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Abstract: We propose of an improved version of the ubiquitous sym-
metrization inequality making use of the Wasserstein distance between a
measure and its reflection in order to quantify the asymmetry of the given
measure. An empirical bound on this asymmetric correction term is de-
rived through a bootstrap procedure and shown to give tighter results in
practical settings than the original uncorrected inequality. Lastly, a wide
range of applications are detailed including testing for data symmetry, con-
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1. Introduction

The symmetrization inequality is a ubiquitous result in the probability in Ba-
nach spaces literature and in the concentration of measure literature. Dating
back at least to Paul Lévy, it is found in the classic text of [18], Section 6.1,
and the more recent [6], Section 11.3. [13] use symmetrization in the context
of empirical process theory, which is followed by a collection of more recent
appearances [23, 16, 11, 2, 19, 15, 9].

Recalling that ε, a Rademacher random variable or sometimes referred to as
a symmetric Bernoulli random variable or a random sign, is such that P(ε =
1) = P(ε = −1) = 1/2, then the symmetrization inequality is as follows.

Proposition 1.1. Let (B, ‖·‖) be a Banach space, and let X1, . . . , Xn ∈ B be
independent random variables with measure μ. Let ε1, . . . , εn be independent and
identically distributed Rademacher random variables, then

E

∥∥∥∥∥ 1n
n∑

i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

εi(Xi − EXi)

∥∥∥∥∥ .
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This can be readily proved via Jensen’s Inequality and the insight that if Z

is a symmetric random variable, that is Z
d
= −Z, then Z

d
= εZ. The proof is

included for completeness.

Proof. Let X ′
1, . . . , X

′
n be independent copies of X1, . . . , Xn such that Xi and

X ′
i are equal in distribution for all i = 1, . . . , n. Then,

E

∥∥∥∥∥ 1n
n∑

i=1

(Xi − EXi)

∥∥∥∥∥ = E

∥∥∥∥∥ 1n
n∑

i=1

E (Xi −X ′
i|Xi)

∥∥∥∥∥ ≤

≤ E

∥∥∥∥∥ 1n
n∑

i=1

(Xi −X ′
i)

∥∥∥∥∥ = E

∥∥∥∥∥ 1n
n∑

i=1

εi(Xi −X ′
i)

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

εi(Xi − EXi)

∥∥∥∥∥ .
The first inequality comes from Jensen’s inequality and the convexity of the
norm. The subsequent equality results from the fact that Xi−X ′

i is a symmetric
random variable for all i = 1, . . . , n. The second inequality is just the result of
the subadditivity of the norm and the fact that EXi = EX ′

i.

Remark 1.2. As the main tool of the previous proof is Jensen’s inequality, the
result can be generalized with the addition of any convex function F : R+ → R

+

to the following:

EF

(∥∥∥∥∥ 1n
n∑

i=1

(Xi − EXi)

∥∥∥∥∥
)

≤ EF

(
2

∥∥∥∥∥ 1n
n∑

i=1

εi(Xi − EXi)

∥∥∥∥∥
)
.

The most notable oversight of this result is that it does not incorporate any
measure of the symmetry of the data. Specifically, in the extreme case that the
Xi are symmetric about their mean, then the coefficient of 2 can be dropped
and the inequality becomes an equality. Taking note of this fact, [2] state that

“it can be shown that this factor of 2 is unavoidable in general for a fixed n when the
symmetry assumption is not satisfied, although it is unnecessary when n goes to infinity.”
[2]

They furthermore

“conjecture that an inequality holds under an assumption less restrictive than symmetry
(e.g., concerning an appropriate measure of skewness of the distribution ).” [2]

Hence, in response to this conjecture, we propose an improved symmetrization
inequality making use of Wasserstein distance and Hilbert space geometry in
order to account for the symmetry, or lack thereof, of the distribution of the Xi

under analysis. The main contribution of this article is that for some Hilbert
space H and X1, . . . , Xn ∈ H independent and identically distributed random
variables with common measure μ, there is for a fixed explicit constant C(μ)
depending only on the symmetry of the underlying measure μ of the Xi, which
quantifies the symmetry of μ, such that

E

∥∥∥∥∥ 1n
n∑

i=1

(Xi − EXi)

∥∥∥∥∥ ≤ E

∥∥∥∥∥ 1n
n∑

i=1

εi(Xi − EXi)

∥∥∥∥∥+
C(μ)

n1/2
.
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This result is detailed and proved in Section 3.2. Furthermore, an empirical
bound, Cn(μ), on the constant C can be calculated as is done in Section 4.
Such an empirical bound can be further used as a data driven measure of the
symmetry of the given sample. In the case that the distribution of the Xi is
symmetric, the true C(μ) = 0 and our data driven estimate Cn(X) = O(n−δ)
for some δ ∈ (0, 0.5) implying a fast rate of convergence to the desired zero
for the additive term above: n−1/2Cn(μ) = o(n−1/2). Applications of this re-
sult to testing the symmetry of a data set, constructing nonasymptotic high
dimensional confidence sets, bounding the variance of an empirical process, and
improving coefficients in probabilistic inequalities in the Banach space setting
are given in Section 5.

2. Empirical estimate of the Rademacher sum

Before discussing the main results detailed and proved in Section 3, we take
a closer look at Rademacher sums to motivate the research in the following
sections. These sums arise in the theoretical setting of proving various bounds
and inequalities for random variables in Banach spaces. Examples can be found
in the many results in the monographs [18] and [6]. Alternatively, these sums
are used in the applied setting as an analogue for the unknown expectation
E‖

∑n
i=1 Xi − EXi‖, which arises when constructing confidence sets using con-

centration inequalities for such settings as wavelet estimators [19], kernel density
estimators [9], and for covariance operators in [14]. Rademacher averages also
appear in statistical learning theory under the name Rademacher complexities
in [4, 16, 27] and many others.

In this section, we will consider the practical issue of computing the norm of
the Rademacher sum Rn =

∑n
i=1 εi(Xi − X̄) with sample mean X̄ =

n−1
∑n

i=1 Xi to directly estimate the expected value of the norm of the sum
Sn =

∑n
i=1 Xi − EXi. The Rademacher sum falls into a category of generalized

bootstrap techniques. Mainly,

‖Rn‖ =

∥∥∥∥∥
n∑

i=1

εi(Xi − X̄)

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈I

(Xi − X̄)−
∑
j /∈I

(Xj − X̄)

∥∥∥∥∥∥
for some random subset I ⊆ {1, . . . , n} with cardinality such that P(|I| = k) =(
n
k

)
2−n. Thus, given some observedX1, . . . , Xn, the total expectation E‖Rn‖ can

be approximated by the conditional expectation Eε‖Rn‖ = E(‖Rn‖ | X1, . . . ,
Xn). This conditional expectation can in turn be approximated by randomly

drawing M sets of {ε(m)
1 , . . . , ε

(m)
n }, computing for each m = 1, . . . ,M the

Rademacher sum ‖R(m)
n ‖ = ‖

∑n
i=1 ε

(m)
i (Xi − X̄)‖, and averaging over the M

sums to get that Eε‖Rn‖ ≈ M−1
∑M

m=1‖R
(m)
n ‖. However, before continuing, we

consider alternative bootstrap techniques to demonstrate the superiority of the
Rademacher sum and why the symmetrization inequality matters.

The term E‖Sn‖ cannot be estimated directly, but instead approached via
some bootstrap technique. Beyond the Rademacher sum, two other bootstrap



2094 A.B. Kashlak

estimators for E‖Sn‖ will be considered. Given a sample of size n, X1, . . . , Xn,
the first method is to randomly split the data in half using the first half to esti-
mate EXi and the second half to estimate ESn, which is equivalent to restricting
the Rademacher sum bootstrap to index sets I ⊂ {1, . . . , n} of cardinality n/2.
Namely, for such sets, we have

Ŝhalf
n =

(
n

n/2

)−1 ∑
I:|I|=n/2

∥∥∥∥∥∥
∑
i∈I

⎛
⎝Xi −

2

n

∑
j∈{1,...,n}\I

Xj

⎞
⎠
∥∥∥∥∥∥ ,

which can, of course, be approximated by selecting a reasonable number M of
such sets I1, . . . , IM .

The second approach is a leave-one-out estimate similar to the jackknife es-
timator [8]. Once again, given a sample of size n, X1, . . . , Xn, this method is
equivalent to the Rademacher sum bootstrap but restricting the cardinality of
the set to |I| = n− 1. This results in

ŜLOO
n =

1

n

n∑
i=1

∥∥∥∥∥∥Xi −
1

n− 1

n∑
j �=i,j=1

Xj

∥∥∥∥∥∥ .
Each of these bootstrap methods are in some sense comparable to each other

with respect to accuracy and variance of the estimate for E‖Sn‖. For example,
Theorem 3 of [27] compares the Permutational Rademacher Complexity to the
Conditional Rademacher Complexity, which are more sophisticated versions of
Rn and Ŝhalf

n . However, the symmetrization inequality allows for us to explicitly
bound E‖Sn‖ by the Rademacher sum. Indeed, using the original symmetriza-
tion inequality, it is reasonable to bound

E

∥∥∥∥∥
n∑

i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 2E ‖Rn‖ ≈ 2Eε ‖Rn‖ ≈ 2

M

M∑
m=1

∥∥∥R(m)
n

∥∥∥ .
In contrast, the goal of this article is to theoretically derive and explicitly com-
pute a small correction term Cn(μ) to update this bound to the tighter

E

∥∥∥∥∥
n∑

i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 1

M

M∑
m=1

∥∥∥R(m)
n

∥∥∥+
Cn(μ)√

2n
.

This is powerful in the construction of non-asymptotic confidence sets for high
dimensional data where one desires to achieve a minimum coverage, say 1− α,
for such confidence sets as performed in both [2] and [14]. Using one of these
alternative bootstrap methods does not guarantee such coverage. However, using
the Rademacher sum with either the coefficient of 2 or with our correction term
proposed in the subsequent section, will, in fact, result in a confidence set with
no less than the desired coverage.
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3. Symmetrization

3.1. Overview of Wasserstein spaces

We first require the standard notions of Wasserstein distance and Wasserstein
space as stated below. These are defined on Polish spaces, which are complete
separable metric spaces. For a thorough introduction to such topics, see [28].

Definition 3.1 (Wasserstein Distance). Let (X , d) be a Polish space and p ∈
[1,∞). For two probability measures μ and ν on X , the Wasserstein p distance
is

Wp(μ, ν) = inf
γ∈Π(μ,ν)

(∫
X×X

d(x, y)pdγ(x, y)

)1/p

where the infimum is taken over all measures γ on X × X with marginals μ
and ν.

An equivalent and useful formulation of Wasserstein distance is

Wp(μ, ν) = inf
(X,Y )

(E d(X,Y )p)
1/p

where the infimum is taken over all possible joint distributions of X and Y with
marginals μ and ν, respectively.

Definition 3.2 (Wasserstein Space). Let P (X ) be the space of probability mea-
sures on X . The Wasserstein space is

Pp(X ) :=

{
μ ∈ P (X )

∣∣∣∣
∫
X
d(x0, x)

pμ(dx) < ∞
}

for any arbitrary choice of x0. This is the space of measures with finite pth
moment.

Convergence in Wasserstein space is characterized by weak convergence of
measure and convergence in pth moment. From Theorem 6.8 of [28], convergence
in Wasserstein distance is equivalent to weak convergence in Pp(X ). Hence, for
a sequence of measures μn,

Wp(μn, μ) → 0 if and only if μn
d−→ μ and

∫
X
d(x, x0)

pdμn(x)

→
∫
X
d(x, x0)

pdμ(x)

for any fixed x0 ∈ X .

3.2. Symmetrization result

In the following lemma, we bound the expectation on the left by the sum of a
“symmetric” term and an “asymmetric” term.
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Lemma 3.3. Let H be an Hilbert space, and let X1, . . . , Xn ∈ H be independent
and identically distributed random variables with common law μ for the centred
Xi − EXi. Define μ− to be the law of the reflection EXi − Xi. Furthermore,
let ε1, . . . , εn be independent and identically distributed Rademacher random
variables also independent of the Xi. Then, for any 1-Lipschitz function ψ,

Eψ

(
n∑

i=1

(Xi − EXi)

)
≤ Eψ

(
n∑

i=1

εi(Xi − EXi)

)
+

√
n

2
W2(μ, μ

−)

where W2 is the Wasserstein 2 distance.

Proof. For a Polish space X , let Π(μ, ν) be the space of all product measures
on X × X with marginals μ and ν. For δ ∈ (0, 1), let Πδ(μ, ν) be the space of
all product measures with marginals μ and νδ = δμ+ (1− δ)ν. For γ ∈ Π(μ, ν)
and η ∈ Π(μ, μ), the measure δη + (1− δ)γ ∈ Πδ(μ, ν). Hence,

W p
p (μ, νδ) = inf

γδ∈Π(μ,νδ)

∫
X×X

d(x, y)pdγδ(x, y)

≤ inf
η∈Π(μ,μ), γ∈Π(μ,ν)

∫
X×X

d(x, y)pd(δη + (1− δ)γ)(x, y)

= inf
γ∈Π(μ,ν)

(1− δ)

∫
X×X

d(x, y)pdγ(x, y)

= (1− δ)W p
p (μ, ν).

The inequality on the second lines above arises from taking the infimum over a
more restrictive set. The law of ε(X−EX) is 1

2 (μ+μ−). Hence, for our purposes,
the above implies that

W2

(
μ,

μ+ μ−

2

)
≤ 1√

2
W2(μ, μ

−).

Define μ∗n to be the law of
∑n

i=1(Xi − EXi) and μ̃∗n to be the law of∑n
i=1 εi(Xi − EXi). Then,

Eψ

(
n∑

i=1

(Xi − EXi)

)
− Eψ

(
n∑

i=1

εi(Xi − EXi)

)
≤

≤ sup
‖φ‖Lip≤1

{
Eφ

(
n∑

i=1

(Xi − EXi)

)
− Eφ

(
n∑

i=1

εi(Xi − EXi)

)}

≤ W1 (μ
∗n, μ̃∗n)

≤ W2 (μ
∗n, μ̃∗n)

≤
√
nW2

(
μ,

μ+ μ

2

−)

≤
√

n

2
W2(μ, μ

−)
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where the second, third, and fourth inequality come respectively from Lem-
mas A.1, A.2, and A.3 in the appendix. Rearranging the terms gives the desired
result.

This lemma leads immediately to the following theorem. The intuition behind
this theorem is that averaging a collection of random variables has an inherent
smoothing and symmetrizing effect following from the central limit theorem.
Thus, as the sample size n increases, the difference between the expectations
of the true average and the Rademacher average become negligible. Of course,
we have following from such theorems that, given a finite second moment for
the probability measure μ, that |Eψ( 1n

∑n
i=1(Xi − EXi))− Eψ( 1n

∑n
i=1 εi(Xi −

EXi))| = O(n−1/2). However, in the next theorem, we explicitly quantify this
error and use it for finite sample empirical estimation in the following sections.
This behaviour was shown in the simulations detailed in [14].

Theorem 3.4. Using the setting of Lemma 3.3 with either of the following two
conditions that

1. ψ is additionally positive homogeneous (e.g. a norm), or
2. the metric d is positive homogeneous in the sense that for a ∈ R, d(ax,

ay) = |a|d(x, y),

then∣∣∣∣∣Eψ
(
1

n

n∑
i=1

(Xi − EXi)

)
− Eψ

(
1

n

n∑
i=1

εi(Xi − EXi)

)∣∣∣∣∣ ≤ 1√
2n

W2(μ, μ
−)

Proof. Running the proof of Lemma 3.3 after swapping
∑n

i=1(Xi − EXi) and∑n
i=1 εi(Xi − EXi) gives the lower deviation

Eψ

(
n∑

i=1

(Xi − EXi)

)
≥ Eψ

(
n∑

i=1

εi(Xi − EXi)

)
−
√

n

2
W2(μ, μ

−).

Under condition 1, the result is immediate.

Under condition 2, let μ be the law of (Xi−EXi) as before. Then, redefining
μ∗n to be the law of

∑n
i=1

1
n (Xi−EXi) and μ̃∗n to be the law of

∑n
i=1

1
nεi(Xi−

EXi) results in

W2(μ
∗n, μ̃∗n) ≤

√
n inf

(X,Y )

(
E d(X/n, Y/n)2

)1/2
=

1√
2n

W2(μ, μ
−)

where the infimum is taken over all joint distributions ofX and Y with marginals

μ and μ+μ−

2 , respectively. The desired result follows.
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4. Empirical estimate of W2(μ, μ
−)

In order to explicitly make use of the above results, an empirical estimate of
W2(μ, μ

−) is required. We first establish the following bound.

Proposition 4.1. Let X1, . . . , Xn be iid with law μ and let Y1, . . . , Yn be iid
with law ν. Furthermore, let μn and νn be the empirical distributions of μ and
ν, respectively. Then,

W p
p (μ, ν) ≤ EW p

p (μn, νn).

Proof. The following infima are taken over all possible joint distributions of the
random variables in question given fixed marginal distributions. Let X and Y
be random variables of law μ and ν, respectively. Also, let Sn be the group of
permutations on n elements.

W p
p (μ, ν) = inf

(X,Y )
Ed(X,Y )p

= inf
(X1,...,Xn,Y1,...,Yn)

E

{
1

n

n∑
i=1

d(Xi, Yi)
p

}

≤ E min
ρ∈Sn

{
1

n

n∑
i=1

d(Xi, Yρ(i))
p

}

= EW p
p (μn, νn)

where the above inequality arises by replacing the infimum over all possible joint
distributions of the Xi and Yi with a specific joint distribution.

The following subsections establish that it is reasonable to replace W2(μ, μ
−)

with a data driven estimate of EW2(μn, μ
−
n ) in Lemma 3.3 and Theorem 3.4.

Rates of convergence of W2(μn, μ
−
n ) are presented, and a bootstrap estimator

for EW2(μn, μ
−
n ) is proposed and tested numerically.

4.1. Rate of convergence of empirical estimate

As Wp(·, ·) is a metric, the triangle inequality and the fact that Wp(μ, μn) =
Wp(μ

−
n , μ

−) implies that

Wp(μ, μ
−) ≤ Wp(μ, μn) +Wp(μn, μ

−
n ) +Wp(μ

−
n , μ

−)

≤ 2Wp(μ, μn) +Wp(μn, μ
−
n ),

and therefore, ∣∣Wp(μ, μ
−)−Wp(μn, μ

−
n )

∣∣ ≤ 2Wp(μ, μn).

By Lemma A.4, Wp(μ, μn) → 0 with probability one making the discrepancy
negligible for large data sets. However, it is also possible to get a hard upper
bound on this term; specifically, the recent work of [10] proposes explicit moment
bounds on Wp(μ, μn). Their result can be used to demonstrate the speed with



Measuring distributional asymmetry 2099

which our empirical measure of asymmetry, W2(μn, μ
−
n ), converges to zero when

μ is symmetric.
In the case that μ is symmetric, W2(μ, μ

−) = 0, the ideal correction term is
equal to zero. This implies that our empirical bound

W2(μn, μ
−
n ) =

∣∣W2(μ, μ
−)−W2(μn, μ

−
n )

∣∣ ≤ 2W2(μ, μn).

Therefore, the moment bound from Theorem 1 of [10] implies thatW2(μn, μ
−
n ) =

O(n−δ) where δ ∈ (0, 0.5] depending on the specific moment used and the di-
mensionality of the measure. Thus, the empirical bound on the correction term
in our improved inequality, W2(μn, μ

−
n )/

√
n, achieves a faster convergence rate

in the symmetric case than the general rate of n−1/2.
The tightness of the bounds proposed in [10] was tested experimentally. While

the moment bounds are certainly of theoretical interest, implementing these
bounds resulted in an inequality less sharp than the original symmetrization
inequality. However, the bootstrap procedure detailed in the following section
does produce a practically useful estimate of the expected empirical Wasserstein
distance.

4.2. Bootstrap estimator

We propose a bootstrap procedure to estimate the expected Wasserstein dis-
tance between the empirical measure and its reflection, EW2(μn, μ

−
n ). Given

observations x1, . . . , xn empirically centred so that x̄ = 0, let μ̂n be the empiri-
cal measure of the data; this is a specific instance of μn. Then, for some specified
m, two sets Y1, . . . , Ym and Z1, . . . , Zm can be sampled as independent draws
from μ̂n. The goal is to move a mass of 1/m from each of the Yi to each of
the negated −Zi in an optimal fashion. Hence, the m × m matrix of pairwise
distances is constructed with entries Ai,j = d(Yi,−Zj), which can be accom-
plished in O(m2) time. From here, the problem reduces to a linear assignment
problem, a specific instantiation of a Minimum-cost flow problem from linear
programming [1]. That is, given a complete bipartite graph with vertices L∪R
such that |L| = |R| = m and with weighted edges, we wish to construct a per-
fect matching minimizing the total sum of the edge weights. Here, the weights
are the pairwise distances Ai,j . This linear program can be efficiently solved in
O(m3) time via the Hungarian algorithm [17]. For more on linear programs in
the probabilistic setting, see [26].

This estimated distance can be averaged over multiple bootstrapped samples.
Though, in general, only a few replications are necessary to achieve a stable
estimate as the bootstrap estimator has a very small variance. Indeed, to see
this, consider the bounded difference inequality detailed in Section 3.2 of [6]
and in Section 3.3.4 of [12], which is a direct corollary of the Efron-Stein-Steele
inequality [8, 25, 24].

Definition 4.2 (A function of bounded differences). For X some measurable
space and a real valued function f : Xn → R, f is said to have the bounded



2100 A.B. Kashlak

differences property if for all i = 1, . . . , n,

sup
x1,...,xn,x′

i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci.

Proposition 4.3 (Corollary 3.2 of [6]). If f has the bounded differences property
with constants c1, . . . , cn, then Var(f(X1, . . . , Xn)) ≤ 1

4

∑n
i=1 c

2
i .

In our setting, Yi and Zi for i = 1, . . . ,m are independent random vari-
ables with law μ̂n. The function f(Y1, . . . , Ym, Z1, . . . , Zm) is the value of the
optimal matching from the {Yi} to the {−Zi}. This f is, in fact, a func-
tion of bounded differences. This is because modifying a single argument will
at most change the optimal value by c = m−1(maxi,j=1,...,n{d(xi,−xj)} −
mini,j=1,...,n{d(xi,−xj)}) = C/m. Thus, from the bounded differences theorem,

Var (f(Y1, . . . , Ym, Z1, . . . , Zm)) ≤ C2n

4m2
.

Therefore, ifm is chosen to be of order n, as in the numerical experiments below,
then the variance of the bootstrap estimate decays at rate of O(n−1).

The proposed bootstrap procedure was experimentally tested on both high
dimensional Rademacher and Gaussian data as will be seen in Section 4.3.1. For
each replication, the observed data was randomly split in half. That is, given
a random permutation ρ ∈ Sn, the symmetric group on n elements, the Hun-
garian algorithm was run to calculate the cost of an optimal perfect matching
between {Xρ(1), . . . , Xρ(n

2 )} and {−Xρ(n
2 +1), . . . ,−Xρ(n)}. As the sample size

for each set is n/2, the expected distance between the two sets of points will
be larger than the expected distance between two sets of n points. Indeed, let
Y1, . . . , Yn, Z1, . . . , Zn be iid with law μ and let n be even, then for some subset
I ⊂ {1, . . . , n} with cardinality n/2,

EW p
p (μn, μ

−
n ) = E min

ρ∈Sn

{
1

n

n∑
i=1

d(Yi,−Zρ(i))
p

}

=
1

2
E min

ρ∈Sn

{
2

n

∑
i∈I

d(Yi,−Zρ(i))
p +

2

n

∑
i/∈I

d(Yi,−Zρ(i))
p

}

≤ 1

2
E

{
min

η∈Sn/2

2

n

∑
i∈I

d(Yi,−Zρ(i))
p + min

η∈Sn/2

2

n

∑
i/∈I

d(Yi,−Zρ(i))
p

}

≤ EW p
p (μn/2, μ

−
n/2)

where, similarly to Proposition 4.1, the inequality comes from taking a minimum
over a smaller set.

4.3. Numerical experiments

From Proposition 4.1, there is an obvious positive bias in our new symmetriza-
tion inequality when using the Wasserstein distance between the empirical mea-
sures, W2(μn, μ

−
n ), in lieu of the Wasserstein distance between the unknown
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underlying measures, W2(μ, μ
−). This is specifically troublesome when μ is sym-

metric or nearly symmetric. That is, if W2(μ, μ
−) = 0, then barring trivial cases,

the distance between the empirical measures will be positive with positive prob-
ability. However, as stated in Lemma A.4, W2(μn, μ

−
n ) → 0 with probability

one, which will still make this approach superior to the standard symmetriza-
tion inequality. In the following subsections, we will compare the magnitude of
the expected symmetrized sum and the asymmetric correction term, which are,
respectively,

Rn = n−1/2E

∥∥∥∥∥
n∑

i=1

εi(Xi − EXi)

∥∥∥∥∥ and Cn = W2(μn, μ
−
n )/

√
2.

The goal is to demonstrate through numerical simulations that the latter is
smaller than the former and thus that newly proposed Rn + Cn is a sharper
upper bound than the original 2Rn for n−1/2E‖

∑n
i=1(Xi − EXi)‖.

4.3.1. Rademacher data

For a dimension k and a sample size n = {2, 4, 8, . . . , 256}, the data for this
first numerical test was generated from a multivariate symmetric Rademacher
distribution. That is, for a size n iid sample from this distribution, X1, . . . , Xn,
let Xi,j be the jth entry of the ith random variable with Xi,1, . . . , Xi,k iid
Rademacher(1/2) random variables. Across 10,000 replications, random sam-
ples were drawn and used to estimate the expected Rademacher average, Rn,
and the expected empirical Wasserstein distance, Cn, under the �1-norm. The
dimensions considered were k = {2, 20, 200}. The results are displayed on the
left column of Figure 1. As the sample size n increases with respect to k, we get
closer to an asymptotic state and the bound based on the empirical Wasserstein
distance becomes more attractive.

4.3.2. Gaussian data

For a dimension k and a sample size n = {2, 4, 8, . . . , 256}, the data for this sec-
ond numerical test was generated from a multivariate Gaussian mixture distri-
bution. Specifically, 1

2N (−1, Ik)+
1
2N (1, Ik), which is a symmetric distribution.

Over 10,000 replications, random samples were drawn and used to estimate the
expected Rademacher average, Rn, and the expected empirical Wasserstein dis-
tance, Cn, under the �2-norm. The dimensions considered were k = {2, 20, 200}.
The results are displayed on the right column of Figure 1. Similarly to the mul-
tivariate Rademacher setting, as the sample size n increases, the bound based
on the empirical Wasserstein distance becomes sharper than the original sym-
metrization bound.

4.3.3. Asymmetric data

The above experiments were repeated for asymmetric data with results displayed
in Figure 2. On the left side, the symmetric Rademacher distribution–where
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Fig 1. For symmetric multivariate Rademacher (left) and Gaussian mixture (right) data,
the average n−1/2E‖

∑n
i=1(Xi − EXi)‖ (red dashed lines), twice the Rademacher average

2Rn = 2n−1/2E‖
∑n

i=1 εi(Xi − EXi)‖ (black dotted lines), and the bound using the scaled

empirical Wasserstein distance, Rn +W2(μn, μ
−
n )/

√
2 (blue solid lines) were estimated over

10,000 replications. The dimension of the data is k = {2, 20, 200}. For the Rademacher
setting, the �1-norm was used. For the Gaussian setting, the �2-norm was used. As the sample
size increases, the Wasserstein term converges to zero thus sharpening the upper bound.

P(Xi = 1) = P(Xi = −1) = 1/2–was replaced with an asymmetric one where
P(Xi = 1) = 2/3 and P(Xi = −1) = 1/3. One the right side, the mixture of
normals is 1

3N (−1, Ik) +
2
3N (1, Ik). In the case of the asymmetric Rademacher

data, the bound performed worse than the standard bound when the sample size
n is less than the dimension k. In the case of the imbalanced Gaussian mixture,
the results are similar to the balanced case and give an improvement over the
old bound.
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Fig 2. For asymmetric multivariate Rademacher (left) and Gaussian mixture (right) data,
the average n−1/2E‖

∑n
i=1(Xi − EXi)‖ (red dashed lines), twice the Rademacher average

2Rn = 2n−1/2E‖
∑n

i=1 εi(Xi − EXi)‖ (black dotted lines), and the bound using the scaled

empirical Wasserstein distance, Rn +W2(μn, μ
−
n )/

√
2 (blue solid lines) were estimated over

10,000 replications. The dimension of the data is k = {2, 20, 200}. For the Rademacher
setting, the �1-norm was used. For the Gaussian setting, the �2-norm was used. As the sample
size increases, the Wasserstein term converges to zero thus sharpening the upper bound.

5. Applications

In the following subsections, a collection of applications of the improved sym-
metrization inequality are briefly proposed to demonstrate the potential wide
range of usefulness of this result. Such applications range from those of theoret-
ical interest to those of practical application to statistical testing. These include
a test for data symmetry, the construction of nonasymptotic high dimensional
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confidence sets, bounding the variance of an empirical process, and Nemirovski’s
inequality for Banach space valued random variables.

5.1. Permutation test for data symmetry

In the previous sections, we proposed the Wasserstein distance W2(μ, μ
−) to

quantify the symmetry of a measure μ. Now, given n independent and identically
distributed observations X1, . . . , Xn with common centred measure μ, we pro-
pose a procedure to test for whether or not μ is symmetric. Unlike other tests for
data symmetry which may be restricted to finite dimensional Euclidean space,
this testing procedure applies to general Hilbert space valued random variables.
Thus, it is applicable to many diverse settings such as, notably, functional data
analysis.

The bootstrap approach from Section 4 for estimating the empirical Wasser-
stein distance is applied, and a permutation test is applied to the bootstrapped
sample. Note that while the Wasserstein-2 metric is specifically used in our im-
proved symmetrization inequality, for this test, any Wasserstein-p metric can be
utilized as is done in the numerical simulations below.

The bootstrap-permutation test proceeds as follows:

0. Choose a number r of bootstrap replications to perform. Also, centre the
data Xi ← Xi − X̄.

1. For each bootstrap replication, permute the data by some uniformly ran-
domly drawn ρ ∈ Sn, the symmetric group on n elements.

2. Use the Hungarian algorithm to compute the optimal assignment cost, ω0,
between the data sets {Xρ(1), . . . , Xρ(n/2)} and {−Xρ(n/2+1), . . . ,−Xρ(n)}.

3. Denote this new half-negated data set Y where Yi = Xρ(i) for i ≤ n/2 and
Yi = −Xρ(i) for i > n/2.

4. Draw m random permutations ρ1, . . . , ρm ∈ Sn. For each ρi, compute ωi,
the optimal assignment cost between {Yρi(1), . . . , Yρi(n/2)} and {Yρi(n/2+1),
. . . , Yρi(n)}.

5. Return the p-value, pj = #{ωi > ω0}/m.
6. Average the r p-values to get an overall p-value, p = r−1

∑r
j=1 pj .

Note that for very large data sets, it may be computationally impractical to
find a perfect matching between two sets of n/2 nodes as performing this test as
stated has a computational complexity of order O(mn3). In that case, randomly
draw n′ < n elements from the data set in step 1, draw a ρ ∈ Sn′ , and proceed
as before but with the smaller sample size.

This permutation test was applied to simulated multivariate Rademacher(p)
data in R

5. For sample sizes n = 10 and n = 100, let X1, . . . , Xn be independent
and identically distributed multivariate Rademacher(p) random variables where
each Xi is comprised of a vector of independent univariate Rademacher(p) ran-
dom variables, which is P(ε = 1) = p and P(ε = −1) = 1 − p for p ∈ (0, 1).
For values of p ∈ [0.5, 0.8], the power of this test was experimentally computed
over 1000 simulations. The results are displayed in Figure 3. For the �1 and �2
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Fig 3. For data in R
5, the �1 and �2 metrics, and the Wasserstein distances W1 and W2, the

experimentally computed power of the permutation test is plotted for Rademacher(p) data as
p, the probability of 1, increases thus skewing the distribution. The sample size is n = 100 on
the left plot and is n = 10 on the right plot. The n = 100 case includes an asymptotic test
for skewness. This test fails in the nonasymptotic n = 10 case and thus is not included.
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metrics and Wasserstein distances W1 and W2, the performances of the per-
mutation test were comparable except for the (�2,W2) case, which performed
poorer in both the large and small sample size settings. For the large sample
size, n = 100, Mardia’s test for multivariate skewness [20, 21] was included,
which uses the result that, under the null hypothesis of multivariate normality,

6

n

n∑
i=1

n∑
j=1

[
(Xi − X̄)

T
Σ̂−1(Xj − X̄)

]3 d−→ χ2 (k(k + 1)(k + 2)/6)

where Σ̂ is the empirical covariance matrix of the data. Similar asymptotic statis-
tics are proposed in [3] for the larger class of elliptically symmetric distributions.
However, this is shown to be less powerful than the proposed permutation test.
Furthermore, as this test is asymptotic in design, it gave erroneous results in
the n = 10 case and was thus excluded from the figure.

5.2. High dimensional confidence sets

A method for constructing nonasymptotic confidence regions for high dimen-
sional data using a generalized bootstrap procedure was proposed in the arti-
cle of [2]. Beginning with a sample of independent and identically distributed
Y1, . . . , Yn ∈ R

K and the assumptions that the Yi are symmetric about their

mean–that is, Yi − μ
d
= μ − Yi for all i–and are bounded in Lp-norm–that is,

‖Yi − μ‖p ≤ M almost surely for all i and some M > 0–they prove, among many
other results, that for some fixed α ∈ (0, 1), the following holds with probability
1− α:

φ
(
Ȳ − μ

)
≤

(
n

n− 1

)
Eεφ

(
1

n

n∑
i=1

εi(Yi − Ȳ )

)
+

2M√
n

√
log(1/α)

where φ : RK → R is a function that is subadditive, positive homogeneous, and
bounded by Lp-norm. By substituting our Theorem 3.4 for their Proposition 2.4
allows us to drop the symmetry condition and achieve a more general (1 − α)
confidence region.

Proposition 5.1. For a fixed α ∈ (0, 1) and p ∈ [1,∞], let φ : Rk → R be
subadditive, positive homogeneous, and bounded in Lp−norm. Then, for some
M > 0, the following holds with probability at least 1− α.

φ
(
Ȳ − μ

)
≤ Eεφ

(
1

n

n∑
i=1

εi(Yi − Ȳ )

)

+ (2n)−1/2
(
2
√
2M

√
log(1/α) +W2(μ, μ

−)
)
.

5.3. Bounds on empirical processes

Symmetrization arises when bounding the variance of an empirical process. In
[6], the following result is stated as Theorem 11.8 and is subsequently proved
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using the original symmetrization inequality resulting in suboptimal coefficients.

Theorem 5.2 ([6], Theorem 11.8). For i ∈ {1, . . . , n} and s ∈ T , a countable
index set, let Xi = (Xi,s)s∈T be a collection of real valued random variables.
Furthermore, let X1, . . . , Xn be independent. Assume EXi,s = 0 and |Xi,s| ≤ 1
for all i = 1, . . . , n and for all s ∈ T . Defining Z = sups∈T

∑n
i=1 Xi,s, then

Var (Z) ≤ 8EZ + 2σ2

where σ2 = sups∈T
∑n

i=1 EX
2
i,s.

The given proof uses the symmetrization inequality twice as well as the con-
traction inequality–see [18] Theorem 4.4, and [6] Theorem 11.6–to establish the
bounds

E sup
s∈T

n∑
i=1

X2
i,s ≤ σ2 + 2E sup

s∈T

n∑
i=1

εiX
2
i,s and E sup

s∈T

n∑
i=1

εiX
2
i,s ≤ 4EZ.

Making use of the improved symmetrization inequality cuts the coefficient of
EZ by a factor of 4 to the tighter

Var (Z) ≤ 2EZ + 2σ2 +O(
√
n).

Beyond this textbook example of bounding the variance of an empirical pro-
cess, symmetrization arguments are used to construct confidence sets for em-
pirical processes in [11, 19, 15, 9]. The coefficients in all of their results can be
similarly improved using the improved symmetrization inequality.

5.4. Type, cotype, and Nemirovski’s inequality

In the probability in Banach spaces setting, let Xi ∈ (B, ‖·‖) for i = 1, . . . , n be
a collection of independent zero mean Banach space valued random variables. A
collection of results referred to as Nemirovski inequalities [22, 7] are concerned
with whether or not there exists a constant K depending only on the norm such
that

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

≤ K
n∑

i=1

‖Xi‖2 .

For example, in the Hilbert space setting, orthogonality allows for K = 1 and
the inequality can be replaced by an equality.

One such result requires the notion of type and cotype. A Banach space
(B, ‖·‖) is said to be of Rademacher type p for 1 ≤ p < ∞ (respectively, of
Rademacher cotype q for 1 ≤ q < ∞) if there exists a constant Tp (respectively,
Cq) such that for all finite non-random sequences (xi) ∈ B and (εi), a sequence
of independent Rademacher random variables,

E

∥∥∥∥∥
∑
i

εixi

∥∥∥∥∥
p

≤ T p
p

∑
i

‖xi‖p ,
(
respectively,

∑
i

‖xi‖q ≤ C−q
q E

∥∥∥∥∥
∑
i

εixi

∥∥∥∥∥
q)

.
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These definitions and the original symmetrization inequality lead to the follow-
ing proposition.

Proposition 5.3 ([18] Proposition 9.11, [7] Proposition 3.1). Let Xi ∈ B for
i = 1, . . . , n and Sn = n−1

∑n
i=1 Xi. If (B, ‖·‖) is of type p ≥ 1 with constant

Tp (respectively, of cotype q ≥ 1 with constant Cq), then

E ‖Sn‖p ≤ (2Tp)
pn−p

n∑
i=1

E ‖Xi‖p

E ‖Sn‖q ≥ (2Cq)
−qn−q

n∑
i=1

E ‖Xi‖q .

The proposition can be refined by applying our improved symmetrization
inequality along with the Rademacher type p condition if the Xi are additionally
norm bounded. If the Xi have a common law μ, let W2 = W2(μ, μ

−) be the
Wasserstein distance between μ and its reflection.

Proposition 5.4. Under the setting of Proposition 5.3, additionally assume
that ‖Xi‖ ≤ 1 for i = 1, . . . , n. Then,

E ‖Sn‖p ≤ T p
p n

−p
n∑

i=1

E ‖Xi‖p +
pW2√
2n

E ‖Sn‖q ≥ C−q
q n−q

n∑
i=1

E ‖Xi‖q −
qW2√
2n

.

Proof. In the context of Theorem 3.4, set ψ(·) = ‖·‖p. Given the bound ‖Xi‖ ≤
1, we have that ‖ψ‖Lip = p. Scale by p, and the first result follows.

Note that for identically distributed Xi ∈ B, the order of the original bound
for a type p Banach space is O(n1−p) while the Wasserstein correction term is
O(n−1/2). This correction will give an obvious benefit for spaces of type p < 3/2.
However, even for spaces of type 2, the new bound can be tighter specifically
in the high dimensional setting when d � n. Indeed, consider �∞(Rd), which
is discussed in particular in Section 3.2 of [7] where it is shown to be of type
2 with constant Tp =

√
2 log(2d). For independent and identically distributed

Xi ∈ �∞(Rd), the bounds to compare are

8 log(2d)

n
E ‖Xi‖2∞ and

2 log(2d)

n
E ‖Xi‖2∞ +

√
2

n
W2(μ, μ

−).

Figure 4 displays such a comparison for n = 10, d ∈ {5, 25, 50}, and iid Xi,j +
α/(1+α) ∼ Beta(α, 1) for i = 1, . . . , n and j = 1, . . . , d. Hence, the Xi are Beta
random variables that are shifted to have zero mean. W2(μ, μ

−) is approximated
by EW2(μ5, μ

−
5 ), which is computed via the bootstrap procedure outlined in

Section 4. The new bound can be seen to have better performance than the
old one specifically in the cases of d = 25 and d = 50 when α is not too large.
Note that the new bound does not perform as well when d = 5, and, in general,
improvement in performance occurs when d � n.
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Fig 4. A comparison of the old bound from Proposition 5.3, the red dashed line, and the new
bound from Proposition 5.4, the blue dotted line, for a sample n = 10, and Xi ∈ �∞(Rd)

for dimensions d ∈ {5, 25, 50}. Each Xi = (Xi,1, . . . , Xi,d) where each Xi,j + α/(1 + α)
iid∼

Beta(α, 1). The solid black line indicates the left hand side in the two propositions of E‖Sn‖2∞.
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5.4.1. A Nemirovski variant with weak variance

As one further example of improved symmetrization, a variation of Nemirovski’s
inequality found in Section 13.5 of [6] is proved via a similar symmetrization
argument for the �p norm with p ≥ 1. Let X1, . . . , Xn ∈ R

d be independent zero
mean random variables. Let Bq = {x ∈ R

d : ‖x‖q ≤ 1}, and define the weak
variance Σ2

p = n−2E supt∈Bq

∑n
i=1〈t,Xi〉2. The resulting inequality is

E ‖Sn‖2p ≤ 578dΣ2
p.

Replacing the old symmetrization inequality with the improved version reduces
the coefficient of 578 roughly by a factor of 4 resulting in

E ‖Sn‖2p ≤ 146dΣ2
p +O(n−1/2).

6. Discussion

The symmetrization inequality is a fundamental result for probability in Banach
spaces, concentration inequalities, and many other related areas. However, not
accounting for the amount of asymmetry in the given random variables has led
to pervasive powers of two throughout derivative results. Our improved sym-
metrization inequality incorporates such a quantification of asymmetry through
use of the Wasserstein distance. Besides being theoretically sound, it is shown in
simulations to provide a tightness superior to that of the original result. Going
beyond the inequality itself, this Wasserstein distance offers a novel and pow-
erful way to analyze the symmetry of random variables or lack thereof. It can
and should be applied to countless other results that were not considered in this
current work.

This article detailed a connection between symmetrization and the Wasser-
stein metric to answer the question regarding measuring the asymmetry in
the symmetrization inequality. However, many open questions remain. Theo-
rem 3.4 is a non-asymptotic bound on the difference between the centred sum
and Rademacher sum, which aligns with the usual n−1/2 rate of convergence. A
comparison of this approach with respect to versions of the central limit theorem
under assumptions on μ could comment on the sharpness of this bound as we
move from the non-asymptotic to the asymptotic regime. This would also take
into account how much is lost when moving from the smoothed convolution μ	n

to just μ via Lemma A.3. The numerical experiments of Section 4.3 show the
improvement in the bound as n → ∞, but also show that such improvement is
dampened as d → ∞. While Theorem 3.4 is independent of dimension, clearly
the bootstrap estimator is not. Further investigation of the rate of convergence
in various asymptotic realms would be of interest. Furthermore, a better estima-
tor than the proposed bootstrap estimator for the Wasserstein distance would
improve the performance of this bound in practice.
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Appendix A: Past results used

Lemma A.1 ( Kantorovich-Rubinstein Duality, see [28] ). Under the setting of
Definition 3.1,

W1(μ, ν) = sup
‖φ‖Lip≤1

{∫
X
φdμ−

∫
X
φdν

}
.

Lemma A.2. Under the setting of Definition 3.1, for p < q,

Wp(μ, ν) ≤ Wq(μ, ν).

Proof. Jensen or Hölder’s Inequality

Lemma A.3 ( Convolution property of W2, see [5] ). For Hilbert space valued
random variables Xi with law μi and Yi with law νi for i = 1, . . . , n, define μ∗n

to be the law of
∑n

i=1 Xi and similarly for ν∗n. Then,

W 2
2 (μ

∗n, ν∗n) ≤
n∑

i=1

W 2
2 (μi, νi).

Lemma A.4 ( Convergence of Empirical Measure, see [5] ). Let X1, . . . , Xn be
independent and identically distributed Banach space valued random variables
with common law μ. Let μn be the empirical distribution of the Xi. Then,

Wp(μn, μ) → 0, as n → ∞.
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