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Abstract: We consider the problem of n-class classification (n > 2), where
the classifier can choose to abstain from making predictions at a given
cost, say, a factor o of the cost of misclassification. Our goal is to design
consistent algorithms for such n-class classification problems with a ‘reject
option’; while such algorithms are known for the binary (n = 2) case, little
has been understood for the general multiclass case. We show that the well
known Crammer-Singer surrogate and the one-vs-all hinge loss, albeit with
a different predictor than the standard argmax, yield consistent algorithms
for this problem when a = % More interestingly, we design a new convex
surrogate, which we call the binary encoded predictions surrogate, that is
also consistent for this problem when o = 1 and operates on a much lower
dimensional space (log(n) as opposed to n). We also construct modified
versions of all these three surrogates to be consistent for any given a €
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1. Introduction

In classification problems, one often encounters cases where it would be better
for the classifier to take no decision and abstain from predicting rather than
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make a wrong prediction. For example, in the problem of medical diagnosis with
inexpensive tests as features, a conclusive decision is good, but in the face of
uncertainty, it is better to not make a prediction and instead go for costlier tests.

1.1. Binary classification with an abstain option

For the case of binary classification, El-Yaniv and Wiener [7, 8] call this problem
selective classification. They study the fundamental trade-off between abstaining
and predicting and give theoretical results, but the algorithms suggested by their
theory are not computationally tractable due to the usage of ERM oracles.

Another branch of work for the binary classification case [2, 28, 13] has roots
in decision theory, where abstaining is just another decision that incurs a cost.
The main idea here is to find appropriate computationally efficient optimization
based algorithms that give the optimal answer in the limit of infinite data. Yuan
and Wegkamp [28] show that many standard convex optimization based proce-
dures for binary classification like logistic regression, least squares classification
and exponential loss minimization (Adaboost) yield consistent algorithms for
this problem. But as Bartlett and Wegkamp [2] show, the algorithm based on
minimizing the hinge loss (SVM) requires a modification to be consistent. The
suggested modification is rather simple: use a double hinge loss with three linear
segments instead of the two segments in standard hinge loss, the ratio of slopes
of the two non-flat segments depends on the cost of abstaining a. Cortes et al.
[4] learn a separate “rejector” function, in addition to a classifier, for identifying
instances to reject. They also show that such an algorithm is consistent for this
problem. There have been several empirical studies [10, 11, 12, 9] as well on this
topic.

1.2. Multiclass classification with an abstain option

In the case of multiclass classification with an abstain option, there has been
empirical work [31, 21, 27]. However, to the best of our knowledge, there exists
very little theoretical work on this problem. Zhang et al. [29] define a new family
of surrogates for this problem, but their family of surrogates are known to be
not consistent for the decision theoretic version of the problem. There has also
been work on learning separate thresholds for rejection per class [15], but such
algorithms are also not known to be consistent for this problem.

We fill this gap in the literature by providing a formal treatment of the mul-
ticlass classification problem with an abstain option in the decision theoretic
setting. Our work can also be seen to be in the statistical decision theoretic
setting, and can be seen to generalize and extend the works of Bartlett and
Wegkamp [2], Yuan and Wegkamp [28] and Grandvalet et al. [13] to the multi-
class setting. In particular, we give consistent algorithms for this problem.

The reject option is accommodated into the problem of n-class classification
through the evaluation metric. We seek a function h : X—{1,2,...,n, L}, where
X is the instance space, and the n classes are denoted by {1,2,...,n} = [n] and
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L denotes the action of abstaining or the ‘reject’ option. The loss incurred by
such a function on an example (z,y) with h(z) =t is given by

1 ift#yandt# L
Cly,t)=qa ift=1 (1.1)
0 ift=y

where a € [0,1] denotes the cost of abstaining. We will call this loss the
abstain(«) loss.
It can be easily shown that the Bayes optimal risk for the above loss is
attained by the function A’ : X—[n] U {L} given by
b () = {argmaxye[n]px(y) if max,'Je[n] pz(y) > 1—« (12)
1L otherwise

where p,(y) = P(Y = y|X = z). The above is often called ‘Chow’s rule’ [3]. It
can also be seen that the interesting range of values for « is [0, ”771] as for all
o> an the Bayes optimal classifier for the abstain(«) loss never abstains. For
example, in binary classification, only o < % is meaningful, as higher values of
« imply it is never optimal to abstain.

For small «, the classifier h} acts as a high-confidence classifier and would
be useful in applications like medical diagnosis. For example, if one wishes to
learn a classifier for diagnosing an illness with 80% confidence, and recommend
further medical tests if it is not possible, the ideal classifier would be hf 5, which
is the minimizer of the abstain(0.2) loss. If a = %, the Bayes classifier h}, has
a very appealing structure: a class y € [n] is predicted only if the class y has
a simple majority. The abstain(«) loss is also useful in applications where a
‘greater than 1 — « conditional probability detector’ can be used as a black box.
For example a greater than % conditional probability detector plays a crucial
role in hierarchical classification [19].

Abstain(a) loss with v = 1 will be the main focus of our paper and will be
the default choice when the abstain loss is referred to without any reference to
«. This will be the case in Sections 3, 4, 5 and 7. In Section 6, we show how
to extend our results to the case @ < 1/2. On the other hand, we leave the
case a > 1/2 to future work. We explain why this case might be fundamentally
different in Section 1.4.

Since the Bayes classifier h’, depends only on the conditional distribution of
Y| X, any algorithm that gives a consistent estimator of the conditional prob-
ability of the classes, e.g., minimizing the one vs all squared loss, [17, 25], can
be made into a consistent algorithm (with a suitable change in the decision) for
this problem. However, smooth surrogates that estimate the conditional prob-
ability do much more than what is necessary to solve this problem. Consistent
piecewise linear surrogate minimizing algorithms, on the other hand, do only
what is needed, in accordance with Vapnik’s dictum [23]:

When solving a given problem, try to avoid solving a more general problem as an
intermediate step.
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For example, least squares classification, logistic regression and SVM are all
consistent for standard binary classification, but SVMs avoid the strictly harder
conditional probability estimation problem as an intermediate problem. Piece-
wise linear surrogates (like the hinge loss used in SVM) have other advantages
like easier optimization and sparsity (in the dual) as well, hence finding consis-
tent piecewise linear surrogates for the abstain loss is an important and inter-
esting task.

1.3. Contributions

We show that the n-dimensional multiclass surrogate of Crammer and Singer
(CS) [5] and the simple one vs all hinge (OVA) surrogate loss [20] both yield
consistent algorithms for the abstain(%) loss. Both these surrogates are not
consistent for the standard multiclass classification problem [22, 16, 30].

We then construct a new convex piecewise linear surrogate, which we call
the binary encoded predictions (BEP) surrogate that operates on a logy(n) di-
mensional space, and yields a consistent algorithm for the n-class abstain(%)
loss. When optimized over comparable function classes, this algorithm is more
efficient than the Crammer-Singer and one vs all algorithms as it requires to
only find log,(n) functions over the instance space, as opposed to n functions.
This result is surprising because, it has been shown that one needs to minimize
at least a n — 1 dimensional convex surrogate to get a consistent algorithm for
the standard n-class problem, i.e., without the reject option [17]. Also, the only
known generic way of generating consistent convex surrogate minimizing algo-
rithms for an arbitrary loss [17, 18], when applied to the n-class abstain loss,
yields an n-dimensional surrogate.

We also give modified versions of the CS, OVA and BEP surrogates that yield

consistent algorithms for the abstain(a) loss for any given « € [0, %]

1.4. The role of o

Conditional probability estimation based surrogates can be used for designing
consistent algorithms for the n-class problem with the reject option for any
a € (0, ”T_l), but the Crammer-Singer surrogate, the one vs all hinge and the
BEP surrogate and their corresponding variants all yield consistent algorithms
only for a € [0,3]. While this may seem restrictive, we contend that these
form an interesting and useful set of problems to solve. We also suspect that,
abstain(a) problems with o > % are fundamentally more difficult than those
with a < %, for the reason that evaluating the Bayes classifier A}, () can be done
for a < % without finding the maximum conditional probability — just check if
any class has conditional probability greater than (1 — «) as there can only
be one. This is also evidenced by the more complicated partitions (more lines
required to draw the partitions) of the simplex induced by the Bayes optimal

classifier for a > % as shown in Figure 1.
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Fic 1. (a) The abstain(a) loss with n = 3 as a matriz, where rows correspond to classes
{1, 2,3} and columns correspond to predictions {1,2,3, L}; (b,c,d) the partition of the simplex
As, depicting the optimal prediction for different conditional probabilities, induced by the
Bayes classifier for the abstam(%), abstain(%) and abstain(%) losses respectively.

Notation: Throughout the paper, we let R = (—o00,00) and Ry = [0, 00).
Let Z,Z denote the sets of all integers and non-negative integers, respectively.
For n € Zy, we let [n] = {1,...,n}. For z € R, we let zy = max(0,z). We
denote by A,, the probability simplex in R": A, = {p € R} : >_"" | p; = 1}. For
n € Z4, we denote by 1™ and 0™ the n-dimensional all ones and all zeros vector,
and for ¢ € [n] we denote by e’ the n-dimensional vector with 1 in position i
and 0 elsewhere. Often we omit the dimension n from 1",0", e} as it is clear
from the context. For any vector u, we denote by u; the it" element of the
components of u when sorted in descending order. We denote by sign(u), the
sign of a scalar u, with sign(0) =1

2. Problem setup

In this section, we formally set up the problem of multiclass classification with
an abstain option and explain the notion of consistency for the problem.

Let the instance space be X'. Given training examples (X1,Y1),..., (Xm, Yim)
drawn i.i.d. from a distribution D on X x [n], the goal is to learn a prediction
function h : X—[n] U {L}.

For any given « € [0, 1], the performance of a prediction function h : X—[n]U
{L} is measured via the abstain(ca) loss ¢* from Equation (1.1). We denote the
loss incurred on predicting ¢ when the correct label is y by ¢*(y,t). For any
t € [n]U{L}, we denote by £; the vector of losses [(*(1,t),...,0%(n,t)]" € R".
The abstain(«) loss and a schematic representation of the Bayes classifier for
various values of « given by Equation (1.2) are given in Figure 1 for n = 3.

Specifically, the goal is to learn a function h : X—[n] U { L} with low expected
{*-error

er’ [h] = Exy)~p[t* (Y, h(X))] .

Ideally, one wants the ¢“-error of the learned function to be close to the optimal

{*-error
0% % . o
"= f h].
“'p hx— (L} erp [h]
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An algorithm, which outputs a function h,, : X—[n]U{L} on being given
a random training sample as above, is said to be consistent w.r.t. £ if the
£*-error of the learned function h,, converges in probability to the optimal for
any distribution D: er‘g () L er%*. Here, the convergence in probability is over
the learned classifier h,, as a function of the training sample distributed i.i.d.
according to D.

However, minimizing the discrete ¢“-error directly is computationally diffi-
cult; therefore one uses instead a surrogate loss function v : [n] x R4—R ., for
some d € Z,, and learns a function f : X—R? by minimizing (approximately,
based on the training sample) the t-error

erf[f] = Exyv)~p[¥ (Y, £(X))] .

Predictions on new instances z € X are then made by applying the learned
function f and mapping back to predictions in the target space [n] U {1} via
some mapping pred : R4—[n] U {1}, giving h(x) = pred(f(z)).

Under suitable conditions, algorithms that approximately minimize the -
error based on a training sample are known to be consistent with respect to v,
i.e., to converge in probability to the optimal ¢-error

pox _

Y
ery

f:?i'rg]Rd erD[f] '
Also, when v is convex in its second argument, the resulting optimization prob-
lem is convex and can be efficiently solved.

Hence, we seek a surrogate and a predictor (1, pred), with ¢ convex over its
second argument, and satisfying a bound of the following form holding for all
f: X¥—>R?

e’y [pred o f] — e’y < ¢ (er% [f] — er%’*)

where ¢ : R—=R is increasing, continuous at 0 and £(0) = 0. A surrogate and
a predictor (1, pred), satisfying such a bound, known as an excess risk trans-
form bound, would immediately give an algorithm consistent w.r.t. ¢ from an
algorithm consistent w.r.t. ¢¥». We derive such bounds w.r.t. the (2 loss for the
Crammer-Singer surrogate, the one vs all hinge surrogate, and the BEP surro-
gate, with £ as a linear function.

3. Excess risk bounds for the Crammer-Singer and one vs all hinge
surrogates

In this section, we give an excess risk bound relating the abstain loss ¢, and the
Crammer-Singer surrogate 9“5 [5] and also the one vs all hinge loss.

Define the Crammer-Singer surrogate %S : [n] x R*—R, and predictor
pred® : R"—[n] U {L} as

POS(y,u) = (maxu; —u, + 1)+
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predgs (w) = {argmaxie[n] w; if (1) .f Uy > T
1 otherwise
where (@) = max(a,0), ug) is the i th element of the components of u when
sorted in descending order and 7 € (0, 1) is a threshold parameter.
Similarly, define the one-vs-all surrogate 1/°VA : [n] x R*—R, and predictor
predVA : R"—[n] U {1} as

n

POV (y,u) = Z Ly =1 —wi)y + 1y # ) (1 + i)+

predOVA () — argmax;cp, u; if max;u; > 7
T 1 otherwise

where (a)+ = max(a,0) and 7 € (—1,1) is a threshold parameter, and ties are
broken arbitrarily, say, in favor of the label y with the smaller index.

The following is the main result of this section, the proof of which is in Section
8.

Theorem 3.1. Let n € Zy, 7cs € (0,1) and tova € (—1,1). Then for all
f: Xx—>R"

(er%cs [f] — er}@cs’*)
2min(7cs, 1 — 7¢s)
2(1 = |roval)

Remark 1. The form of the abstaining region for the CS and OVA predictors
arise due to the properties of the surrogate. In particular, due to the fact that
the CS surrogate is invariant to adding a constant to all coordinates of the
surrogate prediction u, the form of the CS abstaining region has to depend on
the difference between two coordinates of u.

ert, [predgcsS o f] — erly”

¢ OVA £
erplpred; ., of] —erp” <

Remark 2. It has been pointed out previously by Zhang [30], that if the data
distribution D is such that max, p,(y) > 0.5 for all z € X, the Crammer-Singer
surrogate 1S and the one vs all hinge loss are consistent with the zero-one loss
when used with the standard argmax predictor. This conclusion also follows
from the theorem above. However, our result yields more — in the case that
the distribution satisfies the dominant class assumption only for some instances
x € X, the function learned by using the surrogate and predictor (¢©5, predgs)
or (pOVA pred®V*) gives the right answer for such instances having a dominant
class, and fails in a graceful manner by abstaining for other instances that do
not have a dominant class.
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4. Excess risk bounds for the BEP surrogate

The Crammer-Singer surrogate and the one vs all hinge surrogate, just like sur-
rogates designed for conditional probability estimation, are defined over an n-
dimensional domain. Thus any algorithm that minimizes these surrogates must
learn n real valued functions over the instance space. In this section, we construct
a [logy(n)] dimensional convex surrogate, which we call the binary encoded pre-
dictions (BEP) surrogate, and give an excess risk bound relating this surrogate
and the abstain loss. In particular these results show that the BEP surrogate is
calibrated w.r.t. the abstain loss; this in turn implies that the convez calibration
dimension (CC-dimension) [17] of the abstain loss is at most [log,(n)].

The idea of learning log(n) predictors for an n-class classification problem has
some precedent [1, 24], but their objectives are focussed on the multiclass 0-1
loss, and they are not concerned about consistency or calibration of surrogates.

For the purpose of simplicity let us assume n = 2¢ for some positive integer
d.! Let B : [n]—{+1,—1}% be any one-one and onto mapping, with an inverse
mapping B~! : {+1, —1}9—[n]. Define the BEP surrogate ¢¥®"F : [n] x R—R |
and its corresponding predictor pred®" : R4—[n] U {1} as

YPEP (y,u) = (g,rg[g]( Bj(y)u; +1)4

pred®®F (u) — 1 . if mini?[d] lu;| <7
B~ 1(sign(—u)) otherwise

where sign(u) is the sign of u, with sign(0) = 1 and 7 € (0,1) is a threshold
parameter.

To make the above definition clear, let us see what the surrogate and predictor
look like for the case of n =4 and 7 = % We have d = 2. Let us fix the mapping
B such that B(y) is the standard d-bit binary representation of (y — 1), with

—1 in the place of 0. Then we have,

PBPEP(1,u) = (max(—ui, —ug) + 1),
wBEP(Q, u) = (max(—uj,uz)+ 1)y
PP (3,u) = (max(uy, —ug) + 1)4
QZJBEP (47 u) (max(ula UQ) + 1)

1 ifur > J,u2> 3

2 ifur > gup < —
predg’EP(u) =¢3 ifu < —%,uz >
4
L

N[ N[

: 1 1
if ug < —5,U2 < —3
otherwise

Figure 2 gives the partition induced by the predictor pred]:fEP.
2

The following is the main result of this section, the proof of which is in Section
8.

Mf n is not a power of 2, just add enough dummy classes that never occur.
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(5]
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[

U1

(0,0)

Fic 2. The partition of R? induced by predliEP
2

Theorem 4.1. Letn € Z, and 7 € (0,1). Let n = 2%. Then, for all f : X—R?

( wBEP [f} ¢BEP *
ery —ery )
erh[pred®F o f] — erl” <

2min(r,1 —7)

Remark. The excess risk bounds for the CS, OVA, and BEP surrogates suggest
that 7 = % is the best choice for CS and BEP surrogates, while 7 = 0 is the best
choice for the OVA surrogate. However, intuitively 7 is the threshold converting
confidence values to predictions, and so it makes sense to use 7 values closer to
0 (or —1 in the case of OVA) to predict aggressively in low-noise situations, and
use larger 7 to predict conservatively in noisy situations. Practically, it makes
sense to choose the parameter T via cross-validation.

5. BEP surrogate optimization algorithm

In this section, we frame the problem of finding the linear (vector valued) func-
tion that minimizes the BEP surrogate loss over a training set {(x;,v:)}",
with x; € R* and y; € [n], as a convex optimization problem. Once again, for
simplicity we assume that the size of the label space is n = 2% for some d € Z..
The primal and dual versions of the resulting optimization problem with a norm
squared regularizer are given below.

Primal problem:

m d
. A 9
min i+ = Wi
W17~~~,Wd’§17~~,§m;£ 2 ;H ]H
such that Vi € [m],j € [d]

§i > Bj(yz')WjTXi +1

& >0
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Dual problem:

m m

m
1
ety ™ 2P0 = 53 2D b < ()

i=14'=1

such that Vi € [m],j € [d] U {0}
d
Bij =0 Y Biy=1.
Jj’'=0

where pui,i(8) = 325_; B;(4i)B; (yir)Bij Bir -

We optimize the dual as it can be easily extended to work with kernels. The
structure of the constraints in the dual lends itself easily to a block coordinate
ascent algorithm, where we optimize over {f; ; : j € {0,...,d}} and fix every
other variable in each iteration. Such methods have been recently proven to
have exponential convergence rate for SVM-type problems [26], and we expect
results of those type to apply to our problem as well.

The problem to be solved at every iteration reduces to a Iy projection of a
vector g' € R? on to the set S; = {g € R? : g'b? < 1}, where b? € {£1}9 is
such that b; = B;(y;). The projection problem is a simple variant of projecting
a vector on the l; ball of radius 1, which can be solved efficiently in O(d) time
[6]. The vector g’ is such that for any j € [d],

. A | -
gi = o b~ 3 > (xixi) B Bj(yir)

V=13 #i

6. Extension to abstain(a) loss for a < %

The excess risk bounds derived for the CS, OVA hinge loss and BEP surrogates
apply only to the abstain(3) loss. But it is possible to derive such excess risk
bounds for abstain(«) with o € [0, £] with slight modifications to the CS, OVA
and BEP surrogates.

Let y(a) = max(a, —1) and B : [n]—{—1, 1} be any bijection. Define ¢)©5« :
[n] x R"—=R,, pOVAe : [n] x R"—=R, and ¢BFP2 : [n] x RI=R ., with n = 2¢
as

YOSy m) = g.max(amm(uj_uy>,<1_a>mm<uj_uy))+2a
J#y J#y

PRy ) = 2. (2_: (1= a1 = w160 £ D0 - )+ )

@[JBEP’O‘(% u) = 2 -max (a maxy(B;(y)u;), (1 — ) max’y(Bj(y)uj)> + 2«
j€ld] jeldl

Note that wCS,% _ @/}CS, d}OVA,% _ ¢OVA and wBEP,% _ ,l/JBEP.
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For any p € A, the u € R™ that optimises pT'z/JOVA(.),pT'(/JCS(.) and the
u € R? that optimises pT¢BEP(.) takes one of n+1 possible values. The modifi-
cations to these surrogates change the optimal values in the exact way to ensure
that the modified surrogates are optimal for the abstain(«) loss. See equations
8.15 and 8.16 for the optimal u values for the OVA surrogate, equations 8.1 and
8.2 for the CS surrogate and equation 8.28 and 8.29 for the BEP surrogate.

One can get similar excess risk bounds for these modified surrogates as shown
in Theorem below, the proof of which is in Section 8.

Theorem 6.1. Letn € Zy,7 € (0,1),7 € (=1,1) and a € [0,%]. Let n = 2¢.
Then, for all f: X —=R%, g : X =R,

02 cs 0% % 1 CS,a s,
erp [predT o g} —€rp S m (er% [g] — er’% ) ,
o o 1 OVA,a OVA,a
OVA 0 *
b lpred?™ o)~y < gy (b —ery ).
a a 1 BEP,a BEP,a
A BEP 09 % s
e lpred? of] —ery < e (e ) ey ).

Remark. When n = 2, the Crammer-Singer surrogate, the one vs all hinge and
the BEP surrogate all reduce to the hinge loss and « is restricted to be at most
% to ensure the relevance of the abstain option. Applying the above extension
for a < % to the hinge loss, we get the ‘generalized hinge loss’ of Bartlett and

Wegkamp [2].

7. Experimental results

In this section, we give our experimental results for the proposed algorithms on
both synthetic and real datasets. The synthetic data experiments illustrate the
consistency of the three proposed algorithms for the abstain loss. The experi-
ments on real data illustrate that one can achieve lower error rates on multiclass
datasets if the classifier is allowed to abstain, and also show that the BEP al-
gorithm has competitive performance with the other two algorithms

7.1. Synthetic data

We optimize the Crammer-Singer surrogate, the one vs all hinge surrogate and
the BEP surrogate, over appropriate kernel spaces on a synthetic data set and
show that the abstain(3) loss incurred by the trained model for all three algo-
rithms approaches the Bayes optimal under various thresholds.

The dataset we used, with n = 8 classes and 2-dimensional features, was
generated as follows. We randomly sample 8 prototype vectors vi,...,vs € R?,
with each v, drawn independently from a zero mean unit variance 2D-Gaussian,
N(0,15) distribution. These 8 prototype vectors correspond to the 8 classes.
Each example (x,y) is generated by first picking y from one of the 8 classes
uniformly at random, and the instance x is set as x = v, + 0.65 - u, where
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Fic 3. Results on synthetic data: Performance of the CS (left), OVA (middle) and BEP
(right) surrogates for various thresholds as a function of training sample size.

u is independently drawn from N(0,Is). We generated 12800 such (x,y) pairs
for training, and another 10000 examples each for testing and hyper-parameter
validation.

The CS, OVA, BEP surrogates were all optimized over a reproducing kernel
Hilbert Space (RKHS) with a Gaussian kernel and the standard norm-squared
regularizer. The kernel width parameter and the regularization parameter were
chosen by grid search using the separate validation set.?

As Figure 3 indicates, the expected abstain risk incurred by the trained model
approaches the Bayes risk with increasing training data for all three algorithms
and intermediate 7 values. The excess risk bounds in Theorems 3.1 and 4.1
break down when the threshold parameter 7 lies in {0, 1} for the CS and BEP
surrogates, and in {—1,1} for the OVA surrogate. This is supported by the ob-
servation that, in Figure 3 the curves corresponding to these thresholds perform
poorly. In particular, using 7 = 0 for the CS and BEP algorithms implies that
the resulting algorithms never abstain.

Though all three surrogate minimizing algorithms we consider are consistent
w.r.t. abstain loss, we find that the BEP and OVA algorithms use less computa-
tion time and samples than the CS algorithm to attain the same error. We note
that for the BEP surrogate to perform well as above, it is critical to use a flexible
function class (such as the RBF kernel induced RKHS as above). In particular,
when optimized over a linear kernel function class the BEP surrogate performs
poorly (experiments not shown here), due to its restricted representation power.

7.2. Real data

We ran experiments on real multiclass datasets from the UCI repository, the
details of which are in Table 1. In the yeast, letter, vehicle and image
datasets, a standard train/test split is not indicated, hence we create a random
split ourselves.

2We used Joachims’ SVM-light package [14] for the OVA and CS algorithms.
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TABLE 1
Details of datasets used.

# Train | # Test | # Feat | # Class
satimage 4,435 2,000 36 6
yeast 1,000 484 8 10
letter 16,000 4,000 16 26
vehicle 700 146 18 4
image 2,000 310 19 7
covertype 15,120 565,892 54 7
TABLE 2

Error percentages (as a fraction of all test instances) of the three algorithms when the
rejection percentage is fived at 0%, 20% and 40%.

[ Reject: ] 0% [ 20% [ 40% |
[ Algorithm: || CS OVA BEP || CS OVA BEP || CS OVA BEP ‘

satimage 12.2 8.5 8.1 6.8 2.3 2.3 2.9 0.9 0.5
yeast 394 405 394 26.8 276 27.2 18.1 189 18.1
letter 4.2 2.5 4.6 1.2 0.1 0.6 0.3 0.0 0.0

vehicle 315 19.1 20.5 24.1 9.4 13.1 16.0 5.4 6.1
image 5.8 3.8 4.8 1.9 0.9 0.9 0.7 0.6 0.6

covertype 31.8 279 294 23.1 183 204 16.2  10.9 12.8

All three algorithms (CS, OVA and BEP) were optimized over an RKHS
with a Gaussian kernel and the standard norm-squared regularizer. The kernel
width and regularization parameters were chosen through validation — 10-fold
cross-validation in the case of satimage, yeast, vehicle and image datasets,
and a 75-25 split of the train set into train and validation for the letter and
covertype datasets. For simplicity we set 7 = 0 (or 7 = —1 for OVA) during
the validation phase in the first set of experiments. In the second set of exper-
iments, we chose the value of 7 along with the kernel width and regularisation
parameters to optimise the abstain(3) loss.

The results of the first set of experiments with the CS, OVA and BEP al-
gorithms are given in Table 2. The rejection rate is fixed at some given level
(0%, 20% and 40%) by choosing the threshold 7 for each algorithm and dataset
appropriately. As can be seen from the Table, the BEP algorithm’s performance
is comparable to the OVA, and is better than the CS algorithm. However, Table
4, which gives the training and testing times for the algorithms, reveals that the
BEP algorithm runs the fastest, thus making the BEP algorithm a good option
for large datasets. The main reason for the observed speedup of the BEP is that
it learns only log,(n) functions for a n-class problem and hence the speedup
factor of the BEP over the OVA would potentially be better for larger n.

In the second set of experiments we fix the cost of abstaining «, to be equal
to % The kernel width, regularisation and threshold parameters are chosen to
optimise the abstain(4) loss in the validation phase. The abstain(1) loss values
for the CSA, OVA and BEP algorithm with tuned thresholds are given in Table
3. The most interesting values for this are on the vehicle and yeast dataset,



Consistency for abstaining multiclass algorithms 543

TABLE 3
The Abstam(%) loss wvalues for the CS, OVA, and BEP algorithms. The regularisation,
kernel width and threshold parameters are tuned on the validation set.

| Algorithm: || CS OVA BEP ‘

satimage 0.122  0.085 0.080
yeast 0.376  0.361  0.382
letter 0.042 0.025 0.047

vehicle 0.328 0.184 0.201
image 0.058 0.039 0.051

covertype 0.319 0.275 0.294

TABLE 4
Total train time (total test time) in seconds.

‘ Algorithm H CS ‘ OVA | BEP ||
satimage 1582(49) 86(9) 42(5)
yeast 10(2) 6(1) 2(1)
letter 2527(180) 635(42) 220(13)
vehicle 5(0) 3(0) 1(0)
image 211(5) 16(1) 5(0)
covertype || 9930(30721) | 10563(13814) | 502(3943)

where the final algorithms chose thresholds that abstain in the test set and
perform marginally better than predicting some class on all instances, the loss
values for which are simply given by the first three columns of Table 2.

8. Proofs

Both Theorems 3.1 and 4.1 follow from Theorem 6.1, whose proof we divide into
three separate parts below.

8.1. Modified Crammer-Singer surrogate

Let v(a) = max(a, —1). We have,

1pcs,a(y)u) — 92.max (a IJII;;{’Y(Uj —uy), (1 — ) Tﬁfﬁ(uj — uy)> + 2a,

argmax;ci, u;  if uay —u@) > 7

redS(u) =
pred;(u) 1 otherwise

Define the sets Uy, ... ,U,, U1 such that U; is the set of vectors u in R™, for
which pred®(u) =i
Uy = {ueR":u,>u;+r7forall j#y}; yen]
Ul = {ueR":upy <up) +71}
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The following lemma gives some crucial, but straightforward to prove,
(in)equalities satisfied by the Crammer-Singer surrogate.

Lemma 8.1. Let a € [0, 3].

Vy e n], Vpe A,

p Y e,) = 2(1-p,), (8.1)
p Y H0) = 2a,
Vu € R", Vy€cargmax;u;, Vy' ¢ argmax;u;
Py u) = 20 (u) —uay + 1)+, (8.3)
PNy ) > 21— a)(ua) — ) + 20 (8.4)

where e, is the vector in R™ with 1 in the y'" position and 0 everywhere else.
We will prove the following theorem.

Theorem 8.2. Let « € |0, %],n e N, 7 €(0,1),. Then for all f : X—R"™

I cs 0 1 ( PO wCS‘a’*>
d f] — < f] —
erp [pred;” of] —erp ™ < 2 min(r, 1 —7) erp  [f] —erp

Proof. We will show that Vp € A,, and all u € R?
pT,l,bCS,a (u) _ ’u/igﬂgn pT’l,[)CS’a(u/)
> 2min(r,1—7) (pTEgredgsm) - mtin p'e). (8.5)

The Theorem simply follows from linearity of expectation.
Case 1: p, > 1 — « for some y € [n].
We have that y € argmin,p ' £;".
Case la: u € U
The RHS of Equation (8.5) is zero, and hence becomes trivial.
Case 1b: u c U]

We have that wqy —u@) < 7. Let ¢ = We then have

i€argmax ;u; pi.
p Y (u) —p PP (e,)

(8.1) - -

= > o pd W+ Y p @y, u) —2(1 - py)

LU= (1) G <u(q)

(8.3), (8.4)
> 2qa(u(z) —ua) + 1)

+2(1 = @) (1 — ) (uy —ug)) + @) —2(1 —py)
2(a +py — 1) + 2<U(2) — u(l))(a +q— 1)
2(py +a—1)(1—71) . (8.6)

vV

The last inequality follows from w) — u@) > —7 because, if ¢ > p, then
U(1) = U(2)-

P £pacs(w —minp £ =p LY —p 'Ly =p, +a—1 (8.7)
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From Equations (8.6) and (8.7) we have
pT,l/JCS,a (u) — inf pT,l/)CS,a (u/)
u’'eR”
> 2(1-71) (pTﬁg‘redgs(u) - mtin p'e) (8.8)

Case lc:u e R™\ (U UUT)

We have predgs(u) =y #y. Alsopy <1—p, <aand up) = uy > up) + 7.
Let u’ € R™ be such that uy = u,,uy, = u, and u; = uj for all i ¢ {y,y'}.

We have

pT Y5 (w) - p Y ()
= p®(y,u) + py Sy u)
— (P> (y, ) + py @ (Y, 1))
= py @y u) = (y,0) = py (P (Y ) — PP (Y )

(py — 2y ) (W75 (y,u) — 5% (y, "))

(8.3), (8.4)

1-— a)(u(l) — U(g)) + 20 — 20[(’LL(2) —U1) + 1)+>
1—a)(7) 4+ 2a —2a(—7+1))
= (py — py)(27) (8.9)

\YA\Y%
)
<

|
]
Cd\

The second inequality above follows from the reasoning that the term is mini-
mized when (u(;) — u()) is as small as possible, which is 7 in this case.
We also have that

P £ cacs(w) —minp £ =p Ly —p 'Ly =p, —py (8.10)
From Equations (8.9) and (8.10) we have
pTwCS,a(u) _ inf pTwCS,a(u/)
u/ERn
> 27(pT£§red§s(u) — mtin pTﬁf) (8.11)

Case 2: py < 1—aforall ¢ € [n]
We have that | € argmin,p ' £5
Case 2a: u € U7 (or pred®(u) = 1)
The RHS of Equation (8.5) is zero, and hence becomes trivial.
Case 2b: u € R* \ U7 (or predT5(u) # 1)
Let pred®S(u) = argmax;u; = 3. We have that U1y = Uy > u) + 7 and
Py <1—a.

pT¢CS’a(u) _ pT,lpCS,a (0)

n

= > P () + pyp®(y,u) | —2a
i=1jiy
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(8.3), (8.4)

> 0 2(1—py)(1 - a)(uay — ue) + 2a(l - py)
+2pya(uy —u@y +1) — 2a

(u@y — u2)(2(1 —py)(1 — a) — 2apy)

2 2(1 = py — a)(7) (8.12)
We also have that
P eacs (w) — min p' 4 =p'€—p'ti=1-a-p, (8.13)

From Equations (8.12) and (8.13) we have
pT,lpCS,a(u) — inf pT,l/)CS,a(u/)
u’ ER™

> 2T(pT£gredSs(u) — mtin pTﬁf) (8.14)

Equation (8.5), and hence the theorem, follows from Equations (8.8), (8.11) and
(8.14). O

8.2. Modified one-vs-all hinge

We have
n
O = 2 (X (1=l - w41 £ )0 )1+ )y ))
i=1
pred?VA(u) _ argmax;e | i if ma%j uj; > T
1L otherwise

Define the sets U7, ..., U], U] such that U; is the set of vectors u in R", for

which pred®V4(u) = i

Uy = {fueR":uy > 7,y = argmax,c, ui}, y € [n]
Ul = {ueR":u; <7foralljen]}

The following lemma gives some crucial, but straightforward to prove,
(in)equalities satisfied by the OVA hinge surrogate.

Lemma 8.3.

Yy € [n],Vp € A, ,Vu € [-1,1]"

p V% (2e, —1) = 4(1-p,) (8.15)
p pOVAY (1) = 4a (8.16)
OV (yu) = 2((1—0a)) u;—auy) +c (8.17)

J#y

where ¢ = 2((1 —a)(n — 1) + ).
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Theorem 8.4. Letn € N,7 € (0,1) and o € [ } Then for all £ : X —R",

« o 1 a o
er’ [pred®VA o f] —er}) " < A=) (er%OVA [f] — er%OVA *) .

2(1 = |7|

Proof. We will show that Vp € A, and allu € [-1,1]"
pT,(/JOVA,a (ll) _ ulgﬂgn p 1/JOVA a(u )
> 2(1—|r))(p'e bredOVA-a () — TN p'ey), (8.18)

the Theorem simply follows from the observation that for all u € R™ clipping
the components of u to [~1,1] does not increase ¥/°VA(y, u) for any y.
Case 1: p, > 1 — « for some y € [n].
We have that y € argmin,p £
Case la: u € [-1,1]" NU
The RHS of Equation (8.18) is zero, and hence becomes trivial.
Case 1b: u e [-1,1]" NUT
We have that max; u; < 7. And hence

pT’l/JOVA’a(u) _ pT¢OVA,a(2ey o 1)

(8.17) 22]91- (1-a) Zuj —au; | +2(1—a)(n—1)+a) —4(1 —py,)
= i

= Y 2u((l-a)(1l-p) —pa) + 21— a)(n - 1) +a) — 41— p)

n

= > 2u(l-a-p)+2((1-a)(n—1)+a)—4(1 - p,)

i=1

> Y- -a-p)+2r(l—a—p,)+2((1—a)(n—1)+a)

i€[n]\{y}
—4(1 = py)

= 2(1-pyt(n-1N(a-1)+2r(1-a—py) +2((1-a)(n-1)+a)
—4(1 —py)

= 2(1-7)(a+p,—1) (8.19)

We also have

P bpeaovauy —Minp £ =p L —p L =p, +a -1 (8.20)
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From Equations (8.19) and (8.20) we have for all u € [-1,1]" NUT]

. A«
pTz,ZJOVA’O‘(u) . u}g]gn pT’l,[JOV ,oz(u/)

> 21— 7)(p £yeqova ) — minp ' £7) (8.21)

Case 1c: u € [-1,1]"\ Uy UUT)

2%

We have pre u) =y #y. Also py <o ;uy >7and uy > uy.

pT’l[JOVA’a(u) _ pT¢OVA,a(2ey _ 1)

S OV i u) - 4(1 - p,)

i=1

(8.15)
(817) S [ (1-a)Y wy—au; | +2((1—a)(n—1) +a) —4(1-p,)
i=1 j#i

= Z 2u; (1 — a)(1 — pi) — pia) +2((1 —a)(n — 1) + a) — 4(1 — p,)

= ZQui(l —a—p)+2((1—a)(n—1)+a)—4(1—p,)

i=1

> > 2(-1)(1 = a—pi)+ 2uy (2 - 20— py — py)
i€[n]\{y.y'}
+2(1—a)(n—1)+a) —4(1 —py)
> 2(1—py—py +(n—2)(a—1))+27(2 - 2a —py — py)
+2((1 —a)(n—1)+a) —4(1 — py)
2(=py —py) +27(2 = 200 — py — pyr) + 4py
= Ar(l—a)+(py+py)(=2—27) +4py
= 2py(1 —7)+4r(l—a)—2(1+ 'r)py/
2py(1 —7) +47(1 — ) — 2(1 — 7)pyr — 4Py
= 2py—py)1-7)+47(1—a—py)
2 2(py _py/)(l —7) (8.22)

We also have that
P Lpeaovaqyy —minp £ =pTLy —pTLy =p, —py  (8.23)
From Equations (8.22) and (8.23) we have for all u € [-1,1]" \ (U; UUT)
p v (w) — inf pTyi(u)

u/ER?L
> 2(1-71) (pTepredS_)VA(u) - mtin pTEt) (8.24)
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Case 2: p,y < 1—a for all y € [n]

We have that | € argmin,p ' £;
Case 2a: uc U]

The RHS of Equation (8.18) is zero, and hence becomes trivial.
Case 2b: u € [-1,1]" \UT

Let pred®¥*(u) = argmax;u; = y. We have that u, > 7.

pT,(pOVA,a(u) _ pT¢OVA,a (_1)

8.15) o/
= Zpi@/}OVA’ (i,u) — 4
i=1

(8.17) Z2pi (1-a) Zuj —au; | +2(1—a)(n—1)+ a) — 4«
i=1 J#i

= ZZU,;((I —a)(1=p;) —pia) +2((1 — a)(n — 1) + a) — 4«

= Z 2u;(1 — o —p;) + 2uy (1 — a — py)
i€[n]\{y}
+2((1—a)(n—1)+ a) — da
Z 2(-1)(1 —a—pi)+27(1 —a—py)
i€[n]\{y}
+2(1-a)(n—-1)+a) — 4«
= 2(01-py+(n—1)(ae—1))+27(1 —a—py)
+2(1-—a)(n—1)+a) — 4o
= 214711 —-a—py) (8.25)

We also have that

Y

P eqova () — min p' & =p 4y —pLi=1-a—p, (8.26)
From Equations (8.25) and (8.26) we have for all u € [-1,1]" \ U]
pT,‘pOVA,a(u) o u}gﬂgn pT’(,bOVA’a(u/)

> 2(1 + T) (pTﬂgredg\/A(u) - mtin prf) (827)

Equation (8.18), and hence the theorem, follows from Equations (8.21), (8.24)
and (8.27). O

8.3. Modified binary encoded predictions surrogate
Let v(a) = max(a, —1), and B : [n]—{—1,+1}? be any bijection, we then have

z/JBEP’a(y, u) = 2-max (a max y(B;(y)u;), (1 — ) maX'y(Bj(y)uj)> + 2«
J€ld] J€ld]
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pred®FP (u) = o if mingeqy ug| <7
B~ 1(sign(—u)) Otherwise

Define the sets U7, ..., UT,UT, where U] = {u € R¢
Which evaluates to

. predP®P (u) = k}.

U, = {ue R?: mjaxBj(y)uj < -1} fory e n]

U7 = {ueR?:minlu;| <7}
J

The following lemma gives some crucial, but straightforward to prove,

(in)equalities satisfied by the BEP surrogate.

Lemma 8.5.

Vy,y € [n],p € Ap,ueR? Yy # B (sign(—u))

p Y (=B(y) = 2(1-py) (8.28)
p'$""(0) 20 (8.29)

YBEY (B~ (sign(—u)),u) > —2a mjin luj| + 2 (8.30)
PPy ) > 2(1-a) min [u;] + 20 (8.31)

Theorem 8.6. Letn € N and 7 € (0,1). Let n = 2%. Then for all f : X —R?

wBEP *)

er’ [pred®EF o f] — erly

Proof. We will show that Vp € A,, and all u € R?

pT,l/)BEP,a(u)_ inf p ,l/)BEPa( )
IG]Rd

(er%BEP [f] —er)
<

2min(7,1 —7)

> 2min(r,1—-7)(p" 4 edBEP () — mtin p ') (8.32)

The theorem follows by linearity of expectation.
Case 1: p, > 1 — «a for some y € [n]
We have that y € argmin,p £

Case la: u € U (or predP® (u) = 5)

The RHS of Equation (8.32) is zero, and hence becomes trivial.

Case 1b: u € U] (or pred®* (u) = 1)
Let y' = B~'(sign(—u)). We have min; |u;| < 7.

p %" (u) - p PP (- B(y))
(8.28)

ien]\{y'}

py® O w) + > piP (i) - 2(1 - py)
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(8.30),(8.31)
> 2ap, (— min |u;|) + 2(1 — a)(1 — py ) (min |u;
> py (= min o)+ 2(1 — @)(1 ) (min )

+ 20 —2(1 —py)
= 2(1 — a = py) min [u;] 4 2(py + o — 1)
jeld]

2 2(py +a—-1)(1—-7) (8.33)
We also have that
P Lpeaper () —Minp 4 =p L —p Ly =p, +a -1 (8.34)
From Equations (8.33) and (8.34) we have that
pTYPEPe(u) — inf plyPEPO(w)

u’ €R4
> 2(1 - T) (pTEgredBEp(u) - Hltin pTE?) (835)

Case 1c: u e R\ (U UUT)
Let B~!(sign(—u)) = pred(u) = y for some y’ # y. We have p,y <1 —p, <
a <1-—q,and min; |u;| > 7 and
p Y (w) - p P (= B(y))
(8.28)

n

py PP w) + Y pipPER (G u) — 2(1 - py)
i=1iy’
(8.30),(8.31)
> 2ap, (— min |u;|) + 2(1 — a)(1 — pyr ) (min |u;

py (= min ) + 2(1 = @)(1 = py ) (o s
+2a—2(1—p,)
= 2(1 = a = py) min [u;] 4 2(py + o — 1)

J€ld]

21 —a—py)r+2p, +a—1)
= 21— a)(r — 1)+ 2py — 27Dy
= 21 —7)(py + a — 1) + 27p, — 27Dy
> 27(py — py’) (8.36)

We also have that

pngred]fEP(u) - Hltln pTK? = pTﬂ(;/ - pTEZ =Py — Py’ (837)
From Equations (8.36) and (8.37) we have that

pT,lIJBEP,CE (u) _ inf pTwBEP,a (u/)
u’/ €R?

> 27) (P £peqrer (u) — min p ey (8.38)
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Case 2: p, <1—aforallye [n]
We have that L € argmin,p ' £5
Case 2a: uc U]
The RHS of Equation (8.32) is zero, and hence becomes trivial.
Case 2b: u € R\ U7
Let B~!(sign(—u)) =y’ = pred2™" (u) for some ¢’ € [n]. We have p,s < 1—a
and min; |u;| > T.

pT¢BEP,a (u) o pTwBEP,a(O)

n

(8:29) py/wBEP(y/, u) + Z pibBEP (i, u) — 20
=15y’
(8.30),(8.31)
> 2ap,(—min [u]) +2(1 - a)(1 —p,)(min|u,]) + 20— 2a
JEld] Jeld]

- 21* — ’ i :
(1-a py)(Jr,reu[g]\ugl)

Y

271(1—a —py) (8.39)
We also have that

prgredEEP(u) - mtiﬂ p e = Tﬁ(;/ —p & =1—a—py (8.40)
From Equations (8.39) and (8.40) we have that

pT,(pBEP,a (u) — inf pT,(pBEP,a (u/)
u’ €RY

> 27(p 4 eqmer () — min p L) (8.41)

Equation (8.32), and hence the theorem, follows from Equations (8.35), (8.38)
and (8.41). O

9. Conclusion

The multiclass classification problem with reject option, is a powerful abstrac-
tion that captures controlling the uncertainty of the classifier and is very useful
in applications like medical diagnosis. We formalized this problem via an eval-
uation metric, called the abstain loss, and gave excess risk bounds relating the
abstain loss to the Crammer-Singer surrogate, the one vs all hinge surrogate
and also to the BEP surrogate which is a new surrogate and operates on a
much smaller dimension. The resulting surrogate minimization algorithms per-
form well in experiments, allowing one to control the ‘rejection’ or ‘abstention’
rate while minimizing the misclassification error rate. Extending these results
for other relevant evaluation metrics, in particular the abstain(«) loss for a > %,
is an interesting future direction.
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