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Abstract. The potential kernel of a positive left additive functional (of a strong Markov

process X) maps positive functions to strongly supermedian functions and satisfies a vari-

ant of the classical domination principle of potential theory. Such a kernel V is called

a regular strongly supermedian kernel in recent work of L. Beznea and N. Boboc. We

establish the converse: Every regular strongly supermedian kernel V is the potential ker-

nel of a random measure homogeneous on [0,∞[. Under additional finiteness conditions

such random measures give rise to left additive functionals. We investigate such random

measures, their potential kernels, and their associated characteristic measures. Given a

left additive functional A (not necessarily continuous), we give an explicit construction of

a simple Markov process Z whose resolvent has initial kernel equal to the potential kernel

UA. The theory we develop is the probabilistic counterpart of the work of Beznea and

Boboc. Our main tool is the Kuznetsov process associated with X and a given excessive

measure m.
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1. Introduction.

In a recent series of papers [BB00, BB01a, BB01b, BB02], L. Beznea and N. Boboc

have singled out an important class of kernels for which they have developed a rich po-

tential theory. These kernels (called regular strongly supermedian kernels) are those that

map positive Borel functions to strongly supermedian functions of a strong Markov pro-

cess X and that satisfy a form of the domination principle. If κ is a random measure

of X, homogeneous on [0,∞[ as in [Sh88], then the potential kernel Uκ is a strongly su-

permedian kernel. Using entirely potential theoretic arguments, Beznea and Boboc were

able to develop a theory of characteristic (Revuz) measures, uniqueness theorems, etc.,

for regular strongly supermedian kernels that parallels a body of results on homogeneous

random measures (under various sets of hypotheses) due to J. Azéma [A73], E.B. Dynkin

[Dy65, Dy75], and others. In fact, the theory developed by Beznea and Boboc goes far

beyond that previously developed for homogeneous random measures. The question of

the precise relationship between regular strongly supermedian kernels and homogeneous

random measures poses itself. One of our goals in this paper is to show that the class of

regular strongly supermedian kernels is coextensive with the class of potential kernels Uκ

as κ varies over the class of (optional, co-predictable) homogeneous random measures. Our

examination of these matters will be from a probabilistic point of view. Before describing

our work in more detail we shall attempt to provide some historical background.

Let X = (Xt,P
x) be a strong Markov process with transition semigroup (Pt) and

state space E. To keep things simple, in this introduction we assume that X is transient

and has infinite lifetime.

If we are given an excessive function u of X (bounded, for simplicity) such that

Ptu→ 0 as t→∞, then the right continuous supermartingale (u(Xt))t≥0 admits a Doob-

Meyer decomposition u(Xt) = Mt − At in which M is a uniformly integrable martingale

and A is a predictable increasing process, with Px[A∞] = u(x) for all x ∈ E. Both M and

A are right-continuous, and the uniqueness of the Doob-Meyer decomposition implies that

M −M0 and A are additive functionals of X; thus, for example, At+s = At+As◦ θt for all

s, t ≥ 0. The additive functional A is continuous if and only if the excessive function u is

regular ; that is, T 7→ Px[u(XT )] is left-continuous along increasing sequences of stopping

times. In general, A admits a decomposition A = Ac + Ad into continuous and purely

discrete additive functional components. The continuous component Ac has been well-

understood since the early 60s; see [V60, Su61]. Our knowledge of the discontinuous

component Ad begins (for standard processes) with the work of P.-A. Meyer [My62], but

a complete description of Ad in the context of right processes requires Ray-Knight methods;
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details can be found in [Sh88].

The story simplifies greatly in case X is in weak duality with a second strong Markov

process X̂, with respect to an excessive measure m. In this case there is a Borel func-

tion a ≥ 0 with {a > 0} m-semipolar such that Ad is Pm-indistinguishable from t 7→
∑

0<s≤t a(Xs−), the existence of the left limit Xs− being guaranteed Pm-a.s. by weak

duality. See [GS84; (16.8)(i)]. Associated with A are its left potential kernel

(1.1) U−A f(x) := Px

∫

]0,∞[

f(Xt−) dAt, f ∈ pE ,

defined outside an m-polar set, and its Revuz measure

(1.2) µ−A(f) := lim
q→∞

qPm

∫

]0,∞[

e−qtf(Xt−) dAt, f ∈ pE .

The kernel U−A , which maps positive Borel functions to excessive functions, determines A

up to Pm-evanescence, and it is clear from the Revuz formula

(1.3)

∫

E

g(x)U−A f(x)m(dx) =

∫

E

Ûg(x)f(x)µ−A(dx),

that µ−A determines U−A , modulo an m-polar set. See [Re70a, Re70b] in the context of

standard processes in strong duality and [GS84] in the context of right processes in weak

duality as above.

Can the duality hypothesis imposed above be relaxed? Given a right-continuous strong

Markov process X (more precisely, a Borel right Markov process) and an excessive measure

m, there is always a dual process X̂ (essentially uniquely determined), but in general it

is a moderate Markov process: the Markov property holds only at predictable times. If,

in the general case, we must use the left-handed dual process, then time reversal dictates

that we must trade in A for its right-handed counterpart. Thus, we are mainly concerned

with additive functionals (and, more generally, homogeneous random measures) that can

be expressed as

(1.4) At = Ac
t +

∑

0≤s<t

a(Xs),

where Ac is a continuous additive functional and {a > 0} is m-semipolar. Observe that

this additive functional is left-continuous and adapted. As we shall see, A is co-predictable,

meaning (roughly) that it is predictable as a functional of X̂. Such additive functionals

were introduced and studied by J. Azéma in his pioneering work [A73], under the name

d-fonctionelle.
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The potential kernel UA associated with the additive functional defined in (1.4) is

(1.5) UAf(x) := Px

∫

[0,∞[

f(Xt) dAt, f ∈ pE .

In contrast to U−A , if f ∈ pE then the function UAf is strongly supermedian and regular,

but is excessive only when Ad vanishes. Azéma showed, among other things, that A is

uniquely determined by UA1 provided this function is finite, and that any regular strongly

supermedian function u of class (D) is equal to UA1 for a unique A. It is a crucial obser-

vation of Beznea and Boboc, foreshadowed by a remark of Mokobodzki [Mo84; p. 463],

that the analytic concept of regular strongly supermedian kernel corresponds to the prob-

abilistic conditions (1.4) and (1.5). Beznea and Boboc develop their theory analytically;

our approach to these matters is largely probabilistic.

Our setting will be a Borel right Markov process X coupled with a fixed excessive

measure m. Our main tool will be the stationary Kuznetsov process Y = ((Yt)t∈R,Qm)

associated with X and m. The theory of HRMs over Y has been developed in [Fi87,

G90] and applied to the study of (continuous) additive functionals in [FG96, G99]. In

section 2 we recall the basic definitions and notation concerning Y ; other facts about Y

will be introduced as the need arises. In section 2 we also present a small but necessary

refinement of the strong Markov property of Y proved in [Fi87], and in section 3 we

record some basic facts about HRMs, drawn mainly from [Fi87]. Section 4 contains

fundamentals on potential kernels and characteristic measures of optional HRMs that are

either co-natural or co-predictable. We show, in particular, that the potential kernel of

a suitably perfected optional co-predictable HRM satisfies the domination principle. We

also prove a formula for the characteristic measure of such an HRM that provides a first

link with the work of Beznea and Boboc. Section 5 (and the accompanying appendix)

contains a probabilistic approach to some results in [BB01b]. Starting from a regular

strongly supermedian kernel, assumed to be proper in a suitable sense, we construct the

associated characteristic measure and HRM. The analog of (1.3) in this context appears

in section 5 as well. We specialize, in section 6, to the situation of additive functionals.

Of particular interest are criteria, based on the characteristic measure µκ or the potential

kernel Uκ of an optional co-predictable HRM κ, ensuring that At := κ ([0, t[) defines a finite

additive functional. The probabilistic approach used here extends that found in [FG96] in

the context of continuous additive functionals. If a regular strongly supermedian kernel V

satisfies a suitable “properness” condition (such conditions are discussed in section 6) then

V is the initial kernel of a subMarkovian resolvent. Results of this type have a history

going back to Hunt [Hu57], including work of Taylor [T72, T75] and Hirsch [Hi74],
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and culminating in [BB01a]. We give a probabilistic treatment of this topic in section 7,

making use of the additive functional material from section 6, thereby obtaining an explicit

expression for the resolvent associated with V . Finally, the appendix contains technical

results on strongly supermedian functions as well as a proof of the main result of section

5.

We close this introduction with a few words on notation. We shall use B to denote

the Borel subsets of the real line R. If (F,F , µ) is a measure space, then bF (resp. pF)

denotes the class of bounded real-valued (resp. [0,∞]-valued) F-measurable functions on

F . For f ∈ pF we use µ(f) to denote the integral
∫

F
f dµ; similarly, if D ∈ F then µ(f ;D)

denotes
∫

D
f dµ. We write F∗ for the universal completion of F ; that is, F∗ = ∩νF

ν ,

where Fν is the ν-completion of F and the intersection runs over all finite measures on

(F,F). If (E, E) is a second measurable space and K = K(x, dy) is a kernel from (F,F)

to (E, E) (i.e., F 3 x 7→ K(x,A) is F-measurable for each A ∈ E and K(x, ·) is a measure

on (E, E) for each x ∈ F ), then we write µK for the measure A 7→
∫

F
µ(dx)K(x,A) and

Kf for the function x 7→
∫

E
K(x, dy)f(y).

2. Preliminaries.

Throughout this paper (Pt : t ≥ 0) will denote a Borel right semigroup on a Lusin

state space (E, E), and X = (Xt,P
x) will denote a right-continuous strong Markov process

realizing (Pt). We shall specify the realization shortly. Recall that a (positive) measure m

on (E, E) is excessive provided mPt ≤ m for all t ≥ 0. Since (Pt) is a right semigroup, it

follows that mPt ↑ m setwise as t ↓ 0. See [DM87; XII.36–37]. Let Exc denote the cone

of excessive measures. In general, we shall use the standard notation for Markov processes

without special mention. See, for example, [BG68], [DM87], [Sh88], and [G90]. In

particular, U q :=
∫∞

0
e−qtPt dt, q ≥ 0, denotes the resolvent of (Pt).

We are going to need the Kuznetsov process (or measure) Qm associated with (Pt)

and a given m ∈ Exc. We refer the reader to Section 6 of [G90] for notation and definition.

See also [DMM92]. For the convenience of the reader we shall review some of the basic

notation here. Thus W denotes the space of all paths w : R → E∆ := E ∪ {∆} that

are right continuous and E-valued on an open interval ]α(w), β(w)[ and take the value ∆

outside of this interval. Here ∆ is a point adjoined to E as an isolated point. The dead

path [∆], constantly equal to ∆, corresponds to the interval being empty; by convention

α([∆]) = +∞, β([∆]) = −∞. The σ-algebra G◦ on W is generated by the coordinate maps

Yt(w) = w(t), t ∈ R, and G◦t := σ(Ys : s ≤ t). Two families of shift operators are defined
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on W : the simple shifts σt, t ∈ R,

σtw(s) = [σtw](s) := w(t+ s), s ∈ R,

and the truncated shifts θt, t ∈ R,

θtw(s) = [θtw](s) :=

{

w(t+ s), s > 0;
∆, s ≤ 0.

(In [Fi87], the truncated shift operator was denoted τt; here we follow [G90] in using θt.)

We refer the reader to [G90] for additional notation and terminology. Given m ∈ Exc,

the Kuznetsov measure Qm is the unique σ-finite measure on G◦ not charging {[∆]} such

that, for −∞ < t1 < t2 < · · · < tn < +∞,

(2.1)
Qm(Yt1 ∈ dx1, Yt2 ∈ dx2, . . . , Ytn ∈ dxn)

= m(dx1)Pt2−t1(x1, dx2) · · ·Ptn−tn−1(xn−1, dxn).

We let X = (Xt,P
x) be the realization of (Pt) described on page 53 of [G90]. In

particular, the sample space for X is

Ω := {α = 0, Yα+ exists in E} ∪ {[∆]},

Xt is the restriction of Yt to Ω for t > 0, and X0 is the restriction of Y0+. Moreover,

F◦ := σ(Xt : t ≥ 0) is the trace of G◦ on Ω.

Because of its crucial role in our development we recall the modified process Y ∗ of

[G90; (6.12)]. Let d be a totally bounded metric on E compatible with the topology of E,

and let D be a countable uniformly dense subset of the d-uniformly continuous bounded

real-valued functions on E. Given a strictly positive h ∈ bE with m(h) < ∞ define

W (h) ⊂W by the conditions:

(2.2) (i) α ∈ R;

(ii) Yα+: = lim
t↓α

Yt exists in E;

(iii) U qg(Yα+1/n)→ U qg(Yα+) as n→∞,

for all g ∈ D and all rationals q > 0;

(iv) Uh(Yα+1/n)→ Uh(Yα+) as n→∞.

Evidently σ−1t (W (h)) = W (h) for all t ∈ R, and W (h) ∈ G◦α+ since E is a Lusin space.

We now define

(2.3) Y ∗t (w) =

{

Yα+(w), if t = α(w) and w ∈W (h),
Yt(w), otherwise.
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Fixm ∈ Exc and h as above. Ifm = η+π = η+ρU is the Riesz decomposition [G90; (5.33),

(6.19)] of m into harmonic and potential parts, then Qm = Qη +Qπ, Qη(W (h)) = 0, and

Qm( · ;W (h)) = Qπ. See [G90; (6.19)]. (In particular, if h′ is another function with the

properties of h then Qm(W (h)4W (h′)) = 0.) Moreover it follows readily from (6.20) and

(8.23) of [G90] that

(2.4) Qm(f(α, Y ∗α ); W (h)) =

∫

E

∫

R

f(t, x) dt ρ(dx),

for all f ∈ p(B ⊗ E). In particular, Qm is σ-finite on G◦α+ ∩W (h). The other important

feature of Y ∗ is the strong Markov property recorded in (2.5) below. For a proof of

the following result see [G90; (6.15)]. The filtration (Gmt )t∈R is obtained by augmenting

(G◦t )t∈R with the Qm null sets in the usual way.

(2.5) Proposition. Let T be a (Gmt )-stopping time. Then Qm restricted to GmT ∩

{Y ∗T ∈ E} is a σ-finite measure and

Qm(F ◦ θT | G
m
T ) = PY ∗

T (F ), Qm-a.e. on {Y ∗T ∈ E}

for all F ∈ pF◦.

We shall also require the following form of the section theorem. Define

Λ∗: = {(t, w) ∈ R×W : Y ∗t (w) ∈ E} ;

evidently Λ∗ is (G◦t+)-optional.

(2.6) Proposition. Let (Ht)t∈R and (Kt)t∈R be positive (Gmt )-optional processes. If

Qm(HT ; Y
∗
T ∈ E) = Qm(KT ; Y

∗
T ∈ E)

for all (Gmt )-stopping times T , then H1Λ∗ and K1Λ∗ are Qm-indistinguishable.

See [FG91] for a proof of (2.6).

Certain results from [Fi87] will be crucial for our development. We shall recall some

definitions from [Fi87] and give precise references to the results we shall need. Fitzsimmons

defines ` := p̂(1 α,β ), the co-predictable projection of 1 α,β , in [Fi87; (3.3)], and he then

defines Λ := {` > 0}. One readily checks, using the argument in [Fi87; (3.6)], that Λ ⊂ Λ∗,

modulo Im, the class of Qm-evanescent processes. See page 436 of [Fi87]. It follows that

the process Y defined in [Fi87; (3.8)] is related to Y ∗ defined above in (2.3) as follows:

Y t(w) =

{

Y ∗t (w), if (t, w) ∈ Λ,
∆, if (t, w) /∈ Λ.
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In particular, Λ = {(t, w) : Y t(w) ∈ E}. Many of the definitions and results in [Fi87]

involve Y and Λ. We shall need the extensions of the results in which Y and Λ are replaced

by Y ∗ and Λ∗. The keys to these extensions are the strong Markov property (2.5) and the

section theorem (2.6). Using them in place of (3.10) and (3.16)(b) in [Fi87], the results

we require are proved with only minor modifications of the arguments given in [Fi87].

For example, using (2.6) the next result is proved exactly as (3.20) is proved in [Fi87].

The optional (resp. co-predictable) σ-algebra Om (resp. P̂m) is defined on page 436 in

[Fi87]. A process Z defined over (W,Gm,Qm) is homogeneous provided t 7→ Zt+s is Qm

indistinguishable from t 7→ Zt◦σs for each s ∈ R.

(2.7) Proposition. Let Z ≥ 0 be Om ∩ P̂m-measurable. Then Z1Λ∗ is Qm-indistin-

guishable from a process of the form t 7→ F (t, Y ∗t ), where F ∈ p(B ⊗ E) and F (t,∆) = 0.

If, in addition, Z is homogeneous, then Z1Λ∗ = f◦Y ∗, modulo Im, where f ∈ pE with

f(∆) = 0.

We adhere to the convention that a function defined on E takes the value 0 at ∆.

In general, we shall just use the corresponding result with Y ∗ and Λ∗ without special

mention.

3. Homogeneous Random Measures.

In this section we shall expand on some of the results in section 5 of [Fi87]. Our

definition of random measure W × B 3 (w,B) 7→ κ(w,B) is exactly that of [Fi87; (5.1)].

A random measure κ is homogeneous (in abbreviation, an HRM) provided the measures

B 7→ κ(σtw,B) and B 7→ κ(w,B + t) coincide for Qm-a.e. w ∈ W , for each t ∈ R. This

notion of HRM, which clearly depends on the choice of m, differs from Definition 8.19

in [G90]—what is defined there is essentially a perfect HRM, to be discussed later. We

emphasize that for each w, κ(w, ·) is a measure on (R,B) that is carried byR∩[α(w), β(w)[.

As in [Fi87], a random measure κ is σ-integrable over a classH ⊂ pMm := p[(B⊗G◦)∨Im]

provided there exists Z ∈ H with
∫

R
1{Z=0}(t, w)κ(w, dt) = 0 for Qm-a.e. w ∈ W and

Qm

∫

R
Zt κ(dt) < ∞. The class of such random measures is denoted σI(H). In keeping

with our program of using Y ∗ and Λ∗ systematically, we alter the definition [Fi87; (5.6)]

of optional random measure by substituting Λ∗ for Λ there. We say that an HRM κ is

carried by a set Γ ∈ (B ⊗ G)∗ provided Qm

∫

R
1Γc(t)κ(dt) = 0. If κ ∈ σI(Om) is carried

by Λ∗, then the dual optional projection κo of κ is defined as in [Fi87]: κo is the unique

optional HRM carried by Λ∗ satisfying

Qm

∫

R

Zt κ
o(dt) = Qm

∫

R

oZt κ(dt),
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for all Z ∈ pMm, where oZ denotes the Qm optional projection of Z. The properties of

κ 7→ κo elucidated in [Fi87] remain valid with the obvious modifications.

If κ is an optional HRM, its Palm measure Pκ is the measure on (W,G◦) defined by

(3.1) Pκ(G) := Qm

∫

]0,1]

G◦ θt κ(dt), G ∈ pG◦.

Note that Pκ is carried by {α = 0}. Moreover, [Fi87; (5.11)] states that if F ∈ p(B⊗G◦),

then

(3.2) Qm

∫

R

F (t, θt)κ(dt) =

∫

R

dt

∫

W

F (t, w)Pκ(dw).

In particular, taking F (t, w) = ϕ(t)G(w) with ϕ ≥ 0,
∫

R
ϕ(t) dt = 1, and G ∈ pG◦, we see

that

(3.3) Pκ(G) = Qm

∫

R

ϕ(t)G◦ θt κ(dt).

Suppose that κ ∈ σI(P̂m). Because t 7→ G◦ θt is co-predictable, Pκ = Pκp̂ , where κp̂, the

dual co-predictable projection of κ, is uniquely determined by

Qm

∫

R

Zt κ
p̂(dt) = Qm

∫

R

p̂Zt κ(dt), Z ∈ pMm.

We say that κ is co-predictable provided κp̂ = κ, up to Qm-indistinguishability.

Observe that B ∈ E is m-polar if and only if {Y ∈ B} := {(t, w) : Yt(w) ∈ B} is

Qm-evanescent. As before, let m = η + ρU be the decomposition of m into harmonic and

potential components. Then [FG91; (2.3)] implies that for B ∈ E , the set {Y ∗ ∈ B} is

Qm-evanescent if and only if B is both m-polar and ρ-null. It will be convenient to name

this class of sets:

(3.4) N (m) := {B ∈ E : B is m-polar and ρ(B) = 0},

and to refer to the elements of N (m) as m-exceptional sets. It follows immediately from

[Fi89; (3.9)] that m-polar sets are m-exceptional when X is nearly symmetric.

Here is the basic existence theorem for HRMs, taken from [Fi87; (5.20)].

(3.5) Theorem. Let µ be a σ-finite measure on (E, E). Then Pµ :=
∫

E
µ(dx)Px is

the Palm measure of a (necessarily unique) optional co-predictable HRM if and only if µ

charges no element of N (m).

(3.6) Remarks. (a) Of course, Pµ is carried by Ω ⊂ {α = 0}, so it makes sense to think

of Pµ as a Palm measure. Actually, since X is a Borel right process, Pµ is carried by

{α = 0} ∩W (h).
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(b) The uniqueness assertion in (3.5) is to be understood as modulo Qm-indistin-

guishability.

We next define the characteristic measure µκ (sometimes called the Revuz measure)

of an optional HRM κ by

(3.7) µκ(f) := Pκ[f(Y
∗
0 )] = Qm

∫

R

ϕ(t)f(Y ∗t )κ(dt), f ∈ pE ,

where the second equality follows from (3.3), and ϕ is any positive Borel function on the

real line with
∫

R
ϕ(t) dt = 1. This definition differs from [Fi87; (5.21)] where Y is used in

place of Y ∗. If κ is carried by Λ, then one may replace Y ∗ by Y in (3.7). In view of the

remarks made above (3.4), the measure µκ charges no element of N (m). Also, if f ∈ pE

then f◦Y ∗ ∈ p(P̂◦ ∩ O◦), so when κ is carried by Λ∗, (3.7) implies that κ ∈ σI(P̂◦ ∩ O◦)

whenever µκ is σ-finite.

The following result is drawn from [Fi87; §5]; we omit the proof.

(3.8) Proposition. (i) Let κ be an optional HRM. Then κ ∈ σI(P̂m) if and only if Pκ

is σ-finite. If κ is carried by Λ∗ then Pκ = Pµκ , and Pκ is σ-finite if and only if µκ is

σ-finite.

(ii) Let κ1 and κ2 be optional HRMs. If κ1 and κ2 are Qm-indistinguishable, then

µκ1 = µκ2 . Conversely, if, in addition, κ1 and κ2 are co-predictable and carried by Λ∗,

and if µκ1 = µκ2 is a σ-finite measure, then κ1 and κ2 are Qm-indistinguishable.

(3.9) Definition. We use S#0 (m) to denote the class of σ-finite measures on (E, E)

charging no element of N (m). [The symbol S0(m) was used in [G95] to denote the class

of σ-finite measures on (E, E) charging no m-semipolar set.]

The next result is the fundamental existence theorem for homogeneous random mea-

sures. A proof can be fashioned from [Fi87; §5], especially (5.22). As before, the stated

uniqueness is modulo Qm-indistinguishability.

(3.10) Theorem. Fix µ ∈ S#0 (m). Then there exists a unique optional co-predictable

HRM κ carried by Λ∗ with µκ = µ. The HRM κ is carried by Λ if and only if µ charges

no m-polar set. Moreover, κ is diffuse if and only if µ charges no m-semipolar set.

Next we have an important improvement of (3.10). For the statement of this theorem

we recall that the birthing and killing operators are defined on W by btw(s) := w(s) if

t < s, := ∆ if t ≥ s, and ktw(s) := w(s) if s < t, := ∆ if s ≥ t.
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(3.11) Theorem. Fix µ ∈ S#0 (m). Then the HRM κ in (3.10) may be taken to be perfect ;

that is, to have the following additional properties:

(i) κ is a kernel from (W,G∗) to (R,B), where G∗ is the universal completion of G◦;

(ii) κ(σtw,B) = κ(w,B + t) for all w ∈W , t ∈ R, and B ∈ B;

(iii) κ(btw,B) = κ(w,B ∩ [t,∞[) for all w ∈W , t ∈ R, and B ∈ B;

(iv) κ(ktw,B) = κ(w,B ∩ ]−∞, t[) for all w ∈W , t ∈ R, and B ∈ B.

Moreover, κ may be chosen so that

(3.12) κ =
∑

t∈R

j(Y ∗t )εt + κc,

where j ∈ pE with {j > 0} semipolar, and κc is diffuse.

Proof. With the exception of the last sentence, everything stated here follows immediately

from Theorem (5.27) in [Fi87]. Using (2.7) and the fact that κ is carried by Λ∗, and

arguing as in the proof of [Fi87; (5.27)], one obtains a weak form of (3.12) with {j > 0}

m-semipolar. To complete the proof of (3.11) we require the following lemma, which is of

interest in its own right.

(3.13) Lemma. A Borel m-polar set is the union of a Borel semipolar set and a Borel

set in N (m). In particular, a Borel m-semipolar set is the union of a Borel semipolar set

and a Borel set in N (m).

We shall use (3.13) to complete the proof of (3.11), after which we shall prove (3.13).

Thus, let (3.12) hold with {j > 0} m-semipolar. Then by (3.13) we can write {j > 0} =

A ∪ B where A ∈ E ∩ N (m) and B ∈ E is semipolar. Define j ′ := j1B , so that j′ ∈ pE

and {j′ > 0} = B is semipolar. Let κ′ :=
∑

t∈R j′(Y ∗t )εt + κc. If D ∈ E and ϕ ≥ 0 with
∫

R
ϕ(t) dt = 1, then

µκ(D) = Qm

∫

R

ϕ(t)1D(Y ∗t )κ
′(dt) +Qm

∑

t∈R

ϕ(t)1D(Y ∗t )1A(Y
∗
t )j(Y

∗
t ).

But A ∈ N (m), hence {Y ∗ ∈ A} is Qm-evanescent. Therefore µκ = µκ′ , and so (3.12)

obtains with κ′ replacing κ. Since κ′ is carried by Λ∗, κ′ and κ are Qm-indistinguishable,

and we are done.

Proof of (3.13). According to a theorem of Dellacherie [De88; p. 70], an m-semipolar set

B is of the form B1∪B2, with B1 m-polar and B2 semipolar. (In fact, this is the definition

of “m-semipolar”; its equivalence with the Pm-a.e. countability of {t : Xt ∈ B} is part of

the result referred to in the preceding sentence.) Moreover, using the fact that an m-polar
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set is contained in a Borel m-polar set it is easy to see that if B is Borel then both B1

and B2 may be chosen Borel. Suppose now that B ∈ E is m-polar. Let m = η + ρU be

the Riesz decomposition of m into harmonic and potential parts. Then B is ρU -polar. Let

D = DB := inf{t ≥ 0 : Xt ∈ B} denote the début of B. Recall that for a σ-finite measure

µ, the phrase “B is µ-polar” means that Pµ[D <∞] = 0. Thus,

0 = PρU [D <∞] =

∫ ∞

0

PρPt [D <∞] dt =

∫ ∞

0

Pρ[D◦ θt <∞] dt,

and so Pρ[D◦ θt <∞] = 0 for (Lebesgue) a.e. t > 0. It follows that {t ≥ 0 : Xt ∈ B} ⊂ {0},

Pρ-a.s. Using Dellacherie’s theorem again, B is ρ-semipolar, so B = B1 ∪ B2 with B1 ρ-

polar and B2 semipolar. Hence ρ(B1) = 0 and B1 ⊂ B, so B1 is m-polar; that is,

B1 ∈ N (m).

We find it convenient to make the following definition.

(3.14) Definition. An HRM κ is perfect provided it is carried by Λ∗ and satisfies condi-

tions (i)-(iv) of (3.11), and (3.12).

Thus (3.11) may be rephrased as follows: Each µ ∈ S#0 (m) is the characteristic

measure of a unique perfect HRM κ. It follows from (5.24) and (5.25) of [Fi87] that a

perfect HRM is optional and co-predictable provided it is in σI(P̂m ∩Om)—in particular,

if µκ is σ-finite.

When µ charges no m-polar set there is second HRM γ, carried by ]α, β[, with char-

acteristic measure µ. The discussion of “co-natural” that follows is dual to that found in

[GS84] concerning natural HRMs.

Suppose µ is a σ-finite measure charging no m-polar set. Then Theorems (3.10) and

(3.11) apply, so there is a perfect HRM κ, carried by Λ, with characteristic measure µ. Fix

ϕ ≥ 0 with
∫

R
ϕ(t) dt = 1. If f ∈ pE , then since Λ = {` > 0},

µ(f) = Qm

∫

R

ϕ(t)f(Y ∗t )1Λ(t)κ(dt)

= Qm

∫

R

ϕ(t)f(Y ∗t )`t`
−1
t 1Λ(t)κ(dt)

= Qm

∫

R

ϕ(t)p̂[f◦Y ]t`
−1
t 1Λ(t)κ(dt),

since p̂[f◦Y ] = ` · f◦Y ∗ on Λ according to [Fi87; (3.9)]. But the process `−11Λ is co-

predictable, so

(3.15) µ(f) = Qm

∫

R

ϕ(t)f(Yt)`
−1
t κ(dt) = Qm

∫

]α,β[

ϕ(t)f(Yt)`
−1
t κ(dt).

12



The last equality holds because f(Yt) = 0 if t /∈]α, β[.

(3.16) Definition. An HRM γ is co-natural provided there exists a perfect HRM κ,

carried by Λ, such that γ = 1 α,∞ κ.

A co-natural HRM is carried by α, β and, if it lies in σI(Om), then it is optional

in view of [Fi87; (5.25)]. It has all of the properties listed in (3.11), except that (iii) must

be replaced by

(iii’) κ(btw,B) = κ(w,B∩]t,∞[) for all w ∈W , t ∈ R, and B ∈ B.

(3.17) Theorem. Let µ be a σ-finite measure charging no m-polar set. Then there exists

a unique co-natural HRM γ with characteristic measure µ.

Proof. Clearly µ ∈ S#0 (m), so by Theorems (3.10) and (3.11) there is a perfect HRM κ,

carried by Λ, with characteristic measure µ. From (3.15), µ(f) = Qm

∫

ϕ(t)f(Yt) γ(dt),

where γ := 1 α,∞ `−1 κ is obviously co-natural since `−1κ has the properties required by

Definition (3.16). For the uniqueness, let γ be as above and define κ̄(dt) := `tγ(dt). The

computation leading to (3.15) gives

µκ̄(f) = Qm

∫

]α,β[

ϕ(t)f(Yt)`
−1
t κ̄(dt) = Qm

∫

]α,β[

ϕ(t)f(Yt) γ(dt) = µ(f).

Consequently κ̄ is uniquely determined by µ; κ is likewise determined since it is carried by

Λ = {` > 0}. It follows that γ is uniquely determined by µ.

(3.18) Remark. Suppose µ is σ-finite and charges no m-polar set. Let κ correspond to

µ as in (3.11). Then from (3.15) the unique co-natural HRM with characteristic measure

µ is γ = 1 α,∞ `−1κ. It follows from [Fi87; (3.5)] and (2.7) that there exists p ∈ pE with

` = p ◦Y ∗ on Λ∗. Therefore, using the representation (3.12) for κ and the fact that κ is

carried by Λ, we find

γ =
∑

t∈]α,β[

j(Yt)p
−1(Yt)εt + p−1 ∗ κc,

where, for an HRM λ, (f ∗ λ)(dt) := f(Y ∗t )λ(dt). Of course, κc doesn’t charge {α}.

We close this section with a useful characterization of co-natural HRMs.

(3.19) Theorem. An HRM γ is co-natural if and only if γ =
∑

t∈]α,β[ g(Yt)εt+γc, where

γc is a diffuse (optional, co-predictable) perfect HRM and g ∈ pE with {g > 0} semipolar.

Proof. If γ is co-natural then it is immediate from (3.11) that γ is of the stated form. Con-

versely, a γ of the stated form is clearly carried by α, β . Define κ :=
∑

t∈[α,β[ g(Y t)εt+γc.

Then κ is carried by Λ and is a perfect HRM. Since γ = 1 α,∞ κ, γ is co-natural.
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4. Homogeneous Random Measures and Potential Kernels.

In this section we fix a perfect HRM κ and we let µ = µκ denote the associated

characteristic measure. Recall the “jump function” j as in the representation (3.12). In

what follows, named subsets of R are taken to be Borel sets, unless mention is made to

the contrary.

If B ⊂ [t, s[ where t < s, then (3.11) implies that κ(B) ∈ b−1t G
∗ ∩ k−1s G

∗. For the

moment let κΩ(B) denote the restriction of κ(B) to Ω, for B ⊂ [0,∞[. In view of the

above comments we have κΩ(B) ∈ F∗[t,s[ (the universal completion of σ(Xu : t ≤ u < s))

provided 0 ≤ t < s and B ⊂ [t, s[. Moreover, if B ⊂ [0,∞[, t ≥ 0, and ω ∈ Ω, then

κΩ(θtω,B) = κ(σtbtω,B) = κ(btω,B + t) = κ(ω, (B + t) ∩ [t,∞[) = κΩ(ω,B + t).

Thus κΩ is an optional random measure over X, homogeneous on [0,∞[ in the sense of

[Sh88], and κΩ is perfect. For notational simplicity we now drop the subscript Ω from our

notation, but it should be clear from context when we are restricting κ to Ω.

We define the potential kernel Uκ of κ by setting, for f ∈ pE∗,

(4.1) Uκf(x) := Px

∫

[0,∞[

f(Xt)κ(dt) = f(x)j(x) +Px

∫

]0,∞[

f(Xt)κ(dt),

where j ∈ pE comes from (3.12). Define κ̄ := 1 α,∞ κ on Ω. Then

Uκ̄f(x) = Px

∫

]0,∞[

f(Xt)κ(dt),

and using the Markov property one sees that Uκ̄f is an excessive function of X; indeed,

Uκ̄f is the excessive regularization of Uκf .

If T is a stopping time then the associated hitting operator PT is defined by PT f(x) :=

Px[f(XT );T < ζ], x ∈ E. The σ-algebra of nearly Borel subsets of E is denoted En. If

B ∈ En then TB := inf{t > 0 : Xt ∈ B} is the hitting time of B and DB := inf{t ≥ 0 :

Xt ∈ B} is the début of B, and these are both stopping times. We shall write PB and HB

as abbreviations of PTB and PDB
.

A function f is strongly supermedian provided f ∈ pEn and PT f ≤ f for all stopping

times T . This definition differs slightly from the definition in [FG96] where f was required

to be measurable over the σ-algebra Ee generated by the 1-excessive functions. In this

paper, because we are assuming that X is a Borel right process, it is more natural to use

En. The critical point is that t 7→ f◦Xt is nearly optional over (Ft); see [Sh88; (5.2)]. In the

present case Ee ⊂ En, so it follows from (4.1) that Uκf is nearly Borel measurable whenever

14



f is so. Therefore the strong Markov property implies that Uκf is strongly supermedian

if f ∈ pEn. Consequently, the kernel Uκ is a strongly supermedian kernel as defined in

[BB01b]. The content of the next proposition is that Uκ is a regular strongly supermedian

kernel, provided it is proper; see (5.1) and [BB01b; §2]. The property asserted is a form

of the familiar domination principle.

(4.2) Proposition. Fix a strongly supermedian function u and f ∈ pEn. If Uκf ≤ u on

{f > 0}, then Uκf ≤ u on all of E.

Proof. Let B := {j > 0} ∩ {f > 0} and C := {j = 0} ∩ {f > 0}. Since B is semipolar,

there is an increasing sequence (Bn) of thin sets with union B. Define gn := 1Bn∪Cf ,

so that ↑ limn gn = f . Notice that {gn > 0} ⊂ {f > 0}. Fix x ∈ E and let Kp be an

increasing sequence of compact subsets of C such that TKp
↓ TC , P

x-a.s. Finally, define

Tn,p := TBn ∧TKp
. Recalling from (3.12) that κc denotes the diffuse part of κ, we see that

Uκgn(x) = Uκ(1Bnf)(x) + Uκc(1Cf)(x)

since Uκc(1Bn) = 0. But

Uκ(1Bnf)(x) = Px

∫

[TBn ,∞[

(1Bnf)(Xt)κ(dt),

and, since κc is diffuse,

Uκ(1Cf)(x) = Px

∫

]TC ,∞[

(1Cf)(Xt)κ
c(dt).

On the other hand, using the strong Markov property and the fact that 1Bn◦X vanishes

on Tn,p, TBn , we find

PTn,pUκgn(x) = Px

∫

[TBn ,∞[

(1Bnf)(Xt)κ(dt) +Px

∫

[Tn,p,∞[

(1Cf)(Xt)κ(dt).

As p→∞ we have Tn,p ↓ TBn ∧ TC , P
x-a.s. But 1C◦X vanishes on TBn ∧ TC , TC and

1C ∗ κ is diffuse. Combining these observations with the expression for Uκgn(x) obtained

above, we find that limp→∞ PTn,pUκgn(x) = Uκgn(x). Now Bn, being thin, is finely closed,

hence so is Bn ∪ Kp. Therefore PTn,p(x, ·) is carried by Bn ∪ Kp ⊂ {gn > 0}. Finally,

note that Uκgn ≤ Uκf ≤ u on {f > 0}, so that Uκgn ≤ u on {gn > 0}. Putting

these facts together gives PTn,pUκgn(x) ≤ PTn,pu(x) ≤ u(x), the last inequality following

because u is strongly supermedian. Therefore Uκgn(x) ≤ u(x). Sending n→∞ we obtain

Uκf(x) ≤ u(x) by monotone convergence. Since x ∈ E was arbitrary, (4.2) is established.
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Our next task is to express µ directly in terms of the kernel Uκ. To this end we begin

by extending [G90; (7.2)] to a class of strongly supermedian functions. Let H ∈ pF , so

that H is defined on Ω. Suppose that H◦ θt ≤ H for all t > 0. Let u(x) := Px[H]. If T is

an (Ft)-stopping time, then

(4.3) PTu(x) = Px[H◦ θT ] ≤ Px[H] = u(x).

In particular, if u is En measurable, then u is strongly supermedian. If α(w) < s < t then

one can check as in section 7 of [G90] that H(θtw) ≤ H(θsw). Define H∗ : W → [0,∞]

by

(4.4) H∗ :=↑ lim
t↓α

H◦ θt = sup
r∈Q,r>α

H◦ θr.

It is evident that H∗ ∈ pG, and if H ∈ pF∗ then H∗ ∈ pG∗. Also, H∗ is (σt)-invariant:

H∗◦σt = H∗ for all t ∈ R. The next result should be compared with [G90; (7.2)]. Once

again we use the Riesz decomposition m = η + ρU of m into harmonic and potential

components. Also, L is the energy functional defined for ξ ∈ Exc and excessive h by

L(ξ, h) := sup{ν(h) : νU ≤ ξ}; see [G90; (3.1)]. Recall that if ξ ∈ Exc is conservative

then ξ dominates no non-zero potential, so L(ξ, h) = 0 for all excessive h.

(4.5) Lemma. Let H, H∗, and u be as above, and let ū :=↑ limt↓0 Ptu denote the

excessive regularization of u. Then

sup{ν(u) : νU ≤ m} = ρ(u) + L(η, ū),

where ν represents a generic σ-finite measure on (E, En).

Proof. If νU ≤ η + ρU , then by [G90; (5.9),(5.23)] we can decompose νU = ν1U + ν2U

with ν1U ≤ η and ν2U ≤ ρU . Moreover, (4.3) and [G90; (5.23)] imply that ν2(u) ≤ ρ(u),

so ν(u) ≤ ν1(u) + ρ(u). Therefore, it suffices to prove (4.5) when m ∈ Har (the class of

harmonic elements of Exc). We may also assume that m ∈ Dis, the class of dissipative

elements of Exc. Indeed, let m = mc+md be the decomposition of m into conservative and

dissipative components. If νU ≤ m then νU = νcU + νdU with νcU ≤ mc and νdU ≤ md.

Hence (4.5) holds if and only if it holds for md.

In the remainder of the proof we suppose that νU ≤ m and that m ∈ Har∩Dis.

Combining (7.10), (7.5i), and (6.20) in [G90] we find that

(4.6) ν(f) =

∫ 1

0

Qm[f(Y ∗T (t)); 0 < T (t) ≤ 1, b−1T (t)W (h)] dt,
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where (T (t) : 0 ≤ t ≤ 1) is an increasing family of stationary terminal times with α ≤ T (t),

and T (t) < β on {T (t) <∞}. But m ∈ Har, so for f ∈ pE

Qm[f(Y ∗T (t)); 0 < α = T (t) ≤ 1, b−1T (t)W (h)] ≤ Qm[f(Y ∗T (t));W (h)] = 0,

in view of [G90; (6.19)] and the fact that b−1T (t)W (h) ⊂W (h) on {α ≤ T (t)}. Therefore,

ν(f) ≤

∫ 1

0

Qm[f(YT (t));α < T (t), 0 < T (t) ≤ 1] dt,

hence

ν(u) ≤

∫ 1

0

Qm[PY (T (t))(H);α < T (t), 0 < T (t) ≤ 1] dt

=

∫ 1

0

Qm[H◦ θT (t);α < T (t), 0 < T (t) ≤ 1] dt

≤

∫ 1

0

Qm[H∗; 0 < T (t) ≤ 1] dt.

Let S be a stationary time with α < S < β, Qm-a.e. Since m ∈ Dis, such an S exists

according to [G90; (6.24)(iv)]. Because H∗ is (σt)-invariant, [G90; (6.27)] gives

Qm[H∗; 0 < T (t) ≤ 1] = Qm[H∗; 0 < S ≤ 1, T (t) ∈ R],

and so ν(u) ≤ Qm[H∗; 0 < S ≤ 1]. Note that

ū(x) = lim
t↓0

Ptu(x) = lim
t↓0

Px[H◦ θt] = Px[H̄],

by monotone convergence, where

H̄ :=↑ lim
t↓0

H◦ θt = sup
r∈Q,r>0

H◦ θr.

Moreover,

lim
t↓0

H̄◦ θt = lim
t↓0

lim
s↓0

H◦ θt+s = sup
r>0

H◦ θr = H̄,

and it is now evident that H̄ is excessive as defined in section 7 of [G90]. Finally, observe

that

(H̄)∗ = sup
r>α

H̄◦ θr = sup
r>α

sup
q>0

H◦ θr+q = H∗.

Therefore we may apply [G90; (7.2)] to obtain

ν(u) ≤ Qm[(H̄)∗; 0 < S ≤ 1] = L(m, ū).
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On the other hand, if νnU ↑ m, then

L(m, ū) = lim
n

νn(ū) ≤ lim sup
n

νn(u) ≤ sup{ν(u) : νU ≤ m}.

This establishes (4.5) when m ∈ Har∩Dis, hence in general by the earlier discussion.

(4.7) Theorem. If u is a strongly supermedian function, then

(4.8) sup{ν(u) : νU ≤ m} = ρ(u) + L(η, ū).

Proof. First observe that it suffices to prove (4.8) for bounded u. Indeed, given an arbitrary

strongly supermedian function u, define uk := u ∧ k for k ∈ N. By monotonicity

lim
k

sup{ν(uk) : νU ≤ m} = sup{ν(u) : νU ≤ m}

and limk ρ(uk) = ρ(u). By the same token, since the limits defining the excessive regular-

izations ūk and ū are monotone increasing, we have limk L(η, ūk) = L(η, ū).

Next, arguing as at the beginning of the proof of Lemma (4.5) we can assume that m

is dissipative, and then, without loss of generality, that X is transient.

Now let u be a bounded strongly supermedian function. By Corollary (A.7) in the

appendix, there is an increasing sequence {vn} of regular strongly supermedian functions

with pointwise limit u. By [Sh88; (38.2)], for each n there is a PLAF A(n) with vn(x) =

Px[A
(n)
∞ ] for all x ∈ E. Evidently t 7→ A

(n)
∞ ◦θt = A

(n)
∞ −A

(n)
t is decreasing, so Lemma (4.5)

applies and we find that

(4.9) sup{ν(vn) : νU ≤ m} = ρ(vn) + L(η, v̄n), n ∈ N.

As in the first paragraph of the proof, monotonicity allows us to let n → ∞ in (4.9) to

arrive at (4.8).

We are now in a position to express µ in terms of the kernel Uκ. As before, κ is a

perfect HRM and µ = µκ. Also, m = η + ρU .

(4.10) Theorem. Suppose m ∈ Dis. If f ∈ pE , then

(4.11) µ(f) = sup{νUκf : νU ≤ m} = ρUκf + L(η, Ūκf),

where Ūκf := Uκf denotes the excessive regularization of Uκf . [Recall that Ūκf = Uκ̄f ,

where κ̄ := 1 α,∞ κ.]
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Proof. Fix a positive Borel function ϕ onR with
∫

R
ϕ(t) dt = 1. Define, for a given f ∈ pE ,

G :=
∫

R
ϕ(t)f(Y ∗t )κ(dt). From (3.7), µ(f) = Qm[G]. Moreover,

Ḡ : =

∫

R

G◦ θt dt =

∫

R

[
∫

R

ϕ(s)f(Y ∗t+s)κ(ds+ t)

]

dt

=

∫

R

[
∫

R

ϕ(s− t)f(Y ∗s )κ(ds)

]

dt =

∫

R

f(Y ∗s )κ(ds).

But m ∈ Dis and so there is a stationary time S with α < S < β, Qm-a.s. Thus, from

[G90; (6.27)] we obtain

(4.12) µ(f) = Qm

[
∫

R

f(Y ∗t )κ(dt); 0 < S ≤ 1

]

.

Define H :=
∫

[0,ζ[
f(Xt)κ(dt) on Ω, so that Px[H] = Uκf(x) for all x ∈ E. From (4.12),

µ(f) = Qm

[
∫

R

f(Y ∗t )κ(dt); 0 < S ≤ 1,W (h)

]

+Qm

[
∫

R

f(Y ∗t )κ(dt); 0 < S ≤ 1,W (h)c
]

.

The first term on the right equals Qm[H◦ θα; 0 < S ≤ 1,W (h)]. Now α ∈ R on W (h), and

so using [G90; (6.27)] this may be written, since H◦ θα and W (h) are invariant,

Qm[H◦ θα; 0 < α ≤ 1,W (h)] = Qm[PY ∗(α)[H]; 0 < α ≤ 1,W (h)]

= Qm[Uκf(Y
∗
α ); 0 < α ≤ 1,W (h)] = ρUκf,

where the first equality just above comes from (2.5) and the last from (2.4). Because

Qm[·;W (h)c] = Qη and Y ∗ = Y on W (h)c, the second piece reduces to

Qη

[

∫

]α,∞[

f(Yt)κ(dt); 0 < S ≤ 1

]

.

But H∗ defined in (4.4) is given by
∫

]α,∞[
f(Yt)κ(dt) in the present situation. As in

the proof of (4.5), with m replaced by η, this last expression equals L(η, Ūκf). Clearly

Ūκf = Uκ̄f with κ̄ as in (4.10). Consequently, µ(f) = ρUκf +L(η, Uκ̄f) and the fact that

this in turn equals sup{νUκf : νU ≤ m} results from one final appeal to (4.5).

The most interesting case (m ∈ Dis, which occurs if X is transient) is covered by

(4.10). However if m is invariant, in particular if m is conservative, then one has

(4.13) µ(f) = Pm

∫

]0,1]

f(Xt)κ(dt).
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Indeed, since Qm[α > −∞] = 0 when m is invariant,

µ(f) = Qm

∫

]0,1]

f(Yt)κ(dt) = Qm

[(

∫

]0,1]

f(Yt)κ(dt)

)

◦ θ0

]

= Qm

[

PX(0)

∫

]0,1]

f(Yt)κ(dt)

]

= Pm

∫

]0,1]

f(Xt)κ(dt).

(4.14) Remark. As observed in Theorem (4.10), the co-natural HRM κ̄ := 1 α,∞ κ has

potential kernel Uκ̄ = Ūκ, which is a semi-regular excessive kernel in the sense of Definition

(5.1) below. By an argument used in the proof of Theorem (3.17), the characteristic

measure µκ̄ of κ̄ is p · µκ, where p◦Y ∗ = ` as in Remark (3.18); cf. (5.11). Observe that

(4.5) and the proof of (4.10) together imply that µκ̄(f) = L(m, Ūκf). Combining (8.21)

and (8.9) of [G90] we obtain the classical expressions for the characteristic measure of κ̄:

(4.15)

µκ̄(f) =↑ lim
t↓0

t−1Pm

∫

]0,t[

f(Xs) κ̄(ds)

=↑ lim
q↑∞

qPm

∫

]0,∞[

e−qsf(Xs) κ̄(ds).

5. Strongly Supermedian Kernels.

We shall now examine some of the relationships between our results on HRMs and the

material presented in [BB01b]. Beznea and Boboc assume that the potential kernel U is

proper (equivalently, that X is transient), so throughout this section and the next we shall

assume that U is proper. More precisely, we assume that there is a function b ∈ E with

0 < b ≤ 1 and Ub ≤ 1. Reducing b if necessary, we can (and do) assume that m(b) < ∞.

In particular, each excessive measure of X is dissipative.

It is well known that if u is a strongly supermedian function and 0 ≤ S ≤ T are

stopping times, then PTu ≤ PSu everywhere on E. More generally, let us say that a

σ-finite measure µ is dominated by another σ-finite measure ν in the balayage order (and

write µ a ν) provided µU ≤ νU . Then for strongly supermedian u we have µ(u) ≤ ν(u)

whenever µ a ν. (These assertions follow, for example, from Rost’s theorem; see [G90;

(5.23)].) It follows in turn that if T is a terminal time (namely, T = t+ T ◦ θt on {t < T},

for each t > 0) then PTu is strongly supermedian.

We modify slightly the definition of regular strongly supermedian kernel found in

[BB01b] by dropping the assumption that such a kernel is proper. The connection between

regular strongly supermedian kernels and the notion of regularity for strongly supermedian
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functions (as in [Sh88; (36.7)] or (A.1) in the appendix to this paper) is made in Proposition

(A.8) and Remark (A.11).

(5.1) Definition. (a) A strongly supermedian (resp. excessive) kernel V is a kernel on

(E, En) such that Vf is a strongly supermedian (resp. excessive) function for each f ∈ pEn.

(b) A strongly supermedian kernel V is regular provided, for each f ∈ pEn and each

strongly supermedian function u, if Vf ≤ u on {f > 0} then Vf ≤ u on all of E.

(c) An excessive kernel W is semi-regular provided there is a regular strongly super-

median kernel V such that W = V̄ ; that is, Wf = Vf (the excessive regularization of Vf)

for each f ∈ pEn.

Proposition (4.2) may now be restated as follows: If κ is a perfect HRM, then Uκ is

a regular strongly supermedian kernel.

The following result records some facts that have familiar analogs in the context of

excessive functions. Recall that B ∈ En is absorbing provided Px[TE\B < ∞] = 0 for all

x ∈ B. For instance, if h is an excessive function of X then {h = 0} is finely closed and

absorbing (hence also finely open); in particular, if {h > 0} is m-null, then {h > 0} is

m-exceptional.

(5.2) Lemma. (i) If u is a strongly supermedian function, then {u <∞} is an absorbing

set, hence finely open. In particular, if u <∞, m-a.e. then u <∞ off an m-polar set.

(ii) Let V be a regular strongly supermedian kernel. If B is m-exceptional (resp.

m-polar) then {V 1B > 0} is m-exceptional (resp. m-polar).

Proof. (i) Define B := {u =∞} and fix x ∈ E \B. If Px[TB <∞] > 0 then there exists a

compact set K ⊂ B with Px[TK <∞] > 0. It then follows that∞ = PKu(x) ≤ u(x) <∞,

which is absurd. Therefore Px[TB <∞] = 0 for all x ∈ E \ B. Consequently {u <∞} =

E \B is absorbing and finely open. If, in addition, m(u =∞) = 0 then Px[TB <∞] = 0,

m-a.e.; that is, B is m-polar.

(ii) Now define DB := inf{t ≥ 0 : Xt ∈ B}, the début of B. Clearly DB = TB , P
x-a.s.

for each x /∈ B. If B is m-polar then Px[TB <∞] = 0, m-a.e., hence off an m-polar set. It

follows that if B is m-polar (resp. m-exceptional) then {x ∈ E : Px[DB <∞] > 0} is m-

polar (resp.m-exceptional). Now observe that V 1B and PDB
V 1B are strongly supermedian

functions with PDB
V 1B ≤ V 1B . But PDB

V 1B = V 1B on B, so the regularity of V implies

that PDB
V 1B ≥ V 1B everywhere, so PDB

V 1B = V 1B everywhere. It follows that if B is

m-exceptional (resp. m-polar) then {V 1B > 0} is m-exceptional (resp. m-polar).

(5.3) Definition. Let ν be a measure on (E, E). A strongly supermedian kernel V is

ν-proper provided there exists a strictly positive function g ∈ En with V g <∞, ν-a.e.
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(5.4) Remark. We shall use this definition in two cases: ν = m and ν = m+ρ, where, as

usual, ρU is the potential part of m. It follows immediately from (5.2)(i) that if V g <∞,

m-a.e. (resp. (m+ ρ)-a.e.), then {V g =∞} is m-polar (resp. m-exceptional).

(5.5) Proposition. (a) Let V be a regular strongly supermedian kernel. If V is m-proper

(resp. (m+ ρ)-proper) then there exists g ∈ En with 0 < g ≤ 1 such that V g ≤ Ub off an

m-polar (resp. m-exceptional) set.

(b) Let W be a semi-regular excessive kernel. If W is m-proper, then there exists

g ∈ En with 0 < g ≤ 1 such that Wg ≤ Ub off an m-polar set.

Proof. (a) Choose g0 ∈ E
n with 0 < g0 ≤ 1 such that {V g0 = ∞} is m-polar (resp.

m-exceptional). Define u := Ub, so that 0 < u ≤ 1. For n ∈ N define Bn := {V g0 ≤ n ·u}.

Clearly Bn ↑ {V g0 <∞} as n→∞. Also, V (1Bng0) ≤ V g0 ≤ n · u on Bn, so V (1Bng0) ≤

n · u on all of E by the regularity of V . We now define g := 1B + g0
∑∞

n=1(n2
n)−11Bn ,

where B := {V g0 = ∞}. Evidently 0 < g ≤ 1 and V g ≤ u + V 1B . But Lemma (5.2)(ii)

implies that V 1B = 0 off an m-polar (resp. m-exceptional) set.

(b) We can write W = V̄ , where V is a regular strongly supermedian kernel. Let

g0 > 0 be such that Wg0 < ∞, m-a.e. The set {Wg0 6= V g0} is semipolar, hence m-null.

It follows that V is m-proper, so assertion (b) follows from (a) because Wf ≤ Vf for all

f ∈ pEn.

Given a strongly supermedian kernel V , we follow Beznea and Boboc [BB01b] in

defining

(5.6) µV (f) := sup{νVf : νU ≤ m}, f ∈ pEn.

[As before, ν on the right side of (5.6) represents a generic σ-finite measure on (E, En).]

(5.7) Proposition. Let V be a regular strongly supermedian kernel. Then µV (resp. µV̄ )

is a measure on (E, En) charging no m-exceptional (resp. m-polar) set. Moreover, µV is

σ-finite if and only if V is (m+ ρ)-proper. If V̄ is m-proper then µV̄ is σ-finite.

Proof. (The first paragraph of the proof is stated for V , but the arguments work just as

well for V̄ .) Clearly µV is positive homogeneous, monotone increasing, and subadditive on

pE . If 0 ≤ fn ↑ f then

sup
n

µV (fn) = sup
n

sup
ν
{νVfn : νU ≤ m} = sup

ν
{sup

n
νVfn : νU ≤ m} = µV (f).

Thus, to show that µV is a measure, it suffices to show that µV (f1+f2) ≥ µV (f1)+µV (f2).

This inequality is evident if either term on the right is infinite, so we assume that µV (f1)+
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µV (f2) is finite. Given ε > 0, there exist ν1 and ν2 with νiU ≤ m and νiV (fi) ≥ µV (fi)− ε

for i = 1, 2. Define ξ := inf{η ∈ Exc : η ≥ ν1U ∨ ν2U}. Then ξ ∈ Exc, ξ ≤ m, and

(because ξ is dominated by the potential (ν1 + ν2)U) ξ is a potential, say ξ = νU . Also,

νi(Vfi) ≤ ν(Vfi) since νi a ν for i = 1, 2. Therefore

µV (f1 + f2) ≥ νV (f1 + f2) ≥ ν1Vf1 + ν2Vf2 ≥ µV (f1) + µV (f2)− 2ε.

As ε > 0 was arbitrary, it follows that µV is a measure.

Now suppose that B is an element of N (m). Then {V 1B > 0} ∈ N (m) by (5.2)(ii). If

νU ≤ m then ν doesn’t charge sets in N (m) by (4.6). Consequently µV (B) = 0. Suppose

that V is (m + ρ)-proper. Using (5.5) we see that there exists 0 < g ≤ 1 with {V g >

Ub} ∈ N (m). Thus, if νU ≤ m then νV g ≤ νUb ≤ m(b) <∞, and so µV (g) <∞, proving

the σ-finiteness of µV . Conversely, suppose there exists 0 < f ≤ 1 with µV (f) < ∞. If

νU ≤ m then νPtVf ≤ νVf ≤ µV (f) < ∞. In particular, νPt{Vf = ∞} = 0 for each

t > 0. Integrating with respect to t gives νU{Vf = ∞} = 0. Choosing a sequence {νn}

with νnU ↑ m (possible because X is transient), we see that Vf <∞, m-a.e. But ρU ≤ m,

so ρ{Vf =∞} = 0. Consequently, Vf <∞, (m+ ρ)-a.e.

Finally, suppose that V̄ is m-proper. By (5.5)(b) there exists g ∈ En with 0 < g ≤ 1

such that V g ≤ Ub off an m-polar set. By [G90; (2.17)] there is a sequence (νn) of

measures, each absolutely continuous with respect to m, such that νnU increases setwise

to m, and then νnV̄ g increases to L(m, V̄ g) = µV̄ (g). Because the set {V g > Ub} is

m-polar, hence m-null, it follows that µV̄ (g) ≤ limn νnUb = m(b) < ∞, proving that µV̄

is σ-finite.

The measure µV defined in (5.6) is called the characteristic measure of V . Note that

if κ is a perfect HRM then, in light of Theorem (4.10), the characteristic measure µκ of κ

(defined in (3.7)) is the characteristic measure of the regular strongly supermedian kernel

Uκ. Writing κ̄ := 1 α,∞ κ as before, the potential kernel of κ̄ is the semi-regular excessive

kernel Ūκ := Uκ, and the characteristic measure of κ̄ is p · µκ; see Remark (4.14).

We come now to the main result of this development.

(5.8) Theorem. Let V be a regular strongly supermedian kernel.

(a) If V is (m + ρ)-proper, then there exists a unique perfect HRM κ with {x ∈ E :

V (x, ·) 6= Uκ(x, ·)} ∈ N (m).

(b) If V̄ is m-proper, then there exists a unique co-natural HRM γ such that {x ∈ E :

V̄ (x, ·) 6= Uγ(x, ·)} is m-polar.

Proof. (a) Let µV be the characteristic measure of V . Then (5.7) states that µV ∈ S
#
0 (m).

Consequently, according to (3.11), there exists a unique perfect HRM κ with µκ = µV . Now
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Theorem 3.2(i) in [BB01b] implies V (x, ·) = Uκ(x, ·) for all x outside an m-exceptional set.

This yields the desired conclusion. Since the proof of this uniqueness theorem in [BB01b]

depends on some rather deep results in potential theory, we shall give an alternate proof

of Theorem (5.8) in the Appendix; this proof may be more palatable to probabilists.

(b) By (5.7) the characteristic measure µV̄ is σ-finite and charges no m-polar set.

Theorem (3.17) guarantees the existence of a co-natural HRM with characteristic measure

µV̄ . Theorem 3.2(ii) in [BB01b] now implies that V̄ (x, ·) = Uγ(x, ·) for all x outside an

m-polar set.

The following variant of Theorem (5.8) can be proved by similar methods; see the

appendix. This result for everywhere finite v is [A73; Thm. 3.3, p. 489]; see also [Sh88;

(38.2)]. If v is a strongly supermedian function and E ′ ∈ En is an absorbing set, then

we say that v is regular on E ′ provided T 7→ PT v(x) is left-continuous along increasing

sequences of stopping times, for each x ∈ E ′; see (A.1) for the precise definition.

(5.9) Theorem. Let v be a strongly supermedian function such that v < ∞ off an m-

exceptional set. If v is regular on {v <∞} then there exists a unique perfect HRM κ such

that v = Uκ1 off an m-exceptional set.

We now record some corollaries of Theorem (5.8) that are of interest. The first of

these is an immediate consequence of (4.8) and (5.6).

(5.10) Corollary. Let V be a regular strongly supermedian kernel. Then

µV̄ (f) = L(m, V̄ f)

and

µV (f) = ρVf + L(η, V̄ f)

for all f ∈ En, where V̄f denote the excessive regularization of Vf .

The second corollary sharpens Theorem 3.6 in [BB01b], by showing that the Radon-

Nikodym derivative d(µV̄ )/dµV does not depend on V . Recall from Remark (3.18) that

there is a Borel function p with values in [0, 1] such that ` = p̂1 α,β isQm-indistinguishable

from p ◦Y ∗. In fact, p(x) := P̂x(ζ̂ > 0) does the job, where the “hats” indicate the moderate

Markov dual process X̂ mentioned in Theorem (5.12) below. This representation leads

easily to the conclusion that the set {x ∈ E : p(x) < 1} is m-semipolar.

(5.11) Corollary. If V is an (m + ρ)-proper regular strongly supermedian kernel, then

the characteristic measures µV and µV̄ are related by

µV̄ = p · µV .
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Proof. Let κ and γ be the HRMs associated with V and V̄ by Theorem (5.8). Then

Uγ = V̄ = Uκ = Uκ̄. Therefore µV̄ = µγ = µκ̄, which in turn is equal to p · µκ = p · µV by

Remark (4.14).

The third corollary will follow immediately from the next result about HRMs. This

result—more precisely its dual—appears for diffuse κ in [G99].

(5.12) Theorem. Let κ be a perfect HRM. Then

(5.13)

∫

E

f · Uκg dm =

∫

E

g · Ûf dµκ, f, g ∈ pE ,

where Û is the potential kernel of the moderate Markov dual process (X̂, P̂x) of X relative

to m; see [Fi87; §4].

(5.14) Remark. Theorem 4.6 in [Fi87] establishes the existence of (X̂, P̂x), and it is only

stated there that the probability measures P̂x, x ∈ E, are uniquely determined modulo m-

polars. However, using Λ∗ in place of Λ and letting µ be a probability measure equivalent

to m + ρ (rather than m), the proof given in the appendix of [Fi87] is readily modified

to show that the family {P̂x} is unique up to an m-exceptional set. Hence Ûf is uniquely

determined up to an m-exceptional set; since µκ charges no element of N (m), the integral

on the right side of (5.13) is well defined.

Proof. It suffices to prove (5.13) for f, g ∈ bpE and then, replacing κ by g ∗ κ, for g ≡ 1.

Fix ϕ ≥ 0 with
∫

R
ϕ(t) dt = 1. In the following computation, the first equality is (3.7)

while the third holds because κ is co-predictable:

µκÛf = Qm

∫

R

ϕ(t)Ûf(Y ∗t )κ(dt) = Qm

∫

R

ϕ(t)P̂Y ∗
t

∫ ∞

0

f(X̂s) ds κ(dt)

= Qm

∫

R

ϕ(t)

(
∫ ∞

0

f(X̂s) ds

)

◦θ̂t κ(dt) = Qm

∫

R

ϕ(t)

∫ ∞

0

f(Y ∗t−s) ds κ(dt)

= Qm

∫

R

ϕ(t)

∫ t

−∞

f(Y ∗s ) ds κ(dt) = Qm

∫

R

f(Y ∗s )

∫

[s,∞[

ϕ(t)κ(dt) ds

=

∫

R

dsQm

[

f(Y ∗s )

∫

[s,∞[

ϕ(t)κ(dt)

]

=

∫

R

dsQm

[

f(Y ∗s )

∫

[0,∞[

ϕ(t+ s)κ(dt+ s)

]

=

∫

R

dsQm

[

f(Y ∗0 )

∫

[0,∞[

ϕ(t+ s)κ(dt)

]

= Qm

[

f(Y ∗0 )

∫

[0,∞[

κ(dt)

]

= Qm[f(Y ∗0 )Uκ1(Y
∗
0 )] = m(f · Uκ1).
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The next-to-last equality depends on (3.11)(iii); the homogeneity of κ is used for the fourth-

from-the-last equality; the use of Fubini’s theorem in the fourth- and sixth-from-the-last

equalities is justified since κ is an HRM.

The following corollary is now evident.

(5.15) Corollary. Let V be an (m+ρ)-proper regular strongly supermedian kernel. Then

(5.16)

∫

E

f · V g dm =

∫

E

g · Ûf dµV , f, g ∈ pE ,

where Û is as in (5.12).

(5.17) Remarks. (i) Taking g ≡ 1 in (5.16) we find that µV Û = V 1 ·m, which is the

Revuz formula in the present context; cf. [GS84; (9.5)].

(ii) Clearly, both sides of (5.16) are σ-finite measures as functionals of f and g sepa-

rately. Hence, if F ∈ p(E ⊗ E), then

(5.18)

∫

E

∫

E

F (x, y)V (x, dy)m(dx) =

∫

E

∫

E

F (x, y) Û(y, dx)µV (dy).

More generally, if F ∈ E ⊗E and if either side of (5.18) is finite when F is replaced by |F |,

then (5.18) holds.

(iii) Formula (5.16) with f ≡ 1 implies that mV ¿ µV , and that a version of the

Radon-Nikodym derivative is Û1. Since Û1 > 0 off an m-exceptional set, we also have

µV ¿ mV . It is not too difficult to check this measure equivalence directly, but the fact

that the Radon-Nikodym derivative does not depend on V is somewhat surprising.

(iv) A more general version of (5.16) appears as Theorem 5.2 in [BB02]. In that result

the co-potential Ûf is replaced by (an m-fine version of) a general m-a.e. finite co-excessive

function û. Notice that the left side of (5.16) can be interpreted as L(πU, Vg), where

π := f ·m; the measure potential πU has Radon-Nikodym derivative Ûf with respect to

m. (For an excessive measure ξ and a strongly supermedian function u, we follow [BB01a]

in defining the energy L(ξ, u) as sup{ν(u) : νU ≤ ξ}.) Thus, in the general case, πU is

replaced by the excessive measure û ·m.

The final result of this section is a uniqueness theorem for perfect HRMs.

(5.19) Theorem. Let κ1 and κ2 be perfect HRMs with σ-finite characteristic measures

µκ1 and µκ2 , and potential kernels Uκ1 and Uκ2 . The following statements are equivalent:

(i) κ1 and κ2 are Qm-indistinguishable;

(ii) µκ1 = µκ2 ;
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(iii) {x ∈ E : Uκ1(x, ·) 6= Uκ2(x, ·)} is m-exceptional;

(iv) {x ∈ E : Uκ1(x, ·) 6= Uκ2(x, ·)} is (m+ ρ)-null;

(v) There exists a strictly positive function g ∈ pEn such that Uκ1g = Uκ2g <∞ off

an m-exceptional set.

(5.20) Remark. Some of the implications in Theorem (5.19) follow from results in

[BB01b], but we shall give direct proofs that are more probabilistic in character than

those found in [BB01b].

Proof. (i)⇐⇒(ii). This follows immediately from (3.8)(ii).

(i)=⇒(iii). Fix f ∈ pE and note that for j = 1, 2 the Qm-optional projection of the

process

t 7→

∫

[t,∞[

f(Y ∗s )κj(ds) =

[

∫

[0,∞[

f(Xs)κj(ds)

]

◦ θt

is Uκjf(Y
∗
t ). Thus, if (i) holds then theQm-optional processes Uκ1f(Y

∗) and Uκ2f(Y
∗) are

Qm-indistinguishable, so (iii) follows by a monotone class argument because E is countably

generated; see the sentence preceding (3.4).

(iii)=⇒(iv). This is trivial.

(iv)=⇒(ii). If f ∈ pEn then Uκ1f = Uκ2f , (m + ρ)-a.e. But m is excessive, so this

implies that Ūκ1f = Ūκ2f , m-a.e., hence η-a.e. In view of (4.11), this yields µκ1(f) =

µκ2(f).

(iii)=⇒(v). This is an immediate consequence of (4.2) and (5.5).

(v)=⇒(i). Let E′ ⊂ {Uκ1g = Uκ2g <∞} be a Borel absorbing set with m-exceptional

complement, and let X ′ denote the restriction of X to E ′. Then, for j = 1, 2, g ∗ κj

(restricted to Ω) may be viewed as a RM of X ′, perfectly homogeneous on [0,∞[, with

left potential function Uκjg as in [Sh88]. Clearly Aj
t :=

∫

[0,t[
g(X ′

s)κj(ds) defines an

optional LAF of X ′ with left potential function vj = Uκjg. Since v1 = v2 <∞ everywhere

on E′, [Sh88; (37.8)] implies that A1 and A2 are Px-indistinguishable for each starting

point x ∈ E′. Since g > 0, we deduce that the restrictions to Ω of κ1 and κ2 are Px-

indistinguishable for each x ∈ E ′. Now define

Ω0 := {w ∈ Ω : α(w) = 0, κ1(w,B) 6= κ2(w,B) for some B ∈ B},

and (recalling that κ1 and κ2 are carried by Λ∗) observe that

{w ∈W : κ1(w) 6= κ2(w)} ⊂
[

∪r∈Q{α < r < β} ∩ θ−1r Ω0

]

∪
[

{Y ∗α ∈ E} ∩ θ−1α Ω0

]

.

We have, because E \ E′ is (m+ ρ)-null,

Qm[θ−1r Ω0;α < r < β] = Pm[Ω0] = 0,
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and

Qm[θ−1α Ω0;Y
∗
α ∈ E, u < α < v] = (v − u)Pρ[Ω0] = 0,

the second display following from (2.4). This proves (i).

(5.21) Remark. (a) There is an analogous uniqueness theorem for co-natural HRMs

with σ-finite characteristic measures. It reads exactly like Theorem (5.19) except that

“m-exceptional” is replaced by “m-polar” in (iii) and (v), and (m+ ρ)-null is replaced by

m-null in (iv). We leave the details to the reader.

(b) One consequence of Theorem (5.19) is this: A perfect HRM κ with σ-finite charac-

teristic measure is Qm-indistinguishable from a perfect HRM κ′ whose potential kernel is

proper. Indeed, if µκ is σ-finite then by (4.10) and (5.7) the potential kernel Uκ is (m+ρ)-

proper. Thus, by (5.5)(a) there is a strictly positive Borel function g and an m-exceptional

set N such that Uκg ≤ 1 off N . We can (and do) assume that N ∈ E and that E \ N

is absorbing. The desired modification of κ is then κ′(dt) := 1E\N (Y ∗t )κ(dt). To see this

observe that Uκ′g(x) = Uκ(1E\Ng)(x) = Uκg(x) ≤ 1 if x ∈ E \N , hence Uκ′g ≤ 1 on all

of E because Uκ is a regular strongly supermedian kernel.

6. Additive Functionals.

It is often important to describe an HRM in terms of the associated distribution

function, at least under appropriate finiteness conditions. Thus we are led to the concept

of additive functional (AF). Our definitions are essentially those given in [Sh88], except

that we allow an exceptional set of starting points; cf. [Sh71] and [FOT94; Chap. 5].

Throughout this section we work with a fixed m ∈ Exc with Riesz decomposition m =

η+ ρU into harmonic and potential components. As in the last section, we assume in this

section that X is transient, meaning that U is a proper kernel: There exists b ∈ pE with

0 < b ≤ 1, m(b) <∞, and Ub ≤ 1.

Recall that a nearly Borel set N is m-inessential provided it is m-polar and E \N is

absorbing for X. By [GS84; (6.12)], any m-polar set is contained in a Borel m-inessential

set. We shall say that a nearly Borel set N is strongly m-inessential provided N ∈ N (m)

and E \ N is absorbing. As noted just before (5.2), if G is a finely open m-null set then

G ∈ N (m). Using this observation, the proof of [GS84; (6.12)] is easily modified to show

that any set in N (m) is contained in a Borel strongly m-inessential set.

(6.1) Definition. A positive left additive functional (PLAF) is an (Ft)-adapted increasing

process A = (At)t≥0 with values in [0,∞], for which there exist a defining set ΩA ∈ F and

a strongly m-inessential Borel set NA (called an exceptional set for A) such that
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(i) Px[ΩA] = 1 for all x /∈ NA;

(ii) θtΩA ⊂ ΩA for all t ≥ 0;

(iii) For all ω ∈ ΩA the mapping t 7→ At(ω) is left-continuous on ]0,∞[, finite valued

on [0, ζ(ω)[, with A0(ω) = 0;

(iv) For all ω ∈ ΩA, A0+(ω) = a(X0(ω)), where a ∈ pEn;

(v) For all ω ∈ ΩA and s, t ≥ 0: At+s(ω) = At(ω) +As(θtω);

(vi) For all t ≥ 0, At([∆]) = 0.

(6.2) Definition. Two PLAFs A and B are m-equivalent provided Pm+ρ[At 6= Bt] = 0

for all t ≥ 0.

(6.3) Remarks. (a) Observe that if A is a PLAF then on ΩA we have At = Aζ for all

t > ζ, and that Aζ = Aζ−.

(b) Let κ be a perfect HRM, and define At := κ[0, t[, t ≥ 0, and S := inf{t : At =∞}.

Suppose that Pm+ρ[S < ζ] = 0. Then A = (At)t≥0 is a PLAF with defining set ΩA :=

{S ≥ ζ} and exceptional set NA := {x : Px[S < ζ] > 0}. See Theorem (6.21), where it is

proved that NA just defined is strongly m-inessential and that the construction just given

yields the most general PLAF.

The following improvement of property (iv) above is useful.

(6.4) Lemma. Let A be a PLAF. Then the defining set ΩA and exceptional set NA for

A can be modified so that the function a in (iv) satisfies: {a > 0} is semipolar.

Proof. From the definition, we have ∆A0 = A0+ = a(X0) on ΩA, where a ∈ pEn. Therefore

∆At = (∆A0)◦ θt = a(Xt) on ΩA, for all t ≥ 0. Writing A = Ac + Ad, where Ac is the

continuous and Ad the discontinuous part of A, we have, on ΩA,

Ad
t =

∑

0≤s<t

a(Xs) <∞, t ∈ [0, ζ[.

Thus, if x /∈ NA, then {t : a(Xt) > 0} is countable, Px-a.s. Hence {a > 0} is m-semipolar,

and by (3.13) we can write {a > 0} = Sa ∪ Na, where Sa is semipolar and Na ∈ N (m).

Because {a > 0} ∈ En, the argument used in proving (3.13) shows that Sa and Na can

be chosen nearly Borel as well; this we assume done. Now let M be a Borel strongly

m-inessential set containing Na. Define N∗ = NA ∩M . Let D := inf{t ≥ 0 : Xt ∈ N∗}

be the début of N∗. Then Px[D <∞] = 0 for x /∈ N∗. Define Ω∗A = ΩA ∩ {D =∞} and

a∗ = a · 1E\N∗ . It is evident that N∗ and Ω∗A serve as exceptional and defining sets for A,

that {a∗ > 0} is semipolar, and that A0 = a∗(X0) on Ω∗A.

Theorem (3.18) motivates the following
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(6.5) Definition. A positive co-natural additive functional (PcNAF) is an (Ft)-adapted

increasing process A = (At)t≥0 with values in [0,∞], for which there exist a defining set

ΩA ∈ F and an m-inessential Borel set NA (called an exceptional set for A) such that, in

addition to conditions (6.1)(i)(ii)(v)(vi), the following modifications of (6.1)(iii)(iv) hold:

(iii) For all ω ∈ ΩA the mapping t 7→ At(ω) is right-continuous on [0,∞[, finite valued

on [0, ζ(ω)[, with A0(ω) = 0;

(iv) For all ω ∈ ΩA and all t > 0, ∆At(ω) := At(ω) − At−(ω) = a(Xt(ω)), where

a ∈ pEn;

(6.6) Definition. Two PcNAFs A and B are m-equivalent provided Pm[At 6= Bt] = 0

for all t ≥ 0.

(6.7) Remarks. (a) If A is a PcNAF then Aζ = Aζ−.

(b) A PcNAF A can be represented as

At(ω) = Ac
t(ω) +

∑

0<s≤t

a(Xs(ω)), t ∈ [0, ζ(ω)[, ω ∈ ΩA,

where Ac is a PCAF (as in [FG96]) and a ∈ pEn with {a > 0} semipolar.

(c) If A is a PLAF then Bt := At+ − A0+ defines a PcNAF (with the same defining

and exceptional sets); the potential kernels of A and B, defined in (6.8) below, are related

by UBf = UAf .

(d) Let γ be a co-natural HRM, and define At := limn γ]0, t + 1/n], t ≥ 0, and

S := inf{t : At =∞}. Suppose that Pm[S < ζ] = 0. Then A = (At)t≥0 is a PcNAF with

ΩA = {S ≥ ζ} and NA = {x : Px[S < ζ] > 0}. As with PLAFs, it will be clear from the

the proof of Theorem (6.21) that NA is m-inessential and that this example is the most

general PcNAF.

We now define the potential kernel of an AF; this notion will play an important role

in the sequel.

(6.8) Definition. Let A be a PLAF or a PcNAF. The potential kernel UA of A is defined

for f ∈ En by

(6.9) UAf(x) := Px

∫

[0,ζ[

f(Xt) dAt, x /∈ NA,

where NA is an exceptional set for A. In particular, uA := UA1 is the potential function of

A.

(6.10) Remarks. Note that UAf is undefined on NA. If A is a PcNAF, then dAt does not

charge {0}, so the integral in (6.9) is really over the open interval ]0, ζ[. Since f(∆) = 0

and ∆Aζ = 0, one could just as well integrate over [0,∞[ (or ]0,∞[ in case of a PcNAF).
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If f ≥ 0 we define (f ∗A)t :=
∫

[0,t[
f(Xs) dAs (resp. (f ∗A)t :=

∫

]0,t]
f(Xs) dAs) when

A is a PLAF (resp. PcNAF). If, for all ω ∈ ΩA, (f ∗ A)t(ω) < ∞ for all t ∈ [0, ζ(ω)[,

then f ∗ A is a PLAF (resp. PcNAF) provided A is a PLAF (resp. PcNAF). Of course

the finiteness condition just mentioned is satisfied if f is bounded. Finally, notice that

Uf∗A(g) = UA(fg).

When A is a PLAF or a PcNAF with exceptional set NA, it will be convenient to let

XA denote the restriction of X to the absorbing set E \ NA. In fact, using this device

one can often reduce matters to the situation in which NA is empty. If A is a PcNAF,

one checks easily that UAf is excessive for XA, and hence nearly Borel on E \ NA. If A

is a PLAF, then UAf = af + UĀf , where Āt := At+ − A0+ is a PcNAF with the same

exceptional set as A; see Remark (6.7)(d). Because UĀf is excessive for XA, if f ≥ 0 is

nearly Borel on E \NA then so is UAf . It is now clear that UAf is strongly supermedian

and that UĀf is its excessive regularization. Of course, both of these statements must be

understood relative to XA. Henceforth we shall omit such qualification when it is clear

from the context that we are referring to XA.

For the following definition, which is motivated by Theorem (4.10), recall the Riesz

decomposition m = η + ρU .

(6.11) Definition. Let A be a PLAF or a PcNAF. The characteristic measure µA of A

(relative to m ∈ Exc) is defined by

(6.12) µA(f) := ρUAf + L(η, ŪAf), f ∈ pE ,

where ŪAf is the excessive regularization of UAf . (If A is a PcNAF then ŪAf = UAf .)

Observe that if f is such that f ∗ A is a PLAF or a PcNAF, then µf∗A = f · µA; in

particular, µf∗A(1) = µA(f).

Definition (6.11) requires some justification since UAf and ŪAf are only defined on

E\NA. Thus, the energy functional L appearing in (6.12) should be regarded as the energy

functional LA of XA, at least formally. But if νU ≤ η then ν doesn’t charge NA, so νU =

νUA, where UA is the potential kernel for XA. Hence LA(η, ŪAf) = sup{νŪAf : νU ≤ η}.

Also, because ρU ≤ m, ρ charges no set in N (m). Since NA ∈ N (m), ρUAf is well defined.

Thus (6.12) is justified. If A is a PcNAF then (6.12) reduces to µA(f) = L(m,UAf).

If A is a PcNAF and F is m-polar, then UA1F = 0, m-a.e., and so µA(F ) =

L(m,UA1F ) = 0. Thus µA charges no m-polar set. If A is a PLAF, and F ∈ N (m),

then ŪA1F = 0, m-a.e., and hence η-a.e. Therefore L(η, ŪA1F ) = 0. Moreover, combining
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the formula [G90; (6.20)] for ρ with the strong Markov property we obtain

ρUA1F = Qm

[(

∫

[0,ζ[

1F (Xt) dAt

)

◦ θα; 0 < α ≤ 1,W (h)

]

= 0,

since Xt◦ θα = Y ∗α+t on W (h) for t ≥ 0, and {Y ∗ ∈ F} is Qm-evanescent (because F ∈

N (m)). Thus µA charges no m-exceptional set when A is a PLAF.

(6.13) Definition. A nest is an increasing sequence (Bn) of nearly Borel sets such that

Pm[limn τ(Bn) < ζ] = 0, where τ(B) := inf{t > 0 : Xt /∈ B} denotes the exit time from

B ∈ En. A nest (Bn) is a strong nest if Pm+ρ[limn τ(Bn) < ζ] = 0.

(6.14) Definition. A measure ν on (E, E) is smooth (resp. strongly smooth) provided it

charges no m-polar set (resp. no element of N (m)) and there is a nest (resp. strong nest)

(Gn) of finely open nearly Borel sets such that µ(Gn) <∞ for all n.

If (Gn) is a nest (resp. strong nest), then E \ ∪nGn is m-polar (resp. m-exceptional).

Thus, a smooth or strongly smooth measure is necessarily σ-finite. If a smooth measure µ

charges no m-semipolar set then it is smooth as the term was defined in [FG96], where it

was proved that such a µ is the characteristic measure of a uniquely determined PCAF A.

Below we develop similar results for PLAFs and PcNAFs. We have already seen that µA

charges no m-polar set (resp. no element of N (m)) if A is a PcNAF (resp. PLAF).

We need to extend the notion of regularity, introduced in section 5 for strongly super-

median functions, as follows: If E ′ ∈ En is an absorbing set, then we say that f ∈ bEn is

regular on E′ provided limnP
x[f(XTn)] = Px[f(XT )] for all x ∈ E′ and every increasing

sequence (Tn) of stopping times with limit T .

(6.15) Theorem. If A is a PcNAF (resp. PLAF) then µA is smooth (resp. strongly

smooth). Moreover, there exists a finely lower-semicontinuous nearly Borel function g

defined on E \NA such that (i) 0 < g ≤ 1 on E \NA, (ii) UAg ≤ 1 on E \NA, and (iii) g

is regular on E \NA.

Proof. Suppose first that A is a PLAF, with exceptional set N = NA and defining set ΩA.

On ΩA let M be the Stieltjes exponential of A; that is,

(6.16) Mt(ω) = eA
c
t(ω)

∏

0≤s<t

(1 + ∆As(ω)), t < ζ(ω), ω ∈ ΩA,

where Ac is the continuous part of A and ∆As := As+ − As for s ≥ 0. On ΩA we have
∑

0≤s<t ∆As ≤ At <∞ if t ∈ [0, ζ[, so M is well defined, increasing, and finite on [0, ζ[, left

continuous on ]0, ζ[, with M0 = 1, M0+ = 1 +∆A0 = 1 + A0+. Clearly Mt+s = MsMt◦θs
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for s, t ≥ 0. Moreover, {t : Mt+ 6= Mt} is countable Px-a.s. for x ∈ E \ N . The reader

should keep in mind that M is defined only on ΩA. Evidently,

(6.17) dMt = Mt dAt, t ∈ [0, ζ[.

In addition, Mt · 1/Mt = 1, so Mt+d(1/Mt) + (1/Mt)dMt = 0, or

(6.18) d

(

1

Mt

)

= −
dMt

Mt+Mt
= −

1

Mt+
dAt.

Recall that b ∈ bpE with 0 < b ≤ 1, m(b) <∞, and Ub ≤ 1. Define, for x /∈ N ,

(6.19) g(x) := Px

∫

[0,ζ[

M−1
t b(Xt) dt = Px

∫

[0,ζ[

M−1
t+ b(Xt) dt.

Clearly g > 0 on E \N , and, for x /∈ N ,

UAg(x) = Px

∫

[0,ζ[

g(Xt) dAt = Px

∫

[0,ζ[

dAt

∫

[0,ζ◦ θt[

(Ms◦ θt)
−1b(Xs◦ θt) ds

= Px

∫

[0,ζ[

dAt

∫

[t,ζ[

Mt(Ms)
−1b(Xs) ds = Px

∫

[0,ζ[

dsM−1
s b(Xs)

∫

[0,s]

Mt dAt

= Px

∫

[0,ζ[

M−1
s (Ms − 1)b(Xs) ds = Px

∫

[0,ζ[

(1−M−1
s )b(Xs) ds

= Ub(x)− g(x),

where the fifth equality comes from (6.17). Thus g+UAg = Ub on E \N ; because Ub ≤ 1

and g ≥ 0, we have UAg ≤ 1 on E \N . Since M0+ = 1+∆A0 = 1+ a(X0), where a comes

from Definition (6.1)(iv),

(6.20) g(x) =
1

1 + a(x)
Px

∫

[0,ζ[

M0+M−1
t+ b(Xt) dt.

Let Lt := M0+M−1
t+ . Then L = (Lt)t≥0 is a right-continuous, decreasing multiplicative

functional of XA with L0 = 1. Hence L is exact and the expectation in (6.20) is exces-

sive with respect to (XA, L)—the L subprocess of XA. In particular, g is nearly Borel

measurable. If T is a stopping time then

Px[g(XT )] = Px

[

MT

∫

[T,ζ[

M−1
t b(Xt) dt

]

,

from which it follows that g is regular and finely lower-semicontinuous on E \ N (by

Theorem 4.9 in [Dy65], since M0+ ≥ 0). Thus the sets Gn := {g > 1/n}, n ≥ 1, form an
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increasing sequence of finely open, nearly Borel, subsets of E \N . Let τn be the exit time

of Gn. Since Gc
n is finely closed, g(Xτn) ≤ 1/n, Px-a.s. for x ∈ E \N . Thus, for such x,

1/n ≥ Px[g(Xτn)] = Px

[

Mτn

∫

]τn,ζ[

M−1
t b(Xt) dt

]

≥ Px

∫

]τn,ζ[

M−1
t b(Xt) dt.

But b > 0, and Mt < ∞ on [0, ζ[ (Px-a.s.), so we must have limn τn = ζ, Px-a.s. for all

x ∈ E \ N . Since N is strongly m-inessential, (Gn) is a strong nest. Finally, UA1Gn
≤

nUAg ≤ nUb on E \N , and so

µA(Gn) = ρUA1Gn
+ L(η, ŪA1Gn

) ≤ n [ρUb+ L(η, Ub)]

= nL(m,Ub) = n ·m(b) <∞.

This establishes (6.15) when A is a PLAF.

Now consider the case in which A is a PcNAF. Define a PLAF A∗ by A∗t := Ac
t +

∑

0≤s<t a(Xs), where a comes from Definition (6.5)(iv). Then At = A∗t+ − A∗0. Define M

as in (6.16) with A replaced by A∗, and define g as in (6.19). As before, g is nearly Borel

measurable, finely lower-semicontinuous, and regular. In the present case the computation

just below (6.19) yields

UAg(x) = Px

∫

[0,ζ[

∫

]0,s]

Mt dA
∗
t M

−1
s b(Xs) ds

≤ Px

∫

[0,ζ[

∫

[0,s]

Mt dA
∗
t M

−1
s b(Xs) ds

= Ub(x)− g(x)

for x ∈ E \N . Hence g ≤ Ub and UAg ≤ Ub ≤ 1 on E \N . Just as for PLAFs, the sequence

defined by Gn := {g > 1/n} is a nest (recall that N is m-inessential) with µA(Gn) < ∞

for each n. This completes the proof of Theorem (6.15).

The next result is the fundamental existence theorem for AFs. It is essentially the

converse of Theorem (6.15). The accompanying uniqueness result is (6.29).

(6.21) Theorem. Let µ be a strongly smooth (resp. smooth) measure. Then there exists

a PLAF (resp. PcNAF) A with characteristic measure µ. Moreover, in either case, there

exists a Borel function j ≥ 0 with {j > 0} semipolar such that ∆A ≡ j◦X.

Proof. Suppose first that µ is strongly smooth. Clearly µ ∈ S#0 (m), so there is an HRM

κ associated with µ as in (3.11). Let κΩ denote the restriction of κ to Ω. If f ∈ pE and
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t ≥ 0 then

t · µ(f) = Qm

∫

[0,t[

f(Y ∗s )κ(ds)

≥ Qm

[

∫

[0,t[

f(Y ∗s )κ(ds);α < 0 < β

]

≥ Qm

[

PY (0)

[

∫

[0,t[

f(Xs)κΩ(ds)

]

;α < 0 < β

]

= Pm

∫

[0,t[

f(Xs)κΩ(ds).

In addition, from (4.10), we have

µ(f) ≥ ρUκΩ(f) = Pρ

∫

[0,ζ[

f(Xs)κΩ(ds) ≥ Pρ

∫

[0,t[

f(Xs)κΩ(ds).

Combining these estimates we have, for G ∈ E ,

(6.22) Pm+ρ

∫

[0,t[

1G(Xs)κΩ(ds) ≤ (t+ 1)µ(G).

Now let (Gn) be a strong nest with µ(Gn) <∞ for all n. Then (6.22) implies

(6.23) Pm+ρ [κΩ[0, t[; t < τ(Gn)] ≤ (t+ 1)µ(Gn) <∞.

Define At := κΩ[0, t[, t ≥ 0. In view of the properties of κ in (3.11) one has, on all of

Ω, (i) A0 = 0, (ii) t 7→ At is left continuous on ]0,∞[ and increasing on [0,∞[, and (iii)

At+s = At + As◦ θt for all s, t ≥ 0. Also, At is measurable over F∗[0,t[ ⊂ F
∗
t = F∗[0,t]. (See

the second paragraph of section 4 for notation.) Let S := inf{t : At = ∞}. It is evident

that S is an (F∗t )-stopping time and that S = t+S◦ θt on {S > t}. Now (6.23) implies that

At < ∞ on [0, τ(Gn)[, P
m+ρ-a.s. But Pm+ρ[limn τ(Gn) < ζ] = 0 since (Gn) is a strong

nest, hence Pm+ρ[S < ζ] = 0. Therefore the set Ñ := {x : Px[S < ζ] > 0} is (m+ ρ)-null.

We need the following lemma, which we shall prove after using it to complete the proof of

the theorem.

(6.24) Lemma. The function h defined on E by h(x) := Px[S < ζ] is strongly superme-

dian.

Since Ñ = {h > 0} and m(Ñ) = 0, it follows from [FG96; Lem. 2.1] that Ñ is m-

polar. Hence Ñ ∈ N (m). Let N be a strongly m-inessential Borel set containing Ñ . It is

now easy to see that A is a PLAF with defining set {S ≥ ζ} and exceptional set N . The

form of ∆A comes from (3.12).
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Suppose next that µ is smooth. Because µ is a σ-finite measure charging no m-polar

set, Theorem (3.16) guarantees the existence of a co-natural HRM κ with characteristic

measure µ. In this case κΩ({0}) = 0. Let (Gn) be a nest of finely open sets with µ(Gn) <

∞. Dropping the subscript Ω from κ, it follows just as before that

Pm[κ]0, t]; t < τ(Gn)] ≤ tµ(Gn) <∞.

This time we define At := limn→∞ κ]0, t + 1/n], and S := inf{t : At = ∞} = inf{t :

κ]0, t] = ∞}. Arguing exactly as in the proof of [G95; Prop. 4.3], one see that A is an

adapted, right-continuous increasing process with At+s = At+As◦ θt for s, t ≥ 0, and that

A is exact in the sense that

(6.25) lim
s↓0

At−s◦ θs = At, ∀t > 0.

All of these statements hold identically on Ω. (The diffuseness hypothesis imposed in

[G95; (4.3)] is not used in the proof of the above statements. The sentence “If . . . cases”

on line -13, page 86 of [G95] should be deleted.) Clearly At = κ]0, t] if t < S, and

A0 = 0 on {S > 0}. Just as in the PLAF case, we find that Pm[S < ζ] = 0 and that

Ñ := {x ∈ E : Px[S < ζ] > 0} is m-polar. Thus, A is a PcNAF with defining set {S ≥ ζ}

and exceptional set a Borel m-inessential set N containing Ñ . Invoking (3.18) one sees

that Ad
t =

∑

0<s≤t j(Xs), where j ∈ pE and {j > 0} is semipolar. Hence A is a PcNAF

with µA = µ.

It remains to prove Lemma (6.24). So let h and S be as there. Since κ({0}) = j(X0) <

∞,

S = inf{t : κ]0, t[=∞} = inf{t : κ]0, t] =∞},

the second equality being easily verified. Define Bt := limn→∞ κ]0, t + 1/n]. Then, as in

[G95; (4.3)], B is exact; i.e., it satisfies (6.25). Clearly S = inf{t : Bt = ∞}. Now the

argument at the top of page 91 of [G95] shows that h(x) := Px[S < ζ] is Ee-measurable,

where Ee is the σ-algebra generated by the 1-excessive functions of X. Since X is a Borel

right process, we have Ee ⊂ En. It is evident that PTh ≤ h for all stopping times T , and

so h is strongly supermedian.

(6.26) Remarks. The AFs constructed in the proof of (6.21) have better properties than

required by the definitions. The shift property (6.1)(v) holds for all ω ∈ Ω and the “jump”

function j is Borel measurable with {j > 0} semipolar. Also, the PcNAF produced is

exact. The PLAF constructed is (F∗t−)-adapted and the PcNAF is (F∗t+)-adapted.

Here is the analog of (6.21) for regular strongly supermedian kernels.
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(6.27) Theorem. (a) Let V be a regular strongly supermedian kernel and suppose there

are a strongly m-inessential set N and a finely lower-semicontinuous function g : E \N →

]0, 1] that is regular on E \N , such that V g ≤ 1 on E \N . Then there is a unique PLAF

A with exceptional set NA ⊃ N such that UA(x, ·) = V (x, ·) for all x /∈ NA.

(b) Let V be a regular strongly supermedian kernel and define a semi-regular excessive

kernel W by Wf := V f (excessive regularization). Suppose there are an m-inessential set

N and a finely lower-semicontinuous function g : E \N →]0, 1] that is regular on E \N ,

such that Wg ≤ 1 on E \ N . Then there is a unique PcNAF A with exceptional set

NA ⊃ N such that UA(x, ·) = W (x, ·) for all x /∈ NA.

Proof. (a) It is clear that V is (m+ρ)-proper, so by Theorem (5.8) there is a unique perfect

HRM κ such that {x ∈ E \N : Uκ(x, ·) 6= V (x, ·)} is contained in a strongly m-inessential

set N0 ⊃ N . Define At := κ[0, t[, t ≥ 0, and S := inf{t : At = ∞}. As in the proof of

Theorem (6.21), we will be done once we show that Pm+ρ[S < ζ] = 0. To this end observe

that because g is regular and strictly positive on E \N0, we have

inf
0≤s≤t

g(Xs) > 0 on {t < ζ}, Px-a.s.

for each x ∈ E \N0 and each t > 0. But for x ∈ E \N0,

1 ≥ V g(x) = Px

∫

[0,ζ[

g(Xs)κ(ds)

≥ Px

[

∫

[0,t[

g(Xs)κ(ds); t < ζ

]

≥ Px

[

inf
0≤s<t

g(Xs) · κ[0, t[; t < ζ

]

,

from which it follows that κ[0, t[< ∞, Px-a.s. on {t < ζ} for each x ∈ E \ N0 and each

t > 0. This is more than enough to imply that Pm+ρ[S < ζ] = 0.

(b) The proof of this assertion is quite similar to that of part (a), so we omit it.

(6.28) Remark. The smoothness conditions appearing in Theorems (6.21) and (6.27) are

comparable. Thus, if µ is a strongly smooth element of S#0 (m) then by (6.15) and (6.21)

there is a strictly positive function g that is finely lower semicontinuous and regular on an

absorbing set E′ with E \ E′ ∈ N (m), such that µ(g) <∞; cf. [FG96; §5]. On the other

hand, if V is a regular strongly supermedian kernel satisfying the hypothesis of part (a)

of Theorem (6.27), then Gn := {g > 1/n}, n ≥ 1, defines a strong nest such that, for each

n, V (1Gn
) ≤ n off an m-exceptional set. This should be compared to the notion smooth

kernel used in [BB01a]; see especially Theorem 2.1 in [BB01a].

The following uniqueness result parallels (5.19).
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(6.29) Theorem. Let A and B be PLAFs (resp. PcNAFs) with characteristic measures

µA and µB , and potential kernels UA and UB . The following are equivalent:

(i) For all t ≥ 0, Pm+ρ(At 6= Bt) = 0 (resp. Pm(At 6= Bt) = 0);

(ii) µA = µB ;

(iii) {x ∈ E : UA(x, ·) 6= UB(x, ·)} is m-exceptional (resp. m-polar);

(iv) {x ∈ E : UA(x, ·) 6= UB(x, ·)} is (m+ ρ)-null (resp. m-null);

(v) There exists a strictly positive function g ∈ pEn such that UAg = UBg < ∞ off

an m-exceptional (resp. m-polar) set.

(6.30) Remark. Since A and B are left-continuous on ]0,∞[ (resp. right-continuous on

[0,∞[) Px-a.s. for x /∈ NA ∪NB , condition (i) is equivalent to

(i′) A and B are Pm+ρ-indistinguishable (resp. Pm-indistinguishable).

Theorem (6.29) is a direct consequence of Theorem (5.19) and the following result

that links the notions of HRM and PLAF (or PcNAF). The reader is invited to extract a

proof of Proposition (6.31) from the proof of Theorem (5.8) found in the appendix.

(6.31) Proposition. Let A be a PLAF (resp. PcNAF) with characteristic measure µA

and potential kernel UA. Then there is a unique perfect HRM (resp. co-natural HRM) κ

with µκ = µA and Uκ(x, ·) = UA(x, ·) for all x outside an m-exceptional (resp. m-polar)

set.

We end this section with a brief discussion of the fine support of a PLAF and of its

associated potential function. Let V be a regular strongly supermedian kernel such that

v := V 1 < ∞. Then by Theorem (6.27) and its proof there is a (unique) PLAF A with

empty exceptional set such that V = UA. Recall from Section 5 that ν a µ (balayage order)

provided νU ≤ µU . Because X is transient, we have ν a µ if and only if ν(u) ≤ µ(u) for

every excessive function u. We follow Feyel [Fe83] in defining the fine support δ(v) of the

regular strongly supermedian function v as in the theory of Choquet boundaries: δ(v) is

the set of points x ∈ E such that the only measure ν on E with ν a εx and ν(v) = v(x) is

εx itself. Recall the notation HBf(x) := Px[f(XDB
)].

(6.32) Proposition. (a) δ(v) is a finely closed element of En;

(b) Hδ(v)v = v, and consequently UA(1δ(v)) = v;

(c) If B is a finely closed nearly Borel set with HBv = v (or with UA1B = v), then

δ(v) ⊂ B.

An analytic proof of this proposition can be found in [Fe83] or in [BB02]. In our

setting the proposition is an immediate consequence of the following description of δ(v)

and the subsequent discussion.
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(6.33) Proposition. Define

S := inf{t ≥ 0 : At > 0},

and let F = FA := {x ∈ E : Px[S = 0] = 1} denote the fine support of the PLAF A. Then

F = δ(v).

Proof. Suppose x ∈ δ(v) and define ν := εxPS . Clearly ν a εx while

ν(v) = Px[A∞◦ θS ] = Px

∫

[S,∞[

dAt = Px[A∞] = v(x).

Consequently ν = εx, hence εxPSU = εxU . This forces Px[S = 0] = 1, so x ∈ F .

Conversely, suppose that x ∈ F . Fix ν a εx with ν(v) = v(x). By Rost’s theorem

([Ro71] or [G90; (5.23)]) there is a (randomized) stopping time T with ν = εxPT . Then

Px[A∞] = v(x) = ν(v) = Px[A∞◦ θT ] = Px[A∞ −AT ],

so Px[AT = 0] = 1. When coupled with the fact that At > 0 for all small t > 0, Px-a.s.

(because Px[S = 0] = 1), this yields Px[T = 0] = 1, whence ν = εx.

If we represent A as

At = Ac
t +

∑

0≤s<t

a(Xs),

where a ∈ pEn with J := {a > 0} semipolar, then clearly S = Sc ∧DJ , where Sc := inf{t :

Ac
t > 0}. It is well known that Sc = TFc almost surely, where Fc is the fine support (in the

usual sense) of the CAF Ac; see [BG68; p. 213]. Also, since the début of a nearly Borel

set is almost surely equal to the début of its fine closure, we have F = Fc ∪ J̄f , where J̄f

is the fine closure of J .

Conversely, suppose that F is a given finely closed nearly Borel set. Recall that b ∈ pE

is strictly positive and Ub ≤ 1. Consider the function v := HFUb. It is easy to check that v

is a (bounded) regular strongly supermedian function, so by [Sh88; (38.2)] there is a PLAF

A with empty exceptional set such that UA1 = v. Furthermore, using Rost’s theorem as

in the proof of Proposition (6.33), we can show that δ(v) = F . Thus, each finely closed

nearly Borel set is the fine support of a PLAF.

The fine support FA of a positive CAF A is finely perfect : FA is finely closed and each

point of FA is regular for FA. The known converses to this assertion (e.g. [Az72, FG95])

are more involved than the construction suggested in the preceding paragraph. The paper

[DG71], especially Example (4.4) on pp. 543–544, provides an instructive discussion of

these matters.

39



7. Resolvents.

One of the mains results of [BB01a] is that if V is a regular strongly supermedian

kernel, then V satisfies the hypothesis of Theorem (6.27) (equivalently, V agrees off an

m-exceptional set with the potential kernel of a PLAF) if and only if V is, off an m-

exceptional set, the initial kernel of a subMarkovian resolvent. Because the regularity of a

strongly supermedian kernel amounts to a form of the domination principle, this assertion

is closely related to the work of Hunt [Hu57], Taylor [T72,T75], and Hirsch [Hi74] on

the existence of subMarkovian resolvents with given initial kernel.

Our aim in this section is to give an explicit representation of the resolvent (V q)q≥0

such that with V 0 = UA for a given PLAF A. We even construct a (simple) Markov process

possessing the given resolvent.

Throughout this section we suppose that A satisfies the conditions listed in (6.26).

For q ≥ 0 define

(7.1) M q
t := eqA

c
t

∏

0≤s≤t

(1 + q∆As),

with the convention that M q
0− = 1. Then M0

t = 1 for all t ≥ 0, t 7→M q
t is right-continuous,

increasing, and finite valued on [0, ζ[, and M q
0 = 1 + q∆A0 = 1 + qA0+. Moreover, for

t ≥ 0,

(7.2)

(i) dM q
t = qM q

t− dAt;

(ii) d(1/M q
t ) = −q(M

q
t )
−1 dAt;

(iii) M q
t+s = M q

t−M
q
s ◦ θt.

(7.3) Theorem. With the above notation, define

V qf(x) := Px

∫

[0,ζ[

(Mq
t )
−1f(Xt) dAt, x ∈ E \NA, f ∈ pE .

Then (V q)q≥0 is a subMarkovian resolvent on E \NA with V 0 = UA.

In proving Theorem (7.3), by the device of restricting X to E \ NA, it suffices to

suppose that NA is empty, and this we shall do. The key computation is contained in the

following

(7.4) Lemma. Fix s > 0 and define I(q, r) :=
∫

[0,s]
(Mq

t )
−1Mr

t− dAt for q, r ≥ 0. Then

I(q, r) = (r − q)−1
[

(Mq
s )
−1Mr

s − 1
]

provided q 6= r.
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Proof. If q > 0, then by (7.2)(ii)

I(q, 0) = q−1
∫

[0,s]

q(M q
t )
−1 dAt

= −q−1
∫

[0,s]

d(1/M q
t )

= −q−1
[

(Mq
s )
−1 − 1

]

.

Now suppose r > 0 and q 6= r. Then

I(q, r) = r−1
∫

[0,s]

(Mq
t )
−1Mr

t− d(rAt)

= r−1
∫

[0,s]

(Mq
t )
−1 d(Mr

t )

= r−1
[

(Mq
s )
−1Mr

s − 1
]

− r−1
∫

[0,s]

Mr
t− d(1/M q

t ),

where (7.2)(i) was used for the second equality. Because of (7.2)(ii), the final integral

above is equal to

−q

∫

[0,s]

(Mq
t )
−1Mr

t− dAt = −qI(q, r).

Consequently,

(1− q/r)I(q, r) = r−1
[

(Mq
s )
−1Mr

s − 1
]

,

which implies (7.4).

We now prove Theorem (7.3). First note that V qf ∈ pEn provided f ∈ pEn, and that

qV q1(x) = Px[1 − (M q
ζ−)

−1] ≤ 1 for all x ∈ E. Also, if 0 < g ≤ 1 with UAg ≤ 1, then

V qg ≤ 1. Now suppose that q 6= r and f ∈ pEn with UAf <∞. Then, for x ∈ E,

V qV rf(x) = Px

∫

[0,ζ[

(Mq
t )
−1

∫

[0,ζ◦ θt[

(Mr
s ◦ θt)

−1f(Xt+s) dAs◦ θt dAt

= Px

∫

[0,ζ[

(Mq
t )
−1

∫

[t,ζ[

Mr
t−(M

r
s )
−1f(Xs) dAs dAt

= Px

∫

[0,ζ[

(Mr
s )
−1f(Xs)

∫

[0,s]

Mr
t−(M

q
t )
−1 dAt dAs

= (r − q)−1Px

∫

[0,ζ[

[

(Mq
s )
−1 − (Mr

s )
−1
]

f(Xs) dAs

= (r − q)−1 [V qf(x)− V rf(x)] .

This proves that (V q)q≥0 is a subMarkovian resolvent of proper kernels, with V 0 = UA.
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(7.5) Question. Suppose that u is a bounded strongly supermedian function, and define

f := u− qV qu. Using the resolvent equation for (V q) we find that V f = V u− qV V qu =

V qu < q−1u on {f > 0}\NA. Therefore V qu ≤ q−1u on all of E\NA. A routine truncation

argument now establishes the following assertion: If u is strongly supermedian then u is

supermedian with respect to the resolvent (V q)q≥0. Is the converse true? That is, suppose

that a nearly Borel function u is supermedian with respect to the resolvent associated with

each PLAF of X. Must u then be strongly supermedian?

If A is continuous, then (V q) is the well-known resolvent of the strong Markov process

obtained by time-changing X using the strictly increasing right-continuous inverse of A.

In the general case one must, in addition to the time change, make each x in the semipolar

set {j > 0} (see (6.21)) an exponentially distributed holding point with mean holding time

equal to j(x). This will be made more precise in the next result.

Let A be a PLAF satisfying the conditions in (6.26). Since J := {j > 0} is semipolar,

there is a sequence (Tn)n≥1 of stopping times with disjoint graphs such that ∪n Tn is

indistinguishable from {(t, ω) : Xt(ω) ∈ J}; see [De88; p. 70] or [Sh88; (41.3)]. (Here, for

a stopping time T , T := {(t, ω) : t = T (ω) <∞} denotes the graph of T .) Let (Un) be

a sequence of independent unit exponential random variables that is also independent of

X. (The existence of such a sequence may require a product-space augmentation of the

original sample space; the details of such a construction are left to the reader.) Now define

(7.6) Bt := Ac
t +

∑

n:0≤Tn<t

j(XTn)Un, t ≥ 0.

Note that conditional on F , the random variable j(XTn)Un has the exponential distribution

with mean j(XTn); since
∑

n:Tn<t j(XTn) ≤ At, it follows that t 7→ Bt is finite on [0, ζ[

and left-continuous on ]0, ζ[, Px-a.s. for all x ∈ E \ NA. Also, B0 = 0. Let (τt)t≥0, the

right-continuous process inverse to B, be defined by

τt = τ(t) := inf{s > 0 : Bs > t}, t ≥ 0.

Notice that if B0+ > 0 then τt = 0 for 0 ≤ t < B0+. Of course, τt =∞ if t > B∞ = Bζ−.

(7.7) Theorem. Let (V q)q≥0 be as in (7.3) and define Zt = Xτ(t), t ≥ 0. Then for

x ∈ E \NA and f ∈ pE ,

V qf(x) = Px

∫ ∞

0

e−qtf(Zt) dt, q ≥ 0.
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Proof. Fix q > 0 and let m(t) := 1 − e−qt for t ≥ 0. As in the proof of (7.3) we may

suppose that NA is empty. Define

W qf(x) := Px

∫ ∞

0

e−qtf(Zt) dt = q−1Px

∫ ∞

0

f(Xτ(t)) dm(t).

Adapting the change-of-variable formula [Sh88; (A4.7)] to account for the fact that B is

left-continuous, one finds that

(7.8) W qf(x) = q−1Px

∫

[0,∞[

f(Xt) dtm(Bt).

But

dtm(Bt) = −d(e
−qAct e−qBd

t ) = qe−qBt dAc
t − e−qAct d(e−qBd

t ),

and

d(e−qBd
t ) = ∆(e−qBd

t ) = e−qBd
t (e−q∆Bd

t − 1).

Combining these observations, (7.8) becomes

(7.9)

W qf(x) = Px

∫ ∞

0

f(Xt)e
−qAct

∏

n:Tn<t

e−qj(XTn )Un dAc
t

+ q−1Px
∑

n

f(XTn)e
−qAcTn

∏

k<n

e−qj(XTk
)Uk(1− e−qj(XTn )Un).

Using now the fact that (Un) is independent of F , the first term on the right side of (7.9)

is seen to equal

Px

∫ ∞

0

f(Xt)e
−qAct

∏

n:Tn<t

(1 + qj(XTn))
−1 dAc

t = Px

∫ ∞

0

f(Xt)(M
q
t )
−1 dAc

t ,

since Ac is continuous. Similarly, the second term on the right side of (7.9) equals

Px
∑

n

f(XTn)e
−qAcTn

∏

k<n

(1 + qj(XTk))
−1 ·

j(XTn)

1 + qj(XTn)
= Px

∫

[0,∞[

f(Xt)(M
q
t )
−1 dAd

t .

Consequently, W qf = V qf if q > 0. The case q = 0 now follows immediately by monotone

convergence.

(7.10) Remark. The reader may check that Z = (Zt,P
x) is a simple Markov process for

each x ∈ E \NA, but in general it is not a strong Markov process. In the special case in

which J is a finite set and Ac
t = t, the process Z has a very simple description: Between

visits to J , Z behaves like X; each x ∈ J is a holding point, where Z is delayed for an
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exponential (mean j(x)) time. Also of interest is the special case in which Ac = 0 and

{t : Xt ∈ J} is almost surely dense in [0, ζ[.

A. Appendix.

In this appendix we collect some important properties of strongly supermedian func-

tions, and we give a direct proof of Theorem (5.8). See [Mr73, Fe81, Fe83, BB99] for

background on strongly supermedian functions.

First note that if f is strongly supermedian and if (Tn) is a monotone sequence of

stopping times, then limnP
x[f(XTn)] exists. Consequently, the process t 7→ f(Xt) has left

limits on ]0,∞] and right limits on [0,∞[, almost surely. Let f̄ := limt↓0 Ptf denote the

excessive regularization of f . We claim that the processes (f(X)t+)t≥0 and (f̄(Xt))t≥0 are

indistinguishable. It suffices to prove this for bounded f since f ∧ c = f̄ ∧ c for c ∈ R+.

Next, since both processes are optional, we need only check that

Px[f(X)T+;T <∞] = Px[f̄(XT );T <∞]

for all stopping times T . Because f is bounded,

Px[f(X)T+;T <∞] = lim
t↓0

Px[f(XT+t);T <∞]

= lim
t↓0

Px[Ptf(XT );T <∞]

= Px[f̄(XT ) : T <∞].

These facts will be used without special mention in the sequel.

(A.1) Definition. Let E′ ∈ En be an absorbing set. A strongly supermedian function

f is regular on E′ if f is finite on E′ and for every increasing sequence (Tn) of stopping

times we have

lim
n
Px[f(XTn)] = Px[f(XT )], ∀x ∈ E′,

where T := limn Tn. When E′ = E we simply say that f is regular.

The next theorem is a fundamental result of J.-F. Mertens [Mr73]. The proof in

complete generality is rather complicated; we present a simpler proof for the special case

of bounded strongly supermedian functions, which is the only case we shall be using. A

strongly supermedian function u dominates another strongly supermedian function v in

the specific order provided there is a strongly supermedian function w such that u = v+w.
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(A.2) Theorem. [Mertens] A strongly supermedian function f may be decomposed

uniquely as h+g, where h is the largest (in the specific order) excessive function specifically

dominated by f , and g is a regular strongly supermedian function.

Proof. We give a proof only in the special case of bounded f . As before, f̄ denotes

the excessive regularization of f . The process (f(Xt))t≥0 is a bounded optional strong

supermartingale (under each measure Px, x ∈ E), so by Theorem 20 on page 429 of

[DM80] there exists, for each x ∈ E, an increasing predictable process (Ax
t )t≥0 such that

Px[Ax
∞] <∞ and

(A.3) f(XT ) = Px[Ax
∞|FT ]−Ax

T , Px-a.s.

for each stopping time T . It follows from the proof given in [DM80] that Ax
t = Ax,−

t +Ax,+
t− ,

with Ax,− increasing and predictable, and Ax,+ increasing and optional, both processes

being right-continuous. Moreover, the process Ax,+ is purely discontinuous. In view of the

footnote on page 430 of [DM80],

(A.4) Ax,+
t− =

∑

0≤s<t

[f(Xs)− f(X)s+] =
∑

0≤s<t

[f(Xs)− f̄(Xs)]

up to Px evanescence, for each x ∈ E. Defining Bt to be the sum on the far right of (A.4),

noting that B0 = 0, equation (A.3) may be re-written as

(A.5) f(XT ) +BT = Px[Ax
∞|FT ]−Ax,−

T .

Since Ax,− is increasing, it follows that (f(Xt)+Bt)t≥0 is a strong supermartingale under

each measure Px, x ∈ E. Following Mertens we now define g(x) := Px[B∞]. Then

PT g(x) = Px[B∞ − BT ] ≤ g(x), and if Tn ↑ T then PTng(x) ↓ PT g(x) since B is left-

continuous. Thus g is a regular strongly supermedian function. Also,

g(x) = Px[B∞ −B0+] +Px[B0+] = ḡ(x) + f(x)− f̄(x),

so f − g = f̄ − ḡ. Define h := f − g, and note that Pth → f̄ − ḡ = f − g = h as t ↓ 0.

Moreover,

Pth(x) = Px[f(Xt)]− g(x) +Px[Bt] ≤ f(x)− g(x) +Px[B0] = h(x),

since B0 = 0 and (f(Xt) +Bt)t≥0 is a supermartingale. Thus h is excessive.

Now suppose that f = h0 + g0 is a second decomposition of f into excessive and

strongly supermedian components. Because g0 is strongly supermedian, by what has al-

ready been proved we can write g0 = h1 + g1 with h1 excessive and g1 a regular strongly
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supermedian function. Because h0 is excessive, g0− g0 = f − f̄ = g− ḡ. From this and the

construction of the “purely discontinuous” component g1 it follows that g1 = g. Therefore,

g0 = h1 + g, so h = h0 + h1 specifically dominates h0. This establishes the case of (A.2)

that we shall need.

(A.6) Remark. This proof works just as well if (f(Xt))t≥0 is of class (D) relative to each

Px, and this holds if and only if P{f>n}f(x) → 0 as n → ∞ for each x ∈ E; see [Sh88;

(33.3)].

The following is an analog of the classical approximation of excessive functions by

potentials; it seems to have gone unnoticed in the literature.

(A.7) Corollary. If X is transient, then a strongly supermedian function f is the in-

creasing limit of a sequence of regular strongly supermedian functions.

Proof. Use Mertens’ theorem to write f as h+g, where h is an excessive function and g is a

regular strongly supermedian function. Since X is transient, there is an increasing sequence

(Ubn) of potentials with Ubn ↑ h. Now each potential Ubn is regular as is fn := Ubn + g,

which increases pointwise to f .

We come now to a key fact concerning strongly supermedian kernels.

(A.8) Proposition. Let V be a regular strongly supermedian kernel. Let f ∈ pEn with

h = Vf bounded. If X is transient, then h is a regular strongly supermedian function.

Proof. Define the réduite Rg of g by

Rg(x) := inf{u(x) : u ≥ g, u is strongly supermedian}, x ∈ E.

Clearly Rg1 ≤ Rg2 if g1 ≤ g2. Replacing V by the kernel g 7→ V (fg), we may suppose

that f = 1 in the proof. We begin by proving the following assertion, in which h := V 1.

(A.9). If (hn) is an increasing sequence of strongly supermedian functions with hn ↑ h,

then R(h− hn) ↓ 0.

This assertion is proved in [BB01b], and we repeat that proof here for the convenience

of the reader. Given ε > 0 let An,ε := {h < hn + ε}. Then An,ε ↑ E as n → ∞ for each

ε > 0. Now V 1An,ε ≤ h, so V 1An,ε ≤ hn + ε on An,ε, hence everywhere by the regularity

of V . Consequently,

h− hn = V 1An,ε + V 1Acn,ε − hn ≤ V 1Acn,ε + ε;
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since the function V 1Acn,ε + ε is strongly supermedian, we have R(h − hn) ≤ V 1Acn,ε + ε.

But V 1Acn,ε ↓ 0 as n → ∞ because h < ∞, so limn R(h − hn) ≤ ε for all ε > 0. This

establishes (A.9).

Now suppose that X is transient. By (A.7) there exists an increasing sequence (hn) of

regular strongly supermedian functions with hn ↑ h and, by (A.9), R(h−hn) ↓ 0. Let (Tk)

be an increasing sequence of stopping times with limit T . Let g be a strongly supermedian

function dominating h− hn. Then

PTh ≤ PTkh ≤ PTkg + PTkhn ≤ g + PTkhn,

and, since hn is regular, limk PTkh ≤ g + PThn. Therefore

(A.10) PTh ≤ lim
k

PTkh ≤ inf
g
{g + PThn} = R(h− hn) + PThn,

where the infimum is taken over all strongly supermedian majorants g of h− hn. Letting

n→∞ in (A.10) we see that limk PTkh = PTh, proving that h is regular.

(A.11) Remark. In comparing (A.8) with [BB01b; Thm. 2.5] one must bear in mind

that the definitions of regularity are different. In fact, Beznea and Boboc use the property

(A.9) as the defining property of regularity for strongly supermedian functions. The second

part of the proof of (A.8) shows that a strongly supermedian function satisfying (A.9) is

regular as defined in (A.1)—one needs the full power of Mertens theorem for finite h here.

It can be shown that the two definitions are in fact equivalent.

As a final bit of preparation for the proof of Theorem (5.8), we record the following

result. A parallel result for regular strongly supermedian kernels appears as Theorem 2.2

in [BB01b]; see also [A73; Thm. 5.2, p. 509].

(A.12) Proposition. Let A1 and A2 be PLAFs with exceptional sets N1 and N2, and

define B := A1 + A2. Then there exist g1 ∈ pEn and g2 ∈ pEn with g1 + g2 ≤ 1 such that

Aj and gj ∗B are Px-indistinguishable for j = 1, 2 and all x /∈ N1 ∪N2.

Proof. We can write Aj
t = Aj,c

t +
∑

0≤s<t aj(Xs), where Aj,c
t is a PCAF, aj ∈ pEn, and

{aj > 0} is semipolar. Then Bc := A1,c + A2,c is the continuous part of B, and it is well

known that this implies the existence of f1, f2 ∈ pEn with f1 + f2 ≤ 1 such that Aj,c and

fj ∗B are Px-indistinguishable for all x /∈ N1 ∪N2, where Nj is an exceptional set for Aj .

See, for example, [Sh88; (66.2)]. Since {a1 + a2 > 0} is semipolar, we may also assume

that f1 = f2 = 0 on {a1 + a2 > 0}. Then, setting gj := fj + aj(a1 + a2)
−11{a1+a2>0} for

j = 1, 2, it is clear that Aj and gj ∗B are Px-indistinguishable for x /∈ N1 ∪N2.
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Proof of Theorem (5.8). As in the statement of the theorem, X is transient and V is a

regular strongly supermedian kernel that is (m + ρ)-proper. Suppose, for the moment,

that V 1 is bounded. If f ∈ bpE then Vf is a bounded regular strongly supermedian

function by (A.8). Hence [Sh88; Thm. 38.2] implies that there is a unique PLAF Af ,

with empty exceptional set, such that Vf(x) = Px[Af
∞] for all x ∈ E. In the present

context, “unique” means up to Px-indistinguishability for all x ∈ E. Theorem (38.2)

in [Sh88] states that the PLAF Af is perfect as defined in [Sh88], but the proof only

shows that it is “almost perfect” as defined there. In our terminology, this means that the

exceptional set is empty although the defining set need not be all of Ω. The uniqueness

implies that f 7→ Af is additive and positive-homogeneous. In particular, if (fn) ⊂ bpE is

an increasing sequence with limit f ∈ bpE , then Afn ↑ Af . Define A := A1. If f ∈ bpE

satisfies 0 ≤ f ≤ 1, then A = Af + A1−f . These PLAFs have empty exceptional sets, so

(A.12) implies that there exists f̃ ∈ bpEn such that Af = f̃ ∗ A. Define an operator T by

Tf := f̃ , so that Af = (Tf)∗A. If cj ∈ R
+ and fj ∈ bpE for j = 1, 2, then (by uniqueness)

T (c1f1 + c2f2) = c1Tf1 + c2Tf2, UA-a.e.; that is, off a set H with UA(x,H) = 0 for all

x ∈ E. Also, if fn ↑ f then Tfn ↑ Tf , UA-a.e. Now regard T as a map from bpE into

equivalence classes of bpEn functions agreeing UA-a.e., and extend T to bE by linearity.

Then T is a pseudo-kernel from (E, En) to (E, E) as defined in [DM83; IX.11], and by

the theorem of IX.11, there exists a kernel K from (E, En) to (E, E) such that Tf = Kf ,

UA-a.e., for all f ∈ bE . Thus, for f ∈ bpE , we have Af = (Kf) ∗A.

We are now going to show that Kf = f , UA-a.e. To this end let f = 1B where B ∈ E ,

and write AB for A1B and kB for K1B . Then AB = kB ∗ A, so V 1B = UAkB . Recall

that HBf(x) := Px[f(XDB
)] for x ∈ E. Then, since V is regular and HBV 1B is strongly

supermedian,

V 1B(x) = HBV 1B(x) = Px

∫

[DB ,∞[

kB(Xt) dAt.

Therefore

(A.13) 0 = Px

∫

[0,DB [

kB(Xt) dAt = Px

∫

[0,DB [

1Bc(Xt)kB(Xt) dAt.

We claim that

(A.14) Px

∫

[0,∞[

1Bc(Xt)kB(Xt) dAt = 0,

provided B is closed.

To establish (A.14) we consider the excursions of X from the closed set B. Let

G = G(ω) be the set of strictly positive left endpoints of the maximal open intervals of
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the complement in ]0,∞[ of the closure of {t : Xt(ω) ∈ B}—the excursion intervals from

B. Since TB = DB if DB > 0, (A.13) implies

Px

∫

[0,∞[

1Bc(Xt)kB(Xt) dAt = Px
∑

s∈G

∫

[s,s+DB◦ θs[

1Bc(Xt)kB(Xt) dAt.

Given ε > 0, let gε1 < gε2 < · · · be the left endpoints of the successive excursion intervals

exceeding ε in length. Then Tn := gεn+ ε is a stopping time for each n; see [De72; VI-T2].

Also, Tn +DB◦ θTn is the right endpoint of the nth such excursion interval. From (A.13),

Px
∑

n

∫

[Tn,Tn+DB◦ θTn [

1Bc(Xt)kB(Xt) dAt

= Px
∑

n

PX(Tn)

∫

[0,DB [

1Bc(Xt)kB(Xt) dAt = 0.

Recalling the dependence on ε and summing over ε = 1/k for k = 1, 2, . . ., we obtain

Px
∑

s∈G

∫

]s,s+DB◦ θs[

1Bc(Xt)kB(Xt) dAt = 0.

In order to complete the proof it remains to show that

(A.15) Px
∑

s∈G

1Bc(Xs)kB(Xs)∆As = 0.

Now G = Gi ∪ Gr, almost surely, where Gi is a countable union of graphs of stopping

times and Gr meets the graph of no stopping time. Using the strong Markov property as

before, the portion of the sum in (A.15) corresponding to Gi vanishes. Finally, the process

(∆At)t≥0 is indistinguishable from (a(Xt))t≥0, where {a > 0} is semipolar. In fact, if

u = UA1, then one may take a := u− ū, by [Sh88; (37.7)]. But the set {t : a(Xt) > 0} is

also the countable union of graphs of stopping times, so the portion of the sum in (A.15)

corresponding to Gr also vanishes. This establishes the claim (A.14).

Now fix x ∈ E. Then UA(x, ·) is a finite measure. Let B be an open subset of

E with UA(x, ∂B) = 0. Formula (A.14) implies that
∫

B
c kB(y)UA(x, dy) = 0, and so

kB(y) ≤ kB(y) = 0 on B
c
, UA(x, ·)-a.e. Hence K(·, B) = 0, UA(x, ·)-a.e. on Bc since

UA(x, ∂B) = 0. Using (A.14) with B replaced by Bc we obtain
∫

B
kBc(y)UA(x, dy) =

0, and so K(·, Bc) = 0 on B, UA(x, ·)-a.e. Recalling the meaning of K, we see that

K(·, B) + K(·, Bc) = 1, UA(x, ·)-a.e. Therefore K(·, B) = 1B , UA(x, ·)-a.e. The class of

open sets B ⊂ E with UA(x, ∂B) = 0 contains a countable subcollection that generates the

topology of E and is closed under finite intersections, hence Kf = f , UA(x, ·)-a.e., for each
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f ∈ bE and each x ∈ E. Thus, if f ∈ bE , we have Vf = UAKf = UAf ; that is, V = UA.

Now A is a PLAF with empty exceptional set, and At = Ac
t +

∑

0≤s<t a(Xs), where Ac

is continuous and a ≥ 0 is nearly Borel measurable with {a > 0} semipolar. Clearly

Ad
t :=

∑

0≤s<t a(Xs) is perfectly homogeneous; that is, Ad
t+s(ω) = Ad

t (ω)+Ad
s(θtω) for all

s, t ≥ 0 and ω ∈ Ω. But Meyer’s master perfection theorem [G90; Thm. A.33] implies that

Ac is indistinguishable from a perfectly homogeneous AF, and so we may suppose that Ac

is perfectly homogeneous; thus A can be taken to be perfectly homogeneous as well. In

brief, A is a PLAF with NA = ∅ and ΩA = Ω.

Next we suppose only that V 1 is bounded off an m-exceptional set N ; we can (and do)

assume that N ∈ E and that E \N is absorbing. We apply what we have already proved

to XN , the restriction of X to E \N , to obtain a PLAF A of XN with empty exceptional

set and defining set all of ΩN (the sample space of XN ) such that V (x, ·) = UA(x, ·) for

all x ∈ E \ N . Since we are interested in perfection we must be careful in choosing the

realization of the restricted process. We take XN to be the canonical realization of the

restriction of (Pt) to E \N . Thus the state space of XN is E′ := E \N and ΩN may be

identified with

Ω′ := {ω ∈ Ω : ω(t) ∈ E′ ∪ {∆} for all t ≥ 0},

while XN
t and θNt are the restrictions of Xt and θt to Ω′.

We are now going to use the PLAF A of XN to define an AF of (X,DN ) — X killed

at the début DN := inf{t ≥ 0 : Xt ∈ N} of N . Since E′ is absorbing, Px[DN = ∞] = 1

for all x ∈ E′. Also, DN is a perfect terminal time, non-exact in general. Define a map

kA : Ω → Ω′ by setting kAω(t) = ω(t) if 0 ≤ t < DN (ω), kAω(t) = ∆ if t ≥ DN (ω).

That is, kAω = kDN (ω)ω. Next, define Bc
t on Ω by Bc

t (ω) = Ac
t(k

Aω). One checks easily

that θNt kA = kAθt on {t < DN}, which implies that Bc
t+s = Bc

t + 1{t<DN}B
c
s◦ θt. Thus

Bc is a perfectly homogeneous, right-continuous AF of (X,DN ) that is a.s. continuous.

Clearly Px[Bc
t = Ac

t ,∀t ≥ 0] = 1 for all x ∈ E ′. In particular, UBc(x, ·) = UAc(x, ·)

(on E′). We now appeal to [GS74; (3.9)], which asserts the existence of a perfectly

homogeneous optional RM λc of X such that λc(dt) = dBc
t on [0, DN [; the proof even

shows that λc is a.s. diffuse. See also [Sh88; (38.6)]. (Here, perfectly homogeneous means

that λc(θtω,B) = λc(ω,B+t) for all t ≥ 0, ω ∈ Ω, andB ∈ B[0,∞[.) SincePx[DN =∞] = 1

for all x ∈ E′, we have Uλc1 = UBc1 on E′. Finally, λ := λc +
∑

t≥0 a(Xt)εt is a perfectly

homogeneous optional RM of X with Uλ(x, ·) = UA(x, ·) for all x ∈ E′.

As on pp. 89–90 of [G90] there is a perfectly homogeneous optional RM γc carried

by ]α, β[ such that λc = γc|Ω. (Now perfectly homogeneous means that γc(θtw,B) =

γc(w,B + t) for all t ∈ R, w ∈ W , and B ∈ BR.) Define γ := γc +
∑

t≥α a(Y ∗t )εt.
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Then γ is perfectly homogeneous, optional, and is carried by Λ∗. Also, it is not hard

to check that γ satisfies property (3.11)(iii); consequently γ is Qm co-predictable. Since

γ|Ω = λ, we have Uγ(x, ·) = UA(x, ·) for all x ∈ E′. By Theorem (6.15) the characteristic

measure µγ = µA is σ-finite and charges no m-exceptional set. Thus, by (3.11) and (3.12)

there is a perfect HRM κ that is Qm-indistinguishable from γ. Since κ is perfect and γ is

perfectly homogeneous, an application of the strong Markov property (2.5) and the section

theorem (2.6) (as in the proof of the implication (i)=⇒(iii) of (5.19)) show that the set

{x ∈ E : Uκ(x, ·) 6= Uγ(x, ·)} is m-exceptional. It follows that Uκ(x, ·) = UA(x, ·) for all

x outside an m-exceptional set. Since V (x, ·) = UA(x, ·) for x ∈ E′, this proves Theorem

(5.8) when V 1 is bounded off an m-exceptional set.

In the general case we use (5.5) to find g ∈ pEn with 0 < g ≤ 1, such that V g ≤ 1

off an m-exceptional set. Define V gf := V (gf) for f ∈ pE . Then we can apply what is

proved above to find a perfect HRM κg such that V g = Uκg off and m-exceptional set. The

perfect HRM κ defined by κ(dt) := g(Y ∗t )
−1 κg(dt) evidently has potential kernel equal to

V off an m-exceptional set. This establishes Theorem (5.8) in full generality.

Added Note. L. Beznea and N. Boboc have recently given a positive answer to Question

(7.5). Their paper “On the strongly supermedian functions and kernels” also contains new

analytic proofs of (4.7) and (5.11).
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[DM87] Dellacherie, C. and Meyer, P.-A.: Probabilités et Potentiel. Chapitres XII–
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