Translator Disclaimer
2019 On geometric probability distributions on the torus with applications to molecular biology
Alessandro Selvitella
Electron. J. Statist. 13(2): 2717-2763 (2019). DOI: 10.1214/19-EJS1579

Abstract

In this paper, we study a family of probability distributions, alternative to the von Mises family, called Inverse Stereographic Normal Distributions. These distributions are counterparts of the Gaussian Distribution on $\mathbb{S}^{1}$ (univariate) and $\mathbb{T}^{n}$ (multivariate). We discuss some key properties of the models, such as unimodality and closure with respect to marginalizing and conditioning. We compare this family of distributions to the von Mises’ family and the Wrapped Normal Distribution. Then, we discuss some inferential problems, introduce a notion of moments which is natural for inverse stereographic distributions and revisit a version of the CLT in this context. We construct point estimators, confidence intervals and hypothesis tests and discuss briefly sampling methods. Finally, we conclude with some applications to molecular biology and some illustrative examples. This study is motivated by the Protein Folding Problem and by the fact that a large number of proteins involved in the DNA-metabolism assume a toroidal shape with some amorphous regions.

Citation

Download Citation

Alessandro Selvitella. "On geometric probability distributions on the torus with applications to molecular biology." Electron. J. Statist. 13 (2) 2717 - 2763, 2019. https://doi.org/10.1214/19-EJS1579

Information

Received: 1 June 2017; Published: 2019
First available in Project Euclid: 21 August 2019

zbMATH: 07104729
MathSciNet: MR3995009
Digital Object Identifier: 10.1214/19-EJS1579

Subjects:
Primary: 62E15, 62H10, 62H11
Secondary: 62E10, 62E20, 62F03, 62F10, 62F12, 62H15

JOURNAL ARTICLE
47 PAGES


SHARE
Vol.13 • No. 2 • 2019
Back to Top