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Abstract: The horseshoe prior has proven to be a noteworthy alternative
for sparse Bayesian estimation, but has previously suffered from two prob-
lems. First, there has been no systematic way of specifying a prior for the
global shrinkage hyperparameter based on the prior information about the
degree of sparsity in the parameter vector. Second, the horseshoe prior has
the undesired property that there is no possibility of specifying separately
information about sparsity and the amount of regularization for the largest
coefficients, which can be problematic with weakly identified parameters,
such as the logistic regression coefficients in the case of data separation.
This paper proposes solutions to both of these problems. We introduce a
concept of effective number of nonzero parameters, show an intuitive way
of formulating the prior for the global hyperparameter based on the spar-
sity assumptions, and argue that the previous default choices are dubious
based on their tendency to favor solutions with more unshrunk parameters
than we typically expect a priori. Moreover, we introduce a generalization
to the horseshoe prior, called the regularized horseshoe, that allows us to
specify a minimum level of regularization to the largest values. We show
that the new prior can be considered as the continuous counterpart of the
spike-and-slab prior with a finite slab width, whereas the original horse-
shoe resembles the spike-and-slab with an infinitely wide slab. Numerical
experiments on synthetic and real world data illustrate the benefit of both
of these theoretical advances.
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1. Introduction

This paper deals with sparse Bayesian estimation and is an extension to our
earlier work (Piironen and Vehtari, 2017a). We consider statistical models with
a large number of parameters θ = (θ1, . . . , θD) but so that it is reasonable to
assume that only some of them are far from zero. A typical example – and also
the case we will mostly focus in this paper – is a regression or classification
problem with a large number of predictor variables out of which we expect only
a few to be relevant and therefore have a regression coefficient distinguishable
from zero.
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A vast number of different estimators, both Bayesian and non-Bayesian, have
been proposed for these problems. In the non-Bayesian literature the sparse
problems are typically handled by Lasso (Tibshirani, 1996) or one of its gener-
alizations (for an overview, see e.g., Hastie, Tibshirani and Wainwright, 2015).
We focus on the probabilistic approach and carry out full Bayesian inference on
the problem.

Two prior choices dominate the Bayesian literature: two component discrete
mixture priors known as the spike-and-slab (Mitchell and Beauchamp, 1988;
George and McCulloch, 1993), and a variety of continuous shrinkage priors (see
e.g., Polson and Scott, 2011, and references therein). The spike-and-slab prior is
intuitively appealing as when the spike is taken to be a delta-spike in the origin,
it is equivalent to Bayesian model averaging (BMA) (Hoeting et al., 1999) over
the variable combinations, and often has good performance in practice. The
disadvantages are that the results can be sensitive to prior choices (slab width
and prior inclusion probability) and that the posterior inference can be compu-
tationally demanding with a large number of variables, due to the huge model
space. The inference could be sped up by analytical approximations using ei-
ther expectation propagation (EP) (Hernández-Lobato, Hernández-Lobato and
Suárez, 2010, 2015) or variational inference (VI) (Titsias and Lázaro-Gredilla,
2011), but this comes at the cost of a substantial increase in the amount of
analytical work needed to derive the equations separately for each model and a
more complex implementation.

The continuous shrinkage priors on the other hand are easy to implement, pro-
vide convenient computation using generic sampling tools such as Stan (Stan De-
velopment Team, 2017), and can yield as good or better results. A particularly
interesting example is the horseshoe prior (Carvalho, Polson and Scott, 2009,
2010)

θj |λj , τ ∼ N
(
0, τ2λ2

j

)
,

λj ∼ C+(0, 1) , j = 1, . . . , D,
(1.1)

which has shown comparable performance to the spike-and-slab prior in a variety
of examples where a sparsifying prior on the model parameters θj is desirable
(Carvalho, Polson and Scott, 2009, 2010; Polson and Scott, 2011). The horseshoe
is one of the so called global-local shrinkage priors, meaning that there is a
global hyperparameter τ that shrinks all the parameters towards zero, while the
heavy-tailed half-Cauchy priors for the local hyperparameters λj allow some θj
to escape the shrinkage (see Sec. 2.1 for more thorough discussion).

Despite its good performance in many problems, the horseshoe prior has pre-
viously suffered from two shortcomings. First, there has been no consensus on
how to carry out inference for the global hyperparameter τ which determines
the overall sparsity in the parameter vector θ and therefore has a large impact
on the results. We prefer full Bayesian inference (see Sec. 3.1) but the existing
methodology has been lacking a systematic way of placing a prior for τ based
on the information about the sparsity. Second, the horseshoe prior has the un-
desired property that the parameters far from zero are not regularized at all
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(see Sec. 2.3). While this is often considered as a key strength of the prior, it
can be harmful especially when the parameters are only weakly identified by
the data, for instance in the case of a flat likelihood due to separable data in
logistic regression.

We propose a solution to both of these problems. We introduce a concept
of effective number of nonzero parameters meff (Sec. 3.3), derive analytically
its relationship between the global shrinkage parameter τ , and show an easy
and intuitive way of formulating the prior for τ based on the prior information
about the sparsity of θ. Based on these theoretical considerations, we argue
that the previously proposed default priors are dubious based on the prior they
impose on meff, and that they yield good results only when τ (and therefore
meff) is strongly identified by the data. Moreover, we introduce a generalization
of the horseshoe prior, called the regularized horseshoe, that operates otherwise
similarly as the original horseshoe but allows specifying the regularization to the
coefficients that are far from zero (see Sec. 2.3). We show that the regularized
horseshoe can be considered as the continuous counterpart of the spike-and-slab
prior with a finite slab width, whereas the original horseshoe resembles the spike-
and-slab with an infinitely wide slab. The benefit of both of these theoretical
advances will be illustrated with examples on synthetic and real world data
(Sec. 4).

As a final remark, although we focus on the horseshoe in our discussion,
we want to emphasize that both of these ideas could also be applied to other
shrinkage priors, and several promising alternatives to the horseshoe have been
proposed during the recent years (Bhattacharya et al., 2015; Zhang, Reich and
Bondell, 2016; Ghosh, Li and Mitra, 2017).

2. Horseshoe prior and its extension

This section discusses the horseshoe and its connection to the spike-and-slab
prior (Section 2.2). We also present an extension (Section 2.3) that both helps
understanding the theoretical properties of the original horseshoe and – as will
be demonstrated in Section 4 – robustifies the prior and improves its practical
performance.

2.1. Horseshoe prior for linear regression

Consider the single output linear Gaussian regression model with several input
variables, given by

yi = βTxi + εi, εi ∼ N
(
0, σ2

)
, i = 1, . . . , n , (2.1)

where x is the D-dimensional vector of inputs, β contains the corresponding
weights and σ2 is the noise variance. The horseshoe prior is set for the regression
coefficients β = (β1, . . . , βD)

βj |λj , τ ∼ N
(
0, τ2λ2

j

)
,

λj ∼ C+(0, 1) , j = 1, . . . , D.
(2.2)



Sparsity and regularization in the horseshoe prior 5021

If an intercept term β0 is included in model (2.1), we give it a relatively flat prior,
because there is usually no reason to shrink it towards zero. As discussed in the
introduction, the horseshoe prior has been shown to possess several desirable
theoretical properties and good performance in practice (Carvalho, Polson and
Scott, 2009, 2010; Polson and Scott, 2011; Datta and Ghosh, 2013; van der
Pas, Kleijn and van der Vaart, 2014). The intuition is the following: the global
parameter τ pulls all the weights globally towards zero, while the thick half-
Cauchy tails for the local scales λj allow some of the weights to escape the
shrinkage. Different levels of sparsity can be accommodated by changing the
value of τ : with large τ all the variables have very diffuse priors with very little
shrinkage, but letting τ → 0 will shrink all the weights βj to zero.

The above can be formulated more formally as follows. Let X denote the
n-by-D matrix of observed inputs and y the observed targets. The conditional
posterior for the coefficients β given the hyperparameters and data D = (X,y)
can be written as

p(β |Λ, τ, σ2,D) = N
(
β | β̄,Σ

)
,

β̄ = τ2Λ
(
τ2Λ + σ2(XTX)−1

)−1
β̂,

Σ = (τ−2Λ−1 +
1

σ2
XTX)−1,

where Λ = diag
(
λ2

1, . . . , λ
2
D

)
and β̂ = (XTX)−1XTy is the maximum likelihood

solution (assuming the inverse exists). If the predictors are uncorrelated with
zero mean and variances Var(xj) = s2

j , then XTX ≈ ndiag
(
s2

1, . . . , s
2
D

)
, and we

can approximate

β̄j = (1− κj)β̂j , (2.3)

where

κj =
1

1 + nσ−2τ2s2
jλ

2
j

(2.4)

is the shrinkage factor for coefficient βj . The shrinkage factor describes how
much coefficient βj is shrunk towards zero from the maximum likelihood solution
(κj = 1 meaning complete shrinkage and κj = 0 no shrinkage). From (2.3)

and (2.4) it is easy to verify that β̄ → 0 as τ → 0, and β̄ → β̂ as τ →∞.
The result (2.4) holds for any prior that can be written as a scale mixture

of Gaussians like (2.2), regardless of the prior for λj . The horseshoe employs
independent half-Cauchy priors for all λj , and for this choice one can show that,
for fixed τ and σ, the shrinkage factor (2.4) follows the prior

p(κj | τ, σ) =
1

π

aj
(a2
j − 1)κj + 1

1
√
κj
√

1− κj
, (2.5)

where aj = τσ−1
√
n sj . When aj = 1, this reduces to Beta

(
1
2 ,

1
2

)
which looks

like a horseshoe, see Figure 1. Thus, a priori, we expect to see both relevant
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Fig 1. The continuous curves show the densities for the shrinkage factor (2.4) for the horse-
shoe prior (2.2) when aj = τσ−1√n sj = 1 (left) and when aj = 0.1 (right). The bars denote
the corresponding point mass function for the spike-and-slab prior (2.7) with infinite slab
width c→∞, when π/(1−π) = 1 (left) and π/(1−π) = 0.1 (right). To aid visualization, the
bars illustrating the point masses are scaled and show only the relative probability masses.

(κj = 0, no shrinkage) and irrelevant (κj = 1, complete shrinkage) variables. By
changing the value of τ , the prior for κj places more mass either close to 0 or 1.
For instance, choosing τ so that aj = 0.1 favors complete shrinkage (κ = 1)
and thus we expect more coefficients to be close to zero a priori. Notice though
that for a fixed τ , the sparsity assumptions will be dependent on the input
dimension D, and to get around this issue, we need to consider the values of
all the shrinkage factors κj together. Using this idea, Section 3 discusses an
intuitive way of designing a prior distribution for τ based on the assumptions
about the number of nonzero components in β.

Notice also that those variables which vary on larger scale sj are treated as
more relevant a priori, which is the reason why we usually scale all the variables
to have unit variance s2

j = 1, unless the original scales really carry information
about the relevances. Another way would be to use the original scales but adjust
scales for the local parameters accordingly λj ∼ C+

(
0, s−2

j

)
.

2.2. Spike-and-slab prior

The spike-and-slab (Mitchell and Beauchamp, 1988; George and McCulloch,
1993) is a popular shrinkage prior that is often considered as the “gold standard”
for sparse Bayesian estimation. The prior is often written as a two-component
mixture of Gaussians

βj |λj , c, ε ∼ λj N
(
0, c2

)
+ (1− λj) N

(
0, ε2

)
,

λj ∼ Ber(π), j = 1, . . . , D,
(2.6)

so that ε � c and the indicator variable λj ∈ {0, 1} denotes whether the coef-
ficient βj is close to zero (comes from the “spike”, λj = 0) or nonzero (comes
from the “slab”, λj = 1). Often we set ε = 0, that is, the spike is taken to
be a delta spike at the origin δ0, although also ε > 0 could be used (George
and McCulloch, 1993). The user then has to specify the values (or priors) for
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the slab width c and the prior inclusion probability π, which encodes the prior
information about the sparsity of the coefficient vector β. Fixing c is probably
the most common approach but by giving it a hyperprior, one can obtain a more
heavy-tailed, such as Laplacian, slab (Johnstone and Silverman, 2004).

With the choice ε = 0, the prior (2.6) can be written analogous to (2.2) as

βj |λj , c ∼ N
(
0, c2λ2

j

)
,

λj ∼ Ber(π), j = 1, . . . , D,
(2.7)

so instead of giving continuous priors for λjs as in the horseshoe, here only two
values (λj = 0, 1) are allowed. Thus also the shrinkage factor κj only has mass at
κj = 1

1+nσ−2s2jc
2 and at κj = 1, and the probabilities are π and 1−π, respectively.

Letting c→∞, all the mass is concentrated at the extremes κj = 0 and κj = 1,
and the resemblance to the horseshoe becomes obvious, see Figure 1. Given the
similarity of the shrinkage profiles between the horseshoe and spike-and-slab,
it is not surprising that the two priors have shown comparable performance
in a variety of experiments (Carvalho, Polson and Scott, 2009, 2010; Polson
and Scott, 2011). The next section discusses an extension of the horseshoe that
closely resembles the spike-and-slab prior with a finite slab width c <∞.

2.3. Regularized horseshoe

As discussed in Section 2.1, the horseshoe prior favors solutions βj ≈ 0 and

βj ≈ β̂j , and it can be shown that under certain conditions, β̄j → β̂j when

|β̂j | → ∞ (Carvalho, Polson and Scott, 2010). While this guarantees that the
strong signals will not be overshrunk – and is often considered to be one of
the key assets of the prior – this property can also be harmful, especially when
the parameters are weakly identified. An example of such case is the flat like-
lihood arising in logistic regression with separable data. As the horseshoe has
Cauchy tails, in these problems it suffers basically from the same problems as
the Cauchy prior, namely that the posterior means for the regression coefficients
may vanish (Ghosh, Li and Mitra, 2017). Therefore it would be very useful to
be able to control the amount of shrinkage for the largest coefficients, which in
spike-and-slab prior (Sec. 2.2) is achieved by controlling the slab width.

To guarantee that the prior always shrinks the coefficients at least by a small
amount, we introduce the following regularized horseshoe prior

βj |λj , τ, c ∼ N
(

0, τ2λ̃2
j

)
, λ̃2

j =
c2λ2

j

c2 + τ2λ2
j

,

λj ∼ C+(0, 1) , j = 1, . . . , D,

(2.8)

where c > 0 is a constant that we assume is given for now. The intuition
behind this definition is the following. When τ2λ2

j � c2, meaning the coefficient

βj is close to zero, then λ̃2
j → λ2

j and the prior (2.8) approaches the original

horseshoe. However, when τ2λ2
j � c2, meaning the coefficient is far from zero,
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Fig 2. Shrinkage profiles as in Figure 1 but now for the regularized horseshoe (2.8) and spike-
and-slab (2.7) with a finite slab width c = 1. In comparison to Figure 1, for both priors the
first mode is shifted from κj = 0 to κj = 1/(1 + nσ−2s2jc

2) (for the plots we have selected

nσ−2s2j = 10).

then λ̃2
j → c2/τ2 and the prior (2.8) approaches N

(
0, c2

)
. Thus the prior will

shrink the small signals as the horseshoe but will also regularize even the largest
coefficients as a Gaussian slab with variance c2.

Another way to see this is to notice that the conditional prior for βj can be
factored as

p(βj |λj , τ, c) ∝ N
(
0, τ2λ2

j

)
N
(
0, c2

)
∝ N

(
0, τ2λ̃2

j

)
, (2.9)

from which it is easy to see that depending on the relative magnitudes of τ2λ2
j

and c2, the prior operates (roughly) as the narrower one of the two factors.
Therefore the role of N

(
0, c2

)
is to “soft-truncate” the extreme tails of the

horseshoe, thereby controlling the magnitude of the largest βjs. Letting c→∞,
we recover the original horseshoe.

The shrinkage profile of the regularized horseshoe is illustrated in Figure 2
together with the spike-and-slab with the slab width c, which demonstrates the
similarity of the two priors. Using c < ∞ has the advantage that it regularizes
the parameters βj when they are weakly identified, and allows us also to specify
our prior information about the maximum effect βj we expect to see. The benefit
of the proposed approach is illustrated in Section 4.1.2.

It must be noted that the shrinkage profile in Figure 2 does not have exactly
the same shape as the original horseshoe shifted and scaled from interval (0, 1)
to (b, 1) with b > 0, although it is very close to this. There is slightly more mass
near the left hand side mode, although the difference is too small to be visible
in Figure 2. It is possible to retain the exact shape of the horseshoe by defining
the modified local parameter λ̃2

j as

λ̃2
j =

c2λ2
j

σ2

ns2j
+ c2 + τ2λ2

j

. (2.10)

The details of this result are spelled out in Appendix A. The reason why we
define the prior as (2.8) is that unless n or the slab width c2 is very small, the
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term σ2

ns2j
is typically small compared to c2 and leaving it out has little influence

in practice. On the other hand, formulation (2.8) is simpler and has the nice
interpretation as a product of the original horseshoe and the Gaussian slab (2.9).
Thus we report the result (2.10) only for completeness.

Our formulation requires choosing a value or prior for c. Unless substantial
knowledge about the scale of the relevant coefficients exists, we generally rec-
ommend placing a prior for c instead of fixing it. Often a reasonable choice
is

c2 ∼ Inv-Gamma(α, β), α = ν/2, β = νs2/2, (2.11)

which translates to a Student-tν(0, s2) slab for the coefficients far from zero
and is typically a good default choice for a weakly informative prior. Another
motivation for using inverse-Gamma is that it has a heavy right tail accompanied
by a light left tail thereby preventing much mass from accumulating near zero.
This is natural as we do not want to shrink those coefficients heavily towards
zero that are already deemed to be far from zero. Still, we emphasize that our
approach is not limited to this choice and also other hyperpriors are possible.
It would also be possible to use variable specific slab widths ci, but we do not
explore this further in this paper and leave it for future investigation.

Finally, we would also like to point out that the tail-cutting idea of Equa-
tion (2.9) could be used more generally with other priors when relevant. For
instance, we expect our idea to be useful with the horseshoe+ prior of Bhadra
et al. (2017) which also has Cauchy tails and therefore suffers from the same
problem as the horseshoe.

2.4. Hierarchical shrinkage

In addition to the problems with vanishing means, earlier we have also re-
ported sampling issues with the original horseshoe even in simple regression
problems (Piironen and Vehtari, 2015). Technically speaking, the problem arises
due to posterior having an extreme funnel shape which is challenging for Markov
chain Monte Carlo (MCMC) methods. The problem was revealed with the help
of the divergence diagnostics of the NUTS algorithm (Hoffman and Gelman,
2014; Betancourt and Girolami, 2015; Betancourt, 2017a,b) when fitting the
models in Stan.

The problem is related to the thick Cauchy tails of the prior, and to overcome
the sampling issues, in our technical report we tentatively proposed replacing
the half-Cauchy priors for the local parameters λj in (2.2) with half-t priors
with small degrees of freedom, such as ν = 3, and named this approach the
“hierarchical shrinkage”. With large enough ν, this seems to help with the sam-
pling issues and remove the divergent transitions produced by NUTS, but the
drawback is that the prior becomes less sparsifying. This is because when the
tails of p(λj) are made slimmer, we need to increase the value for τ to accom-
modate large signals, and therefore the prior is not able to shrink the small
coefficients efficiently towards zero. Another limitation of this approach is that
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in order to fight the problems arising from data separation in logistic regression
(Sec. 2.3), we would also need to refrain from using half-Cauchy prior for the
global parameter τ (which we might want to use, see Sec. 3) as this would also
lead to Cauchy tails for p(βj).

The less sparsifying nature of the choice ν > 1 will be demonstrated in
practice in Section 4.1.2, where we also show that the regularized horseshoe
(Sec. 2.3) clearly outperforms this approach. Thus we no longer recommend
increasing the local degrees of freedom, but instead of using the regularized
horseshoe.

3. The global shrinkage parameter

This section discusses the prior choice for the global hyperparameter τ . We
begin with a short note on why we prefer full Bayesian inference for τ over
point estimation, and then go on to discuss how we propose to set up the prior
p(τ).

3.1. Full Bayes versus point estimation

In principle, one could use a plug-in estimate for τ , obtained either by cross-
validation or maximum marginal likelihood (sometimes referred to as “empirical
Bayes”). The maximum marginal likelihood estimate has the drawback that it
is always in danger of collapsing to τ̂ = 0 if the parameter vector happens
to be very sparse. Moreover, rather than being computationally convenient,
this approach might actually complicate matters as the marginal likelihood is
not analytically available for non-Gaussian likelihoods. While cross-validation
avoids the latter problem and possibly also the first one, it is computationally
less efficient than the full Bayesian solution and fails to account for the posterior
uncertainty. For these reasons we recommend full Bayesian inference for τ , and
focus on how to specify the prior distribution.

3.2. Earlier approaches

Carvalho, Polson and Scott (2009) also recommend full Bayesian inference for
τ , and following Gelman (2006), they propose prior

τ ∼ C+(0, 1), (3.1)

whereas Polson and Scott (2011) recommend

τ |σ ∼ C+
(
0, σ2

)
. (3.2)

If the target variable y is scaled to have marginal variance of one, unless the
noise level σ is very small, both of these priors typically lead to quite similar
posteriors. However, as we argue in Section 3.3, there is a theoretical justification
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for letting τ scale with σ. The main motivation for using a half-Cauchy prior for
τ is that it evaluates to a finite positive value at the origin, yielding a proper
posterior and allowing even complete shrinkage τ → 0, while still having a thick
tail which can accommodate a wide range of values. For these reasons, C+

(
0, η2

)
is a desirable choice when there are enough observations to let τ be identified by
data. Still, we show that in several cases one can clearly benefit by choosing the
scale η in a more careful manner than simply η = 1 or η = σ, because for most
applications these choices place far to much mass for implausibly large values
of τ . This point is discussed in Section 3.3. Moreover, the synthetic example in
Section 4.1.1 shows that in some cases one could clearly benefit from even more
informative prior.

van der Pas, Kleijn and van der Vaart (2014) study the optimal selection of
τ in model

yi ∼ βi + εi, εi ∼ N
(
0, σ2

)
, i = 1, . . . , n. (3.3)

They prove that in such a setting, the optimal value (up to a log factor) in
terms of mean squared error and posterior contraction rates in comparison to
the true β∗ is

τ∗ =
p∗

n
, (3.4)

where p∗ denotes the number of nonzeros in the true coefficient vector β∗

(assuming such exists). Their proofs assume that n, p∗ → ∞ and p∗ = o(n).
Model (3.3) corresponds to setting X = I and D = n in the usual regression
model (2.1). It is unclear whether and how this result could be extended to a
more general X, and how one should utilize this result when p∗ is unknown (as
it usually is in practice). In section 3.3, we formulate our method of constructing
the prior p(τ) based on the prior information about p∗, and show that if p∗ was
known, our method would also give rise to result (3.4), but is more generally
applicable.

3.3. Effective number of nonzero coefficients

Consider the prior distribution for the shrinkage factor of the jth regression
coefficient for the linear Gaussian model, Eq. (2.5). The mean and variance can
be shown to be

E(κj | τ, σ) =
1

1 + aj
, (3.5)

Var(κj | τ, σ) =
aj

2(1 + aj)2
, (3.6)

where aj = τσ−1
√
n sj as earlier. A given value for the global parameter τ

can be understood intuitively via the prior distribution that it imposes on the
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effective number of coefficients distinguishable from zero (or effective number of
nonzero coefficients, for short), which we define as

meff =

D∑
j=1

(1− κj). (3.7)

When the shrinkage factors κj are close to 0 and 1 (as they typically are for
the horseshoe prior), this quantity describes essentially how many active or
unshrunk variables we have in the model. It serves therefore as a useful indicator
of the effective model size.

Using results (3.5) and (3.6), the mean and variance of meff given τ and σ
are given by

E(meff | τ, σ) =

D∑
j=1

aj
1 + aj

(3.8)

Var(meff | τ, σ) =

D∑
j=1

aj
2(1 + aj)2

, (3.9)

Let us now assume that, in addition of having a zero mean, each variable also
has a unit variance s2

j = 1. In this case the equations above simplify to

E(meff | τ, σ) =
τσ−1

√
n

1 + τσ−1
√
n
D, (3.10)

Var(meff | τ, σ) =
τσ−1

√
n

2(1 + τσ−1
√
n)2

D. (3.11)

The expression for the mean (3.10) is helpful. First, from this expression it is
evident that to keep our prior information about meff consistent, τ must scale
as σ/

√
n. Priors that fail to do so, such as (3.1), favor models of varying size

depending on the noise level σ and the number of data points n. Second, if our
prior guess for the number of relevant variables is p0, it is reasonable to choose
the prior so that most of the prior mass is located near the value

τ0 =
p0

D − p0

σ√
n
, (3.12)

which is obtained by solving equation E(meff | τ, σ) = p0. Note that this is
typically quite far from 1 or σ, which are used as scales for priors (3.1) and (3.2).
For instance, if D = 1000 and n = 200, then prior guess p0 = 5 gives about
τ0 = 3.6 · 10−4σ.

To further develop the intuition about the connection between τ and meff,
it is helpful to visualize the prior imposed on meff for different prior choices
for τ . This is most conveniently done by drawing samples for meff ; we first
draw τ ∼ p(τ) and λ1, . . . , λD ∼ C+(0, 1), then compute the shrinkage factors
κ1, . . . , κD from (2.4), and finally meff from (3.7).
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Fig 3. Histograms of prior draws for meff (effective number of nonzero regression coefficients,
Eq. (3.7)) imposed by different prior choices for τ , when the total number of input variables
is D = 10 and D = 1000. τ0 is computed from formula (3.12) assuming n = 100 observations
with σ = 1 and p0 = 5 as the prior guess for the number of relevant variables. Note the
varying scales on the horizontal axes in the bottom row plots.

Figure 3 shows histograms of prior draws for meff for some different prior
choices for τ , with total number of variables D = 10 and D = 1000, assuming
n = 100 observations with σ = 1. The first three priors utilize the value τ0
which is computed from (3.12) using p0 = 5 as our hypothetical prior guess for
the number of relevant variables. Fixing τ = τ0 results in a nearly symmetric
distribution around p0, while a half-normal prior with scale τ0 yields a skewed
distribution favoring solutions with meff < p0 but allowing larger values to also
be accommodated. The half-Cauchy prior behaves similarly to the half-normal,
but results in a distribution with a much thicker tail giving substantial mass
also to values much larger than p0 when D is large. Figure 3 also illustrates why
prior τ ∼ C+(0, 1) is often a dubious choice: it places far too much mass on
large values of τ , consequently favoring solutions with most of the coefficients
unshrunk. Thus when only a small number of the variables are relevant – as we
typically assume – this prior results in sensible inference only when τ is strongly
identified by data. Notice also that, if we changed the value of σ or n, the first
three priors for τ would still impose the same prior for meff, but this is not true
for τ ∼ C+(0, 1).

This way, by studying the prior for meff, one can easily choose the prior for τ
based on the information about the number of nonzero parameters. Because the
prior information can vary substantially for different problems and the results
depend on the information carried by the data, there is no globally optimal prior
for τ that works for every single problem. Some recommendations, however, will
be given in Section 5 based on these theoretical considerations and experiments
presented in Section 4.

We conclude by pointing out a connection between our reference value (3.12)
and the oracle result (3.4) for the simplified model (3.3). As pointed out in the



5030 J. Piironen and A. Vehtari

last section, model (3.3) corresponds to setting X = I (which implies n = D and
XTX = I) in the usual regression model (2.1). Using this fact and repeating the
steps needed to arrive at (3.12), we get

τ0 =
p0

D − p0
σ. (3.13)

Suppose now that we select p0 = p∗, that is, our prior guess is oracle. Using the
same assumptions as van der Pas, Kleijn and van der Vaart (2014), namely that
n, p∗ →∞ and p∗ = o(n), and additionally that σ = 1, we get τ0 → p∗/D = τ∗.
This result is natural, as it means it is optimal to choose τ so that the imposed
prior for the effective number of nonzero coefficients meff is centered at the true
number of nonzeros p∗. This further motivates why meff is a useful quantity.

3.4. Regularized horseshoe and other shrinkage priors

As discussed in Section 2.3, when we set c < ∞, the shrinkage profile of the
regularized horseshoe (2.8) becomes approximately equivalent to that of the
horseshoe shifted from interval (0, 1) to (bj , 1), where bj = 1

1+nσ−2s2jc
2 . Thus

the shrinkage factor under the regularized horseshoe satisfies approximately
κ̃j = (1 − bj)κj + bj , where κj denotes the shrinkage factor for the original
horseshoe. From this we get 1 − κ̃j = (1 − bj)(1 − κj). Assuming further that
all the variables have a unit variance s2

j = 1 and thus bj = b = 1
1+nσ−2c2 , the

effective model complexity under the regularized horseshoe satisfies

m̃eff = (1− b)meff,

where meff is the effective number of nonzeros for the original horseshoe. Thus
with a given τ , the effective complexity for the regularized horseshoe is always
less than for the pure horseshoe, because those coefficients that are far from
zero are still affected by the slab. Therefore we can naturally use result (3.12)
also for the regularized horseshoe with p0 as our prior guess for the number of
coefficients far from zero, but remembering that those coefficients will experience
the regularization by the slab.

The concept of effective number of nonzeros could also be used with shrink-
age priors other than the (regularized) horseshoe, as long as the prior can be
written as a scale mixture of Gaussians like (2.2). Many such alternatives have
been proposed, including the double-exponential or Laplace (Park and Casella,
2008), Dirichlet-Laplace (Bhattacharya et al., 2015), R-square induced Dirich-
let decomposition (Zhang, Reich and Bondell, 2016), and horseshoe+ (Bhadra
et al., 2017). For instance, the Dirichlet-Laplace prior has a Dirichlet concentra-
tion hyperparameter a that strongly affects the sparsity properties of the prior,
and based on the experiments of Bhattacharya et al. (2015) has a substantial
effect on the results. It would therefore be interesting the investigate a prior
information calibrated selection of a using our framework.

Depending on the prior, corresponding analytical results like (3.10) and (3.11)
may or may not be available, but as long as one is able to sample both from
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p(τ) and p(λj), it is always easy to draw samples from the prior distribution for
meff, and therefore investigate the effect of hyperprior or hyperparameter choice
on the effective model complexity. It must be noted though, that for those prior
for which the shrinkage factors κ are not near 0 or 1, the values of meff can be
more difficult to interpret.

3.5. Non-Gaussian observation models

When the observation model is non-Gaussian, the exact analysis from Section 3.3
is analytically intractable. We can, however, perform the analysis using a Gaus-
sian approximation to the likelihood. Using the second order Taylor expansion
for the log likelihood, the approximate posterior for the regression coefficients
given the hyperparameters becomes

p(β |Λ, τ, φ,D) ≈ N
(
β | β̄,Σ

)
,

β̄ = τ2Λ
(
τ2Λ + (XTΣ̃

−1
X)−1

)−1

β̂,

Σ = (τ−2Λ−1 + XTΣ̃
−1

X)−1,

where z̃ = (z̃1, . . . , z̃n), Σ̃ = diag(σ̃2
1 , . . . , σ̃

2
n) and β̂ = (XTΣ̃

−1
X)−1XTΣ̃

−1
z̃

(assuming the first inverse exists). Here φ denotes the possible dispersion pa-
rameter and (z̃i, σ̃

2
i ) the location and variance for the ith Gaussian pseudo-

observation. These are obtained from the first and second order derivatives of
the log-likelihood terms Li(fi, φ) with respect to the linear predictor fi = βTxi

at the posterior mode f̄i = β̄
T
xi (Gelman et al., 2013, ch. 16.2)

z̃i = f̄i −
L′i(f̄i, φ)

L′′i (f̄i, φ)
, σ̃2

i = − 1

L′′i (f̄i, φ)
.

The fact that some of the observations are more informative than others –
meaning σ̃2

i is not constant – makes further simplification somewhat difficult.
To proceed, we make the rough assumption that we can replace each σ̃2

i by a
single variance term σ̃2. Assuming further that the covariates are uncorrelated
with zero mean and variances Var(xj) = s2

j (as in Sec. 3.3), the posterior mean

for the jth coefficient satisfies β̄j = (1− κj)β̂j with shrinkage factor given by

κj =
1

1 + nσ̃−2τ2s2
jλ

2
j

. (3.14)

The discussion in Section 3.3 therefore also approximately holds for the non-
Gaussian observation model, except that σ2 is replaced by σ̃2. Still, this leaves us
with the question, which value to choose for σ̃2 to exploit this result in practice?

For the generalized linear models with y having a distribution in the expo-
nential family with natural parameter θ and dispersion φ, the log likelihood for
a single observation has the form (McCullagh and Nelder, 1989)

L =
yθ −B(θ)

A(φ)
− C(y, φ),
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Table 1
The pseudo variances for the most commonly used generalized linear models to be used as
approximate plug-in values for σ2 in equations of Section 3.3. In practice when necessary,

we usually replace µ by the sample mean ȳ. In the Gamma distribution, α denotes the shape
parameter so that Var(y) = µ2/α. In the inverse Gaussian, λ is the shape parameter so that

Var(y) = µ3/λ. See McCullagh and Nelder (1989).

Model Link ∂µ/∂f V (µ) A(φ) Pseudo variance σ̃2

Gaussian Identity 1 1 σ2 σ2

Binomial Logit µ(1− µ) µ(1− µ) 1 µ−1(1− µ)−1

Poisson Log µ µ 1 µ−1

Gamma Inverse −µ2 µ2 α−1 µ−2α−1

Inverse Gaussian Inverse squared −µ3/2 µ3 λ−1 4µ−3λ−1

for some specific functions A(·), B(·) and C(·). The pseudo variance for a given
observation y is then (see Appendix B)

σ̃2 = − 1

L′′
= A(φ)

[
1

V (µ)

(
∂µ

∂f

)2

− (y − µ)
∂

∂f

(
1

V (µ)

∂µ

∂f

)]−1

, (3.15)

where V (µ) = B′′(θ) is the variance function, µ = E(y) = B′(θ) the expected
value. The simplified expressions for the most commonly used generalized linear
models with their canonical links are listed in Table 1.

We observe that σ̃2 is a product between A(φ) and a term that in general
depends on f , µ, and y, although for canonical links the dependence from y
vanishes because the derivative of (∂µ∂f )/V (µ) with respect to f is zero (McCul-

lagh and Nelder, 1989, ch. 2). Thus it makes sense that for those non-Gaussian
models that have a dispersion parameter φ (like Gamma and inverse Gaussian
models), the pseudo variance and therefore also τ should scale with A(φ). For
the non-constant multiplier of A(φ) in (3.15) we can use, for example, value
obtained by setting µ equal to the sample mean of ȳ. This approach, although
crude, seems to work reasonably well in practice. For instance, in binary clas-
sification, if we have the same number of observations from both classes, then
µ = 0.5, yielding σ̃2 = 4 which was observed to give good results in our earlier
study (Piironen and Vehtari, 2017a).

3.6. More complex models

Although we limit our discussion to generalized linear models, different authors
have employed horseshoe prior in various other models. For instance, Faulkner
and Minin (2017) consider trend filtering for modelling time series and use
horseshoe as a sparsifying prior on the kth-order forward differences to express
prior assumptions about the number of rapid changes in the underlying signal.
As another example, Ghosh and Doshi-Velez (2017) use horseshoe prior over the
weights in Bayesian neural networks to effectively turn off some of the nodes in
the network.
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When the model gets more complicated, one cannot simply use the reference
result (3.12) to guide the hyperprior choice because it is derived assuming the
linear model (2.1). Unless similar results can easily be derived for the model
of interest, we recommend a pragmatic approach of drawing from the prior
for different values of τ and studying the effect on the sparsity (how many
coefficients fall below a certain threshold) to get an idea of a reasonable range
of values. Although this strategy may seem crude, we argue that it should still be
better than not thinking about the prior at all. Moreover, our results (Sec. 4.2)
suggest that with a weakly informative prior such as τ ∼ C+

(
0, τ2

0

)
, having even

a rough ballpark figure of the correct magnitude for τ0 can already be a clear
improvement compared to the simple τ ∼ C+(0, 1).

4. Experiments

This section illustrates the benefit of the theoretical advances on synthetic and
real world data. All considered models were fitted using Stan1 (codes in the sup-
plementary material) with the default settings unless otherwise stated, running
4 chains, 2000 samples each, first halves discarded as warmup.

4.1. Synthetic data

4.1.1. Toy example

We first illustrate the impact of the hyperprior choice p(τ) with a toy example
similar to the one discussed by van der Pas, Kleijn and van der Vaart (2014).
Consider model (3.3), where each yi is generated by adding Gaussian noise with
σ2 = 1 to the corresponding signal βi. We generated 100 data realizations with
n = 400 and the true β∗ having p∗ = 20 nonzero entries equal to A = 1, 2, . . . , 10
with the rest of the entries being zeros. We then computed the mean squared
error (MSE) between the estimated posterior mean β̄ and the true β∗ assuming
the pure horseshoe prior with hyperpriors τ ∼ C+(0, 1), τ ∼ C+

(
0, τ2

0

)
and

τ = τ0, where τ0 is calculated from Equation (3.13) with the oracle prior guess
p0 = p∗. Although the last choice reflects stronger prior information than we
would typically expect to have in practice, the purpose of this setup is simply
to demonstrate that one can substantially improve the inferences using our
framework provided substantial prior knowledge exists. Notice though, that even
when we set τ = τ0, we do not treat τ as completely fixed, because it depends
on σ which is treated as an unknown parameter with vague prior p(σ2) ∝ σ−2.

Figure 4 shows the MSE for the three hyperpriors for different values of A.
For each prior, the error is largest close to A =

√
2 log 400 ≈ 3.5, which is

called the “universal threshold” for this problem (Johnstone and Silverman,
2004; van der Pas, Kleijn and van der Vaart, 2014). Below this threshold the

1The experiments with the original horseshoe on the real world data are taken from Pi-
ironen and Vehtari (2017a) and were run using Stan version 2.12.0, whereas the experiments
with the regularized horseshoe are run using newer version 2.15.1
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Fig 4. Toy example: Mean squared error (MSE) between the estimated and the true coefficient
vector of length n = 400 on average over 100 different data realizations. The true coefficient
vector has p∗ = 20 elements with a nonzero value equal to A and the rest are zeros.

nonzero components in β are too small to be detected and are thus shrunk too
heavily towards zero which introduces error. For A = 4 the informative τ = τ0
actually yields the worst results due to this overshrinkage (see discussion below),
but gives clearly superior results for larger A. The choice τ ∼ C+

(
0, τ2

0

)
gives

better results than τ ∼ C+(0, 1) but is clearly inferior to τ = τ0.

Figure 5 illustrates the data y and the estimated coefficients β̄ for one partic-
ular data realization when A = 4 and A = 6. In both cases the informative choice
τ = τ0 helps to shrink the zero components in β towards zero, but for A = 4
also overshrinks the nonzero components. The reason for the overshrinkage is
that some observations yi that correspond to zero signal βi = 0 happen to have
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Fig 5. Toy example: An example data realization y = (y1, . . . , yn) (gray crosses), posterior
mean β̄ = (β̄1, . . . , β̄n) (black dots) and the true signal β∗ (red lines) for A = 4 (top row) and
A = 6 (bottom row). In both cases the oracle value for τ helps to shrink the zero components
in β but also overshrinks the actual signals in the case A = 4.
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Fig 6. Toy example: Top row: one data realization y (gray crosses), the posterior mean
estimates β̄ (black dots) and the true signal β∗ (red lines) when A = 10 and the global
parameter is fixed either to τ = p0

D−p0
or τ = p0

D−p0
σ. Bottom row: Otherwise the same but

now the scale of the observations is changed by multiplying them by 0.1.

similar magnitude to the observations coming from a nonzero signal βi = A,
and thus these irrelevant components “steal” from the limited budget for meff.
For this particular value of A the overshrinkage of the actual signals happens
to be worse in terms of MSE than undershrinkage of the zero components, and
thus one would get better results by setting p0 to be slightly above the true
p∗ (results not shown). For A = 6 the actual signals are large enough to be
distinguished from zero, and the informative selection of τ yields substantially
better estimate for β.

Finally, Figure 6 illustrates the importance of scaling τ with the noise level σ.
The top row shows one data realization and the posterior mean estimates β̄
when the global parameter is fixed either to τ = p0

D−p0 or to τ = p0
D−p0σ. For

these data both yield essentially the same result, since the true noise variance
σ2 is one. However, when the observations are scaled by multiplying them by
0.1 (bottom row), the value for τ that does not scale with σ yields clearly
worse results than in the first case, while the results for the latter value remain
practically unchanged. What essentially happens is that when the observations
are transformed to a smaller scale, then fixing τ = p0

n−p0 increases the prior

expectation for meff by the same factor (10 in this case) and thus it will favor
solutions with many more coefficients far from zero.

This small experiment has relevance also regarding the more general
model (2.1) because in the ideal case of uncorrelated predictors with unit vari-
ance XTX = nI, we can think that we have a single observation of each βj with
variance σ2/n. In practice these conditions are rarely met but the idea is still
useful.
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4.1.2. Classification with separable data

The purpose of this example is to illustrate the problem with the original horse-
shoe not controlling the magnitude of the largest coefficients and show how the
regularized horseshoe can solve this issue. We generated n = 30 binary clas-
sification observations so that for the instances in the first class, the first two
features were drawn from a Gaussian with mean 1 and scale 0.5, whereas in the
other class the mean of the first two features was −1 (the data are visualized in
Fig. 7). In addition, we generated 98 irrelevant features drawn from the stan-
dard Gaussian, so that the total input dimension was D = 100. We then fitted
the standard logistic regression model with prior β0 ∼ N

(
0, 52

)
for the intercept

and four different priors for the regression coefficients βj : the original horseshoe,
hierarchical shrinkage with ν = 3, and regularized horseshoe with slab scales
c = 2 and c2 ∼ Inv-Gamma(2, 8), the latter of which corresponds to a Student-
t4
(
0, 22

)
slab (see Sec. 2.3). In each case we used hyperprior τ ∼ t+3

(
0, τ2

0

)
(the conclusions of this example are not sensitive to this choice). For consistent
sparsity assumptions, for the original and the regularized horseshoe, τ0 was cal-
culated from (3.12) using p0 = 2, and for the hierarchical shrinkage by solving
numerically E(meff | τ = τ0) = p0 = 2.

Figure 7 shows the scatter plots of the posterior draws for β1 and β2

(top row) as well as the medians and 80%-intervals for β3, . . . , β100 (mid-
dle row), for the four different priors. Because the data are separable us-
ing only x2, this feature is a “solitary separator” and thus the mean for β2

does not exist under the horseshoe prior due to its Cauchy tails (Ghosh, Li
and Mitra, 2017). Although for β1 the mean exist (x1 is not a solitary sep-
arator), the posterior has substantial mass for very large values for this pa-
rameter also. Moreover, for the original horseshoe the NUTS produces al-
most 200 divergent transitions after the warmup showing clear problems with
sampling. Using ν = 3 for the local parameters cuts down the tails and re-
duces the number of divergent transitions to a few, but still yields quite fat
posterior tails for these two coefficients and results in much less shrinkage
for the coefficients of the irrelevant features (middle row). Finally, the reg-
ularized horseshoe exhibits the most satisfactory performance cutting down
the tails for β1 and β2 while still being able to shrink the irrelevant coef-
ficients as well as the horseshoe. In this case, fixing the scale of the Gaus-
sian slab to c = 2 results in too strong regularization for the relevant co-
efficients and generally we would prefer a less informative choice such as
c ∼ Inv-Gamma(2, 8), but our purpose here was to demonstrate how easy it
is to specify different levels of regularization for the largest coefficients using
the new prior (2.8).

The top row of Figure 7 clearly reveals the multimodality of the posterior for
β1 and β2. This does not produce marked problems in this case (e.g. MCMC
convergence problems) but in general the multimodality can be an issue both
for the original and the regularized horseshoe, and we will discuss this further
in Sections 4.2 and 6.
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Fig 7. Separable classification. Top row: draws for the regression coefficients of the two rel-
evant features. Middle row: median and 80%-interval for the coefficients of the irrelevant
features. Bottom row: the observed data (red and green denoting the different classes) and
the predictive class probabilities for ỹ = 1 as a function of the first two inputs, given that the
rest of the inputs are set to zero. First two columns denote the results for the pure horseshoe
and hierarchical shrinkage, and the last two columns for the regularized horseshoe.

4.2. Real world data – microarray cancer classification

This section further illustrates the important concepts with some real world
examples. We use the four microarray cancer classification datasets from our
earlier paper (Piironen and Vehtari, 2017a). The datasets are summarized in
Table 2 and can be found online.2

For all the datasets we used the standard logistic regression model with a
vague prior β0 ∼ N

(
0, 102

)
for the intercept, and the original and regularized

horseshoe priors for the regression coefficients to compare the differences be-
tween the two. For these problems, we reduced the number of draws per chain
to 1000 to reduce the computation time.

We first consider the Ovarian dataset as a representative example of how the
prior choice p(τ) and the use of the regularized horseshoe can affect the results.
We fitted the model to the data with two hyperprior choices, τ ∼ C+(0, 1)
and τ ∼ C+

(
0, τ2

0

)
, where τ0 is computed from (3.12) using p0 = 3 as our prior

2Colon, Prostate and Leukemia: http://featureselection.asu.edu/datasets.php; Ovar-
ian data: request from the first author if needed.

http://featureselection.asu.edu/datasets.php
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Table 2
Summary of the real world microarray cancer datasets; number of predictor variables D and

dataset size n.

Dataset Type D n

Ovarian Binary classif. 1536 54
Colon Binary classif. 2000 62
Prostate Binary classif. 5966 102
Leukemia (ALL-AML) Binary classif. 7129 72

guess for the number of relevant variables. For the regularized horseshoe we used
hyperprior c2 ∼ Inv-Gamma(2, 8) (as with the synthetic example, Sec. 4.1.2)
which corresponds to a Student-t4

(
0, 22

)
slab (see Sec. 2.3).

Figure 8 shows prior and posterior draws for τ and meff, and the absolute
values of the posterior means for the regression coefficients, for the different
prior configurations. The results for τ ∼ C+(0, 1) illustrate how weakly τ is
identified by the data: there is very little difference between the prior and pos-
terior samples for τ and consequently for meff, and thus this “non-informative”
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Fig 8. Ovarian dataset : Histograms of prior (light gray) and posterior (dark gray) draws for τ
(top row) and meff (middle row), and absolute values of the posterior means for the regression
coefficients |β̄j | (bottom row) imposed by different prior choices. The first two columns denote
the results for the pure and regularized horseshoe with hyperprior τ ∼ C+(0, 1), and the last
two columns the same but with τ ∼ C+

(
0, τ20

)
, where τ0 is computed from (3.12) with prior

guess p0 = 3.
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Fig 9. Ovarian dataset : Histograms of the posterior draws under the regularized horseshoe
prior for the three regression coefficients with the largest absolute mean. The histograms
highlight the multimodality of the posterior.

prior actually has a strong influence on the posterior. With the pure horseshoe
this results in severe under-regularization and implausibly large magnitude for
the regression coefficients. This happens because the effective model complex-
ity is so large that the classes become separable, and therefore the coefficients
are only weakly identified (as in the synthetic example in Sec. 4.1.2). With the
regularized horseshoe, even with the complete separation, the magnitude of the
coefficients remains sensible due to the regularization by the slab.

Replacing the scale of the half-Cauchy hyperprior with τ0, reflecting a more
sensible guess for the number of relevant variables, has a substantial effect on
the posterior: the posterior mass for meff becomes concentrated on much smaller
values and the magnitude of the regression coefficients more sensible. For this
hyperprior choice the difference between the original and regularized horseshoe
is much less severe, but also in this case the largest coefficients are smaller for the
regularized horseshoe. How this affects the predictive accuracy will be discussed
in a moment.

A potential explanation for why τ and therefore meff are not strongly iden-
tified here is that there are a lot of correlations in the data. For instance, the
predictor j = 1491 which appears relevant based on its regression coefficient,
has an absolute correlation of at least |ρ| = 0.5 with 314 other variables, out
of which 65 correlations exceed |ρ| = 0.7. This indicates that there are a lot of
potentially relevant but redundant predictors in the data, and thus similar fit
could be obtained by models with varying levels of sparsity.

Another difficulty with correlating predictors is that they cause the poste-
rior of the regression coefficients to become multimodal, which usually results
in convergence issues. Figure 9 shows the posterior draws under the regularized
horseshoe prior for the three coefficients with the largest absolute mean. All
three coefficients have most of the draws near zero but some of the draws are far
from zero, illustrating the multimodality. The R̂-values (potential scale reduc-
tion factor, see e.g., Gelman et al., 2013, ch. 11) for these parameters were 1.09,
1.20 and 1.05 indicating problems with the convergence of the MCMC chains.
Although these convergence issues do not seem to have a drastic negative im-
pact on the predictive accuracy (see the discussion below), the multimodality
dramatically reduces the sampling efficiency and is therefore a major practical
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Fig 10. Microarray datasets : Mean log predictive density (MLPD) on test data (top row),
computation time (middle row), and the fraction of divergent transitions after warmup (bot-
tom row) as a function of τ0 for two hyperpriors: τ ∼ N+

(
0, τ20

)
(red), and τ ∼ C+

(
0, τ20

)
(yellow). Solid lines denote the pure horseshoe and dashed lines the regularized horseshoe with
c2 ∼ Inv-Gamma(2, 8). The shaded area denotes the values for τ0 that correspond to sparsity
guesses between p0 = 1 and p0 = n (Eq. (3.12)). The black dotted line in the top row plots
shows the MLPD for Lasso. All the results are averaged over 50 random splits into training
and test sets.

and theoretical concern and deserves more attention in the future research (see
also the discussion in Section 6).

To investigate the effect of the prior choices on the prediction accuracy, we
split each dataset into two halves, using one fifth of the data as a test set. All
the results were then averaged over 50 such random splits into training and
test sets. We carried out the tests for priors τ ∼ C+

(
0, τ2

0

)
and τ ∼ N+

(
0, τ2

0

)
with various τ0. The half-normal prior was included in the tests to investigate
whether it sometimes could be beneficial to have a strong control over τ by using
a short-tailed prior. To get a baseline for the comparisons, we also computed the
prediction accuracies to Lasso with the regularization parameter tuned by 10-
fold cross-validation. The Lasso results were computed with the default settings
of the R-package glmnet (Friedman, Hastie and Tibshirani, 2010).

The top row of Figure 10 shows the effect of the prior choice on the test
prediction accuracy, and the other two rows the computation time3 and the
fraction of divergent transitions produced by the NUTS after the warm-up. For
the original horseshoe (solid lines) the results illustrate a clear benefit from using
even a crude prior guess for the number of relevant variables p0: transforming
any guess between p0 = 1 and p0 = n into a value of τ0 using Equation (3.12)
(shaded region) and using this as the scale for the half-Cauchy prior instead
of τ0 = 1 yields improved prediction accuracy and reduced computation time

3Wall time when the four chains are run in parallel using four cores.
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in all the datasets. The regularized horseshoe seems in general less sensitive to
the prior choice for τ (Ovarian and Colon datasets), but in some cases clearly
benefits from a more carefully chosen prior (Prostate and Leukemia datasets).
For both priors, using half-Cauchy hyperprior for τ is clearly less sensitive to the
prior guess τ0, and yields better results than the half-normal especially when τ0
was chosen to be too small.

In terms of the predictive accuracy, the regularized horseshoe performs overall
comparably to the original horseshoe: for the Colon dataset it performs slightly
better, for Leukemia slightly worse, and for Ovarian and Prostate about the
same as the pure horseshoe. Only for the Colon and Leukemia datasets the
difference is statistically significant (the errorbars are left out from the plot to
avoid mess). In Leukemia dataset where the regularized horseshoe loses to the
pure horseshoe the chosen prior for the slab width c is probably unnecessarily
restrictive leading to too large regularization for the largest coefficients. It is
evident that in this case using a looser prior for c could improve the results
(because when c→∞ we recover the original horseshoe), but we feel that these
results are enough to convince the reader that a reasonably chosen hyperprior
p(c) does not necessarily compromise and in some cases can even improve the
accuracy compared to the pure horseshoe.

On the other hand, the regularized horseshoe clearly improves the sampling
robustness of the posterior. The regularized horseshoe produces only very few
divergent transitions after the warm-up if any (the fraction is non-negligible
only for the Prostate dataset with a poorly chosen global prior p(τ)), whereas
for the original horseshoe the fraction varies between 1–30% which is really a lot.
With this many divergences, there is always a concern about a biased inference
and this cannot be taken too lightly (see the next Section for recommendations).
Moreover, also the computation times are systematically either smaller or similar
to the original horseshoe, which is due to better behaving posterior.

For any reasonably selected prior (shaded region), the (regularized) horseshoe
consistently outperforms Lasso in terms of predictive accuracy, but in some cases
the difference is not very large. A clear advantage for Lasso, on the other hand,
is that it is hugely faster, with computation time of less than a second for
these problems, whereas even for the regularized horseshoe, the computation
starts to get quite involved for the two biggest problems (around 30–60 minutes
for Prostate and Leukemia datasets), which is the price for the full Bayesian
inference.

5. Recommendations

Based on the theoretical considerations and the experimental results, instead of
the original horseshoe, we recommend using the regularized horseshoe with a
weakly informative prior on c, such as (2.11) with appropriately chosen scale s
and degrees of freedom ν. As illustrated in Section 4, this does not compromise
the predictive accuracy but greatly improves the sampling robustness of the
prior and is resistant to problems originating from weak identifiability of the
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parameters. Still, it is worthwhile to compare the results to a model with a rela-
tively loose prior on c using standard model assessment techniques (Vehtari and
Ojanen, 2012; Vehtari, Gelman and Gabry, 2017) to get an indication if the slab
width was chosen to be too restrictive. However, even if a very large value for c
yields better predictive fit, if it produces a large number of divergent transitions,
it cannot be recommended because in such cases the inference is likely to have
a bias with an unknown magnitude (Betancourt, 2017a). In our experience, for
the regularized horseshoe it is often possible to get rid off the divergences by
tuning Stan’s adaptation routine as explained by Betancourt (2017b).

Also, instead of using the simple τ ∼ C+(0, 1), for linear regression we gen-
erally recommend a weakly informative default choice τ |σ ∼ C+

(
0, τ2

0

)
, where

τ0 is computed from (3.12) using the prior guess p0 for the number of relevant
variables. For the other generalized linear models (GLMs), an approximately
equivalent choice is obtained by replacing σ with a appropriate plug-in value
as explained in Section. 3.5. Based on the results on the real world data, this
choice seems to perform well unless p0 is chosen to be much too large. However,
the toy example shows that sometimes even better results can be obtained by
more informative prior.

6. Discussion

This paper has discussed the use of the horseshoe prior for sparse Bayesian
generalized linear models. We considered two methodological advances. First,
we proposed a generalization of the horseshoe – called the regularized horseshoe
– that operates otherwise similarly as the horseshoe but allows specifying the
regularization to the coefficients that are far from zero. Second, we introduced
a new concept – effective number of nonzero parameters – which is useful for
guiding the hyperprior choice for the global shrinkage parameter.

The experiments demonstrated the benefit of both of these approaches. The
ability to regularize those parameters that are far from zero is useful especially
when the parameters are only weakly identified by the data. As an example we
discussed the logistic regression with data separation. Adding a small regulariza-
tion to the largest coefficients ensures that the posterior mean will exist, leading
to more reasonable parameter estimates and faster posterior exploration. The
regularized horseshoe solves also the problems with the divergent transitions
that have previously been an indication about problems in posterior simulation
and possibly biased inference (Betancourt, 2017b).

Regarding the hyperprior choice for the global shrinkage parameter, we ar-
gued that the previous default choices are often dubious based on their tendency
to favor solutions with too many parameters unshrunk. The experiments show
that for many datasets, one can obtain clear improvements – in terms of better
parameter estimates, prediction accuracy and faster computation – by coming
up even with a crude guess for the number of relevant variables and transforming
this knowledge into a prior for τ using our proposed framework. Based on our
results, for a reasonably selected global hyperprior, the (regularized) horseshoe
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outperforms Lasso in terms of predictive accuracy. A notable difference is that
Lasso produces a truly sparse solution with exact zeros for some coefficients,
whereas horseshoe does not. After fitting the full model, a truly sparse solu-
tion without losing predictive accuracy could be obtained using the projective
variable selection (Piironen and Vehtari, 2017b)4.

Although these advances improve the overall performance and applicability of
the horseshoe prior to various problems, some challenges still persist. When us-
ing the horseshoe prior with correlating predictors, the major concern is always
the multimodality of the posterior, which can lead to difficulties in sampling
and especially to slow convergence of the MCMC. The experiments indicated
that the regularized horseshoe can improve the sampling robustness but does
not remove the multimodality. It must be noted though, that the multimodality
is a direct consequence of the sparsifying prior assumption that favors solutions
where only one in a group of correlating predictors would have a nonzero coeffi-
cient. Whether this assumption is reasonable in practice is a more fundamental
question. It could make sense – both computationally and theoretically – to
employ a horseshoe or other sparsifying prior on some transformed set of fea-
tures – for instance principal components of the original predictors – instead
of the original variables themselves. This would yield a unimodal posterior but
the effects on the other aspects such as the predictive accuracy remain to be
explored. We leave these ideas for future investigation.

Appendix A: Derivation of the regularized horseshoe

The regularized horseshoe from Section 2.3 can be derived by designing a new
prior with shrinkage profile otherwise similar to the horseshoe, but so that in-
stead of favoring κj = 0 and κj = 1, the prior favors κj = bj and κj = 1. This
is achieved by defining the shrinkage factor for the new prior as

κ̃j = (1− bj)κj + bj , (A.1)

where κj is the shrinkage factor for the original horseshoe. Now κ̃j → 1 when
κj → 1, but κ̃j → bj when κj → 0, so we shift the shrinkage profile of the
horseshoe from interval (0, 1) to (bj , 1). By plugging in the expression for the
shrinkage factor κj = 1/(1+a2

jλ
2
j ) where a2

j = nσ−2τ2 s2
j , with a straightforward

manipulation we get

κ̃j =
1 + bj a

2
jλ

2
j

1 + a2
jλ

2
j

. (A.2)

We want to write this in the form κ̃j = 1/(1 + a2
j λ̃

2
j ). Solving λ̃2

j from this
equation yields

λ̃2
j =

(1− bj)λ2
j

1 + bj a2
jλ

2
j

. (A.3)

4Code available at https://github.com/stan-dev/projpred.

https://github.com/stan-dev/projpred
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For convenience, we require that bj = 1
1+nσ−2s2jc

2 which corresponds to shrinkage

by Gaussian with variance c2. By plugging this into (A.3), after a few lines of
straightforward algebra we are left with

λ̃2
j =

c2λ2
j

σ2

ns2j
+ c2 + τ2λ2

j

. (A.4)

Thus we have shown that the prior

βj |λj , τ ∼ N
(

0, τ2λ̃2
j

)
, λj ∼ C+(0, 1), (A.5)

with λ̃2
j defined by (A.4) has the shrinkage profile of the horseshoe shifted from

the interval (0, 1) to (bj , 1), where bj = 1
1+nσ−2s2jc

2 . As discussed in Section 2.3,

the term σ2

ns2j
is typically small compared to c2 so by leaving this out from (A.5),

we get the prior (2.8).

Appendix B: Pseudo variance for Non-Gaussian observations

As discussed in Section 3.5, assuming y has a distribution in the exponential
family with natural parameter θ and dispersion φ, the log likelihood has the
form

L =
yθ −B(θ)

A(φ)
− C(yi, φ),

for some specific functions A(·), B(·) and C(·). From the well-known relations

E

(
∂L

∂θ

)
= 0, and E

(
∂2L

∂θ2

)
+ E

((
∂L

∂θ

)2
)

= 0,

we can easily derive

E(y) = B′(θ),

Var(y) = B′′(θ)A(φ).

We denote µ = B′(θ) and V (µ) = B′′(θ), from which we can also deduce
∂µ
∂θ = V (µ). The first derivative is given by the chain rule

∂L

∂f
=
∂L

∂θ

∂θ

∂µ

∂µ

∂f
=
y − µ
A(φ)

1

V (µ)

∂µ

∂f
.

The second derivative is then

∂2L

∂f2
=

1

A(φ)

[
(y − µ)

∂

∂f

(
1

V (µ)

∂µ

∂f

)
− 1

V (µ)

(
∂µ

∂f

)2
]
.

Thus the pseudo variance becomes

σ̃2 = −
(
∂2L

∂f2

)−1

= A(φ)

[
1

V (µ)

(
∂µ

∂f

)2

− (y − µ)
∂

∂f

(
1

V (µ)

∂µ

∂f

)]−1

.
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Appendix C: Stan codes

C.1. Simple parametrization

The following shows the Stan code for the linear Gaussian model with the reg-
ularized horseshoe prior using a straightforward parametrization. In our ex-
perience this code works fine, but in Appendix C.2 we also provide another
code using different parametrization (with which we generated our results).
This is worth trying if the simple code has issues with sampling (produces di-
vergences).

In the code, both τ and λj are given half-t priors with the degrees of freedom
and the scale defined by the user (the scale can be adjusted only for τ). Setting
nu local = 1 corresponds to the horseshoe. nu global = 1 gives τ a half-
Cauchy prior. The scale for τ is scale global*sigma, so if we want to set this
to be τ0 = p0

D−p0
σ√
n

(Eq. (3.12)), we should set scale global = p0
(D−p0)

√
n

. The

code assumes a Student-t slab for regularizing the largest coefficients, and the
scale and degrees of freedom can be specified using slab scale and slab df

arguments.

data {
int <lower=0> n; # number of observations
int <lower=0> d; # number of predictors
vector[n] y; # outputs
matrix[n,d] x; # inputs
real <lower=0> scale_icept; # prior std for the intercept
real <lower=0> scale_global; # scale for the half -t prior for tau
real <lower=1> nu_global; # degrees of freedom for the half -t prior

# for tau
real <lower=1> nu_local; # degrees of freedom for the half -t priors

# for lambdas
real <lower=0> slab_scale; # slab scale for the regularized horseshoe
real <lower=0> slab_df; # slab degrees of freedom for the regularized

# horseshoe
}

parameters {
real logsigma;
real beta0;
vector[d] z;
real <lower=0> tau; # global shrinkage parameter
vector <lower =0>[d] lambda; # local shrinkage parameter
real <lower=0> caux;

}

transformed parameters {
real <lower=0> sigma; # noise std
vector <lower =0>[d] lambda_tilde; # ’truncated ’ local shrinkage parameter
real <lower=0> c; # slab scale
vector[d] beta; # regression coefficients
vector[n] f; # latent function values
sigma = exp(logsigma );
c = slab_scale * sqrt(caux);
lambda_tilde = sqrt( c^2 * square(lambda) ./ (c^2 + tau^2* square(lambda )) );
beta = z .* lambda_tilde*tau;
f = beta0 + x*beta;

}
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model {
# half -t priors for lambdas and tau , and inverse -gamma for c^2
z ∼ normal(0, 1);
lambda ∼ student_t(nu_local , 0, 1);
tau ∼ student_t(nu_global , 0, scale_global*sigma);
caux ∼ inv_gamma (0.5* slab_df , 0.5* slab_df );
beta0 ∼ normal(0, scale_icept );
y ∼ normal(f, sigma);

}

The code for the logistic regression model is very similar, we simply re-
move the lines related to the noise deviation sigma, and change the observation
model and the type of the target variable data y. Notice also that now the
scale for τ is simply scale global. Thus, to follow our recommendation, we set
scale global = τ0 = p0

D−p0
σ√
n

(Eq. (3.12)), by using a suitable plug-in value

for σ (Sec. 3.5). The lines that need to be changed (in addition to removing
definitions related to sigma) are shown below.

data {
...
int <lower=0,upper=1> y[n]; # outputs
...

}

transformed parameters {
...
tau = aux1_global * sqrt(aux2_global) * scale_global;
...

}

model {
...
y ∼ bernoulli_logit(f);

}

C.2. Alternative parametrization

This parameterization was proposed by Peltola et al. (2014) (codes at https:

//github.com/to-mi/stan-survival-shrinkage). In practice we have not
observed problems with the code presented in Appendix C.1 but if it has is-
sues with sampling, it is worth trying the following code (using which we ran
our experiments). Below is the code for the Gaussian observation model.

data {
int <lower=0> n; # number of observations
int <lower=0> d; # number of predictors
vector[n] y; # outputs
matrix[n,d] x; # inputs
real <lower=0> scale_icept; # prior std for the intercept
real <lower=0> scale_global; # scale for the half -t prior for tau
real <lower=1> nu_global; # degrees of freedom for the half -t prior

# for tau
real <lower=1> nu_local; # degrees of freedom for the half -t priors

# for lambdas
real <lower=0> slab_scale; # slab scale for the regularized horseshoe
real <lower=0> slab_df; # slab degrees of freedom for the regularized

# horseshoe
}

https://github.com/to-mi/stan-survival-shrinkage
https://github.com/to-mi/stan-survival-shrinkage
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parameters {
real logsigma;
real beta0;
vector[d] z;
real <lower=0> aux1_global;
real <lower=0> aux2_global;
vector <lower =0>[d] aux1_local;
vector <lower =0>[d] aux2_local;
real <lower=0> caux;

}

transformed parameters {
real <lower=0> sigma; # noise std
real <lower=0> tau; # global shrinkage parameter
vector <lower =0>[d] lambda; # local shrinkage parameter
vector <lower =0>[d] lambda_tilde; # ’truncated ’ local shrinkage parameter
real <lower=0> c; # slab scale
vector[d] beta; # regression coefficients
vector[n] f; # latent function values
sigma = exp(logsigma );
lambda = aux1_local .* sqrt(aux2_local );
tau = aux1_global * sqrt(aux2_global) * scale_global*sigma;
c = slab_scale * sqrt(caux);
lambda_tilde = sqrt( c^2 * square(lambda) ./ (c^2 + tau^2* square(lambda )) );
beta = z .* lambda_tilde*tau;
f = beta0 + x*beta;

}

model {
# half -t priors for lambdas and tau , and inverse -gamma for c^2
z ∼ normal(0, 1);
aux1_local ∼ normal(0, 1);
aux2_local ∼ inv_gamma (0.5* nu_local , 0.5* nu_local );
aux1_global ∼ normal(0, 1);
aux2_global ∼ inv_gamma (0.5* nu_global , 0.5* nu_global );
caux ∼ inv_gamma (0.5* slab_df , 0.5* slab_df );
beta0 ∼ normal(0, scale_icept );
y ∼ normal(f, sigma);

}

Again, the code for the logistic regression model is very similar. Below are the
lines that need to be changed (in addition to removing the definitions related
to sigma).

data {
...
int <lower=0,upper=1> y[n]; # outputs
...

}

transformed parameters {
...
tau = aux1_global * sqrt(aux2_global) * scale_global;
...

}

model {
...
y ∼ bernoulli_logit(f);

}
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Appendix D: rstanarm code

The horseshoe prior is implemented in the R-package rstanarm5, which contains
a lot of precompiled Stan code and provides an easy-to-use interface to the most
commonly used regression models. At the time of writing this, the package
does not implement the regularized horseshoe but it will be added in the near
future.

Assuming the predictor matrix and the corresponding targets are loaded into
variables x and y, the linear Gaussian model with the horseshoe prior can be
fitted as follows:

# use all available cores
options(mc.cores = parallel :: detectCores ())

# set up the prior , use hyperprior tau ∼ half -Cauchy(0,tau0 ^2)
D <- ncol(x)
n <- nrow(x)
p0 <- 5 # prior guess for the number of relevant variables
tau0 <- p0/(D-p0) / sqrt(n) # rstanarm will scale this by sigma automatically
prior_coeff <- hs(df=1, global_df=1, global_scale=tau0)

# fit the model
fit <- stan_glm(y ∼ x, family = gaussian(), data = data.frame(I(x),y),

prior = prior_coeff)

The other generalized linear models can be fitted in a similar manner. Here is
an example of fitting a logistic regression model (assume now that values y are
binary):

# set up the prior , use hyperprior tau ∼ half -Cauchy(0,tau0 ^2)
D <- ncol(x)
n <- nrow(x)
p0 <- 5 # prior guess for the number of relevant variables
sigma <- 1 / sqrt(mean(y)*(1- mean(y))) # pseudo sigma
tau0 <- p0/(D-p0) * sigma/sqrt(n)
prior_coeff <- hs(df=1, global_df=1, global_scale=tau0)

# fit the model
fit <- stan_glm(y ∼ x, family = binomial(), data = data.frame(I(x),y),

prior = prior_coeff)
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