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(log t)%-superdiffusivity for the 2d stochastic Burgers
equation”
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Abstract

The Stochastic Burgers equation was introduced in [H. van Beijeren, R. Kutner and
H. Spohn, Excess noise for driven diffusive systems, PRL, 1985] as a continuous
approximation of the fluctuations of the asymmetric simple exclusion process. It is
formally given by

1
O = 5An+w V(') + V&,

where ¢ is d-dimensional space time white noise and v is a fixed non-zero vector.
In the critical dimension d = 2 at stationarity, we show that this system exhibits
superdiffusive behaviour: more specifically, its bulk diffusion coefficient behaves like
(log t)%, in a Tauberian sense, up to logloglogt corrections. This confirms a prediction
made in the physics literature and complements [G. Cannizzarro, M. Gubinelli, F.
Toninelli, Gaussian Fluctuations for the stochastic Burgers equation in dimension
d > 2, CMP, 2024], where the same equation was studied in the weak-coupling regime.
Furthermore this model can be seen as a continuous analogue to [H.T. Yau, (log t)% law
of the two dimensional asymmetric simple exclusion process, Annals of Mathematics,
20041.
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1 Introduction

We study the stochastic Burgers equation formally given by

1
Om = SAn+w-V(n*) + V£, (1.1)
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(log t)g-superdiffusivity for the 2d stochastic Burgers equation

where 1 = n(t,z) is a scalar field depending on time ¢ and space z € R?, with d > 1,
v € R? is a fixed vector controlling the strength and direction of the nonlinearity and
&= (&,...,&4) is d-dimensional space-time white noise, namely the centered Gaussian
process whose covariance structure is formally given by

(&t )6, (5,1) = {5“ Moy it
0, else,

fori,j € {1,...,d}, t,s € [0,00), 7,y € R? and where § is the Dirac delta function. This
equation was introduced in [32] as a proposed continuum analogue of the fluctuations
of driven diffusive systems with one conserved quantity, like the Asymmetric Simple
Exclusion Process. In this work we will always consider (1.1) for ng ~ 7, the law of
R¢ space white noise. For this choice of initial distribution, the solution is formally
stationary and distributed according to 7 at all times.

In dimension d = 1 this equation is equivalent to the space derivative of the Kardar-
Parisi-Zhang (KPZ) equation, for which there has been a tremendous amount of new
results in the last decade. In particular there is a global pathwise solution theory, see
[20, 16], and much more is known, see e.g. the surveys [28, 10] and the references
therein. In particular the connection with the discrete models (in particular the Weakly
Asymmetric Exclusion Process on Z) is well established. See [3, 21, 14] for works
connecting particle and growth models to one-dimensional KPZ. For a study of the bulk
diffusivity and similar quantities for d = 1 see [2]. In dimension d > 3 the recent work [7]
establishes Gaussian fluctuations at large scales. The analogous result for asymmetric
simple exclusion processes was proven before in [12, 26, 9].

Dimension d = 2 is of particular interest for several reasons. First of all, for d > 2
it falls outside the domain of applicability of both the method of regularity structures
developed in [19] and the paracontrolled distribution method of [15, 17]. Moreover, it is
the critical dimension in the sense of scaling, as we will further discuss in Section 1.1. It
is also the model which should describe the fluctuations of 2d ASEP, for which (log t)3
superdiffusivity was shown in [34]. The recent work [7] studies the weak coupling
regime of the 2d stochastic Burgers equation, i.e. the size of the nonlinearity is scaled
down while looking at larger and larger scales. In this regime they also find non-
trivial Gaussian fluctuations, in the sense that the limiting equation is a stochastic heat
equation with modified Laplacian, that depends on the nonlinearity. This result suggests
superdiffusivity for the strong coupling case, i.e. when the nonlinearity is not scaled
down, but it does not imply it. This is the case to which the present case is devoted. Our
result can be seen as an analog of [34] in the continuum and is also the first critical
SPDE for which (log t)§ superdiffusivity has been proven, to the best of the authors’
knowledge. While our estimates remain technical, we manage to avoid the splitting of
sums into various good and bad regions, which has been a major obstacle to replicating
the success of [34] to other models. Also, compared to [34], the sub-leading corrections
to the (logt)3 behavior are of lower order.

In general, bulk diffusion coefficients have been conjectured to diverge either like
(logt)? or like (logt)? for a wide variety of models in the critical dimension, see e.g.
[31, 25, 33]. Recent successes in proving (logt)% superdiffusivity are [1, 5, 8, 11].
The distinction between these two classes is characterized by their symmetries. The
models in the (log t)% universality class have one direction in which the system behaves
superdiffusively, while in the orthogonal direction it behaves diffusively. In our case
this direction is given by the vector rv. The models in the (log t)% class, on the other
hand, often have some kind of rotational symmetry and behave superdiffusively in every
direction.
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Finally let us summarize the structure of this paper. In the following Subsection 1.1
we rigorously define the equation and the bulk diffusion coefficient and state the main
theorem. Then, in Section 2, we set up notation and recall elements of Gaussian analysis
and the form of the generator. In Section 3 we reduce the problem to estimating certain
operators on Fock space. Then, in Section 4, we prove iterative estimates of these
operators, which we use in Section 5 to prove the main theorem. Finally, Appendix A
gathers some self-contained technical results useful for Section 4, while Appendix B
presents a heuristic explanation that motivates the expression for the bulk diffusivity
given by (1.3) below.

1.1 Scaling, regularization and Green-Kubo formula

As it is written, equation (1.1) is ill-posed, since any solution would be too irregular for
the nonlinearity to be well-defined. Since we are interested in the large scale behaviour,
we regularize the nonlinearity at small scales and then consider larger and larger scales.
We do so by introducing Fourier cut-offs inside and outside the nonlinearity:

1
O = 5An+n~o-HN(1Ln)2Jrv-g, (1.2)

where for a > 0, the Fourier cut-off I, acts on 7 in Fourier by cutting modes larger than
a,i.e.

—— def ~
Han(k) = n(k)lﬂc\ga .

Additionally, in order to avoid integrability issues arising in infinite volume, we study
the equation on a large torus T% of side-length 27 N. We will later let N go to infinity,
see Theorem 1.1. We recall that we are always considering the equation at stationarity,
namely with initial condition distributed according to the law of space white noise 7.
Indeed, regularizing the nonlinearity as described above does not change the fact that
n is invariant under the dynamics, formally for the equation on full space (1.2) and
;igorously for the one on the torus (1.5), see Lemma 2.4 below. For equation (1.2) we
define the bulk diffusivity using a Green-Kubo formula justified in Appendix B:

2 t S
DN L1+ @/ / / E (I1:(T17)%:(r, )T (TTyn)2:(0,0)) dedrds,  (1.3)
o Jo J12,

where E denotes the expectation with respect to the stationary solution started from
mean-zero white noise, and :X?: denotes the Wick product, which in this case just
subtracts the expectation, i.e. :X?: = X2 — E(X?). Heuristically, the bulk diffusivity
coefficient measures how correlations spread out in space as a function in time.

For convenience, we work on the torus with side-length 27. To do so, define the
rescaled solution 7" : R, x T? — R by

N (t,z) = Nn (N2t,N:L') , (1.4)
which solves the equation
1
om" = ZAn"Y 410 - Ty V (IvyV)* + 7 -¢. (1.5)

Expressing the bulk diffusivity from (1.3) in terms of " leads, after a suitable change of
variables, to the expression

2 ﬁ s
DN(t):HN?%/ / / E (ITy:(Iyn™)?:(r, 2) Iy :(Iyn™)?:(0,0)) dzdrds.
0 0 JT?
(1.6)
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Our main theorem concerns the Laplace transform of DV, defined by
DN (N d:ef/ e MtDN (t)dt . (1.7)
0

Note that this is the standard Laplace transform instead of the one used in [5], but the
two definitions only differ by a factor of A.

Theorem 1.1. Let tv # 0 and let n"V be the stationary solution to (1.5) as considered
above. Define the Laplace transform DV of the bulk diffusivity as in (1.7). Then, for
every ¢ € (0,1), there is a constant C' = C(|w|) such that, for all A small enough,

: C 2
limsup DV (\) < 2 (loglog|log >\|)3+5 [log )\|§

N—oo
and

1 _3_ 2
.. N 3—46 2
lmlgofl) A\ > o (log log|log A|) |log A3 .

Note that by translating [29, Lemma 1] into our setting, the upper bound gives
DN(t) < (1 +log(l +t))i+°() as t 1 co. For the lower bound such a statement is
not true in general. Note however that DV()\) ~ %Hog )\\% as A | 0 would imply
= fOT tDN (t)dt ~ T(logT)% as T 1 oo by general Tauberian inversion theorems, see [13,
Chapter XIII.5]. Thus, the theorem says that D(t) grows like (log?)3, at least in a weak
Tauberian sense.

Note also that the correction terms (log log|log A| of Theorem 1.1 are of lower or-
der with respect to the ones of the corresponding result in [34], which are e*7(loglog/log A)*
for some constant v > 0.

)i3i5

1.2 Sketch of the main proof

The basic structure of the proof follows the method first used in [24, 34, 5, 8] and
since then successfully applied in [5, 8]. It consists of the following steps. First, we
express D™V ()\) as an inner product in the L? space associated to the stationary measure
7, see Proposition 3.1 below. This inner product has the form (¢, (A — £)~'¢), for a
specific ¢. We then estimate it, using the Chaos decomposition and a Lemma due to [24],
restated as 3.2 below, which states that truncating the generator in chaos gives upper
and lower bounds for DV (). This leads to an iterative estimation scheme, which results
in Theorem 4.5, which we then use to prove Theorem 1.1. This iterative estimation
scheme is inspired by the methods of [24, 34, 5, 8]. However, the expressions of our
upper and lower bounds are different, see Theorem 4.5 and the definitions in that section.
In particular, compared to [5, 8] we do not absorb the off-diagonal terms into the main
term, but instead estimate them separately.

The above procedure relies heavily on Gaussian Analysis, which has been used
successfully to understand a variety of critical and super-critical SPDEs and related
models via their generator, see [23, 6, 18].

2 Preliminaries

2.1 Notation

Recall that for N > 0 we denote by T% the torus of side-length 27 N. If N = 1 we
write T? instead of T?. Let (e)rcz2 be the standard Fourier basis on T?, i.e. ex(z) =
53— exp(ik - z), which constitute an orthonormal basis of L?(T?). The Fourier transform of
a function ¢ € L?(T?), denoted by §, is given by

o(k) d:ef/ o(x)e_g(x)dz  fork € Z2.
T2
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Moreover, we denote by k1., the sequence (ki,...,k,), where k; € Z2. For example,
for an L? function f on (T2)", we write its Fourier transform as f(ki.n) = f(k1,...,kn).
Furthermore we define |ky,,, |2 % S kil

We denote by IP and [E the law and the corresponding expectation of the stationary
measure given by mean-zero spatial white noise, as will be defined in subsection 2.2.
With P and E we denote instead the law and the corresponding expectation of the process
given by the solution of (1.5) started from the aforementioned stationary measure.

Finally, given A, B € R, we write A < B if there exists an absolute constant ¢ > 0,
independent of all variables on which A and B may depend, such that A < ¢B. In
particular, we will only use this notation if ¢ is independent of tv.

2.2 Chaos decomposition

Let (2, #,P) be a complete probability space and 7 be real-valued mean-zero spatial
white noise on T?, i.e. n is the Gaussian field with covariance

E (n(p)n(¥)) = (¢, ¥) L2(12) 5 (2.1)

where ¢ and ¢ belong to L2(T?), the space of square-integrable real-valued functions that
integrate to 0. Since we work in Fourier, we also want to test 1 against complex valued
functions. We do this by setting 7(¢) = n(Re(p)) + tn(Im(p)) every for ¢ € L*(T?;C),
where ¢ = v/—1 denotes the imaginary unit. This leads to considering the covariance
function (which extends (2.1))

E (n()n(®)) = (¢ %) 2crs:0)

where the inner product is the standard sesquilinear inner product of square-integrable
complex valued functions (and ¢ and % still integrate to 0). Note that 7 is still real-valued

in the sense that 7(¢) = n(¥), which would not be the case for complex-valued white
noise, see e.g. [22, Section 1.4]. Using this extension, we define 7j(k) = n(e_j). These

are complex valued Gaussian variables satisfying 7j(k) = 7(—k) and E (ﬁ(y)ﬁ(k)) =0jk.
Since we only test against mean-zero functions, 7(0) is not defined and we set it to 0.

Let L?(n) be the space of L? random variables on ) measurable with respect to the
o-algebra generated by 5. For n € N, let 7, be the n-th homogeneous Wiener chaos, i.e.
the closed linear subspace of L?(n) generated by the random variables H, (n(h)), where
H,, is the n-th Hermite polynomial and & is a mean-zero test function of norm 1. By
[27, Theorem 1.1.1], L?(n) = 6D,,>, %, is an orthogonal Hilbert space decomposition of
L*(n). Define also I'L? = P, ,I'L2, where I'L? is the n-fold symmetric tensor product
of L2(T?), i.e. the space of symmetric L? functions f on (T?)"” which are mean-zero
in every variable, i.e. such that [, f(z,y1.n—1)dz = 0 for every y1.,—1 € (T?)"~1. By
[27, Proposition 1.1.1], there is a canonical isometry I between I'L? and L?(n), whose
restrictions I,, to I'L? are isometries between I'L2 and ./7,. This gives the following
correspondence: for every F € L?(n) there is a family of kernels (f,,),>0 € I'L? such that
F=350In(fs) and

def
E (F?) = [(fa)nzollfrz = > nlllfallfe(rzymy -
n>0

Here the right-hand side also defines the I'L? inner product.

Remark 2.1. As opposed to the introduction, where 1 was used as the formal solution,
and 7 as the stationary law, we switch to using n™ for the solution of (1.5) and 7 as the
stationary law, to reduce visual clutter.
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Remark 2.2. By this isometry between L?(n) and the Fock space I'L?, we will identify
throughout the paper operators acting on either space by composing them with I or 7=}
as appropriate (and without mentioning that we are doing so).

Remark 2.3. It is not strictly necessary to take the white noise to be mean-zero, but it
is natural since the dynamics of the system are conservative. If we start equation (1.5)
from a standard white noise 7 (i.e. 77(0) is a standard Gaussian), then, for any future
time ¢, we have 7, (0) = 1p(0). Moreover, 7, (0) is independent of all other 7j;(k). Therefore
we can just set it to 0. In terms of Fourier kernels it means that for any ¢ € .77, it holds
that @(k1.,) is 0 if any of the k4, ..., k, are 0.

2.3 The generator

In this subsection we recall the generator and some properties of (1.5) from [7]. The
following is (part of) Lemma 2.1 and Lemma 2.2. from [7].

Lemma 2.4. For every deterministic initial condition 7, the solution t — ntN of (1.5)
exists globally in time and is a strong Markov process. Its generator can be written as

LN = Lo+ AY + AN, where L, is symmetric with respect to P, (AY)* = — AN, again
with respect to IP, and the operators Ly, Aﬂ\_] and AN act on p € I, as:
‘C/()Tp(klzn) = _%|k31:n|2¢(k1:n) (22)
— L R
AV o(k1py1) = ————— ngkj [vo-(k; +k;)] @ (ki + kj, k{l:n+1}\{i,j})
mn+1) &
1<i<j<n+1
n—1
— LN N
AJXSO(kl:n71> = _? (m . kj) Z Jé\fm @ (Eama k{lnfl}\{j}) )
j=1 t+m=k;

where the indicator function J is given by

def

Jom € Li0<|0|<N,0<|m|<N,0<|¢4+m|<N} - (2.3)
Additionally, the mean-zero white noise n defined by (2.1) satisfies nL = n and thus it is
a stationary law of the Markov process whose evolution is governed by the generator £
and whose initial condition is distributed according to 7.

Note that the expression for the Fourier multiplier of .A_ given above differs from
the one of [7] by a minus sign. This is due to a typo in [7].

Remark 2.5. In fact, the process of Lemma 2.4 assumes values in some Besov space of
negative regularity, see [4, Theorem 4.5] where this is proved for the AKPZ equation.

3 Truncated resolvent equation

In this section we first rewrite DN(/\), defined in (1.7), in terms of a resolvent. Then
we reduce the study of this quantity to estimating certain operators on Fock space.

The following proposition allows to express DY just in terms of the stationary measure
and the generator.

Proposition 3.1. Let 77N be the stationary solution to (1.5) started from mean-zero white
noise. The Laplace transform of the bulk diffusivity is given by

1 1 - 1o~
DY) = 55 + 35 0B (V] (N2 = £8) 7 V)
where N'N[)] € # is purely in the second chaos and given by
- def 1 PO
AV [ i ede = Y a0(m): (3.1)
™ J12
£L4+m=0
0<|¢|<N
EJP 29 (2024), paper 181. https://www.imstat.org/ejp
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and its kernel n™ = [ 1 (NN [n]) € 'L is given in Fourier by

0N (41, 2) = 1{o<|j1|<N, ji+ja=0} - (3.2)

Proof. Multiplying (1.6) by ¢ yields

s
tDN(t) = t + N?|wl|? /N / / E (In:(Tnn™):(r, 2)Iy:(Tyn™)?:(0,0)) dzdrds.
0 o J12
(3.3)
Since the stationary process 1"V is translation invariant in space, we can write the spatial
integral in the expression above as

ﬁ/ﬁ /TZE(HN:(HNUN)Q:(r,x+y)HN:(HNnN)2:(O,y)) dzdy

=E ((;ﬁ /T2 HN:(HNnN)Q:(r,x)dx) (;ﬂ . HN:(HNnN)Q:(O,x)do:)>
= E (XY )V 0)]) -

Using the stationarity of n”V we note
Mo 1 o ’
[ [ B (8 oA 1 ) drds = ( I NN[nN<s>]ds>
0 0 2 0

Using this to rewrite (3.3) and applying the Laplace transform gives:

N _ > e—)\t N
DN()) = /O (DN (1)t

. 2
oo ~NZ .
= / e Mt + %N2|m|2E </N NN[UN(S)]ds> dt
0 0

1 1 - s
— 5 + ol SE (MY N2 = L)1)
where in the final step we used [4, Lemma 5.1], which allows us to go from an expectation
with respect to the process to one just with respect to the stationary measure. O

Since I(NN) = n" by Proposition 3.1 and I is an isometry of L?(n) and I'L?, the
expectation above can be expressed as

E (J(fN(w2 - £N)*1/\7N) = (N, (AN? = £N)~1gV) .

The presence of the operators AY and A" in £V means finding (AN? — £V)~'n® involves
all chaoses, even though n” is purely in J%. This makes finding an explicit expression
for this term very difficult. To overcome this we will apply a technique first used in [24],
which consists in truncating the generator in chaos, and then using iterative estimates
to obtain upper and lower bounds on the truncated resolvent. We begin by defining the
truncated generator: let P<; be the projection onto FL2< & def EBfLZO ¢, i.e. onto the first
k chaoses and LY = P, LY P<;. Let h™* be the solution to the truncated generator
equation

(A=) pVF =nl, (3.4)

The following lemma was first proved in [24, Lemma 2.1].
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Lemma 3.2. Let A > 0. Then for every k, N € IN we have that

<nN’bN,2k+1> < <nN’ (AiﬁN)_lnN> < <nN,hN,2k> ,

furthermore both bounds monotonically converge to <nN7 (A— EN)_I nN> as k — oo.
Equation (3.4) written chaos-by-chaos takes the form
(A= Lol — AV =0, (3.5)
(A= Lol — AXD — AVpE =0,

(A= Lo)hy " — AY D — ANpg™t =¥,

(A — Lo)pNF — AN — 0.
This system of equations can be solved iteratively starting from the top, which leads to
the following definition.
Definition 3.3. For k > 3 we define the operators

1Y €0 and MY = (AY) (A — Lo+ HY ) AN,
These operators are defined in an analogous way to the operators of the same name

in [5] and thus share some basic properties.

Lemma 3.4 (Lemma 3.2 from [5]). For k > 3, the operators H; are positive definite and
such that for all n € IN the operator ‘H; maps the n-th chaos into the n-th chaos.

Solving the system of equations (3.5) we obtain
BYF = (A= Lo) + HY — AV (A= £o)LAY) ' (3.6)

For the operator —Af (A — Ly)" 1 AY notice the following: consider the subspace 7 of
I'L? generated by 1 supported only on k;.,, which satisfy >i, ki = 0 (for arbitrary n).
The operators Af ,AY and L, all map ¥ into ¥ and the orthogonal complement of ¥
into the orthogonal complement of #'. Additionally, A" vanishes on the intersection of
7 and I'L3. Since n® is in ¥ NT'L3 this implies

(A= Lo) +HY = AVA = Lo) AN 0N = (A= Lo) +HY) "0V, (3.7)

The following lemma summarises the result of this subsection.
Lemma 3.5. Forall A\ >0, N € IN and k > 2 it holds that

(WY, 5N ) = (0¥, (A= £o) + HY) T 0
Proof. This follows from (3.4), (3.6) and (3.7). O

So all that remains is to estimate the operators H}'’s.

4 Iterative estimates

In this section we set up the iterative estimation scheme for the operators . In
order to do so, we first need to give some definitions.

The skew Laplacian L is the linear operator whose action on Fock space is given,
for every p € I'L2, by

n

o def ~ def
LY p(kin) = —5(0- k)1, 8(kia),  where (v k)7, =) (w-k)?.  (41)
=1
EJP 29 (2024), paper 181. https://www.imstat.org/ejp
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The sequence of the exponents of the logarithm in the upper and lower bounds is defined
recursively by

0
05 d:ef() and Ok+1=1— Ek for every k > 3,

and admits the close formula

2 —1\"?
0, = 3 (1 — <2) > for every k > 2. 4.2)

We now introduce some elementary functions, that morally approximate a logarithm to
the power two third. Let k, N,n € Nand ¢ € (0,1). For k > 2, 2 € (0,00) and z € (1,00),
we set

X
L(z,2) ®log(1 + 27 + 2, Li(z,2) ¥ Lz, 2)% , LV(z,2)¥'L, (mZ) (4.3)

The functions above are accompanied by polynomial coefficients, that morally correspond
to errors made in the estimates. For k > 1, those are given by

2m) EKm+k)2T3  and  fiu(n) € 3(z(n))3 (4.4)

where K is a sufficiently large positive constant depending on |tv].

Remark 4.1. The exact dependence of K on |w] is not important for us. However,
following the proof, it is not difficult to check that the lower bound that K must satisfy is

of the kind a(|w| v \rlTl)b for some a, b > 0.

We also note the trivial identities

zg(n+1) =z2p11(n)  and  fi(n+1) = frr1(n). (4.5)

Moreover, in the proofs we use the additional notation

T D, m, kain) B L (102 + ml? + ko) (4.6)
T E0 (L m, ko) € 5 (002 + (0 m)* + (0 F)3,,)

where ks., means ks, ..., k, and ¢, m, ko, ..., k, € Z? are Fourier modes. This is coherent

with the notation used in [5, Section 3]. By the Cauchy-Schwarz inequality, the symbols

above can be compared as follows:

0<I™ < |w|°T. 4.7)

We are finally ready to give the definitions of the operators used for the iterative bounds.
Definition 4.2. For A > 0 and k > 2

g det JSRNVLE (A = Lo, 21 (V) if k is odd,
b ﬁ[LfX()\—Eo,zk(N))—fk(j\/)] if k is even,

where N is the number operator, acting on ¢ € T'L,, by N = ny for eachn € N and X is
the Laplace variable.

We will use the following (quite standard) partial ordering of operators:
Definition 4.3. Given two self-adjoint operators A and B onT'L?,

A<B & VnVeeTlLl (Ap,¢)<(Bp,g) & B-A>0,

where the last statement is taken to mean that B — A is a positive operator.
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For this partial ordering the following well-known lemma holds

Lemma 4.4. For any two operators self-adjoint A and B on I'L? it holds that
0<A<B & 0<B'<A!.

We can now state the bounds on the operators Hy.
Theorem 4.5 (iterative bounds). For every § € (0, 1) and for every k € Z, k > 0 we have

Hoks < conts (L )S2k+3 + forrs(N)(—Lo)) » (4.8)
1
Hokt2 > Cops2 ((—560)52k+2 - W(—£0)> ; (4.9)
where the constants cor 1 and cop42 are defined recursively by setting, for k > 1,
def 1 3 (1+ 557) 3 (1 - 5%5)
Cy = ,  Cok = >1, ¢ = <1
2T a(wPvD) T TN 2nim| e 2527 omlvo| (14 o) coba

and the § explicitly appearing in (4.9) is the same as the one used for defining the S 's
and the ¢;’s.

Note that compared to the structure in previous works ([8], [5]), the upper and
lower bounds are now split into a part multiplying the skew Laplacian £ and a part
multiplying the full Laplacian £y. The second part is used to estimate the off-diagonals,
i.e. we do not absorb them into the diagonal terms, but keep them separate.

Remark 4.6. The two inequalities on odd and even terms of the sequence (cx)x>2 can
be checked by induction, separately on odd and even terms, after distinguishing the two
cases |w| > 1 and |w| < 1. Also, note that ", 55+5 is summable. This implies that, as
k — o0, cop+1 and cop4o converge to two positive and finite limits, respectively larger
and smaller than 1.

We now proceed with some preliminary Lemmas, which will be used to prove Theo-
rem 4.5.
Lemma 4.7 (Decomposition in diagonal and off-diagonal terms). Let Z be a diagonal

operator on I'L? with Fourier multiplier ¢ = ((,)nen. Then, for every ¢ € T'L?, the
following decomposition holds:

()" 2400 = (A2 2480}y, + 32 (A2 24 00)
i=1

where the diagonal terms, given by the first summand, are defined as

def n!n

((AY)" 2AY 0. 0) (10 k1)*B(kin)P(k1n) Y ImCurr (m, kan),

Diag 272
18 Eim J——.

(4.10)
while the off-diagonal terms of type 1 and 2 are respectively given by

def %271) Z (v - (k1 + k2)) (v - (k1 + k3)) ¥

ki:n+1

X @(kl + k?a k37 k4:n+1)$(k1 + kSa k27 k4:n+1)J]]x7k2J£1k3Cn+l(klszrl) (411)

()" 24Y0,0)

off T

and

der n!n(n—1)(n —2)
- 472

(D) z4¥p0) S (0 (hy + k)0 (ks + )

k141

x O(k1 + ko, ks, ksiny1)P(ks + ka, k12, ksins )T ey Ton kGt (Fringr) - (4.12)

EJP 29 (2024), paper 181. https://www.imstat.org/ejp
Page 10/34


https://doi.org/10.1214/24-EJP1249
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

(log t)g-superdiffusivity for the 2d stochastic Burgers equation

The above decomposition is the same as the one used in the proof of [7, Lemma 2.5]
and we refer to [5, Lemma 3.6] for the combinatorics needed for the exact expressions
of the multiplicative factors in front of the sums.

The following two lemmas will be used to bound the diagonal and off-diagonal parts
respectively by estimating sums over only one Z2-valued variable.

Lemma 4.8. Let Z, and 2, be two positive operators on I'L?, diagonal both in chaos
and in Fourier, with Fourier multipliers (* = (()nen, fori = 1,2. If for every n € IN and
for every ky., € Z*"

Z Jé\,[mCrllJrl(ga m, kQ:n) S C?L(kln) ) (413)
L+m=kq
then for every ¢ € T'L?
* 1
(AN) 214Y0,0) < (~L5)Z20,0) -
Diag w2

Moreover, a reverse inequality in the assumption implies a reverse inequality in the
result.

Proof. Recalling the expressions of Af ) (Af )* and L, given in Lemma 2.4 and in (4.1)
respectively, and using hypothesis (4.13), we obtain:

* nln
<(A3Y) ZlAfQ@,QO> S = 72 (m kl) |<10 kl n |2 Z Jl m n+1(€ m, k? TL)
Diag 2w
ki:n l+m=k;
nln - nl R
kin ki:n

= S {(-LD) 2204

The reverse inequality follows by repeating the exact same steps above with the inequality
in the other direction. O

Lemma 4.9. Let Z, and 2, be two positive operators on I'L?, diagonal both in chaos
and in Fourier, with Fourier multipliers (' = ((!),en, fori = 1,2.
If for every n € N and for every k., € Z>"

1
|k2‘ Z W‘Hl]j,m n+1(€ m, ko n) <(: (kl:n)a
L4+m=kq

then for every ¢ € T'L?

™

2ro[2(n — 1
‘<(Af) 2,AY o, > » ‘ < MZ) (=Lo) Z20, ) - (4.14)

If for every n € N and for every ki., € Z>"

Z J] n+1£mk2n)<

1
< Ca (ks
l+m=Fk, |£Hm| |k1|\/ |k1:n‘2

then for every ¢ € T'L?

< |m‘2(n_i)(n_2) ((—L0)Z290, ) . (4.15)

(D) 24 p0)

2 s
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Proof. Following ideas of [5], we define

VneN  ®(kin) = []IkillE (k)] - (4.16)

i=1

We start with the estimate for the off-diagonal terms of type 1, i.e. (4.14). In order
to have more easily readable expressions, we give a name to the coefficient (its exact
expression is only used at the end of the proof):

def [W2n!In(n —1
o () 22 P20 2 1)

By expanding the left-hand side of (4.14), applying the Cauchy-Schwarz inequality and
using definition (4.16), we get

C-S
(ZAY 0, Y o) | < com(m) D Ik + kol oy + ks

k1:n41

X |B(k1 + ka2, ks, ka1 )||P(ky + k3, K2y ka1 IR oy TR, ks Cnr (Frins1)

O (k1 + ko, k3, kaing1)®(k1 + ks, ko, kamy1) o n
= ¢, J] n k1:n .
i, (1) E |k2||k3|1_["+1|k 2 kl,k2 k1, ks G 1 (K1int1)

k1:nt1

We now recall the elementary inequality |ab| < a?/2 + b%/2, true for any a,b € R, and
apply it with the choice a = ®(ky + ko, k3, k4m+1)JI{€Vl)k2 and b analogous. By symmetry,
the second addend that we obtain by this procedure is actually equal to the first one,
and so we obtain the upper bound

(®(k1 + ko, k3, kaint1))?
n ) 2 el T oG (B

Kiint1

Expanding the definition of ®, applying the change of variables k1.,,+1 — (¢, m, ka2.,,) and
finally using the hypothesis gives the desired upper bound:

ki + ko|?|ks||P(k1 + ka2, k3, kan
com (1) 3 k1 + k2| k3] (|li| 2, k3, kang1)[? I G (hmsn)
ki1 2
€+m2k2 @Z—Fm,kgm 2
:Cof—fl(n) Z ‘ ‘ | ||’ni| )|

‘]];Ymcrlwrl (éa m, kQ:n)

£m,koin

Dl Cn (E m, ka. n)
= cot, () Y@k, ko) Pl PR Y TN HT
’“1 n t+m=k,

< [o|?n!n(n — 1) 2lw|3(n — 1)

Z|<P kr, ko) PR 2 (F1n) = 7«—50)52%90%

kfl n

where the factor n was absorbed in the definition of (—L¢) (recall (2.2)).
We now prove the statement about the off-diagonal terms of type 2, i.e. (4.15). We set

det |0[*n!n(n —1)(n —2)
N 472

Coff, (Tl)

and follow the same steps already used for the off-diagonal terms of type 1, even though
the expressions to which we apply them now are slightly different. More precisely, we
consider the left-hand side of (4.15), use the Cauchy-Schwarz inequality, ab < a2/ 2402 /2
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with a = @ (k1 +ko, k3.4, k5:"+1)‘]]11c\£7k2 and b analogous and the change of variables k1.,,41 —
(¢,m, ks.,,). Overall, this gives the upper bound

R 711 (€7m7k2:n)
(ZAY 0, AY0) g, | < coma(m) Do1R s R Pl PRl sl 37 0, 2o e
K1 l+m=kq

Finally, by applying the hypothesis of the Lemma to innermost sum of the expression
above, we obtain the upper bound

an'nn—l k1| k2|

= VIEE

Using |ks| < v/|k1.| the sum above is upper bounded by

D lkallka | B (k1) PG (krin) -

ki:n

Since both $ and (2 are symmetric, we can replace |k ||kz| in this sum by ﬁ i
2

which we further estimate by

7y DIkl < gy S Bl = 2l
i=1

z#] l#J

Doing so we obtain that (4.17) is bounded by the right-hand side of (4.15). This concludes
the proof. O

We are now ready to prove Theorem 4.5. The proof is written separately for the upper
and lower bounds.

Proof of Theorem 4.5, inequality (4.9). We proceed by induction. In this first part of the
proof we show that the (2k + 2)-th lower bound holds assuming that the (2% + 1)-th upper
bound does. In the next part, instead, we will assume the (2k + 2)-th lower bound and
prove that the (2k + 3)-th upper bound holds.

As for all proofs by induction, we need an initial step. We take this to be the lower
bound for £ = 0. More precisely, this consists in showing

0=Ha 2 e ((~L) s (L= o) — (pgress (o))

Since f2(n) > 1 for every n € N, the right-hand side above is negative and thus the
inequality holds for any arbitrary choice of ¢, > 0 (uniformly in n, £ > 1), so we may as
well choose the one given in the statement of the theorem:

o 71
> 7 (Vi)

We now proceed to the inductive argument. Let k£ > 1. Assume by induction that (4.8)
holds for k — 1, i.e. assume the upper bound stated for Hsx41. We want to prove (4.9) for
k, i.e. we want to prove the lower bound stated for Hsx42. We have:

Hopt2 = (Af)* (A=Lo+ H2k+1)_1v4if
> (AY)" (N = Lo+ cain [(—£8)Sakt1 + fortr (M) (—Lo)]) " AY
EAY) Zopa AT,
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where we used the last equation to define the operator 2, 1. We observe that Zs;1 is
diagonal in Fourier and thus, consistently with the notation already used in the other
lemmas of this section, we denote by ¢2**! its Fourier multiplier.

By Remark 4.3, we set out to bound ((AY)" Zs111.AY ¢, o) from below, for p € T'L2.
We recognize an expression of the type considered in Lemma 4.7, 4.8, and 4.9. First of
all, we use Lemma 4.7 to split the scalar product into diagonal and off-diagonal terms:

((AY)" Zops1 AY 0, 0) = ((AY)" Zari1AY 0, @) Diag + ((AY) " Zops1 AY 0, @) (4.18)

Then we proceed to study them separately, starting with the diagonal ones.
Recall the definitions of I and I'"™ given in (4.6). In order to apply Lemma 4.8, we
need a bound on the sum

N
‘]]Z,m

ik A+ T+ conyi forso f“’Lé\QH()\ + T, zop42) + f}

, (4.19)

where we first used property (4.5) to replace zop+1(n + 1) and for11(n + 1) with zo542(n)
and far12(n) respectively and then suppressed the argument of 25,11 and for41, as it is
constant throughout. Inside the sum above we recognize the Fourier multiplier (?**!
multiplied by the product of indicator functions J é\fm, as by hypothesis of Lemma 4.8.

The estimate of those kind of sums is carried out in Appendix A. However, before
invoking it, we do one additional step and lower bound it by:

1 AR

Y |
CQk+1f2k+2 (1 + f2++2) P —— A+T + F‘ULQkJrl(/\ + T, 32k+2)

, (4.20)

where we multiplied A by 14 cox+1 for+2 (@ number larger than 1), replaced the cax41 for+2
factor of I‘Lé\f€+1 by 1+ cop+1 for+2 and finally factored 1 + cox41 for+2 out and used

1 1
1+ copti1fort2 = Copt1fonso (1 + > < cont1fon2 (1 + ) .
C2k+1for+2 Jok+2
As announced, we now apply Lemma A.4 to the sum in (4.20) to lower bound the whole
expression (4.20) by

B s 4
ELAE S |:A2k+2Lé\L+2 A+ [E1nl?, 22012) — (32k+2)92k+2:| ; (4.21)
fart2 | 3

where, in order to increase readability, we set

3 1
Aopra(n) 1 — (|m|cDiag Loy )

ol ) e

def 3
ng+2(n) :e 1 .
22541 (1 + f2k+2(7l))

We now proceed with two additional steps. In the first one, observing that 6o < % for
every k > 0 and recalling the definition of fs; 12 given in (4.4), we estimate the additive
error in the square brackets of (4.21) by

4
g(z2k+2)*

(4.22)

i

1 1
< §f2k+2 < (1 - 2k1+5) fok+o - (4.23)

In the second step, instead, we observe that 92’“% > % for every k > 1, so that

3 1 1
A >1—(|w[Cpiag +2+ — | —F =21 — 1,
2k+2 = (l ‘ Diag |m> (22k+2)§ o1+
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where the second inequality is true because of the lower bound (22k+2)% > 2K%k1+5,
assuming that K in definition (4.4) is large enough.
Summing up, (4.21) is lower bounded by

Bakta ™
for42 [

1
<1 B 21€1+5> (Ldkyo (At [krn [, 22542) — fokt2) (4.24)

and by using the above as hypothesis in Lemma 4.8, we obtain the following bound on
the diagonal term of the scalar product:

« B N 1
<(Af) sz+1AfQO,s0>Diag > <2];_+t2;|) <1 — W) (—C(T)S%+2cp,g0> VoeTL?.

We now proceed to estimate the off-diagonal terms. We want to apply Lemma 4.9,
whose hypotheses require estimates on two sums involving the Fourier multiplier (2*+1,
one for the off-diagonal terms of type 1 and one for the off-diagonal terms of type 2.

The sum that needs to be estimated for the off-diagonal terms of type 1 is

1 I

L+m=k, mix 4T+ Cok+1for+2 f“’LQZH()\ + T, zop42) + f}

, (4.25)

where, again, we first used property (4.5) gnd then suppressed the variable n. By
dropping from the denominator of (4.25) A + I" and all other terms involving the Fourier
modes ky1.,}\ 2}, and by lower bounding LQLH by 0, we obtain the upper bound

N
o R PR

Pt Im| (Im|* + |k2[?) ™ cansforra’

C2k+1 f2k+2

where we estimated the sum by the corresponding integral and applied Lemma A.1 with
= |ko|? and v = 1.
Regarding the off-diagonal terms of type 2, instead, we need to estimate the sum
1 ‘]Iévm

pAR—— [llml x4 1+ Cok1 for42 [F“LQ\LH(/\ +T, 20042) + T

(4.206)

We now observe that the condition ¢ + m = k; implies that at least one between ¢ and
m has norm larger than the one of 1k;. Using this to replace one [¢|?> by |1k;|? and by
applying arguments analogous to the ones just used in the estimate of (4.25), we obtain
that (4.26) is upper bounded by

16 Z 1 JJQ’m _ 1 1
o, TRallml (Iml? 4+ [k1nl?) ™ conra far2 k1 |\ TE1n]?
where we estimated the sum by the corresponding integral and applied Lemma A.1 with

B = |I€1:n|2 and vy=1
Using Lemma 4.9 with the estimates above as hypotheses, we conclude that

Cokt1f2r+2

((AY)" Zoeri A o) ’ + ‘<(Af ) Zarsn Al 0, 0)

Off,
2|t 1o - 1N -2
<C H<< o> (V' — 1) L 2N —1)( )>(_LO)%@>
Czk:+1f2k+2 N) C2kt1far42 (N)
|m|2N2 >
< E 9 )
- <02k+1f2k+2 )( 0y
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where C,g is an absolute constant independent of all variables at play (see (A.1) for
more details). With this we have come to the last step of the proof of the iterative lower
bounds. Recall that we were trying to estimate (4.18) from below. In order to do so, we
split it into diagonal and off-diagonal terms and we bounded each of them separately.
We now put those estimates together:

<(Af)* Zopr1AY o, <P>

> <(Af)*22k+1Af<p,sO>Dmg - ‘<(A$)*sz+1v4$%<ﬁ>o |- ‘<(Af)* Z2k+1v4-]f%<ﬁ>oﬂz
B k (N) 1 o C’Off|m\2./\/2

([P () om0 o0 e
Bok+2(N) (1 — tws) w0\ N 87 Coft 10|\ ?

- < (st~ S0 ) o)

where we first used the triangular inequality and then the bounds established in proof.
Finally, the last inequality is obtained by factoring out the coefficient of (—L§)S2. 4o and

upper bounding both (1 + fziﬂ) and (1— %1%)71 by 2.

At this point, the proof is almost complete. We just need a few more estimates on the
coefficients of the operators appearing in the scalar product above, so that it becomes
exactly the one lower-bounding Hsx 42 in the inequality (4.9) of Theorem 4.5. First of all,
by recalling the definition of fs;2 given in (4.4) and taking K large enough, we estimate

the coefficient of (—Ly) by above by

87 Cog|r0|3n? B 87 Cog |10|3n? - 1
3forrz  9K2/3(n+ 2k 4 2)3+8 = (n+ k)1+o

Finally, we consider the coefficient in front of the square bracket and observe that

Bokro (1= grws) _  3(1= 5pw)
7T|m‘ 27T|m‘62k+1 (]."‘f%#+2

) > Cokt2 s

simply by expanding the definition of Byy,o given at (4.22), lower bounding fsx42 by
2k1t9 and recalling the definition of cg2 given in the statement of Theorem 4.5. This
concludes the proof. O

Proof of Theorem 4.5, inequality (4.8). In this second part of the proof we show that the
(2k + 3)-th upper bound holds assuming that the (2k + 2)-th lower bound does. In the
hope of making the reading easier, we note that the general structure of the two parts is
similar.

Let k > 0. Assume by induction that (4.9) holds for k, i.e. assume the lower bound
stated for Ho,+o. We want to prove that also (4.8) holds for k, i.e. we want to prove the
upper bound stated for Hsx43. Then:

Horrs = (AY)" (N = Lo+ Harp2) ' AY
. 1 !
< (AY) (A — Lo + copt2 |:(_£(‘?)S2k+2 - W(_LO)}) AY

def *
= (AY) ZoppoAY
where we the last equation defines Z5;.5. We denote by (?**2 its Fourier multiplier.
By Remark 4.3, our aim is to bound ((AY)" Z5442A4% ¢, ¢) from above, for ¢ € TL2.
We use 4.7 to split the scalar product into diagonal and off-diagonal terms. We start by

EJP 29 (2024), paper 181. https://www.imstat.org/ejp
Page 16/34


https://doi.org/10.1214/24-EJP1249
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

(log t)g-superdiffusivity for the 2d stochastic Burgers equation

studying the diagonal ones. Recall the definitions of I and '™ given in (4.6). In order to
apply Lemma 4.8 we need a bound on

J]N

- - ~ ) (4.27)
trm=ky A+ T+ ot [fQFTS ( NN +T, 22043) — f2k+3) - W

where we first used property (4.5) to replace zop+1(n + 1) and for11(n + 1) with zo5412(n)
and fax12(n) respectively and then suppressed the argument of 25,11 and for41, as it is
constant throughout. The plan is to estimate this sum by using Lemma A.4, but before
being able to do so we need to manipulate it a bit. While this was also the case for the
proof of the iterative lower bounds, this time the process is a bit more involved, because
not all addends in the denominator are positive. We start by expanding the denominator
and applying inequality (4.7):
B
A+ T, zo143) — conpal™ — e
Tim

ttmeky At (1 — [w[2copt2 — (nffﬁcﬁm) D ZE2pw LN (A4 T, zo43)

2k+3

Pt X+ F + 02k+2 Fm Lé\;chQ

< (4.28)

Now the goal is to factor out the coefficients of T' and of '™ L}, 1o, in the same fashion
in which expression (4.20) was obtained. In order to be able to do this, we need some
control on those coefficients. We start by estimating cox42 as follows:

1 1
< |wf——m——— < = 4.29
2l Tl m Ty S 5 (4.29)

[t0]?copy2 = |w]? .
H]:l (1 + 2]1%)

Thus expression (4.28) is upper bounded by the following:
T

tm=k; A+ (1 - 7r(n+1}Hc)1+5) D+ 22w LY o (A+ T, 2043)

(4.30)

In particular, we observe that the coefficient of Iis positive. Moreover, by (4.29) above

and for a large enough K, we have that ?;’Zﬁ <1- % This means that replacing the

coefficient of I by the one of [ LQL 1o gives an upper bound. Further multiplying A by
cok+2/ for+s and factoring out finally provides us with an upper bound of the kind we
were looking for:

fort3 ‘Hévm
Cok12 o A [+ 1w LY oA+ T, 20043)

l+m=

We are finally ready to apply Lemma A.4 to the sum in the expression above. This
gives us the upper bound

3 < |m\CDiag
T

2|tw| Z2k+3)92k+3) 2k+3 ()‘ + |k n| 22k+3) ,

which, by choosing K large enough, can be further upper bounded by

3 1 9
o] <1+ 2+ 1)1+6> L5 (A + [kinl®, 22643) (4.31)
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Using the bound provided by expression (4.31) in the hypothesis of Lemma 4.8 (and
recalling the coefficient that was in front of the sum before invoking Appendix A), we
obtain the following upper bound on the diagonal part:

((AY)" Zapr2AY 0, 0)

<<f2k+3<N) 3 <+ 1
- Cok+2 27T|m‘ 2(/€ +

<3(1+2<k+11>1+6)

27r|m\ch+2

Diag

i ) (CEDESs O (o). 2akra) )

(_ESJ)SQAI/;Jr&SDa <P> .

Let us now estimate the off-diagonal terms. We want to apply Lemma 4.9, whose
hypotheses require estimates on two sums involving the Fourier multiplier ¢?**2, one for
the off-diagonal terms of type 1 and one for the off-diagonal terms of type 2.

The sum that need to be estimated for the off-diagonal terms of type 1 is

1
kol > T ! ) , (4.32)
tmety TN+ T 4 Coppa [f e (L%+2(A+F722k+3) - f2k+3) ~ T

N
‘I[Z,m

where, again, we first used property (4.5) and then suppressed the variable n. As was
the case for the diagonal terms, we will first manipulate this expression a bit and then
apply to it a lemma proved in the appendix. By dropping from the denominator of (4.32)
the Laplace variable A and all terms involving the Fourier modes k{i.,}\ (2}, by lower
bounding Lé\; 12 by 0 and by applying Cauchy-Schwarz (4.7), we obtain the upper bound

Ak 1 Tom 1

. T | 2 2\ ~ . )
(1 — [w[*cop 42 — (nff%k)é) L+m=k: [m (jml* + [ka[?) (1 — |w[2copt2 — (nff%k)a)

where we estimated the sum by the corresponding integral and applied Lemma A.1 with
= |kz|? and v = 1.
Regarding the off-diagonal terms of type 2, instead, we need to estimate the sum

1 Tp
tm _ . (4.33)
I

Cm— [llml X + T + Coky2 {f%; ( Dera(A+ T, zo43) — f2k+3) ~ TR

We now observe that the condition ¢ + m = k; implies that at least one between ¢ and m
has norm larger than the one of %kl. Using this to replace |¢|? by |%k1 |2 and by applying
arguments analogous to the ones just used in the estimate of (4.32), we obtain that (4.33)
is upper bounded by

16 Z 1 ‘]]afm
b 2 2
(1 _ |m|2ch+2 _ (nffiii)&) oy [Faliml (Im]? + [k1n )
7.‘,2
o (RS —

where in the last inequality we estimated the sum by the corresponding integral and
applied Lemma A.1 with 8 = |k;.,|?> and v = 1.
Using Lemma 4.9 with the estimates above as hypotheses, we conclude that:

‘<(A4]Y)* Zokra AV @, SD>OH1 ‘ + ‘<(Af)* Zorra AV @, SD>Off
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scoﬁ<< 2PN —1) R )W - 2) >(_£O)W>

L= IwPearss — i 1 IwPears = iify

|2N 2
< COH < | | Colkt2 (_CO)¢7¢> )

1 — [w|2copq2 — NH1I+R)®

where C\yg is an absolute constant independent of all variables at play (see (A.1) for more
details).

With this we have come to the last part of the proof of the iterative upper bounds.
Recall that we were trying to estimate ((AY )" 2,424 ¢, ¢) from above, for ¢ € I'L2.
In order to do so, we split it into diagonal and off-diagonal terms and we bounded each
of them separately. We now put those estimates together:

<(-AJJ\:)* Zopr2AY 0, <P>

< ((AY)" ZarsaAp, *”>Diag + ‘<(Af )" Zas2AY 0, 0)

+ ‘<(Af)* Zopr2 Al ¢, <P>

offy offz

3 (1 + %) 2772
(k+1)1+3 N Coff|m| N
< St I P
< 27T|t'0|C2k+2 2k+3 1-— |m|202k+2 _ (/\/-52-)17:-216)?’( 0) P, P
3 (1 + %) Irl3 2
(k1 N 7Cogt|t0]°cappo N
= S + C2k —L ) ; (4.34)
< 27T|mlc2k+2 2k+3 1-— |m‘2c2k+2 _ ﬁ( 0) "20%

where we first used the triangular inequality, then the bounds established in the
proof and finally factored out the coefficient of SJ),,, together with the estimate
-1
(1 + W) <1.
At this point, the proof is almost complete. We just need a few more estimates on
the coefficient of (—Ly). First we multiply and divide it by for+3 and then we use the

estimate

7Cogt |10|3cop o n? Cogt|10[? n?

<1
¢ 2/3 346 —
(1 — |w|2cop42 — (nfﬁri)a’) Jok+3 K2/ (n + k)

which holds for K large enough. This tells us that expression (4.34) is upper bounded by

3(1+ %4—5
< ( 2(k+1) ) (SDevs + forssN)(—Lo)) 90,80> .

27T‘m|02;€+2

Since the fraction in the above expression is exactly the definition of co;13 given in the
statement of Theorem 4.5, the proof is complete. O

5 Proof of the main theorem

We will now use Theorem 4.5 to prove Theorem 1.1.

Proof of Theorem 1.1. The strategy of the proof is the following. First of all we apply
Proposition 3.1, so to reduce our problem to the one of finding estimates from above and
from below on the quantity (n", (AN? — £¥)~!) n’N'). This is done by using the upper
and lower bounds provided by Lemma 3.2, which we first simplify thanks to Lemma 3.5
and then further estimate with Theorem 4.5.

We start with the upper bound. We have

<nN, (AN? —,CN)_lnN>
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< <nN, ((AN? = Lo) + Hé\;_;'_Q)_l nN>

< <nN, (()\NQ — Lo) + Cokt2 ((—56“)52k+2 - W(—%)))_ nN> ,

where the first inequality follows from Lemma 3.2 and Lemma 3.5 and the second one
from estimate (4.9) on Hai42 given by Theorem 4.5. Recalling the Fourier expression
of n¥ given in (3.2), the above scalar product is exactly twice the sum (4.27), written
for n = 2, ko., = 0, k; = 0 and Laplace variable AN2. Following exactly the same steps
performed there (compare with (4.31) and include the factor that multiplies the sum to
which Lemma A.4 is applied), we obtain the upper bound

fort3(2) 3m

1 N 2
o (1 e ) B G220

By recalling the definition of LkN, fokas and z9x4 3 given by (4.3) and (4.4), we can further
estimate it by

9K 3 (2k +5)3H0 x 1 2,3
e G M F R § (A,K?k 5 +5)
- o) U 2y s ) Lewes (2k +5)27"2

,S C(|m‘)k3+5 ((log (1 + )\71))92k+3 + k%Jr%é)

= Ol [+ 1o (14 27))" 7 4 k59 (1o (14 07)) ]

2
3

x (log (1+A71) (5.1)

where in the inequality we used both that cy42 is bounded away from 0 and infinity
uniformly in k. Expression (5.1) provides us with a valid upper bound for each value of
k, with the best one being the one that minimizes the factor in front of (log (1 + )\_1))§
We choose

k=k(\) = [(log4) " logloglog (1+A"")] , (5.2)

which is greater than or equal to 0 if ) is such that 1 + A~! > ¢°. Recalling the close
formula for 0y given in (4.2), this gives us the estimates

4

1 <1) [(log4)*1 loglog]og(1+>\—1)J

2
Oak(n)+3 = 3t3

3 3loglog (1 +A~1)’

k3+5 3+

log log log (1 + A" )

=

5 5

< ( ) ’
L= +s0 (log (1+>\ )) § (logloglog (1+/\ ))7+%6 (log (1+)\71))_
(log (1 + )\—1>)92k+3*% < (log (1 + )\—1)) 310g10g(11+k 0 _ \[7

where the second inequality in the second to last line is justified by the fact that the
left-hand side goes to 0 as A — 0.

Summing up, upper bounding expression (5.1) by the estimates above and recalling
the expression of DV ()\) derived in Proposition 3.1, we obtain

DN(\) = % + i2|m|2 <nN, (ANZ — L)~ nN>
CURD (10g o 1og (1-+ 1)) (10g (14 A7) F

2
3

2/\

Since the above inequality holds for every IV € IN, taking lim sup_,., on both sides and
observing that log (1 + A™!) ~_,o [log(\)| proves the upper bound of Theorem 1.1.
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We now proceed to the lower bound. We have

<11N7 (AN? — £N)71 nN>
> <nN, ((AN? — Lo) + H%H)_l nN>
> (0, ((AN? = Lo) + cata (~L8)Saws1 + farin(M)(=La))) 0™

where the first inequality follows again from Lemma 3.2 and Lemma 3.5 and the second
one from estimate (4.8) on Hsr+1 given by Theorem 4.5. Again, recalling the Fourier
expression of n’V given in (3.2), the above scalar product is exactly twice the sum (4.19),
written for n = 2, ks, = 0, k1 = 0 and Laplace variable AN?2. Following exactly the same
steps performed there (compare with (4.24)), we obtain the lower bound

3r 1 1 1
—_ 1-— L /\N2, 2)) — N .
[ro| copq1 < 2k1+5) fors2(2) [ 2k+2( Zok+2( )) forta( )]

Recalling again the definitions of LQ’ , fok+s and zox43 given by (4.3) and (4.4), and using
the fact that cox41 is bounded away from 0 and infinity uniformly in &, the above is further
lower bounded by

™

|to|copy 1 K3 (2k + 4)3+9
3 Ok 12
O (1o (14 A1) + k3+39) ™

[L2k+2 <)\, K2k + 4)%+%5) —3K3(2k + 4)3+6}

~ T3t
C(|w]) 1 —1y\ 3

> _ log (1+A71))%,  (5.3)
B (o (14 A1) 37020 4 f(3+30) (3 -0ars2)) (log (1 +271))

where we have used that fact that Lo 5 goes to infinity as A — 0 to absorb the —1 in the
multiplicative constant. As before, this gives a valid lower bound for each choig;e of k, this
time with the best one being the one that maximizes the factor in front of log? (1 + )\_1).
We use the same choice made for the upper bound, namely (5.2). Recalling the close
formula for 0 given in (4.2), this gives us the estimates

=3 3loglog (1+ A1)’

Oor(r)+2 311

B 9 9 /1 [(log 4) ™" logloglog (1+A™1) | 9 1
3 3

1 (1+)\—1))310g10g(11+>\*1) — %7
9438

(
]g(%Jr%‘s 2 —0242) (log log log (1 + A" )) 6 log log (14+2~1) < %7
k3T < (logloglog (1 + A~ ))3+5 ,

(log (1 + A~1)) (5 0ns2)

IN

with which we can upper bound all terms that appear in the denominator of (5.3).
Summing up, lower bounding expression (5.3) by the estimates above and recalling
the expression of DV ()\) derived in Proposition 3.1, we obtain

DN\ = % + %|m|2 <nN, (AN? — L‘N)_l nN>
C(|w])
/\2

2
3

vV

(log log log (1 + )\_1)) (log (1 + A" ))

Since the above inequality holds for every N € I, taking lim inf 5y_,, on both sides and
observing that log (1 + A™!) ~_,0 [log(\)| proves the lower bound of Theorem 1.1. O
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A Replacement lemmas

The present Appendix is devoted to estimating sums corresponding to the hypothesis
of Lemma 4.8 in the context of the proof of Theorem 4.5.
We start by stating some useful identities and setting up some notation.

Lemma A.1l. Forevery 5 > 0 andy > 0

oo 1 T

sdr = T ) /7T ! 540 = :
o B+ar 2v/ By o B+7(cost) VBB +7)

The proof is omitted, since it is a change of variables of standard integrals.

Since this Appendix concerns expressions involving a large number of variables, and
it is of technical nature anyway, let us list them all here once and for all, together with
their range:

Ae (0,+00), z€(1,+00), Lmyki,....k, €7, NcN, kelN, k>2, wecR?.
(A.1)
In particular, the constant that we omit when using the notation <, which was introduced
in subsection 2.1, is independent of all variables listed above.
Let us start by introducing some additional notation:

«@ dZEf Oé()\, kl:n) dgf

def &
)\+‘k1:n|27 an :e mv

def def wg n % (|k51;n|2) 7 o def (0, m, ko) def (to - 6)2 + % ((m . k‘)%n) .

I = F(ﬁ,m,k‘g;n) =

Recall also the definitions of I and '™ given in (4.6). It is useful to observe that

~ 1

T=T—0-k, T°=TI"—(0-Fk)-0), <I<I<T. (A.2)

5 =
Finally, we take note of the following derivatives, that will be needed later on:
N2
z(x + N2?)’

1

0z L(z,2) = *m )

OuLy (2, 2) = =0y, (LY (2, z))ek_l
Our goal is to study sum (A.3) below, which is the one that appears in the estimates
of the diagonal terms in Theorem 4.5. First, in Lemma A.2, we replace the sum with an
integral. Then, in Lemma A.4, we replace this integral with another one, which admits
an explicit primitive. The first replacement comes at the price of an additive constant,
the second one at the price of a lower-order term.
We set
~ def ~ N
SE S\, N, k, kyp, 0) & __m (A.3)
HmﬂﬁA+F+{WLg(A+FJ)

1L I\, N, &, k., 10)

d_ef b 1 1
N /0 /0 (r+an)ir+anx+1) (1 + |2 (cos 0)2LY (NQ(r—I—aN),z))

The definition of I is motivated by the change of variables (A.19) below.

drdf. (A.4)

Lemma A.2 (From sum to integral). There exists a constant Cpi.g > 0 such that
S — 1| < Cpiag
for all in A € (0,+0), z € (1,4), k1., € (Z2)", N € N, k € IN such that k > 2 and

w € R2.
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Remark A.3. The proof of Theorem 4.5 would work even if Cp;,, depended on || (up to
changing the constant K). In the following proof, however, showing that Cp;,, does not
depend on tv does not come with any significant additional difficulties.

Proof. The proof proceeds through a number of steps, each of them consisting in slightly
modifying the expression of S, at the price of an additive constant, so that it becomes
closer to the one of I. More precisely, set Sy 'S and Se %1, Then forall i € {1,...,6},
step 4 consists in showing |S;_1 — S;| < C;, where the S;’s for i € {1,2,3,4,5} will be
defined in the proof below and C;’s are some absolute constants independent of all
variables at play. Compared to [7, Appendix A], we are faced with some additional
technical difficulties, coming from the fact that our equation is in the strong coupling
regime.

Step 1 We define S; by replacing the condition |k;| < N, contained in J é\fm, by k1| < N/2.
In doing so, we lose all summands of S corresponding to £ +m = k; € [N/2, N]. Without
loss of generality, suppose |¢| > N/4. The computation

i 1 Ly - 1

|S _ Sll <2 {N/~4§M‘~§N} {|k1 ZLSN} S Z = e
pimer AT+ (A+D2) T g 1
FElklsN N<je<N

completes step 1.

Step 2 We define S; by

5,8 3 I 1<k |<v/2)
2 = .

o AT LN (A 4T, 2)
With respect to S;, we replaced I and I'™ by I" and I'™ respectively. Using relation-
ship (A.2) on I'™ and the triangular inequality, we get that

[S1 = So| < 3 - fl+B+D |
o AP ATRLY (AT )] AT TRLY (AT 2)
1< 1] |mI <N, [k < X
(A.5)
where
y det B Fm(L;ZgV()\+I’,z)—LfCV()\+f7z)) 7
D (- kp)(ro - OLY (A—Ff‘,z)‘ .

We estimate (A.5) by considering the terms with A, B and D separately.
First, by droppiqg some terms from the denominator of (A.5) (they are all positive)
and using (A.2) for I, we obtain the following upper bound for the A term:

1€ kil k] k;l <
~ 1, A6

L+m=k; |E|<N
1<e],lm| <N, [ky |< X

where one can check that the constant on the right-hand side of (A.6) above is indepen-
dent of k; by splitting the sum into the two regions |[¢| > |k1| and |¢] < |ky].
Then, by the mean value theorem applied to the function L{ev and the interval [a, ],

where a & (A+T)A(A+T)andb of (A+T)V (A +T), we obtain
N2

B<T® sup |————~
y(y + N?)

~ 1
E - sTosie R,
vela. r
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where we estimated the derivative of L}’ by first using ; — 1 < 0 and L}’ > 1 and then
lower bounding y + N2 > N2, so that N? cancels. Finally, we used (A.2) again. Thus, by
dropping A and I'" from the second factor in the denominator of (A.5) and lower bounding
Lfg\' by 1, the term of sum (A.5) corresponding to B is upper bounded by

Z re M k1| Z |£ kl

iy TTT® iy
where the last inequalities follows from the same argument used in estimate (A.6).

Finally, we need to bound the sum corresponding to the D term. First of all, observe

that if v - k& = 0, then D is identically 0 and so in the following we can assume tv - k; # 0.
In particular, this guarantees that for every ¢ (and for every § when we will write the
integral) the denominator in the following expressions does not vanish. We then drop
some terms from the denominator, so to obtain an upper bound in which the function L{f
has simplified:

> - ko OLE (3 +T.2) (10 k1) (v0 - )]

Pt [m;y ()\ + f,z)} R N (CRO A CRHI L
1§M|,|m\§N,|k1|§% -

Finally, we check that the right-hand side of the above can be upper bounded by a
convergent series whose sum, as usual, does not depend on any of the variables at
play. We do this by passing to an integral. This is justified after excluding ¢ such that
, which can be treated separately. For more details see Step 5, where this is
done carefully for the main term. We write this integral using polar coordinates:

27 27
(- kl)”mHCOS( )‘T / / |(ro - k1) Ht‘oHcos( )|
—drdg = drdf
/ / [[vo|2(cos 0)2r2 + (1 - k1)2 Iro[2(cos 0)2r2 + (- k)2

T [ (- k1)||m||005( )|
_2 0 +/Jw]2(cos0)2(rv - kq)2

drdf = 72,

where we used Lemma A.1 to compute the integral in r.
Thus step 2 is completed with C5 equal to the sum of the three constants with which
we have estimated the sum corresponding to the A, B and D terms.

Step 3 We define S; by

g def Z er\fml{glkl\SN/?}

3 = .
o AT+ (o 02LY (A +T,2)

With respect to Sp, we have replaced I'™ by (v - ¢)2. If (v - k)., = 0, we do not have

anything to prove. Otherwise, we estimate

Sy — 83| < ) (v k)1, Ly A+T,2)
~ = AN+T+TPLY (A+T,2)] [\ +T+ (v-0)2LY (A+T,2)]
1<[2],|m|<N, |k |[< Y
DY (v - k)%,
- (0 0)% + (w0 - k)T, ] [0 + [F1n]?]

1<|g|<N

27 (m k)
/ / (w2 (cos 6)2 + (w >2n><r2+\k1m|2>d9d’"

5/ ) dr
0 ’“2+|k1="‘2 \/(m-k)l;n((m%)iwr\mIQTQ)
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where we first dropped A + I' and (w - £)2LY from the first and second factor in the
denominator respectively, then simplified L{CV and finally used Lemma A.1 to estimate
the integral in 6. Before moving from the sum to the integral, one once again needs to
exclude ¢ such that |to - ¢| < |w]|. These can again easily be treated separately. We now
simplify the multiplicative factor (r - k)7 in the denominator and drop the additive one,
so that we can simplify r and obtain the upper bound

/N ki 1 ol 1
0

L =1,
72+ ki |? [0 ol Tk [?

where we applied the Cauchy-Schwarz inequality to the numerator and estimated the
integral by using Lemma A.1. This concludes step 3.

Step 4 We define S4 by

def La<jganyacimi<nyzy
B4 = Z AT+ (w-0)2LY (A +T,2)°
L+m=k; k ’
With respect to S3, we have removed the constraint 1y, |<y}. More precisely, we are
adding to S3 the terms indexed by the set
{tmeZi:t+m=k, k| <5, || <N, |m|>N},
which is contained (thanks to the extra condition on |k;| imposed in step 1) in

{tmeZy:t4m=rky k| < ¥, [0 <N =5}

The sum over this last index set can be bounded as done in step 1.
Step 5 We define S5 by

def Liz1<1y
S5 = = dzx . A7
o [ o TR G (Ve T a7
We set QY = tef [E -5 E — f] C R? and by multiplying and dividing S, by — ~z We obtain
¢
Si= D lu<wemlosing<) /QN Iy () de, (A.8)

l+m=k £

where we denoted by /I the integrand of S5 (without the indicator function 1y,/<13). To
show |S4 — S5| < C5, we write S5 as the sum in £ of the integrals over Q{,V. Since for large
N the summand Iy(x) changes very rapidly when z and to are almost orthogonal, we
will treat this case separately. Note first that

3 Lagenypgimisn/2igew <o) <3 L{jew|<irl} <1.

A+T+ (w-€)2LY (A +T,2) €]

L+m=ky 040

For the integral note that {J ., <,, @/ is contained in {z € R? : [z - w| < £ |w][}. Using
this we see

dx</ xdx</ / ———dzydzs <
Z / [ro-z|<Z || 0‘+| |2

1<|¢|<N

ro-£]<|ro]
where we used a change of variables in = (i.e. scaling by V) and the fact that o > 1 as
well as Lemma A.1. Also note that the = appearlng in the rewriting of S4 (A.8) but not in
Ss, are contained in {z : 1 < [z[ <1+ 3 } and

/ In@dz S s [Iy(@)] S 1.
<lz|<1+57 1<]e| <1475
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It thus remains to show that

> / lIn (£) - In(z)|dz S 1. (A.9)

1<|¢|<N
|€-10] >

In order to prove (A.9), we estimate, by the mean value theorem applied to the function
Iy and the line segment [+, z],
1
|IN (%) - IN(x)| < sup |VIn(y)] ’% - ac| S —=(E+F+@G), (A.10)
yeQY N

where E, F' and G are the suprema over Qé\’ of the the norms of the three terms in the
expression of the gradient below:

N(N2(|z|? (=01) (r0-2)* (LY (N (|z[*+on) 2)) =k
_EVIN( ) _ T+ (m . x)Lk (N (|§E| + aN)7 Z)m + k (\m|2+aN)(|fL"2+04N:]’1) .

(an + a2 + (v - 2)2LY (N2(|2]? + an), 2))°

(A.11)
Since each Qe has an area of NQ, we need to show that
> E+F+GZN°. (A.12)
1<||<N
[£-r0]> 1|

Note first that for all £ such that |/ - tv| > || and |¢| > 1 and for all z € QY it holds that

<1>H<| |<<1+f>’N‘ (A.13)

(1?) ‘m~]€‘§|m~x|§ <1+\f) ’m~]€7‘.

|| <N
sup i
weQ) (an + |22 + (0 - 2)2LY (N2(ja]2 + an), 2))? If\

For E note that

For F note that
o - LY (N?(|2]* 4 an), 2)|w] < NVPIw|
2eQY (an + |22 4 (v - 2)2LY (N2(|z|? + aN),z))2 ~ P - 4]

where we used one of the factors of the denominator to cancel the LY in the numerator.
Now note again by (A.13) that

ro o
> s/ T
[€]2[ro - £] Jo-ro|>(1— 2)|w| |Z[?[W0 - |

1<|e|<N
[£-v0|> o]

Finally for G by similar arguments G < 53 , (note that 0 < 6, < 1).
This completes step 5, with Cj5 equal to the sum of the three constants with which we
have estimated the sum corresponding to the F, F and G terms.

Step 6 Let 0, be the angle from the first coordinate axis to tv. By successively performing
the change of variables x — r(cos f,sin @) and 72 — r, we first rewrite S; as follows.

r

2m
S5 = drdf
’ /0 /0 2+ an + 2w cos(0 — 0)LY (N2(2 + an).2)
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drdf

27
1 1
_/0 5/0 r+ ay + w2 cos2(d — 0,)LY (N2(r + an), 2)

1
= drdé, (A.14
A A r+aN+r|m|2(cosﬁ)2L,1f (N2(r + an), 2) )
where in the last equality we used the m-periodicity of the integrand as a function of 4.
We then recall the definition of Sg dﬁfl given in (A.4). We observe that the absolute value

of the difference between (A.14) and (A.4), after the simplifications that occur, is upper
bounded by

/ / (r+ an)?(1 + [w|*(cos 0)2LY) + ay|w|?(cos 0)2LY drdo

[r + an + r|w[2(cos §)2LY ] [(r + an)(r + an + 1)(1 4 |w[2(cos §)2LY)]

(A.15)

where we omitted the argument of Lfcv for ease of reading. We thus study the two terms

corresponding to the two summand of the numerator separately. The first one can be
estimated by

™ 1
1
// ”O‘N) arav< [ [ s <
[r+ an][(r+an +1)] o Jo rtanv+1

and the second one by

ay|r|?(cos 0)2LY ,
/0 /0 [r + an] [(r—f—ozN)(r—FozN+1)\m|2(0059)2L§CV]d a9
_ aN r
_/0 /0 (w0 Fan 41

1
SQN/ 12dTO‘N<1 ! >§1
o (r+an) oy l+an

This concludes step 6 and with it also the proof of Lemma A.2. O

Lemma A.4 (From integral to estimate). Recall the definition of S given in (A.3) (in
particular that it depends on k). There exists a constant Cpias such that, for any even
k>2,

S <

3T 1 |m|C’Diag
2|ro| 2041

whereas, for any odd k > 3,

- _ 3w 3\ 1 4
S>—— |{1—(|0|Cpiag +24+ — | — | LY (a0, 2) — =20+ | A.17
2 g | (1 (1wl + +|m|)zzk> el #) = 32 A17)

> rr (A [kinl?, 2) (A.16)

uniformly in X € (0,+00), z € (1,4+0), k1., € (Z3)", N € N and 1o € R2.
Proof. By applying Lemma A.2, we immediately get
1S — 1| < Cpiag - (A.18)

The task now is to obtain bounds on I, whose definition was given in (A.4).
We start by proving the statement for k > 4, which corresponds to 6, € [$,3]. We
first transform integral I with the change of variables

—1
uw=L" (N?(r+an),z) =1lo <1+ )+z, du = dr,
(N v):2) & r+an (r+an)ir+any+1)
(A.19)
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which gives

7w LY (a,2) 1
I=/ / dfduw . (A.20)
0 JLN(N2(14an),z) L+ [W]?(cos 0)2uf*

By then integrating in 6, using Lemma A.1 with v = |w|?u% and 8 = 1, we get

™
7(11 - 12) )

LY (a,2)
/ I
LN (N2(14an),z) /1 + [w]2uf* |ro

where 11,15 > 0 are defined by

def

I, = I, =

/LN(a7z) 1 d def /LN(a,Z) 1 + 1 d
——du, — u.
LN (N2(1+an),z) Vulk LN(N2(1+an),2) \ V[W]72+ufe bk

The integral [; is the one announced in the general strategy explained before Lemma A.2.
Indeed, it can be computed explicitly:

(LY 2)™ " (IO aw) 2)™ L) LY V(L +ay).2)

I, =
! Or+1 Or+1 Or+1 Or+1

(A.21)
It is precisely this computation that gives upper and lower bounds of the form logarithm
to the power 0, with the sequence of powers (6;);>2 converging to 2/3. The integral I,
instead, is regarded as an error term and can be estimated by

LY (a,2) /]2 + ufr — v/ulr
12 :/ du
LN(N2(14an),z)  Vude /|| =2 4 ubr
LY (a,2) Or 01—2 — /ubr
/ Vus + w72 - vul

<
T JLNV(N2(14an),2) Vuls v udx
LN(a,z) 1
= ‘m|_1/ Tdu
LY (N2(1+an),z) & *
- (LY (0,2) " = @YV +aw).2) ] (A.22)
(1 — 6k) 7 ’

The inequality
0
0k+1_(1_0k): ?k >0

shows that Io(N) = on— 00 (I1(IV)), so that I, is indeed of lower-order in N with respect
to Il .
We now have everything we need to conclude the proof in the case k > 4. We first
show the upper bound (A.16). Inequality (A.18) and the above steps give
s

S< ol (11 = TI3) 4 Chiag - (A.23)
Then, by plugging (A.21) and (A.22) into (A.23) above and dropping the negative terms,

we obtain

& 7T Or41
S< LY (o, 2 C
=~ |m|(9k:+1 ( ( ) )) + Diag
0
T ( N(a ))ekﬂ Le (LN(a, z)) kt1
|m|9k+1 ’ Dlag Zek+1
3 |t‘0|CDiag N
ST (1 + o) Tl 2), (A.24)
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where we observed that, for k even, 0,4, € [%, 1]. What we obtained is exactly the
claimed (A.16).
Finally, we prove the lower bound (A.17). Inequality (A.18) and the above steps give

~ ™
S>—(; — L) — Cpiag -
= |m|( 1 2) Diag
By dropping the second term in the square brackets in (A.22) and using 1 + ay < 2 to
estimate the negative term in (A.21) by Ly, 1 (1 + ay, 2) < (log2 + 2)%+1 < (log 2)%x+1 +
2%%+1, we obtain

~ LN ’ Ok+1 log 2 Ok+1 011 1 B
S > h%\ ( (Zé Z)) _ (Ofg ) B Zg B = (LN(Oz,Z))l 0| i
k+1 k+1 k1 |w](1 —6k)
3 |m|CDiag +2 3 N 4 0
1-— —_ Ls _ Uk
- Q\m [( 20k+1 |m|z% k+1(avz) 32
3T 3 1 4
T [(1 - (|m|CDiag +24 IM) 0k> Lo, z) — 3z9k+1} , (A.25)
272

where for the first inequality we observed that, for k odd, 61 € [3, 2] and then applied
similar steps as the ones used to obtain (A.24), whereas in the second one we used that
Ok+1 > %". What we obtained is exactly the claimed (A.17).

If k = 3, we proceed as above until we reach we reach (A.20). At this point, we do
not need to split I into I; and I, since in this case I already admits an explicit primitive.
Indeed, by first using Lemma A.1 to integrate in 6 and then applying the change of

variables v = 1 + |w|?u, we obtain
27
I: W\/ 1 + ‘m|2u

LY (a,z)

3

LN(N2(14+an),z)

so that

S > 1 — Chiag

3w |m|CDiag N 4 1 8a
ST (- BE=Diee ) p — 2 — +1og(2
2|m| [( 04 4 (a,z) 3 |m‘2 + Og( ) +z

3m 3 1 4
1= (|0|Cpiag +2+ — | — | LY (a, 2) — = 2%
2] K (' (Com * *|m>z@4> R ]

where we recalled that 6, = % and followed steps similar to the ones with which we

obtained (A.25). The claimed A.17 immediately follows by the trivial 6, > %4.

Ifk=2, L{CV = 1, because 6y = 0 by definition. In this somewhat degenerate case, we
estimate from above I, defined in A.4, using the following steps. First apply Lemma A.1
to integrate it in 6. Then lower bound the resulting factor (r + ax +1) in the denominator
by 1 and integrate in r. The upper bound obtained in this way is

1
) < LY (A+ [kl 2) - (A.26)
ay o]

™
o]

Finally, the stated (A.16) follows from (A.18) and steps analogous to the ones that
concluded the case k& > 4. O

log (1 +

Remark A.5. In inequalities (A.24) and (A.25), we first go from an additive error to a
multiplicative one, which is easier to iterate, but increases complexity, and then decrease
complexity by estimating L™V (o, z) by z. This is quite rough, but otherwise the iteration
would give more and more complicated bounds at each step.
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B Heuristic derivation of the Green-Kubo formula

In this Appendix we give a heuristic derivation of the bulk diffusivity formula (1.3).
Consider the equation on the full space regularized with Fourier cut-off 1 with
regularized white noise:

1
o = §An + 10 - V(n)? + V- T1,E, (B.1)

where II,£ is a space time white noise, regularized in space by a cut-off in Fourier
at level a € (1,00). It can be seen using techniques adopted in [4] that this equation
still has a unique solution, existing for all time, and this solution is a strong Markov
process invariant under translations in space and time. The invariant measure is given by
regularized spacial white noise n%, regularized by the same cut-off as I1,£. We consider
the equation run at stationarity, i.e. started from 7“. Since the noise is regularized, 7
will be a continuous function and therefore we can evaluate it at space-time points. This
allows us to define the correlation function

S(t,l‘) = E(n(t>x)77(07 0)) )

fort > 0 and z € R?.

The bulk diffusivity is commonly defined (see e.g. [34, 30] for examples from discrete
systems and [2] for a continuous example in d = 1) as the matrix (D;;(t))i<i j<2 with
entries given by

1

Without loss of generality assume that tvy = 0, then the reflection symmetry of the
system in the second component gives D15(t) = D23 (t) = 0. We will work with the bulk
diffusivity as defined in [5]

1
D) = g [ JeStt.a)da,

which can be interpreted as (1/t times) the variance of S(¢,-) seen as a density. In a
particle system this would be the density of a second class particle started at the origin.
This definition of the bulk diffusivity can be connected to the bulk diffusivity matrix
above by taking the trace, see also the remark at the end of the section.

We now want to show that this definition of the bulk diffusivity is heuristically
consistent with (1.3). To do this assume that S(¢, x) decays fast in |z|, noting that for the
linear case (i.e. tv = 0) it is the density of a multivariate Gaussian. Also assume that
S(t,-) integrates to 1 for every t. At time ¢ = 0 this is true by the law of the stationary
measure, since cutting Fourier-modes larger than 1 is equivalent to convolving with a
mass 1 bump function. For later time it formally follows from the conservative nature of
(B.1):

S(t,x)dx = /

R2

E(y(t, 2)7(0,0))dz = E (n(o, 0) /}R 2 n(t,x)da:)

-
_E (n(o,o) /R n(O,x)dx) = [ s =1,

where the third equality follows from an integration by parts, because the entire right-
hand side of (B.1) can be put in divergence form. Integrating (B.1) in time, multiplying
by n(0,0) and taking expectations we obtain:

S(t,x) =5(0,z) + %/0 AS(s,z)ds + /O/E (N(n)(s,2)n(0,0))ds, (B.2)
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where the noise term disappears because it is centered and independent of 7(0,0), and
N is
N(n) =w - LV (TTyn)°

We will integrate the terms on the right-hand side against |z|?> and divide them by 2t one
by one. The first one does not depend on time before dividing by 2¢ and so will vanish for
large t. The second one is

I I
—/ |z|?AS(t, z)dz = f/ S(t,z)dz =1.
4:t 0 R2 t 0 R2

Finally let us consider the third one. Using that A is quadratic in n and 7 is Gaussian we
see that

E (N (n)(s,z)n(s,0)) =0 (B.3)
and so we can we rewrite

/ [2l”B (W (1) (5, 2)n(0, 0)) der = / 2B (W () (s, 2) (7(0, 0) — (s, 0))) de
R?2 R?2
= [ JoPE (W) @)Bea (5, 0) - 7(0.0))) d
RZ

where E¢. is the expectation with respect to the law of 7(r, x) et n(s — r,z), conditioned

on &, def 7(0,-) and IE is the expectation associated to the law of a (mollified) spacial

white noise £,. Furthermore we used translation invariance of £*. The time reversed
process 7 satisfies the equation (B.1) with a changed sign in front of the nonlinearity and
a different noise with the same law, that is independent of £*. Using this we get

E (A(€"))Ber(7(5.0) = 7(0.0))) = [ B (V) @) Ber (Aii(r,0) ~ N(3)(r.0))) dr
- / SE(N(fa)(x)Ega(Aﬁ(r,O))> dr (B.4)
0 s
+ [ B (We@Re NG o)) . ®.5)

where we used that the noise term vanishes under the expectation, since the noise is
independent of ¢®. This is the reason for considering the time reversed process. The
2, using the translation invariance to move the z to the
7 and an integration by parts, becomes

A /1112 (0)Ega (71(r, =) dxdr_4A /132 0)n(s — r, —)) dzdr
:4/0 /]R2E(/\/'(£“)(0)77(0’ —z))dzdr =0,

where we used that the dynamics are conservative and then again (B.3).
The term (B.5) integrated against |z|?> becomes

/WW/ ) Beo (N (7)(r, 0))) drdz
/ / |2*E (N (n)(s,2)N (n)(s — r,0)) dzdr
-
- _/0 WQE( () (r, )N (n)(0,0)) dzdr
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_ _ /05 R2|$\2E (((m WO :(T1ym)2:) (o, ) ((vo - V)T :(TT ) %:)(0, 0)) dzdr
= 2Jr/” /Os /]R2 E ((H1¢(Hm)2z)(r, o) (T (Tyn)2:)(0, 0)) dadr,

where in the last step we first performed integration by parts on the gradient from the
first factor, and then used translation invariance to move the x to the second factor, after
which we perform another integration by parts. Each integration by parts gives a factor
—1, as well as an additional —1, since the x becomes a —» when moved to the second
factor. These integration by parts are not rigorous, since we cannot exchange the integral
and the expectation. However the terms in each line are well-defined assuming the decay
in S mentioned above. Here the Wick squares :X2: simply subtract the expectations, i.e.
:X2%: = X? — E(X?). They are necessary since otherwise the integrand would not decay
in space. Collecting all the terms in equation B.2 we obtain:

D(t)=1+ % /0/ /OS /]R2 E ((1'11:(1'[177)2:)(&0)(1‘[1:(1'1117)2:)(7’7 x)) dzdrds + o(1) .

Dropping the o(1) term and replacing R? with a large torus T%; we obtain exactly formula
(1.3).

If we had chosen instead to analyse D;;(t) the same steps would have given, for 1o
parallel to the first coordinate axis,

Dii(t) = D(t) —1/2, Dis(t) = Dar(t) =0, Daos(t) = 1/2.

As we see, D11 and D have equivalent asymptotic behaviour.
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