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Abstract

In [2], it was claimed that the time constant µd(e1) for the first-passage percolation
model on Zd is µd(e1) ∼ log d/(2ad) as d → ∞, if the passage times (τe)e∈Ed are i.i.d.,

with a common c.d.f. F satisfying
∣∣∣F (x)

x
− a

∣∣∣ ≤ C
| log x| for some constants a,C and

sufficiently small x.
However, the proof of the upper bound, namely, Equation (2.1) in [2]

lim sup
d→∞

µd(e1)ad

log d
≤ 1

2
(0.1)

is incorrect. In this article, we provide a different approach that establishes (0.1).
As a side product of this new method, we also show that the variance of the non-
backtracking passage time to the first hyperplane is of order o

(
(log d/d)2

)
as d → ∞

in the case of the when the edge weights are exponentially distributed.
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1 Introduction

In this paper we study first passage percolation on Zd which is defined as follows. At
each nearest-neighbor edge in Zd, we attach a non-negative random variable τe, known
as the passage time of the edge e. These random variables (τe) are independent and
identically distributed with common distribution F . We will also assume that F satisfies
the following conditions:

lim
x→0

F (x)

x
= a, for some a > 0 (1.1)

and

∫
xdF (x) < ∞. (1.2)
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On the time constant of high dimensional first passage percolation, revisited

A path γ is a sequence of nearest-neighbor edges in Zd such the starting point of
each edge coincides with the endpoint of the previous edge. For any finite path γ we
define the passage time of γ to be

T (γ) =
∑
e∈γ

τe.

Given two points x, y ∈ Zd we define

T (x, y) = inf
γ

T (γ),

where the infimum is over all finite paths γ that start at the point x and end at y. For a
review, we invite the readers to see the book [1] or the classical paper of Kesten [6].

If Eτe < ∞, the following limit exists

µd(e1) := lim
n→∞

T (0, ne1)

n
a.s. and in L1.

and µd(e1) is called the time constant. See [1, Theorem 2.1] and the discussion therein.
In this paper, we prove the following limit for µd(e1), as the dimension d → ∞.

Theorem 1.1. Assume (1.1) and (1.2). Then

lim
d→∞

µd(e1)d

log d
=

1

2a
.

This result was first claimed in [2], under an additional assumption on the conver-
gence rate in (1.1). However, the proof for the upper bound there, namely,

lim sup
d→∞

µd(e1)ad

log d
≤ 1

2

contains an error. Specifically, for the choices of p, n and x in [2, Equation (3.1)], the
error term is not negligible compared to the main order (log d/d) as d → ∞. Here, we fix
this error by presenting a new method that also has consequences to point-to-hyperplane
passage times.

The main result in this paper is the following.

Theorem 1.2. Assume (1.1) and (1.2). The following bound holds:

lim sup
d→∞

µd(e1)d

log d
≤ 1

2a
.

The lower bound was correctly established in [2], which we state below.

Proposition 1.3 ([2, Proposition 4.1]). Assume (1.1) and (1.2) for the passage times,
then

lim inf
d→∞

µd(e1)ad

log d
≥ 1

2
.

Proof of Theorem 1.1. It follows from the combination of Theorem 1.2 and Proposition
1.3.

As an outcome of the new method we introduce to prove Theorem 1.2, we also obtain
the following theorem. Let

s̃0,1 := inf

{
T (γ) :

γ : 0 → H1 such that except for the end point,
all other vertices on γ are contained in H0

}
,

where Hn := {(x1, . . . , xd) ∈ Zd : x1 = n} is the n-th hyperplane orthogonal to e1.
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On the time constant of high dimensional first passage percolation, revisited

Theorem 1.4. Assume (1.1) and (1.2). Then, as d → ∞

2ads̃0,1
log d

→ 1 in probability and in L1.

Let us make a few comments about our strategy and how the rest of the paper is
organized. Our approach will first consider (the edge version of) the Eden model [5], i.e.,
the FPP model where the passage times are i.i.d. Exponential(a). Under the Exponential
setting, we will make use of Dhar’s exploration idea (see [4]), and then combine with an
appropriate coupling between the F -distribution and the Exponential(a) distribution (a
similar coupling was also used in [8, Section 6]).

More precise, Dhar used in [4] a cluster exploration process to predict that for the
Exponential(a) FFP model

lim sup
d→∞

2ad

log d
Es̃0,1 ≤ 1. (1.3)

By a standard subadditivity argument (see, e.g., [7, Theorem 4.2.5], [6, pp.246] or [9,
Lemma 5.2]), we know that µd(e1) is no larger than Es̃0,1. So Equation (1.3) implies an
upper bound for µd(e1) in the Exponential(a) case. Proposition 1.3 then implies that

E
2ad

log d
s̃0,1 → 1.

The main obstacle that prevents us from directly generalizing this result to other
distributions is that the exploration process will only provide convergence in expectation
for s̃0,1, which is not enough for our purposes. Thus, we first establish a convergence-in-

probability result 2ad
log d s̃0,1

P−→ 1 for the Exponential(a)-weighted case by showing

Var(s̃0,1) = o

((
log d

d

)2
)
, as d → ∞,

expanding on Dhar’s cluster exploration idea (see Sections 2 and 3).
In Section 4, we derive a coupling between F -distributed FPP and the Eden model

that preserves the convergence in probability. Finally, in Section 5, we show that
the collection of random variables {(2ad/ log d) s̃0,1}d≥1 is uniformly integrable, which
completes a proof of the L1-convergence of 2ad

log d s̃0,1 → 1 in the F -distributed case.

2 A recap of Dhar’s exploration idea in the Exponential case

In this section, we recap Dhar’s cluster exploration idea, where we introduce the
notations and fill in some technical details that were omitted in [4]. Without loss of
generality, we assume a = 1 and consider the standard Exponential case. Note that the
exploration idea works nicely because in this case, the first-passage percolation model is
Markovian: given the configuration of already-infected sites at any time t, the time until
next infection is independent of the history before time t.

Consider any infected cluster C ⊂ H0 that contains i vertices and S perimeter edges
within H0. Let T (C) denote the waiting time until infection reaches H1 using a non-
backtracking path (i.e., one of those paths in the definition of s̃0,1). There are i + S

possible edges to cross for the next infection to happen, where i of them are along the
e1 direction and leading to H1 (denoted by f1, f2, . . . , fi) and S of them remain in the
hyperplane H0 (denoted by fi+1, . . . , fi+S). The passage times of these i+ S edges are
i.i.d. Exponential(1) random variables. Let Y denote the edge being crossed when next
infection occurs (i.e., one of the boundary edges of C with the smallest passage time),
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and we have

E[T (C)] = E

[
E[T (C)|Y ]

]
=

i+S∑
j=1

E[T (C)|Y = fj ]P (Y = fj)

=

i+S∑
j=1

E[T (C)|Y = fj ] ·
1

i+ S
.

Given that Y = f1, . . . , fi, then the conditional distribution of T (C) is the same as the
minimum of (i+ S) i.i.d. Exponential(1) random variables and thus

E[T (C)|Y = fj ] =
1

i+ S
for j = 1, 2, . . . , i.

Given that Y = fi+1, . . . , fi+S , then the next infection will cross a perimeter edge of C
within H0 and expand the infected cluster to a larger cluster C ′ of (i + 1) vertices. In
this case, the conditional distribution of T (C) is the same as

Exponential(i+ S) + T (C ∪ fj)

where the Exponential random variable is independent of T (C ∪ fj), due to the Markov
property. In this case, we have

E[T (C)|Y = fj ] =
1

i+ S
+ E[T (C ∪ fj)] for j = i+ 1, i+ 2, . . . , i+ S.

Combining these together, we obtain

E[T (C)] =

 i

i+ S
+

i+S∑
j=i+1

[
1

i+ S
+ E[T (C ∪ fj)]

] · 1

i+ S

=
1

i+ S

[
1 +

∑
C′

E[T (C ′)]

]
,

where the sum is over all clusters C ′ ⊂ H0 of (i + 1) infected vertices that can be
obtained from cluster C by infecting one additional healthy vertex adjacent to C. For
each i = 1, 2, 3, . . ., define

xi := max
C:C⊂H0,|C|=i

ET (C).

Note that x1 = Es̃0,1 is the quantity of interest here. Taking the maximum over all
clusters C ′, we obtain

E[T (C)] ≤ 1

i+ S
[1 + Sxi+1] =

1

i+ S
+

1

i/S + 1
xi+1. (2.1)

For any cluster C ⊂ H0 of i vertices, the number of its perimeter edges in H0 is bounded
above by i times 2(d−1), the maximum number of edges in H0 adjacent to a given vertex.
Meanwhile, by the edge-isoperimetric inequality on Zd [3, Theorem 8], one has for any
set in a box {0, . . . , `}d−1 ⊂ Zd−1 of cardinality i ≤ `d−1/2 the number of perimeter edges
is bounded below by

min
1≤k≤d−1

{
2ki1−

1
k `

d−1
k −1

}
. (2.2)

Choosing ` = i, with i > 3, the minimum of (2.2) is achieved at k = d − 1 and thus we
obtain the bounds

si := 2(d− 1)i
d−2
d−1 ≤ S ≤ (2d− 1)i. (2.3)
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Here, we also used the fact that the lower bound in (2.3) for i = 1, 2, 3 can be easily
checked case by case as follows:

i = 1, S = 2(d− 1) ≥ s1,

i = 2, S = 4(d− 1)− 2 ≥ s2,

i = 3, S = 6(d− 1)− 4 ≥ s3,

as long as d is large enough. Therefore, using (2.3), we have

1

i+ S
≤ 1

i+ si
and

1

i/S + 1
≤ 1

1/(2d− 1) + 1
= 1− 1

2d
. (2.4)

Thus, we bound the right side of (2.1) by

E[T (C)] ≤ 1

i+ si
+

(
1− 1

2d

)
xi+1.

Write A = 1 − 1
2d for notation simplicity. Now taking the maximum over all possible

cluster C ⊂ H0 with i vertices yields an iterative inequality

xi ≤
1

i+ si
+Axi+1. (2.5)

Iterating the relation, we get an upper bound for Es̃0,1

Es̃0,1 = x1 ≤ 1

1 + s1
+Ax2 ≤ 1

1 + s1
+A

[
1

2 + s2
+Ax3

]
≤ · · · ≤ 1

1 + s1
+

A

2 + s2
+

A2

3 + s3
+ · · · ≤ 1

1 + s1
+

∞∑
n=2

An−1

sn
. (2.6)

The reason to single out the first term in the summation is to avoid integrating from
0 when bounding the infinite sum by an integral in the next step. Plugging in the
expression for si, we get

Es̃0,1 ≤ 1

2d− 1
+

1

2(d− 1)

∞∑
n=2

An−1 1

n
d−2
d−1

≤ 1

2d− 1
+

1

2(d− 1)

∫ ∞

1

Ax−1 1

x
d−2
d−1

dx. (2.7)

We break the integral above into two parts:
∫ 2d

1
and

∫∞
2d
. For the first integral, we have

∫ 2d

1

Ax−1 1

x
d−2
d−1

dx =

∫ 2d

1

Ax−1x
1

d−1

x
dx ≤ (2d)

1
d−1

A

∫ ∞

1

Ax

x
dx.

Notice that as d → ∞, (2d)
1

d−1 → 1, A → 1 and
∫∞
1

Ax

x dx ∼ log d. To see the last
asymptotic, we apply L’Hopital’s rule and get

lim
d→∞

∫∞
1

Ax 1
xdx

log d
= lim

d→∞

1
2d2A

∫∞
1

Axdx

1/d

= lim
d→∞

1

2dA
·

(1− 1
2d )

x
∣∣∞
x=1

log(1− 1/(2d))
= lim

d→∞

1

2d
·

1
2d − 1

− 1
2d

= 1. (2.8)

EJP 30 (2025), paper 21.
Page 5/13

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1274
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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For the second integral, we get∫ ∞

2d

(
1− 1

2d

)x−1
1

x
d−2
d−1

dx ≤ 1

(2d)
d−2
d−1

∫ ∞

2d

(
1− 1

2d

)x−1

dx

=
(2d)

1
d−1

2d
·
(1− 1

2d )
x
∣∣∞
x=2d

log(1− 1/(2d))

= (2d)
1

d−1 ·
−(1− 1

2d )
2d

2d log(1− 1/(2d))
→ e−1.

Thus, combining the two integrals, we have as d → ∞,∫ ∞

1

(
1− 1

2d

)x−1
1

x
d−2
d−1

dx ∼ log d.

Plugging this back to (2.7), we prove Es̃0,1 ≤ log d
2d (1 + o(1)) for d large. Combining with

Proposition 1.3, we conclude

Es̃0,1 ∼ log d

2d

as d → ∞ in the i.i.d. Exponentially-weighted case.

3 Iteration of the second moment in the Exponential case

In this section, we prove that Es̃20,1 ≤
(

log d
2d

)2
(1 + o(1)) as d → ∞ in the Exponential

case. Thus, combining with the first moment result, Es̃0,1 ∼ log d
2d , we achieve Var(s̃0,1) =

o

((
log d

d

)2
)

as desired. Like before, consider any already-infected cluster C ⊂ H0

with i infected vertices and S perimeter edges within H0, and define T (C) and Y in the
same way. For each i = 1, 2, 3, . . ., define

yi := max
C:C⊂H0,|C|=i

ET 2(C).

We now derive an iterative inequality that relates yi with yi+1 (and also xi+1, see below).
Again, using law of total expectation, we get

E[T 2(C)] = E

[
E[T 2(C)|Y ]

]
=

i+S∑
j=1

E[T 2(C)|Y = fj ]P (Y = fj)

=

i+S∑
j=1

E[T 2(C)|Y = fj ] ·
1

i+ S
.

Like before, given Y = fj for j = 1, . . . , i, then T (C) follows an Exponential(i + S)

distribution and

E[T 2(C)|Y = fj ] =
2

(i+ S)2
, j = 1, 2, . . . , i,

whereas given Y = fj for j = i + 1, . . . , i + S, T (C) has the same distribution as
Exponential(i+S)+T (C∪fj) distribution. Thus, recalling that xi = maxC:C⊂H0,|C|=iET (C),
we have

E[T 2(C)|Y = fj ] =
2

(i+ S)2
+ E[T 2(C ∪ fj)] + 2 · 1

i+ S
· E[T (C ∪ fj)]

≤ 2

(i+ S)2
+ yi+1 +

2

i+ S
xi+1, j = i+ 1, . . . , i+ S.
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Therefore, we get

E[T 2(C)] ≤
{

2i

(i+ S)2
+

2S

(i+ S)2
+ Syi+1 +

2S

i+ S
xi+1

}
· 1

i+ S

=
2

(i+ S)2
(1 + Sxi+1) +

S

i+ S
yi+1

≤ 2

(i+ si)2
+

2

i+ si

(
1− 1

2d

)
xi+1 +

(
1− 1

2d

)
yi+1

where, in the last step, we use (2.4) again to make sure that the right hand side does
not depend on the boundary size S of the cluster C. Again, we write A = 1− 1

2d . Now
taking the maximum over all clusters of size i on the left hand side, we get an iterative
inequality

yi ≤
2

(i+ si)2
+

2A

i+ si
xi+1 +Ayi+1. (3.1)

Keeping iterating this relation together with (2.5) and noticing that Es̃20,1 = y1, we
achieve an upper bound for Es̃20,1, which is of the following form

Es̃20,1 = y1 ≤ 2

(1 + s1)2
+

2A

1 + s1
x2 +Ay2

≤ 2

(1 + s1)2
+

2A

1 + s1

[
1

2 + s2
+Ax3

]
+A

[
2

(2 + s2)2
+

2A

2 + s2
x3 +Ay3

]
=

2

(1 + s1)2
+

2A

2 + s2

[
1

1 + s1
+

1

2 + s2

]
+ 2A2

[
1

1 + s1
+

1

2 + s2

]
x3 +A2y3

≤ 2

(1 + s1)2
+

2A

2 + s2

[
1

1 + s1
+

1

2 + s2

]
+

2A2

3 + s3

[
1

1 + s1
+

1

2 + s2
+

1

3 + s3

]
+ 2A3

[
1

1 + s1
+

1

2 + s2
+

1

3 + s3

]
x4 +A3y4 ≤ · · ·

≤ 2

∞∑
n=1

An−1

n+ sn

n∑
k=1

1

k + sk
= 2

∞∑
k=1

1

k + sk

∞∑
n=k

An−1

n+ sn
.

where each inequality follows plugging-in Equations (2.5) and (3.1), and the equalities
are simple expansions of the brackets. Again, we use integral to bound the double sum
from above. First, for each k fixed, An−1

n+sn
decreases in n, and thus the inner sum over n

is no more than
∞∑

n=k

An−1

n+ sn
≤
∫ ∞

k−1

Ay−1

y + sy
dy.

Moreover, since 1
k+sk

≤ 1
sk

and 1
sk

∫∞
k−1

Ay−1

sy
dy decreases in k, we have

Es̃20,1 ≤ 2

∞∑
k=1

1

k + sk

∞∑
n=k

An−1

n+ sn

≤ 2

1 + s1

∞∑
n=1

An−1

n+ sn
+

2

2 + s2

∞∑
n=2

An−1

sn
+ 2

∞∑
k=3

1

sk

∞∑
n=k

An−1

sn

≤ 2

1 + s1

∞∑
n=1

An−1

n+ sn
+

2

2 + s2

∞∑
n=2

An−1

sn
+ 2

∫ ∞

2

1

sx

∫ ∞

x−1

Ay−1

sy
dydx.

Here, the reason to single out the first two terms is again to avoid integrating from 0
when applying an integral approximation in the next step. We note that s1 = 2(d− 1) and

EJP 30 (2025), paper 21.
Page 7/13

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1274
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the time constant of high dimensional first passage percolation, revisited

s2 ≥ d, thus the first two terms are smaller order of (log d/d)2, i.e.,

2

1 + s1

∞∑
n=1

An−1

n+ sn
≤ 2

(1 + s1)2
+

2

1 + s1

∞∑
n=2

An−1

sn

≤ 2

(2d− 1)2
+

2

2d− 1
· C log d

d
= o
(
(log d/d)2

)
, and

1

2 + s2

∞∑
n=2

An−1

sn
≤ 1

d

∞∑
n=2

An−1

sn
≤ C log d

d2
= o
(
(log d/d)2

)
,

where we used the fact that
∑∞

n=2
An−1

sn
≤ C log d

d ; see the last term in (2.6). It remains to
show that for d sufficiently large

2

∫ ∞

2

1

sx

(∫ ∞

x−1

Ay−1

sy
dy

)
dx ≤

(
log d

2d

)2

(1 + o(1)).

We break the integral into three parts:

(I) := 2

∫ 2d+1

2

1

sx

(∫ 2d

x−1

Ay−1

sy
dy

)
dx,

(II) := 2

∫ 2d+1

2

1

sx

(∫ ∞

2d

Ay−1

sy
dy

)
dx,

(III) := 2

∫ ∞

2d+1

1

sx

(∫ ∞

x−1

Ay−1

sy
dy

)
dx.

For (III), when x ≥ 2d + 1 and y ≥ x − 1 ≥ 2d, both sx and sy are greater than

s2d = 2(d− 1)(2d)
d−2
d−1 . Thus, we replace them by s2d and evaluate the integrals to get

(III) ≤ 2

s22d

∫ ∞

2d+1

∫ ∞

x−1

Ay−1dydx =
−2

As22d · logA

∫ ∞

2d+1

Ax−1dx

=
−2

As22d · logA

∫ ∞

2d

Axdx =
2A2d

As22d · (logA)2
.

Note that 2A2d → 2e−1 and (logA)2 ∼ (− 1
2d )

2 = 1
4d2 , thus we get for all d sufficiently

large,

(III) ≤ C1 · 4d2

[2(d− 1)(2d)
d−2
d−1 ]2

∼ C2d
2

d−1

d2
∼ C3

d2
= o
(
(log d/d)2

)
,

where C1, C2 and C3 are absolute constants that do not depend on d and may vary from

line to line. For (II), again since sy ≥ s2d when y ≥ 2d and sx = (2d− 1)x
d−2
d−1 , we have

(II) ≤ 2

s2d

∫ 2d+1

2

1

sx

∫ ∞

x−1

Ay−1dydx =
−2

A2s2d · logA

∫ 2d+1

2

Ax

sx
dx

≤ −2

2(d− 1)A2s2d · logA

∫ 2d+1

2

Axx
1

d−1

x
dx

≤ −2(2d+ 1)
1

d−1

2(d− 1)A2s2d · logA

∫ 2d+1

2

Ax

x
dx

≤ −2(2d+ 1)
1

d−1

2(d− 1)A2s2d · logA

∫ ∞

1

Ax

x
dx.
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The rightmost integral is of order log d as d → ∞, following (2.8). Thus for all sufficiently
large d,

(II) ≤ −C1(2d+ 1)
1

d−1

2(d− 1)A2s2d · logA
log d.

As d → ∞, (2d+ 1)
1

d−1 → 1, 2(d− 1) logA → −1 and A → 1, thus for all d large,

(II) ≤ C2 log d

s2d
=

C3d
1

d−1 log d

d2
= O(log d/d2) = o

(
(log d/d)2

)
.

Finally, for (I), we plug in the expression for sx and sy and use the fact that x, y are both
less than 2d+ 1, and

(I) ≤ (2d+ 1)
2

d−1

4A(d− 1)2

∫ ∞

1

2

x

∫ ∞

x−1

Ay

y
dydx.

The double integral is ∼ (log d)2 as d → ∞. To see this, we apply L’Hopital’s rule and
take the derivative with respect to d:

lim
d→∞

∫∞
1

2
x

∫∞
x−1

Ay

y dydx

(log d)2
= lim

d→∞

1
2d2

∫∞
1

1
x

∫∞
x−1

Ay−1dydx

(log d) · 1
d

= lim
d→∞

−1
2dA logA

∫∞
1

Ax−1

x dx

log d
= lim

d→∞

−1
2dA2 logA

∫∞
1

Ax

x dx

log d
= 1,

where the last equality follows from (2.8), 2d logA → −1, and A → 1 as d → ∞. Plugging
this back to the upper bound of (I), we obtain that for all sufficiently large d,

(I) ≤ (2d+ 1)
2

d−1

4A(d− 1)2
(log d)2(1 + o(1)) =

(
log d

2d

)2

(1 + o(1)),

which concludes the proof for Es̃20,1 ≤
(

log d
2d

)2
(1 + o(1)) in the Exponentially-weighted

case.

4 Generalization to edge-weight distribution F

Recall that ifX is an Exponential(1) random variable, thenX/a follows an Exponential(a)
distribution. Thus if the passage times are i.i.d. Exponential(a) distributed, we have

Es̃0,1 ∼ log d

2ad
, Es̃20,1 ≤

(
log d

2ad

)2

(1 + o(1)),

which implies Var(s̃0,1) = o
(
(log d/d)2

)
and 2ad

log d s̃0,1
P−→ 1 as d → ∞. In this section, we

generalize this in-probability convergence to other distributions F satisfying (1.1).
Since we are working with two different probability distributions in this section, we

will always write a superscript F when we work with F -distributed passage times; the
superscript is omitted when the passage times are Exponential(a) distributed. We couple
the distribution F with an Exponential(a) distribution using the left-continuous inverse
function F ∗ : [0, 1] → R of F , i.e., for any y ∈ [0, 1]

F ∗(y) := inf{x : F (x) ≥ y}.

It follows that if (τe)e∈E are i.i.d. Exponential(a)-distributed edge weights in a first-
passage percolation model, then (τFe )e∈E := (h(τe))e∈E are i.i.d. F -distributed, where

h(t) := F ∗(1− e−at) = inf{x ≥ 0 : F (x) ≥ 1− e−at}.
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Note that h is a monotonically increasing function. Also, since F (x) ∼ ax as x → 0,
then F ∗(y) ∼ y/a as y → 0. This implies limt→0 h(t)/t = 1, i.e., for any ε > 0, there is
δ = δε > 0 such that

(1− ε)t ≤ h(t) ≤ (1 + ε)t, for all t ∈ [0, δ]. (4.1)

Denote by s̃F0,1 in the same way as s̃0,1 but for the case when the passage times are i.i.d.
F -distributed. Let Γ be one path that realizes s̃0,1 in the Exponential(a) case. Then, for
any δ > 0,

P (τe ≤ δ for all e ∈ Γ) → 1. (4.2)

This is because the complement of the event satisfies

P (τe > δ for some e ∈ Γ) ≤ P (s̃0,1 > δ) = P (2ads̃0,1/ log d > 2δad/ log d) → 0,

as we have already showed that 2ad
log d s̃0,1

P−→ 1 as d → ∞.

The main result of this section is the following.

Proposition 4.1. Assume (1.1). As d goes to infinity, we have

2ad

log d
s̃F0,1

P−→ 1.

Proof of Proposition 4.1. We start with an upper bound for s̃F0,1. Consider any η > 0.
Choose ε ∈ (0, η) and δ > 0 according to ε such that (4.1) is satisfied. Then

P

(
2ad

log d
s̃F0,1 ≤ 1 + η

)
≥ P

(
2ad

log d
s̃F0,1 ≤ 1 + η, τe ≤ δ for all e ∈ Γ

)
≥ P

(
2ad

log d
TF (Γ) ≤ 1 + η, τe ≤ δ for all e ∈ Γ

)
,

where TF (Γ) denotes the passage time along the path Γ with edge weights (τFe )e∈E :=

(h(τe))e∈E

TF (Γ) :=
∑
e∈Γ

τFe =
∑
e∈Γ

h(τe).

On the event that {τe ≤ δ for all e ∈ Γ}, we have h(τe) ≤ (1 + ε)τe, and thus
∑

e∈Γ h(τe) ≤
(1 + ε)

∑
e∈Γ τe = (1 + ε)s̃0,1. Thus, the probability above is bounded from below by

P

(
2ad

log d
s̃F0,1 ≤ 1 + η

)
≥ P

(
2ad

log d
s̃0,1 ≤ 1 + η

1 + ε
, τe ≤ δ for all e ∈ Γ

)
→ 1,

due to 1+η
1+ε > 1, 2ad

log d s̃0,1
P−→ 1 and (4.2). The lower bound is similar. Let ΓF be one

path that realizes s̃F0,1 in the case that edge weights are i.i.d. F -distributed. Take any
η > 0 and ε ∈ (0, η), and choose δ = δε according to ε such that (4.1) is satisfied. Then
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s̃F0,1 =
∑

e∈ΓF τFe =
∑

e∈ΓF h(τe)

P

(
2ad

log d
s̃F0,1 ≤ 1− η

)
= P

(
2ad

log d

∑
e∈ΓF

h(τe) ≤ 1− η

)

= P

(
2ad

log d

∑
e∈ΓF

h(τe) ≤ 1− η, τe ≤ δ for all e ∈ ΓF

)

+ P

(
2ad

log d

∑
e∈ΓF

h(τe) ≤ 1− η, τe > δ for some e ∈ ΓF

)

≤ P

(
2ad

log d

∑
e∈ΓF

(1− ε)τe ≤ 1− η, τe ≤ δ for all e ∈ ΓF

)

+ P

(
2ad

log d
h(δ) ≤ 1− η, τe > δ for some e ∈ ΓF

)
≤ P

(
2ad

log d
s̃0,1 ≤ 1− η

1− ε

)
+ P

(
2ad

log d
(1− ε)δ ≤ 1− η

)
.

The first term vanishes as d → ∞ because 2ad
log d s̃0,1

P−→ 1 and 1−η
1−ε < 1; and the second

term is 0 when d is sufficiently large. This complete the proof for 2ad
log d s̃

F
0,1

P−→ 1.

5 Proofs of Theorems 1.2 and 1.4

In this section, we prove Theorem 1.2 and Theorem 1.4. For this, we show the
following proposition.

Proposition 5.1. Assume (1.1) and (1.2). Then, as d → ∞,

2ad

log d
Es̃F0,1 → 1.

Proof of Proposition 5.1. In view of Proposition 4.1, it suffices to show that the collection
of random variables {Xd}d≥1 := { 2ad

log d s̃
F
0,1}d≥1 is uniformly integrable, i.e.,

lim
M→∞

sup
d
E
[
Xd1{Xd≥M}

]
= 0. (5.1)

To do this, we adopt the “search-and-cross” strategy that were used in [6] and [2] when
estimating Es̃F0,1, which we briefly describe below. In order to get to H1 from 0 quickly,
one can first make a move in one of the ep+2, . . . , ed directions and then search for a
fast path γ (of length n) in a subspace of Zd spanned by {±e2, . . . ,±ep+1} that ends with
the last step in the e1 direction leading to H1. For j = p+ 2, . . . , d, if the first step has
passage time τFej ≤ y and the path TF (γ) ≤ x (denote this event by Fj), follow ej and
then this path γ to get to H1; otherwise move directly from 0 to H1 using the edge in the
e1 direction. Thus s̃F0,1 is bounded from above by

s̃F0,1 ≤ (x+ y)1∪∞
j=p+2,...,dFj

+ 1∩∞
j=p+2,...,dF

c
j
τFe1

Note that the choices for x, y, the length n of the fast path γ, and the dimension p of the
search space are different in [6] and [2]. For example, in [6], Kesten chose

p =

⌊
d

2

⌋
, n =

⌊
3

4
log d

⌋
, x =

9 log d

4ad
,

and with these choices, he showed that the probability of finding such a fast path γ is at
least 1

4 , based on a second-moment method. These arguments rely on a rate O(| log x|−1)
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for the convergence in (1.1), which ensured that there were sufficiently many fast paths
as d → ∞; see [6, pp.245] for the details on the moment computation. Thus we first
assume that the convergence in (1.1) has a logarithmic rate, that is, for some C, ε0 > 0,
|F (x)/x − a| < C/| log x| for all x ∈ [0, ε0]. We also adopt Kesten’s choices for p, n and
x, but other choices can also work. Moreover, for small enough y, the probability
P (τFej ≤ y) ∼ ay due to (1.1). Thus, by choosing y = 32 log d/(ad), we have that for all d
sufficiently large (say, d > d0),

P (τFej ≤ y) ≥ ay

2
=

16 log d

d
,

which leads to

P (Fj) ≥
1

4
· P (τFej ≤ y) ≥ 4 log d

d

because for j = p+ 2, . . . , d, the random variable τFej is independent of the edge weights
along the fast path γ. It then follows that

E
[
Xd1{Xd≥M}

]
≤ 2ad

log d
E
[
(x+ y)1∪∞

j=p+2,...,dFj1{s̃F0,1≥M log d/(2ad)}

]
+

2ad

log d
E
[
1∩∞

j=p+2,...,dF
c
j
1{s̃F0,1≥M log d/(2ad)}

]
E(τFe1).

If we choose M ≥ 100, then the event s̃F0,1 > M log d
2ad > x+ y implies that none of the Fj

events would happen, and the first term above is zero. Thus, for M ≥ 100, we have

E
[
Xd1{Xd≥M}

]
≤ 2ad

log d
E
[
1∩∞

j=p+2,...,dF
c
j

]
E(τFe1)

≤ 2ad

log d

(
1− 4 log d

d

)d−p−1

E(τFe1)

≤ 2ad

log d

(
1− 4 log d

d

) d
3

E(τFe1) ≤
2ad

log d
· Cd−

4
3 → 0, as d → ∞.

Therefore, for any ε > 0, choose d1 such that E
[
Xd1{Xd≥100}

]
≤ ε/2 for all d > d1. Then

for M ≥ 100,

sup
d
E[Xd1{Xd≥M}] ≤ sup

d≤d1

E[Xd1{Xd≥M}] + sup
d>d1

E[Xd1{Xd≥100}]

≤ sup
d≤d1

E[Xd1{Xd≥M}] +
ε

2
.

The first term vanishes by sending M → ∞. This finishes the proof of uniform integrabil-
ity (5.1) under an additional logarithmic convergence rate assumption for (1.1). Now
consider an arbitrary edge-weight distribution F satisfying (1.1) and (1.2), and define
F̃(x) := min{F (x), 1− e−ax/2}. Then F̃ satisfies |F̃ (x)/x− a/2| < C/| log x| for all x small

(1.2). Thus { ad
log d s̃

F̃
0,1}d≥1 is uniformly integrable, as we already shown above. Note that

F̃ stochastically dominates F , which implies the stochastic dominance of s̃F̃0,1 over s̃
F
0,1,

by a standard coupling argument. It follows that { ad
log d s̃

F
0,1}d≥1 is uniformly integrable,

and so is { 2ad
log d s̃

F
0,1}d≥1.

The proofs of our two main theorems are now straight-forward.

Proof of Theorem 1.2. It follows by combining Propositions 5.1 with the fact that µF
d (e1) ≤

Es̃F0,1, see [6, pp.246] or [9, Lemma 5.2].

Proof of Theorem 1.4. The proof follows by combining Proposition 4.1 and the uniform
integrability (5.1).
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