators with that of the profile likelihood estimator is performed in Section 5.
Some general conclusions and discussion about the contexts in which the pro-
posed method is effective, is given in Section 6. Finally, Appendix A contains
the technical assumptions and the proofs of the main results.

2. Main idea of the new estimators

As mentioned in the introduction, the main idea of the new estimators of the
transformation parameter θ0 is to minimize, with respect to θ, the L2-distance
between the transformation Λθ and one of its fully nonparametric estimators.
Nonparametric estimators of the transformation have already been constructed
in the literature, see Chiappori et al. (2015) and Colling and Van Keilegom
(2019). Moreover, we explained in the introduction why the estimators con-
structed in Colling and Van Keilegom (2019) perform globally better than those
constructed in Chiappori et al. (2015). The simulation studies performed in
Chiappori et al. (2015) and Colling and Van Keilegom (2019) also show that a
nonparametric estimator of the transformation based on the least absolute de-
viation loss performs better than a corresponding estimator based on the least
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squares loss, since the former is less sensitive to outliers. Consequently, we will
use here the nonparametric estimator based on the least absolute deviation loss
constructed by Colling and Van Keilegom (2019), which is, as far as we know,
the nonparametric estimator of the transformation that performs globally the
best.

To construct this estimator we need to assume that the true transformation
Λ = Λθ0 satisfies Λ(0) = 0 and Λ(1) = 1. However, as we will see later, other
identifiability constraints are possible as well. The latter condition on Λ fixes the
location and the scale of the model, which is sufficient to identify the model. See
Chiappori et al. (2015) and Colling and Van Keilegom (2019) for more details
about the identification of the model. Following the same idea as in Colling and
Van Keilegom (2019), we rewrite the transformation Λ(Y ) as Λ(Y ) = Γ(U),
where Γ is an increasing function, and

U = T (Y ) =
FY (Y )− FY (0)

FY (1)− FY (0)
. (3)

Note that T (0) = 0 and T (1) = 1, and hence combined with the imposed
condition on Λ, we find that Γ(0) = 0 and Γ(1) = 1, i.e. Γ satisfies the same
identification constraints as Λ. We estimate the variable U by

Û = T̂ (Y ) =
F̂Y (Y )− F̂Y (0)

F̂Y (1)− F̂Y (0)
, (4)

where F̂Y (y) = n−1
∑n

i=1 1{Yi≤y} is the empirical distribution function of
Y1, . . . , Yn. Next, to estimate the transformation Γ, first note that for all x ∈ χ,

Γ(u) = λ1(u, x) =
S1(u, x)

S1(1, x)
with S1(u, x) =

∫ u

0

∂
∂wϕ(w, x)
∂

∂x1
ϕ(w, x)

dw, (5)

where ϕ(u, x) = P (U ≤ u|X = x) is the conditional distribution of U given X,
and x1 is the first component of the vector x = (x1, . . . , xd)

t. The proof of (5) is
the same as the proof of Theorem 1 in Chiappori et al. (2015) and is therefore
omitted. Hence, we can write Γ(u) as

Γ(u) = argminqm∈R

∫
χ

v(x)�
(
λ1(u, x)− qm

)
dx,

for any positive weight function v(·) and loss function �(·) satisfying �(0) = 0. In
particular, we can work with the loss �(u) = u

(
2Lb(u)−1

)
, where Lb(·) = L(·/b),

L is a given distribution function and b > 0 is a bandwidth sequence. This loss
function is a smooth approximation of the absolute deviation loss �(u) = |u| for
b small. To estimate Γ(u), we will replace the unknown function λ1(u, x) by an
appropriate estimator. Let

λ̂1(u, x) =
Ŝ1(u, x)

Ŝ1(1, x)
with Ŝ1(u, x) =

∫ u

0

∂
∂w ϕ̂(w, x)
∂

∂x1
ϕ̂(w, x)

dw,
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where

ϕ̂(u, x) =

∑n
i=1 Khu(u− Ûi)Khx(Xi − x)∑n

i=1 Khx(Xi − x)
,

Khx(x) = K(x/hx)/h
d
x, K(x) is a multivariate product kernel of the form

K(x) =
∏d

i=1 K(xi), Khu = K(u/hu), K(u) =
∫ u

−∞ K(w) dw, K is a univariate
kernel and hu and hx are bandwidth sequences. Finally, define

Γ̂LAD,b(u) = argminqm∈R

∫
χ

v(x)
(
λ̂1(u, x)− qm

){
2Lb

(
λ̂1(u, x)− qm

)
− 1
}
dx.

Consequently, a natural estimator of θ0 is given by

argminθ∈Θ n−1
n∑

i=1

(
Γ̂LAD,b(T̂ (Yi))− Λθ(Yi)

)2
. (6)

However, it is important to remind that the estimator Γ̂LAD,b(T̂ (·)) has been
constructed under the particular identification conditions Λ(0) = 0 and Λ(1) =
1. Certain classes of transformations do not satisfy these identification con-
straints. The class of Yeo and Johnson (2000) transformations, for example,
satisfies Λθ(0) = 0 and Λ′

θ(0) = 1 instead of Λθ(1) = 1 for all θ ∈ Θ. Expres-
sion (6) will then lead to an inconsistent estimator of θ. In the next section we

will explain in detail how we can adjust the estimator Γ̂LAD,b(T̂ (·)) with addi-
tive and multiplicative constants so that the corresponding adjusted estimator
in (6) is consistent under identification conditions that are more general than
Λθ(0) = 0 and Λθ(1) = 1 for all θ ∈ Θ.

Another possibility to allow for other identification conditions would be to
consider Γ̂∗

LAD,b(T̂
∗(·)) instead of Γ̂LAD,b(T̂ (·)), where Γ̂∗

LAD,b(·) and T̂ ∗(·) are
estimators of some suitable adaptations Γ∗(·) and T ∗(·) of Γ(·) and T (·), de-
pending on the particular identification conditions considered. However, the
estimator Γ̂LAD,b(T̂ (·)) has several advantages. First, its asymptotic proper-
ties have already been developed in Colling and Van Keilegom (2019), which
will facilitate the proofs in this paper. Second, we know that this estimator
avoids kernel smoothing of Y , and the latter is known to work badly in prac-
tice if the distribution of Y is skewed. This is not necessarily the case for
Γ̂∗
LAD,b(T̂

∗(·)). Indeed, if we consider the Yeo and Johnson (2000) transform
for example, with Λθ(0) = 0 and Λ′

θ(0) = 1 as identification conditions, then
T ∗(Y ) = [FY (Y ) − FY (0)]/fY (0), and so the estimation of T ∗(Y ) will require
kernel smoothing of Y since it depends on the density function fY of Y . Finally,
the expression of the estimators Γ̂∗

LAD,b(·) and T̂ ∗(·) depends on the imposed
identification conditions, whereas our goal is to construct an estimator of θ0
that is consistent under general identification conditions.

3. Definition of the estimators

The estimators of θ that we will propose in this section, will work under the
following identifiability conditions on the class {Λθ : θ ∈ Θ}:
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(I1) Λθ(α1) = a1 and Λθ(α2) = a2 for all θ ∈ Θ and for some α1 < α2 and
a1 < a2,

(I2) The set {x ∈ χ : ∂
∂x1

m(x) �= 0} has nonempty interior,

(the derivative ∂
∂x1

m(x) can also be replaced by ∂
∂xj

m(x) for some j = 1, . . . , d).

The set of conditions (I1) can be replaced by the following alternative set of
conditions:

(I1’) Λθ(α1) = a1 and Λ′
θ(α3) = a3 for all θ ∈ Θ and for some a1, a3, α1, α3.

The following proposition will be on the basis of the adjustment of the ex-
pression (6) and takes into account the set of identification conditions (I1) and
(I1’). The assumptions (A1)–(A4) are given in the Appendix. Let U0 be a com-
pact subset in the interior of the support U of U , and let Y0 be a compact set
strictly included in T−1(U0).

Proposition 3.1. Assume (A1)–(A4). Then, under either (I1) or (I1’) and
(I2), we have for all x ∈ χ and y ∈ Y0,

Λ(y) =
(
Λ(1)− Λ(0)

)S1(T (y), x)

S1(1, x)
+ Λ(0), (7)

where T and S1 are defined in (3) and (5) respectively. Moreover, the right hand
side of (7) does not depend on x.

The proof of this proposition is given in Section A.2. Consequently, using
Proposition 3.1 and the fact that Γ̂LAD,b(T̂ (y)) is a nonparametric estimator of
S1(T (y), x)/S1(1, x), it is natural to define the following estimator of θ0:

θ̂1 = argminθ∈Θ n−1
n∑

i=1

w(Yi)
((

Λθ(1)−Λθ(0)
)
Γ̂LAD,b(T̂ (Yi))+Λθ(0)−Λθ(Yi)

)2
,

(8)
where w is a certain positive weight function with support included in Y0, that
has been added to facilitate the proofs of the main asymptotic results that
will be presented in the next section. Moreover, if the transformation satisfies
in particular Λθ(0) = 0 and Λθ(1) = 1 for all θ ∈ Θ, expression (8) equals
expression (6) up to the weight function w that we have added in the meantime.

An alternative estimator can be obtained by letting the constants Λθ(1) −
Λθ(0) and Λθ(0) in the expression of θ̂1 be free parameters that do not depend
on θ. In that way we will have k + 2 parameters over which we minimize our
weighted L2-distance (k being the dimension of θ) instead of just k. This could
lead to a better estimator of θ. Therefore, we define a second estimator of θ0,
which is obtained by replacing Λθ(1)−Λθ(0) and Λθ(0) respectively by constants
c1 ∈ [c1L, c1U ] ⊂ R

+ and c2 ∈ [c2L, c2U ] ⊂ R that do not depend on θ, i.e.

γ̂2 =
(
ĉ1, ĉ2, θ̂2

)t
= argminγ∈Θγ

n−1
n∑

i=1

w(Yi)
(
c1Γ̂LAD,b(T̂ (Yi))+c2−Λθ(Yi)

)2
,

(9)
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where γ = (c1, c2, θ)
t and Θγ = [c1L, c1U ] × [c2L, c2U ] × Θ ⊂ R

k+2. The true
but unknown value of γ equals γ0 = (Λθ0(1)− Λθ0(0),Λθ0(0), θ0)

t. Note that if

the estimator Γ̂LAD,b(T̂ (·)) performs well, ĉ1 and ĉ2 should be approximately

equal to Λθ̂1
(1)−Λθ̂1

(0) and Λθ̂1
(0) and then θ̂2 should perform similarly as θ̂1.

Otherwise, ĉ1 and ĉ2 could compensate a bad estimator Γ̂LAD,b(T̂ (·)) by taking
some other values far away from Λθ̂1

(1)− Λθ̂1
(0) and Λθ̂1

(0).

4. Asymptotic results

4.1. Notations and definitions

Before establishing the main asymptotic results, we need to introduce several
notations. First, θ = (θ1, . . . , θk)

t, Λ̇θ,j(y) = ∂
∂θj

Λθ(y) for j = 1, . . . , k, and

Λ̇θ(y) = (Λ̇θ,1(y), . . . , Λ̇θ,k(y))
t is the vector of partial derivatives of Λθ(y) with

respect to the components of θ. Next, let C1
c (U0) be the set of functions f :

U0 → R for which ‖f‖∞,1 ≤ c < ∞, where

‖f‖∞,1 = sup
u∈U0

|f(u)|+ sup
u �=u′,u∈U0,u′∈U0

|f(u′)− f(u)|
|u′ − u| .

Moreover, we define

H =
{
h : Y0 → R : h = f ◦ g, f ∈ C1

c (U0), g : Y0 → U0 is monotone
}
,

and let ‖h‖H = [E(h2(Y ))]1/2. Note that the derivative of ϕ(u, x) with respect
to a component of x is zero for all x if u is at the lower boundary of the support
U of U . Hence, Assumptions (A4) and (A8), given in Section A.1, cannot be
fulfilled for all u ∈ U . Consequently, we have to work with the set U0, defined
in Section 3, and similarly we have to work with the set Y0 instead of Y .

The following notations are related to the first estimator θ̂1. First, we intro-
duce the following four vectors of dimension k:

A(θ) =
(
Aj(θ)

)t
j=1,...,k

with Aj(θ) =
(
Λ̇θ,j(1)− Λ̇θ,j(0)

)(
Λθ(1)− Λθ(0)

)
B(θ, y) =

(
Bj(θ, y)

)t
j=1,...,k

with Bj(θ, y) =
(
Λ̇θ,j(1)− Λ̇θ,j(0)

)(
Λθ(0)− Λθ(y)

)
C(θ, y) =

(
Cj(θ, y)

)t
j=1,...,k

with Cj(θ, y) =
(
Λ̇θ,j(0)− Λ̇θ,j(y)

)(
Λθ(1)− Λθ(0)

)
D(θ, y) =

(
Dj(θ, y)

)t
j=1,...,k

with Dj(θ, y) =
(
Λ̇θ,j(0)− Λ̇θ,j(y)

)(
Λθ(0)− Λθ(y)

)
.

Moreover, for h ∈ H and θ ∈ Θ, we consider �1(y, θ, h) = (�1,j(y, θ, h))
t
j=1,...,k,

where, for j = 1, . . . , k,

�1,j(y, θ, h) = w(y)
[
Aj(θ)h

2(y)+Bj(θ, y)h(y)+Cj(θ, y)h(y)+Dj(θ, y)
]
. (10)

Finally, let M1(θ, h) = E[�1(Y, θ, h)] and Mn,1(θ, h) = n−1
∑n

i=1 �1(Yi, θ, h),
where the k components of the vectors M1(θ, h) and Mn,1(θ, h) are respectively
denoted by M1,j(θ, h) and Mn,1,j(θ, h) for j = 1, . . . , k.
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Similarly, the following notations are related to the second estimator θ̂2. For
h ∈ H and γ = (c1, c2, θ)

t ∈ Θγ , we consider �2(y, γ, h) = (�2,j(y, γ, h))
t
j=1,...,k+2,

where

�2,1(y, γ, h) = w(y)
[
c1h

2(y) + c2h(y)− Λθ(y)h(y)
]

�2,2(y, γ, h) = w(y)
[
c1h(y) + c2 − Λθ(y)

]
�2,j(y, γ, h) = −w(y)Λ̇θ,j−2(y)

[
c1h(y) + c2 − Λθ(y)

]
,

for j = 3, . . . , k + 2. Moreover, let M2(γ, h) = E[�2(Y, γ, h)] and Mn,2(γ, h) =
n−1

∑n
i=1 �2(Yi, γ, h), where the k + 2 components of the vectors M2(γ, h) and

Mn,2(γ, h) are respectively denoted by M2,j(γ, h) and Mn,2,j(γ, h) for j =
1, . . . , k + 2.

Note that the vectors Mn,1(θ, ĥ) and Mn,2(γ, ĥ), where ĥ(y) = Γ̂LAD,b(T̂ (y))

estimates h0(y) =
S1(T (y),x)
S1(1,x)

, are simply the derivatives of the expressions that

we minimize in (8) and (9) with respect to the components of the vectors θ =
(θ1, . . . , θk)

t and γ = (c1, c2, θ1, . . . , θk)
t respectively. Using Proposition 3.1,

note also that �1(y, θ0, h0) = 0 and �2(y, γ0, h0) = 0 for all y ∈ Y0, which implies
that Mn,1(θ0, h0) = M1(θ0, h0) = 0 and Mn,2(γ0, h0) = M2(γ0, h0) = 0.

Finally, the reason for defining all these functions comes from the article of
Chen et al. (2003). Indeed, Chen et al. (2003) proposed sufficient high-level
conditions for the consistency and asymptotic normality of a class of semipara-
metric optimization estimators, that we will verify here for our estimators θ̂1
and γ̂2; see the proofs of Theorems 4.1 and 4.2 in Section A.2. These sufficient
conditions are mainly conditions on the class of functions H and either on the
functions �1, M1 and Mn,1 for the estimator θ̂1 or on the functions �2, M2 and
Mn,2 for the estimator γ̂2.

4.2. Consistency and asymptotic normality

The following theorems establish respectively the consistency and the asymp-
totic normality of θ̂1 and γ̂2. The assumptions under which these results are
valid can be found in the Appendix.

Theorem 4.1. Assume (A1)–(A13). Then, under either (I1) or (I1’) and (I2),

(i) θ̂1 − θ0 = oP (1) and (ii) γ̂2 − γ0 = oP (1) .

Theorem 4.2. Assume (A1)–(A13). Then, under either (I1) or (I1’) and (I2),

(i)
√
n(θ̂1 − θ0)

d−→ N(0,Ω1),

where Ω1 = Δ−1
1 V1Δ

−1
1 , Δ1 = Δ1(θ0, h0), Δ1(θ, h) is the k × k matrix

of partial derivatives of M1(θ, h) with respect to the components of θ, and
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the matrix V1 is given by

V1=V ar

(
E
[
w(Y ′)ϕv

X,Y (Y
′)
(
2A(θ0)h0(Y

′)+B(θ0, Y
′)+C(θ0, Y

′)
)∣∣∣X,Y

])
,

where Y ′ is an i.i.d. copy of Y , h0(y) =
S1(T (y),x)
S1(1,x)

, and ϕv
X,Y is defined in

Section A.2.
(ii)

√
n(γ̂2 − γ0)

d−→ N(0,Ω2),

where Ω2 = Δ−1
2 V2Δ

−1
2 , Δ2 = Δ2(γ0, h0), Δ2(γ, h) is the (k+2)× (k+2)

matrix of partial derivatives of M2(γ, h) with respect to the components of
γ, and the matrix V2 is given by

V2 = V ar

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
[
w(Y ′)ϕv

X,Y (Y
′)
(
2c1,0h0(Y

′) + c2,0 − Λθ0(Y
′)
)∣∣∣X,Y

]
E
[
w(Y ′)c1,0ϕ

v
X,Y (Y

′)
∣∣X,Y

]
−E
[
w(Y ′)c1,0Λ̇θ0,1(Y

′)ϕv
X,Y (Y

′)
∣∣X,Y

]
...

−E
[
w(Y ′)c1,0Λ̇θ0,k(Y

′)ϕv
X,Y (Y

′)
∣∣X,Y

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where c1,0 = Λθ0(1)− Λθ0(0) and c2,0 = Λθ0(0).

The proofs of these two theorems are given in Section A.2. Note that the
covariance matrices V1 and V2 are derived from the pathwise derivatives of the
vectors M1(θ0, h0) and M2(γ0, h0) in the direction ĥ−h0. The exact expressions
of these pathwise derivatives, as well as of their i.i.d. representations, are given
in the proof of Theorem 4.2.

Note also that Theorem 4.1(ii) implies that θ̂2 is consistent for θ0, and that

Theorem 4.2(ii) implies that θ̂2 is asymptotically normally distributed with
variance-covariance matrix given by the lower k × k submatrix of the matrix
Ω2.

5. Simulations

In this section, we perform simulations in order to compare the performance of
our new estimators θ̂1 and θ̂2 of the transformation parameter with that of the
profile likelihood estimator θ̂PL proposed by Linton et al. (2008) and defined in
(2).

The six simulated models are

Model 1: Λθ(Yi) = 2Xi − 1 + εi where ε1, . . . , εn ∼iid N(0, 1),
Model 2: Λθ(Yi) = 2Xi − 1 + εi where ε1, . . . , εn ∼iid N(0, 0.52),
Model 3: Λθ(Yi) = 2Xi − 1 + εi where ε1, . . . , εn ∼iid

2t10√
5
,

Model 4: Λθ(Yi) = 6Xi − 3 + εi where ε1, . . . , εn ∼iid N(0, 1),
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Model 5: Λθ(Yi) = 10X2
i1 − 3 + 4 sin(2πXi2) + εi where ε1, . . . , εn ∼iid

N(0, 1),
Model 6: Λθ(Yi) = 20X2

i1 − 6 + 8 sin(2πXi2) + εi where ε1, . . . , εn ∼iid

N(0, 1).

Note that d = 1 in Models 1 to 4 and d = 2 in Models 5 and 6. In each model,
Λθ(Y ) represents the Yeo and Johnson (2000) transformation, i.e.,

Λθ(Y ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Y+1)θ−1
θ if Y ≥ 0, θ �= 0

log(Y + 1) if Y ≥ 0, θ = 0
−[(−Y+1)2−θ−1]

2−θ if Y < 0, θ �= 2

− log(−Y + 1) if Y < 0, θ = 2,

X1, . . . , Xn are independent uniform random variables on [0, 1] for Models 1 to
4 and (X11, X12), . . ., (Xn1, Xn2) are independent and uniformly distributed
on the unit square for Models 5 and 6. For each model we will also consider
six sample sizes: n = 50, n = 100, n = 200, n = 300, n = 400 and n = 500
and four values of the transformation parameter: θ0 = 0 which corresponds
to a logarithmic transformation, θ0 = 0.5 which corresponds to a square root
transformation, θ0 = 1 which corresponds to the identity and θ0 = 1.5.

The goal will be to analyze the influence of the sample size n, the value of
the transformation parameter θ0, the dimension d of X (by comparing Models
1 and 4 to Models 5 and 6), the variability of the regression function m(x) (by
comparing Model 4 to Model 1 and Model 6 to Model 5), the variability of the
error term (by comparing Model 2 to Model 1) and the distribution of the error
term (by comparing Model 3 to Model 1) on the bias and variance of the different
estimators. Note that, in Model 3, we consider ε ∼ 2t10√

5
instead of ε ∼ t10 to

ensure that V (ε) = 1, exactly as in Model 1. In that case, if we observe some
significative difference in the performance of the estimators between Models 1
and 3, we will be sure that it comes from the distribution, and not from the
variability, of the error term.

Next, exactly as in Colling and Van Keilegom (2019), we will work with the
unsmoothed estimator of the transformation Λ(·). This estimator is arbitrarily

close to the estimator Γ̂LAD,b(T̂ (·)) when the bandwidth b is close to zero, and
is defined as follows:

Γ̂LAD(T̂ (y)) = argminqm∈R

∫
χ

v(x)
∣∣∣λ̂1(T̂ (y), x)− qm

∣∣∣ dx.
The smoothed estimator Γ̂LAD,b(T̂ (y)) that we use in the theory is used in order
to facilitate the proofs of the asymptotic properties, see Colling and Van Kei-
legom (2019) for more on the comparison between the two estimators. The
non-smoothed estimator has in particular the advantage that it does not rely
on the delicate choice of the bandwidth parameter b. Again as in Colling and
Van Keilegom (2019), we approximate the expression Γ̂LAD(u) in practice by

Γ̃LAD(u) = median
(
λ̂1(u, x̃1), . . . , λ̂1(u, x̃nx)

)
,
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where λ̂1(u, x) = Ŝ1(u, x)/Ŝ1(1, x). For Models 1 to 4, the values x̃1, . . ., x̃nx are
the nx remaining values from an original grid of Nx = 100 equidistant points
x∗
1, . . ., x∗

Nx
generated between min1≤j≤n Xj and max1≤j≤n Xj , from which

we remove the values x∗
� for which the expression Ŝ1(u, x

∗
� ) diverges. This can

happen if ∂
∂x1

ϕ̂(w, x∗
� ) is very close to 0 for some w. Moreover, we also remove

the x∗-values that are within 0.01 of the values x∗
� for which Ŝ1(u, x

∗
� ) diverges,

even if the corresponding integrals do not diverge. Note that removing some
x∗-values is allowed since Ŝ1(u, x)/Ŝ1(1, x) estimates Γ(u) = S1(u, x)/S1(1, x)
for all x ∈ χ.

For Models 5 and 6, we proceed exactly in the same way except that we gener-
ate first 20 equidistant points x∗

1,1, . . ., x∗
20,1 between min1≤j≤n Xj1

and max1≤j≤n Xj1 and 20 other equidistant points x∗
1,2, . . ., x∗

20,2 between
min1≤j≤n Xj2 and max1≤j≤n Xj2 which gives us Nx = 400 couples of points
on the unit square. Next, we remove the couples of x∗-values according to the
same rules as in dimension d = 1 and we can evaluate the function λ̂1(u, x) in
the remaining x∗-values.

We consider the Epanechnikov kernel K(x) = 3
4 (1 − x2)1{|x|≤1} for Mod-

els 1 to 4 and the product of 2 Epanechnikov kernels for Models 5 and 6, i.e.
K(x1, x2) = K(x1)K(x2) =

9
16 (1 − x2

1)(1 − x2
2)1{|x1|≤1}1{|x2|≤1}. Moreover, for

Models 1 to 4, we select the bandwidths hx and hu by the classical normal ref-
erence rule for kernel density estimation, i.e., ĥx = (40

√
π)1/5σ̂xn

−1/5 and ĥu =
(40

√
π)1/5σ̂un

−1/5, where σ̂x and σ̂u are the classical estimators of the standard
deviation of X and U respectively. Similarly, for Models 5 and 6, the bandwidth
hx is simply selected by ĥx = (ĥx1 , ĥx2) where ĥxj = (40

√
π)1/5σ̂xjn

−1/5 and
σ̂xj is the classical estimator of the standard deviation of Xj for j = 1, 2. Finally,

we take v(x) = 1 for all x such that Ŝ1(u, x) does not diverge.
Consequently, as the Yeo and Johnson (2000) transformation satisfies Λθ(0) =

0 for all θ ∈ Θ, we approximate θ̂1 and γ̂2 respectively by

θ̃1 = argminθ∈Θ n−1
n∑

i=1

(
Λθ(1)Γ̃LAD(T̂ (Yi))− Λθ(Yi)

)2
,

and

γ̃2 = (c̃1, c̃2, θ̃2) = argminγ∈Θγ
n−1

n∑
i=1

(
c1Γ̃LAD(T̂ (Yi)) + c2 − Λθ(Yi)

)2
.

We have chosen to work with w(Y ) = 1{Y ∈Y0}, where the compact set Y0 is
chosen large enough such that it contains (quasi) all values in the sample.

Moreover, to compute the profile likelihood estimator θ̂PL introduced in
(2), we use a Nadaraya-Watson estimator to estimate m(·, θ), with the same
Epanechnikov kernelK as above and a bandwidth estimated by a cross-validation
procedure, and we use a classical kernel density estimator to estimate fε(θ)(·),
with the Epanechnikov kernel K and a bandwidth estimated by the classical
normal reference rule for kernel density estimation. The estimator θ̂PL is then
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Table 1

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for
different sample sizes and values of θ0 when m(x) = 2x− 1 and ε ∼ N(0, 1) (model 1).

θ0 0 0.5 1 1.5 0 0.5 1 1.5
n = 50 n = 100

Bias .1977 .0823 -.0109 -.0823 .1065 .0454 .0061 -.0481

θ̂PL Var .1399 .1302 .1342 .1329 .0485 .0489 .0566 .0564
. MSE .1789 .1370 .1343 .1396 .0599 .0509 .0567 .0587

Bias -.0706 -.0068 .0402 .0584 -.0288 .0224 .0554 .0708

θ̃1 Var .1085 .1065 .1084 .0934 .0347 .0407 .0451 .0442
MSE .1135 .1065 .1100 .0968 .0355 .0412 .0482 .0492
Bias -.0515 -.0280 -.0015 .0230 -.0413 -.0193 .0045 .0308

θ̃2 Var .0431 .0571 .0633 .0609 .0206 .0284 .0314 .0288
MSE .0458 .0579 .0633 .0614 .0223 .0288 .0314 .0297

n = 200 n = 300
Bias .0493 .0232 -.0023 -.0204 .0344 .0172 .0009 -.0225

θ̂PL Var .0176 .0223 .0228 .0209 .0129 .0157 .0161 .0158
MSE .0200 .0228 .0228 .0213 .0141 .0160 .0161 .0163
Bias -.0338 .0103 .0457 .0673 -.0321 .0087 .0403 .0559

θ̃1 Var .0152 .0194 .0222 .0202 .0131 .0188 .0204 .0193
MSE .0163 .0195 .0243 .0248 .0141 .0189 .0221 .0224
Bias -.0538 -.0319 -.0071 .0187 -.0499 -.0287 -.0040 .0220

θ̃2 Var .0086 .0117 .0133 .0123 .0081 .0114 .0122 .0113
MSE .0115 .0128 .0133 .0126 .0106 .0123 .0122 .0118

n = 400 n = 500
Bias .0358 .0150 .0037 -.0069 .0157 .0057 -.0038 -.0140

θ̂PL Var .0101 .0121 .0130 .0113 .0054 .0075 .0082 .0082
MSE .0114 .0123 .0130 .0114 .0057 .0075 .0082 .0084
Bias -.0281 .0087 .0398 .0604 -.0282 .0081 .0388 .0551

θ̃1 Var .0110 .0161 .0175 .0172 .0081 .0116 .0124 .0119
MSE .0117 .0162 .0191 .0208 .0089 .0116 .0139 .0150
Bias -.0428 -.0214 .0001 .0240 -.0483 -.0290 -.0059 .0187

θ̃2 Var .0070 .0099 .0104 .0094 .0053 .0078 .0084 .0077
MSE .0088 .0104 .0104 .0100 .0076 .0086 .0084 .0081

obtained iteratively with the function optimize in R. We refer to Colling and
Van Keilegom (2016) for more details on the implementation of this estima-
tor.

Tables 1 to 6 show the bias, variance and mean squared error of the profile
likelihood estimator θ̂PL and of our new estimators θ̃1 and θ̃2 for all considered
values of n and θ0 when Models 1 to 6 are generated respectively, each of them
obtained on the basis of 200 samples.

First, when the sample size n increases, the mean squared error of all estima-
tors decreases, especially due to a significant decrease of their variance, which is
an expected outcome. Next, we observe that θ̃2 outperforms θ̃1 in all scenarios
in terms of variance and in most of the scenarios in terms of bias, which could
be expected since θ̃2 offers more flexibility and freedom than θ̃1 as explained in
Section 3. Hence, we will concentrate our following analysis on the comparison
between θ̂PL and θ̃2.
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Table 2

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for
different sample sizes and values of θ0 when m(x) = 2x− 1 and ε ∼ N(0, 0.52) (model 2).

θ0 0 0.5 1 1.5 0 0.5 1 1.5
n = 50 n = 100

Bias .1286 .0476 .0038 -.0301 .0555 .0232 -.0109 -.0394

θ̂PL Var .1283 .1526 .1618 .1366 .0487 .0516 .0615 .0594
MSE .1448 .1549 .1618 .1375 .0518 .0521 .0616 .0610
Bias -.0254 .0327 .0622 .0555 -.0065 .0449 .0680 .0634

θ̃1 Var .1294 .1393 .1229 .1100 .0414 .0483 .0504 .0468
MSE .1301 .1404 .1268 .1131 .0414 .0504 .0550 .0508
Bias -.0402 -.0149 .0075 .0354 -.0392 -.0142 .0125 .0380

θ̃2 Var .0546 .0690 .0757 .0747 .0237 .0299 .0321 .0305
MSE .0562 .0692 .0758 .0759 .0253 .0301 .0323 .0320

n = 200 n = 300
Bias .0251 .0128 .0008 -.0209 .0216 .0066 -.0007 -.0071

θ̂PL Var .0200 .0221 .0241 .0280 .0154 .0177 .0188 .0168
MSE .0206 .0223 .0241 .0284 .0159 .0177 .0188 .0169
Bias -.0083 .0365 .0653 .0601 -.0131 .0322 .0583 .0544

θ̃1 Var .0179 .0236 .0252 .0245 .0152 .0199 .0205 .0196
MSE .0179 .0250 .0295 .0281 .0154 .0209 .0239 .0226
Bias -.0494 -.0249 .0016 .0283 -.0515 -.0283 -.0027 .0224

θ̃2 Var .0111 .0151 .0162 .0156 .0096 .0130 .0141 .0131
MSE .0136 .0157 .0162 .0164 .0122 .0138 .0141 .0136

n = 400 n = 500
Bias .0288 .0180 .0071 -.0010 .0137 .0029 -.0090 -.0166

θ̂PL Var .0100 .0117 .0132 .0106 .0072 .0085 .0092 .0089
MSE .0108 .0120 .0132 .0106 .0074 .0085 .0092 .0091
Bias -.0067 .0338 .0614 .0590 .0117 .0237 .0421 .0422

θ̃1 Var .0109 .0152 .0164 .0158 .0087 .0128 .0144 .0136
MSE .0109 .0164 .0201 .0193 .0088 .0134 .0162 .0154
Bias -.0429 -.0186 .0061 .0308 -.0481 -.0259 -.0034 .0199

θ̃2 Var .0067 .0088 .0096 .0090 .0058 .0080 .0088 .0082
MSE .0086 .0092 .0097 .0099 .0081 .0086 .0088 .0086

Next, for models 1 to 4, when θ0 increases from 0 to 1, we observe globally
that the bias of θ̂PL and θ̃2 tend to decrease in absolute value while their variance
tends to increase, which leads to a general increase in their mean squared error.
Conversely, if θ0 increases from 1 to 1.5, the mean squared error of θ̂PL and θ̃2
tends to decrease due to a decrease of their variance, even if their bias tends
to increase in absolute value. This suggests that the parametric transformation
is more difficult to estimate when the response Y is less variable. Indeed, a
logarithmic transformation θ0 = 0 will be easier to detect due to the presence
of very high values in the sample Y1, . . . , Yn in comparison with the identity
transformation θ0 = 1 for instance. For Models 5 and 6, these conclusions are
the same for θ̃2 except that both bias and variance (and not only variance) of θ̃2
are deteriorating when θ0 moves from 0 to 1 and are improving when θ0 moves
from 1 to 1.5. For θ̂PL we remark the poor behavior of the estimator for θ0 = 0
compared to the other values of θ0, both in terms of variance and in terms of
bias.
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Table 3

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for

different sample sizes and values of θ0 when m(x) = 2x− 1 and ε ∼ 2t10√
5

(model 3).

θ0 0 0.5 1 1.5 0 0..5 1 1.5
n = 50 n = 100

Bias .2278 .1065 -.0045 -.1223 .1163 .0381 -.0236 -.0825

θ̂PL Var .1523 .1713 .2025 .1699 .0777 .0800 .0941 .1003
MSE .2042 .1827 .2026 .1849 .0912 .0815 .0947 .1071
Bias -.0644 -.0010 .0389 .0644 -.0555 .0038 .0473 .0655

θ̃1 Var .0877 .0858 .0927 .0850 .0353 .0443 .0479 .0452
MSE .0918 .0858 .0943 .0891 .0383 .0443 .0501 .0495
Bias -.0324 -.0041 .0247 .0499 -.0593 -.0320 .0007 .0289

θ̃2 Var .0431 .0593 .0655 .0638 .0228 .0328 .0376 .0355
MSE .0442 .0593 .0662 .0663 .0264 .0339 .0376 .0363

n = 200 n = 300
Bias .0939 .0450 -.0007 -.0520 .0687 .0408 .0104 -.0232

θ̂PL Var .0352 .0412 .0445 .0421 .0208 .0299 .0321 .0304
MSE .0440 .0433 .0445 .0448 .0256 .0315 .0322 .0309
Bias -.0368 .0120 .0482 .0747 -.0328 .0170 .0590 -.0803

θ̃1 Var .0174 .0246 .0283 .0261 .0098 .0152 .0177 .0185
MSE .0188 .0247 .0306 .0316 .0109 .0155 .0212 .0250
Bias -.0553 -.0263 .0064 .0368 -.0555 -.0273 .0045 .0352

θ̃2 Var .0131 .0197 .0222 .0201 .0084 .0132 .0155 .0151
MSE .0162 .0204 .0222 .0214 .0115 .0140 .0155 .0163

n = 400 n = 500
Bias .0387 .0163 -.0081 -.0293 .0560 .0264 .0126 -.0076

θ̂PL Var .0138 .0167 .0184 .0168 .0117 .0120 .0123 .0110
MSE .0153 .0169 .0185 .0177 .0148 .0127 .0124 .0110
Bias -.0315 .0162 .0542 .0750 -.0275 .0201 .0553 .0758

θ̃1 Var .0077 .0115 .0132 .0123 .0059 .0088 .0103 .0101
MSE .0087 .0118 .0161 .0180 .0066 .0092 .0133 .0158
Bias -.0554 -.0262 .0600 .0364 -.0542 -.0279 .0023 .0334

θ̃2 Var .0067 .0100 .0110 .0099 .0050 .0075 .0085 .0079
MSE .0098 .0107 .0111 .0112 .0080 .0083 .0085 .0090

Using the same reasoning, it seems logical that θ̂PL and θ̃2 perform globally
both better under Model 4 (m(x) = 6x − 3) than under Model 1 (m(x) =
2x− 1), and under Model 6 (m(x) = 20x2

1 − 6 + 8 sin(2πx2)) than under Model
5 (m(x) = 10x2

1 − 3 + 4 sin(2πx2)), in terms of bias and variance. Indeed, in
Models 4 and 6, the regression functions m(x) are more variable than in Models
1 and 5 respectively, which helps for estimating θ. Similarly, if we compare the
results obtained under Model 1 to the ones obtained under Model 2, θ̂PL and θ̃2
perform both better when ε ∼ N(0, 1) than when ε ∼ N(0, 0.52), especially in
terms of variance while the results seem globally comparable in terms of bias.
Consequently, a more variable error term also helps for estimating θ.

Next, if we compare Models 1 and 4 to Models 5 and 6, it is clear that a model
with d = 2 is more difficult to estimate than a model with d = 1 especially for
small sample sizes. Indeed, the bias and the variance of θ̂PL are really poor under
Models 5 and 6 for n = 50 and n = 100 and especially for θ0 = 0. However, even
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Table 4

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for
different sample sizes and values of θ0 when m(x) = 6x− 3 and ε ∼ N(0, 1) (model 4).

θ0 0 0.5 1 1.5 0 0.5 1 1.5
n = 50 n = 100

Bias .0714 .0646 .0469 .0044 .0221 .0154 .0083 -.0043

θ̂PL Var .0434 .0680 .0768 .0473 .0106 .0131 .0141 .0117
MSE .0485 .0721 .0790 .0473 .0111 .0134 .0141 .0117
Bias -.1426 -.0933 -.0486 .0106 -.0759 -.0515 -.0209 .0037

θ̃1 Var .1586 .1125 .0814 .0443 .0580 .0362 .0250 .0204
MSE .1789 .1212 .0838 .0444 .0638 .0388 .0254 .0204
Bias -.0202 -.0074 .0077 .0221 -.0165 -.0034 .0109 .0231

θ̃2 Var .0098 .0155 .0173 .0153 .0042 .0069 .0078 .0067
MSE .0102 .0156 .0174 .0158 .0045 .0069 .0079 .0073

n = 200 n = 300
Bias .0038 .0004 -.0047 -.0112 .0022 .0006 .0010 -.0009

θ̂PL Var .0030 .0034 .0047 .0100 .0015 .0028 .0040 .0027
MSE .0031 .0034 .0047 .0102 .0015 .0028 .0040 .0027
Bias -.0409 -.0215 -.0054 .0132 -.0264 -.0171 .0017 .0184

θ̃1 Var .0163 .0118 .0113 .0092 .0043 .0077 .0089 .0069
MSE .0179 .0122 .0113 .0094 .0050 .0080 .0089 .0073
Bias -.0188 -.0063 .0065 .0202 -.0211 -.0094 .0043 .0175

θ̃2 Var .0015 .0026 .0031 .0030 .0014 .0024 .0027 .0024
MSE .0019 .0027 .0032 .0034 .0019 .0025 .0027 .0027

n = 400 n = 500
Bias .0044 .0077 .0040 .0025 -.0008 -.0023 -.0023 -.0022

θ̂PL Var .0010 .0031 .0021 .0018 .0007 .0013 .0014 .0012
MSE .0010 .0031 .0022 .0019 .0007 .0013 .0014 .0012
Bias -.0104 .0036 .0206 .0324 -.0218 -.0121 .0057 .0188

θ̃1 Var .0018 .0036 .0045 .0044 .0016 .0039 .0049 .0039
MSE .0019 .0036 .0050 .0054 .0021 .0041 .0049 .0043
Bias -.0167 -.0045 .0096 .0227 -.0236 -.0132 -.0004 .0124

θ̃2 Var .0014 .0024 .0026 .0023 .0009 .0016 .0019 .0017
MSE .0017 .0024 .0027 .0028 .0015 .0018 .0019 .0019

if the bias of θ̃2 is poor under Models 5 and 6, this estimator performs globally
well due to its small variance even for small sample sizes.

Moreover, if we compare the results obtained under Model 1 to the ones
obtained under Model 3, it is clear that all the estimators perform better in
terms of bias and variance when ε ∼ N(0, 1) than when ε ∼ 2t10√

5
for all consid-

ered values of n and θ0. Consequently, the distribution of the residuals also has
an impact on the quality of the estimations of θ0, which is again an expected
conclusion. In particular, residuals that are normally distributed help for esti-
mating θ0. However, when ε ∼ 2t10√

5
, the estimator θ̃2 clearly outperforms the

profile likelihood estimator θ̂PL. Indeed, θ̂PL suffers considerably under Model
3.

Despite the fact that θ̂PL slightly outperforms θ̃2 when n = 500 in Models 1
and 2 and when n = 400 and n = 500 in Models 4 to 6 (except for θ0 = 0 in

Models 5 and 6), θ̃2 clearly outperforms θ̂PL under Model 3 and under Models 1,
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Table 5

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for
different sample sizes and values of θ0 when m(x) = 10x2

1 − 3 + 4 sin(2πx2) and ε ∼ N(0, 1)
(model 5).

θ0 0 0.5 1 1.5 0 0.5 1 1.5
n = 50 n = 100

Bias .3006 .0873 -.0503 -.1147 .2228 .0392 -.0064 -.0388

θ̂PL Var .3238 .2395 .1879 .1996 .1904 .0689 .0304 .0474
MSE .4141 .2471 .1904 .2127 .2400 .0704 .0305 .0489
Bias -.2278 -.1762 -.1292 -.0776 -.1411 -.1044 -.0800 -.0414

θ̃1 Var .1118 .0694 .0473 .0280 .0728 .0221 .0143 .0086
MSE .1637 .1004 .0640 .0340 .0927 .0330 .0206 .0104
Bias -.0769 -.1080 -.1079 -.0883 -.0678 -.0998 -.1013 -.0844

θ̃2 Var .0027 .0064 .0079 .0068 .0009 .0024 .0028 .0023
MSE .0086 .0180 .0196 .0146 .0055 .0123 .0131 .0094

n = 200 n = 300
Bias .1856 .0260 -.0021 -.0102 .1524 .0166 .0030 -.0007

θ̂PL Var .1406 .0366 .0175 .0150 .1142 .0173 .0032 .0035
MSE .1751 .0373 .0175 .0151 .1375 .0176 .0032 .0035
Bias -.0693 -.0942 -.0805 -.0515 -.0657 -.0914 -.0768 -.0475

θ̃1 Var .0062 .0042 .0038 .0038 .0067 .0048 .0036 .0032
MSE .0110 .0130 .0103 .0064 .0110 .0132 .0095 .0055
Bias -.0688 -.1071 -.1130 -.0985 -.0646 -.1004 -.1061 -.0921

θ̃2 Var .0005 .0012 .0014 .0012 .0004 .0010 .0012 .0010
MSE .0052 .0127 .0142 .0109 .0046 .0111 .0125 .0095

n = 400 n = 500
Bias .1315 .0028 -.0003 -.0021 .0997 -.0008 -.0010 -.0019

θ̂PL Var .1020 .0018 .0020 .0018 .0794 .0011 .0017 .0013
MSE .1193 .0018 .0020 .0018 .0893 .0011 .0017 .0013
Bias -.0581 -.0846 -.0726 -.0452 -.0575 -.0856 -.0728 -.0465

θ̃1 Var .0008 .0016 .0020 .0019 .0006 .0015 .0019 .0018
MSE .0041 .0088 .0072 .0040 .0039 .0088 .0072 .0040
Bias -.0638 -.1001 -.1065 -.0929 -.0632 -.1004 -.1070 -.0945

θ̃2 Var .0003 .0008 .0011 .0010 .0003 .0008 .0010 .0008
MSE .0044 .0108 .0124 .0096 .0043 .0109 .0124 .0098

2, 4, 5, 6 for all values of θ0 and especially for small sample sizes. This suggests
that the profile likelihood estimator of Linton et al. (2008) suffers more than
our new estimator when the model becomes more difficult to estimate.

Finally, we also study the convergence of the optimization algorithms used to
compute the three estimators. Figure 1 shows that for Model 1 and for n = 50,
200 iterations is sometimes a bit too small to attain convergence. Moreover, our
estimator θ̃2 is the one for which the MSE converges the fastest, which gives this
estimator an additional advantage with respect to the two other estimators.

In conclusion, the new estimator θ̃2 outperforms globally speaking the esti-
mators θ̃1 and θ̂PL, and especially when the model becomes more difficult to
estimate (Models 1 to 3 and Models 5 and 6 for smaller sample sizes). In the lat-
ter case, the performance of the profile likelihood estimator drops significantly
and θ̃1 also outperforms θ̂PL.
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Table 6

Bias, variance (Var) and mean squared error (MSE) of the estimators θ̂PL, θ̃1 and θ̃2 for
different sample sizes and values of θ0 when m(x) = 20x2

1 − 6 + 8 sin(2πx2) and ε ∼ N(0, 1)
(model 6).

θ0 0 0.5 1 1.5 0 0.5 1 1.5
n = 50 n = 100

Bias .2667 .1121 -.0597 -.2190 .2060 .0493 -.0281 -.0721

θ̂PL Var .1825 .2751 .1673 .2904 .1037 .0714 .0319 .0591
MSE .2536 .2877 .1709 .3384 .1461 .0739 .0327 .0643
Bias -.1411 -.1436 -.0927 -.0759 -.1210 -.1145 -.0816 -.0384

θ̃1 Var .0825 .0429 .0275 .0196 .0587 .0371 .0171 .0078
MSE .1024 .0636 .0361 .0254 .0733 .0502 .0237 .0093
Bias -.0477 -.0876 -.0867 -.0680 -.0408 -.0798 -.0836 -.0683

θ̃2 Var .0008 .0034 .0041 .0032 .0003 .0013 .0017 .0013
MSE .0031 .0110 .0116 .0079 .0020 .0077 .0087 .0059

n = 200 n = 300
Bias .1951 .0053 -.0204 -.0539 .1242 .0174 -.0089 -.0072

θ̂PL Var .0671 .0355 .0086 .0421 .0518 .0178 .0023 .0018
MSE .1052 .0356 .0090 .0450 .0673 .0180 .0024 .0019
Bias -.1097 -.0997 -.0818 -.0440 -.0679 -.0653 -.0593 -.0300

θ̃1 Var .0517 .0206 .0111 .0043 .0319 .0055 .0032 .0020
MSE .0638 .0305 .0178 .0062 .0366 .0097 .0067 .0029
Bias -.0379 -.0794 -.0867 -.0745 -.0343 -.0716 -.0786 -.0669

θ̃2 Var .0001 .0006 .0008 .0006 .0001 .0005 .0007 .0005
MSE .0016 .0070 .0083 .0062 .0013 .0057 .0068 .0050

n = 400 n = 500
Bias .1036 -.0064 -.0087 -.0087 .0817 -.0019 -.0087 -.0056

θ̂PL Var .0371 .0015 .0017 .0014 .0316 .0012 .0013 .0008
MSE .0479 .0016 .0018 .0015 .0382 .0012 .0014 .0008
Bias -.0402 -.0618 -.0595 -.0342 -.0393 -.0604 -.0533 -.0313

θ̃1 Var .0085 .0027 .0024 .0019 .0077 .0025 .0010 .0010
MSE .0101 .0065 .0060 .0030 .0093 .0062 .0038 .0019
Bias -.0333 -.0705 -.0780 -.0674 -.0319 -.0682 -.0756 -.0652

θ̃2 Var .0001 .0005 .0006 .0005 .0001 .0004 .0005 .0004
MSE .0012 .0054 .0067 .0051 .0011 .0051 .0063 .0047

6. Conclusions

In this paper we proposed two new estimators of the transformation parameter
θ in a transformation model of the form Λθ(Y ) = m(X) + ε, where ε and X
are independent and m(·) is completely unspecified. We showed the asymptotic
normality of both estimators. Intensive simulations showed that the second pro-
posed estimator (θ̃2) outperforms in general the first one (θ̃1), and in many cases

both outperform the estimator of Linton et al. (2008) (denoted by θ̂PL).

Although the simulations showed that our estimators θ̃1 and θ̃2 perform well
in practice, they also have a few drawbacks. First of all, they are quite com-
puter intensive compared to the estimator θ̂PL. This is not surprising since our
estimators rely on the nonparametric estimator of the transformation in Colling
and Van Keilegom (2019), and the latter estimator is quite computer intensive.
Another disadvantage of our estimators is that for dimensions d equal to 3,
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Fig 1. Convergence results for Model 1 for the estimators θ̃1, θ̃2 and θ̂PL, denoted by Th1,
Th2 and ThPL.

4 or larger, the estimators θ̃1 and θ̃2 will suffer in some degree from curse-of-
dimensionality problems. This is because the nonparametric estimator of Colling
and Van Keilegom (2019), on which they rely, is based on kernel smoothing
of the covariate vector. This curse-of-dimensionality problem is however also
present for the estimator θ̂PL of Linton et al. (2008). A possible solution is to
use (semi)-parametric estimators for m(·) in that case.

Appendix A: Proofs

A.1. Assumptions

The following conditions are needed for the main results of this paper. They are
related to the distribution of ε, the transformations Γ and Λθ, the regression
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function m, the kernels K and L, the bandwidths hx, hu and b, the joint density
function of U and X, the weight functions v and w, the functions M1 and M2,
and the matrices Δ1 and Δ2, defined in the statement of Theorem 4.2.

(A1) The distribution function Fε of ε is absolutely continuous and has a
density fε that is continuous on its support. Moreover, X and ε are
independent and the support Y of Y is a connected subset of R.

(A2) The transformation Γ is strictly increasing and twice continuously dif-
ferentiable on U0, where U0 is a compact subset in the interior of U .

(A3) The regression function m is continuously differentiable.
(A4) The set A1 = {x ∈ χ : ∂

∂x1
ϕ(u, x) �= 0 ∀u ∈ U0} is nonempty.

(A5) The kernel K is symmetric, has support [−1, 1], K(−1) = K(1) = 0, K
is of order s, i.e.

∫
K(z) dz = 1,

∫
z�K(z) dz = 0 for � = 1, . . . , s − 1

and
∫
zsK(z) dz < ∞, K is s-times continuously differentiable and K

and K ′ are of bounded variation. Moreover, L is a twice continuously
differentiable distribution function with uniformly bounded derivatives
and with median at 0.

(A6) The bandwidths hx, hu and b satisfy
√
nmax(hx, hu)

s → 0, nb4 → ∞
and b

√
nhd

x min(hx, hu)
2(log n)−1 → ∞.

(A7) The joint density function fY,X of (Y,X) is uniformly bounded and s+
2-times continuously differentiable on Y0 × χ0, where χ0 ⊆ A1 is the
compact support of the weight function v(x) defined in (A9). We also
assume that infy:T (y)∈U0

fY (y) > 0, where fY is the density function of
Y .

(A8) infx∈χ0 fX(x) > 0, inf(u,x)∈U0×χ0
| ∂
∂x1

ϕ(u, x)| > 0 and infx∈χ0 |S1(1, x)|
> 0.

(A9) The weight function v has compact support χ0 ⊆ A1 with nonempty
interior and satisfies

∫
χ0

v(x) dx = 1. Moreover, v is continuous on χ and
is s-times continuously differentiable on χ0.

(A10) The weight function w is positive, has support included in Y0 and satisfies
supy∈Y0

w(y) < ∞.
(A11) The transformation Λθ is twice continuously differentiable in θ and

Λθ(y) = Λθ′(y) for all y ∈ Y0 implies that θ = θ′. Moreover,

E

([
sup
θ∈Θ

∣∣∣∣
∣∣∣∣ ∂l

∂θl
Λθ(Y )

∣∣∣∣
∣∣∣∣
]4)

< ∞ ,

for l ∈ {0, 1, 2} and

E

([
sup
θ∈Θ

∣∣∣∣
∣∣∣∣ ∂i

∂θi
Λθ(Y )

(
∂j

∂θj
Λθ(Y )

)t∣∣∣∣
∣∣∣∣
]4)

< ∞ ,

for i, j ∈ {0, 1, 2} such that 0 ≤ i+ j ≤ 2.
(A12) For all δ1 > 0, there exists ε1(δ1) such that inf ||θ−θ0||>δ1 ||M1(θ, h0)|| ≥

ε1(δ1) > 0. Similarly, for all δ2 > 0, there exists ε2(δ2) such that
inf ||γ−γ0||>δ2 ||M2(γ, h0)|| ≥ ε2(δ2) > 0.

(A13) The matrices Δ1 and Δ2 are of full rank.
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Assumptions (A1)–(A4) are standard and weak regularity conditions on the
functions Fε, Γ, m and ϕ. Assumptions (A5) and (A6) imply that s has to be
strictly larger than d+ 2 (since nh2s

x → 0 and nh2d+4
x → ∞), and hence higher

order kernels are required. Assumption (A7) can be expressed in terms of the
joint density fU,X of (U,X) by noting that

fU,X(u, x) =
fY,X(T−1(u), x)

fY (T−1(u))
(FY (1)− FY (0)) .

Assumption (A8) is a technical assumption, needed to control denominators
in various expansions used in the proofs. As for assumption (A9), note that it
implies that

∫
χ
v(x)dx = 1 and that v(x) = 0 for values of x at the boundary

of χ, which will be needed in the proofs. Note that assumptions (A1)–(A9) are
basically the same as in Colling and Van Keilegom (2019) and are required since

our proofs rely on the weak convergence of the estimator Γ̂LAD,b(T̂ (y)) that is
established in the latter paper. We refer to the latter paper for a more detailed
discussion of these assumptions. Assumptions (A10)–(A11) are technical condi-
tions that are related to the fact that we have to restrict to the compact subset
Y0 of Y . Finally, assumptions (A12)–(A13) are required for the application of
Theorems 1 and 2 in Chen et al. (2003).

A.2. Proofs of the main results

In this section, we will prove the three main results of this paper. The first one
justifies the definitions of our new estimators of θ0 and the second and the third
results establish respectively the consistency and the asymptotic distributions
of these new estimators.

Before giving these three proofs, let us first define the function ϕv
X,Y that

was introduced in the statement of Theorem 4.2. Define

ϕv
X,Y (y) = δvX,Y (T (y)) +

Γ′(T (y))

FY (1)− FY (0)

(
1{Y≤y} − 1{Y≤0} − FY (y) + FY (0)

− T (y)
[
1{0≤Y≤1} − FY (1) + FY (0)

])
, (11)

where δvX,Y (u) = δv1X,Y (1, u)−δv2X,Y (u, 1), v1(u0, x) = v(x)/S1(u0, x), v2(u0, x) =

v(x)S1(u0, x)/S
2
1(1, x) and

δṽX,Y (u0, u)

=

∫ u

max(0,U)

{
ṽ(u0, X)Dp,0(w,X)− ∂

∂x1

[
ṽ(u0, x)Dp,1(w, x)

]∣∣∣∣
x=X

}
dw

+

∫ u

0

{
ṽ(u0, X)Df,0(w,X)− ∂

∂x1

[
ṽ(u0, x)Df,1(w, x)

]∣∣∣∣
x=X

}
dw

+(1{U≤u} − 1{U≤0})ṽ(u0, X)Dp,u(U,X)
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+

∫ u

0

[
1{U≤w} − 1{U≤0}
FY (1)− FY (0)

− w

] ∫
χ

({
ṽ(u0, x)Dp,0(w, x)

+
∂

∂x1
[ṽ(u0, x)Dp,1(w, x)]

}
fU,X(w, x)

+ṽ(u0, x)Dp,u(w, x)
∂

∂w
fU,X(w, x)

)
dx dw

−
(
1{Y≤1} − 1{Y≤0}
FY (1)− FY (0)

− 1

)∫ u

0

w

∫
χ

{
ṽ(u0, x)Dp,0(w, x)

−ṽ(u0, x)
∂

∂w
Dp,u(w, x) +

∂

∂x1

[
ṽ(u0, x)Dp,1(u, x)

]}
fU,X(w, x) dx dw

−
(
1{Y≤1} − 1{Y≤0}
FY (1)− FY (0)

− 1

)
u

∫
X
ṽ(u0, x)Dp,u(u, x)fU,X(u, x) dx, (12)

where u0 ∈ U , ṽ equals either v1 or v2, fU,X is the joint density of U and X,
and

Dp,0(u, x) =
ϕu(u, x)fX,1(x)

ϕ2
1(u, x)f

2
X(x)

, Dp,u(u, x) =
1

fX(x)ϕ1(u, x)
,

Dp,1(u, x) =
−ϕu(u, x)

fX(x)ϕ2
1(u, x)

, Df,0(u, x) =
−ϕu(u, x)ϕ(u, x)fX,1(x)

ϕ2
1(u, x)f

2
X(x)

,

and

Df,1(u, x) =
ϕu(u, x)ϕ(u, x)

ϕ2
1(u, x)fX(x)

,

with ϕ1(u, x) =
∂

∂x1
ϕ(u, x), ϕu(u, x) =

∂
∂uϕ(u, x), and fX,1(x) =

∂
∂x1

fX(x).

Proof of Proposition 3.1. The proof consists mainly in rewriting the function
S1(u, x). First, note that for u ∈ U0, the conditional distribution of U given X
can be rewritten as

ϕ(u, x) = P
(
Γ(U) ≤ Γ(u)

∣∣∣X = x
)

= P
(
m(X) + ε ≤ Γ(u)

∣∣∣X = x
)
= Fε

(
Γ(u)−m(x)

)
,

since Γ(u) = Λ(T−1(u)) is strictly increasing for u ∈ T (Y0), Γ(U) = Λ(Y ) and
X and ε are independent. Hence,

∂

∂u
ϕ(u, x) = Γ′(u)fε

(
Γ(u)−m(x)

)
,

∂

∂x1
ϕ(u, x) = − ∂

∂x1
m(x)fε

(
Γ(u)−m(x)

)
,

and

S1(u, x) =

∫ u

0

Γ′(w)

− ∂
∂x1

m(x)
dw =

Γ(u)− Γ(0)

− ∂
∂x1

m(x)
.

Consequently, S1(T (y), x)/S1(1, x) is independent of x for y ∈ Y0, and is equal
to

S1(T (y), x)

S1(1, x)
=

Γ(T (y))− Γ(0)

Γ(1)− Γ(0)
=

Λ(y)− Λ(0)

Λ(1)− Λ(0)
,
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since T (0) = 0, T (1) = 1 and Γ(T (y)) = Λ(y). This concludes the proof.

Before proving the two main asymptotic results of this paper, we need to
consider a technical lemma regarding the estimator Γ̂LAD,b(T̂ (·)) and regarding
the bracketing number N[ ](ε,H, || · ||L2) of the space H defined in Section 4.1,
i.e. the smallest number of ε-brackets needed to cover the space H with respect
to the norm ||h||L2 = [E(h2(Y ))]1/2.

Proposition A.1. Assume (A1)–(A9). Then,

(i) The function Y0 → R : y → Γ̂LAD,b(T̂ (y)) belongs to H with probability
tending to 1.

(ii) logN[ ](ε,H, || · ||L2) ≤ Kε−1 for some K < ∞.

Proof. First, we will prove (i). It is clear that T̂ is monotone and that T̂ (y) ∈ U0

for n large and for y ∈ Y0, since Y0 is a compact set that is strictly included in
T−1(U0) and since supy |T̂ (y) − T (y)| = oP (1). Hence, it suffices to show that

Γ̂LAD,b ∈ C1
c (U0) with probability tending to 1. Since supu∈U0

|Γ(u)| < ∞ and
supu∈U0

|Γ′(u)| < ∞ thanks to assumption (A2), the result follows if we can
show that

sup
u∈U0

|Γ̂LAD,b(u)− Γ(u)| = oP (1) and sup
u∈U0

|Γ̂′
LAD,b(u)− Γ′(u)| = oP (1).

The former follows from Theorem 5.2 in Colling and Van Keilegom (2019),

which establishes the weak convergence of the process
√
n
(
Γ̂LAD,b(·)− Γ(·)

)
as

a process defined on U0. For the latter result, define

Rn(qm, u) =

∫
χ

v(x)
(
λ̂1(u, x)− qm

){
2Lb

(
λ̂1(u, x)− qm

)
− 1
}
dx,

and note that by construction Qn(Γ̂LAD,b(u), u) = 0 for all u ∈ U0, where

Qn(qm, u) = ∂
∂qm

Rn(qm, u). Hence, the derivative of Qn(Γ̂LAD,b(u), u) with re-
spect to u is also equal to 0, i.e.

P1n

(
Γ̂LAD,b(u), u

)
+ P2n

(
Γ̂LAD,b(u), u

)
Γ̂′
LAD,b(u) = 0,

where P1n(qm, u) = ∂
∂uQn(qm, u) and P2n(qm, u) = ∂

∂qm
Qn(qm, u). Similarly,

defining

R(qm, u) =

∫
χ

v(x)
(
λ1(u, x)− qm

){
2Lb

(
λ1(u, x)− qm

)
− 1
}
dx,

and

Q(qm, u) =
∂

∂qm
R(qm, u)

=

∫
χ

v(x)

[
− 2Lb

(
λ1(u, x)− qm

)
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+1− 2
(
λ1(u, x)− qm

)
L′
b

(
λ1(u, x)− qm

)]
dx,

where L′
b(·) = L′(·/b)/b, we have that Q(Γ(u), u) = 0 for all u ∈ U0 since

L(0) = 1/2, and hence P1

(
Γ(u), u

)
+ P2

(
Γ(u), u

)
Γ′(u) = 0, where P1(qm, u) =

∂
∂uQ(qm, u) and P2(qm, u) = ∂

∂qm
Q(qm, u). It follows that

P1n

(
Γ̂LAD,b(u), u

)
− P1

(
Γ(u), u

)
+
[
P2n

(
Γ̂LAD,b(u), u

)
− P2

(
Γ(u), u

)]
Γ′(u)

+P2n

(
Γ̂LAD,b(u), u

)(
Γ̂′
LAD,b(u)− Γ′(u)

)
= 0.

It is easily seen that supu∈U0

∣∣P1n

(
Γ̂LAD,b(u), u

)
− P1

(
Γ(u), u

)∣∣ =

OP

(
b−2 supu∈U0

∣∣Γ̂LAD,b(u)−Γ(u)
∣∣) which is OP (n

−1/2b−2) = oP (b
−1) by The-

orem 5.2 in Colling and Van Keilegom (2019) and since nb2 → ∞, and that
P2

(
Γ(u), u

)
= 4L′

b(0) = O(b−1). Moreover,

P2n

(
Γ̂LAD,b(u), u

)
− P2

(
Γ(u), u

)
=

∫
χ

v(x)

[
4L′

b

(
λ̂1(u, x)− Γ̂LAD,b(u)

)
− 4L′

b(0)

+2
(
λ̂1(u, x)− Γ̂LAD,b(u)

)
L′′
b

(
λ̂1(u, x)− Γ̂LAD,b(u)

)]
dx

= Op

(
b−2 sup

u∈U0,x∈χ0

∣∣λ̂1(u, x)− λ1(u, x)
∣∣) ,

where L′′
b (·) = L′′(·/b)/b2. Using the same arguments as at the end of the

proof of Theorem 5.2 in Colling and Van Keilegom (2019), the last expression is
oP (b

−2n−1/4b1/2) which is also oP (b
−1) since nb2 → ∞. In particular, this also

implies that

inf
u∈U0

∣∣∣P2n

(
Γ̂LAD,b(u), u

)∣∣∣
≥ inf

u∈U0

∣∣∣P2

(
Γ(u), u

)∣∣∣− sup
u∈U0

∣∣∣P2n

(
Γ̂LAD,b(u), u

)
− P2

(
Γ(u), u

)∣∣∣
= 4L′

b(0) + oP (b
−1) .

In conclusion,

sup
u∈U0

∣∣Γ̂′
LAD,b(u)− Γ′(u)

∣∣ ≤ ( inf
u∈U0

∣∣∣P2n

(
Γ̂LAD,b(u), u

)∣∣∣)−1

oP (b
−1) = oP (1) ,

which shows (i).
We will now prove (ii). Every function h in the class H can be written as

h = f ◦ g for some f ∈ C1
c (U0) and some monotone function g that maps

Y0 into the bounded set U0. We will construct brackets for the space H by
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combining brackets for C1
c (U0) with brackets for the space of monotone and

bounded functions. First, it follows from Corollary 2.7.2 in Van der Vaart and
Wellner (1996) with d = 1, α = 1 and r = ∞ thatN1ε = N[ ](ε, C

1
c (U0), ||·||L∞) ≤

exp(K1ε
−1) for some K1 < ∞, where || · ||L∞ is the supremum norm on U0. Let

f1,� ≤ f1,u, . . . , fN1ε,� ≤ fN1ε,u be the N1ε brackets for the space C1
c (U0). Next,

Theorem 2.7.5 in Van der Vaart and Wellner (1996) shows that the ε-bracketing
number for the space of monotone and bounded functions with respect to the
L2-norm on Y0 is bounded by N2ε ≤ exp(K2ε

−1) for some K2 < ∞. Let g1,� ≤
g1,u, . . . , gN2ε,� ≤ gN2ε,u be the N2ε brackets for the latter space. We will show
that the bracketing number N[ ](ε,H, || · ||L2) of the space H is bounded by
N1ε ×N2ε ≤ exp((K1 +K2)ε

−1).
For a given 1 ≤ j ≤ N1ε and 1 ≤ k ≤ N2ε, let

hj,k,�(y) = min
gk,�(y)≤u≤gk,u(y)

fj,�(u) and hj,k,u(y) = max
gk,�(y)≤u≤gk,u(y)

fj,u(u).

Then, it is clear that for all h ∈ H there exist 1 ≤ j ≤ N1ε and 1 ≤ k ≤ N2ε

such that hj,k,� ≤ h ≤ hj,k,u. Moreover,

E
[(
hj,k,u(Y )− hj,k,�(Y )

)2]
≤ E

[(
hj,k,u(Y )− fj,u(gk,u(Y ))

)2]
+ E

[(
fj,u(gk,u(Y ))− fj,u(gk,�(Y ))

)2]
+E
[(
fj,u(gk,�(Y ))− fj,�(gk,�(Y ))

)2]
+ E

[(
fj,�(gk,�(Y ))− hj,k,�(Y )

)2]
,

and each of these four terms is easily seen to be bounded by a finite multiple of
ε2. This finishes the proof.

Proof of Theorem 4.1. The proof consists in verifying Conditions (1.1) to (1.5)
in Theorem 1 in Chen et al. (2003). These conditions are mainly conditions on
the functions �1, M1 and Mn,1 in case (i) and on the functions �2, M2 and Mn,2

in case (ii). All these functions are defined in Section 4.1.

Condition (1.1) in Chen et al. (2003) is satisfied since Mn,1(θ̂1, ĥb) = 0 and

Mn,2(γ̂2, ĥb) = 0 by construction, where ĥb(·) = Γ̂LAD,b(T̂ (·)).
Condition (1.2) in Chen et al. (2003) is ensured in both cases by assumption

(A12).
Next, to verify Condition (1.3) in Chen et al. (2003), for h ∈ H, we have to

prove that ∀ε > 0, ∃δ > 0 such that ||h− h0||H < δ implies supθ∈Θ ||M1(θ, h)−
M1(θ, h0)|| < ε in case (i) and supγ∈Θγ

||M2(γ, h)−M2(γ, h0)|| < ε in case (ii),
where h0(·) = Γ(T (·)). First, in case (i), we have for j = 1, . . . , k:∣∣∣M1,j(θ, h)−M1,j(θ, h0)

∣∣∣
=

∣∣∣∣E
[
w(Y )

{
Aj(θ)

(
h2(Y )− h2

0(Y )
)
+Bj(θ, Y )

(
h(Y )− h0(Y )

)

+Cj(θ, Y )
(
h(Y )− h0(Y )

)}]∣∣∣∣ .
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Consequently, reminding that ||h − h0||H = E[(h(Y ) − h0(Y ))2]1/2 and using
Cauchy-Schwarz inequality, we obtain:

sup
θ∈Θ

∣∣M1,j(θ, h)−M1,j(θ, h0)
∣∣ < δK1,j ,

where we used ||h− h0||H < δ and where

K1,j = sup
y∈Y0

(
w(y)

)[
sup
θ∈Θ

∣∣Aj(θ)
∣∣E((h(Y ) + h0(Y )

)2)1/2
+E
(
sup
θ∈Θ

∣∣B2
j (θ, Y )

∣∣)1/2 + E
(
sup
θ∈Θ

∣∣C2
j (θ, Y )

∣∣)1/2],
which is finite for all j = 1, . . . , k by assumptions (A10) and (A11) and

since E(h4(Y )) < ∞ for h ∈ H. Taking δ = ε/
∑k

j=1 K1,j , it follows that

supθ∈Θ

∣∣∣∣M1(θ, h) −M1(θ, h0)
∣∣∣∣ < ε. In case (ii), we use exactly the same rea-

soning.
Condition (1.4) in Chen et al. (2003) is directly ensured by the fact that

||ĥb − h0||H ≤ ||ĥb − h0||L∞ = OP (n
−1/2) = oP (1) by Corollary 5.1 in Colling

and Van Keilegom (2019), where || · ||L∞ is the supremum norm over Y0.
Finally, for Condition (1.5) in Chen et al. (2003) it suffices by Lemma 1 in

the latter paper to show that:

(C1) The class

Fi =
{
y → �i(y, θ, h) : θ ∈ Θ, h ∈ H

}
is P -Donsker (i = 1, 2), where P is the probability measure of Y .

(C2) The function �i(·, θ, h) (i = 1, 2) is L2(P )-continuous at (θ0, h0).

To show Condition (C1), note that it suffices to show that∫ ∞

0

√
logN[ ](ε,Fi, || · ||L2) dε < ∞. (13)

We will show (13) for i = 1. The derivation for i = 2 is very similar. Since
Θ is a compact subspace of the set R

k, at most Nε,Θ = Cε−k brackets are
needed to cover the space Θ for some C < ∞. Proposition A.1(ii) shows that
Nε,H = N[ ](ε,H, || · ||L2) ≤ exp(Kε−1) for some K < ∞. Note that

�1,j(y, θ, h) = w(y)
[
Aj(θ)h

2(y) +Bj(θ, y)h(y) + Cj(θ, y)h(y) +Dj(θ, y)
]

for j = 1, . . . , k. Fix θ ∈ Θ and h ∈ H, and suppose that θk1,� ≤ θ ≤ θk1,u

(where the inequality should be understood componentwise), where (θk1,�, θk1,u)
is one of the Nε,Θ brackets for the space Θ, and that hk2,� ≤ h ≤ hk2,u, where
(hk2,�, hk2,u) is one of the Nε,H brackets for the space H. Let

�1,j,k1,k2,�(y) = inf
θk1,�≤θ≤θk2,u,hk2,�≤h≤hk2,u

�1,j(y, θ, h)
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and let
�1,j,k1,k2,u(y) = sup

θk1,�≤θ≤θk2,u,hk2,�≤h≤hk2,u

�1,j(y, θ, h).

Then, it is clear that �1,j,k1,k2,�(y) ≤ �1,j(y, θ, h) ≤ �1,j,k1,k2,u(y) for all y. Next,
consider∣∣�1,j,k1,k2,u(y)− �1,j,k1,k2,�(y)

∣∣
≤ w(y)

[
c2 sup

θ∈Θ
||Ȧj(θ)|| ||θk1,u − θk1,�||+ 2c sup

θ∈Θ
|Aj(θ)| |hk2,u(y)− hk2,�(y)|

+ c sup
θ∈Θ

||Ḃj(θ, y)|| ||θk1,u − θk1,�||+ sup
θ∈Θ

|Bj(θ, y)| |hk2,u(y)− hk2,�(y)|

+ c sup
θ∈Θ

||Ċj(θ, y)|| ||θk1,u − θk1,�||+ sup
θ∈Θ

|Cj(θ, y)| |hk2,u(y)− hk2,�(y)|

+ sup
θ∈Θ

||Ḋj(θ, y)|| ||θk1,u − θk1,�||
]
,

where c is defined at the beginning of Section 4.1 and is an uniform upper bound
for h ∈ H, Ȧj(θ) =

∂
∂θAj(θ) and similarly for the other functions. Hence, using

Cauchy-Schwarz inequality,

E
[∣∣�1,j,k1,k2,u(Y )− �1,j,k1,k2,�(Y )

∣∣2] (14)

≤ 26
(
sup
y∈Y0

w(y)
)2[

c4 sup
θ∈Θ

||Ȧj(θ)||2 ||θk1,u − θk1,�||2

+4c2 sup
θ∈Θ

|Aj(θ)|2 ||hk2,u − hk2,�||2L2
+ c2 sup

θ∈Θ
||Ḃj(θ, ·)||2L2

||θk1,u − θk1,�||2

+ sup
θ∈Θ

|Bj(θ, ·)|2 ||hk2,u − hk2,�||2L2
+ c2 sup

θ∈Θ
||Ċj(θ, ·)||2L2

||θk1,u − θk1,�||2

+ sup
θ∈Θ

|Cj(θ, ·)|2 ||hk2,u − hk2,�||2L2
+ sup

θ∈Θ
||Ḋj(θ, ·)||2L2

||θk1,u − θk1,�||2
]
,

and this is bounded by a finite multiple of ε2 by assumptions (A10) and (A11).
It now follows that the integral in (13) is finite.

Finally, for Condition (C2) we need to show that E‖�i(Y, θ, h)−�i(Y, θ0, h0)‖2
converges to 0 as ||θ−θ0|| → 0 and ||h−h0||H → 0 (i = 1, 2). This is easily seen
to hold true thanks to assumptions (A10) and (A11) and calculations similar to
those leading to (14) above.

Proof of Theorem 4.2. The proof consists in verifying Conditions (2.1) to (2.6)
in Theorem 2 in Chen et al. (2003). Condition (2.1) in Chen et al. (2003) is

satisfied since Mn,1(θ̂1, ĥb) = 0 and Mn,2(γ̂2, ĥb) = 0 by construction, where

ĥb(·) = Γ̂LAD,b(T̂ (·)), while Condition (2.2) in Chen et al. (2003) is ensured by
assumptions (A11) and (A13).

Next, Condition (2.3) involves the pathwise derivative of the functions
M1(θ, h0) and M2(γ, h0) in the direction [h − h0]. These pathwise derivatives
are respectively given by

Γ1(θ, h0)[h− h0] = lim
τ→0

τ−1
(
M1(θ, h0 + τ(h− h0))−M1(θ, h0)

)
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=
(
Γ1,j(θ, h0)[h− h0]

)
j=1,...,k

,

where Γ1,j(θ, h0)[h−h0] = E
[
w(Y )

{
2Aj(θ)h0(Y )+Bj(θ, Y )+Cj(θ, Y )

}(
h(Y )−

h0(Y )
)]
, and

Γ2(γ, h0)[h− h0] = lim
τ→0

τ−1
(
M2(γ, h0 + τ(h− h0))−M2(γ, h0)

)

= E

⎛
⎜⎜⎜⎜⎜⎝

w(Y )
(
2c1h0(Y ) + c2 − Λθ(Y )

)(
h(Y )− h0(Y )

)
w(Y )c1

(
h(Y )− h0(Y )

)
−w(Y )Λ̇θ,1(Y )c1

(
h(Y )− h0(Y )

)
...

−w(Y )Λ̇θ,k(Y )c1
(
h(Y )− h0(Y )

)

⎞
⎟⎟⎟⎟⎟⎠ .

The jth component of the vector Γ2(γ, h0)[h − h0] will be denoted by
Γ2,j(γ, h0)[h− h0] for j = 1, . . . , k + 2.

We will now verify Condition (2.3)(i) in Chen et al. (2003). In case (i) and
for j = 1, . . . , k, we have:∣∣∣M1,j(θ, h)−M1,j(θ, h0)− Γ1,j(θ, h0)[h− h0]

∣∣∣
=

∣∣∣∣E{w(Y )Aj(θ)
[
h2(Y )− h2

0(Y )− 2h0(Y )(h(Y )− h0(Y ))
]}∣∣∣∣

=

∣∣∣∣E{w(Y )Aj(θ)
(
h(Y )− h0(Y )

)2}∣∣∣∣
≤ β1,j ||h− h0||2H ,

where β1,j = supθ∈Θ |Aj(θ)| supy∈Y0
w(y) < ∞ by assumption (A10). Hence,

||M1(θ, h)−M1(θ, h0)−Γ1(θ, h0)[h−h0]|| ≤ β1||h−h0||2H with β1 =
∑k

j=1 β1,j .
The derivation is similar in case (ii).

Next, to verify Condition (2.3)(ii) in Chen et al. (2003), consider a positive
sequence δn = o(1), θ ∈ Θδn and h ∈ Hδn , where Θδn = {θ ∈ Θ : ||θ−θ0|| ≤ δn}
and Hδn = {h ∈ H : ||h− h0||H ≤ δn}. In case (i) and for j = 1, . . . , k, we have∣∣∣Γ1,j(θ, h0)[h− h0]− Γ1,j(θ0, h0)[h− h0]

∣∣∣
≤
∣∣∣E{2w(Y )

(
Aj(θ)−Aj(θ0)

)
h0(Y )

(
h(Y )− h0(Y )

)}∣∣∣
+
∣∣∣E{w(Y )

(
Bj(θ, Y )−Bj(θ0, Y )

)(
h(Y )− h0(Y )

)}∣∣∣
+
∣∣∣E{w(Y )

(
Cj(θ, Y )− Cj(θ0, Y )

)(
h(Y )− h0(Y )

)}∣∣∣ . (15)

Using the mean value theorem and since E[h0(Y )(h(Y )−h0(Y ))] ≤ ||h0||H||h−
h0||H by Cauchy-Schwarz inequality, the first term on the right hand side of
(15) is bounded by

2 sup
y∈Y0

(w(y)) sup
θ∈Θ

∣∣∣∣Ȧj(θ)
∣∣∣∣ ||θ − θ0|| ||h0||H ||h− h0||H,
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where Ȧj(θ) =
∂
∂θAj(θ). Similarly, the second and third terms on the right hand

side of (15) are bounded by

sup
y∈Y0

(w(y))
[
E
(
sup
θ∈Θ

∣∣∣∣Ḃj(θ, Y )
∣∣∣∣2)]1/2 ||θ − θ0|| ||h− h0||H,

and

sup
y∈Y0

(w(y))
[
E
(
sup
θ∈Θ

∣∣∣∣Ċj(θ, Y )
∣∣∣∣2)]1/2 ||θ − θ0|| ||h− h0||H,

where Ḃj(θ, y) =
∂
∂θBj(θ, y) and Ċj(θ, y) =

∂
∂θCj(θ, y). These last three terms

are bounded by o(1)δn since ||h−h0||H ≤ δn = o(1), ||θ−θ0|| ≤ δn, E(h2
0(Y )) <

∞ since h0 ∈ H, supy∈Y0
w(y) < ∞ by assumption (A10) and supθ∈Θ ||Ȧj(θ)||,

E(supθ∈Θ ||Ḃj(θ, Y )||2) and E(supθ∈Θ ||Ċj(θ, Y )||2) are finite by assumption
(A11). The proof of Condition (2.3)(ii) in Chen et al. (2003) in case (ii) fol-
lows exactly the same way.

Moreover, Condition (2.4) in Chen et al. (2003) is satisfied in both cases using
Proposition A.1(i) and since we have shown in the proof of Theorem 4.1 that

||ĥb − h0||H = OP (n
−1/2) = oP (n

−1/4).
Next, in the proof of Theorem 4.1 we showed that Lemma 1 in Chen et al.

(2003) is verified in our case. This lemma is not only sufficient for Condition
(1.5) but also for Condition (2.5), see Remark 2 in Chen et al. (2003).

Finally, we verify Condition (2.6) in Chen et al. (2003). At the end of Section
4.1, we justified that Mn,1(θ0, h0) = 0 and Mn,2(γ0, h0) = 0. Moreover, in case
(i) and for j = 1, . . . , k, we have:

Γ1,j(θ0, h0)[ĥb − h0]

= E
[
w(Y )

{
2Aj(θ0)h0(Y ) +Bj(θ0, Y ) + Cj(θ0, Y )

}
(ĥb(Y )− h0(Y ))

]
.

Using Corollary 5.1 in Colling and Van Keilegom (2019), we have ĥb(y)−h0(y) =
n−1

∑n
i=1 ϕ

v
Xi,Yi

(y) + oP (n
−1/2) uniformly in y ∈ Y0. Consequently,

Mn,1(θ0, h0) + Γ1,j(θ0, h0)[ĥb − h0]

= n−1
n∑

i=1

E
[
w(Y )

{
2Aj(θ0)h0(Y ) +Bj(θ0, Y ) + Cj(θ0, Y )

}
ϕv
Xi,Yi

(Y )
∣∣∣Xi, Yi

]
+ oP (n

−1/2),

by assumptions (A10) and (A11) and the fact that E(h0(Y )) < ∞. The last
expression is a sum of i.i.d. terms. Hence, we conclude the proof of case (i)
using the multivariate central limit theorem and the fact that E(ϕv

X,Y (y)) = 0
for all y by Corollary 5.1 in Colling and Van Keilegom (2019). Similarly, in case
(ii), we have

Mn,2(γ0, h0) + Γ2(γ0, h0)[ĥb − h0]
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= n−1
n∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

E
{
w(Y )

(
2c1,0h0(Y ) + c2,0 − Λθ0(Y )

)
ϕv
Xi,Yi

(Y )
∣∣Xi, Yi

}
E
{
w(Y )c1,0ϕ

v
Xi,Yi

(Y )
∣∣Xi, Yi

}
−E
{
w(Y )Λ̇θ0,1(Y )c1,0ϕ

v
Xi,Yi

(Y )
∣∣Xi, Yi

}
...

−E
{
w(Y )Λ̇θ0,k(Y )c1,0ϕ

v
Xi,Yi

(Y )
∣∣Xi, Yi

}

⎞
⎟⎟⎟⎟⎟⎠

+oP (n
−1/2).

It suffices to apply again the multivariate central limit theorem to conclude the
proof of this theorem.
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