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Abstract: This paper investigates the problem of detecting relevant change
points in the mean vector, say pt = (pe,1, .- ., ,ut,d)T of a high dimensional
time series (Z¢)¢ecz. While the recent literature on testing for change points

in this context considers hypotheses for the equality of the means ugll) and

/LE?) before and after the change points in the different components, we are
interested in a null hypothesis of the form

Hoz\u;ll)f,ug)\gAh forall h=1,...,d

where Aj,...,A, are given thresholds for which a smaller difference of
the means in the h-th component is considered to be non-relevant. This
formulation of the testing problem is motivated by the fact that in many
applications a modification of the statistical analysis might not be neces-
sary, if the differences between the parameters before and after the change
points in the individual components are small. This problem is of particular
relevance in high dimensional change point analysis, where a small change
in only one component can yield a rejection by the classical procedure al-
though all components change only in a non-relevant way.

We propose a new test for this problem based on the maximum of
squared and integrated CUSUM statistics and investigate its properties
as the sample size n and the dimension d both converge to infinity. In par-
ticular, using Gaussian approximations for the maximum of a large num-
ber of dependent random variables, we show that on certain points of the
boundary of the null hypothesis a standardized version of the maximum
converges weakly to a Gumbel distribution. This result is used to construct
a consistent asymptotic level o test and a multiplier bootstrap procedure
is proposed, which improves the finite sample performance of the test. The
finite sample properties of the test are investigated by means of a simula-
tion study and we also illustrate the new approach investigating data from
hydrology.
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1. Introduction

In the context of high dimensional time series it is typically unrealistic to assume
stationarity. A simple form of non-stationarity, which is motivated by financial
time series, where large panels of asset returns routinely display break points, is
to assume structural breaks at different times (the change points) in the individ-
ual components. One goal of statistical inference is to correctly estimate these
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“change points” such that the original data can be partitioned into shorter sta-
tionary segments. This field is called change point analysis in the statistical liter-
ature and since the seminal papers of Page (1954, 1955) numerous authors have
worked on the problem of detecting structural breaks or change points in various
statistical models [see Aue and Horvdth (2013) for a recent review]. There exists
in particular an enormous amount of literature on testing for and estimating the
location of a change in the mean vector iy = (pg1, -, fie.a) = E[Z;] of a mul-
tivariate time series (Z;)}_; [see Chu et al. (1996), Horvath et al. (1999), Kirch
et al. (2015) among others]. A common feature in these references consists in
the fact that the dimension, say d, of the time series is fixed. High dimensional
change point problems, where the dimension d increases with sample size have
only been recently considered in the literature [see Bai (2010), Zhang et al.
(2010), Horvéath and Huskova (2012) and Enikeeva and Harchaoui (2014), Jirak
(2015a), Cho and Fryzlewicz (2015) and Wang and Samworth (2018) among
others]. Some of this work uses information across the coordinates in order to
detect smaller changes than could be observed in any individual component
series.

In the simplest case of one structural break in each component many authors
attack the problem of detecting the change point by means of hypothesis testing.
For example, Jirak (2015a) investigates the hypothesis of no structural break in
a high-dimensional time series by testing the hypotheses

Ho:pip=popn=...=pppforallh=1...,d, (1.1)

where p; 5, denotes the h-th component of the mean vector p; of the random
variable Z; (t = 1,...,n). The alternative is then formulated (in the simplest
case of one structural break) as

H, uELl) = [1,h = H2p =" = [k, h (1.2)
£ My ath = Myt =0 = fnp = Hy)
for at least one h € {1,...,d}, where k;, € {1,...,n} denotes the (unknown)
location of the change point in the h-th component.

While - even under sparsity assumptions - the detection of small changes in
each component is a very challenging problem, a modification of the statistical
analysis (such as prediction) might not be necessary if the actual size of change
is small. For example, in risk management situations, one is interested in fitting
a suitable model for forecasting Value at Risk from data after the last change
point [see e.g. Wied (2013)], but in practice, small changes in the parameter
are perhaps not very interesting because they do not yield large changes in the
Value at Risk. The forecasting quality might only improve slightly, but this
benefit could be negatively overcompensated by transaction costs, in particular
for high-dimensional portfolios. Moreover, even, if the null hypothesis (1.1) is not
rejected, it is difficult to quantify the statistical uncertainty for the subsequent
statistical analysis (conducted under the assumption of stationarity), as there
is no control about the type II error in this case.
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The present work is motivated by these observations and proposes a test for
the null hypothesis of no relevant change point in a high dimensional context,
that is

Ho |M§Ll) — ,uf)\ <Apforallh=1,...,d (1.3)
versus Haa : |M§Ll) — ,uf)\ > Ay, for at least one h € {1,...,d} , (1.4)

where ,u;}) and ug) are the parameters before and after the change point in

the h-th component and Ay,..., Ay are given thresholds for which a smaller
difference of the means in the h-th component is considered as non-relevant.

The problem of testing for a relevant difference between (one dimensional)
means of two samples has been discussed by numerous authors mainly in the
field of biostatistics (see Wellek (2010) for a recent review). In particular testing
relevant hypotheses avoids the consistency problem as mentioned in Berkson
(1938), that is: Any consistent test will detect any arbitrary small change in the
parameters if the sample size is sufficiently large. In the finite dimensional case
Dette and Wied (2016) investigated relevant hypotheses in change point analysis
for general parameters using an L?-Norm. The present paper differs from their
approach in several perspectives. First, we consider the high-dimensional setting,
where the dimension increases with sample size. Second, relevant changes in
different components are allowed to occur at different locations, and we identify
corresponding locations and components by our approach. Third we develop
a bootstrap procedure in order to obtain a reasonable approximation of the
nominal level in high dimensions.

The alternative approach requires the specification of the thresholds Ay > 0,
and this has to be carefully discussed and depends on the specific application.
We also note that the hypotheses (1.3) contain the classical hypotheses (1.1),
which are obtained by simply choosing Ay =0 for all h = 1,...,d. Nevertheless
we argue that from a practical point of view it might be very reasonable to think
about this choice more carefully and to define the size of change in which one is
really interested. In particular it is often known that | u%l) — ,uf)| # 0 although
one is testing “classical hypotheses” of the form (1.1) and (1.2). Moreover, a
decision of no relevant structural break at a controlled type I error can be
easily achieved by interchanging the null hypothesis and alternative in (1.3), i.e.
considering the hypotheses

FIO)A : |M§ll) — M22)| > Ay, for at least one h € {1,...,d} (L5)
versus ﬁA7A:|ug)—u§f)|§Ah forallh=1,...,d. '

An obvious idea to address this problem is multiple testing using the univariate
tests in Dette and Wied (2016) with a Bonferroni correction. However, in the
high-dimensional context such an approach may accumulate too many errors
in the approximation of the nominal level by the individual tests. As a conse-
quence the resulting Bonferroni test for the hypotheses in (1.3) offers a worse
approximation of the nominal level compared to our approach (these arguments
are supported by simulation results, which are available from the authors).
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In this paper we use a different approach to test the hypotheses of a relevant
structural break in any of the components of a high dimensional time series.
The basic ideas are explained in Section 2 (without going into any technical
details), where we propose to calculate for any component the integral of the
squared CUSUM process and reject the null hypothesis whenever the maximum
of these integrals (calculated with respect to all components) is large. In order
to obtain critical values for this test we derive in Section 3 the asymptotic
distribution of an appropriately standardized version of the maximum as the
sample size and the dimension converge to infinity. We also provide several
auxiliary results, which are of own interest, and investigate the case where the
maximum is only calculated over a subset of the components. These results
are then used in Section 4 to prove that the proposed test yields to a valid
statistical inference, i.e. it is a consistent and asymptotic level « test. It turns
out that - in contrast to the classical change point problem - the analysis of
the test for no relevant structural breaks is substantially harder as the null
hypothesis does not correspond to a stationary process (non-relevant changes in
the means are allowed). Section 5 is devoted to the investigation of a multiplier
block bootstrap procedure. In particular we prove that the quantiles generated
by this resampling method also yield a consistent asymptotic level « test. The
finite sample properties of the new test are investigated in Section 6, where we
also illustrate our approach analysing a data example from hydrology. Finally
some of the technical details are deferred to the appendix.

2. Relevant changes in high dimensions - basic principles

In this Section we explain the basic idea of our approach to test for a relevant
change in at least one component of the mean vector of a high dimensional time
series. For the sake of a transparent representation we try to avoid technical
details at this stage and refer to the subsequent sections, where we present
the basic assumptions and mathematical details establishing the validity of the
proposed method.

Throughout this paper we consider an array of real valued random variables
{Zj,h}jEZ,hEN such that

Zin = jn+Xjn, (2.1)

where p;5, € R for all j € Z,h € N and {X;,}jeznren denotes an array of
centered and real valued random variables, which implies p;, = E[Z; 1] for all
j €7Z,h € N. It follows from the assumptions made in Section 3 that for each
fixed d € N the time series

{(Xj1,- -, X5a) Yyez (2.2)
is stationary. Suppose that

Zv=(Zv1, s 20 ) T = (Znas ey Zna)T €RY
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are d-dimensional observations from the array {Z;};ez nen and assume that
for each component h € {1,...,d} there exists an unknown constant ¢;, € (0, 1),
such that
1 .
/U‘El) = HKjih , J :13"'7LnthJ 5

(2)

! (2.3)
Hp,

=pwin, j=nts]+1,...,n,

where |x] = sup{z € Z| z < x} denotes the largest integer smaller or equal than
x. In this case the random variables {Z; }r=1,.. d;j=1,....n also depend on n, i.e.
they form a triangular array, but for the sake of readability, we will suppress
this dependence in our notation.

We define App = MS) — MELZ) as the unknown difference between the means in
the h-th component before and after the change point t,. Note, that in the case
App # 0 the actual location kp = |nty| of the change point depends on the
sample size n, which is a common assumption in the literature on change point
problems to perform asymptotic inference. It simply ensures that the number
of observations before and after the change point is growing proportional to n.
For each h with App = 0 the observable process {Z; ;}jez is stationary and
to avoid misunderstandings we set ¢t = 1/2, whenever Ay, = 0. The reader
should notice that in this case the actual value is of no interest in the following
discussion. With this notation the hypotheses in (1.3) can be rewritten as

HO,A : |A,uh\ < Apforallh e {1,...,d} (24)

versus  Ha a : |App| > Ay for some h € {1,...,d} . (2.5)

To develop an appropriate test statistic for these hypotheses we rely on the
widely used concept of CUSUM-statistics. For each component h € {1,...,d}

we consider the corresponding CUSUM-process for the h-th component defined
by

[ns] n
1 ns
Un(s) = 23 7 - 220507,

n— |ns| [ns] -
= XA > Zn

j=1 j=|ns|+1

Under the assumptions stated in Section 3 it is shown in Section A.1 of the
appendix that

3
(th (1 —t5))?

as n — oo and therefore our considerations will be based on the statistic

o[ [ v = 20+ ot 27)

V2 = 73 ' 2 S)as
W = oy, Uhaeds (2)
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where #;, denotes an appropriate estimator for the unknown location ¢, of the
structural break, that will be precisely defined in Section 3.3. The null hypothesis

HO,h : |A,U,h‘ § Ah (29)

of no relevant change in the h-th component will be rejected for large values of
MEL 1, and in order to determine a critical value we introduce the normalization

= V(e A7), (2.10)

(
" ThonAp

where 6}, denotes an estimator for the unknown long-run variance (see Section
3.3 for a precise definition), and the quantity 7, is a function of the estimate of

the change point defined by
24/1 + 26, (1 — 1)
= (2.11)

o =7(tn) 1= Soin(—tn)

which arises due to the integral in equation (2.8). For the case A, = Aup,
it will be shown in Section B.2 of the appendix that for a fixed component
hed{l,...,d}

T 25 N(0,1)  asn— o0, (2.12)

where the symbol 2 represents weak convergence of a random variable. More-
over monotonicity arguments show that the test, which rejects the null hypothe-
sis (2.9) of a relevant change point in the mean of the h-th component, whenever
Tr(LAh) exceeds the (1 — a)-quantile of the standard normal distribution, is a con-
sistent asymptotic level « test.

In order to construct a test for the hypotheses Hy a versus Ha a in (2.4)
and (2.5) of a relevant change point in at least one of the components of a high
dimensional time series we propose a simultaneous test, which rejects the null
hypothesis for large values of the statistic

Note that a similar approach has been investigated by Jirak (2015a), who con-
sidered the “classical” change point problem in high dimension, that is

Ho class : |App| =0for allh € {1,...,d}

2.13

versus  HA class : |[Apn| > 0 for some h € {1,...,d} . ( )

In this case the weak convergence (2.12) does not hold (in fact Téﬁ) = op(1)
under Hy c1ass) and a different statistic has to be considered.

As it is well known that the (adjusted) maximum of standard normal dis-

tributed random variables converges weakly to a Gumbel distribution if they
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F1G 1. Decomposition of the parameter space corresponding to the null hypothesis (2.4) into
the sets Ap, A1 and Az for the case d = 2.

exhibit an appropriate dependence structure [see for example Berman (1964)],
it is reasonable to consider the following

Tan = ad(rgéf 75 - bd) (2.14)

for the high-dimensional change point problem (2.4), where ag and by denote
appropriate sequences, such that the left-hand side converges weakly at specific
points of the “boundary” of the parameter space corresponding to the null
hypothesis.

To make these arguments more precise, define the sequences

aqg =+/2logd , (2.15)

bg = aq — log(4rlogd)/(2aq) , (2.16)

and note that the parameter spaces corresponding to the null hypothesis (2.4)
and the alternative (2.5) are given by

Hy = {(m,y) ERY X RY [wh —yn| <Ay Vhe {1,...,d}}

and Ha = R24\ H,, respectively (here x = (z1,...,z4)", v = (y1,.--,ya)T)
denote d-dimensional vectors). Define for k = 0,...,d the “(d — k)-dimensional
boundary of the hypotheses (2.4) and (2.5)” by

Ag = {(aﬁ,y) €R? x Rd| |zp —yn| < ApVh
(2.17)
with equality for precisely k components} CHy .
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For the case d = 2, we illustrate this decomposition of the null hypothesis
parameter space in Figure 1. In fact, a large part of this paper is devoted to
prove the following statements (under appropriate assumptions - see Theorem
4.1 in Section 4):

(1) If (uV), u?) € Ay, the weak convergence

Tam = G

holds as both n,d — oo, where G denotes a Gumbel distribution, i.e.

P(G<z)=e® . (2.18)
(2) If (uV, u®) € Ay, and there exists a constant C, such that |,u§11) - uf)| <

C < Ap, whenever \,u}ll) - ,uf)| # Ap, and limg_, o k/d = ¢ € (0,1], we
have
Tan ENE: + logc

asn,d — oo .
(3) If (uV, @) € Ay, and limg_, o0 k/d = 0 we have

D
Tan = —00

asn,d — 0o .

Let g1, denote the (1 — «) quantile of the Gumbel distribution, then it follows
from these considerations that the test which rejects Hp a in favour of the
alternative hypothesis H4 A, whenever

Tan > g1-a ; (2.19)

is an asymptotic level « test. More precisely, it follows (under appropriate as-
sumptions stated below) that

a if (uW @) e Ay
Proa(Tan > g1-a) — (o’ if (0, @) € Ay, limg_o k/d = c € (0,1]
0 if (uM, 1) € Ag, limgoo k/d =0
(2.20)

as n,d — oo, where 0 < o/ < «. Additionally the test is consistent (see Theo-
rem 4.3). In the following sections we will make these arguments more rigorous.
Moreover, in order to improve the finite sample approximation of the nominal
level we also introduce a multiplier bootstrap procedure and prove its consis-
tency in Section 5.

3. Asymptotic properties

In this section we provide the theoretical background for the test suggested in
Section 2. We begin introducing some notations and assumptions. After stating
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the main assumptions we provide in Section 3.2 the asymptotic theory for an
analogue of the statistic 73, defined in (2.14), where the centering in (2.10)
is performed by the “true” squared differences |Apuy|?> and the estimates of
the variances o; and the locations of the change points t; have been replaced
by their “true” counterparts. In Section 3.3 we introduce estimators for the
locations of the structural breaks (which may occur at a different location in
each component) and investigate their consistency properties. These are then
used to define appropriate variance estimators (note that variances have to be
estimated in the case of changes in the mean). Finally, we consider in Section
3.4 the asymptotic distribution of the maximum of the statistics (2.10) where
again centering is performed by |Auy|? instead of AZ. These results will then
be used in the subsequent Section 4 to investigate the statistical properties of
the test (2.19).

Throughout this paper we will use the following notation and symbols. Let
x Ay and zVy define the minimum and maximum of two real numbers = and y,
respectively. For an appropriately integrable random variable Y and ¢ > 1, let

Y], =E [|Y\q]1/q denote the LY-norm. By the symbols L. and — we denote
weak convergence and convergence in probability, respectively. Moreover, we
use the notation z,, < y,, whenever the inequality x, < C - y,, holds for some
constant C' > 0 which does not depend on the sample size and dimension and
whose actual value is of no further interest. Due to its frequent appearance, G
will always represent a (standard) Gumbel distribution defined by (2.18). In the
high dimensional setup the dimension d converges to infinity with n — oo .

Recall the definition of model (2.1) and assume throughout this paper that
the time series {X 1} ez nen forms a physical system [see e.g. Wu (2005)], that
is

Xin=9n(ej,cj-1,--2) (3.1)

where {¢;};ez is a sequence of i.i.d. random variables with values in some mea-
sure space S such that for each h € N the function g : SN — R is measurable.
Note that it follows from (3.1) that the time series defined in (2.2) is stationary.
Let €( be an independent copy of ¢ and define

Xj'-’h:gh(sj,sj,l,...751,567571,...) ) (3.2)

The distance between X;j; and its counterpart X j’-’h is used to quantify the
emporal) dependence of the physical system, and for this purpose we introduce
t 1) d d f the physical syst d for thi introd

the coefficients

Dinp = 1Xjn = Xjnllp » (3-3)

which measure the influence of €y on the random variable Xj ;. Let us also
define some additional parameters. For h,i € N

on,i(J) = Cov(Xo,n, Xj,i) = Cov(Zon, Zj,)
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denotes the covariance function of the h-th and i-th component at lag j. Accord-
ingly, the autocovariance function for the h-th component is given by ¢y, (5)
On.n(j) = Cov(Xo,n, X; ) and we obtain the well-known representations

Yhi =Y bni(j) and o = én()) (3.4)

jez JET

for the long-run covariance and long-run variance, respectively. If we have fur-
thermore oy, 0; > 0, we can additionally define the long-run correlations by

Yh,i

o (3.5)

Ph,i =
and it will be crucial for our work, that these quantities become sufficiently small
with an increasing temporal distance |h — i|. This will be precisely formulated
in the following section.

3.1. Assumptions

Operating in a high-dimensional framework usually needs stronger assumptions
than those for the finite-dimensional case. Mainly, we need uniform dependence
and moment conditions among all components to exclude extreme cases and
to ensure, that the unknown parameters can be estimated accurately. In the
high-dimensional setup considered in this paper the number of parameters tp,
op, grows together with the dimension d, since even under the null hypothesis of
no relevant change points each component exhibits its own variance and change
point structure. The precise assumptions made in this paper are the following.

Assumption 3.1 (temporal assumptions). Suppose that there exist constants
6 € (0,1) and o > 0 such that for some p > 4 the physical dependence coeffi-
cients U pp and long run variances oy, defined in (3.3) and (3.4), respectively,
satisfy

(T1) suppenVjnp SO0,
There exists constants 0 < o_ < o4 such that for allh € N
(T2) o_ <infrenop <oy .

Assumption 3.2 (spatial assumptions). The dimension d increases with the
sample size at a polynomial rate, i.e. we assume that for constants C1 and D

(S1) d = CynP ,
where the exponent D satisfies
(52) 0 < D < min{p/4 -1, p/4— B(p/2+1)—1}

and p > 4 refers to the LP-norm || - ||, used to measure the physical dependence
in Assumption 3.1. Here B € (0,1/2) denotes a constant used to control the
bandwidth of a variance estimator, that will be defined in Section 3.3. Further
we assume for the long-run correlations in (3.5)
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(S3) supj,_ss1 lpnil < pr <1,
(84) lpn,il < Calog(|h —i] +2)777,
where py > 0, 7 > 0 and Cy > 0 denote global constants.

Assumption 3.3 (moment assumptions). Suppose, that there exist a positive
sequence (Mg)aen and constants C3 > 1 and Cyq > 0, such that

(M1) maxf;_; E [exp(|X1,n]/Ma)] < C5
(M2) Mg < Cqn™ with m < 3/8 .

Assumption 3.4 (location of the change points). There exists a constant t €
(0,1/2), such that for all h € N the unknown locations |nty]| of the structural
breaks satisfy

(C1) t<t, <1—t.

Let us give a brief explanation for the Assumptions 3.1 - 3.4. The tempo-
ral Assumptions (T1) and (T2) define the temporal dependence structure and
bounds for the long-run variance. Further (T1) implies the existence of the
quantities op, Y5, and pp,; defined in (3.4) and (3.5). Conditions (S3) and (S4)
refer to the spatial dependence and are only needed to derive the desired ex-
treme value convergence. Assumption (S1) gives a relation between the number
of observations and its dimension, while (S2) is a slightly technical assumption.
In particular, the coefficients in (3.3) satisfy the inequality 9,5 p, < ¥ pp, if
1 < p1 < ps , and therefore a larger value of p in (T1) yields a less dependent
time series. This on the other hand is reflected in condition (S2), which is less
restrictive for larger values of p. This condition enables reasonable estimators of
the variance o and the locations t;, of the structural breaks. For a proof of the
uniform consistency of the estimates for the latter quantity we must further rely
on Assumption (C1), which makes the change points identifiable and is a com-
mon assumption in the literature. Roughly speaking, it simply ensures to have
enough data before and after the change point in each component. Assumptions
(S1) and (S2) together with n — oo directly imply d — oo. It is also worth
mentioning, that (S1) can be replaced by d < nP, if one additionally supposes
that d — oo.

The moment Assumptions (M1) and (M2) are required for a Gaussian ap-
proximation and are satisfied, if {X;n};jez neq,...,a) is stationary with respect
to the index j and for each h € N the random variable X; ; is sub-Gaussian
with parameters vy, V3, > 0, i.e.

E[exp(AX11)] < Vi exp(A\?vp,), forall A€ R,

where the constants (vy)p=1,...q and (Vi)n=1,... 4 satisfy

d
max vy, < n3* and max Vi, <C.
h=1 heN
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for some constant C' > 0. Choosing My = max{¢_, /v, we directly obtain
condition (M2). Condition (M1) follows by a straightforward calculation, that
is

r}}%f]E lexp(|X1,1|/Ma)] < 2%@( Vie'/Mi < 2Ce < o0 .

3.2. Asymptotic properties - known variances and locations

In this section we assume that the locations ¢, of the changes and the long-run
variances oy, are known. Recalling the approximation (2.7) we define

3 1
M2 :—/U2 s)ds 3.6
n,h (th(l _ th))2 0 n,h( ) ( )
and investigate the asymptotic properties of the maximum of the statistics

Vn 5 2
Top=—"——(M;,—A , 3.7
h ThOR D] ( h Mh) (3.7)

where 7, = 7(t5) and the function 7 is defined by (2.11). Note that T, is
the analogue of the statistic T fﬁg, where the thresholds Ay, estimates ¢, and
61, have been replaced by the unknown quantities Auy, t, and oy, respectively.
Our first result shows that an appropriate standardized version of the maximum
of the statistics T, , converges weakly to a Gumbel distribution. The proof is
complicated and we indicate the main steps in this section deferring the more

technical arguments to the appendix.

Theorem 3.5. Assume that the Assumptions 3.1 - 3./ are satisfied and that
additionally there exist constants Cy, Cy, (independent of h and d) such that the
inequalities Cp < |App| < Cy hold for allh =1,...,d. Then

ad(rlrzl%i(Tn’h - bd) :D> G
as d,n — oo, where the sequences aq and by are defined in (2.15) and (2.16),

respectively.

Proof of Theorem 3.5 (main steps). Observing the definition (3.6) and (3.7) we
obtain by a straightforward calculation the representation

3v/n ! 1 2
Tn,h = (th(l _ th))27h0h|A,uh| </0 Ui,h(s)ds - ,Ui(57th)d3) = T’rg,,’)l + T’I’(L,f)L ’

where

pn(sstn) = (th A s — stp) (Bn,1 — fin,2) (3.9)
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and the statistics Tfllf)b and ng are defined by

1
7 3/ / 2
— n it ds , 3.10
(1 — )2 mhon| Apn| Jo (Un.n(s) = pn(s, tn))"ds ( )

n 1
V(L?f)L = (th(l _ thi;é;haﬂAMH o Mh(s,th)(Un,h(S) — ,uh(s,th))ds . (3.11)

For the following discussion, we introduce the additional notation

n 1
L = e i [ #(5:10) (Uaa(s) ~ E (U9 ds . (3.12)

Our first auxiliary result shows that the first term T( ,)1 in the decomposition

(3.8) is asymptotically negligible. It is proved in Sectlon A.2.1 of the appendix.
|

Lemma 3.6. If the assumptions of Theorem 3.5 are satisfied, we have

d 1) P
adr}rllai(TT(”)L — 0

as d,n — oo, where the sequence aq s defined in (2.15).

By Lemma 3.6 it now suffices to deal with the term T(2) The next step in

the proof of Theorem 3.5 consists in a (uniform) approx1mat10n of the distribu-

tion of the maximum of the statistics T T(L f)b by the distribution of the maximum

of (dependent) Gaussian random variables. The proof of the following result
is given in Section A.2.2 of the appendix, where we make use of new develop-
ments on Gaussian approximations for maxima of sums of random variables [see

Chernozhukov et al. (2013) and Zhang and Cheng (2018)].

Lemma 3.7. If the Assumptions 3.1 - 3./ are satisfied, there exists a Gaus-
sian distributed random vector N = (Ny,..., Ng)T with mean E[N] = 0 and
covariance matrix (Zh,i)g,izh such that

sup IP’(max (})L x) —P(m%xNh < x)’ =o(1)
zER h=1 h=1

for d,n — oo. Moreover, the entries of the matriz ¥ are bounded by |3, ;| <
lon,i| » where py,; are the long-run correlations defined in (3.5).

By Lemma 3.7 it suffices to establish the desired limiting distribution for the
maximum of a Gaussian distributed vector. Nowadays, this is a well-understood
area of mathematics and we can rely on results of Berman (1964), who originally
examined the behavior of the maximum of dependent Gaussian random vari-
ables. A straightforward adaption of these arguments shows that the sequence
of random variables {N; };en constructed in Lemma 3.7 satisfies

d
ad(%lgi(Nh — bd> 2.G (3.13)
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as d — oo, where the sequences aq and by are defined in (2.15) and (2.16),
respectively.
Now, combining Lemma 3.7 and (3.13) directly leads to

By |Apup| < C, it follows that max?_, (un(s,tn) — E [Upn(s)]) = O(n~1), which
yields

ad(l}fll?iiiT — bd) =G . (3.14)
Due to T T(L })L 0, we obtain the inequalities
ad<m(éXT — bd> < ad(mcéXTn,h — bd)
h=1 h=1
< ay m%x TT(le + ad<max T(22L — bd)
h=1 "™ h=1 "™

which together with Lemma 3.6 yields the assertion of Theorem 3.5. U
In the next step we will replace the unknown quantities t;, and o, in (3.7)
by suitable estimators, say t; and &5, and obtain the statistics

Tn,h:L(A Auh) hell,....d . (3.15)

Thon|Apn|

We emphasize again that the statistics Tnyh do not coincide with the statistics
T( h) in (2.10), which are actually used in the test (2.19) except in the case

where Apj = \,ugl) — u22)|2 = A? for all h = 1,...,d. Thus centering is still
performed with respect to the unknown difference of the means before and after
the change points. In the following two subsections we give a precise definition
of the two estimators and derive an analogue of Theorem 3.5 in the case of
estimated change points and variances.

3.3. Estimation of long-run variances and change point locations

Determining the relative locations t; of the structural breaks and constructing
an estimator for the long-run variances oy, for all components h € {1,...,d} is
a rather difficult task in a high dimensional setting. A further difficulty in the
problem of testing for relevant structural breaks consists in the fact that even
under the null hypothesis there may appear structural breaks in the mean and
the corresponding process is not stationary. Therefore in contrast of testing the
“classical” hypotheses in (2.13) the construction of a suitable variance estimator
is not trivial. A standard long-run variance estimator in terms of » 3, 5 én (i) for
an increasing sequence {f,}nen and appropriate estimators q@h(z) of the auto-

covariance from the full sample may not be consistent due to possible changes
of the mean.
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Following Jirak (2015a) we define for each component h = 1,...,d the sets
Dh,l = {Zj,h | 1 §] < LnthJ} and Dh’g = {Zj’h | Lnthj <j < TL} R

which are the observations before and after the (unknown) change point |nty |,
respectively. Since these points are usually unknown, we need to estimate them
and for this purpose we propose the common estimator

[ns] n
t, := argmax |Un7h(s)| = argmax ‘ Z Zin— M ZZNL’ . (3.16)
s€(t,1—t) se(t1-t) | i n =

The following Lemma shows that these estimators are uniformly consistent with
respect to all components, where a change point exists. The proof can be ob-
tained by employing Theorem 3.1 in Jirak (2015a) and is given in Section A of
the appendix.

Lemma 3.8. Let
Sa={1<h<d||Au|=0} (3.17)

denote the set of all components h € {1,...,d}, where the corresponding time
series {Z; n}jez is stationary, and define

Ha = min |Apn] - (3.18)

Suppose further that Assumptions 3.1, 3.2 and 3.4 are satisfied.
(i) If for a sufficiently small constant 1 > C > 0 the condition

. logn _C
lim sup =o(n 3.19
d,n—o0 (M2)2n ( ) ( )

holds, then (for a possibly smaller constant)

i —tn| = -y .
hm€%>§|h nl=op(n™%)

(11) If the condition pj > Cy holds for some constant Cy > 0, it follows that

i _on(nirE !
]rlré%)g [th — tn| = op (np/ ) . (3.20)
Remark 3.9 Lemma 3.8 provides a result regarding the uniform convergence of
the estimators (fh)he{l,_”’d} for the locations of the change points as the dimen-
sion d converges to infinity. Roughly speaking condition (3.19) guarantees that
the decreasing sequence 7} does not converge too fast to 0. Otherwise it is not
possible to identify the (relative) locations of all change points simultaneously.

In the case where the sequence pj has a positive lower bound, part (i) of
Lemma 3.8 gives an explicit rate of convergence in terms of the quantities p and
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D. Note, that larger values of p improve the rate and in the limit p — oo with
fixed D one recovers the known optimal rate o,(n™!) for a finite dimension.
On the other hand an increasing parameter D, which controls the growth of
the dimension (d ~ n?), leads to a slower rate of convergence. Additionally, we
would like to point out, that statement (3.20) combined with Assumption 3.2
gives

i —tn] = —1/2 21
hme?é'h nl=op(n™"?) (3.21)

which we will use frequently in the sequel.

Due to the possible appearance of changes in the mean a standard approach
of long-run variance estimation will usually fail. To circumvent this problem we
follow Jirak (2015b) who proposed two single variance estimators. To be precise
note that in view of Lemma 3.8 it is reasonable to estimate the unknown sets
’DhJ and Dh)g by

ﬁh,l L= {Zj,h | 1 S j S nmaX{Sfmt}} s (3 22)
ﬁh,Q::{Zj,h|n—nmax{5(1—fh),t}<j§n}, .

respectively, where S € (0, 1) denotes a user-specified separation constant. For
both sets, we can now compute the sample mean, that is

_ 1 o1
72V = —— Zin, 22 = ——— Zin .
|Dhal Z N o Z
We then obtain corresponding estimates of the autocovariances by

~(1) . 1 S(1 =(1
Vi) == Y (Zin -2 Zan - 2
Daal =il , =~ -
j.hsZj+i,n€DR 1
~(2) . 1 5(2 5 (2
D)= —=——— Y (Zin -2V Zin - 2
Dnal — il , =~ -
by Zj+i,n€Dh 2
This yields two long-run variance estimators, namely

&,2%1 = Z (;321)(2) (based on the set ﬁh,l) ,

i<
&,2%2 = Z (;322)(@) (based on the set ﬁh,g) ,
[i|<Bn

where 3, ~ n® is the bandwidth and B refers to the constant in Assumption 3.2.
At this point we can use any convex combination of 7 ; and 67, , to estimate the
long run variances 0,2“ for example &%L = %(6%71 +&,2172). To simplify the technical
arguments in Sections A and B of the appendix we consider a truncated version,
that is

67 =min {s%, max {s*,(3(67 1+ 672)}} - (3.23)
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where 0 < s_ and s; are a sufficiently small and large constant, respectively.
The following statement yields the consistency of these estimators (uniformly
with respect to the spatial component).

Lemma 3.10. Suppose that Assumptions 3.1 - 3.4 are satisfied and additionally
that there exists a constant Cy > 0 such that the inequality Cy < |App| holds
forallh=1,...,d. Then we have

miaic |Gr — on| = op (nf")

for a sufficiently small constant 0 < n < 2(p/4 —B(p/2+1)—1-— D) /-

From the proof of Lemma 3.10 it follows that the constant 1 can be chosen
larger if the distance p/4 — B(p/2 + 1) — 1 — D in Assumption (S2) increases.

3.4. Weak convergence

Equipped with Lemmas 3.8 and 3.10 we are now able to state the main result
of this section, which will be proved in Section A.2.5 of the appendix.

Theorem 3.11. If Assumptions 3.1 - 3./ are satisfied, then the statistics Tmh
defined in (3.15) satisfy
d_ - D
Tam = ad@giﬁn,h - bd> SC:Nye: (3.24)
as d,n — oo, where the sequences aq and bg are defined in (2.15) and (2.16),
respectively.

Recall again that the statistics Tn’h and Tffh) in (2.10) do not coincide in
general. Thus Theorem 3.11 does not show that the test (2.19) is an asymptotic
level « test because it does not cover all parameter configurations of the the
null hypothesis (2.4). However, if the vector (1), u(?)) is an element of the set
A, defined in (2.17) we have Tn,h = T,(L’Ah) and it follows from this result that
the probability of rejection converges to «, that is

d,’}LiLnoo P u@)ea, (Tim > glfa) =a.
We conclude this section with a result, which can be used to control the type I
error of the test (2.19) for other values of the vector (u), u(?)).

Corollary 3.12. Let { M }qen be an increasing sequence of subsets of {1,...,d}
(as d,n — o0). If the assumptions of Theorem 3.5 hold, then

R - G if limgeo | Myl/d=1,
ad( max Tn,h—bd) = ¢ G+loge if limgoo [Myl/d=c, c€(0,1),
heMa 00 if limg_yeo |[Mgl/d =0 .
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Irrespective of the sequence {Mg}aen, the bound

lim supP(ad<hrg%/>((d Ton — bd> > x) <P(G >z (3.25)

d,n— o0

is valid for all x € R.

4. Relevant changes in high dimensional time series

Recall the problem of testing the hypotheses of a relevant change defined in (2.4)
and (2.5). We propose to reject the null hypothesis of no relevant change in any
component of the high dimensional mean vector, whenever the inequality (2.19)
holds, that is Tg,, > g1—a , Where the test statistic Ty, is defined in (2.14) and
91—o denotes the (1 — ) quantile of the Gumbel distribution. The following two
results make the discussion at the end of Section 2 rigorous and show that the
test introduced in (2.19) defines in fact a consistent and asymptotic level « test.
The proofs can be found in the appendix.

Theorem 4.1. Suppose that the Assumptions 3.1 - 3.4 are satisfied, o € (0,1 —
e~1] and that there exist constants A_, Ay such that the thresholds Ay, satisfy
the inequalities

0<A_ <A <AL < (4.1)

forallh =1,...,d. Then, under the null hypothesis Hy n of no relevant change,
it follows

limsupP (Tgn > g1-a) < . (4.2)

d,n—o00

Moreover, let Bg = {h € {1,...,d} | A, = |Apn|} and assume further that
Ap —|App| > Ca >0 forall h e BS, (4.3)
for some constant Ca > 0, then, under Hy A, we have
G if limgeo |Ba/d=1,
Tan Lol Gtloge if limg e |Bal/d = ¢ for c€ (0,1) , (4.4)
—00 if limg_seo [Bal/d=0.

Remark 4.2 Condition (4.1) is actually not a very strong restriction since the
thresholds Ay, are defined by the user. Nevertheless, the condition is crucial
since we use the factor 1/Aj, as a normalisation in the statistics Téi) defined
in (2.10). Note that under the null hypothesis (2.4) the inequality A, < A is
equivalent to |Auy| < C,, which was one of the assumptions in Theorem 3.11.
Consequently the assertion of Theorem 4.1 follows from Theorem 3.11 in the
case where |Apuy| = Ay, for all h € {1,...,d}. However, in the general case the
proof of Theorem 4.1 is more complicated and deferred to Section B.1 of the
appendix, where we also handle the case |Aup| < Ap.
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In the following result we investigate the consistency of the new test. Inter-
estingly it requires less assumptions than Theorem 4.1.

Theorem 4.3. Suppose that the Assumptions 3.1 and 3.4 hold. Then under the
alternative hypothesis Ha a of at least one relevant change point we have

P
7-d,n — 00,
as d,n — oo, which in particular gives

m P (Tgm > g1-a)=1.

d,n—o0

If the test (2.19) rejects the null hypothesis Hy a in (2.4) we conclude (at
a controlled type I error) that there is at least one component with a relevant
change in mean. As there could exist relevant changes in several components,
the next step in the statistical inference is the identification of the set

Ra={1<h<d[|Aun|>An} , (4.5)

of all components with a relevant change. Note that the hypotheses in (2.4) and
(2.5) are equivalent to Ho a : Rq = 0 versus Hg A : Rq # (0. In light of Theorem
4.1 and 4.3 a natural estimator for this set is therefore given by

~

Rala) = {1§h§d|j—;§’Ah) >g1_a/ad+bd} . (4.6)

The following theorem provides a consistency result of this estimate.

Theorem 4.4. Suppose that the Assumptions 3.1 - 3.4 hold and assume addi-
tionally that there exist two constants 0 < C' < 1/2, Cy, > 0 such that

C min (|Aup| — Ap) = Ayl <O, . 4.
n gg;gl(\ pn] — Ap) =00 and ,rgel%l pnl < Cy (4.7)

Then, the set estimator defined in (4.6) satisfies for a € (0,1 —e™!]

lim P (Rd c ﬁd(a)) =1. (4.8)

d,n—o0

Moreover we have the following lower bound

lim inf P (Rd = ﬁd(a)) >1-a. (4.9)

d,n—o0

5. Bootstrap

The testing procedure introduced in the previous sections is based on the weak
convergence of the maximum of appropriately standardized statistics to a Gum-
bel distribution, and it is well known that the speed of convergence in limit
theorems of this type is rather slow. As a consequence the approximation of the
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nominal level of the test (2.19) for finite sample sizes may not be accurate. A
common way to improve the performance of the test, is to obtain the critical
values from an appropriate bootstrap procedure.

In the context of testing for relevant change points the construction of an ap-
propriate resampling procedure is not obvious as - in contrast to classical change
point problems - the parameter space under the null hypothesis is rather large.
In particular it will be necessary to simulate the distribution of the statistic Tg
in case |App| = Ap, for all h € {1,...,d} such that one can replace the quan-
tile of the Gumbel distribution by the corresponding quantile of the bootstrap
statistics. A further problem is to mimic the dependence of the underlying time
series, which we will address employing a Gaussian multiplier bootstrap, where
observations are block-wise multiplied with independent Gaussian random vari-
ables [see Kiinsch (1989) or Lahiri (2003)].

To handle the problem of potential change points under the null hypothe-
sis (2.4) of no relevant changes, observations from blocks in a neighborhood of
estimated change points will not be used in the estimate. Furthermore, com-
ponents without a change point will be ignored when the bootstrap statistic is
constructed. We begin describing this idea in more detail and show in Theorem
5.5, that the bootstrap statistic converges weakly to a Gumbel distribution as
well. In the sequel we assume without loss of generalization that n = KL and
will split the sample into L blocks of length K, and additionally

L~n' and K~n'=t for £€(0,1). (5.1)

We obtain the following quantities, which control the number of blocks before

and after the estimated change point.
E;:sup{EENMK—i—K/Qthn}a (5.2)
L =inf{¢ e N| (K — K/2> f,n} , |

where ¢, denotes the estimator of the location t; of the change in the A-th
component defined in Section 3.4. The corresponding sample means are given
by

) . KLy ) 1 KL
Z}? = — Z Zj,h and Z;lr = Z Zj,h ) (53)
KL, =1 K(L = Ly) J=KLj+1

which can be used to define an estimator for the unknown amount of change
App = fth,1 — fth,2 in the h-th component, that is
Afin=Z; — 7} . (5.4)

Moreover, these estimators can also be used to define the “mean corrected”
sample

Zin— 2, for ngf; ,
Zjn = 0 for KL, <j<KL/, (5.5)
Zj’h - Z}Jlr for j > KL; .
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Finally, we define blocking variables (that are sums with respect to the different
blocks) as

(K
Vin(k) = > Zjal{j <k} (5.6)
j=(—1)K+1
and introduce the notation
Ve = Von(n) = Z Zjh -
j=(—-1)K+1

From the representation (5.5) we directly obtain, that blocks near to the esti-
mator t; are ignored, i.e. we have

Vin=0 ifee{l; +1,....,L} .
Further denote by
Z,=0(Zjp|1<j<n1<h<d)

the o-field generated by the sample (Z; 5 )1<j<n,1<h<d and by {&¢}ren a sequence
of i.i.d. standard Gaussian random variables, which is independent of Z,. Now
we consider a multiplier version of the CUSUM-process from the L blocks, that
is

U (s ng w(|ns) SJ Zc‘m n(n) (5.7)

and introduce the bootstrap integral statistics (for each component)

6yn L) A - 1/
Bnp=—+> = / U, (8)k(s,tp)ds - I{|Afip| > n /
) (L T2 Jo { }

+ I{|Af| < n7HY by

(5.8)

where k(x,y) = xAy—zy denotes the covariance kernel of the standard Brownian

bridge and
1
=7 253 “Oh
=1

is the variance estimate from the bootstrap sample. In an analogous manner
to the previous sections, we define a normalized maximum of the bootstrap
statistics By, j, by

d
Bd,n = ad(I’Illiii( Bn,h — bd) s (59)

where the normalizing sequences aq and by are given by (2.15) and (2.16), re-
spectively.
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Remark 5.1 Let us give a brief heuristic explanation, why (5.8) and (5.9) define
an appropriate bootstrap statistic. Our basic aim is to mimic the distribution
of the test statistics 7y, on the “O-dimensional boundary” of the null hypoth-
esis Ho a, i.e. in case of |[Aup| = Ay for all h = 1,...,d. Note, that we have
fin (S, th)
Ap
setting the representation

= sign(App)k(s,tn) and it was outlined in Section 3, that in this

Tn,h /.Lh(s,th))2d8

(th(l_th) Th0h|Auh| / Un.a(

6vn
T = ) 2non Al ), ,Uh(sath)(Un,h(S) — pn(s,tn))ds

holds, where by Lemma 3.6 the first summand on the right-hand side is of order
op(1). The component-wise bootstrap statistic B, 5 is supposed to imitate the
second summand in this decomposition. However, this approach is only sensible
for all components h, that actually contain a change and for this reason we
introduce the indicator function I{|Afin| > n~1/4}. To be more precise, we will
show in the appendix that

d
Bdn = ad<maxBn h — bd) ~ ad<maxBn h — bd>
’ h=1 ’ heSg ’

as d,n — oo, where the set Sy is defined in (3.17). The statistic By, will then
be used to generate bootstrap quantiles for the statistic 74,. In order to prove
that this is a valid approach we require the following additional assumptions.

Assumption 5.2 (assumptions for the bootstrap). For the constants p, D in
Assumption 3.2 and the exponent ¢ in (5.1) assume that

(B1) D < min{(1 —¢)(p/2 —2),¢(p/4 — 1)} with € >3/4 and p > 8 ,
(B2) lim,, o KI(H L =0,

where i is defined in (3.18).

Assumption (B1) is a rather technical condition relating the dimension d ~
nP, the number of blocks L = n‘ and the constant p, which was initially intro-
duced in Assumption 3.1. Assumption (B2) is only a restriction for the mono-
tone decreasing sequence p; = minpess |App|, that is not allowed to decrease
arbitrarily fast.

We are now ready to state the main results of this section. Our first lemma
shows, that we are able to identify the set of stable components Sy correctly.

Lemma 5.3. If Assumptions 3.1 - 3.4 and Assumption 5.2 are satisfied, then
By —b ) 0,
ad(}rlrg; = ba

where the set Sq is the set of all components with no change point defined in
(3.17) and the sequences aq and by are defined in (2.15) and (2.16), respectively.
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Theorem 5.4. If Assumptions 3.1 - 3.4 and Assumption 5.2 are satisfied, then
G if limg,o|S5l/d=1,
ad(;ﬂ%’g By — bd> 2! g+ loge if limg_,oo [S|/d = c for c€(0,1),
—oo if limg oo |S§]/d =0
conditional on Z, in probability, where the sequences aq and by are defined in
(2.15) and (2.16), respectively.

Finally, the representation

B, = max {ad <}rlré%)§ B,n — bd> , a4 <hm€%)§ B,n — bd) } , (5.10)
Lemma 5.3 and Theorem 5.4 directly yield the following main result of this
section.

Theorem 5.5. If Assumptions 3.1 - 3./ and Assumption 5.2 are satisfied, then
G if limg,oo|SSl/d=1,
Ban = max{G +logc,0} if limg o |S3|/d=c force(0,1),
0 if limg oo |SS|/d=0
conditional on Z, in probability.

Remark 5.6 In the following let g7 __, denote the (1 — a)-quantile of the distri-
bution of the bootstrap statistic Bg,, and define the bootstrap test by rejecting
the null hypothesis (2.4) in favour of (2.5), whenever

Tan > 91—a > (5.11)

where the statistics Ty, is defined in (2.14). If the alternative hypothesis of at

least one relevant change point holds, Theorem 4.3 shows 7., N 0o, which
due to Theorem 5.5 directly yields consistence of the bootstrap test. Under the
null hypothesis, we consider different cases. Recall the definition of the sets

Bu={he{l....d} | |Aunl=An} |
So={he{l,....d}||Aum =0}
where we always have By C S5 C {1,...,d}. A combination of Theorem 4.1 and

Theorem 5.5 now shows, that the rule in (5.11) gives an asymptotic level « test,
whenever the limit limg_, |S5|/d exists.

6. Finite sample properties

In this section we examine the finite sample properties of the asymptotic and
bootstrap test by means of a small simulation study and illustrate its application
in an example.
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6.1. Stmulation study

The results of the previous section demonstrate that a test which rejects the
null hypothesis in (1.3) for large values of the statistic 74, defined in (2.14)
is consistent and has asymptotic level «, provided that the critical values are
either chosen by the asymptotic theory or estimated by the bootstrap procedure
introduced in Section 5. It turns out that a bias correction, which does not
change the asymptotic properties, yields substantial improvements of the finite
sample properties of the asymptotic and bootstrap test. To be precise, recall
the decomposition in (3.8), that is

T =T+ 1

where TT(Ll})L and TT(LQ% are defined in (3.10) and (3.11), respectively. It is shown

in Section 3, that the maximum of the terms T(l,)L is of order op(1), while the

n,
maximum of the terms Tr(f,)l (appropriately standardized) converges weakly to a
Gumbel distribution. However, Tle})L is always nonnegative, which may lead to a
non negligible bias in applications, in particular when the sample size is small
relative to the dimension.
To solve this problem for the asymptotic test (2.19), note that we have

W7 _ 3, !
B0 = e ma | ke s)ds(1+ o()
B on(l+0(1))
—2v/n(tn(1 = tn)) 2] Al

and therefore we subtract the term

On
2v/n(th(1 — )27 A

from each statistic Té’Ah) defined in (2.10). Similarly, a bias correction is also sug-
gested for the bootstrap test in Section 5. Recall that the Bootstrap statistic is

already constructed to mimic the distribution of the statistic TT(LQ})L. Consequently
we use

3 ! 2
— \/HA 5 / (U;L})L(SD ds
SuTn(tn(1 —th))2An Jo ’
to mimic the distribution of Télf)t and we add it (for each h) to the statistic By, 5,

defined in (5.8), while the statistics Tfli) in (2.10) are left unchanged.
To guarantee a stable long-run variance estimation, we replaced the standard
long-run variance estimator used in the theory of Section 3.3, by an estimator

using the Bartlett kernel [see Newey and West (1987)], that is (for component
h)

on(0) + Z k (L) on(j) with k(z) = { 1 - ‘x()l if |z[ <1

if 1
1<]5|<Bn B if o> 1,
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where the bandwidth is chosen as 8, = n® and B is the constant included in
Assumption (S2). In our examples we have fixed the bandwidth to 5, = 8. The
only exception here are the simulations contained in Table 1 for the stronger
dependent model (III) defined below, for which we use a bandwidth of 5, = 60
in the case n = 2000 and 3, = 80 in the cases n = 5000 or n = 10000. In
order to have a more conservative test we use the maximum of the two variance
estimates based on the sets Dh 1 and Dh 2 defined in (3.22) as the final variance
estimation.

We will focus on two scenarios with independent innovations in model (2.1),
ie.

(1) X %y ~ N(0,1) i.id.
(I1) X,,» ~ Exp(1) i.i.d.

and on two models of dependent data, an ARMA-process and a MA-process,
defined by

(IH) Xj}h = 0.2Xj,1’h — 0.3Xj,27h — 0-4ij,h + 0‘8}/}*17}1 R
where Y, =€+ Ellil i_ggk—i,h and e p, ~ N(O, 1) i.id.

(IV) Xjn = ejn + 15 Sney k3¢ g, where egj, ~ N(0,1) iid.

All innovations are constructed such that Var(Xj; ) ~ 1. Throughout this sec-
tion we assume that different components are independent and we are interested
in testing the relevant hypotheses

Hoa i |Aup| <1lforallhe{1,...,d} (6.1)
versus Ha a i |App| > 1 for at least one h € {1,...,d},

that is A, =1 for all h € {1,...,d}. Power and level of the tests are simulated
for d-dimensional vectors with means

gz, {0 TSl
TN it >ty o

where different values of the parameter p are considered and the time of change
is t, = 1/2. All results presented in this section are based on 1000 simulation
runs and the used significance level is always o = 0.05. Further, the constant S
involved in (3.22) was fixed to 0.9.

In our first example we investigate the finite sample properties of the asymp-
totic test (2.19) which uses the quantiles of the Gumbel distribution. In Table 1
we display the simulated type I error of this test at the “0-dimensional bound-
ary” of the null hypothesis (that is A, = Aup, =1 for all h € {1,...,d}) for
different values of n and d. It is well known that the approximation of the distri-
bution of the maximum of normally distributed random variables by a Gumbel
distribution is not very accurate for small samples and therefore we consider
relatively large sample sizes and dimensions in order to illustrate the properties
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TABLE 1
Empirical rejection probabilities of the asymptotic test (2.19) under a specific point at the
“0-dimensional boundary” of null hypothesis, that is Ay, = App, =1 for all h € {1,...,d}.

n=2000 n=5000 n=10000

model  d=500 d=1000 d=500 d=1000 d=500 d=1000
) 88% 111 % 6% 7.5% 6.4% 7.4%
(I1) 54%  59% 5% 5.5% 4% 5%
am  4.9%  45% 1.9% 2.5% 2.5% 4%

aw)  9.7% 13 % 6.4% 5.2% 6.2% 5.9%

of the asymptotic test. The results reflect the asymptotic properties in Section 3.
For the independent cases (I) and (II) the approximation of the nominal level
is more precise as for the dependent scenarios (III) and (IV), where the test is
more conservative. We also mention that the rejection probabilities are increas-
ing with Apy, as predicted in Section 2 and 4 (these results are not presented
for the sake of brevity).

TABLE 2
Empirical rejection probabilities of the bootstrap test (5.11) for n = d = 100 at specific
points in the alternative and null hypothesis (Ap, =1 for all h € {1,...,d}). Different block
length K in the multiplier bootstrap are considered.

[App 0.9 0.95 1.0 1.05 1.1

model K
(I) 1 2.2% 4.2% 8.2% 14.7%  26.9%
0] 4 5.2% 9.1% 17.3%  29.6% 47.8%
(I1) 1 0.6% 0.9% 2.5% 7.8% 17.3%
(I1) 4 0.9% 3.2% 9.2% 20.2%  36.6%
(I11) 5 0% 0% 0.6% 3.2% 13.7%
(I11) 10  0.1% 1.3% 4.6% 21.6%  59.7%
(Iv) 2 3.3% 5.9% 10.9% 21.5% 35.8%
(Iv) 4 5% 10.3% 18.4% 32.5% 48.7%

Next we analyse the properties of the bootstrap test (5.11), which was devel-
oped in Section 5. Here we focus on relatively small sample sizes, that is n = 100,
n = 200 and a moderate dimension compared to the sample sizes, that is d = 50,
d = 100. It is well known that the multiplier bootstrap is sensitive with respect
to the choice of the block length and this dependence is also observed for the
bootstrap test proposed here. Exemplarily we show in Table 2 the simulated
rejection probabilities for the different models (I) - (IV), different values of K
and App, = p. Here the values |Apuy| < 1 correspond to the null hypothesis. For
|[App| =1 (for all h € {1,...,d}) the results of Section 5 predict that at this
point the level of the test should be close to @ = 0.05. Note that for the case of
independent innovations (model (I) and (II)) the choice K = 1 (which means
that no blocks are used) leads to the most reasonable results, given by rejec-
tion probabilities on the “0O-dimensional boundary” A, of the null hypothesis
of 8.2% and 2.5%, respectively, while larger values of K such as K = 4 yield
a too large type I error. On the other hand in the dependent models (IIT) and
(IV), the block length needs to be carefully adapted to the time series struc-
ture. For model (III) K = 10 seems to be optimal, while for model (IV) choosing
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F1G 2. Simulated power of the Bootstrap test (5.11) for the hypothesis (6.1). The sample size
is n = 100 and the dimension d = 100. All differences are given by Aup = p, where the choice
p =1 corresponds to a point of the “O-dimensional boundary” Ag of the hull hypothesis. Left
panel: Solid line: Model (I), dashed line: Model (II). Right panel: Solid line Model (III),
dashed line: Model (IV).

K = 2 gives acceptable results. The larger block length for model (III) might
be required due to its autoregressive structure. Moreover, inspecting the results
in rows 6 and 8 of Table 2 shows that too small values of K lead to a loss of
power, while - similar to the first two models - too large values can cause an
uncontrolled type I error. Next we display in Figure 2 the simulated power of the
bootstrap test for all four models under consideration (where we use the optimal
K from Table 2). Note that the rejection probabilities are increasing with Apuy,
as predicted by the asymptotic arguments of the previous sections. In the left
panel we show the results for the independent scenarios (I) and (II), which are
rather similar. On the other hand an inspection of the right panel shows larger
difference in the dependent case. The different dependency structures in model
(ITI) and (IV) yield substantial differences in power of the bootstrap test (5.11).
We conclude the discussion of the bootstrap test investigating the sample size
n = 200. The corresponding results are presented in Table 3 for the dimensions
d =50 and d = 100.

We also consider an example, where the dimension is substantially larger than
the sample size. In Table 4 we display the simulated size of the bootstrap test
(5.11) at the “0O-dimensional boundary” of null hypothesis, that is Ay, = App, =
1forall h € {1,...,d}. We consider again the models (I) - (IV), the sample size
is n = 100 and the dimension is given by d = 500, 1000 and 10000. We observe
a reasonable approximation of the nominal level in models (I) - (III), while the
nominal level is overestimated in model (IV).

We conclude with a small study of the robustness aspects of the new proce-
dure, which is motivated by a comment of a referee on an earlier version of this
paper. Note that the asymptotic test (2.19) is constructed for the case, where
there is at most one change point in each component of the series. In the final
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TABLE 3
Empirical rejection probabilities of the bootstrap test (5.11) at specific points in the
alternative and null hypothesis (Ap, =1 for all h € {1,...,d}). The level is 5%, and the
sample size is n = 200.

[Apn| 0.9 0.95 1.0 1.05 1.1
model K
d =50
(I) 1 0.5% 2.3% 5.1% 14.7% 34.6%
(11) 1 0.3% 1% 4.1% 11% 30.4%
(I11) 20 0% 0.6% 7.6% 46.6% 94.8%
(Iv) 2 0% 0% 9.5% 47.56% 100%
d =100
0] 1 0.9% 2.3% 6.9% 18% 40.7%
(I1) 1 0% 1.2% 3.7% 10.6% 26.6%
(I17) 20 0% 0.3% 6.4% 51% 95.3%
(Iv) 2 0% 0% 13.1% 100% 100%
TABLE 4

Type I error of the Bootstrap test (5.11) at “O-dimensional boundary” of null hypothesis,
that is Ap, = App =1 for all h € {1,...,d}. The level is 5%, the sample size is n = 100 and
the dimension is given by d = 500, 1000 and 10000.

model K d=500 d=1000 d= 10000
6) T 57% 5.8% 5.8%
am 1 24% 3.0% 2.7%
(II) 10 4.4% 4.4% 4.1%
aw) 2 94% 12.4% 13.5%

example of this section we will therefore investigate the performance of the test
in the situation, where there are multiple small changes in the components of
the series accumulating to a magnitude larger than the given thresholds Aj,. To
be precise we have conducted the asymptotic test (2.19) at level o = 5% for the
hypotheses (6.1) (with Ay, = 1 for all h = 1,...d). The empirical rejection prob-
abilities are displayed in Figure 3 for the model (I). The left panel of the figure
corresponds the case n = 300, d = 300, where there are 10 “small” changes (of
the same size) in each component of the mean function at equidistant locations
summing up to a total change amount of Apuy. The right panel of the figure
shows corresponding results for the case n = 100, d = 100 and 5 changes (of
the same size) in each component at equidistant locations. We observe that the
test is still able to detect deviations in the mean function if the total amount of
change is sufficiently large.

6.2. Data example

In this section we illustrate in a short example, how the new test can be used in
applications. Our dataset is taken from hydrology and consists of average daily
flows (m3/sec) of the river Chemnitz at Goeritzhain (Germany) in the period
1909-2014. This data set has been recently analysed by Sharipov et al. (2016)
using a statistical model from functional data analysis. Following these authors
we subdivide the data into n = 105 years with d = 365 days per year. To avoid
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F1G 3. Simulated power of the asymptotic test (2.19) for the hypothesis (6.1) in a situation
with multiple change points. Left panel: sample size n = 300, dimension d = 300 and 10
“small” changes in each component, where the total amount of change is equal to Apy,. Right
panel: n = 100, d = 100 and 5 change points.

confusion, the reader should note that the German hydrological year starts on
the 1st of November.

Equipped with our new methodology, we are now able to test if there is a
relevant change in the mean of at least one component. To specify the term
‘relevant’, we exemplarily set the thresholds for all components to

A1:A2:"':A365:O.63,

which is close to 10% of the overall mean of the data under consideration. For
a significance level of 5% the Bootstrap test defined in Section 5 rejects the
null hypothesis of no relevant change for the given thresholds. Moreover, we
can also identify the components, where the individual test statistic leads to

a rejection, that is ad(Tr(L’Ah) —bg) > gi_,, where gi_, is the (1 — ) quantile
of the bootstrap distribution used in (5.11). For the data under consideration
we found four components with a relevant change, given by h = 53, 99, 137
and 252 with corresponding estimators niss = 56, nigg = 70, nii37 = 47 and
ntass = 41, respectively. This corresponds to the 23th of December 1965, the
7th of February 1979, the 18th of March 1956 and to the 10th of July 1950,
respectively. In Figure 4 we display for these cases the time series before and
after the year. For example the panel in the first row shows the average annual
flow curves before and after 1950 and the other three years are interpreted
separately. In all cases we observe a large difference between both curves close
the estimated component (marked by the vertical dashed line). We finally note
that the approach of Sharipov et al. (2016) identifies only one change point,
namely the year 1965. In contrast our analysis indicates that there might be
additional change points in the years 1950, 1956, 1965 and 1979 corresponding
to different parts of the hydrological year.

Throughout the proofs we will use that Assumption (C1) directly implies
the existence of two constants 7_, 74, such that the function 7 defined in (2.11)
satisfies

0<7-<7(tp) <74 <0

holds for all h € N.
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18 of March(second row) 23th of December (third row) and Tth of February (fourth row).
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Appendix A: Proofs of the results in Sections 2 and 3

A.1. Proof of assertion (2.7)

Straightforward calculations yield

E[Un,n(s)] = pa(s,tn) + O(n™ ") Apy

) 6.1
nVar (Una(s)) = 02 (s — %) + o(1) , (6.1)

uniformly with respect to s € [0, 1], where up(s,ts) is defined in (3.9). An
application of Fubini’s theorem now gives

E{/Ol Ui}h(s)ds] = /01 E [U ,(s)] ds
= [ B 00n(6) ~ a1’

- 241n (5, )E [Un ()] — (s, tn) }ds + o(1)

2 1 2
th(l —t
=%+/Jm&mw+dn:Awﬁi?il+dn.
0

A.2. Details in the proof of Theorem 3.5
A.2.1. Proof of Lemma 3.6

Observing the definition (2.11) and Assumptions (T2) and (C1) it easily follows
that there exist constants ¢ and C, such that the inequalities

c< (th(1—tp))?o, < C (6.2)
hold for all h € {1,...,d}. With these inequalities we obtain

d
0<ay rfILl:ai( Tr(m)z

3vn !

max
h=1 (th(].fth))2Th0'h|A‘LLh| 0

1
< ag r}rlldai(\/ﬁ/ (U (s) — (s, t))” ds
= 0
d

ad

=ay (Up,n(s) — wn(s,tn))?ds

max sup (vVn|U,n(s) — pn(s, th)])? .

S —
n h=1 s€[0,1]

Using (6.1) and max{_, |Aus| < C, this is further bounded by

Qﬂ(m%x sup /n|Up p(s) — E[Upnn(s)] |)2 +0o(1)
Vn\ h=1 s€[0,1]

Introducing the notation e; = 24/2log2d it follows that the last term can be
bounded by the random variable
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ad d eq\?2
4%(1}?3¥821[3)1]\/5|Un,h(5)7E[Un,h(s)] 7?) +o(1)

and the claim follows from Theorem 2.5 in (Jirak, 2015a) noting that
{Un,n(5) = E[Up,n(s)]}sejo,1) corresponds to a CUSUM-process under the clas-

sical null hypothesis of no change point, that is ,ugll) = ,uf) forall h € {1,...,d}

(note that there is a typo in the original paper, which has been corrected in the
arXiv version).

A.2.2. Proof of Lemma 3.7

A straightforward calculation yields

nCov(Up n(s1), Un,i(s2)) = k(s1,82)Vh,i + Tnni(51,52) ,

where k(s1,82) = 81 A s2 — s182 denotes the covariance kernel of a Brownian
bridge and the remainder term satisfies

lim /n sup  sup |rn.ni(s1,52)]=0.
n—0o * o 0 €[0,1] hyieN

An application of Fubini’s theorem shows that

5(2) 7 ign(Apn) sign(Api) v, (th, ti
COV (Ty(f})uTr(L,QfL)) = Slgn( ,uh) Slgn( K )th’ T( h ) + 7ﬂn,h,i 9 (63)

oo (t)T(t;)

where the function 7 is given by

T(t,t) = k(s1,t)k(s2,t)k dsid 4
T(? ) (t(l—t)t/(l—t/))2\/0 /0 (517 ) (527 ) (51752) 51052 (6 )
and the remainder term 7y, j, ; satisfies

lim v/n sup |rppni =0.

n—00 h,i€N

Moreover, for the function 7 defined in (2.11) we obtain the representation

6 1 1
T(t) = m\//o /0 k(31,t)k'(32,t)k(51,SQ)dSldSQ s

and it follows that 7(tp)7(ty,) = T(tn, tr). Therefore we obtain as a special case
the estimate

Var (ng) =1+7Tunh - (6.5)
Furthermore the representation

|ns] n
1 ns
Un(s) ~ B9l = = 3 X~ L2l 3™ x5 =07, (9
j=1 j=1
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yields
1
@ 6+/n

T (1 = th))2Thon| Apn| Jo

and the proof can now be performed in two steps:

=~

(s, tn)U7, ,(s)ds .

Step 1: For two constants ¢, C' > 0 it holds that

sup
z€R

P (r}?%f _752})1 < gc) —P (m%fﬁh < a:) ' <Cn~ ¢, (6.6)

where N is a d-dimensional centered Gaussian distributed random vari-

able with same covariance structure as (Tfl) s 7T1$?3)T.
Step 2: There exist two constants ¢, C > 0 such that
sup |P <m%x]\~/'h < z) - P (m‘éxNh < x) ‘ <Cn™¢, (6.7)
zeR = =

where N is a centered d-dimensional Gaussian random variable with
covariance matrix ¥ = (X, ;); j=1,...,q satisfying

[Zh.il < lpnl (6.8)
for all h,i € {1,...,d}.
Step 1: At the end of this proof we derive the following representation

_ (o 1 &
T(L,})l = % j;cn’j’hXj’h s (69)

where the coefficients ¢, ; ; are uniformly bounded, that is

sup |enjnl < co < 00
n,j,heN

Next we apply the Gaussian approximation in Corollary 2.2 of Zhang and Cheng
(2018) to the random variables Y, ; r = ¢, j,n X 5. For this purpose we check the
assumptions of this result. By Assumption (M1) we obtain a sequence (M})qen
by M), = co - My, which still satisfies

s i E [exp([Vo,g.nl /M) < i miax B [exp(| Xl /Ma)] < Co
JI= = j= =

Moreover, Assumption (M2) yields that M), < n™ with m < 3/8. This means
that for sufficiently small b we have m < (3 — 17b)/8 and by Assumption
(S1) it follows that d < exp(n®). Using the identity (3.1) the triangular array
{Yonll<j<n,1<h<d}nen exhibits the following structure

Yn,j,h = Cn,j,h . gh({:‘j,€j,1, .. ) = gn,j,h(sjasjfl, .. ) .
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Define the coefficients

ﬁr{,j,h,p = I?Za‘lx ||§n,i,h(5i7 .. ) - gn,i,h(Eia P 7€i7j+17€;7j75i7j717 e )Hp 5

where &} _ ; is an independent copy of €;_;, and observe the inequality

oo

oo

d

r}?ﬁ ,17 b= erl}_ quachnz n|¥,np < o E & S8,
- _ - ne

Jj=u j=u

which holds uniformly with respect to n. By (6.5) there exist constants ¢; and
c2, such that

d _ _
0 < ¢1 < min Var (ng) < mczllx Var (TT(LQ})L) < co
h=1 J h=1 ’

if n is sufficiently large. Since all requirements are met, Corollary 2.2 of Zhang

and Cheng (2018) implies the existence of a Gaussian random variable N hav-
72

n,lyee-

ing the same covariance matrix as the vector (T T (2 ) and satisfying

inequality (6.6).

Step 2: We choose the random variable N to be d-dimensional centered Gaus-
sian with covariance matrix given by

(th7 )

Slgn(Aﬂh) SIgn(Auz)’Yh,z;(tha tz) — SlgH(A,U,h) SlgH(A,U,)p}
Y )T (t)

onoiT(ty)T(t;)

Yhi =

where the function 7 is defined in equation (6.4). Next denote with & the co-
variance matrix of the vector N from Step 1. By (6.3) we have

9d = HldX|Ehl Ehz|

hyi=1
A Apii) Y iT (ths b
_ m% Slgn( ,U/h) Slgn( )'Yh,zT(thv tz) _ COV(T(QI?“ Tr(in)) 5 n_1/2
hi=1 onoiT(th)T(t:) " )

and an application of the Gaussian comparison inequality, in Lemma 3.1 of
Chernozhukov et al. (2013) gives

sup [P (miax Ny < ) — P (i Ny < )| £ 0" max{1,log(d/0)}** < n~°
z€R =

The proof of Step 2 is now completed observing the bound |7(tp,t;)] <
|7(t:)||7(tn)|, which is a consequence of the (generalised) Cauchy-Schwarz in-
equality.

Proof of the representation (6.9). Recall the definition k(s,t) = s At — st, then

1 n—1 .(i+1)/n [ns] n
1 ns
[ ks tvats =23 [ k) (3 X - S ) as
0 i=0 71 j=1 j=1

r/n
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(i+1)/n M
/ S k(s, ) (14 < i} — i/n) X, nds
i =1

1 n—1

L2
=0 n
n

n-1 .(i+1)/n
%Z (Z/ k(s7th) (I{]S'L}—Z/n)ds> Xj’h .
Jj=1

i—o Ji/n

Now observe the representation for T, in (3.12), where (s, t) = 2Apnk(s, ).
Define
nl p(D/n
6A iy, /( + o .
Cnih 1= k(s,t) (I{j <i}—i/n)ds,
P (U= )21 (tn)on] Dun] & Jisn (s,t) (I{j < i} —i/n)

then the representation (6.9) holds, and the proof is completed observing the
inequalities

n—1 .(i+1)/n
6 12
lenjnl < t E / 2ds < ¢g 1= ) 0
—tt =

T_O iIn T_o_tt

A.2.3. Proof of Lemma 3.8

For the proof of Lemma 3.8 we will require Theorem 3.1 from Jirak (2015a),
which we state here for the sake of readability and completeness. Note that our
assumptions imply those, used in the reference.

Theorem A.1l. If Assumptions 3.1 - 3.4 hold, then
P (max |tn —tn| > x) < |S5|(znlogn) /22
hess

provided that

v > 0B

(g)*n

where C, > 0 denotes a constant only depending on t and the sequence
{ suppen Vi.n.p }jeN .
Now we can proceed to the actual proof of Lemma 3.8. Let us start with (i):
Define C' := min {p/’2—’22+17 C'}. Now fix £ > 0 and observe that for n sufficiently
large, we obtain by Assumption (3.19)

log(n
(1g)?n

~—

n~% >,

where C, is the constant involved in Theorem A.l. Thus an application of
Theorem A.1 gives

~ _é . _é —p/2+2
P | max |tp —tn| > e n < |SS) (n nlog(n))
hess
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< 155ln=" (108m) " = o(1)

To prove (ii), one can repeat the proof of (i) with C' = ])/72713_2 +1.

A.2.4. Proof of Lemma 3.10

For a proof of this result, we have to introduce some additional notation. For
the random variables {€;};cz, that drive the physical system defined in Section
3, let

Fj= 0(€j7€j—1a )
define the canonical filtration. Further define projections by
Pi()=E[-|F]—E[-[F-] .

Since the sequence {¢;};cz is i.i.d. it follows that F_, = N;czF; is P-trivial. So
the backwards martingale convergence theorem yields for the centered random
variables X ;, defined in (2.1) that

th = an—an,h .
=0

Note, that Jensen’s inequality implies that ||P;(Xo)||, < 95,n,p, Which we will
frequently apply in the sequel. In a first step, we will consider estimators of the
autocovariances based on the non-observable, centered random variables Xj;.
For this purpose introduce

k

Z (Xjn — Xn(k)) (Xj—in — Xn(k)) (6.10)
j=it+l

1

Dh(ink) = ¢

as lag i autocovariance estimator in (spatial) component h based on the sample
X1hy Xon, - X, n and let Xj, (k) denote its sample mean. We get the following
uniform consistency result.

Lemma A.2. Grant Assumptions 3.1 - 3.3 and let ¢ € (0,1) be a fized constant.
It holds that

Bn n - .
Vi max e (6 (i, k) = 6n () /2 = O(1) -

h=1 k=
Proof. Throughout the proof assume that n is sufficiently large, such that

k—i>cn—Lfn=c-n—n?>0.
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We will use the upper bound

1650, k) —=n (1) /2

k
< XinXiin —E[Xi X, H HX 2H
_Hk—zz IR [XinXon] p/2+ (Xn(k)) p/2
Jj=i+1
Xl + IS e
Hk—z Z 77 2 k—z £ Ko p/2

(6.11)

Let us treat the first summand of the right-hand side at first. We can proceed
similar to the proof of Theorem 1 in Wu (2007) and assume without loss of
generality that E [X; ,Xo 5] = 0. Due to the discussion above, that leads to

k k oo 0o k
Seni= > XenXein= > > PeiXenXein=Y_ Y PojXenXe in.
t=i+t1 (=i+1j=0 §=0 £=i+1
(6.12)
By Burkholder and triangle inequality we can bound the inner sum
H Z Po—i XonXe— zhH <V CpllPoXjnXj—inllpse - (6.13)

l=i+1

Applying the ideas of the proof of Lemma 1 in Wu and Pourahmadi (2009), we
have

1PoXjnXj—inllpr2 S & Ij—isoy + 6 Iy (6.14)

uniformly with respect to h, where we also used Assumption (T1). Combining
the representation derived in (6.12) with (6.13) and (6.14), we obtain

| Sk, th/2<ZH Z Pr—j XenXo— zhH < VnG, ZHPO XjnXj—inllp/2

j=0 {=i+1 7=0

< V/nGC, Z Tisoy + 8 Isor) SVn

7=0

uniformly with respect to h. The treatment of the first summand of (6.11) is
now finished by using the bound

B d v d v
ol s g7 NSl < ity s g e
n

<
~
cn—n

=0(1) .

B



2616 H. Dette and J. Gdsmann

It remains to consider the last three summands of (6.11). Since the arguments
are similar we will only consider the second one. Again we have the representa-
tion

1 koo 1 oo k
RN ILEEAEE) 3 s
¢=1 j=0 =0 /=

and can apply Burkholder inequality

|37 Xen| < ConlPOXally -

(=1

Due to Assumption (T1) and ||P;(Xon)|lp < 9jn,p , it follows that

d
< Sy H
i 1K)y < s pi £ 3 | 3P Xew
J=

C Z [PoXjnllp S

Finally Cauchy-Schwarz inequality gives that

%\

Vi i | X2 (R)], /2 = O(1)

which completes the proof. O

Based on the autocovariance estimators ¢; (i, k) defined in (6.10) let

2 ST Giik)

[i|<Bn

where the bandwidth is 8, = n? for B in Assumption (S2). The next Lemma
is a uniform version of Lemma E.6 of Jirak (2015b).

Lemma A.3. Grant Assumptions 3.1 - 3.3 and let ¢ € (0,1) be a fized constant.
If n is large enough, there exist n > 0 , sufficiently small, such that

P (m%x max |(67(k))? — 07| > n—n) <Sn¢
h=1 k=cn

for a constant C > 0.

Proof. We have the following decomposition
P(miax miax | (675 (k)2 —02| > ") < ]P’(max i 61 (3)] > ﬂ)
h=1 k=cn h hl = h=1 -

i=Bn+1
Bn

+ (maX maXZ|¢h i, k) — on(i)] > nT_”) .

h=1 k=cn
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An adaption of Lemma E.4 from Jirak (2015a) yields

oo

> leni) S 8%,

i=Bn+1
uniformly with respect to h and so for sufficiently large n we obtain
d = n~"1
s g
P(piy 3 10u12 57) =0

The second summand of the right-hand side of (6.15) can be bounded by
Markov’s inequality. i.e.

Bn .

(mff,zﬁaxilwk #li 2 757)

— 6n(i)] = n""/(26. + 2))

d fBn
p/2 N\ ((P/2
Z Z 16 (i, k) = (D155 -
Applying Lemma A.2 and using d
by

2/\ || Mj

DB, ~ n® the last expression is bounded

n"P/2dB, AR/ 2n TP/ < /2 DHIBp/241)—p/4

Due to Assumption (S2), we have D + 1+ B(p/2 + 1) — p/4 < 0. Therefore
choosing 1 > 0 sufficiently small, such that

0<n<2@M—B@m+U—1—Dyp

yields the claim. |
We can now proceed to the actual proof of Lemma 3.10.
Proof. Denote with S the set
d 1—t, ¢
S = {S < minmin <7Ah, fh>} ,
h=1 1—1t, tp

where S refers to the constant used in the data separation in equation (3.22) .
An application of Lemma 3.8 yields
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:]P’(m%xlfw21—S>+]P’(m%xlf{—h21—5)
1 1—1, h=1 th

d ~ d ~
< P(%ﬁ{(‘th —tn| > (1— 5)'“) +P(r}?ji{|th —tn| > (1— S)t) =o(1) .

Using the upper bound

) 2 2 2
|63 — o3 < 64 — o
on+on — o_

|6n — on| <

we have the following decomposition

(6.16)

where we used that 67 = %(6%71 + 6%72). Since the arguments are the same, we
will only treat the first summand of the second line of (6.16). We can conclude
that

P(I}nia{( 671 — 07| = n7"0_> < P(I}I}%{( |67, —on| >n"o_ OS) +o(1) .
(6.17)

On the set S the inclusion ﬁh,l C Dp 1 holds and since there are now structural
breaks within Dy, 1, the following identity holds (on the set S) due to definition
(2.1)

6n,1 = 67 (nmax{Sty, t}) .
Further note that we have by definition
d N d ~
tn < r}?irllnmax{Sth,t} = r}flir11|Dh,1| <n.
Finally, we obtain

d . _
P(r}rllai<|ai71 —op| =n""o_ ﬂS)

= ]P(I}?dg{( oy, (7111&30({5’5;“t})2 - 0,21‘ >n"To_N S)
< ]P’(I}rll%iq o (nmax{th,t})Q - 0,21’ > n*”a,)
d n
<]P>( k)2 —of|>n" _)
< P maxmax |o}, (k)" — 0| 2 n™"o

Employing Lemma A.3 completes the proof. O
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A.2.5. Proof of Theorem 3.11

As |App| > C, for all h € {1,...,d} we have Sy = 0 and 85 = {1,...,d}, and
Lemma 3.8 implies

wihx £, — ] = op(n1/?) (618)

Observing that #j, € [t,1 — t] it follows that

d_|t2(1—tp)?

ax | | = —1/2 6.19
miax TTENE op(n=1?) (6.19)

Moreover, one easily verifies that the function ¢t — 7(¢) defined in (2.11) is
Lipschitz-continuous on the interval [t, 1 —t] and therefore we obtain from (6.18)
that

rl?iaf 17 (tn) — 7(En)| = op(n=1/2) . (6.20)

Finally, we note that for a sufficiently small constant C' > 0 the estimate

r]?éi<|6h7(fh) — opr(tn)| = op(n~C) (6.21)

holds, which is a direct consequence Lemma 3.10 and assertion (6.20).
After these preparations we return to the proof of Theorem 3.11. We recall
the definition (2.8) and introduce the notation

2l \/ﬁ 2 2
= v (N2, A
n,h T(th)o—h‘ANM ( n,h Mh)

We will first show the weak convergence
ad(mcéi< ) LG (6.22)

For a proof of (6.22) we recall the definition of the statistic T, 5 in (3.7) and
obtain from Theorem 3.5

ad(r,?%{(Tnﬁh - bd) % G.

With the representation for M2 , and M}, in (2.8) and (3.6), respectively, and

n,h

the notation g, = (tn(1 —t,))?/(tn(1 — £4))? it now follows that

(M3, ), — Apjy) — ba + n.d

)

V(g — 1)Aﬂ%) _
T(th)ah|A,uh\
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where

d vn
Bpa = (ATn —b A—1A27).
.d adfil:ai( dnln,n a+ (dn ) MhT(th)Uh|A,Uh|

It is easy to see that this term can be bounded by

d . .
ad(filjii GnTyn —ba) — Rypg < Bpa < ad(l}?gi( anTyn —ba) + Rna

where the remainder satisfies
d d vn
R, 4 = agmax|gf, — 1| max ————
e = 00 A A o T ]

which follows observing the inequalities (6.2), (6.19) and the condition Cy <
|App| < Cy. Thus (6.22) follows, if we can establish

Ap =50,

ad(I}Illiii( anTn.n — bd) :D> G . (6.23)

For a proof of this result we fix z € R and define ug(x) = x/aq + bq. By

" (6.24)
< IP’(O < min gy max T, < uq(2)

and

d d d d d
IP’('A X T, >O):P<aAT >O):P(aA b T, >0),
I}qullth}?:i( n,h Z %1:¥Qh n,h Z Ii?:i(th}z;i{ n,h =

we obtain

P (il dn lax T < wa(2) < P dnTon < ua(a))

h=
a 4 (6.25)
< P(mincjh max T, p, < ud(m)) .
h=1 " h=1

From (6.19) and d = C nP it follows that

d
adbd(r}?:irll(jh — 1) i> 0 and adbd(r’rlldjiccjh — 1) i>0 ,

which due to Slutsky’s theorem directly implies

P(min gnmax Ty, p < ud(:z)) — e ¢
h=1 h=1 ’ n—o00

d . d g
P(mathmaxTn’h Sud(x)) — e ¢ .
h=1 h=1 n—o00

Thus we have established (6.23) and proved (6.22).
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To complete the proof of Theorem 3.11 note that the assertion (3.24) is

equivalent to

]P’(r}r}%icfmh < ud(x)> — e (6.26)

n— 00
where we use again ugq(z) = x/aq + bg. To prove this statement define

d 6’h’f'h + d &h%h

and consider the set Q4 := {|Q) —1| Vv |Q; —1| <4}, where the involved
sequence is given by 64 = (logd)~2. The inequalities (6.2) and the estimate
(6.21) yield

OnTh

P(lQi ~11> 6 = #(| iy 22505 -1 > 4)
< 1}»(‘ ‘}?éi‘ Gin — ahT(th)‘ > 5dc) =o(1) .

By a similar argument for the term ‘Q; - 1‘ we obtain P(Q5) — 0 . If

max?_, T,, », > 0 holds, we can conclude that

1 . 1 .
— mhx é,h =  mhx L (Mi,h — AM%)

QdJr h=1 Q;r h=1 T(th)dh‘Aﬂh|
A A 1 N
< m%ux# (Mithui) =Thn= —— mhx [T
h=1 7(tn)on|Apnl N Qg =1 7
Therefore the following inequalities hold
P(O < max 17 h < ud(x)Q;) < P(O < mhx T p < ud(w))
h=1 " h=1 " (6.27)
<P(0 < max T, , < )@
Observing the identity
P(r}?%ffgyh > 0) - IP’(EIh N2, > Aui) - P(mgxfn p > 0)
we can derive from (6.27)
P(m%,xﬁ'l h < ud(m)Q;) < P(m%xfn n < ud(x))
=t e (6.28)
<P < ua(e)Qj )

Hence, we directly obtain
P(mlax 7}, < ua(@)QF ) < P(Q5) +P(wiax Ty, < ua(@)Qf 1 Qu)

<o(1) + P(Iﬁ%ﬁ;,h < ug() + ud(x)éd) .
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Now we fix € > 0 and note that the inequality ugq(z — €) < ug(x) + ug(x)dg <
ug(x+e¢) holds if n (or equivalently d) is sufficiently large. The weak convergence
(6.22) then yields

lim sup ]P’(max 1), < ug(x) QI)
d,n— o0 h=1
< hmsupIE”(rfrllaxT < wug(x + s)) = e ")

d,n—00
Using Bonferroni’s inequality we can proceed similarly for the lower bound of
(6.28), i.e

liminf]P’<r}rL1= T n Sug(x )Q;) > hmlan(maXT' n < ug(x)Qy N Qd)

d,n—o00 d,n—o0 h=1

> hmlnfﬁ”(r}?axT < ug(z) — ud(x)5d) —-P(QY)

d,n—o00

> hmlnfﬁ”(maXT < ug(x — e’:‘)) = ).
d,n—o00 h=1

The assertion (6.26) then follows by € — 0, which completes the proof of Theo-
rem 3.11.

A.2.6. Proof of Corollary 3.12

At first we consider the case where mg := |[My| = ¢- d+ o(d) for some constant
€ (0,1] and note that in this case
~ a4 N
ad( max T, p, — bd> = (amd max T, p — amdbmd> + agbm, — aqbq .
heMy amd heMy

Theorem 3.11 yields a,,, maxpeam, Tn,h — Amybmy, 2. G and furthermore we
have
Qq

— 1 and agbm, —aqba —> logc .
A, d—o0 d—o0

A short calculation therefore leads to ad(maxheMd nh — bd) 2 ¢ + logc .
The case mq = o(d) can be treated similarly. Finally, statement (3.25) is a
consequence of the inequality

d A
max T <maxT,y .
heMgy mh h=1

Appendix B: Proofs of the results in Section 4
B.1. Proof of Theorem 4.1

By Assumption (C1) and the definition of £, in (3.16), there exists a global
constant C(t) > 1 such that

(th(1 —tn))?
(tn (1 —in))? = (6
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Recall the definition of the set Sy in (3.17), choose a constant A2 > ¢ > 0 and
consider the following decomposition of the set {1,...,d} \ S4

={he{l,....d} [ (An=¢)/VC >‘Aﬂ’h|>0}v
Eq = {hE{l, d}|Ah>‘A/},h|> Ah— /\/

Using the representation

(6.2)

~(A)
T = o {3 = ). (e 50— ). (e T30 )}

the first assertion (4.2) follows from the following three statements

& 1) 20 |
ad(hme%x wp —ba) — —oo, (6.3)
ad(maXT( h) — bd) — —00, (6.4)

h€Zy
li IP’(( T—)>_a)<. .
o Plaa (maxT,yl —ba ) 2 g1-a) <@ (6.5)

Proof of (6.3). Observing the definition of Té’Ah) in (2.10) we obtain the inequal-
ity

ag ( maxT(Jl) — bd>

heSq ( )
6.6
< aqg max L Y ih ag min LAQ agby -
h€Sq T(th)UhAh ’ h€Sq T(th)a'hAh
The first summand of this expression is further bounded by
Vo oo 2
max ——— M? ;, < agma M2, 6.7
d heS)é T(th)onAR nh > dd hes}j v n.h (6.7)

and arguing as in the proof of Lemma 3.6 yields a4 maxpes, v/n - M?L,h 0.

For the second summand of (6.6) we can use v A? >0 and agbg ~ logd

T(th)6nAn
to obtain
aq min LA + agbqg — o0,
heSy 7-( )ghAh d,n—00
which yields (6.3). O

Proof of (6.4). By definition of the set Zy, we get AZ > C(t)Aus + ¢, which
leads to

A _ < L 2 2\ _
ad(hme%XT h bd) ad(gg% 7(th)onAn (M”’h C(t)AM’J bd) (6.8)
— aq min vn ¢ .

h€Zq 7'( )O'hAh
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For the second summand of the last expression it holds that

agy/n

¢
agy/n min — > — 00, 6.9
dfhezd T(th)UhAh ~ 7'+S+A+ n— oo ( )

From inequality (6.1), we obtain Mih < C(t)M, ;, , which gives the following
bound for the first summand of (6.8)

ag ( max AL (Mih - C(t)A,ui) - bd)

heZq T(th)a'hAh

<ad( x¢< Z’h—Aﬂi) —bd> .

h€Zy T(th)O'hAh

(6.10)

Similar to (3.8) we can use the following decomposition

NG

— VT (M2, - M) =S+ S8)
T(th)a'hAh ( n,h :u’h) n,h n,h

where the quantities S,(llzl and Sff;b are given by

3vn ! )
s — - / Un.n(s) — pr(s,t ds
mh T B ey, Jy () )
6v/n !
S — = /u S, th)(Un n(s) — un(s,trn))ds
T At rlinyand Jy 1 Unels) il tn)

respectively. Now we have an upper bound for (6.10) given by

(2
adiréaixS( h+ad<£%%xs ,)I—bd> .

Similar as in the proof of (6.3) one easily shows that aq /{Lna%xS ;l =op(l) . In
€

the case that Snzzl > (0 we have

6+/1
S S S = FA i oA / (5, t0) (Unn(5) = pin (s, tn)ds
h

which gives

ad(maXS( L — bd) < ad(maxmax{Sff;L,O} — bd>
h€eZy ’ h€eZy ’

< max {ad(max Sff;b — bd) , fadbd} .
heZy ’
Applying Lemma 3.7 yields

hmsupﬂ”(ad(géaxé’( ) _b > ) <P(G > )

d,n—o0

for all x € R and consequently the right hand side of (6.10) is of order Op(1) .
Now (6.4) follows from (6.8) and (6.9). O



Relevant changes in high dimension 2625

Proof of (6.5). Observing that dj := A? — Au? > 0 we obtain

ad(géaXT( h) — bd) < ad(gg?;ﬂ)i\{i&b( V %h — A,u,%) - bd) . (6.11)

As a € (0,1 —e7!] the quantile of the Gumbel distribution satisfies g1_o =
— log(log( 1ia)) >0, and we can proceed as follows

P(ea(pp T ) > 01

|Apup|
< ]P’(
- %ae}i Ap

s ) o)
ad(géégd( 1, h d] > 91—«
<5 {os(paTos ) > ).
= Flaq géagf h d] > g1
An application of Corollary 3.12 now yields

hmsupIP’(ad<£naxT — bd) > gl_a> <P(G>gi-a) =,
e

d,n—o0

which gives assertion (6.5) and completes the proof of assertion (4.2). O

It remains to show assertion (4.4) under the additional assumption of (4.3).
Note that under the latter assumption, we can further decompose the set &y
into &5 = (€4 \ Ba) U By and observe that (4.3) yields

Ea\Ba=1{he{l,....d} | Ay — Ca > |Aun| > (An — O)//C)} .

Again, we can examine both sets separately. For &; \ By we have

)_ad min V0
he€a\Ba T(tn)on A

(6.12)

aq ( max Té ) _ bd> <aq ( max Tn,h —bg
he&q\Bq oh he&a\Bq

By definition of &; \ By we obtain that the second summand on the right-
hand side of (6.12) tends (in probability) to —oo. Due to the lower bound
mingce 8, |Aun| > (A- —()/+/C(t), which holds uniformly in d, we can apply
Corollary 3.12 to the first summand of the right-hand side of (6.12), which then
gives

ad< max Tn h) bd) —00 .
heEq\Ba

On the set By = &; we can directly apply Corollary 3.12, so that we obtain
(4.4).
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B.2. Proof of Theorem 4.3

It follows from Theorem 3 of Wu (2005) that

Lns)
1
{% Z} (Zin —E[Z;n]) }SGM = {0aWa} e - (6.13)
p

where {W;} (o 1) denotes the (standard) Brownian motion on the interval [0, 1].
The definition of py (s, ) in (3.9), E[U,.4(s)] = pn(s,tr)(1+ o(1)) (uniformly
with respect to s € [0,1]) and the continuous mapping theorem yield

{Vn(Unn(s) = pn(s,tn) }oepon = {onBs}ecio (6.14)

where {B,}¢(o,1; denotes a (standard) Brownian bridge. Observing (3.8) we get

3vn
(th(1—tn))?
6vn
* (th(l - th))Q

Statement (6.14) and the continuous mapping theorem imply

i (M2, — Ayid) = | ans) = o)

[ (st U 5) = )

6 1
M2 —A2%7/ Jth)onB(s)ds .

vn (M3 ), 1) =2 /, (s, th)onB(s)ds

It is well known, that the expression on the right-hand side follows a centered

normal distribution and a straightforward calculation shows that its variance

is given by Au272(ts)o7. Replacing oy, and t;, by the estimators 65, and ¢, we

obtain from Lemmas 3.8 and 3.10 the weak convergence

v (V12 — A ) 2 N0, A023) (6.15)
T(th)O'h ’
for each (fixed) h € N provided that |Aguy| > 0.

After these preparations we are ready to prove the consistency of the test
(2.19). If the alternative hypothesis Ha a is valid, we can fix k € {1,...,d},
such that dj := A,ui — A% > 0. From the definition of the test statistic 74,5 in
(2.14) we obtain

Tan>ag (TR —by) = V(e Aw +Aid —ba) ,
d, _ad( n.k d) ad<7(tk)akAk( k Mk) T(ER)oR AL k d)
which gives
\/ﬁ o) 2 91—« \/ﬁ
P(Tgn > gia) > Pl ——— (M7 — A > +bg— ———di ) .
( d, 91 ) <T(tk)UkAk( k 'uk) aq d T(tk)O’kAk k)
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Using by ~ logd and e \)f R 2 +/n leads to

Jia vn £ (6.17)

+byg— ———dp — —00 .
ad ¢ T(tk)UkAk 4§

On the other hand we obtain from (6.15)

Vn o2 2\ D |[Apug
_ V(N2 - Ap2) 2 2R Ar01)
T(tk)O'kAk( k Nk) AL (0,1)

and the assertion of Theorem 4.3 follows.

B.3. Proof of Theorem 4.4
Due to g1-a/aq + bg > 0 we deduce
P(Rd C ﬁd(a)) = ]P( min Tr(zAh) > g1_a/ad + bd)
heER4 ’
\/ﬁ ( Y 2
n,h

> ]P( min ——————
hER4 T(th)O'h‘A/J,}J

- A%) > gi—a/0q + bd) .

Using the notation d, = Aui — A? we get

)

P(R4 C ﬁd(a)) > ]P’(mm Tn h > g1—a/0qd + by — min dj,

heERq heER4 T( )O—h|A/14h|
:]P’(a min (1), , + b > + 2a4bg — a mlndi)
dheRd( b Fbd) = g1-a dbd — aq mir N

By assumption (4.7) we have

n® min dj, > n° min (|Aupn| — AR) A — o0,

he€R4 heR4 n—o0
which implies (as 1 < 7(tp)on|Aun| < 1)

agbgy — ag min dhL — —00.
hERy 7‘( )Uh|A,LLh| d,n—o0

By arguments similar to those in the proofs of Section 3 one can show that for
allz e R .

I 'fIP’( in (Thp + ba) > >>IP’—G> ,

dniaf P iy, (T ba) 2 ) 2 P(G 2 )
which yields assertion (4.8). For a proof of (4.9) we apply Bonferroni’s inequality,
which gives

P (ﬁd(a) - Rd) —P (ﬁdm) C Ra,Ra C ﬁd(a>)
>1-P (ﬁd(a) ¢ Rd) —P (Rd ¢ ﬁd(a)) .
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By the arguments in the previous paragraph we have P (Rd ¢ ﬁd(a)) =0(1)
and Theorem 4.1 gives

lim sup P (ﬁd(a) ¢ Rd) = limsup P (}{n%x TéAh) > g1-a/aq+ bd> <a,
erRg ™

d,n—o0 d,n—o00

which finishes the proof.

Appendix C: Proofs of the results in Section 5

To establish the bootstrap results, we recall the definition of the set Sy in (3.17)
and we introduce the set

Ed:{Vhengmhe(KE;Kifﬁ, (6.1)
which represents the event, that the locations of all change points are identified
correctly. We need the following basic properties.

Lemma C.1. If the assumptions of Section 3.1 and Assumption 5.2 hold, then
(i) n® wlax | Afin = Apn| = 0 if C < 1/2
(ii) P (L) <nC for a sufficiently small constant C > 0 .

Proof. For assertion (i) fix € > 0 and observe

c d ~
P(n r;?ff(m'uh App| > €)

KL,

d 1 L 1)
<]P’(ncmax‘ — Zin—ul ‘>6 2ﬂ£)
- h=1 | KLy ; go = M / d (6.2)
d 1 n (2)
+P@Cmny———7f- N Z- 2’>520£)+01.
he1 K(L*LZ) J,h Iuh / d ( )

j=KLp+1

The first two summands of the right-hand side of (6.2) exhibit the same struc-
ture, so we only treat the first of them. Note that on the event L4, it holds
that

(Zin =) 1 < KL} = X,0I{j < KL}

Further thereA exists a constant 0 < Cy < 1, such that the inequalities Con <
nt—- K <KL, < ntp hold. This implies

KL;

1
IE”(nC r}rlﬂlj?‘ —— Z Zjn — MhJ’ > E/QOﬁd)
=KL, j=1
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d KE;
< B(|m 3 x| 50 Cep2)
h=1 KLh j=1

zi: (max’ZX]h’ > Con'~ 06/2)

Since 1 — C' > 1/2 we obtain by the Fuk-Nagaev inequality (see Lemma E.3 in
Jirak (2015b)) for sufficiently large n

d
ZIP’(maX ‘ ZXJ h’ > Conl™ 05/2) nC — pDH(C-Dp+1
h_

< nP—p/2+1 _ o(1) ,

where we also used D < p/2—2. Assertion (1) is shown in the proof of Theorem
C.12 in Jirak (2015b). O

Proof of Lemma 5.3. This is a consequence of Lemma C.1 (i) and the inequality
(for any € > 0)

]P’(ad(irgg)j B,n — bd) > 6) < P(i%%‘}j |ALp| > n—1/4) . O

C.1. Proof of Theorem 5.

For the proof we introduce the following more simple version of the bootstrap
CUSUM-process {[Un h( )}se0,1] introduced in (5.7)

| Ls) R
w,h )

where the truncation is not conducted within the blocks. We make also use of
the following extra notation

B = ahT(th)(i\h/(T_i — )2 /01 U (s)k(s.tn)ds

B = ot Jy TR s

Bin= sl [ Ok s,

R LT / U (ks s
SuT(tn)(tn(1 —tp))? Jo ™

The theorem’s claim is a direct consequence of the next five lemmas. We will
use the notation Pz, (-) = P(:|2,). and frequently apply that the implication
P(A,) = o(1) = Pz, (An) = op(1) holds for all sequences of measurable sets

{An}nen-
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Lemma C.2. The weak convergence
G if limg,o|S5|/d=1,
aq (}Lrézgg Ezh — bd) 2! a+ loge if limgoo |S3|/d=c force (0,1),
—oo if limg oo [S5]/d =0
holds conditionally on Z,.
Proof. Without loss of generality assume that the sets Sq and S are given by

S§={L....s} and Sy={s+1,...d}

with s = |S§|. Let N = (N, ..., N,)" denote a centered s-dimensional Gaussian
vector with covariance matrix ¥ = (Zij)ﬁ j—1 defined by

v igT(tit))

Y o (t)T(ty)

where the function 7 is defined in (6.4). Our aim is to control the (conditional)
Kolmogorov-distance between maxpess E:; 5, and maxpess N Since the random
variables {{/},.y are independent, we can directly calculate the conditional
covariance

Coviz, (Ez,m gzl)

36 Lo
= oot ()T () tn (L — tn)2 (1 — £3))2n ;::1 VenVeiBenbei

with the extra notation

! L
Ben =/ k(s,th) (I{é < |Ls]} - LLSJ> ds .
0
Let 04 denote the distance

g = max
1<h,i<s

o o
COV\ZH (Bn,h’Bn,z) - Ehvi .

Using the fact that maxpes: max/_, |Ben] < 1 a straightforward adaption of
Lemma E.8 in Jirak (2015a) gives

IP’( max
1<h,i<s

O’hUiT(th)T(ti) COV‘Zn (thh, Ez,i) - 'yh,ﬁ(th, ti)

Ip, > n_é)
<L ¢

for sufficiently small constants C,0 > 0, where the set £, is defined in (6.1).
Using the lower bound oj,0;7(t,)7(t;) > 0272 yields

P(C(5)“) <n ¢ (6.3)
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for the set
C(6) :={0aIz, <n°}.
For a sufficiently small C' > 0 we have

P (Pz, (L5 UCH)Y) > n %) <nCE [Pz, (L5 UC(5))]
=nP (LS UC()) =0(1) .

Now, we can derive the following upper bound

d = d
Pz, (rlrzlaich h < x) —P <I}ILlaXNh < x) ’
= , =1

sup

z€R

<sup Pz, <m(éx§z’h < a:) —-P (m‘éxNh < a:) Ir,nes) + Op(n=%).
z€R h=1 h=1

(6.4)

The identities vy, 5, = o7 and 7(t,) = 72(t) give X, = 1 forall h € {1,...,d},
and by Lemma 3.1 in Chernozhukov et al. (2013) on the set L4 N C(d) we have
for the first summand in (6.4)

P BS,<z)-P Ny <z||I
e (g a5 2) -® (oo
5 0111/3 max{l, log(d/Qd}2/3I£dmc(§) S niC .
Combining (6.4) and (6.5) yields for the Kolmogorov distance
P B, <z)—P Ny <z)|=op(1) . :
sup Pz, (gg; b < w) <gg§ < w)‘ op(1) (6.6)

The proof now follows observing the bound maxi<p i<s |Zn.i| <

mMaxi<pi<s |Ph,i| for the covariance matrix of N, which was derived (see the
proof of Lemma 3.7) and using adapted scaling sequences (see proof of Corollary
3.12), which yields

G i limgeo [SS/d =1,
ad(}I}lz}SXNh—bd) 2.0 Gloge if limge|SS|/d=c force (0,1), O
€55
—oo if limg ., |S5|/d=0.
Lemma C.3. Conditionally on Z, it holds that
BS, — B, —50.

Proof. The covariance kernel k satisfies for all ¢, ¢/, s € [0,1] |k(s,t) —k(s,t')| <
2|t —t'| . Due to (t,(1 —t4))?7(ty) > t*r_ we derive the bound

1

[U) (5)[[k(s, th) — k(s,n)|ds
Oh

% o
aq| max B’ ; — max B < agy/n max
hess  mh o pess |~ \/_hes; 0
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< L ig® s by —t
VIS S g V() g e = ol

Choosing C sufficiently it follows from Corollary 3.3 in Jirak (2015a) that for
alle >0

P © th—1 =op(1) . 6.7
2 (v paxlon = ] > ) = oe() (6.7
Theorem 2.5 and 4.4 from the same reference imply the weak convergence

<\/_max max L UglL,)L( )‘ — 64—d> SeNYel

heSg s€l0,1] Op,

conditionally on Z,, in probability with e; = /2log(2d). This yields

Pz, agy/nn~¢ max max — ’U ‘ >¢e | =op(1)
heSS sel0,1] O

for all € > 0, which completes the proof of Lemma C.3. O

Lemma C.4. Conditionally on Z, it holds that

% * P
agmax B> , —agmax B, ; — 0.
hess ™M hess ™M

Proof. Define IP"Z () = Pz, (-NLy) with £, introduced in (6.1). By Lemma
C.1 the claim follows if we can verify

€
P~ (‘ max B maxB* ;| > —)
1Zn\[ hese ™R hess ™R T gy

~ 19
< P~ ( B:, — B —) = op(1) .
1Z., gé%’g‘ n,h ol > a op(1)

We have the trivial bound

‘math max B ‘<max|Bh B*h|.
heSg heSg

Assumption (T2) and (C1) imply o, > o_ and 7(t,)(tn(1—1t,))% > 7_t*, which
yields

b ~:;,h‘ = 6vn IE /01 (Usz;)L( ) — ﬁnL;)L( )) k(s,tp)ds

O'h’r(th)(th(]. — th

<\/_/

e ]t 0

~ (s )‘ k(s, in)ds
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where we use the notation
LLs]

St gy, ol STt S|

[ns|
"’himou‘n\/_ L\/—’ZQ sn(n ‘
In the proof of Theorem C.4 from Jirak (2015b) it is shown, that
a _ €
}P’lz(maxS B> —d) = op(1)

for all € > 0. The second summand can be bounded by

st = s |52~ o o
mh = o) | K K \/HL;@ ()

1 &~
< \m;mh(n)]

and it follows again from the above reference

P, (hesc

for all € > 0, which finishes the proof of Lemma C.4

> —) = op(1)

aq

ILZ@

Lemma C.5. The weak convergence

G if limgee |[SS|/d =1,

2633

ad<maxB(7) bd) =2 G+loge if limg oo |S§|/d=c force(0,1),

heSg
—00 if limgoee [SE|/d =0

holds conditionally on Z,.

(6.9)

Proof. Combining Lemmas C.2, C.3 and C.4 already gives assertion (6.9) for

the random variables Bj, ,. We use the additional notation

Snin(tn(1—1,))?

Sntn(tn(1 —11))?

Q;: de—

mi
hess ont(tn)(th(l —tr))?

heS“ onT(tr)(tn(1 —tg))?

and the set Q4 = {|Q; — 1’ \Y }Q;r — 1| < da} with 65 = (logd)~2. Let ug(x) =

x/aq + by, then we obtain for fixed € > 0 and d sufficiently large

)

Pz, (max By, < ug(x — 5)) - Pz, (Q7) <Pz, <Héa$X BnI;L ud($)>
d

heS]



2634 H. Dette and J. Gdsmann
< By, (s B < wae +9)) + 21, Q)

Combining Proposition 3.5 from Jirak (2015a) with assertion (6.7) one can easily
verify that Pz (Qg) = op(1) and the remainder of the proof can be done
analogously to the proof of Theorem 3.11. O

Lemma C.6. Conditionally on Z, it holds that

P
aq maxB( ,)1 —aqmax B, , — 0.
hess ™ heSS

Proof. For fixed € > 0 we have

]P’(ad

> E) < ]P’(ad max
heSg

max B IQL — max B, Bff% n7h‘ > E)

hess ™ heS;

§P(maXI{|Aﬁh| §n71/4} >5) (mm |Afip| <n~ 1/4) .
heSss
The proof now follows by
P( min|Afia| < n~1/1)
gelglj fin] < n

< ]P’(}{mn |Apg| < 2n~ 1/4) —HP( min |Auh| - mln |A,uh\ >n 1/4>
cge

]P’(K}mgl |[App| < 2) +P(max|Auh — Afip| >n 1/4) =o(1),
E c

where we also used that K = n!~¢ and that Assumption 5.2 implies 1 — ¢ < 1/4
together with

lim K mln \Auh| O

n,d— oo
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