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1. Introduction

Asynchronous longitudinal data refers to the data structure that measurement
times for the longitudinal response and longitudinal covariates are mismatched
within individuals. For example, educational studies associate subjective evalu-
ations of students’ performance and objective test results. However, subjective
information is usually collected through interviews or phone calls at different
times from the exams. In clinical epidemiology, one may study the links be-
tween biomarkers, sampled repeatedly at lab visits, with self-reported measures
of function and quality of life, captured via outpatient phone interviews. With
the adoption of electronic medical records, an individual’s information may be
pooled from different sources to make treatment decisions, creating an asyn-
chronous longitudinal data structure.

While regression analysis for synchronous longitudinal data (Liang and Zeger,
1986; Diggle et al., 2002) has been widely studied, there has been limited work
on the analysis of regression models using asynchronous longitudinal data. Xiong
and Dubin (2010) employed an ad hoc binning step to synchronize covariates and
response measurements to use existing methods for synchronous data. Sentürk
et al. (2012) explicitly addressed the asynchronous setting for generalized vary-
ing coefficient models with one covariate but did not provide the theoretical
properties of the estimators. Cao et al. (2015) proposed a nonparametric kernel
weighting approach for the generalized linear models to explicitly deal with the
asynchronous structure and rigorously established the consistency and asymp-
totic normality of the resulting estimates. This was extended to a more general
set up in Cao et al. (2016).

Despite these progresses, one limitation of marginal generalized linear mod-
els associating longitudinal response with corresponding longitudinal covariates
is that non-linear time trends cannot be taken into account. Partially linear
models provide a convenient vehicle to retain the parsimonious description of
the relationship between the response variable and its covariates and to use a
flexible nonparametric function to capture the nonlinear time trend effects. In
this paper, we study the partially linear models for asynchronous longitudinal
data:

E{Y (t)|X(t)} = α(t) +X(t)Tβ, (1.1)

where t is a univariate time index, Y (t) is the response scalar, X(t) is the p× 1
covariate vector at time t, α(t) is an unspecified baseline function of t and β is
vector of unknown regression coefficients. Model (1.1) does not require data an-
alysts to parameterize the baseline function which may be difficult in practice. It
keeps the flexibility of the nonparametric models for the baseline function, while
maintaining the exploratory power of parametric models. Therefore, model (1.1)
and its variations have been extensively studied in the literature for synchronous
longitudinal data (Zeger and Diggle, 1994; Moyeed and Diggle, 1994; Lin and
Carroll, 2001; Wang et al., 2005). Lin and Ying (2001) proposed estimation pro-
cedures under the framework of counting processes. Fan and Li (2004) developed
difference-based method and profile least squares approach for the estimation of
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β. Due to the asynchronous data structure, their approaches cannot be directly
used for our purpose.

In this paper, we propose a system of global and local estimating equations for
model (1.1). Furthermore, under appropriate regularity conditions, we show that
within a range of choices of the smoothing parameter (the kernel bandwidth),
the estimator of β has the same rate of convergence as in the generalized linear
model (Cao et al., 2015), slower than the parametric rate n−1/2 for synchronous
data (Lin and Ying, 2001; Fan and Li, 2004). The asymptotic normality is
also obtained for the estimates of the linear parameter and nonlinear function.
Inferences on β are based on a resampling approach and we use bootstrap for
the inference of the nonparametric function α(·). What distinguishes our work
from Cao et al. (2015) is that a non-parametric time trend effect is explicitly
modeled with associated theoretical properties rigorously established. Unlike
Lin and Ying (2001); Fan and Li (2004) for synchronous longitudinal data, a
global estimating equation is proposed to down-weigh those observations which
are distant in time and enables the use of all covariate observations for each
observed response with asynchronous longitudinal data. Our approach is related
to some existing quasi/partial-likelihood based algorithms for partially linear
models (Cai et al., 2007, 2008; Lu and Zhang, 2010). However, the asynchronous
longitudinal data structure poses new challenges for both model estimation and
inferences.

The remainder of the paper is organized as follows. In Section 2, we describe
the global and local estimating equations for the parameter β and function α(·)
in model (1.1), and provide the corresponding theoretical findings. In Section
3, we conduct simulation studies to examine the finite-sample properties of the
new procedure and apply our method to dataset from an HIV study. Conclud-
ing remarks are given in Section 4. All technical proofs are relegated in the
Appendix.

2. Model estimation and inference

In this section, we propose a system of estimating equations to simultaneously
estimate β and α(t). The main idea is to use a global estimating equation for β
by kernel weighting and the local polynomial technique (Fan and Gijbels, 1996)
to construct a set of locally weighted estimating equations for α(t).

2.1. Estimating equations

Suppose there are n subjects in the study. We formulate the observation process
using a bivariate counting process for the observation times of the covariate and
response variables, similar to Martinussen and Scheike (1999); Lin and Ying
(2001); Cao et al. (2015, 2016). Specifically, for subject i = 1, . . . , n, the obser-
vation times of the longitudinal covariate process Xi(t) and response process
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Yi(s) are generated from a bivariate counting process.

Ni(t, s) =

Li∑
j=1

Mi∑
k=1

I(Tij ≤ t, Sik ≤ s)

counts the number of observation times up to t on the response and up to s
on the covariates, where {Tij , j = 1, . . . , Li} are the observation times of the
response and {Sik, k = 1, . . . ,Mi} are the observation times of the covariates.

If the nonparametric function α(t) were known, partially linear models reduce
to the linear models, and thus we can adopt methods in Cao et al. (2015) to
estimate β. Motivated by this, we first propose an estimating equation to solve
β, with α(s) being fixed at its current value. The estimating equation is

U(β) = n−1
n∑

i=1

∫ 1

0

∫ 1

0

Kh(t− s)Xi(s)
[
Yi(t)− α(s)−Xi(s)

Tβ
]
dNi(t, s) = 0,

(2.1)
where Kh(t) = K(t/h)/h,K(t) is a symmetric kernel function, usually taken
to be the Epanechnikov kernel K(t) = 0.75(1 − t2)+ and h is the bandwidth.
In (2.1), longitudinal measurements of the nonparametric function α(·) are the
same as the longitudinal covariates X(·) without loss of generality. The pro-
posed method equally works if longitudinal measurements of the nonparametric
function α(·) are the same as the longitudinal response Y (·).

Next, in order to estimate α(s), we approximate it locally by a linear function

α(s) ≈ γ0(t0) + γ1(t0)(s− t0) (2.2)

for s in a neighborhood of t0, where γ0(t0) = α(t0) and γ1(t0) = α̇(t0). The
superscript dot denotes the first-order derivative. Given β, we propose to solve
the following kernel-weighted local estimating equations for α(·) :

n−1
n∑

i=1

∫∫
Kh1,h2(s− t0, t− t0){Yi(t)− γ0(t0)− γ1(t0)(s− t0)

−βTXi(s)}dNi(t, s) = 0 (2.3)

n−1
n∑

i=1

∫∫
(s− t0)Kh1,h2(s− t0, t− t0){Yi(t)− γ0(t0)− γ1(t0)(s− t0)

−βTXi(s)}dNi(t, s) = 0, (2.4)

whereKh1,h2(t, s) = K(t/h1, s/h2)/(h1h2) andK(t, s) is a bivariate kernel func-
tion, say, the product of univariate Epanechnikov kernels K(t, s) = 0.5625(1 −
t2)+(1 − s2)+. Altogether, we need to solve three estimating equations (2.1),
(2.3) and (2.4) interactively: solve (2.1) for β with α(·) being fixed, and solve
(2.3)-(2.4) for α(·) with β fixed.

We now present an iterative algorithm to implement our estimation proce-
dure. The algorithm is given as follows:
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Step 0 (initialization step). Choose an initial estimate α̂(·) = α̂(0)(·), for

example, α̂(0)(t) = 0. Solve (2.1) to obtain β̂(0). Set β̂ = β̂(0).

Step 1. Fix β̂ at the current value. For t0 = Sik, solve (2.3) and (2.4) to
obtain γ̂0(Sik) and γ̂1(Sik), i = 1, . . . , n; k = 1, . . . ,Mi.

Step 2. Update β̂ by solving equation (2.1) with fixed α(Sik) = γ̂0(Sik), i =
1, . . . , n; k = 1, . . . ,Mi.

Step 3. Repeat Steps 1 and 2 until convergence.
Step 4. Fix β̂ at its estimated value from Step 3. The final estimate of α(t) is

γ̂0(t) = γ̂0(t;h1, h2, β̂), where {γ̂0(t;h1, h2, β̂), γ̂1(t;h1, h2, β̂)} are obtained by
solving (2.3) and (2.4).

The basic idea behind the foregoing algorithm is intuitive: estimate α(s) lo-
cally via (2.3) and (2.4), and then use all of the data and (2.1) to estimate
β, with α̂(s) replacing α(s). The proposed algorithm above is similar in spirit
to Cai et al. (2007, 2008); Lu and Zhang (2010) for partially linear hazards
regression models with multivariate survival data and transformation models
with univariate survival data. All these algorithms, in their own contexts, alter-
natively optimize the global and local quasi-likelihood functions or estimating
equations until convergence.

In the synchronous case where s = t, our algorithm is different from that in
Fan and Li (2004), where a difference-based method or a profile least squares
approach was used to get a closed form estimate of β with parametric rate of
convergence. The baseline function α(·) was estimated by smoothing the partial

residuals using a local linear fit. As the rate of convergence for β̂ is faster than
that for the nonparametric estimator, the errors in estimating β were negligible
and the value of β can be considered as known in the nonparametric estimation
of α(·). The asynchronous structure greatly complicates the estimation and in-
ference procedure and we cannot obtain a closed form expression for β even in
the linear model case. Therefore, inferential procedures in Fan and Li (2004) are
not applicable.

The estimation procedure involves choosing smoothing parameters on two
quite different levels. In step 1 of the algorithm the aim is estimation of the
nonparametric part α(t). However, in step 2, the goal is to estimate the para-
metric part β. In step 1, we use bandwidth that falls into the theoretically allow-
able range specified in Theorem 2.2 below. In step 2, due to the asynchronous
structure of the observed longitudinal data, commonly used approaches such as
cross-validation do not work here. We propose to minimize the mean squared
errors by calculating the bias and variance of β̂ separately. Simulation studies
show that our procedure is quite robust with different choices of bandwidths.

2.2. Asymptotic properties

In this section, we establish the asymptotic properties of the estimators β̂ and
γ̂0(t). For subject i, we allow the observations of Xi(·) and the observations of
Yi(·) to be arbitrarily correlated. We specify our assumptions on the covariance
structure as follows. For s, t ∈ [0, 1], let var{Y (t) | X(t)} = σ{t,X(t)}2 and
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cov{Y (s), Y (t) | X(s), X(t)} = r{s, t,X(s), X(t)}. Observe that the conditional
variances and correlations of Y are completely unspecified and may depend on
X. We need the following conditions.

(A1) Ni(t, s) is independent of (Yi, Xi) and moreover, E{dNi(t, s)} =
λ(t, s)dtds, where λ(t, s) is a twice-continuously differentiable function for
any 0 ≤ t, s ≤ 1. In addition, Lebesgue measure for G = {λ(s, s) >
0, s ∈ [0, 1]} is strictly positive. For t1 �= s1, t2 �= s2, P{dN(t1, t2) = 1 |
N(s1, s2)−N(s1−, s2−) = 1} = f(t1, t2, s1, s2)dt1dt2 where f(t1, t2, s1, s2)
is continuous for t1 �= s1, t2 �= s2 and f(t1±, t2±, s1±, s2±) exists.

(A2) F = {s ∈ [0, 1] | X(s) �= 0} has positive Lebesgue measure with proba-
bility 1 and for s ∈ F , X(s) is not a constant function with probability
1.

(A3) For any (s, t) ∈ [0, 1]⊗2, E{X(s)X(s)T } is continuously twice-differen-
tiable. In addition, α0(s) and E{X(s)} are twice continuously differen-
tiable for s ∈ [0, 1], where α0(s) is the true nonparametric baseline func-
tion. Moreover, E{||X(t)||4} < ∞ for t ∈ [0, 1]. Furthermore,

∫
E

[
||X(s)X(s)T ||σ{s,X(s)}2

]
λ(s, s)ds < ∞ and

∫
||var{X(s)}||λ(s, s)ds < ∞.

(A4) K(·) is a symmetric density function satisfying
∫
zK(z)dz = 0,

∫
z2K(z)dz

< ∞ and
∫
K(z)2dz < ∞. Moreover, K(·, ·) is a bivariate density function

satisfying
∫
z1K(z1, z2)dz1dz2 =

∫
z2K(z1, z2)dz1dz2 = 0,

∫∫
z21K(z1, z2)

dz1dz2 < ∞ and
∫∫

z22K(z1, z2)dz1dz2 < ∞.
(A5) nh → ∞ and nh5 → 0.

Condition (A1) requires that the observation process to be independent of
both the response and covariates. We require that λ(t, s) to be positive when
s = t for non-zero measure of time s. The requirement on the intensity function
λ(t, s) is quite mild. Condition (A2) ensures identifiability of β and condition
(A3) posits smoothness assumptions on the expectation of some functionals of
X(s) and α0(s). It provides additional regularity conditions on the observation
intensity λ(·, ·). These assumptions can be relaxed similar to Cao et al. (2016)
that allows the intensity function to depend on covariate processX(·). Condition
(A4) and (A5) specify valid kernels and bandwidths.

The following theorem, which is established in the appendix, states the
asymptotic properties of β̂.

Theorem 2.1. Under conditions (A1)-(A5), the asymptotic distribution of β̂
satisfies √

nh(β̂ − β0) → N(0, A−1Σ(AT )−1), (2.5)

where

A =

∫
Var{X(s)}λ(s, s)ds
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and

Σ =

∫
K(z)2dz

∫
E

[
X(s)X(s)Tσ2{s,X(s)}

]
λ(s, s)ds.

The asymptotic result has the same rate of convergence as that in Cao et
al. (2015) when the identity link function is used but larger variance. This
extra variability is due to estimation of the nonparametric function α0(·). In
the special case that E{X(t)} = 0, ∀t ∈ [0, 1] our results coincide with those
in Cao et al. (2015). The asymptotic bias is of order h2 from the proof in the
Appendix and vanishes under condition (A5). Compared with partially linear
models with synchronous longitudinal data (Fan and Li, 2004), we have a slower
rate of convergence.

We need additional conditions to establish the limiting distribution of the
nonparametric function α(·).

(A5∗) nh1h2 → ∞ and (nh1h2)
1/2(h2

1 + h2
2) → 0.

Theorem 2.2. Under conditions (A1)-(A4) and (A5∗), we have

√
nh1h2{γ̂0(s; β̂)− α0(s)} d→ N(0,Σ∗(s)), as n → ∞, (2.6)

where

Σ∗(s) =
1

λ(s, s)

∫∫
K(z1, z2)

2dz1dz2E
[
σ2{s,X(s)}

]
.

The bias is of order h2
1 + h2

2 and vanishes through condition (A5∗). The rate
of convergence is slower than the regular nonparametric n2/5 rate. This is the
price to pay for the asynchronous data structure. The variance has a similar
form to that in Fan and Li (2004) except we have a bivariate counting process
and intensity function.

2.3. Practical implementation

As shown in Theorem 1, the asymptotic variance of β̂ has a standard sandwich
form A−1ΣA−1. However, it is challenging to estimate parameters A and Σ
without imposing additional assumptions on the covariate process and intensity
function of the observation times. Estimating equation based method used in
Cao et al. (2015) is not applicable as A cannot be estimated with available data.
Therefore, it is desirable to have a feasible computation approach to approximate
the asymptotic variance of β̂. In this section, we propose to use a resampling
scheme similar to that in Lu and Zhang (2010) to approximate the asymptotic

distribution of β̂.
The resampling algorithm proceeds as follows. First, we generate n iid expo-

nential random variables {ξi, i = 1, . . . , n} with mean 1 and variance 1. Fixing
data at their observed values, we solve the following ξi-weighted estimating
equations and denote the solutions as β∗ and α∗(s):

n−1
n∑

i=1

ξi

∫ 1

0

∫ 1

0

Kh(t− s)Xi(s)
[
Yi(t)− α(s)−Xi(s)

Tβ
]
dNi(t, s) = 0,
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n−1
n∑

i=1

ξi

∫∫
Kh1,h2(s− t0, t− t0){Yi(t)− γ0(t0)− γ1(t0)(s− t0)

− βTXi(s)}dNi(t, s) = 0,
n∑

i=1

ξi

∫∫
(s− t0)Kh1,h2(s− t0, t− t0){Yi(t)− γ0(t0)− γ1(t0)(s− t0)

− βTXi(s)}dNi(t, s) = 0.

The estimates β∗ and α∗(s) can be obtained using the same iterative algorithm
proposed in Section 2.1. In the following theorem, we establish the validity of
the proposed resampling method.

Theorem 2.3. Under the regularity conditions (A1)-(A5), the conditional dis-

tribution of (nh)1/2(β∗ − β̂) given the observed data converges almost surely to
the limiting distribution in (2.5).

Based on Theorem 3, by repeatedly generating {ξ1, . . . , ξn} many times, we

may obtain a large number of realizations of β∗. The variance estimate of β̂ can
be obtained by referring to the empirical distribution of β∗. Point-wise inference
on γ̂0(t; β̂) can be similarly obtained by the resampling method and we omit the
details here. The proposed Monte Carlo scheme is similar to the bootstrap in
terms of sample space, convergence, etc. Specifically, the sample space for β∗ is
conditional on the data whereas that of β̂ is unconditional; the distribution of
(nh)1/2(β∗−β) converges to the same limit as that of (nh)1/2(β̂−β) for almost
all realizations of the data. Bootstrap would be a possible alternative to the
proposed approach. However, it is not clear how to justify that the bootstrap is
valid for the present problem.

Our method depends on the selection of bandwidth. To estimate β0, theoret-
ically speaking, condition (A5) says that the bandwidth cannot be too small;
otherwise, the variance will be quite large. On the other hand, to eliminate the
asymptotic bias, one requires a small bandwidth. Theorem 2.1 indicates that
the allowable range of bandwidth is (n−1, n−1/5). Our numerical studies show
that the proposed method has robust performance in the range (n−0.7, n−0.6).
In the estimation of α0(s), if we let h1 = h2 = hα, based on condition (A5∗),
a valid bandwidth is in the range (n−1/2, n−1/6). Our numerical studies show
that bandwidths in the range (n−0.4, n−0.3) have decent performance. In gen-
eral, asynchronous estimators converge more slowly and are less efficient than
those based on synchronous data.

An automatic bandwidth selection procedure for β̂ can be carried out by
calculating the bias and variability of β̂ separately. To be specific, as the bias of
β̂ is of order h2, we first regress β̂(h) on h2 in a reasonable range of h to obtain
the slope estimate Ĉ. To obtain the variance, we split the data randomly into two
parts and obtain regression coefficient estimates β̂1(h) and β̂2(h) based on each

half sample. The variance of β̂(h) is estimated by V̂ (h) = (β̂1(h)−β̂2(h))
2/4. We

thus calculate the mean squared error as Ĉ2h4+ V̂ (h) and select the bandwidth
h minimizing this mean squared error.
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3. Numerical studies

3.1. Simulation

In this section, we examine the finite sample performance of the proposed esti-
mators. We first study the performance of the parametric regression coefficient
β̂. We generated 1, 000 datasets, each consisting of n = 200, 900 or 1, 600 sub-
jects. The numbers of observation times for the response Y (t) and covariate
X(t) were Poisson distributed with intensity rate 6. With these two numbers of
measurements, the observation times for the response and covariate were gen-
erated from uniform distribution U(0, 1) independently. The covariate process
was Gaussian, with values at fixed time points being multivariate normal with
mean 0, variance 1 and correlation e−|tij−tik|, where tij was the jth measure-
ment time and tik was the kth measurement time for the covariates, both on
subject i. At the data generating stage, in order to generate the response, we
included the response observation times with the covariate observation times
when generating the covariates needed for simulating response at the response
observation times. The responses were generated from

Y (t) = α(t) +X(t)β + ε(t), (3.1)

where β is the regression coefficient, ε(t) is Gaussian, with mean 0, variance 1,
and cov{ε(s), ε(t)} = 2−|t−s|, and α(t) is the nonparametric baseline function.
Once the response was generated, we removed the covariate measurements at the
response times from the observed covariate values. In this simulation, we used
the Epanechnikov kernel K(t) = 0.75(1− t2)+, β = −2, α(t) = sin(2πt),

√
t and

0.4t+ 0.5 and the bandwidth for estimating α(·) was set to be h1 = h2 = hα =

n−0.4. Our goal was to assess the performance of β̂. The results were very similar
for other choices of kernel functions, βs, functional forms of α(·) and hα. For
comparison, we implemented last value carried forward approach to synchronize
covariates and response measurements and used method in Fan and Li (2004).
Specifically, for a response observed at time tij , the covariate at time tij was
taken to be the covariate observed at time s = max(x ≤ tij , x ∈ {si1, . . . , siMi}).
This corresponds to the most recent observation time relative to the response.
For a response, if no covariate was observed prior to the response’s observation
time, the observed response was omitted from the analysis.

Table 1 summarized the simulation results. We can see that as sample size
increases, biases and standard deviations decrease, across different functional
forms of α(·). The standard deviation estimate is close to the empirical one
and coverage probabilities are close to the nominal one. This is evident even for
moderately large sample size. In contrast, last value carried forward approach
exhibits large bias, which does not attenuate with increased sample size. On the
other hand, with last value carried forward approach, as sample size increases,
variance estimate gets smaller, and consequently, the coverage probability dete-
riorates.

We next examine the performance of α̂(t). Local linear regression is used to
estimate the baseline function. Simulation set up is exactly the same as before.
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Table 1

1, 000 simulation results for inference of β

α(t) = sin(2πt) α(t) =
√
t α(t) = 0.4t+ 0.5

BD Bias SD SE CP Bias SD SE CP Bias SD SE CP

n = 200

n−0.6 0.030 0.081 0.078 92 0.027 0.083 0.079 92 0.031 0.085 0.080 92

n−0.7 0.021 0.091 0.086 93 0.014 0.094 0.087 92 0.016 0.088 0.086 94

auto 0.017 0.089 0.083 92 0.023 0.086 0.084 93 0.019 0.090 0.084 93

LVCF 0.239 0.082 0.079 15 0.247 0.081 0.080 14 0.242 0.087 0.081 17

n = 900

n−0.6 0.014 0.048 0.046 93 0.013 0.046 0.046 93 0.013 0.046 0.046 94

n−0.7 0.008 0.060 0.056 94 0.007 0.058 0.056 93 0.005 0.060 0.056 93

auto 0.005 0.055 0.052 93 0.006 0.055 0.052 93 0.007 0.055 0.052 95

LVCF 0.234 0.037 0.038 0 0.241 0.040 0.038 0 0.235 0.037 0.038 0

n = 1, 600

n−0.6 0.010 0.037 0.038 95 0.010 0.039 0.038 94 0.008 0.038 0.038 95

n−0.7 0.001 0.049 0.048 94 0.005 0.050 0.048 93 0.005 0.052 0.049 93

auto 0.004 0.046 0.043 94 0.004 0.045 0.044 95 0.004 0.048 0.044 94

LVCF 0.238 0.029 0.029 0 0.232 0.029 0.029 0 0.237 0.029 0.029 0

Note: “BD” represents different bandwidths in the estimation of β, “Bias’ is the empirical
bias, “SD” is the sample standard deviation, “SE” is the average of the standard error

estimates, “CP”/100 represents the coverage probability of the 95% confidence interval for

β̂, “auto” represents the results by automatic bandwidth selection procedure, and “LVCF”
represents last value carried forward approach.

We assess the performance of α̂(·) by the square root of average squared errors
(RASE),

RASE2 = n−1
grid

ngrid∑
k=1

{α̂(tk)− α(tk)}2,

where {tk, k = 1, . . . , ngrid} are the grid points at which the baseline func-
tion α(·) is estimated. In our simulation ngrid = 100 with tk, k = 1, . . . , ngrid

equally spaced between (0, 1). The bandwidth for estimating β is set to be
h = n−0.6. The RASEs for different functional forms of α(·) and bandwidths
based on 100 replications are listed in Table 2. The results are very typical.
RASE gets smaller with smaller bandwidths. The performance improves with
increased sample sizes. Figure 1 depicts the typical estimated curves of α(t)
along with its point-wise confidence interval.

The standard error of α(·) is calculated through bootstrap (Efron and Tib-
shirani, 1993). Specifically, we draw 100 independent bootstrap samples from the
generated data and compute α(t) based on the bootstrap, denoted as α̂∗(b)(t), b =
1, . . . , 100. The standard error estimate of α(t) is obtained through

ŝe{α̂(t)} = [
1

99

100∑
b=1

{α̂∗(b)(t)− α̂∗(·)(t)}2]1/2,
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Table 2

100 simulation results for inference of α̂(·) based on RASE

α(t) = sin(2πt) α(t) =
√
t α(t) = 0.4t+ 0.5

n BD MEAN SD MEAN SD MEAN SD

200 n−0.5 0.206 0.044 0.192 0.041 0.191 0.041

n−0.4 0.168 0.046 0.154 0.040 0.150 0.039

900 n−0.5 0.152 0.020 0.151 0.024 0.153 0.028

n−0.4 0.103 0.023 0.092 0.018 0.102 0.023

1600 n−0.5 0.141 0.015 0.142 0.021 0.145 0.020

n−0.4 0.089 0.018 0.087 0.013 0.084 0.015

Note: “BD” represents different bandwidths in the estimation of α(·), “MEAN” represents
empirical average of RASE, and “SD” represents empirical standard deviaiton of RASE.

Fig 1. Typical estimated baseline curve and point wise confidence interval for α(t) = sin(2πt).
(a) corresponds to n = 900 and (b) corresponds to n = 1600.

where

α̂∗(·)(t) =
1

100

100∑
b=1

α̂∗(b)(t).

We look at bias, variance and pointwise coverage probabilities at t = 0.25, 0.5
and 0.75 with different functional forms of α(·) and bandwidth hα. Bandwidth
for the estimation of β is set to be n−0.6.

The results are summarized in Table 3. We can see that the biases are small,
standard error is close to the sample standard deviation and coverage proba-
bilities are close to the nominal 95%. This pattern is consistent across different
time points, functional form of α0(t) and sample sizes. As sample size increases,
both bias and variability attenuate. Therefore, we can conduct valid point-wise
inference for the function α(t).
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Table 3

1, 000 simulation results for inference of α0(t)

t = 0.25 t = 0.5 t = 0.75

BD Bias SD SE CP Bias SD SE CP Bias SD SE CP

α0(t) = sin(2πt)

n = 200

n−0.4 -0.053 0.135 0.131 92 0.004 0.141 0.134 93 0.052 0.134 0.131 92

n−0.5 -0.020 0.175 0.177 95 -0.005 0.185 0.182 95 0.007 0.178 0.178 95

n = 900

n−0.4 -0.018 0.086 0.086 96 -0.002 0.086 0.087 96 0.012 0.092 0.086 96

n−0.5 -0.006 0.142 0.138 94 -0.003 0.144 0.140 95 0.013 0.139 0.139 95

n = 1600

n−0.4 -0.014 0.076 0.075 95 -0.001 0.076 0.075 95 0.011 0.075 0.075 95

n−0.5 -0.005 0.128 0.129 95 -0.003 0.129 0.128 95 -0.003 0.132 0.128 95

α0(t) =
√
t

n = 200

n−0.4 -0.013 0.142 0.134 94 -0.007 0.133 0.133 95 -0.005 0.133 0.133 95

n−0.5 0.004 0.179 0.168 93 0.010 0.170 0.169 95 0.010 0.172 0.168 94

n = 900

n−0.4 0.001 0.086 0.087 95 -0.001 0.090 0.087 94 0.001 0.091 0.087 94

n−0.5 -0.003 0.139 0.136 95 -0.005 0.134 0.136 95 0.005 0.138 0.138 95

n = 1600

n−0.4 0.001 0.075 0.074 94 0.004 0.076 0.075 94 -0.002 0.075 0.075 95

n−0.5 0.003 0.128 0.127 94 -0.002 0.129 0.126 95 -0.002 0.134 0.130 95

α0(t) = 0.4t+ 0.5

n = 200

n−0.4 0.001 0.134 0.131 95 0.003 0.135 0.132 94 0.003 0.134 0.132 94

n−0.5 0.004 0.173 0.167 94 0.003 0.171 0.171 95 -0.002 0.176 0.170 94

n = 900

n−0.4 0.001 0.091 0.087 94 0.001 0.086 0.087 95 0.004 0.088 0.086 95

n−0.5 0.005 0.138 0.138 95 -0.006 0.136 0.138 96 -0.004 0.137 0.138 95

n = 1600

n−0.4 -0.002 0.075 0.075 95 -0.001 0.077 0.075 94 -0.001 0.074 0.075 95

n−0.5 -0.002 0.134 0.130 95 -0.005 0.132 0.130 95 -0.008 0.129 0.128 95

Note: “BD” represents different bandwidths in the estimation of α(·), “Bias” is the empirical
bias, “SD” is the sample standard deviation, “SE” is the average of the standard error

estimates and “CP”/100 represents the coverage probability of the 95% confidence interval

for β̂.

3.2. An application to HIV dataset

In this section, we apply our method to an HIV dataset. A total of 191 HIV
patients were followed from July 1997 to September 2002 in a University hos-
pital. Details of the study design, methods and medical implications are given
in Wohl et al. (2005). During this study, all patients were scheduled to have
their measurements taken during the semi-annual visits, with HIV viral load
and CD4 counts obtained separately at different labs. Because many patients
did not visit the clinic at the scheduled time or even missed those scheduled
visits, and the HIV infection occurred randomly during the study, there are
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Table 4

Summary statistics for β̂ based on model (1.1)

h(n−γ) 104(n−0.5) 62(n−0.6) 62(auto) LVCF

β̂ -1.050 -0.906 -0.906 -0.828

SE(β̂) 0.287 0.433 0.433 0.199

z-value -3.659 -2.092 -2.092 -4.160

unequal numbers of repeated measurement on HIV viral load and CD4 counts
and the measurement times for these two variables are different.

Under missing at random assumption (Little and Rubin, 2002), we eliminate
patients who do not have any records on either HIV or CD4 counts and use 181
subjects in our analysis. We take log transformed CD4 counts as covariate and
log transformed HIV viral load as response. The bandwidth for nonparametric
estimate of α(t) is set at hα = 2(Q3 − Q1)n

−0.35 = 226, where Q3 is the 0.75
quantile and Q1 is the 0.25 quantile of the pooled sample of measurement times
for the covariate and response and n is the number of patients. This adjusts the
range of observation times to be compatible with the simulations studies. To
estimate β, we use bandwidths h = 2(Q3−Q1)n

−γ , where γ = 0.5 or 0.6. Results
based on last value carried forward implemented using methods proposed in
Fan and Li (2004) are presented as a comparison. From Table 4, we can see
the statistically significant negative relationship between CD4 counts and HIV
viral load through the proposed method. This negative association is consistent
with medical literature (Phillips et al., 2001). LVCF also produced a statistically
significant negative association between CD4 counts and HIV viral load. Figure
2 depicts the estimated baseline function α(t) using data adaptive bandwidth
h = 62 in the estimation of β. It also plots the estimated baseline function

Fig 2. Estimated Baseline Function. The solid line represents the estimated baseline function;
the dashed lines, the estimated baseline function plus/minus 1.96 standard errors.
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plus/minus 1.96 standard errors, which can serve as a point-wise confidence
interval ignoring the bias of the nonparametric fit. From Figure 2, we can see
that there is no significant time trend effect within the first 3 years. However,
there is a significant decreasing trend starting from around 3 years until the
end of the study. Nonparametric estimation of the baseline function removes
such time trend to avoid biased estimates of the regression coefficient β for the
association between CD4 counts and HIV viral load.

4. Concluding remarks

In this paper, we propose a semiparametric partially linear model for asyn-
chronous longitudinal data analysis. This allows the exploration of curvature
and nonlinear time trend effect of longitudinal response. Local polynomial is
used to approximate the nonparametric function. Our analysis is based on a
set of global and local estimating equations with an iterative algorithm that has
good convergency properties. The rate of convergence for the parametric part re-
mains the same as in the parametric model with asynchronous longitudinal data
but the variance is larger due to the estimation of nonparametric baseline func-
tion. For asynchronous longitudinal data, longitudinal covariate and response
are mismatched even for the same subject. Essentially for each longitudinal
response, kernel smoothing approach only uses covariate in its neighborhood
controlled by bandwidth h. Consequently, we have (nh)1/2 rate of convergence.
It is not clear whether n1/2 rate of convergence could be achieved under stronger
assumptions.

Numerical studies support our theoretical predictions and show the newly
proposed method yield valid inference in contrast to the ad-hoc last value carried
forward approach. On the other hand, we can simply use a weighted last value
carried forward method to obtain valid inference. The main idea is that the
further the last observed longitudinal covariate is from the current longitudinal
response, the less it should contribute to the estimating equation. This can be
handled formally by weighting the last observation as a decreasing function of
the time between the most recently observed longitudinal covariate and current
longitudinal response.

Our method is based on the working independence assumption similar to GEE
(Liang and Zeger, 1986). Both GEE with synchronous data and our proposed
analytical strategy for asynchronous longitudinal data are valid when the data
are missing at random (Little and Rubin, 2002). In GEE, with time-dependent
covariates, Pepe and Anderson (1994) showed that parameter estimates are gen-
erally biased unless (i) the mean for the response at time t given all past, present,
and future covariate values is equal to that given the covariate values observed
at t or unless (ii) independence estimating equations are used. The condition (i)
is a strong assumption. When data are missing at random, (i) cannot be ver-
ified with the observed data and (ii) is a conservative approach which ensures
valid inference using complete data observations regardless whether (i) holds.
When (ii) is adopted, it is challenging to improve efficiency, since the correla-
tion structure in the data cannot be exploited in the working covariance matrix.
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Similar issues arise in our asynchronous longitudinal data set-up, with further
work warranted to understand the extend to which valid estimation may be
achieved with non-diagonal working covariance matrices and whether efficiency
gains might be achievable.

In some applications, both time-independent and time-dependent covariates
exist. Cao et al. (2015) requires that the observation times of time-dependent
covariates are the same and treat time-independent covariates the same as time-
dependent covariates. It is of great interest to explore whether improved rate
of convergence could be obtained for the time-independent covariate in such
mixed covariate models. To test whether α(t) is really time-varying, a simulta-
neous confidence band will be needed. Cao et al. (2017) studied the construc-
tion of smooth simultaneous confidence band for varying coefficient models with
sparse longitudinal data. Simultaneous inference for the nonparametric function
α(t) for asynchronous longitudinal data remains open and warrant additional
development.

Appendix A: Appendix: Proofs of Theorems

A.1. Proof of Theorem 1

We first show the local consistency of β̂. For any x, define

nU2(γ0, γ1, β)(x)

=

( ∑n
i=1

∫∫
Kh1,h2

(s−x,t−x){Yi(t)−γ0(x)−γ1(x)(s−x)−βTXi(s)}dNi(t,s)∑n
i=1

∫∫
s−x
h1

Kh1,h2
(s−x,t−x){Yi(t)−γ0(x)−γ1(x)(s−x)−βTXi(s)}dNi(t,s)

)
(A.1)

By Taylor expansion, we have

U2(γ̂0, γ̂1, β)(x) = U2(α, α̇, β)(x)− E3(x)

(
γ̂0(x)− α(x)

h1{γ̂1(x)− α̇(x)}

)
(A.2)

+ op{
√
(γ̂0(x)− α(x))2 + (γ̂1(x)− α̇(x))2}.

where

E3(x) =
1

n

n∑
i=1

∫∫
Kh1,h2(s− x, t− x)

(
1

s−x
h1

)(
1 s−x

h1

)
dNi(t, s).

Combining all the equations above, we have

E3(x)

(
γ̂0(x)− α(x)

h1{γ̂1(x)− α̇(x)}

)
+ op{

√
(γ̂0(x)− α(x))2 + (γ̂1(x)− α̇(x))2}

= U2(α, α̇, β)(x).

By standard nonparametric techniques and the law of large numbers, we can
show that E3(x) converges to a deterministic function

e3(x) = λ(x, x)

(
1

∫∫
z1K(z1, z2)dz1dz2∫∫

z1K(z1, z2)dz1dz2
∫∫

z21K(z1, z2)dz1dz2

)
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= λ(x, x)

(
1 0
0 k2

)
,

where k2 =
∫∫

z21K(z1, z2)dz1dz2 and we take into account (A4). Therefore(
γ̂0(x)− α(x)

h1{γ̂1(x)− α̇(x)}

)
= e3(x)

−1U2(α, α̇, β)(x)

=
1

λ(x, x)

1

k2

(
k2 0
0 1

)
U2(α, α̇, β)

Denote
U2(α, α̇, β)(x) = {U21(α, α̇, β)(x), U22(α, α̇, β)(x)}T .

We have

γ̂0(x)− α(x) =
1

λ(x, x)

1

k2
{k2U21(α, α̇, β)(x)}

=
1

λ(x, x)
U21(α, α̇, β)(x). (A.3)

Note that the estimating equation for β is

U(β) =
1

n

n∑
i=1

∫ 1

0

∫ 1

0

Kh(t− s)Xi(s)
[
Yi(t)− γ̂0(s)−Xi(s)

Tβ
]
dNi(t, s) = 0.

(A.4)
Plugging (A.3) into (A.4), we have

U(β) =
1

n

n∑
i=1

∫∫
Xi(s){Yi(t)− α(s)− βTXi(s)}Kh(t− s)dNi(t, s)

− 1

n

n∑
i=1

∫∫
Xi(s)

1

λ(s, s)
U21(α, α̇, β)(s)Kh(t− s)dNi(t, s). (A.5)

Note that

α(s) = E{Y (s)− βTX(s)} = α0(s) + E{X(s)T }(β0 − β) (A.6)

and

U21(α, α̇, β)(s) = n−1
n∑

i=1

∫∫
Kh(t−s){Yi(t)−α(s)−Xi(s)

Tβ}dNi(t, s). (A.7)

For (A.7), we consider the class of functions

{ ∫∫
Kh(t−s){Y (t)−α(s)−X(s)Tβ}dN(t, s) : |β−β0| < ε1, |α(s)−α0(s)| < ε2

}

for given constants ε1 and ε2. It can be shown that this class is a P-Donsker class
(van der Vaart and Wellner, 1996). As a result, we obtain that for |β − β0| <
ε1, |α(s)− α0(s)| < ε2,

U21(α, α̇, β)(s) = U21(α0, α̇0, β0)(s) + op(1) = op(1). (A.8)
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Consequently,

U(β) =
1

n

n∑
i=1

∫∫
Xi(s)

[
Yi(t)− α0(s)− E{Xi(s)

T }(β0 − β)−Xi(s)
Tβ

]

Kh(t− s)dNi(t, s) + op(1). (A.9)

Denote

Ũ(β) =
1

n

n∑
i=1

∫∫
Xi(s)

[
Yi(t)− α0(s)− E{Xi(s)

T }(β0 − β)−Xi(s)
Tβ

]

Kh(t− s)dNi(t, s) (A.10)

We have
Ũ(β) → u(β) as n → ∞, (A.11)

where

u(β) =

∫
var{X(s)}λ(s, s)ds(β0 − β).

Under assumption (A1) and (A2), β0 is the unique solution to u(β). As β̂ solves
the estimating equation U(β) = 0, it follows from the convexity lemma (Ander-

sen and Gill, 1982) that β̂ → β0 in probability.

We next show the asymptotic normality of β̂. The key idea is to establish the
following relationship

sup|β−β0|<M(nh)−1/2

∣∣∣(nh)1/2Ũ(β)− (nh)1/2[Ũ(β0)− E{Ũ(β0)}

− (nh)1/2A(β − β0)]
∣∣∣

= Dn1/2h5/2 + op(n
1/2h5/2) + op(1), (A.12)

where A is given in Theorem 1 and D is a constant.
To obtain (A.12), first, using Pn and P to denote the empirical measure and

the true probability measure respectively, we obtain

(nh)1/2Ũ(β)

= (nh)1/2(Pn − P)

∫∫
Kh(t− s)X(s)

[
Y (t)− α0(s)− E{X(s)T }(β0 − β)

−X(s)Tβ
]
dN(t, s)

+ (nh)1/2E

∫∫
Kh(t− s)X(s)

[
Y (t)− α0(s)− E{X(s)T }(β0 − β)

−X(s)Tβ
]
dN(t, s)

= I + II. (A.13)

For the second term on the right hand side of (A.13), we have

II = −(nh)1/2A(β − β0) + Cn1/2h5/2 + op(n
1/2h5/2). (A.14)
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From (A2), A is a positive-definite matrix, thus non-singular. For the first term
on the right hand side of (A.13), we consider the class of functions

{
h1/2

∫∫
X(s)

[
Y (t)− α0(s)− E{X(s)T }(β0 − β)−X(s)Tβ

]

Kh(t− s)dN(t, s) : |β − β0| < ε
}

for a given constant ε. It can be shown that this class is a P-Donsker class (van
der Vaart and Wellner, 1996). As a result, we obtain that the first term on the
right hand side of (A.13) for |β − β0| < M(nh)−1/2 is equal to

(nh)1/2(Pn − P)

∫∫
Kh(t− s)X(s){Y (t)− α0(s)−X(s)Tβ0}dN(t, s) + op(1)

= (nh)1/2
[
Ũ(β0)− E{Ũ(β0)}

]
+ op(1). (A.15)

Combing (A.15) and (A.14) and by condition (A4), we obtain (A.12). Conse-
quently,

(nh)1/2A(β̂ − β0) + Cn1/2h5/2 + op(n
1/2h5/2 = (nh)1/2[Ũ(β0)− E{Ũ(β0)}].

(A.16)

On the other hand, following similar arguments as that in Cao et al. (2015), we
can calculate

Σ = var
(
h1/2

∫∫
X(s){Y (t)− α0(s)−X(s)Tβ0}Kh(t− s)dN(t, s)

)

=

∫
K(z)2dz

∫
E[X(s)X(s)Tσ{s,X(s)}2]λ(s, s)ds.

To prove the asymptotic normality, we verify the Lyapunov condition. Define

ψi = (nh)1/2n−1

∫∫
Kh(t− s)Xi(s){Yi(t)− α0(s)−X(s)Tβ0}dNi(t, s).

Similar to the calculation of Σ,

n∑
i=1

E(|ψi − Eψi|3) = nO{(nh)3/2n−3h−2} = O{(nh)−1/2}.

Therefore,

(nh)1/2
[
Ũ(β0)− E{Ũ(β0)}

]
d→ N(0,Σ). (A.17)

Combining (A.9), (A.16) and (A.17), we finish the proof of Theorem 1.

A.2. Proof of Theorem 2

From (A.3) and (A.6), we have

γ̂0(x; β̂)− α0(x) =
1

λ(x, x)
U21(α, α̇, β̂)(x)− E{X(x)T }(β̂ − β0).
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We now establish the limiting distribution of U21(α0, α̇0, β̂)(x). Similar to (A.8),
we have

U21(α, α̇, β̂) = U21(α0, α̇0, β0) + op(1).

and we have

U21(α0, α̇0, β0)(x)

= n−1
n∑

i=1

∫∫
Kh1,h2(s− x, t− x){Yi(t)− α0(x)− βT

0 Xi(s)}dNi(t, s)

From laws of large numbers, it has expectation 0 and the variance is

(nh1h2)
−1

∫∫
K(z1, z2)

2dz1dz2E
[
σ2{x,X(x)}

]
λ(x, x).

Since β̂ has faster rate of convergence, therefore, we have

√
nh1h2{γ̂0(x; β̂)− α0(x)} d→ N(0,Σ∗), (A.18)

where

Σ∗ =
1

λ(x, x)

∫∫
K(z1, z2)

2dz1dz2E
[
σ2{x,X(x)}

]
.

A.3. Proof of Theorem 3

The proof of Theorem 3 can be similarly derived as that for Theorem 1 and
hence is omitted here.
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