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Abstract

We give novel computationally effective limit theorems for the convergence of the
Cesaro-means of certain sequences of random variables. These results are intimately
related to various Strong Laws of Large Numbers and, in that way, allow for the
extraction of quantitative versions of many of these results. In particular, we produce
optimal polynomial bounds in the case of pairwise independent random variables
with uniformly bounded variance, improving on known results; furthermore, we
obtain a new Baum-Katz type result for this class of random variables. Lastly, we are
able to provide a fully quantitative version of a recent result of Chen and Sung that
encompasses many limit theorems in the Strong Laws of Large Numbers literature.
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1 Introduction

Throughout this article, fix a probability space (Ω,F,P)which all the random variables
we work with will act on.

The classical Strong Law of Large Numbers is the following fundamental result due
to Kolmogorov:

Theorem 1.1 (The classical Strong Law of Large Numbers, c.f. Theorem 6.6.1 of [20]).
Suppose X1, X2, . . . are independent, identically distributed (iid) real-valued random
variables with E(|X1|) <∞. Then,

1

n

n∑
i=1

Xi → E(X1) (1.1)

almost surely, that is, with probability 1.
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Quantitative Strong Laws of Large Numbers

For ease write Sn :=
∑n
i=1Xi and assume E(X1) = 0. By multiple applications of the

continuity of the probability measure, one can show (following the notation in [47]) that
the conclusion of the Strong Law of Large Numbers is equivalent to the sequence of real
numbers

P ∗
n,ε := P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
converging to 0 as n→ ∞1, for any ε > 0, and so the computational content of the Strong
Law of Large Numbers can be given an explicit meaning by studying the convergence
speed of this sequence of real numbers. That is, for each ε > 0 can we find a function
rε : (0,∞) → (0,∞) such that

∀λ > 0∀n ≥ rε(λ), P
∗
n,ε ≤ λ?

Such a function is known as a rate of convergence, more generally a rate of convergence
for a sequence of real numbers {xn} converging to some real number x is any function
r : (0,∞) → (0,∞) satisfying

∀ε > 0 ∀n ≥ r(ε), (|xn − x| ≤ ε) .

A strictly decreasing rate of convergence, r, that has an inverse can easily be converted
to an asymptotic upper bound as follows,

∀n ∈ N,
(
|xn − x| ≤ r−1(n)

)
.

Furthermore, it is also clear that a function bounding a rate of convergence will also be
a rate of convergence.

A particular instance of a rate of convergence that will occur a lot in this article
is that for the partial sums of a convergent series,

∑∞
i=1 xi < ∞, of nonnegative real

numbers {xi}. In this case, a rate of convergence for the partial sums,
∑n
i=1 xi, to their

limit,
∑∞
i=1 xi, will be a function r : (0,∞) → (0,∞) satisfying, for all ε > 0 and n ≥ r(ε),

∞∑
i=n+1

xi ≤ ε.

It has been of interest to study sufficient conditions for Sn

n → 0 almost surely when we
weaken the iid condition. In [17], Etemadi demonstrates that Sn

n → 0 almost surely if
we only assume the random variables are pairwise iid. Furthermore, Etemadi’s proof is
rather elementary compared to Kolmogorov’s original proof of this result for iid random
variables.

To obtain Sn

n → 0, almost surely, dropping the assumption that the random variables
are identically distributed requires that other assumptions are placed on the random
variables instead. If we keep the independence condition, one can obtain another
classical result of Kolmogorov:

Theorem 1.2 (Kolmogorov’s Strong Law of Large Numbers). Suppose {Xn} is a sequence
of independent random variables, each with expected value 0 and

∞∑
n=1

Var(Xn)

n2
<∞. (1.2)

Then Sn

n → 0 almost surely.

1The proof of equivalence is similar to how one proves Egorov’s theorem and is well known in the literature.
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Quantitative Strong Laws of Large Numbers

In [13] Csörgő et al. demonstrate that Kolmogorov’s Strong Law of Large Numbers
does not hold if we weaken the independence condition, in Theorem 1.2, to even pairwise
independence (see [13, Theorem 3]). They instead obtain the following:

Theorem 1.3 (cf. Theorem 1 of [13]). Suppose {Xn} is a sequence of pairwise indepen-
dent random variables, each with expected value 0, satisfying (1.2) and

1

n

n∑
k=1

E(|Xk|) = O(1). (1.3)

Then Sn

n → 0 almost surely.

This article will study the quantitative content of the Strong Law of Large Numbers
when the iid assumption is weakened by calculating explicit rates of convergences for
P ∗
n,ε. We will do this by proving an abstract technical theorem (in Section 2) whose

quantitative content captures the key combinatorial idea in the proof of Theorem 1.3.
Our abstract theorem will allow us to produce our first main contribution:

Theorem 1.4. Suppose {Xn} is a sequence of pairwise independent random variables
satisfying, E(Xn) = 0, E(|Xn|) ≤ τ and Var(Xn) ≤ σ2, for all n ∈ N and some τ, σ > 0.
There exists a universal constant κ ≤ 1536 such that for all 0 < ε ≤ τ ,

P ∗
n,ε ≤

κσ2τ

nε3
.

The above is an improvement of the best known asymptotic upper bound, given by
Luzia [36], who showed (with notation as in Theorem 1.4) that for all β > 1 and 0 < ε ≤ τ ,
there exists N(β, ε, τ) such that, for all n ≥ N(β, ε, τ),

P ∗
n,ε ≤

σ2

nε2
(Cβ +Dβ log(n)

β−1),

for some Cβ , Dβ > 0 depending only on β. Thus, if we fix ε, σ, and τ the above tells us
that for each β > 1,

P ∗
n,ε = O

(
log(n)β−1

n

)
as n → ∞, for such a class of random variables, whereas the bound in Theorem 1.4
yields:

P ∗
n,ε = O

(
1

n

)
.

Observe we can take τ = σ by Jensen’s inequality, so Theorem 1.4 in particular yields

P ∗
n,ε ≤

κσ3

nε3
.

The above bound bears a resemblance to the bound one obtains in the case where the
random variables are assumed to be independent, namely, Hájek and Rényi [21] state
that if {Xn} is a sequence of independent random variables each with expected value 0

then, for all ε > 0 and n < m

P

(
max
n≤k≤m

∣∣∣∣Skk
∣∣∣∣ > ε

)
≤ 1

ε2

(
1

n2

n∑
k=1

Var(Xk) +

m∑
k=n+1

Var(Xk)

k2

)
.

From this, one easily obtains that if {Xn} is also assumed to have a common bound on
their variance σ2,

P ∗
n,ε ≤

2σ2

nε2
. (1.4)
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Quantitative Strong Laws of Large Numbers

However, the Hájek and Rényi inequality generalises Kolmogorov’s inequality, which
is known to fail for pairwise independent random variables; therefore, more work is
needed to obtain a bound in this case.

In addition, through a simple construction, we demonstrate that O(1/n) is the best
polynomial bound for P ∗

n,ε in the case that {Xn} is iid with finite variance. That is, for
each δ > 0, we construct a sequence of random variables with finite variance, satisfying

P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≥ ω

n1+δ

for some ω > 0 depending only on δ, for all 0 < ε ≤ 1. All of these results are in Section
3.

The following result is mainly attributed to Baum and Katz [6] as well as Chow [11]:

Theorem 1.5. Let {Xn} be a sequence of iid random variables satisfying E(X1) = 0 and
let r ≥ −1. Then for all ε > 0, the following are equivalent:

(i) E(|X1|r+2) <∞,

(ii)
∑∞
n=1 n

rP
(∣∣ 1
nSn

∣∣ > ε
)
<∞,

(iii)
∑∞
n=1 n

rP
(
supm≥n

∣∣ 1
mSm

∣∣ > ε
)
<∞,

(iv)
∑∞
n=1 n

rP (max1≤m≤n |Sm| > nε) <∞.

To prove this result, independence is crucial. Work has been done to extend this
result to the case where the random variables are pairwise independent. It is clear that
(iii) and (iv) both imply (ii) in the non-independent case. However, as noted in [5], it
is possible that (iv) is strictly stronger than (ii) in the non-independent case, and work
has been done in establishing the convergence of (iv) in the case where the random
variables are pairwise iid. Many authors have established the following theorem, but the
result goes back to Rio [45].

Theorem 1.6. Suppose {Xn} are pairwise independent, identically distributed random
variables with E(X1) = 0. For all −1 ≤ r < 0: E(|X1|2+r) <∞ iff

∞∑
n=1

nrP

(
max

1≤m≤n
|Sm| > nε

)
<∞

for all ε > 0.

There does not appear to be any results in the literature for the convergence of the
sum (iii), assuming the random variables are pairwise independent. However, a simple
application of Theorem 1.4 gives the following:

Corollary 1.7. Suppose {Xn} are pairwise independent, identically distributed random
variables with E(X1) = 0 and Var(X1) <∞. Then, for all ε > 0 and r < 0:

∞∑
n=1

nrP ∗
n,ε <∞.

Proof. This result simply follows from the fact that P ∗
n,ε = O

(
1
n

)
.

Furthermore, it appears to be open whether it is the case that condition (iii) in
Theorem 1.5 holds in the case r = 0 and if the random variables are only assumed to be
pairwise independent, which is the case for iid random variables, by Theorem 1.5.

In [17], Etemaidi’s novel insight in demonstrating that Sn

n → 0 almost surely for
pairwise iid random variables was that one could first assume that the random variables
were nonnegative, in which case one can take advantage of the monotonicity of the
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partial sums. The general case is then obtained by using the decomposition of a random
variable into its positive and negative parts (that is, writing a random variable, X, as
X = X+ − X− where X+ = max{X, 0} and X− = max{−X, 0}). Due to this insight,
there has been a lot of interest in studying when Sn

n → 0, almost surely, for nonnegative
random variables that are not assumed to be iid, as e.g. in Petrov [41], which was later
generalised by Korchevsky et al. [32] and further generalised again by Korchevsky in
[30]. In addition, Chandra et al. [9] generalise Theorem 1.3, with Chen and Sung [10]
later producing a result which unifies [9] and [30], as well as generalising results from
[8, 26, 46, 23]. The proofs of all the results Chen and Sung generalise are adaptations of
the proof of Theorem 1.3, and they established the following general sufficient condition,
which encompasses all the results mentioned:

Theorem 1.8 (cf. Theorem 2.1 of [10]). Let {Xn} be a sequence of nonnegative random
variables with finite p-th moment (for some fixed p ≥ 1) and respective expected values
{µn}. Let Sn :=

∑n
k=1Xk and zn :=

∑n
i=1 µi. Suppose that

zn
n

= O(1)

and that there exists a sequence of nonnegative real numbers {γn} satisfying

• E(|Sn − zn|p) ≤
∑n
k=1 γk,

•
∑∞
n=1

γn
np <∞.

Then
Sn
n

− zn
n

→ 0

almost surely.

Building on our first main contribution, which was an improvement of the bound in
[36], our second main contribution will be a fully quantitative version of Theorem 1.8.

Theorem 1.9. Let {Xn} be a sequence of nonnegative random variables with finite p-th
moment (for some fixed p ≥ 1) and respective expected values {µn}. Let Sn :=

∑n
k=1Xk

and zn :=
∑n
i=1 µi. Suppose there exists a sequence of nonnegative real numbers {γn}

satisfying

E(|Sn − zn|p) ≤
n∑
k=1

γk

and
∞∑
m=1

γm
mp

≤ Γ

for some Γ ≥ 1, with the partial sums of the above series converging to their limit with a
strictly decreasing rate of convergence Ψ. Furthermore, assume for all n ∈ N,

zn
n

≤W,

for some W ≥ 1. Then for all 0 < ε ≤ 1, λ > 0 and all

n ≥ Ap

(
WΓ

λεp+1

) 1
p

Ψ

(
Bpλε

p+1

W

)
,

it holds that

P

(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ λ.

Here, Ap and Bp are constants that only depend on p.
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Quantitative Strong Laws of Large Numbers

From Theorem 1.9, one can obtain quantitative versions of many of the “Strong Law
of Large Numbers”-type results discussed above. For example, we can easily obtain a
quantitative version of Theorem 1.3:

Theorem 1.10. Suppose {Xn} is a sequence of pairwise independent random vari-
ables, each with expected value 0 and finite variance. Let Sn :=

∑n
k=1Xk and zn :=∑n

i=1E(|Xi|). Further, assume
∞∑
n=1

Var(Xn)

n2
≤ Γ

for some Γ ≥ 1 and that the partial sums of the above series converge to their limit with
a strictly decreasing rate of convergence Ψ. Furthermore, assume for all n ∈ N,

zn
n

≤W,

for some W ≥ 1. For all 0 < ε ≤ 1, λ > 0 and all

n ≥ A

(
WΓ

λε3

) 1
2

Ψ

(
Bλε3

W

)
,

it holds that

P ∗
n,ε = P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≤ λ.

Here, A and B are universal constants.

All of these results are in Section 4.

1.1 Related work

The study of large deviations in the Strong Law of Large Numbers starts with
Cramér’s 1938 article [12], where he determined large deviation probabilities for the
sums of iid random variables up to asymptotic equivalence. Furthermore, in this work, he
introduced the moment generating function condition (the moment generating function
of the random variables is finite on an interval), which has become a standard assumption
in this area.

The subsequent notable work in this direction was in 1960 by Bahadur and Ranga
Rao [4], where they built on Cramér’s work to calculate large deviation probabilities
for the weak law of large numbers up to asymptotic equivalence (again assuming the
moment generating function condition from Cramér).

Then, in 1975, Siegmund [47] (see also [18]) was able to determine P ∗
n,ε up to

asymptotic equivalence, again assuming the moment generating function condition.
Thus, [47] provides the first quantitative interpretation of the Strong Law of Large
Numbers. Furthermore, Siegmund’s bounds heavily depend on the distribution of the
random variables, so although their results are much stronger than those in this article,
they assume a lot more about the sequence of random variables.

Not much work has been done to study the large deviations without strong conditions,
such as the moment-generating function condition. This may be because, for weaker
conditions, one cannot hope to calculate these probabilities up to asymptotic equivalence.
The best we can hope for are bounds on the large deviation probabilities. As discussed
already, in 2018, Luzia [36] obtained distribution independent bounds under milder
assumptions on the random variables, which are improved in this article.

Work has been done to study the large deviation probabilities for sequences of
random variables that are not necessarily identically distributed. In 1943, Feller was
able to generalise Cramér’s 1938 article to random variables that are not necessarily
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identically distributed; however, his assumptions were too restrictive (he assumed the
random variables only took values in finite intervals) that the result was not a complete
generalisation of Cramér’s. Petrov [40], in 1954, was able to provide a full generalisation
of Cramér’s result and has been able to strengthen this result (by relaxing the moment
generating function condition) a further two times, with the most recent in 2006 [42]
jointly with Robinson.

We also note that Pointwise Ergodic Theorem can be used to show that the Strong
Law of Large Numbers also holds for stationary sequences of random variables and
obtaining rates for P ∗

n,ε, in this case, has been of great interest. For example, Gaposhkin
[19] provides an asymptotic upper bound for P ∗

n,ε (which they demonstrate is optimal)
for second-order stationary sequences of random variables with finite variance, with
more recent work being done by Kachurovskii on this topic, see [25, 24].

Baum-Katz type rates have been obtained in the Strong Law of Large Numbers for
nonnegative random variables where both the independence and identical distribution
conditions are weakened. In 2018, Korchevsky [31] obtained a Baum-Katz type rate for
the Chen-Sung Strong Law of Large Numbers [10] under stronger assumptions. This
result generalised the work of Kuczmaszewska [35], in 2016, who was able to obtain
rates for a Strong Law of Large Numbers result of Korchevsky in [30], under stronger
assumptions. No Baum-Katz type rates have been found for the full results in [30] and
[10].

Lastly, Baum-Katz type results can be used to obtain results concerning large devia-
tion probabilities. For example, if {Xn} are iid random variables with, E(X1) = 0 and
Var(X1) <∞ then condition (iii) of Theorem 1.5 with r = 0 implies,

P ∗
n,ε = o

(
1

n

)
.

The above is a stronger result than what one gets in (1.4) through the Hájek and Rényi
inequality (although one must assume more, namely that the random variables are
identically distributed). Unlike the bound in Theorem 1.4, this result is ineffective in the
sense that it does not explicitly tell you the constant C such that P ∗

n,ε ≤ C
n , in addition,

one cannot determine, a priori, that such a constant is independent of the distribution
of the random variables. Furthermore, the bound in Theorem 1.4 only requires the
assumption that the random variables are pairwise independent.

2 A general theorem

In this section, we shall state and prove the general quantitative theorem we alluded
to in Section 1. This theorem will be a quantitative version of (a generalisation of) a
critical step in proving [13, Theorem 1], which is a result that has been modified many
times to obtain various “Strong Law of Large Numbers”-type results as discussed in the
introduction.

For this, we now first introduce the following definitions that are mostly as presented
in [13]: Let {Xn} be a sequence of nonnegative random variables with respective
expected values {µn}. Let Sn :=

∑n
k=1Xk, zn :=

∑n
i=1 µi and suppose there existsW > 0

such that
zn
n

≤W

for all n ∈ N. Further, we make use of the following definitions:

• For each δ > 0, let Lδ :=
⌊
W
δ

⌋
.

• For each δ > 0, α > 1 and natural numbers m and 0 ≤ s ≤ Lδ, let

Cα,s,δ,m :=
{
αm ≤ n < αm+1 | zn

n
∈ [sδ, (s+ 1)δ)

}
.
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• Let k−s (m) := minCα,s,δ,m and k+s (m) := maxCα,s,δ,m if Cα,s,δ,m is nonempty.

• Let k−s (m) = k+s (m) := bαmc if Cα,s,δ,m is empty.

One should note that k+s (m) and k−s (m) depend on δ, α but (following the convention of
[13]) we hid this dependence to make the notation less cumbersome. We shall also adopt
the convention (used in [13]) that k±s (m) being used in a relationship (an equation, an
inequality, a limit, etc.) is short-hand for that relationship holding for both k+s (m) and
k−s (m).

Our general theorem is now the following:

Theorem 2.1. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ, if

∞∑
n=1

P

(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
<∞, (2.1)

then 2

Sn
n

− zn
n

→ 0

almost surely.

Proof. The Borel-Cantelli Lemma and (2.1) implies that for all ε, δ > 0, α > 1 and all
0 ≤ s ≤ Lδ:

1

k±s (n)
Sk±s (n) −

1

k±s (n)
zk±s (n) → 0 (2.2)

almost surely. For all m ∈ N, we can take a natural number 0 ≤ s ≤ Lδ such that

1

m
zm ∈ [sδ, (s+ 1)δ) (2.3)

since zn/n ≤ W and Lδ =
⌊
W
δ

⌋
. Thus, if we take p ∈ N such that αp ≤ m < αp+1, then

m ∈ Cα,s,δ,p by definition, so Cα,s,δ,p is non-empty. Therefore, k−s (p) ≤ m ≤ k+s (p) and,
since k±s (p) ∈ Cα,s,δ,p, we have

1

k±s (p)
zk±s (p) ∈ [sδ, (s+ 1)δ)

which implies, by (2.3), that ∣∣∣∣ 1mzm − 1

k±s (p)
zk±s (p)

∣∣∣∣ ≤ δ. (2.4)

Now we have the following chain of inequalities,

− δ −
(
1− 1

α

)
W +

1

α

1

k−s (p)

(
Sk−s (p) − zk−s (p)

)
≤ −δ −

(
1− 1

α

)
1

k−s (p)
zk−s (p) +

1

α

1

k−s (p)

(
Sk−s (p) − zk−s (p)

)
≤ 1

m
Sk−s (p) −

1

m
zm

≤ 1

m
(Sm − zm)

≤ 1

m
Sk+s (p) −

1

k+s (p)
zk+s (p) + δ

≤ α

k+s (p)

(
Sk+s (p) − zk+s (p)

)
+ (α− 1)W + δ.

(2.5)

2Recall that the use of the ± notation means we are actually assuming the convergence of two sums in the
premise.
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Here, the first inequality follows since

1

k−s (p)
zk−s (p) ≤W.

The second inequality follows from expanding brackets, using (2.4) and the fact that
m ≤ αk−s (p) (since m ∈ Cα,s,δ,p, so by definition, m < αp+1 and k−s (p) ∈ Cα,s,δ,p, and so
αp ≤ k−s (p)). The third inequality follows from the fact that {Sn} is monotone (since
{Xn} is nonnegative) and k−s (p) ≤ m. The remaining inequalities are justified using
similar reasoning to the above (see also [13]).

Thus, by (2.2) and the fact that p→ ∞ as m→ ∞, we have

−δ −
(
1− 1

α

)
W ≤ lim inf

n→∞

1

m
(Sm − zm) ≤ lim sup

n→∞

1

m
(Sm − zm) ≤ (α− 1)W + δ

almost surely. So, taking δ → 0 and α→ 1 gives our result.

Remark 2.2. {Xn} (not assumed to be nonnegative) is said to converge completely to 0
if

∞∑
n=1

P(|Xn| > ε) <∞

for all ε > 0. Hsu and Robbins first introduced this notion of convergence in [22], where
they demonstrated that if {Xn} were iid random variables with finite variance (again,
not assumed to be nonnegative), then

Sn
n

− E(X1)

converges to 0 completely. Furthermore, complete convergence implies almost sure
convergence by the Borel-Cantelli Lemma, so Theorem 2.1 says that if specifically chosen
sub-sequences of

Sn
n

− zn
n

converge completely to 0, then
Sn
n

− zn
n

converges to 0 almost surely.

Remark 2.3. To prove [13, Theorem 1], it is shown that

∞∑
n=1

E

((
Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

)2
)
<∞. (2.6)

(2.1) in Theorem 2.1 follows from this by Chebyshev’s inequality, so the result in [13]
follows by our theorem. Therefore, Theorem 2.1 generalises the key step in proving [13,
Theorem 1].

We now give a quantitative version of Theorem 2.1:

Theorem 2.4. Suppose for each ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ:

∞∑
n=1

P

(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
<∞. (2.7)

Furthermore, suppose that the partial sums of both sums converge to their respective
limits with a rate of convergence Λε,δ,α : R→ R, independent of s.3

3We can always obtain a rate independent of s by taking the maximum value of all such rates that depend
on s, as s can only take the value of finitely many natural numbers. Furthermore, if both sums (the plus one
and the minus one) have different rates, we can obtain one that works for both by taking the maximum of the
two rates.
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Quantitative Strong Laws of Large Numbers

More explicitly, for each ε, δ > 0, α > 1, 0 ≤ s ≤ Lδ, λ > 0 and p ≥ Λε,δ,α, we have,

∞∑
n=p+1

P

(∣∣∣∣Sk−s (n)

k−s (n)
−
zk−s (n)

k−s (n)

∣∣∣∣ > ε

)
≤ λ and

∞∑
n=p+1

P

(∣∣∣∣Sk+s (n)

k+s (n)
−
zk+s (n)

k+s (n)

∣∣∣∣ > ε

)
≤ λ.

Then, for all ε > 0,

P

(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
→ 0

with a rate of convergence given by

Φε,Λ(λ) := αΠε(λ),

where

Πε(λ) := Λ ε
3α ,

ε
3 ,α

(
λ

2

)
+ 1 and α := 1 +

ε

3W
.

Proof. First we observe that, for all δ, λ, ε > 0, α > 1, natural numbers 0 ≤ s ≤ Lδ and
p ≥ Λε,δ,α(λ) + 1:

P

(
sup
q≥p

∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

)
= P

( ∞⋃
q=p

(∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

))

≤
∞∑
q=p

P

(∣∣∣∣Sk±s (q)

k±s (q)
−
zk±s (q)

k±s (q)

∣∣∣∣ > ε

)
≤ λ.

Here, the last inequality follows from the fact that p− 1 ≥ Λε,δ,α(λ) (and that Λ is a rate
of convergence).

Now, fix ε, λ > 0 and

n ≥ Φε,Λ(λ) = α
Λ ε

3α
, ε
3
,α(λ

2 )+1
.

We must show,

P

(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ λ.

Set δ = ε
3 and observe that having α = 1 + ε

3W ensures that

−ε
3
≤ −(1− 1

α
)W and (α− 1)W =

ε

3
. (2.8)

Take p ∈ N such that αp ≤ n < αp+1. Then we have

α
Λ ε

3α
, ε
3
,α(λ

2 )+1 ≤ n < αp+1

which implies

p ≥ Λ ε
3α ,

ε
3 ,α

(
λ

2

)
+ 1.

Thus, by the very first step of the proof, we have, for each 0 ≤ r ≤ Lδ,

P

(
sup
q≥p

∣∣∣∣ 1

k±r (q)
Sk±r (q) −

1

k±r (q)
zk±r (q)

∣∣∣∣ > ε

3α

)
≤ λ

2
. (2.9)

Thus, it suffices to show that there exists 0 ≤ r ≤ Lδ such that

sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε
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implies that

sup
q≥p

∣∣∣∣ 1

k−r (q)
Sk−r (q) −

1

k−r (q)
zk−r (q)

∣∣∣∣ > ε

3α

or that

sup
q≥p

∣∣∣∣ 1

k+r (q)
Sk+r (q) −

1

k+r (q)
zk+r (q)

∣∣∣∣ > ε

3α
,

as then we would have, for such an r,

P

(
sup
m≥n

∣∣∣∣Smm − zm
m

∣∣∣∣ > ε

)
≤ P

(
sup
q≥p

∣∣∣∣ 1

k−r (q)
Sk−r (q) −

1

k−r (q)
zk−r (q)

∣∣∣∣ > ε

3α

)
+ P

(
sup
q≥p

∣∣∣∣ 1

k+r (q)
Sk+r (q) −

1

k+r (q)
zk+r (q)

∣∣∣∣ > ε

3α

)
≤ λ,

which is what we are required to show (with the final inequality following from (2.9)).
Suppose, for contradiction, that the above was not the case. Then, for all 0 ≤ r ≤ Lδ,

we have

sup
m≥n

∣∣∣∣ 1mSm − 1

m
zm

∣∣∣∣ > ε

and ∣∣∣∣ 1

k±r (q)
Sk±r (q) −

1

k±r (q)
zk±r (q)

∣∣∣∣ ≤ ε

3α
(2.10)

for all q ≥ p. Take m ≥ n such that∣∣∣∣ 1mSm − 1

m
zm

∣∣∣∣ > ε. (2.11)

We now use arguments similar to the proof of Theorem 2.1. We can find 0 ≤ r ≤ Lδ such
that

1

m
zm ∈ [rδ, (r + 1)δ],

so, taking q ∈ N such that αq ≤ m < αq+1, ensures that m ∈ Cα,r,δ,q. Furthermore, as
m ≥ n, we have q ≥ p.

Now, since k±r (q) ∈ Cα,r,δ,q, we have

1

k±r (q)
zk±r (q) ∈ [rδ, (r + 1)δ)

which implies ∣∣∣∣ 1mzm − 1

k±r (q)
zk±r (q)

∣∣∣∣ ≤ δ.

Now, following the exact same reasoning as (2.5), we have

− δ −
(
1− 1

α

)
W +

1

α

1

k−r (q)

(
Sk−r (q) − zk−r (q)

)
≤ 1

m
(Sm − zm)

≤ α

k+r (q)

(
Sk+r (q) − zk+r (q)

)
+ (α− 1)W + δ.

So, (2.8) implies that (recalling that δ = ε/3),

−2ε

3
+

1

α

1

k−r (q)

(
Sk−r (q) − zk−r (q)

)
≤ 1

m
(Sm − zm)

≤ α

k+r (q)

(
Sk+r (q) − zk+r (q)

)
+

2ε

3
.

(2.12)
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Quantitative Strong Laws of Large Numbers

Now, the above and (2.10) (and the fact that α > 1) implies |1/m(Sm − zm)| ≤ ε, which
contradicts (2.11).

Remark 2.5. Applying Theorem 2.4 to obtain explicit rates of convergences for results
related to the Strong Laws of Large Numbers requires that we must find an explicit
rate of convergence for the (2.1). It is a well known result in computability theory
that the Monotone Convergence Theorem is computationally ineffective, in the sense
that a computable bound on a series does not necessarily yield a computable rate of
convergence (a monotone bounded sequence can converge arbitrarily slowly, see [15]).
Since this step still features in the proof of Theorem 2.1, we require a rate of convergence
for (2.1) in Theorem 2.4 to provide a construction for a rate of convergence for the
conclusion. Furthermore, when the strategy captured by Theorem 2.1 is applied to
obtain results related to the Strong Law of Large Numbers, one typically just bounds
(2.1), thus more work will be required than what is offered by the proof of these results
as we will have to explicitly calculate rates of convergences. This will be the case when
we apply Theorem 2.4 to prove Theorem 1.9 in Section 4.

3 Application I: pairwise independent with finite variance

In this section, we shall prove Theorem 1.4. First, we calculate a rate under the
assumption that the random variables are nonnegative.

Fix a sequence of nonnegative, pairwise independent random variables {Yn} with,
E(Yn) ≤ µ 6= 0, Var(Yn) ≤ σ2

Y for all n ∈ N and some µ, σY > 0. Set SYn :=
∑n
i=1 Yi and

zYn :=
∑n
i=1E(Yn).

Lemma 3.1. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ,

Rε,α(λ) = logα

(
2σ2

Y

λε2(α− 1)

)
− 1

is a rate of convergence for the partial sums of

∞∑
n=1

P

(∣∣∣∣∣S
Y
k±s (n)

k±s (n)
−
zY
k±s (n)

k±s (n)

∣∣∣∣∣ > ε

)
(3.1)

to their respective limits.

Proof. Fix λ, ε, δ > 0 and α > 1 as well as 0 ≤ s ≤ Lδ, Q ≥ Rε,α,(λ). Then:

∞∑
n=Q+1

P

(∣∣∣∣ 1

k±s (n)
SYk±(n) −

1

k±s (n)
zY
k±s (n)

∣∣∣∣ > ε

)
≤ 1

ε2

∞∑
n=Q+1

Var(SYk±(n))

k±s (n)2

≤ σ2
Y

ε2

∞∑
n=Q+1

1

k±s (n)

≤ 2σ2
Y

ε2

∞∑
n=Q+1

α−n

≤ 2σ2
Y α

−(Q+1)

ε2(α− 1)
≤ λ.

We get the first inequality from Chebyshev’s inequality, the second inequality by pairwise
independence, the third inequality by using k±(n) ≥ bαnc > αn/2, the fourth inequality
by using the sum of an infinite geometric sequence and the last inequality from the
assumption that Q ≥ Rε,α(λ).
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We can now apply Theorem 2.4 with the rate we obtained above, observing that R is
independent of s (and δ), to easily obtain the following:

Lemma 3.2. For all ε, λ > 0 and all

n ≥ ∆ε,µ,σY
(λ) := Φε,R(λ) :=

36α2σ2
Y

λε2(α− 1)
,

it holds that

P

(
sup
m≥n

∣∣∣∣SYmm −
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
≤ λ.

Here, α := 1 + ε
3µ , R is defined as in the previous lemma and Φ is defined as in Theorem

2.4.

Proof. This follows immediately from Theorem 2.4. Note we may take W to be µ.

We can now obtain a rate where the random variables are not assumed to be nonneg-
ative.

Proposition 3.3. Let {Xn} be a sequence of pairwise independent random variables with
E(Xn) = 0, Var(Xn) ≤ σ2 and E(|Xn|) ≤ τ for all n ∈ N and some τ, σ > 0. Furthermore,
let Sn :=

∑n
i=1Xi. Then for all ε, λ > 0 and all n ≥ ∆ ε

2 ,
τ
2 ,σ

(λ2 ):

P ∗
n,ε = P

(
sup
m≥n

∣∣∣∣Smm
∣∣∣∣ > ε

)
≤ λ.

Here,

∆ ε
2 ,

τ
2 ,σ

(
λ

2

)
:=

288α2σ2

λε2(α− 1)

as before with α := 1 + ε
3τ . Thus, P

∗
n,ε converges to 0 with a rate of convergence given

above.

Proof. We have, for all n ∈ N, σ2 ≥ Var(Xn) = E(X2
n) ≥ Var(X+

n ) + Var(X−
n ) which

implies σ2 ≥ Var(X±
n ). Furthermore, we have E(X±

n ) ≤ τ
2 since E(Xn) = 0 = E(X+

n )−
E(X−

n ). Thus, if we take {Yn} = {X±
n }, we can set σY := σ and µ := τ/2. Furthermore

we can set

zn :=

n∑
i=1

E(X+
n ) =

n∑
i=1

E(X−
n ).

Thus, from the previous lemma:

P

(
sup
m≥n

∣∣∣∣ 1mS±
m − 1

m
zm

∣∣∣∣ > ε

2

)
≤ λ

2

for all ε, λ > 0 and n ≥ ∆ ε
2 ,µ,σY

(λ2 ). Thus, if n ≥ ∆ ε
2 ,

τ
2 ,σ

(λ2 ) = ∆ ε
2 ,µ,σY

(λ2 ), then

P

(
sup
m≥n

∣∣∣∣ 1mSm

∣∣∣∣ > ε

)
= P

(
sup
m≥n

∣∣∣∣( 1

m
S+
m − 1

m
zm

)
−
(

1

m
S−
m − 1

m
zm

)∣∣∣∣ > ε

)
≤ P

(
sup
m≥n

∣∣∣∣ 1mS+
m − 1

m
zm

∣∣∣∣ > ε

2

)
+ P

(
sup
m≥n

∣∣∣∣ 1mS−
m − 1

m
zm

∣∣∣∣ > ε

2

)
≤ λ.

Here S±
n :=

∑n
i=1X

±
n .

This, in particular, allows us rather immediately to deduce Theorem 1.4:
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Proof of Theorem 1.4. Using the above proposition, we have

P ∗
n,ε ≤

288α2σ2

nε2(α− 1)

for all n ∈ N. So Theorem 1.4 follows by noting that if ε ≤ τ , we will have α ≤ 4/3.

Remark 3.4. In the case ε > τ , observe that α < 4ε/3τ and so we can deduce

P ∗
n,ε ≤

1536σ2

nετ
.

We shall now discuss the optimality of the bound we obtained.

Example 3.5. For δ > 0, let {Xn} be a sequence of integer-valued iid random variables
such that

P(X1 = n) =
c

n3+δ
for c =

( ∞∑
n=1

1

n3+δ

)−1

for all n ∈ Z+ (and probability 0 for all other integers). Then Var(X1) < ∞ and for all
1 ≥ ε > 0 and any n ∈ N:

P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ ω

n1+δ

where µ is the mean of X1, given by

µ =

∞∑
n=1

c

n2+δ
,

and
ω =

c

2× 32+δ(2 + δ)
.

Proof. These random variables clearly have finite variance. For any 1 ≥ ε > 0, we have

P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ ≥ 1

)
.

Observe that

µ =

∑∞
n=1

1
n2+δ∑∞

n=1
1

n3+δ

<
ζ(2)

ζ(4)
=

15

π2
< 2.

Thus, we get

P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ ≥ 1

)
≥ P

(
sup
m≥n

Sm
m

≥ 3

)
≥ P

(
Sn
n

≥ 3

)
≥ P(X1 ≥ 3n ∪ . . . ∪Xn ≥ 3n)

= 1− P(X1 < 3n ∩ . . . ∩Xn < 3n)

= 1− (P(X1 < 3n))n = 1− (1− P(X1 ≥ 3n))n.

We now have

P(X1 ≥ 3n) = c

∞∑
k=3n

1

k3+δ
≥ c

∫ ∞

3n

1

x3+δ
dx =

c

(3n)2+δ(2 + δ)
=

w

n2+δ
,
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where w = c
32+δ(2+δ)

. This implies,

P

(
sup
m≥n

∣∣∣∣Smm − µ

∣∣∣∣ > ε

)
≥ 1−

(
1− w

n2+δ

)n
≥

1− 1

1 + w
n1+δ

≥ w

2n1+δ
,

where we used the inequality (1 + x)n ≤ 1
1+nx and w < 1. This yields the result.

Therefore, for every δ > 0, by translation, we can obtain a sequence of iid random
variables with expected values equal to 0 and finite variance, such that

P

(
sup
m≥n

∣∣∣∣ 1mSm

∣∣∣∣ > ε

)
≥ ω

n1+δ
.

This example demonstrates that O
(
1
n

)
is an optimal general power of n bound for

P ∗
n,ε in the case of finite variance. It however does not rule out the possibility that

P ∗
n,ε = O

(
1

n log(n)

)
, for example.

4 Application II: the Chen-Sung Strong Law of Large Numbers

Throughout this section, let {Xn} be a sequence of random variables with finite p-th
moment (for some fixed p ≥ 1) and respective means {µn}. Let Sn :=

∑n
k=1Xk and

zn :=
∑n
i=1 µi.

To use Theorem 2.4 to obtain a quantitative version of Theorem 1.8, we must find a
rate of convergence for (2.1). To do this, we need some lemmas. The first is a technical
lemma that resembles the Hájek and Rényi inequality.

Lemma 4.1. Suppose {γn} is a sequence of nonnegative real numbers satisfying

E(|Sn − zn|p) ≤
n∑
k=1

γk.

For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ:

∞∑
n=Q+1

P

(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)

≤ 2pα2p

εp bαQ+2cp (αp − 1)

⌊
αQ+2

⌋∑
m=1

γm +
2pα2p

εp(αp − 1)

∞∑
m=bαQ+1c+1

γm
mp

.

(4.1)

Proof. FixM ∈ N. By the generalised Chebyshev’s inequality, we have

M∑
n=Q+1

P

(∣∣∣∣Sk±s (n)

k±s (n)
−
zk±s (n)

k±s (n)

∣∣∣∣ > ε

)
≤ 1

εp

M∑
n=Q+1

E
(∣∣∣Sk±s (n) − zk±s (n)

∣∣∣p)
k±s (n)p

≤ 1

εp

M∑
n=Q+1

1

k±s (n)p

k±s (n)∑
m=1

γm.

Now, splitting the inner sum into two parts, observing that if n > Q + 1 then k±s (n) >
k±s (Q+ 1), we have that the above sum is equal to

1

εp

M∑
n=Q+1

1

k±s (n)p

k±s (Q+1)∑
m=1

γm +
1

εp

M∑
n=Q+1

1

k±s (n)p

k±s (n)∑
m=k±s (Q+1)+1

γm. (4.2)
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Now, interchanging summations in the first term and using k±s (n) ≥ bαnc > αn/2, we
can bound the first term from above by

2p

εp

k±s (Q+1)∑
m=1

γm

M∑
n=Q+1

α−pn ≤ 2pαp

εpαp(Q+1)(αp − 1)

k±s (Q+1)∑
m=1

γm

≤ 2pα2p

εpαp(Q+2)(αp − 1)

k±s (Q+1)∑
m=1

γm

≤ 2pα2p

εp bαQ+2cp (αp − 1)

⌊
αQ+2

⌋∑
m=1

γm.

We bound the first line by an infinite geometric series to get the second line, and we use
αQ+2 > k±s (Q+ 1) to get from the penultimate line to the last line.

We now bound the second term in (4.2) from above. Again, interchanging summations
and using similar manipulations as used to obtain the bound for the first term, we get
that the second is bounded above by

1

εp

k±s (M)∑
m=k±s (Q+1)+1

γm
∑

{M≥n≥Q+1:k±s (n)≥m}

1

k±s (n)p

≤ 2p

εp

k±s (M)∑
m=k±s (Q+1)+1

γm
∑

{M≥n≥Q:αn+1≥m}

α−pn.

.

The inner sum is bounded by an infinite geometric series with the first term ≤ m−pαp.
Thus, the above is again bounded above by

2pα2p

εp(αp − 1)

k±s (M)∑
m=k±s (Q+1)+1

γm
mp

≤ 2pα2p

εp(αp − 1)

⌊
αM+1

⌋∑
m=bαQ+1c+1

γm
mp

.

TakingM → ∞ gives the required result.

To find a rate of convergence for (2.1), we must find one for the two terms on the
right-hand side of (4.1). A rate for the second term can easily be calculated given one
for

∑∞
m=1

γm
mp . To obtain a rate for the second term, we need a quantitative version of

what is known as Kronecker’s Lemma. One can turn to [20, Theorem A.6.2] for a proof
of the non-quantitative result.

Lemma 4.2 (Quantitative Kronecker’s lemma). Let x1, x2, . . . be a sequence of nonnega-
tive real numbers such that

∑∞
i=1 xi <∞ and let 0 < a1 ≤ a2 ≤ . . . be such that an → ∞.

Quantitatively, suppose
∑∞
i=1 xi < S for some S > 0 and that sn :=

∑n
i=1 xi converges to∑∞

i=1 xi with rate of convergence φ. Further, suppose that there is a function f : R→ N

such that af(ω) ≥ ω for all ω > 0. Then

1

an

n∑
i=1

aixi → 0

as n→ ∞ with rate of convergence

Kφ,f,{an},S(ε) = max

{
φ
(ε
4

)
, f

(
4aφ( ε

4 )
S

ε

)}
.
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Proof. Take ε > 0 and n ≥ Kφ,f,{an},S(ε) and letM = φ( ε4 ). From the definition of φ, we
have for all i ≥M that |sM − si| ≤ ε

4 . Summation by parts gives∣∣∣∣∣ 1an
n∑
i=1

aixi

∣∣∣∣∣ =
∣∣∣∣∣sn − 1

an

n−1∑
i=1

(ai+1 − ai)si

∣∣∣∣∣
which in turn is equal to∣∣∣∣∣sn − 1

an

M−1∑
i=1

(ai+1 − ai)si −
1

an

n−1∑
i=M

(ai+1 − ai)sM − 1

an

n−1∑
i=M

(ai+1 − ai)(si − sM )

∣∣∣∣∣
≤
∣∣∣∣sn − (1− aM

an
)sM

∣∣∣∣+
∣∣∣∣∣ 1an

M−1∑
i=1

(ai+1 − ai)si

∣∣∣∣∣+
∣∣∣∣∣ 1an

n−1∑
i=M

(ai+1 − ai)(si − sM )

∣∣∣∣∣
≤ |sn − sM |+

∣∣∣∣aMsMan

∣∣∣∣+
∣∣∣∣∣ 1an

M−1∑
i=1

(ai+1 − ai)si

∣∣∣∣∣+
∣∣∣∣∣ 1an

n−1∑
i=M

(ai+1 − ai)(si − sM )

∣∣∣∣∣
≤ ε

4
+

∣∣∣∣aMSan
∣∣∣∣+
∣∣∣∣∣ San

M−1∑
i=1

(ai+1 − ai)

∣∣∣∣∣+
∣∣∣∣∣ 1an ε4

n−1∑
i=M

(ai+1 − ai)

∣∣∣∣∣
≤ ε

4
+

∣∣∣∣aMSan
∣∣∣∣+ ∣∣∣∣SaMan

∣∣∣∣+ ε

4
≤ ε.

We can now calculate a rate of convergence for (2.1)

Lemma 4.3. Suppose {Xn} and {γn} are as in Theorem 1.8. Suppose
∑∞
m=1

γn
mp ≤ Γ for

some Γ > 0 and that the partial sums converge to their limit with a strictly decreasing
rate of convergence Ψ. For all ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ, the function χε,α,Ψ is a rate
of convergence for the partial sums of

∞∑
m=1

P

(∣∣∣∣Sk±s (m)

k±s (m)
−
zk±s (m)

k±s (m)

∣∣∣∣ > ε

)
to their respective limits, where

χε,α,Ψ(λ) = max

{
logα

(
2Ψ

(
λεp(αp − 1)

2p+1α2p

))
, logα

(
2Kψ,fp,{np},R

(
λ

2

))}
with

ψ(λ) = Ψ

(
λεp(αp − 1)

2pα2p

)
, fp(ω) =

⌈
ω

1
p

⌉
, R =

2pΓα2p

εp(αp − 1)
.

Proof. Let λ, ε, δ > 0, α > 1 and 0 ≤ s ≤ Lδ as well as n ≥ χε,α,Ψ(λ) be given. We have,
by Lemma 4.1, that

∞∑
m=n+1

P

(∣∣∣∣Sk±s (m)

k±s (m)
−
zk±s (m)

k±s (m)

∣∣∣∣ > ε

)

≤ 2pα2p

εp bαn+2cp (αp − 1)

⌊
αn+2

⌋∑
m=1

γm +
2pα2p

εp(αp − 1)

∞∑
m=bαn+1c+1

γm
mp

.

Now, n ≥ χε,α,Ψ(λ) implies

n ≥ logα

(
2Ψ

(
λεp(αp − 1)

2p+1α2p

))
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and from this, we deduce⌊
αn+1

⌋
≥ αn+1/2 ≥ Ψ

(
λεp(αp − 1)

2p+1α2p

)
,

which in turn implies
2pα2p

εp(αp − 1)

∞∑
m=bαn+1c+1

γm
mp

≤ λ

2
.

Now, observe that the partial sums of

2pα2p

εp(αp − 1)

∞∑
m=1

γm
mp

converge, to their limit, with rate

ψ(λ) = Ψ

(
λεp(αp − 1)

2pα2p

)
.

Therefore, by Lemma 4.2, we have that

2pα2p

εpnp(αp − 1)

n∑
m=1

γm

converges to 0 with rate Kψ,fp,{np},R. Now, n ≥ χε,α,Ψ(λ) further implies

n ≥ logα

(
2Kψ,fp,{np},R

(
λ

2

))
and, arguing as above, we get⌊

αn+2
⌋
≥ Kψ,fp,{np},R

(
λ

2

)
.

This allows us to conclude

2pα2p

εp bαn+2cp (αp − 1)

⌊
αn+2

⌋∑
m=1

γm ≤ λ

2

and we are done.

This, in particular, allows us rather immediately to deduce Theorem 1.9 and Theorem
1.10.

Proof of Theorem 1.9. In the context of the assumptions of Theorem 1.9, using the
assumption that Ψ is strictly decreasing, the rate χ in the previous Lemma 4.3 simplifies
to

logα

(
max

{
2Ψ

(
λεp(αp − 1)

2p+3α2p

)
, 2

⌈
2α2

ε
Ψ

(
λεp(αp − 1)

2p+3α2p

)(
8Γ

λ(αp − 1)

) 1
p

⌉})
.

We can now apply Theorem 2.4 with the rate we obtained above, observing that χ is
independent of s (and δ) to deduce Theorem 1.9, noting that we can take α = 1+ ε

3W and
so the assumption that ε ≤ 1 ≤W implies α < 4/3 and αp − 1 ≥ α− 1. Furthermore, the
assumptions that Γ,W ≥ 1 and 0 < ε ≤ 1, as well as the strictly decreasing condition on
Ψ, allows us to conclude that the second argument in the max function above is bigger
than the first argument.

Proof of Theorem 1.10. We write Xn = X+
n − X−

n and apply Theorem 1.9 to each se-
quence {X±

n }, with p = 2 and γn = Var(X±
n ) ≤ Var(Xn). We then obtain the result for

{Xn} by arguing as in Proposition 3.3.
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5 Comments and questions

There are still a lot of questions that can be asked in the area of large deviations in
the Strong Law of Large Numbers. We conclude with some potential avenues of further
study:

Firstly, as mentioned in Section 1.1, Cramér’s original 1938 results have been gener-
alised in [42] to sequences of random variables not assumed to be identically distributed.
However, the non-identically distributed generalisation of large deviation probabilities
related to the weak law of large numbers [4] has not been studied. So, we can ask if
one can obtain such a generalisation. Furthermore, one can ask if such a generalisation
exists for the Strong Law of Large Numbers.

Baum-Katz type rates are typically given by showing some series converges through
the bounding of the series. As already mentioned in this article, it is a well known result
in computability theory that given a bound on a sum, there is no general computable
process to extract a computable rate of convergence of that sum to its limit. Thus, one
avenue of study is to try to extract rates of convergence for these Baum-Katz type results.
Doing so will give us a more descriptive picture of how these large deviation probabilities
behave. This problem appears to have already been considered in passing by Erdős
in [14]. In the case r = 0 of Theorem 1.5, Erdős provides an elementary proof that
condition (i) implies condition (ii) (this was first demonstrated by Hsu and Robbins [22]
by techniques involving Fourier analysis) as well as the converse implication. Erdős’s
approach to demonstrating that (i) implies (ii) was to split the sum (ii) into three parts.
For two parts, Erdős calculates explicit rates of convergence that are independent of
the distribution of the random variables; however, for the last part, Erdős bounds the
sum, and it is unclear how one obtains a rate from this bound (that is independent of
the distribution of the random variables). Thus, getting a rate from Erdős’s proof is not
straightforward. One could try to obtain a rate by analysing Hsu and Robbins’s proof.

Uniform rates of convergence (uniform in that they do not depend on the distribution
of the random variables) have been found for the Central Limit Theorem:

Theorem 5.1 (Berry [7] and Esseen [16]). Let {Xn} be iid random variables satisfying
E(X1) = 0, V ar(X1) = σ2 > 0,E(|X1|3) = ρ <∞. Let

Sn =

∑n
i=1Xi√∑n
i=1 σ

2
i

Fn be the cumulative distribution function of Sn and Φ the cumulative distribution
function of the standard normal distribution. Then for all n ∈ N and x ∈ R

|Fn(x)− Φ(x)| ≤ Cρ√
nσ3

For some C > 0.

Suppose we do not assume the random variables have a finite third moment but
do have finite variance. In that case, we can still deduce that Fn(x) → Φ(x) by the
Central Limit Theorem, but we do not get such uniform rates of convergence (Berry
initially attempted to do this and could not [7]). A similar phenomenon appears to occur
in the Strong Law of Large Numbers, as the result holds if we assume the random
variables have a finite first moment. It is also not clear if one can obtain rates that are
independent of the distribution by only assuming a finite first moment. However, taking
one moment higher (so finite variance) allows one to obtain rates independent of the
distribution of the random variables. One can investigate whether this occurs in other
limit theorems. A potential case study could investigate whether a rate of convergence
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for the Hsu-Robbins-Erdős sum [14, 22] (condition (ii) in Theorem 1.5 in the case r = 0)
can be obtained if we assume finite third moment instead of just finite variance.

This article can be seen as a contribution to the proof mining program, which is
a research area that aims to use tools and ideas from logic to extract quantitative
data from proofs that appear nonconstructive. Although the program has its origins
in Kreisel’s “unwinding” program of the 1950s [33, 34], its emergence as a mature
subfield of applied logic was due to the work of Kohlenbach and his collaborators (see
[27] for a comprehensive overview of the program and the recent survey papers [29, 28]
for applications). This program has enjoyed a lot of success in analysis but has also
expanded into various other areas of mathematics, where we in particular mention
Tauberian theory [43, 44], differential algebra [48] and probability theory [1, 2, 3], with
the latter references being the only publications of applications of the techniques of
proof mining to probability theory, up until recently. Progress has been made both in the
development of logical tools to study nonconstructive proofs [37] and in the extraction of
computational content from proofs in probability theory [38, 39], with this article adding
to the growing body of work in the latter regard.

This logical background was crucial for obtaining the results of this paper 4; however,
we did not assume any familiarity with the concepts or techniques of proof mining, and,
even further, none of the results or proofs presented here make any explicit use of such
methods. Such a style of presentation is common practice in the proof mining literature.
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[14] P. Erdős, On a Theorem of Hsu and Robbins, The Annals of Mathematical Statistics 20 (1949),
no. 2, 286 – 291. MR0030714

[15] E.Specker, Nicht konstruktiv beweisbare Sätze der Analysis, Journal of Symbolic Logic 14
(1949), 145–158. MR0031447

[16] C.-G. Esseen, On the Liapunov limit error in the theory of probability, Arkiv för matematik,
astronomi och fysik 28 (1942), 1–19. MR0011909

[17] N. Etemadi, An elementary proof of the strong law of large numbers, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 55 (1981), no. 1, 119–122. MR0606010

[18] J.A. Fill, Convergence Rates Related to the Strong Law of Large Numbers, The Annals of
Probability 11 (1983), no. 1, 123 – 142. MR0682804

[19] V. Gaposhkin, Some Examples of the Problem of ε-Deviatations for Stationary Sequences,
Theory of Probability & Its Applications 46 (2002), no. 2, 341–346. MR1968692

[20] A. Gut, Probability: a graduate course, Springer, 2013. MR2977961

[21] J. Hájek and A. Rényi, Generalization of an inequality of Kolmogorov, Acta Mathematica
Hungarica 6 (1955), no. 3-4, 281–283. MR0076207

[22] P. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proceedings of
the National Academy of Sciences of the United States of America 33 (1947), no. 2, 25–31.
MR0019852

[23] H. Jabbari, On almost sure convergence for weighted sums of pairwise negatively quadrant
dependent random variables, Statistical Papers 54 (2013), 765–772. MR3072899

[24] A.G. Kachurovskii and I.V. Podvigin, Measuring the rate of convergence in the Birkhoff
ergodic theorem, Mathematical Notes 106 (2019), 52–62. MR3981324

[25] A.G. Kachurovskii, I.V. Podvigin, and A.A. Svishchev, The maximum pointwise rate of conver-
gence in Birkhoff’s ergodic theorem, Journal of Mathematical Sciences 255 (2021), no. 2,
119–123. MR4252946

[26] T.-S. Kim and J.I. Baek, The strong laws of large numbers for weighted sums of pairwise
quadrant dependent random variables, Journal of the Korean Mathematical Society 36 (1999),
no. 1, 37–49. MR1669137

[27] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics,
Springer Monographs in Mathematics, Springer, 2008. MR2445721

[28] U. Kohlenbach, Recent progress in proof mining in nonlinear analysis, Journal of Applied
Logics - IfCoLog Journal 4 (2017), no. 10, 3361–3410. MR4542239

[29] U. Kohlenbach, Proof-theoretic methods in nonlinear analysis, Proceedings of the Inter-
national Congress of Mathematicians 2018, vol. 2, World Scientific, 2019, pp. 61–82.
MR3966757

[30] V.M. Korchevsky, A generalization of the Petrov strong law of large numbers, Statistics &
Probability Letters 104 (2015), 102–108. MR3360711

[31] V.M. Korchevsky, On the Rate of Convergence in the Strong Law of Large Numbers for
Nonnegative Random Variables, Journal of Mathematical Sciences 229 (2018), no. 6, 719–727.
MR3602409

[32] V.M. Korchevsky and V.V. Petrov, On the strong law of large numbers for sequences of
dependent random variables, Vestnik St. Petersburg University: Mathematics 43 (2010),
143–147. MR2741955

[33] G. Kreisel, On the Interpretation of Non-Finitist Proofs, Part I, Journal of Symbolic Logic 16
(1951), 241–267. MR0049135

[34] G. Kreisel, On the interpretation of Non-Finitist Proofs, Part II: Interpretation of Number
Theory, Journal of Symbolic Logic 17 (1952), 43–58. MR0051193

[35] A. Kuczmaszewska, Convergence rate in the Petrov SLLN for dependent random variables,
Acta Mathematica Hungarica 148 (2016), 56–72. MR3439282

EJP 30 (2025), paper 20.
Page 21/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0722846
https://mathscinet.ams.org/mathscinet-getitem?mr=0030714
https://mathscinet.ams.org/mathscinet-getitem?mr=0031447
https://mathscinet.ams.org/mathscinet-getitem?mr=0011909
https://mathscinet.ams.org/mathscinet-getitem?mr=0606010
https://mathscinet.ams.org/mathscinet-getitem?mr=0682804
https://mathscinet.ams.org/mathscinet-getitem?mr=1968692
https://mathscinet.ams.org/mathscinet-getitem?mr=2977961
https://mathscinet.ams.org/mathscinet-getitem?mr=0076207
https://mathscinet.ams.org/mathscinet-getitem?mr=0019852
https://mathscinet.ams.org/mathscinet-getitem?mr=3072899
https://mathscinet.ams.org/mathscinet-getitem?mr=3981324
https://mathscinet.ams.org/mathscinet-getitem?mr=4252946
https://mathscinet.ams.org/mathscinet-getitem?mr=1669137
https://mathscinet.ams.org/mathscinet-getitem?mr=2445721
https://mathscinet.ams.org/mathscinet-getitem?mr=4542239
https://mathscinet.ams.org/mathscinet-getitem?mr=3966757
https://mathscinet.ams.org/mathscinet-getitem?mr=3360711
https://mathscinet.ams.org/mathscinet-getitem?mr=3602409
https://mathscinet.ams.org/mathscinet-getitem?mr=2741955
https://mathscinet.ams.org/mathscinet-getitem?mr=0049135
https://mathscinet.ams.org/mathscinet-getitem?mr=0051193
https://mathscinet.ams.org/mathscinet-getitem?mr=3439282
https://doi.org/10.1214/25-EJP1280
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative Strong Laws of Large Numbers

[36] N. Luzia, A simple proof of the strong law of large numbers with rates, Bulletin of the
Australian Mathematical Society 97 (2018), no. 3, 513–517. MR3802466

[37] M. Neri and N. Pischke, Proof mining and probability theory, Preprint, available at https:
//arxiv.org/abs/2403.00659, 2024.

[38] M. Neri and T. Powell, On quantitative convergence for stochastic processes: Crossings,
fluctuations and martingales, Preprint, available at https://arxiv.org/abs/2406.19979, 2024.

[39] M. Neri and T. Powell, A quantitative Robbins-Siegmund theorem, Preprint, available at
https://arxiv.org/abs/2410.15986, 2024.

[40] V.V. Petrov, Generalization of Cramér’s limit theorem, Uspekhi Matematicheskikh Nauk 9
(1954), no. 4, 195–202. MR0065058

[41] V.V. Petrov, On the Strong Law of Large Numbers for Nonnegative Random Variables, Theory
of Probability & Its Applications 53 (2009), no. 2, 346–349. MR3691828

[42] V.V. Petrov and J. Robinson, Large deviations for sums of independent non identically dis-
tributed random variables, Communications in Statistics—Theory and Methods 37 (2008),
no. 18, 2984–2990. MR2467746

[43] T. Powell, A note on the finitization of Abelian and Tauberian theorems, Mathematical Logic
Quarterly 66 (2020), no. 3, 300–310. MR4174107

[44] T. Powell, A finitization of Littlewood’s Tauberian theorem and an application in Tauberian
remainder theory, Annals of Pure and Applied Logic 174 (2023), no. 4, 103231. MR4535406

[45] E. Rio, Convergence speeds in the strong law for dependent sequences, Proceedings of the
Academy of Sciences. Series 1, Mathématics 320 (1995), no. 4, 469–474. MR1320123

[46] H.R. Nili Sani, H.A. Azarnoosh, and A. Bozorgnia, The strong law of large numbers for
pairwise negatively dependent random variables, Iranian Journal of Science 28 (2004), no. 2,
211–217. MR2136407

[47] D. Siegmund, Large deviation probabilities in the strong law of large numbers, Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 31 (1975), no. 2, 107–113. MR0365672

[48] W. Simmons and H. Towsner, Proof mining and effective bounds in differential polynomial
rings, Advances in Mathematics 343 (2019), 567–623. MR3883215

Acknowledgments. This article was written as part of the author’s PhD studies under
the supervision of Thomas Powell, and I would like to thank him for his support and
invaluable guidance. The author would also like to thank Nicholas Pischke for his advice
on the presentation and formatting of the results in this article, as well as Cécile Mailler
and Nathan Creighton for their helpful comments.

EJP 30 (2025), paper 20.
Page 22/22

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3802466
https://arxiv.org/abs/2403.00659
https://arxiv.org/abs/2403.00659
https://arxiv.org/abs/2406.19979
https://arxiv.org/abs/2410.15986 
https://mathscinet.ams.org/mathscinet-getitem?mr=0065058
https://mathscinet.ams.org/mathscinet-getitem?mr=3691828
https://mathscinet.ams.org/mathscinet-getitem?mr=2467746
https://mathscinet.ams.org/mathscinet-getitem?mr=4174107
https://mathscinet.ams.org/mathscinet-getitem?mr=4535406
https://mathscinet.ams.org/mathscinet-getitem?mr=1320123
https://mathscinet.ams.org/mathscinet-getitem?mr=2136407
https://mathscinet.ams.org/mathscinet-getitem?mr=0365672
https://mathscinet.ams.org/mathscinet-getitem?mr=3883215
https://doi.org/10.1214/25-EJP1280
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Related work

	A general theorem
	Application I: pairwise independent with finite variance
	Application II: the Chen-Sung Strong Law of Large Numbers
	Comments and questions
	References

