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Abstract

We prove that the Loop O(1) model, a well-known graphical expansion of the Ising
model, is a factor of i.i.d. on unimodular random rooted graphs under various condi-
tions, including in the presence of a non-negative external field. As an application we
show that the gradient of the free Ising model is a factor of i.i.d. on simply connected
unimodular planar maps having a locally finite dual. The key idea is to develop an
appropriate theory of local limits of uniform even subgraphs with various boundary
conditions and prove that they can be sampled as a factor of i.i.d. Another key tool we
exploit is that the wired uniform spanning tree on a unimodular transient graph is a
factor of i.i.d. This partially answers some questions posed by Hutchcroft [33].
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1 Introduction

The Loop O(1) model has received much attention in recent years, mostly due to
its intimate relation with the Ising model and its FK-Ising representation. The model
has also been instrumental to much of the recent progress in understanding the Ising
model (see e.g. [19] for a brief overview of this topic). Given a statistical physics model
on an infinite graph, a natural question is whether it is a factor of i.i.d., or in other
words, whether it can be represented as an automorphism equivariant measurable
function of some collection of i.i.d. random variables associated to the vertices of the
graph. The goal of this article is to prove that the Loop O(1) model is indeed a factor of
i.i.d. in several cases. This partially answers some questions of Hutchcroft [33], who
exploited such properties to prove the continuity of the phase transition in the Ising
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Graphical representations of Ising as factors of i.i.d.

model on nonamenable groups. Along the way, we also investigate relevant questions
about expressing Uniform even subgraphs and Uniform spanning forests as factors of
i.i.d.

Let G = (V,E) be a locally finite graph. We consider (combined edge and site)
percolation configurations η ∈ {0, 1}E∪V . An even percolation configuration is an η

such that ∂η = ∅, where

∂η =

{
v ∈ V : η(v) +

∑
e∈E:v∈e

η(e) is odd

}
. (1.1)

The Loop O(1) model on a finite graph G is a probability measure on even percolation
configurations, or more generally, on percolation configurations which are even except
on a given boundary set. Given parameters x, y ∈ R+ and a boundary set B ⊂ V , it is
defined as

PBG,x,y(η) =
1

ZBG,x,y
x#{e∈E:η(e)=1}y#{v∈V :η(v)=1}1{∂η⊂B}1{ηB≡1}; η ∈ {0, 1}E∪V ,

(1.2)
where ZBG,x,y is the partition function. While the model is defined for all x, y ∈ R+,
the parameter range x, y ∈ [0, 1] is most interesting due to the connection with the
Ising model. The parameter x is related to the temperature of the Ising model, and the
parameter y is related to the intensity of the external field in the Ising model. When
y = 0 and B = ∅, the Loop O(1) model is supported on edge percolation configurations
in which the degree of every vertex is even. Such configurations are identified with even
(spanning) subgraphs of G, which play a central role in this article. When B = ∅, we
sometimes drop it from the notation, and similarly when y = 0.

One reason why the Loop O(1) measures are hard to analyze is that they lack certain
monotonicity properties [34], which are enjoyed by the Ising model as well as its FK-Ising
representation. These monotonicity properties can be exploited to obtain results about
them as factors of i.i.d. [1, 12, 25, 29, 43]. The key fact used to study the Loop O(1)

model in this article is that it can be realized as a uniform even subgraph of the FK-Ising
model. Indeed, for x = 1, y = 0, B = ∅, it is the uniform even subgraph of G itself.

Suppose now that G is an infinite, locally finite, connected graph, and let Gn be an
exhaustion of G, i.e. an increasing sequence of finite subgraphs with ∪Gn = G. We
consider two natural loop O(1) measures on Gn. The first is simply the loop O(1) measure
on Gn with “free boundary”, namely, P∅Gn,x,y. The second is the loop O(1) measure with
“wired boundary”, defined as follows: Let Gw

n be the graph obtained by gluing all the
vertices of G which are not in Gn into a single vertex ∆, and removing the resulting self
loops at ∆. Then Pw

Gw
n,x,y

= P
{∆}
Gw

n,x,y
the loop O(1) measure on Gn with “wired boundary”.1

It is known [3, Theorem 2.3] that both PGn,x,y and Pw
Gw

n,x,y
converge weakly to limiting

percolation measures on G. This is essentially a consequence of the convergence of
Ising correlation functions. The limit measures are called the free Loop O(1) and the
wired Loop O(1) measures (with parameters x and y) and are denoted by Pf

G,x,y and
Pw
G,x,y respectively. In Section 3.4, we provide an alternate proof of the existence of the

limits in an explicit almost sure sense which does not rely on the convergence of Ising
correlation functions.

A process on a (connected and infinite) transitive graph is said to be a factor of
i.i.d. (fiid) if it can be written as a automorphism-equivariant measurable function of a
collection of i.i.d. random variables attached to the vertices of G (see Section 2.1 for

1It is convenient sometimes to introduce a ghost vertex v∗ and attach an edge {v, v∗} if and only if η(v) = 1
and v 6= ∆, glue together ∆ and v∗, and erase the self loop. Then in the above definition, the Loop O(1)
measure is supported on subgraphs of even degree in this enhanced graph.
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Graphical representations of Ising as factors of i.i.d.

a detailed definition). In this article we work with a generalization of this notion for
processes on random rooted graphs. A rooted graph is a pair (G, ρ) consisting of a locally
finite, connected graph G and a vertex ρ called the root. The notion of a factor of i.i.d. in
this setup generalizes to what we call a graph factor of i.i.d. The ideas involved with
this definition are borrowed from [31, 50] (see Section 2.1). This is a natural extension of
the notion of a factor of i.i.d., where the equivariance to automorphisms of G is replaced
by equivariance to isomorphisms of marked rooted graphs: Given a random rooted graph
(G, ρ) and a stochastic process X = (Xv)v∈V (G) on it, the triplet (G, ρ,X) is a graph
factor of i.i.d. if there is an i.i.d. collection Ξ = (Ξv)v∈V (G) and a measurable function
F defined on isomorphism classes of marked rooted graphs such that Xv = F (G, v,Ξ)

for each v ∈ G. We remark that if (G, ρ) is a deterministic transitive graph, then the
notion of a graph factor of i.i.d. coincides with the usual notion of factor of i.i.d. (see
Lemma 2.1). In this paper we need to work with the case where G is a supercritical
FK-Ising cluster in some larger graph H, which is not transitive even when H is.

A common regularity assumption in this setting is that the random rooted graph
is unimodular. This roughly means that it obeys certain distributional symmetry
properties (see Section 2.2 for a definition). Our main results require unimodularity. In
particular, there are nonunimodular vertex-transitive graphs for which our results do
not apply; see Remark 5.5 where we point out the steps in the proof which break down.
A typical non-random example of a unimodular graph is the Cayley graph of a finitely
generated group (e.g., the free group with 2 generators). Typical random examples are
percolation clusters on Cayley graphs, and the Poisson-Voronoi tesselation or Delaunay
triangulations (appropriately rooted). Unimodular random graphs have also received
much attention recently; we refer to the work of Aldous and Lyons [5] which laid down
the foundations of this topic. See also [15] for an excellent exposition of this topic.

We proceed to describe our main results. We begin with the wired Loop O(1) measure,
for which the result is most complete.

Theorem 1.1. Let (G, ρ) be a unimodular, random rooted graph with finite expected
degree of ρ. Let x, y ∈ [0, 1] and given (G, ρ), let η be sampled from Pw

G,x,y.

• If (x, y) 6= (1, 0) then (G, ρ, η) is a graph factor of i.i.d.

• If (x, y) = (1, 0) then (G, ρ, η) is a graph factor of i.i.d. if and only if (G, ρ) is almost
surely not two ended.

We refer to Section 3.2 for the definition of an end of a graph which plays a crucial
role in the analysis. Let us illustrate with an example why (G, ρ, η) is not a graph factor
if (x, y) = (1, 0) and (G, ρ) is two ended. First note that η is the “wired uniform even
subgraph” of the graph (G, ρ) itself. A crucial idea used in this article is that in a wired
uniform even subgraph, every cycle or bi-infinite path can be independently included
(added modulo 2) according to a fair coin flip (we refer to Section 3.3 for more details).
A trivial example is given by Z, where the wired uniform even subgraph is either empty
or everything with equal probability. A more interesting example is the ladder graph
Z × {0, 1}, where it is impossible to decide on the presence of the bi-infinite paths
corresponding to the two copies of Z as a factor of i.i.d. (in fact, the wired uniform even
subgraph is not even ergodic).

We now turn to the free Loop O(1) measure, for which our results are less compre-
hensive. We need several definitions before stating the result. A graph G is (vertex)
amenable if there exists a sequence of finite subsets Vn ⊂ V such that

lim
n→∞

|∂Vn|
|Vn|

= 0,
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where ∂Vn is the set of vertices in Vn with at least one neighbour not in Vn and | · | denotes
cardinality. There is a related notion of amenability more suitable to random graphs,
called invariant amenability, where the finite sets Vn must be chosen as root clusters
of invariant percolation processes. We refer to Section 2.1 for relevant definitions; for
now we quickly mention that by [9, Theorems 5.1 and 5.3], a vertex-transitive unimodular
graph is amenable if and only if it is invariantly amenable.

A planar map is a proper embedding of a graph into a simply connected open subset
S of R2 viewed up to orientation preserving homeomorphisms. A rooted planar map is a
planar map with a fixed root vertex. Similar to unimodular random rooted graphs, there
are also analogous notions of unimodular random rooted maps and map factors of i.i.d.
We refer to Section 2.2 for more details on this topic.

A cycle in G is a sequence of vertices (v0, v1, . . . , vn = v0) with vi ∼ vi+1 for all
0 6 i 6 n− 1. A geodesic cycle in G is a finite cycle such that for any two vertices in
the cycle, the shorter path between them along the cycle is a geodesic path in G.

We also refer to Section 2.3 for the definition of the FK-Ising model.

Theorem 1.2. Let x, y ∈ [0, 1], let (G, ρ) be a unimodular random rooted graph with
finite expected degree of ρ and given (G, ρ), let η be sampled from Pf

G,x,y. Then (G, ρ, η)

is a graph factor of i.i.d. in each of the following cases:

a. y > 0.

b. (G, ρ) is almost surely invariantly amenable.

c. ω has only finitely many geodesic cycles through any vertex almost surely, where ω is
a sample from the free FK-Ising measure on (G, ρ) with parameter p = 2x

1+x (and with
no external field).

Furthermore, if (M,ρ) is a unimodular random rooted planar map with finite expected
degree of ρ and η is sampled from Pf

M,x,y, then (M,ρ, η) is a map factor of i.i.d.

Regarding the third condition, we do not know whether it is satisfied in general
for x < 1. However, for x = 1, it seems that it is possible to construct Cayley graphs
with infinitely many geodesic cycles through a vertex (suitable versions of the so-called
Gromov monsters). See Section 6 for further discussion.

Given a stochastic process derived from a statistical physics model on a general
graph, the question of whether it is a factor of i.i.d. has received much attention in
recent times. Although there has been a lot of progress in the case of amenable graphs
[2, 1, 26, 48, 49, 45, 47, 46], the nonamenable setting remains a rather unexplored
territory; see Bowen [13] for a general result in this direction and Lyons [36] for a survey
of results on a tree. See also [38, 8, 22, 7, 14, 28, 42] for other relevant results. We
elaborate a bit on this now and explain how our results have some consequences for the
gradient of Ising model on planar graphs.

Recall that the Ising model on a finite graph G = (V,E) is a probability measure on
spin configurations σ ∈ {±1}V defined by

IG,β(σ) ∝ exp

[
β
∑
x∼y

σxσy

]
∝ exp

[
−2β

∑
x∼y

1σx 6=σy

]
. (1.3)

Here β is the inverse temperature. We always assume β > 0 in this article which
corresponds to the ferromagnetic regime. Given an infinite, locally finite graph G, one
can take an exhaustion (Gn)n>1 and take the free and wired limits of the Ising measure,
similar to the loop O(1) definition. Denote the resulting measure on G by IfG,β for the
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free measure and I+
G,β or I−G,β for the wired measure obtained as a limit with +1 or −1 on

the boundary vertex respectively. One can also consider gradient measures on {0, 1}E
by taking the pushforward of these measures under the map {σv}v∈V 7→ {1σu 6=σv

}{u,v}∈E .
Denote these measures by Gf

G,β and Gw
G,β = G+

G,β = G−G,β (the two are equal, since the
Ising measure is invariant under spin flip).

It is known that the wired Ising measure I±G,β is always a factor of i.i.d. (this was

shown for Zd in [43], for amenable groups in [1], and finally for arbitrary graphs in
[25]). On an amenable graph, the free Ising measure IfG,β is always equal to the mixture
1
2 (I+

G,β + I−G,β) of the wired measures [44], and in particular, it is a factor of iid if and only

if there is a unique Gibbs measure (i.e., I+
G,β = I−G,β). In contrast, the question of whether

the free Ising measure IfG,β is a factor of i.i.d. on a nonamenable graph is delicate
even in the simplest case of regular trees. On a d-regular tree, the uniqueness regime
(where I+

G,β , I−G,β , IfG,β all coincide) is tanh(β) 6 1/(d−1), and in particular, the free Ising

measure is a factor of i.i.d. in this regime. On the other hand, if tanh(β) > 1/
√
d− 1

(the so-called reconstruction regime), then the free Ising measure is not a factor of
i.i.d. (see [36]). Recently, Nam, Sly and Zhang [42] showed that for large enough d,
the regime where it is a factor of i.i.d. extends beyond the uniqueness threshold, to
tanh(β) < c/

√
d− 1 for some c ∈ (0, 1). The exact location of the transition for being a

factor of i.i.d. remains unknown.
On the other hand, it is easy to see that Gf

G,β , the gradient of the free Ising measure,
is always a factor of i.i.d. on a tree (as it is itself actually i.i.d.). This raises the
natural question of whether the free gradient measure is always a factor of i.i.d. on a
general graph. In this context, the Loop O(1) model is relevant: The finite dimensional
distribution of Loop O(1) can be written as the expectation of an explicit functional of
the gradient of Ising (see [3]).

Suppose M is a planar map with a locally finite dual (i.e., all faces have finite degree).
Let M† denote the dual map of M , and for every edge e ∈ E(M), let e† denote the
dual edge crossing it. Given a spin configuration σ on the vertices of M , we define
a bond percolation on M† by declaring an edge e† open if and only if σu 6= σv where
e = {u, v} (or equivalently, if the gradient of σ is 1 at e). It is easy to see that the resulting
percolation configuration on M† is necessarily even, and in fact has the same law as the
Loop O(1) model with parameter x = e−2β. To be more precise, IfM,β is pushed forward

to Pw
M†,x and I±M,β is pushed forward to Pf

M†,x. Given a unimodular planar map (M,ρ)

with finite expected degree of the root, there is a natural way to define a unimodular
dual map (M†, ρ†). We refer to [6, Section 2.5] for more details of this construction.
Since the wired Loop O(1) model on the dual map can be sampled as a factor of i.i.d. (by
Theorem 1.1) and the mapping from the Loop O(1) in the dual to the Ising gradient in
the primal is a local deterministic map, we get the following corollary:

Corollary 1.3. Let (M,ρ) be a unimodular random rooted planar map with finite ex-
pected degree of ρ, and which has a locally finite dual almost surely. Let γ be a sample
from Gf

M,β for some β > 0. Then (M,ρ, γ) is a map factor of i.i.d.

See also [45] for related results in Zd.

As mentioned earlier, a key step in the proofs of Theorems 1.1 and 1.2 is to obtain the
uniform even subgraph of the FK-Ising clusters as a factor of i.i.d. This will follow from
a general result in Section 3.1. One important step is to obtain a one-ended spanning
tree or forest as a factor of i.i.d. In the transient case, the candidate we choose is the
wired uniform spanning forest (WUSF), which is the limit of uniform measures on wired
spanning trees along an exhaustion of the graph (see, e.g., [39]). This is a well-known
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and studied object, which among other things, is known to satisfy the aforementioned
one-endedness property [10, 5, 32].

Theorem 1.4 ([41, 39, 21]). Let (G, ρ) be a random rooted graph that is almost surely
transient. Then the wired uniform spanning forest on G is a graph factor of i.i.d.

Note that Theorem 1.4 does not require the underlying graph to be unimodular. The
proof of Theorem 1.4 relies on the cycle popping algorithm due to Wilson, modified to
the setting of infinite graphs. In this setting, the induction step in the proof of Wilson is
replaced by a transfinite induction step. The case of a recurrent random rooted graph
remains open (question 6.1).

It seems that the proof of Theorem 1.4 is known among the experts in the community.
For example, it appears in the discussion at the beginning of [39, Section 4.2] and before
[10, Theorem 5.1]. Versions of this idea also appear in the proof of Proposition 9 of [21],
and see also Corollary 7.4 of [41] for the amenable case. However we still include a
proof of Theorem 1.4 in Section 4 as we could not find a place where the theorem is in
its current form and the proof is written down explicitly. Having said this, we do not
claim any originality in the result.

Organization We start with some background material in Section 2 (definitions of
codings in Section 2.1, of unimodular random graphs in Section 2.2, of FK-Ising in
Section 2.3 and a description of the coupling between FK-Ising and Loop O(1) in Sec-
tion 2.4). In Section 3 we build the theory for uniform even subgraphs, and in particular,
in Section 3.3 we describe a way to define and generate uniform even subgraphs of
infinite graphs. In Section 3.4, we apply this theory to generate the Loop O(1) model
from FK-Ising. In Section 4 we show how to generate the wired uniform spanning forests
as a factor (Theorem 1.4; this is independent of everything else). Finally in Section 5 we
combine everything together to prove Theorems 1.1 and 1.2. We finish with some open
questions and discussions in Section 6.

2 Background

2.1 Coding definitions

We present here precise definitions of factors and graph factors. Let us begin with
the more standard notion of factors of i.i.d. on a fixed transitive graph. Let G = (V,E) be
a vertex-transitive graph and let Γ be the automorphism group of G (though sometimes
Γ is taken to be a transitive subgroup, e.g., the group of translations when G = Zd).
Let X = (Xt)t∈E∪V be a stochastic process taking values in RE∪V . We say that X is
a factor of i.i.d. (fiid for short) if there exists a collection of i.i.d. random variables
Ξ = (ξv)v∈V and an automorphism equivariant measurable function ϕ : RV 7→ RE∪V

such that ϕ(Ξ) = X almost surely. Here, automorphism-equivariant means that for any
γ ∈ Γ,

γϕ(Ξ) = ϕ(γΞ) a.s.

where for ω ∈ RE∪V , (γω)t∈E∪V := (ωγ−1(t))t∈E∪V is the diagonal action of Γ. The
same notation is used for processes X defined only on the edges, or only on vertices
of G.

As mentioned in the introduction, we will also need a notion of factors of i.i.d. on
random rooted graphs, which we borrow from [50, 31]. A rooted graph is a locally
finite, connected graph G where one vertex ρ is specified as the root. We will also
consider marked rooted graphs which are triplets (G, ρ,m) where m : E ∪ V 7→ Ω is
a mapping to a Polish space Ω. Two (marked) rooted graphs are equivalent if there is
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a graph isomorphism between them that maps the root to the root and preserves the
marks.

Let G• (resp. G•m) denote the space of equivalence classes of rooted graphs (resp.
marked rooted graphs) endowed with the local topology: informally, two marked rooted
graphs are close if for some large R the balls of radius R are isomorphic as graphs,
and the restriction of the marks to the balls are uniformly close (see [11]). We similarly
use G••m to denote the space of equivalence classes of doubly rooted marked graphs
(G, ρ1, ρ2,m).

A graph factor is a measurable map which maps a marked rooted graph to the same
rooted graph but with a new marking which does not depend on the location of the root.
Formally, a graph factor is a function ϕ : G•m 7→ G•m such that ϕ((g, x,m)) = (g, x,m′) for
all (g, x,m) and such that ϕ is invariant under rerooting in the sense that if ϕ((g, x,m)) =

(g, x,m′) then ϕ((g, y,m)) = (g, y,m′) for any other vertex y. Equivalently, a function
ϕ : G•m 7→ G•m is a graph factor if and only if there exist measurable functions F : G•m 7→ Ω

and F ′ : G••m 7→ Ω such that

ϕ((g, ρ,m)) = (g, ρ,m′) and
m′(u) = F ((g, u,m)) for all vertices v,
m′(e) = F ′((g, u, v,m)) for all edges e = {u, v},

where F ′ is invariant to transposing the two roots in the sense that F ′((g, x, y,m)) =

F ′((g, y, x,m)).
A sample (G, ρ) from a probability measure on G• is called a random rooted graph.

Similarly, a random rooted, marked graph (G, ρ,M) is a sample from a probability
measure on G•m. An i.i.d.-marked random rooted graph (G, ρ,Ξ) is a random rooted
graph (G, ρ) with i.i.d. markings Ξ = {ξv}v∈V (G) on the vertices.2 We will assume the
markings are distributed as Uniform [0, 1].

We call a random, rooted, marked graph (G, ρ,M) a graph factor of i.i.d. if there
exists a graph factor map ϕ and an i.i.d.-marked random rooted graph (G, ρ,Ξ) such that

ϕ((G, ρ,Ξ)) = (G, ρ,M) a.s.

We sometimes say that M is a graph factor of i.i.d. when the underlying random rooted
graph (G, ρ) is clear from context, admitting a slight abuse of terminology. See also [50,
Definition 6].

It is a common alternative to attach the marks to the edges instead of vertices of
the graph, and sometimes marks are attached to both vertices and edges. Since we can
create many i.i.d. Uniform [0, 1] random variables as a measurable function of a single
Uniform [0, 1], it is easy to see that the different resulting notions of graph factors of i.i.d.
are equivalent in all these cases. Similarly, we may replace the Uniform [0, 1] variables
by a countable sequence of independent variables at each vertex, which may not be
Uniform [0, 1] but rather any other distribution of our choosing.

The following lemma (which is perhaps well known but for which we have not found a
reference) shows that the notion of graph factor of i.i.d. indeed generalizes the classical
notion of factor of i.i.d. on a fixed transitive graph.

Lemma 2.1. Let G be a vertex transitive graph, let ρ be a fixed vertex in it, and let X
be a stochastic process on it. Then X is a factor of i.i.d. if and only if (G, ρ,X) is a graph
factor of i.i.d.

Proof. Let X be a factor of some i.i.d. process Ξ and let ϕ be the factor map. Now
define a graph factor map ψ : G•m 7→ G•m such that ψ((G, ρ,m)) = (G, ρ, ϕ(m)) (and

2There is a canonical choice of a representative for each element in G•, allowing to make proper sense of
this; see e.g. [5, Section 2].
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define ψ((g, x,m)) arbitrarily measurably if (g, x) is not equivalent to (G, x)). Note
that ψ is well defined. Indeed, suppose that (G, ρ,m) and (G, ρ′,m′) are equivalent
as marked rooted graphs and let f : V (G) 7→ V (G) be a root and mark preserving
isomorphism, so that f(ρ) = ρ′ and f(m) = m′. Then the equivariance of ϕ implies that
ϕ(m′) = ϕ(f(m)) = f(ϕ(m)). So (G, ρ, ϕ(m)) and (G, ρ′, ϕ(m′)) are equivalent as marked
rooted graphs with f being an isomorphism between them. It is clear from the definition
that ψ does not depend on the location of the root. Thus, (G, ρ,X) = ψ((G, ρ,Ξ)) and
hence (G, ρ,X) is a graph factor of i.i.d.

Conversely suppose that (G, ρ,X) is a graph factor of i.i.d. so that (G, ρ,X) =

ϕ((G, ρ,Ξ)) for some graph factor ϕ with (G, ρ,Ξ) being an i.i.d. marked random rooted
graph. Let F and F ′ be as in the second definition of graph factor. Now define ψ : RV →
RE∪V by ψ(m)v = F ((G, v,m)) and ψ(m){u,v} = F ′((G, u, v,m)). Then ψ is equivariant,
since for an automorphism γ of G,

ψ(γm)v = F ((G, v, γm)) = F ((G, γ−1(v),m)) = ψ(m)γ−1(v) = (γψ(m))v,

and similarly ψ(γm){u,v} = (γψ(m)){u,v} for any edge {u, v}. This implies in particular
that ψ(Ξ) is well defined and that it equals X. This completes the proof, except for
the subtle technical issue that the i.i.d. process Ξ comes from the random marked
rooted graph (G, ρ,Ξ), and is thus, strictly speaking, not an i.i.d. process on the fixed
graph G (to conclude that X is a factor of i.i.d., we need to express it as a function of
an i.i.d. process on G). The problem is that since (G, ρ,Ξ) is an equivalence class of
marked rooted graphs, Ξ defines a realization of an i.i.d. process on G, but only up
to automorphisms of G (e.g., if G = Z and ρ = 0, then for almost every realization of
(G, ρ,Ξ) there are two different ways to choose marks on Z, which are related to one
another by a reflection around 0). To bypass this, we let Ξ′ be i.i.d. Uniform [0, 1] on
the vertices of G and note that [(G, ρ,Ξ′)] ∈ G•m has the same distribution as (G, ρ,Ξ).
Consequently, ψ(Ξ′) has the same distribution as X, so that we can put Ξ′ and X in the
same probability space so that ψ(Ξ′) = X almost surely. This shows that X is a factor of
i.i.d.

2.2 Unimodular random graphs and maps

We continue this section with the definition of unimodular random rooted marked
graphs and some of its consequences. These are fairly standard, and the expert reader
may wish to skip this section. Recall the definition of marked (doubly) rooted graphs
from Section 2.1. A random rooted marked graph (G, ρ,M) ∈ G•m is unimodular if it
satisfies the mass transport principle, i.e., for all measurable f : G••m 7→ [0,∞),

E

 ∑
x∈V (G)

f((G, u, x,M))

 = E

 ∑
x∈V (G)

f((G, x, u,M))

 .

Informally, we regard f((G, x, y,M)) as the mass sent from x to y, and then unimodularity
means that the expected total mass sent by u equals the expected total mass received by
u. An unmarked rooted graph (G, ρ) is unimodular if (G, ρ, 0) is unimodular (i.e. G with a
trivial marking).

We now introduce a notion of amenability which is relevant in the unimodular setting.
Let (G, ρ) be a unimodular random rooted graph. We say that ω : E(G) 7→ {0, 1} is
an invariant percolation on (G, ρ) if (G, ρ, ω) is a unimodular random rooted marked
graph. Given a finite set of vertices W in G, we define

iE(W ) :=
|∂EW |
|W |

, (2.1)
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where ∂EW denotes the set of edges in G with exactly one endpoint in W (and the other
endpoint outside W ). Let ωρ denote the connected component of ρ in the graph (V, ω).
Define

ι((G, ρ)) := inf
{
E(iE(V (ωρ))) : ω is an invariant percolation on (G, ρ) such that

every connected component of ω is a.s. finite

}
.

(2.2)
If ι((G, ρ)) = 0 then we say that (G, ρ) is invariantly amenable..

We now record some properties of unimodular random rooted graphs which we
need in this article. For this we need some additional definitions. For a percolation
configuration ω ∈ {0, 1}E∪V and an edge or vertex t ∈ E ∪ V , define ωt to be the same as
ω but with value 0 at t. Similarly define ωt to be the same ω but with value 1 at t. For
A ⊂ {0, 1}E∪V , we also define At := {(g, ρ, ωt) : (g, ρ, ω) ∈ A)}, and At similarly. We also
allow t to be a measurable function of (g, ρ,m), with the same definitions. We say that a
probability measure µ on G•m is deletion tolerant (resp. insertion tolerant) if for any
event A ⊂ G•m with µ(A) > 0 and any Borel measurable map t : (G, ρ,m) 7→ E(G) ∪ V (G),
we have that µ(At) > 0 (resp. µ(At) > 0). We say that an event A ⊂ G•m is invariant to
re-rooting if for any x, y we have (g, x,m) ∈ A ⇐⇒ (g, y,m) ∈ A. We say that (G, ρ,m)

is ergodic if any event A which is invariant to re-rooting has probability either 0 or 1. It
is known [5, Theorem 4.7] that a unimodular random rooted graph is ergodic if and only
if its law is extremal, that is, it cannot be expressed as a nontrivial convex combination
of unimodular random rooted graphs. Using Choquet theory, every unimodular random
rooted graph can be written as a convex combination of its extremal components.

Lemma 2.2. Let (G, ρ) be a unimodular random rooted graph with law µ.

a. The random rooted graph (G, ρ,Ξ) with i.i.d. marks is unimodular.

b. If (G, ρ,m) is unimodular, then any graph factor of it is also unimodular.

c. If (G, ρ,m) is unimodular and A is an event invariant to re-rooting with µ(A) > 0, then
(G, ρ,m) conditioned on A is unimodular.

d. If (G, ρ,m) is unimodular and µ(A) = 1 for some measurable event in G•m, then almost
surely (G, v,m) ∈ A for all v.

Proof. The first two items are easy exercises in definitions which we leave to the reader.
For the third see also [15, Exercise 15]. The last is [15, Proposition 11].

Lemma 2.3. If a random rooted graph (G, ρ) is unimodular, ergodic and almost surely
infinite, then the i.i.d. marked random rooted graph (G, ρ,Ξ) is ergodic. If a marked
random rooted graph (G, ρ,m) is ergodic, then so is any graph factor of it.

Proof. This is a straightforward application of the definitions which we leave to the
reader.

Lemma 2.4. Let (G, ρ) be a unimodular random rooted graph and let ω be an invariant
percolation on it.

a. If ω is insertion (or deletion) tolerant and A is an event invariant to re-rooting and has
positive probability, then (G, ρ, ω) conditioned on A is insertion (or deletion) tolerant
and unimodular.

b. (ωρ, ρ) is unimodular.

c. ι((ωρ, ρ)) 6 ι((G, ρ)).
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d. If ρ has finite expected degree and ω is both insertion and deletion tolerant, then
almost surely either every infinite cluster of ω is recurrent and one ended, or every
infinite cluster of ω is transient.

Proof. The proof of item a is a straightforward application of the definitions, see for
example [5, Lemma 6.8] for a stronger statement. The proof of item b is also an easy
consequence of the definition. For item c, consider any invariant percolation ω̃ with a.s.
finite clusters on G. Consider the mass transport f(x, y) where x sends a total mass of
degG\ω̃(x), uniformly distributed to all vertices y in the cluster of x (and 0 if x, y are in
distinct or infinite clusters). The mass transport principle for this f yields

E(iE(V (ω̃ρ))) = E(degG\ω̃ ρ).

Furthermore, if given (G, ρ), we sample ω and ω̃ conditionally independently then
(G, ρ, (ω, ω̃)) is unimodular and

E(degω\ω̃(ρ)) 6 E(degG\ω̃(ρ)).

Taking the infimum over percolations ω̃ with finite components, it follows that ι((ωρ, ρ)) 6
ι((G, ρ)), completing the proof.

For item d, using item a we can assume that (G, ρ) is ergodic. Recall that infinite,
insertion tolerant, ergodic, invariant percolation clusters are indistinguishable [5, The-
orem 6.15] in the sense that every invariant property is satisfied either by all infinite
clusters a.s. or by none a.s. We apply this to two invariant properties: transience and the
number of ends of the percolation clusters. We combine this with [5, Theorem 8.9] which
states that every invariantly amenable unimodular graph with finite expected degree
has at most two ends almost surely. Using indistinguishability, item b and [5, Proposition
8.7], we conclude that either every infinite cluster is recurrent with 2 ends a.s., or every
infinite cluster is recurrent with one end a.s., or every infinite cluster is transient a.s.
Using deletion tolerance, it is easy to conclude that the first case cannot occur since if it
did, the root cluster being infinite and two ended must have positive probability. But by
deletion tolerance, we can decompose the root cluster into two one-ended components
with a finite cost (we skip the details here) which leads to a contradiction. This concludes
the proof.

We now discuss briefly the notion of unimodular planar maps which is involved in
final part of Theorem 1.2 and in Corollary 1.3. Recall that an embedding of a graph onto
a surface S is proper if no two edges cross each other, every compact set S intersects
only finitely many edges and vertices, and every face (connected component of the
complement of edges and vertices) is homeomorphic to a disc. For our purposes, we
assume S is a simply connected subset in the plane R2. A planar map is a graph
equipped with a proper embedding onto S. We say two such embeddings onto surfaces
S and S′ are equivalent if one can be mapped to the other by an orientation preserving
homeomorphism between S and S′. A rooted planar map comes with an assigned root
vertex (sometimes the root is taken to be a directed edge but it will not be relevant for
us). Given a rooted planar map (M,ρ) and its corresponding rooted graph (G, ρ), there
is a natural marking which assigns to each vertex v a cyclic permutation σv on the edges
incident to v giving the order they eminate from v. It is well known the marked graph
(G, ρ, σ) determines the map uniquely [35]. We say that (M,ρ) is a unimodular planar
map if (G, ρ, σ) is a unimodular marked rooted graph. We refer to [6, Section 2] for a
comprehensive treatment of this topic. One can also analogously define the notion of
a map factor of i.i.d. where the statements concerning measurability with respect to
rooted or bi-rooted graphs are replaced by measurability with respect to the space of
rooted or bi-rooted maps.
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2.3 The FK-Ising model

The Fortuin–Kasteleyn Ising model (a special case of the random cluster model) is a
well-known percolation model in statistical physics with diverse uses and applications.
The FK-Ising model with parameters p, ph ∈ [0, 1] (edge weight p and external field ph) on
a finite graph G = (V,E) is the probability measure φG,p,ph given by

φG,p,ph(ω) ∝
(

p

1− p

)#{e∈E:ω(e)=1}(
ph

1− ph

)#{v∈V :ω(v)=1}

2k(ω); ω ∈ {0, 1}E∪V ,

(2.3)
where k(ω) is the number of clusters (connected components) in the graph (V, {e ∈ E :

ω(e) = 1}) that do not intersect {v ∈ V : ω(v) = 1}, or equivalently, if we connect all
vertices with ω(v) = 1 to an external vertex ∆ by an edge, then k(ω) + 1 is the number of
clusters formed by these edges together with the edges {e ∈ E : ω(e) = 1}.

These measures enjoy a monotonicity property known as FKG (positive correlations
of increasing events). One consequence of this is the existence of weak limits of the
finite-volume measures: Let Gn be any increasing sequence of finite subgraphs of G
which exhaust G. Then the weak limit of φGn,p,ph

exists, and does not depend on the

exhaustion. The limit is called the free FK-Ising measure, and is denoted by φfG,p,ph .
Similarly, given Gn, we can identify all the vertices not in Gn into a single vertex ∆,
and remove the self loops at ∆. Call the resulting graph Gw

n (which could have multiple
edges) and let φwGw

n,p,ph
be the measure φGw

n,p,ph
(· | ω(∆) = 1). The weak limit of φwGw

n,p,ph

also exists (again, this is a consequence of FKG), is called the wired FK-Ising measure,
and is denoted by φwG,p,ph . The FKG property extends to these two limiting measures,
and was exploited crucially by Häggström–Jonasson–Lyons [25] and Harel–Spinka [29]
to prove versions of the following theorem.

Theorem 2.5 ([25, 29]). Let (G, ρ) be a random rooted graph, let p, ph ∈ [0, 1] and given
(G, ρ), let ωf ∼ φfG,p,ph and ωw ∼ φwG,p,ph . Then (G, ρ, ωf) and (G, ρ, ωw) are graph factors
of i.i.d..

Specifically, when (G, ρ) is a fixed graph and ph = 0, this was essentially shown
(though not explicitly stated) in [25]. When (G, ρ) is a fixed quasi-transitive graph and
for any ph, this follows from the results in [29]. The same argument works for random
graphs, and we include a sketch for completeness. Indeed, an inspection of the latter
proof reveals that it relies only on monotonicity (it is based on Glauber dynamics and
coupling from the past), and not on any particular properties of the underlying graph,
and hence extends to the setting of random rooted graphs leading to a graph factor of
i.i.d.

As mentioned earlier, the Loop O(1) model lacks the FKG properties enjoyed by
FK-Ising [34]. This is one of the main reasons that the techniques in [25, 29] are not
directly applicable for the Loop O(1) model. However, the intimate connection between
the two models that we discuss next allows us to make use of the results for the FK-Ising
model.

2.4 Coupling the Loop O(1) and FK-Ising models

In this section we explain a useful coupling between the Loop O(1) model and the
FK-Ising model. This first appeared in recent work of Aizenman, Duminil-Copin, Tassion
and Warzel [4, Theorem 3.2]. The coupling illustrates that by taking a union of a Loop
O(1) model with an i.i.d. Bernoulli edge percolation, with carefuly set parameters, we
can obtain the FK-Ising model. In particular, the Loop O(1) model can be realized as a
subset of the FK-Ising model.

Let φBG,p,ph denote the law of ω ∼ φG,p,ph conditioned on ωB ≡ 1.
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Proposition 2.6. Let G = (V,E) be a finite graph and let B ⊂ V . Let x, y ∈ [0, 1] and let
η be sampled from PBG,x,y. Let X be an independent Bernoulli percolation process on
E ∪ V with success parameter x on E and y on V . Define

η′(t) = η(t) ∨X(t); t ∈ E ∪ V.

Then η′ has law φBG,p,ph where

p =
2x

1 + x
and ph =

2y

1 + y
.

Furthermore, given η′, the conditional law of η is uniform on the set of all percolation
configurations ω ≤ η′ such that ∂ω ⊂ B.

Some version of this is present in [4, Theorem 3.2] and an earlier version can be
found in [23, Theorem 3.1], both in the special case ph = 0. Since the proof is short and
crucial for this article and we could not find a reference which involves the external field
as well, we provide a proof for completeness.

Proof. To simplify formulas, for t ∈ E ∪ V , we write

xt =

{
x if t ∈ E
y if t ∈ V

.

Recall from (1.2) that

P(η = ω) =
1

ZBG,x,y

∏
t∈E∪V

(
xt1{ω(t)=1} + 1{ω(t)=0}

)
1{∂ω⊂B,ωB≡1}. (2.4)

From this we see that the joint law of (η, η′) can be written as

P(η = ω, η′ = ω′) =
1

ZBG,x,y

∏
t∈E∪V

(
xt1{ω′t=1} + (1− xt)1{ω′t=0}

)
1{ω≤ω′,∂ω⊂B,ωB≡1}. (2.5)

Since the term in the parenthesis does not depend on ω, denoting E(ω′) := {ω 6 ω′ :

∂ω ⊂ B,ωB ≡ 1}, the marginal law of η′ can thus be written as

P(η′ = ω′) =
|E(ω′)|
ZBG,x,y

∏
t∈E∪V

(
xt1{ω′t=1} + (1− xt)1{ω′t=0}

)
.

The calculation boils down to counting the number of elements in E(ω′) when ω′B ≡ 1

(otherwise E(ω′) is empty). Let G∗ be the graph obtained from G by introducing a ghost
vertex v∗, connecting it to every vertex in V \ B, and then identifying all vertices in
B with it (keeping any multiple edges and self loops which may have been created).
Any τ ∈ {0, 1}E∪V with τB ≡ 1 defines a spanning subgraph τ∗ of G∗ whose edges
consist of {e ∈ E : τ(e) = 1} and {{v, v∗} : v ∈ V \ B, τv = 1}. Note that the map
τ 7→ τ∗ is then a bijection between E(ω′) and the set of all even subgraphs of (ω′)∗.3

Now we use the fact that the number of even subgraphs of any finite graph H with
m connected components is given by 2|E(H)|−|V (H)|+m. Applying this to H = (ω′)∗, we
get that |E(ω′)| = 2|ω

′|−|V |+k(ω′), where |ω′| =
∑
t∈E∪V ω

′
t and where k(ω′) was defined

in Section 2.3 (note that |E(H)| = |ω′| − |B|, |V (H)| = |V | − |B|+ 1 and m = k(ω′) + 1).
Thus,

P(η′ = ω′) =
1

ZBG,x,y
2k(ω′)+|ω′|−|V |

∏
t∈E∪V

(
xt1{ω′t=1} + (1− xt)1{ω′t=0}

)
1{ω′B≡1}, (2.6)

3This relies on the fact that the number of odd degree vertices in any finite graph is even, so that v∗ cannot
be (the only vertex) of odd degree in ω∗.
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which gives that

P(η′ = ω′) ∝ 2k(ω′)
∏

t∈E∪V

(
qt1{ω′t=1} + (1− qt)1{ω′t=0}

)
1{ω′B≡1},

where qt = p if t ∈ E and qt = ph if t ∈ V . Thus this law is the same as φBG,p,ph as
desired. The fact that given η′, the conditional law of η is that of a uniform percolation
configuration whose boundary is contained in B is clear from the expression in (2.5)
since the weight on the right-hand side is independent of ω ⊂ ω′.

Remark 2.7. We will use Proposition 2.6 in two situations. The first is in order to
generate a sample η ∼ PG,x,y from the free Loop O(1) measure. Indeed, Proposition 2.6
(used with B = ∅) tells us that such a sample η can be obtained by first sampling
ω′ ∼ φG,p,ph and then sampling a uniform even subgraph from the enhanced graph (ω′)∗

described in the proof of Proposition 2.6.
In the second situation, we wish to generate a sample η ∼ Pw

Gw
n,x,y

from the wired Loop
O(1) measure (recall that Gw

n is obtained from G by identifying all vertices outside of Gn
into a single vertex ∆, and that Pw

Gw
n,x,y

is simply PBGw
n,x,y

with B = {∆}). In this case,
Proposition 2.6 (used with B = {∆}) tells us that η can be obtained by first sampling
ω′ ∼ φwGw,p,ph

and then sampling a uniform even subgraph of the enhanced graph (ω′)∗

as described in the proof of Proposition 2.6.

3 Generating uniform even subgraphs

In light of Proposition 2.6, sampling uniform even subgraphs of various random
graphs is relevant for this work, and will be a key tool that we exploit. In this section we
study the “uniform” even subgraph of an infinite graph which can be obtained as a weak
limit of uniform even subgraphs on finite graphs with free or wired boundary conditions,
and discuss several ways of sampling it.

We begin by discussing uniform even subgraphs of finite graphs in Section 3.1.
We then discuss deterministic properties of even subgraphs of infinite graphs in Sec-
tion 3.2. Finally, we discuss uniform even subgraphs of infinite graphs in Section 3.3 and
consequences for the Loop O(1) model in Section 3.4.

3.1 Uniform even subgraph of finite graphs

Let G = (V,E) be a finite graph with vertex set V and edge set E (we allow multiple
edges). A spanning subgraph H of G consists of the vertex set V and an edge set
E(H) ⊂ E (all subgraphs are implicitly assumed to be spanning). Given two subgraphs
H1 and H2, define the addition operation ⊕ as H1 ⊕H2 = (V,E(H1)∆E(H2)). Given a
collection of subgraphs H which is closed under the ⊕ operation, we can think of (H,⊕)

as a vector space over Z2 (the cyclic group of order 2). More precisely, consider the
vector space V := ({0, 1}E ,⊕) where ω ⊕ ω′ = ((ωe + ω′e) mod 2)e∈E . Then (H,⊕) can
be seen as a subspace of V. We say that a collection of subgraphs U generates H if
span(U) = H, where span denotes the linear span in this vector space.

As noted, we are primarily concerned with the space E = E(G) consisting of all even
subgraphs of G. The space E is the kernel of the degree mod 2 operator from {0, 1}E to
{0, 1}V , and as such E is closed under ⊕, and is a linear subspace of V. It is easy to show
that the set of all simple cycles in G generates E . It is also not hard to see that this need
not be a basis for E . The following lemma provides a useful way to generate a uniformly
random element from E . We use the usual summation notation

∑
as a shortand for

iterating the operation ⊕.
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Lemma 3.1. If B = {b1, . . . , bm} spans a finite vector space V over Z2, and {εi}mi=1 are
independent Bern(1/2) random variables, then L = L(B) :=

∑
εibi is a uniform element

of V.

Sketch of proof. If B is a basis the claim holds since L is a bijection between V and
(εi). Otherwise write B as a disjoint union of a basis B1 and extra vectors B2, and write
accordingly L = L1 + L2. Then L1 is uniform in V , and thus so is L1 + L2 regardless of
the law of L2.

Corollary 3.2. If B = {Ci}i is a generating set of cycles in G, and εi are independent
Bern(1/2) random variables, then L :=

∑
εiCi is a uniform even subgraph of G.

3.2 Even subgraphs of infinite graphs

The goal of this subsection is to extend Corollary 3.2 to generate “uniform” even
subgraphs of infinite graphs. There are two questions at hand here. Firstly, does the
limit of uniform even subgraphs of some exhaustion by finite subgraphs exist, and if so,
in which sense? Secondly, is it possible to directly generate a sample from the limiting
probability measure in a nice way?

Let G be a infinite, locally finite graph (we do not require G to be connected). Since
we deal with an external field in the context of Ising and Loop O(1), we introduce a new
special vertex v∗ called the ghost vertex, and allow any subset of the vertices of G to be
neighbors of v∗, perhaps with finitely many multiple edges between v∗ and any given
vertex of G. Let G∗ be this new graph. Thus, G∗ is locally finite except possibly at the
ghost vertex v∗, where the degree could be infinite. We define the wired cycle space to
be

Ew :=
{
γ ⊂ E(G∗) : every vertex other than v∗ has even degree in γ

}
,

and we define the free cycle space to be

E f := span
{
γ ⊂ E(G∗) : γ is a finite cycle

}
,

where span is the closure of all finite sums in the topology of pointwise convergence
on {0, 1}E(G∗). In the absence of a ghost vertex (when v∗ is isolated in G∗), the wired
cycle space is simply the space of all even subgraphs. A ray is an infinite edge-disjoint
path in G∗, i.e., a sequence of vertices (v0, v1, . . .) such that vi is adjacent to vi+1 in G∗

for all i > 0 and all the (directed) edges (vi, vi+1) are distinct. It is also not hard to see
that, in general, the wired cycle space is the span of all finite cycles, bi-infinite paths,
and rays starting at v∗. Clearly, E f ⊂ Ew, but in general, E f 6= Ew, even when the ghost
vertex is isolated. This is clearly demonstrated by the graph Z or by the slightly less
trivial example of the ladder graph, where a bi-infinite path corresponding to a single
copy of Z belongs to Ew but not to E f . See [17] or [18, Chapter 8] for some topological
interpretations of such cycle spaces in infinite graphs.

There is an important connection between the wired and free cycle spaces and the
space of ends of a graph. Let us recall the definition of an end of a graph. Two rays r
and s are equivalent if there exists a third ray t which intersects both r and s at infinitely
many distinct vertices. It can be checked that this defines an equivalence relation on
rays. An end of a graph is an equivalence class of rays. We say a graph is one-ended
if it has exactly one end. For example, Z2 is one-ended, Z and the ladder graph each
have two ends, while the infinite binary tree has 2ℵ0 many ends (the ends of a tree can
be identified with rays starting at a fixed vertex). If H is a subgraph of G∗, then there is
a natural map which maps the ends of H to the ends of G∗, by sending the equivalence
class of a ray r in H to its equivalence class in G (if two rays are equivalent in H, then
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they are equivalent in G, so that this is well defined). We say that H is end faithful if
this map is a bijection. For example, Z× {0} is not end faithful to Z2, but Z×N is. We
now state a useful result about the existence of an end faithful spanning tree of a graph.

Theorem 3.3 (Halin [27], see [16, Theorem 2.2] for an English version). Every con-
nected graph has an end faithful spanning tree.

Just like in the finite case, it is useful to have a nice generating set for the wired
and free cycle spaces. We say that a countable collection C of subgraphs is locally
finite if every edge in G∗ is contained in only finitely many elements of C. We say that C
generates H if span(C) = H. The existence of a locally finite generating set for Ew was
shown in [23, Proposition 2.4] in the case when v∗ is isolated. The following lemma is a
simple extension of this to our more general setting.

Lemma 3.4. There exists a locally finite generating set for E f consisting of finite cycles.
There exists a locally finite generating set for Ew consisting of finite cycles, bi-infinite
paths and rays starting from the ghost vertex.

Proof. Let us first consider Ew. Let {e1, e2, . . . } be an arbitrary ordering of the edges of
G∗. For each k, let Hk be the set of all H ∈ Ew which are disjoint from {e1, . . . , ek−1}.
If there is no H ∈ Hk with ek ∈ H, then let Ck = ∅. If such H ∈ Hk exists, let Ck be a
cycle, bi-infinite path, or ray through ek which does not pass through any ei with i < k.
Such Ck exists since H contains ek and has all even degrees, and so must contain such a
Ck. Clearly the resulting {Ck} is locally finite and generates Ew. (The proof that {Ci}i is
locally finite and generating is exactly the same as in [23, Proposition 2.4].)

For E f , the construction is similar, except that we need Ck to be a finite cycle. To see
that such a finite cycle exists, let H ∈ Hk be a non-empty graph containing ek and no ei
with i < k. We can approximate H by a finite sum of finite cycles H ′ that also includes
ek and no ei with i < k. However, a finite sum of cycles is necessarily a sum of disjoint
cycles, and so H ′ includes the desired Ck.

The problem (for our purposes) with the construction above is that it relies on an
arbitrary ordering of the edges. We now address the deterministic question of how to
generate “good” generating sets, both for the free and wired cycle spaces, which can
potentially be constructed in an invariant manner. In the next two lemmas, we describe
a method to construct a locally finite generating set for Ew, and also for E f when the
ghost vertex is isolated.

We begin with the free case. For a spanning tree T of G and an edge e ∈ E(G) \ T ,
let CTe be the unique cycle in T ∪ {e} (which necessarily contains e).

Lemma 3.5. Suppose that v∗ is isolated in G∗ and let T be an end faithful spanning
tree of G (or of each connected component if G is not connected). Then the collection
{CTe }e∈E(G)\T is a locally finite generating set for E f .

Proof. We first show that C := {CTe }e∈E(G)\T is locally finite. An edge e 6∈ T is contained
in a unique cycle CTe . Suppose that some edge e ∈ T is contained in infinitely many
cycles CTej . Taking a subsequential limit of Cej yields a bi-infinite path in T , which has
infinitely many edges (namely the ej) between its two ends. This means that there are
two ends of the tree, which are in the same end of G, which is a contradiction to end
faithfulness of T .

Let us next show that C generates E f . To this end, it is enough to show every finite
cycle H in G is generated by C. Toward showing this, fix H and note that

H ′ := H ⊕
∑

e∈H\T

CTe ,
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is a finite even subgraph which is contained in T . Since a tree contains no non-trivial
finite even subgraphs, H ′ must be empty, which means that H is generated by C.

We next address the wired case, for which we require some definitions. Let F be a
one-ended spanning forest of G (i.e., a subgraph of G containing no cycle and whose
connected components are all infinite and one ended). For an edge e ∈ E(G) \ F , let CFe
be the unique cycle or bi-infinite path in F ∪ {e} (which necessarily contains e). For an
edge e ∈ E(G∗) \ E(G), let CFe be the unique ray starting from v∗ in F ∪ {e} (which first
crosses e and then goes along the unique ray in F starting at the other endpoint of e).

We say an end e of a subgraph H of G is dense in G∗ if there exists a ray p ∈ e such
that infinitely many vertices in p are adjacent to v∗. We say that G∗ is end dense if every
end of G is dense in G∗.

Let T be a k-ended spanning tree of G whose every end is dense in G∗. For every
e ∈ E(G∗) \E(G), consider the k rays starting from v∗ in T ∪ {e} (which first cross e and
then go along a ray of T (one for each end) from the other endpoint of e). Suppose that
ray i is (v∗, u1, u2, . . .) and let un be the first vertex which is adjacent to v∗ (which exists
since the ends of T are dense in G∗). Let CTe,i be the cycle (v∗, u1, . . . , un, v

∗).

Lemma 3.6.

• Let F be a one-ended spanning forest of G. Then the collection {CFe }e∈E(G∗)\F is a
locally finite generating set for Ew.

• Suppose that G is connected and k-ended with 1 6 k < ∞ and let T be an end
faithful spanning tree of G whose every end is dense in G∗. Then the collection
{CTe }e∈E(G)\T ∪ {CTe,j}e∈E(G∗)\E(G),16j6k is a locally finite generating set for Ew.

Proof. For the first item, denote Ce := CFe and C := {Ce}e∈E(G∗)\F . Let us first prove
that C is locally finite. Take an edge f ∈ E(G∗). If f /∈ F then the only element of C
which contains f is Cf . Now assume that f ∈ F . Let P be the set of vertices v ∈ V (G)

which belongs to the unique finite component of F \ {e}. Let ∂FP denote the set of edges
e ∈ E(G∗)\F incident to P . Then ∂FP is also finite (since the degrees of vertices in V (G)

are finite). It is not hard to see that any element of C containing f must also intersect
∂FP . As we have already noted, for each e /∈ F there is only one element of C containing
e. In particular, the number of elements of C containing f is at most |∂FP |.

Let us next show that C generates Ew. To this end, let H ∈ Ew and define

H ′ :=
∑

e∈H\F

Ce.

Note that this is well defined since C is locally finite. Note that H ′′ := H ⊕ H ′ is an
even subgraph which is contained in F . However, F is a one-ended forest in G, and
hence contains no nonempty even subgraphs (observe that every nonempty even graph
contains either a cycle or a bi-infinite path). Thus, H ′′ is empty, which means that H = H ′

is generated by C.
We now turn to the second item. By Lemma 3.5, all finite cycles not involving the

ghost vertex are generated. Also any ray started at v∗ and then going to infinity along
T is also generated (add the finite cycles involving v∗ along the ray, using the fact that
the tree is end dense). Now take a cycle containing the ghost vertex and without loss of
generality assume the cycle is simple. Adding it to the two infinite rays in the generating
set containing the edges incident to the ghost vertex in the cycle, we obtain a bi-infinite
path in G. So it is enough to generate any bi-infinite path p in G. If the two ends of p
belong to the same end of G, then p can be generated by the finite cycles formed by the
infinitely many paths joining them and we are done. So assume that the two ends of p
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belongs to two different ends. To generate p do the following. Take any two rays started
at v∗ and going to infinity along the corresponding two ends of T (using the fact that T
is end faithful), and add them. This produces an even subgraph p′ with two ends, one for
each end of p. Since these paths can be joined together by infinitely many finite paths
(using the definition of ends), it is easy to see that p can be generated by adding finite
cycles to p′.

Now we show local finiteness of the generating set in the second item. As in the
proof of Lemma 3.5, every edge not in T is in exactly one cycle and every edge in T is
in only finitely many cycles of {CTe }e∈E(G)\T . It remains to show that every edge h in
T contains only finitely many cycles of {CTe,j}e∈E(G∗)\E(G),6j6k. Note that there are k
rays in T \ {h} starting from the endpoints of h. Take the first vertex in each ray which
is connected to the ghost vertex, and join those vertices to h by paths in T . Denote by
U the subgraph formed by the union of these paths and h. Notice that T \ U divides T
into some finite and some (at most k) infinite components. It is now straightforward to
see that the vertex set of a cycle in {CTe,j}e∈E(G∗)\E(G),16j6k which passes through h is
contained in U ∪ {v∗}. We conclude that the collection is locally finite. This completes
the proof of the second item.

Remark 3.7. We will use the wired uniform spanning forest as our candidate of F (first
item of Lemma 3.6) and we will show in Theorem 4.1 that such a forest can be obtained
as a factor. The second item of Lemma 3.6 will be used only in the case that k = 2. We
will only use Lemma 3.6 in the case that G is one ended.

We now describe two sufficient conditions under which E f and Ew are equal.

Lemma 3.8. If G∗ is end dense, then it is one-ended and Ew = E f .

Proof. To show that Ew = E f , it is enough to show by Lemma 3.4 that any bi-infinite path
in G∗ or ray starting at v∗ in G∗ can be generated by finite cycles in G∗. Let p be a ray in
G∗ starting at v∗. Each additional visit of p to v∗ creates a finite cycle. By adding these
finite cycles to p, we may assume that p does not visit v∗ after its initial vertex, so that p
is contained in G except for its first edge. Let e be the end of G corresponding to p. Since
G is end dense, we can find a ray q ∈ e in G which contains infinitely many neighbors of
v∗. Without loss of generality, assume that the first vertex of q is v∗. Note that q and p
have infinitely many disjoint paths between them (since they belong to the same end of
a locally finite graph). Using these paths, it is easy to see that we can find a collection
of finite cycles Γ such that p = q ⊕

∑
γ∈Γ γ. Now observe that q can be obtained as a

sum of finite cycles in G∗ using the edges connecting it to v∗. This shows that p is the
sum of finite cycles. To handle the case when p is a bi-infinite path in G∗, take any finite
path q from v∗ to p, and note that p is the sum of two rays starting from v∗, both of which
initially go along q and then split and go along either end of p. Since the latter rays are
generated by finite cycles, so is p. This completes the proof that Ew = E f .

Finally, we show G∗ is one-ended. Any two rays in G∗ containing infinitely many
neighbors of v∗ are clearly equivalent. Suppose that some ray p in G∗ has only finitely
many neighbors of v∗. Clearly, this ray visits v∗ only finitely often, and hence belongs
to some end of G. Since G∗ is end dense, we can find a ray in G which is equivalent to
p and contains infinitely neighbors of v∗. This shows that any two rays are equivalent,
thereby completing the proof.

Lemma 3.9. If each connected component of G is one-ended and v∗ is isolated, then
Ew = E f .

Proof. Since v∗ is isolated, we only need to show that every bi-infinite path p in G belongs
to E f . Since each connected component of G is one-ended, there are infinitely many
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disjoint paths between the two ends of p. By summing the finite cycles created by these
paths, we obtain p.

Remark 3.10. If G is one-ended and v∗ has infinite degree, then Lemma 3.8 implies
equality of the free and wired cycle spaces. However, if G is one-ended and v∗ has finite
non-zero degree, then Ew 6= E f : there is no way to generate a ray starting from v∗ using
only finite cycles.

3.3 Uniform even subgraphs of infinite graphs

We now turn to the question of defining and generating uniform even subgraphs of
infinite graphs. Let G be a locally finite infinite graph and let G∗ be a graph obtained
by connecting a subset of vertices of G to a ghost vertex v∗. We emphasize that G and
G∗ are not assumed to be connected here (and each may have infinitely many finite or
infinite connected components).

We aim to give a constructive definition of the free and wired uniform even subgraphs
on G∗. As usual, this can be done via an exhaustion of G∗ by finite subgraphs of G∗.
While this will be sufficient for our application to the Loop O(1) model in Section 3.4
in the free case (where the exhaustion will be by samples of the free FK-Ising on finite
graphs, which increase as the finite graphs increase), our application in the wired case
requires working within a larger ambient graph G̃ containing G∗ (since the wired FK-
Ising decreases as the finite graph increases, when the configuration in the finite graph
is viewed as a configuration on the infinite graph by assigning 1s to all edges outside the
finite graph).

We begin by addressing the free case. Let {Gn}n>1 be an increasing sequence of
finite subgraphs of G∗ which exhaust G∗. Let E fn denote the cycle space of Gn, and let
E f denote the free cycle space of G∗. Let U f

n denote a uniformly chosen element in E fn.
We will see that U f

n converges in distribution to an element U f of E f (whose law does not
depend on the chosen exhaustion), which we will call the free uniform even subgraph
of G∗.

Let us now consider the wired case. We could simply take an exhaustion {Gn} of G∗ as
in the free case, but as we have mentioned, we need to allow for a more general situation.
Let G̃ be the graph obtained from G by connecting all vertices to the ghost vertex v∗ (so
that G∗ is a spanning subgraph of G̃). Let {G̃n}n>1 be an increasing sequence of finite
subgraphs of G̃ which exhaust G̃. Let G̃w

n be the graph obtained from G̃ by identifying all
the vertices not in G̃n with the ghost vertex v∗ and then removing the self loops from
v∗ (see Remark 3.14 for some subtleties related to this definition where the importance
of identifying the boundary with the ghost vertex is discussed). Note again that we
allow multiple edges in G̃w

n. Note also that the edge set of G̃w
n can be seen as a subset

of the edge set of G̃. We often also identify G̃w
n with its edge set E(G̃w

n) ⊂ E(G̃). Let
Gw
n be a spanning subgraph of G̃w

n such that the sequence {E(Gw
n) ∪ (E(G̃) \ E(G̃w

n))}n≥1

decreases to G∗. Note that one potential situation like this is when G∗ = G̃ and Gw
n = G̃w

n.
We remark that the only role of G̃ and G̃n is to give a proper sense in which Gw

n decreases
to G∗.4 Let Ewn denote the cycle space of Gw

n, and let Ew denote the wired cycle space of
G∗. Let Uw

n denote a uniformly chosen element in Ewn . We will see that Uw
n converges in

distribution to an element Uw of Ew (whose law does not depend on the choices of G̃, G̃n
and Gw

n), which we will call the wired uniform even subgraph of G∗.
Our goal is twofold: to show that the limits of U f

n and Uw
n exist and to find a useful

description of their limits U f and Uw. We start with a deterministic lemma which states
that the projection of the finite cycle space on a fixed set converges to the projection

4In our applications Gw
n will be a sample from the wired FK-Ising model on G̃w

n and G∗ is a sample of wired
FK-Ising on G̃ interpreted appropriately.
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of the infinite cycle space in a suitable sense. For any ω ⊂ {0, 1}E(G̃) and E ⊂ E(G̃),

define the projection of ω onto E to be {ωe}e∈E ∈ {0, 1}E . For any A ⊂ {0, 1}E(G̃), let
proj(A, E) be the set of projections of all ω ∈ A onto E. For n ≥ k, denote

E fn,k := proj(E fn, Gk) and Ewn,k := proj(Ewn , Gw
k ).

Similarly, denote

E f∞,k := proj(E f , Gk) and Ew∞,k := proj(Ew, Gw
k ).

Lemma 3.11. For any k there exists an N such that for all n > N ,

E fn,k = E f∞,k and Ewn,k = Ew∞,k.

Proof. Let us first tackle the free case. Since any element in E fn is a finite sum of finite
cycles in Gn, it must be in E f since Gn is a subgraph of G∗. Consequently, its projection
to Gk is in E f∞,k, that is, E fn,k ⊆ E f∞,k for all n > k > 1. Conversely, take an element H in

E f∞,k and suppose H = proj(H̃,Gk) for some H̃ ∈ E f . Let H̃m → H̃ where H̃m is a finite

sum of finite cycles in G∗. This implies that proj(H̃m, Gk) is the same for all m > m0(H).
Since Hm0

is a sum of finitely many finite cycles, it must be in E fn,k for some n > N(H).

Since E f∞,k contains only finitely many elements, we can choose an N = N(k) such that

E f∞,k ⊆ E fn,k for all n ≥ N .
Now let us turn to the wired case, which is a bit more involved. We rely on the

monotonicity of Gw
n which tells us that

E(G∗) ∩ E(G̃w
n) ⊂ E(Gw

n) for any n.

It is easy to see that the projection of any finite cycle or bi-infinite path in G∗ onto Gw
n

is in Ewn . Indeed, when such a cycle or path enters or leaves G̃w
n, it does so through the

wired vertex, and these edges are all in Gw
n by the above displayed. Thus the projection

results in a union of finitely many cycles in Gw
n which is in Ewn . The same argument works

for a ray starting at v∗. Thus, proj(Ew, Gw
n) ⊂ Ewn , and hence Ew∞,k ⊆ Ewn,k for all n > k > 1.

Now we prove the reverse direction, i.e., Ew∞,k ⊇ Ewn,k for all n > N(k). Assume the
converse: Ewn,k \ Ew∞,k 6= ∅ for infinitely many n. By compactness, there is some B which
belongs to Ewn,k \ Ew∞,k for infinitely many n. Choose integers ni → ∞ and elements
Hi ∈ Ewni

such that proj(Hi, G
w
k ) = B. By compactness, Hi has a subsequential limit H.

Clearly, proj(H,Gw
k ) = B and H ⊂ G∗ since Gw

n → G∗. Thus, it suffices to show that
H ∈ Ew, as this will lead to a contradiction to the fact that B /∈ Ew∞,k. To this end, we fix
v 6= v∗ and show that the degree of v in H is even. Indeed, Hi is an even subgraph of
Gw
ni

, so the degree of v in it is even for all i. Since v has finite degree in G̃, it follows that
its degree is even also in the limit H. This completes the proof.

Let Cf = (C f
i )i≥1 be a locally finite generating set for E f consisting of only finite sets

C f
i , and let Cw = (Cw

i )i≥1 be any locally finite generating set for Ew. Such generating sets
exist by Lemma 3.4. Let {εi}i≥1 be i.i.d. Bernoulli (1/2) random variables and define

U f :=
∑
i≥1

εiC
f
i and Uw =

∑
i≥1

εiC
w
i . (3.1)

Note that these sums exist by local finiteness. Recall that U f
n (resp. Uw

n ) denotes a
uniform element in E fn (resp. Ewn ).

Proposition 3.12 (free and wired uniform even subgraphs). There exists a coupling
between {U f

n}n≥1 and U f such that for every k, there exists an N such that proj(U f
n, Gk) =

proj(U f , Gk) for all n > N almost surely. In particular, U f
n → U f almost surely and the law

of U f does not depend on the generating set used in its definition. The same holds for
(Gw

n, U
w
n , U

w) in place of (Gn, U
f
n, U

f).

EJP 29 (2024), paper 39.
Page 19/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1082
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Graphical representations of Ising as factors of i.i.d.

Proof. Let us first prove the free case. Let Ck be the elements in Cf which intersect Gk.
Given n, let k(n) be the largest k such that every element in Ck lies completely inside
Gn. We claim that Ck(n) can be extended to a generating set Ck(n) ∪ {Cn,j}1≤j≤`n for E fn
so that the added elements {Cn,j}j do not intersect Gk(n). Let us first explain how to
deduce the proposition from this. Let {ηj}j≥1 be i.i.d. Bernoulli (1/2) random variables,
independent of {εi}i. Define

U f
n :=

∑
i:C f

i∈Ck(n)

εiC
f
i +

`n∑
j=1

ηjCn,j .

By Lemma 3.1, U f
n is a uniform element in E fn. Also proj(U f

n, Gk(n)) = proj(U f , Gk(n))

almost surely. Noting that k(n)→∞ as n→∞ (since Ck consists of finitely many finite
sets), the proposition follows.

We now prove the existence of {Cn,j}j as above. Fix n and set k := k(n). Given
H ∈ E fn, let ψ(H) be any element in span(Ck) ⊂ E fn with proj(ψ(H), Gk) = proj(H,Gk).
Such an ψ(H) exists since Cf is a locally finite generating set for E f , and H ∈ E fn ⊂ E f
(take a set of elements in Cf which sums to H, and keep only those which intersect Gk;
alternatively, one could use Lemma 3.11 and increase n appropriately). Now define

D := {H ⊕ ψ(H) : H ∈ E fn}.

Notice that the elements of D are all disjoint from Gk. Also, Ck ∪ D generates E fn as any
H ∈ E fn can be written as ψ(H)⊕ (H ⊕H ′) and ψ(H) ∈ span(Ck) and H ⊕ ψ(H) ∈ D. This
proves the claim with {Cn,j}j = D.

The proof for the wired case is very similar. Let Ck be the elements in Cw which
intersectGw

k . Given n, let k(n) be the largest k such that Ewn,k = Ew∞,k. Note that k(n)→∞
as n → ∞ by Lemma 3.11. It suffices to show that proj(Ck(n), G

w
n) can be extended to

a generating set Ck(n) ∪ {Cn,j}1≤j≤`n for Ewn so that the added elements {Cn,j}j do not
intersect Gw

k(n), as a desired coupling can then be defined as in the free case. This follows
as in the free case (using the trivial fact that projections and summations commute).

In light of Proposition 3.12, in order to prove that U f or Uw is a factor of i.i.d., we
need to construct a locally finite generating set for E f or Ew in an invariant manner (as a
factor of i.i.d.). We now record the distributional versions of Lemmas 3.8 and 3.9. Recall
the definition of end dense from before Lemma 3.8.

Lemma 3.13. If G∗ is end dense, then Uw = U f in law. If each component of G is
one-ended and v∗ is isolated in G∗, then Uw = U f in law.

Proof. It follows immediately from Lemmas 3.8 and 3.9 that in either of these cases,
Ew = E f . Hence we are done using Proposition 3.12.

Remark 3.14. We finish this section with a remark about the boundary condition for
the wired case. Recall that in the definition of Gw

n, we identified the boundary vertex
with the ghost vertex. One might also define a boundary condition where this is not the
case (the wired vertex and ghost vertex are distinct). In this setting, the limit of the
wired even subgraphs include only those infinite rays in the generating set which belong
to a dense end. We do not pursue these avenues in more details. For our applications,
the graphs in question will be FK-Ising clusters which are end dense for any positive
external field, and have no ghost vertex if there is no external field, for which these two
definitions coincide.
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3.4 Loop O(1) model on infinite graphs

Fix a locally finite infinite connected graph G = (V,E) and let G̃ be the graph where
all the vertices in G are connected to a ghost vertex v∗ as defined in the previous
section. Recall that configurations in the Loop O(1) and FK-Ising models are elements
of {0, 1}E∪V . There is an obvious identification between such elements and spanning
subgraphs of G̃: we identify ω ∈ {0, 1}E∪V with the spanning subgraph ω∗ whose edge
set is {e ∈ E : ωe = 1} ∪ {{v, v∗} : v ∈ V, ωv = 1}. Note that for the wired measures,
Pw
Gw

n,x,y
and φwGw

n,p,ph
, we further identify the ghost vertex with the boundary vertex ∆

(see Remark 2.7).
In particular, given ω ∈ {0, 1}E∪V , this allows us to talk about the wired and free

uniform even subgraphs of ω (where ω∗ plays the role of G∗ in Section 3.3). Note also
that an even percolation configuration η ∈ {0, 1}E∪V (recall the definition from Section 1)
precisely corresponds to an element η∗ in the wired cycle space Ew of G̃.

We present a corollary of Proposition 3.12 (together with Proposition 2.6) in the
context of the Loop O(1) model. Let Gn be an increasing sequence of induced finite
subgraphs which exhaust G. Let Gw

n denote the graph obtained by identifying all the
vertices outside Gn into a single vertex and removing all the self loops (as before, this
graph may have multiple edges). Recall the free and wired FK-Ising measures, φfG,p,ph
and φwG,p,ph , from Section 2.3.

Proposition 3.15. Let β, h, x, y, p, ph be such that x = tanh(β), y = tanh(h), p = 1−e−2β

and ph = 1 − e−2h. Let ωf be sampled from φfG,p,ph and let ηf be a sample of the free

uniform even subgraph of ωf . Then Pf
Gn,x,y converges to Pf

G,x,y, which is the distribution
of ηf . A similar statement holds for the wired case.

Proof. It is a standard fact (see [24, Section 4.3]) using monotonicity that the probability
measures φGn,p,ph

stochastically increase in n and converge to a limiting measure φfG,p,ph
called the free FK-Ising model on G. Similarly, φwGw

n,p,ph
is a stochastically decreasing

sequence which converges to the wired FK-Ising measure φwG,p,ph on G. Also, for each n,
the wired (resp. free) measure is the largest (resp. smallest) possible FK-Ising measure
in the sense of stochastic domination. Viewing φGn,p,ph

(resp. φwGw
n,p,ph

) as a probability

measure on {0, 1}E∪V which is deterministically 0 (resp. 1) on all vertices and edges
outside of Gn, we obtain a coupling between (ωf , ωw, (ωf

n, ω
w
n)n>1), where ωf

n ∼ φGn,p,ph
,

ωw
n ∼ φwGn,p,ph

, ωf ∼ φfG,p,ph and ωw ∼ φwGn,p,ph
under which ωf

n 6 ωf
n+1 6 ωf 6 ωw ≤

ωw
n+1 6 ωw

n (in the pointwise partial order) for all n almost surely (see the proof of [24,
Theorem 4.91] for details on why such a coupling exists).

Let us now turn to the Loop O(1) model. Consider first the free case. Let ηn
be a uniform even subgraph of ωf

n conditionally on ((ωf
n)n, ω

f). By Proposition 2.6,
the (unconditional) distribution of ηn is Pf

Gn,x,y. By Proposition 3.12, conditionally
on ((ωf

n)n, ω
f), ηn converges in distribution to ηf (using Gn = ωf,∗

n and G∗ = ωf,∗). In
particular, ηn converges in distribution to ηf . This completes the proof for the free case.

We now turn to the wired case. Let ηwn be a uniform even subgraph of ωw
n . By Proposi-

tion 2.6 (see Remark 2.7), the (unconditional) distribution of ηwn is Pw
Gw

n,x,y
conditionally

on ((ωw
n)n, ω

w). By Proposition 3.12, conditionally on ((ωw
n)n, ω

w), ηwn converges in distri-
bution to ηw (using Gw

n = ωw,∗
n and G∗ = ωw,∗ and that ωw

n decreases to ωw). In particular,
ηwn converges in distribution to ηw. This completes the proof for the wired case.

Remark 3.16. It was previously known that the free and wired Loop O(1) model con-
verges in law (see [3, Theorem 2.3]). However the proof goes through the convergence
of correlation functions in the gradient Ising model, which is only related to the Loop
O(1) model in the distributional sense. An inspection of the proof of Proposition 3.15
provides an alternative proof of this convergence via a reasonably explicit coupling.
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In fact, once we sample the FK-Ising, the coupling of Proposition 3.12 shows that the
projection of the Loop O(1) on a fixed set of edges stabilizes for n > N for a choice of N
depending only on the FK-Ising sample.

Lemma 3.17. Let p ∈ [0, 1] and ph ∈ (0, 1]. Let ωf ∼ φfG,p,ph and ωw ∼ φwG,p,ph . Then both

ωf,∗ and ωw,∗ are almost surely end dense.

Proof. The proof for the free and the wired are the same, so we prove just the free
case. By finite energy and Holley’s criterion ([24, Theorem 2.3 (b)]), conditionally on
ω∗∩E(G), we have that {ω∗{v,v∗}}v∈V (G) dominates a Bernoulli percolation with parameter
ph/(2− ph), from which the result easily follows.

We remark that Lemma 3.17 will only be used in the free case.

Lemma 3.18. Let G be a connected k-ended graph for some positive integer k and let
T be a spanning forest of G with each tree in it being infinite with finitely many ends.
Let ph ∈ (0, 1], p ∈ [0, 1] and ωf ∼ φfG,p,ph and ωw ∼ φwG,p,ph . Then T ∗ is almost surely end
dense.

Proof. This proof is the same as in Lemma 3.17. We leave the details to the reader.

4 Wired uniform spanning forest as a factor of i.i.d.

In this section, we prove Theorem 1.4 (restated below as Theorem 4.1). Thus, we
assume that (G, ρ) is a transient, connected, random rooted graph and aim to construct
the wired uniform spanning forest (WUSF) on it as a graph factor of i.i.d. The WUSF is a
distributional limit of the wired (rooted) spanning tree (Tn, ρ) of any exhaustion of (G, ρ)

by finite induced subgraphs (Gn, ρ). This yields the triplet (G, ρ, T ), called the WUSF on
(G, ρ), which is a unimodular, random rooted marked graph.

Given a transient (G, ρ), the WUSF can be generated by the celebrated Wilson’s
algorithm rooted at infinity. We briefly describe this procedure (see [39, Proposition
10.1] for details). A loop erased random walk is a random walk whose loops are erased
chronologically (we refer to [39, Section 4.1] for a more precise definition). Condition on
(G, ρ) and arbitrarily order the vertices of G. Sample an independent random walks from
each vertex of G one by one in order. The loop erasure of the first walk will generate
an infinite path because G is transient. Run the second walk until it hits the first path
or escapes to infinity, and loop erase it. Iterate this process until a path from every
vertex is sampled. It is known (see e.g. [6]) that this creates a unimodular, random
rooted network (G, ρ, T ) where T is distributed as the WUSF on G. In particular, the law
of the resulting tree does not depend on the order chosen for the vertices (though the
resulting realization does). Finally, we also rely on the related cycle popping algorithm,
as described below.

Each vertex has an arrow pointing uniformly at random to one of its neighbors, except
for one vertex which is fixed to be the sink. If the resulting directed graph contains
an oriented cycle, “pop” it by choosing new independent arrows at each vertex of the
cycle. Repeat until no directed cycle exists. This results in a uniform spanning tree with
each edge oriented towards the sink. The key insight is that the resulting tree does not
depend on the order of the cycles chosen ([39, Lemma 4.2]). Our proof will rely on an
extension of this algorithm to an infinite graph setting.

The reader should recall the definition of a graph factor of i.i.d. from Section 2.1.

Theorem 4.1. Let (G, ρ) be a connected, transient, random rooted graph and condi-
tioned on it let T be a WUSF on G. Then (G, ρ, T ) is a graph factor of i.i.d.
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Proof. Throughout, we condition on (G, ρ). The core idea is to extend the cycle popping
algorithm of Wilson to the infinite setting. For each vertex x, let Sx = (S1

x, S
2
x, . . . ) be a

sequence of oriented edges, where each Six is uniformly and independently chosen from
all edges emanating from x. (There is no ‘sink’ vertex and the root ρ plays no special
role, the role of the sink vertex is played by infinity. Indeed, rooting at infinity is required
to get a graph factor in the end.) We refer to Sx as the stack at x (thinking of S1

x as the
top of the stack), to the Six as arrows, and to i as the color of the arrow Six. We will
construct (G, ρ, T ) as a graph factor of (G, ρ,Ξ), where Ξ = (Sx)x∈V are i.i.d. variables.

The construction proceeds as follows. First, reveal the top arrow at every vertex.
This creates a directed graph with oriented paths and cycles, and potentially infinite or
bi-infinite oriented paths. As in the finite case, we repeatedly choose a finite cycle (if
one exists) and pop it — throw away the top arrow at each stack along the cycle so as
to expose the next arrows there. In contrast to the finite setting, the top arrows may
(and a.s. will) create infinitely many finite cycles, so we will need to be careful with how
we choose which cycles to pop. We will keep track of the cycles popped at any given
moment, including the information of the colors of the arrows in the cycle (we refer to
these as colored cycles). After a certain number of poppings, the collection of topmost
arrows in the stacks are called exposed arrows. Note that popping a cycle increments
the colors of the exposed arrows at the vertices of the cycles.

We now explain how to pop the cycles in such a way so that after all the popping
has finished, we are left with exposed arrows which describe the WUSF as a factor
of Ξ. In an infinite graph, it is possible that after infinitely many cycles are popped,
the exposed arrows still include cycles, so a transfinite version of the algorithm is
used. LetW := (W1,W2, . . . ), where each Wi is a (finite or infinite) sequence of vertices
Wi = (vi,j)16j<`i . Roughly speaking, we go over the vertices inW one at a time according
to the lexicographical order in the indices: vij � vi′j′ if i 6 i′ or if i = i′, j 6 j′. Observe
that W also defines an order of popping loops. Namely, when we arrive at a vertex
v = vi,j , we check whether it is included in a finite cycle defined by the currently exposed
arrows (such a cycle is unique if it exists); if so, we pop it; otherwise, we do nothing.
Formally, we inductively define ci,j(x) ∈ N (the color of the exposed arrow at x at stage
(i, j)) as follows. Set c1,1(x) := 1. If we have defined ci,j = (ci,j(x))x∈V for some (i, j),
then we define ci,j+1(x) := ci,j(x)+1Li,j (x), where Li,j is the finite cycle passing through

vi,j in the arrow configuration (S
ci,j(x)
x )x (where Li,j = ∅ if j > `i or if no such cycle

exists). When moving to the next sequence Wi+1, define ci+1,1 := limj→∞ ci,j . Finally,
define c∞ := limi→∞ ci,1. Note that {Li,j} is the set of cycles popped, that c∞(x) is the

final color of the arrow at x (as long as it is finite), and that σ = (S
c∞(x)
x )x is the final

arrow configuration.

We say W is a legal order with respect to a collection of stacks S if the following
hold for every v ∈ V :

• c∞(v) is finite (only finitely many loops passing through v are popped),

• There are infinitely many i such that v appears in Wi.

The motivation behind the above definition is as follows: the first item guarantees that
the popping stabilizes (and that the above construction is well defined); the second will
ensure that every cycle that can be popped is indeed popped. We now make two claims:

Claim 1 Almost surely, there exists a legal order.

Claim 2 For any two legal orders, the set of colored cycles popped is the same. In
particular, any two legal orders produce the same final arrow configuration σ.
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Claim 1 is a consequence of the fact that Wilson’s algorithm rooted at infinity almost
surely stabilizes. Let (u1, u2, . . . ) be some ordering of the vertices of G. Stacks of arrows
can be used to generate random walks on G: At each step the walker uses the first
unused arrow at its current location. Consider the resulting random walk from u1. Each
loop created by this walk corresponds to a cycle that can be popped. We define the
sequence W1 to be the ordered sequence of vertices at which the walk closes a loop
(with multiplicities). Thus each vertex of W1 will cause a cycle to be popped. After
popping these cycles in order, the loop erased walk consists of an infinite directed path
of exposed arrow starting at u1. We define W2 to be that path, and note that visiting
the vertices of W2 will not pop any cycles. (This is still needed for the second legality
condition.)

Having defined W1 and W2, we consider the walk from u2 stopped when it hits the
path from u1 (or to infinity if it does not hit the path). The vertices where this walk closes
a loop form W3. After popping these cycles, the union of the two loop erased walks is a
forest, and all vertices of this forest are entered in W4 in an arbitrary order. In general,
the loops closed by the walk from uk will be noted in W2k−1, and the forest spanned
by u1, . . . , uk will be included in W2k. It is clear that this sequence of vertices describe
Wilson’s algorithm and hence almost surely the first item in the definition of legal order
is satisfied since Wilson’s algorithm stabilizes by transience. Since we always scan all
the vertices in the forest in W2i+1, each vertex v appears in infinitely many odd indexed
Wi s.

We now proceed to Claim 2. The proof method is similar to that in the finite case, see
e.g. [39, Lemma 4.2], with some extra care to deal with the infinite graph. We provide it
for completeness. Consider two legal orders W and W ′. The idea is to use transfinite
induction to show that every colored cycle C ′ that is popped when following W ′ is also
popped at some point when following W . For the base case, consider the very first cycle
that is popped when following W ′. All arrows of the colored cycle C ′ must have color 1.
Consider the first cycle popped in W that intersects C ′. Call that cycle C. Since no
previous popped cycle intersects C ′, when C is popped it includes a vertex v ∈ C ′ which
still has color 1. When C is popped, all vertices of C ′ have color 1, and so if C includes
any of them it must equal C ′ (as a colored cycle!).

The inductive step is similar. The key observation is the following. Suppose a vertex
vi,j causes a colored cycle to be popped. If we remove vi,j from the order, and remove
the arrows of the cycle from the stacks, then the resulting set of colored cycles popped
will not see any other change. That is, applying the modified sequence to the modified
stacks will see the same cycles being popped. The same holds if any number of such
terms are dropped from W and the arrows of the corresponding cycles are removed
from the stacks.

Consider now some colored cycle C ′ that is popped in W ′. Let Ŵ ′ be the order W ′

without all the vertices that lead to a popped cycle strictly before C ′. Let Ŝ be the stacks
without all the arrows involved in those earlier cycles. Note that these are all locally
finite, so are well defined. By the induction hypotheses, all earlier colored cycles are
also popped in W , so let Ŵ be the order W without the vertices leading to these cycles
being popped there. Now C ′ is the first cycle popped in Ŵ ′ with the stacks Ŝ. As in the
base case, C ′ is also popped in the order Ŵ on Ŝ. By the above observation, C ′ is also
popped in W acting on S.

We have shown that all colored cycles popped in W ′ are also popped in W , and by
symmetry the converse also holds, proving Claim 2.

Given these two claims, the graph factor map can now be easily described. Given
the stacks, choose any legal order and compute the final configuration σ of exposed
arrows that it produces. This configuration does not depend on the chosen legal order
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by Claim 2, and hence this yields a graph factor. Wilson’s algorithm ensures that the
unoriented arrows defined by σ has the law of the WUSF [39, Proposition 10.1].

Remark 4.2. For our application to the loop O(1) model, we use Theorem 4.1 together
with the known fact that the components of the WUSF are one-ended almost surely [10,
5, 32]. In fact, for our purposes, we could use any forest (instead of the WUSF) which
can be obtained as a graph factor of i.i.d. and whose components are infinite one-
ended trees (see Proposition 5.2). In this context, we mention that another natural
candidate for the desired forest is the free or wired minimal spanning forest, which has
a natural description as a factor of i.i.d. These forests are defined as follows. Attach an
independent Uniform [0, 1] random variable U(e) to each edge e in the graph. Declare an
edge e to be present in the free minimal spanning forest if there is no cycle in G such
that U(e) > U(e′) for all e′ 6= e in the cycle. For the wired minimal forest, we additionally
require that there is no bi-infinite path containing e such that U(e) > U(e′) for all e′ in
the bi-infinite path. It is known that the wired minimal spanning forest has one-ended
components on a unimodular, extremal random rooted graph if there is no infinite cluster
at criticality [5, Theorem 7.4]. We do not know how to prove that there is no infinite
cluster at criticality in our setting (notably for the supercritical FK-Ising model, except if
p = 1 and G is nonamenable and quasi-transitive). We mention that one route which is
sufficient is to prove that the FK-Ising cluster is invariantly non-amenable as then we can
use [5, Theorem 8.11]. However this problem is believed to be hard, recently this was
solved for Bernoulli bond percolation [30]. We also mention that it is not known whether
the free minimal spanning forest is connected in general as soon as G is treeable (see
[40] for a discussion).

5 Loop O(1) as a factor of i.i.d.

In this section, we prove Theorem 1.1 (wired case) and Theorem 1.2 (free case).
We record here a result about obtaining an end faithful spanning tree as a factor of

i.i.d. in unimodular amenable graphs.

Theorem 5.1 ([9, 5, 51]). Let (G, ρ) be a unimodular random rooted graph which is
invariantly amenable with finite expected degree of ρ. There exists an end faithful
spanning tree of (G, ρ) which can be obtained as a graph factor of i.i.d.

Proof. It is known that if (G, ρ) is invariantly amenable then there exists a spanning tree
with at most two ends which can be obtained as a graph factor of i.i.d. This is proved in
[5, Theorem 8.9] which extends [9, Theorem 5.3] (it is not mentioned in the results that
the tree can be constructed as a factor, but is implicit in their proofs5). This shows that
(G, ρ) is also at most two ended. On the event that (G, ρ) is two ended, it is clear that the
spanning tree obtained as a factor must be two ended. On the event that (G, ρ) is one
ended, the theorem follows from the main result of Timár [51].

Proposition 5.2. Let (G, ρ) be a unimodular random rooted graph with finite expected
degree of ρ and let ω be an invariant percolation on it which almost surely has no two-
ended components. Conditionally on (G, ρ, ω), let Ξ := (Ξv)v∈V (G) be an i.i.d. collection
of Uniform [0, 1] random variables. Then there exists a graph factor map ϕ2 with

(G, ρ, (ω, T )) = ϕ2(G, ρ, (ω,Ξ)),

such that T almost surely satisfies the following: T restricted to a finite cluster of ω is a
spanning tree of that cluster; T restricted to an infinite cluster of ω is a spanning forest
of that cluster consisting of infinite one-ended trees.

5This is also mentioned in a remark in Timár’s paper [51].
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(The reason for the notation ϕ2 will become clear later.)

Proof. Let ωv be the edge cluster of a vertex v in ω and let Ξv be Ξ restricted to ωv. Recall
from Lemma 2.4 item b that (ωρ, ρ) is unimodular. We claim that there is a graph factor
ϕ̃2 such that ϕ̃2(ωρ, ρ,Ξρ) = (ωρ, ρ, Tρ), where Tρ satisfies the criteria of the proposition:
if ωρ is finite, Tρ is a.s. a spanning tree; if ωρ is infinite, Tρ is a.s. a spanning forest
whose every component is infinite and one ended. Note that given ϕ̃2, we can define ϕ2

by applying ϕ̃2 separately to each vertex component (precisely because ϕ̃2 is a graph
factor and does not depend on the location of the root). We can thus conclude that ϕ2

produces a T as desired.
Let us now define ϕ̃2. If ωρ is finite, then it is a standard fact that we can sample

a uniform spanning tree as a graph factor, call this map ψ. Let R be the event that
every infinite cluster is recurrent and one ended. If R has positive probability, (G, ρ, ω)

conditioned on R is a unimodular random rooted graph in which every infinite cluster
is one ended and recurrent (Lemma 2.2, item c), and the required factor map was
constructed by Timár (Theorem 5.1); call it ψ′. Since ω does not have any two-ended
components by assumption, Rc is the event that every infinite cluster is transient (here
we use implicitly that it almost never happens that some infinite clusters are recurrent
and some are transient by Lemma 2.2 item d). So now we can use Theorem 4.1 to obtain
the required factor map, call it ψ′′, which has the desired one-endedness property (see
BLPS [10, Theorem 10.1] for Cayley graphs, Aldous-Lyons for unimodular, bounded
degree graphs [5, Theorem 7.2], and Hutchcroft [32, Theorem 1] for the most general
result). Finally we define ϕ̃2((g, x,m)) to be equal to ψ if (g, x) is finite, ψ′ if (g, x) is
recurrent and one ended, and ψ′′ if (g, x) is transient. This completes the construction of
ϕ̃2 and finishes the proof.

Proof of Theorem 1.1 (Wired case.) We now turn to the proof of Theorem 1.1, i.e., the
goal now is to describe a graph factor map ϕ such that

ϕ((G, ρ,Ξ)) = (G, ρ, η)

where (G, ρ,Ξ) is an i.i.d. marked random rooted graph and given (G, ρ), η ∼ Pw
G,x,y. Let

Ξ = (Ξ(1),Ξ(2),Ξ(3)) be three i.i.d. collections. Fix β, h such that x = tanh(β), y = tanh(h)

and fix p = 1− e−2β and ph = 1− e−2h as prescribed by Proposition 2.6.

We first handle the case x ∈ [0, 1). Let ωw ∼ φwG,p,ph . Using Theorem 2.5, we know
that ωw ∼ φwG,p,ph is a graph factor of i.i.d., so that there is a graph factor map ϕ1 such
that

ϕ1((G, ρ,Ξ(1))) = (G, ρ, ωw).

Since x < 1, we have that ωw is deletion tolerant, and we can thus conclude using
Lemma 2.2 item d that none of the components of ωw is two-ended almost surely. Hence
Proposition 5.2 allows us to define a graph factor ϕ2 such that

ϕ2((G, ρ, (ωw,Ξ(2)))) = (G, ρ, (ωw, T )),

where T almost surely satisfies the following properties. The restriction of T to each
infinite component of ωw is a spanning forest whose every component is infinite and
one ended. The restriction of T to each finite component is a spanning tree of that
component. Finally, we define a graph factor map ϕ3 such that

ϕ3((G, ρ, (ωw, T,Ξ(3)))) = (G, ρ, η).

This is obtained by extracting from T a locally finite generating set for the wired cycle
space of ωw using Lemma 3.6 and then defining η as in (3.1) (taking the i.i.d. variables
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from Ξ(3) and noting crucially that the elements in the generating set are indexed
by edges of G). By composing ϕ1, ϕ2, ϕ3 in an obvious manner, we obtain the graph
factor map ϕ. The fact that (G, ρ, η) has the required distribution is a consequence of
Propositions 3.15 and 3.12.

Now we turn to the case x = 1. In this case, the edge set of ωw coincides with that
of G. Thus the case when (G, ρ) is a.s. not two ended is already handled by the previous
argument (here we only need to compose the maps ϕ2, ϕ3). Now suppose that (G, ρ) is
two ended with positive probability and condition on it. Using Theorem 5.1, we obtain
an end faithful two-ended spanning tree T of (G, ρ) as a graph factor of i.i.d. Now if
y > 0, using Lemma 3.18, T ∗ is end dense almost surely. Hence we can use the second
item of Lemma 3.6 to obtain a locally finite generating set for the wired cycle space as
a factor. The last remaining case is when y = 0 and (G, ρ) is two ended with positive
probability, in which case we claim that η is not a graph factor of i.i.d. The argument for
this is independent of everything else and is proved in the following proposition.

Proposition 5.3. Let (G, ρ) be a unimodular random rooted graph which is two ended
with positive probability. Then the wired uniform even subgraph of (G, ρ) is not a graph
factor of i.i.d.

Proof. We may assume without loss of generality that (G, ρ) is ergodic, so that in partic-
ular it is almost surely two ended. Let U be the wired uniform even subgraph of (G, ρ).
Using Lemma 2.3, it suffices to show that (G, ρ, U) is not ergodic.

We define a non-constant random variable X which is invariant to re-rooting. This
contradicts the ergodicity of (G, ρ). Call a set of edges an end-separator if removing
it creates two infinite components. A minimal end-separator is such a set which is
minimal with respect to inclusion. In this case, G \ F is disconnected and has exactly
two connected components. Let F be a minimal end-separator. Define X to be |U ∩ F |
mod 2. Let us show that X does not depend on the choice of F . Let F ′ be another
minimal end-separator. Now, U can be written as an edge-disjoint union of finite cycles
and bi-infinite paths, so it suffices to show that any finite cycle or bi-infinite path C

satisfies |C ∩ F | ≡ |C ∩ F ′| (mod 2). It is not hard to check that |C ∩ F | ≡ 1 (mod 2) if
and only if the intersection of C with each of the two connected components of G \ F is
infinite. Since the latter clearly does not depend on the end-separator F in a two-ended
graph, we conclude that X is well defined and invariant to re-rooting.

It remains to show that X is a non-constant random variable. Let P be a bi-infinite
path in G, whose ends correspond to the two ends of G. Note that U 7→ U∆P is measure
preserving (i.e., U∆P has the same distribution as U ) and that it maps X to 1−X. Thus,
X is a Bernoulli (1/2) random variable.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 (Free case.) We will use the notations of the factor maps used in
the wired case. Let us first sample ωf ∼ φfG,p,ph as a graph factor of i.i.d. by applying
Theorem 2.5 (analogous to ϕ1 as in the wired case).

Case (a) If y > 0 then we know by Lemma 3.13, Lemma 3.17 that each infinite cluster
is end-dense and hence the wired and free uniform even subgraphs have the same law.
Thus, the same arguments as in the wired case yield that Pf

G,x,y is a factor of i.i.d. (with
the same maps ϕ2, ϕ3).
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Case (b) We may assume that y = 0 (otherwise refer to Case (a)). If (G, ρ) is invariantly
amenable, then we can use Lemma 2.4 item c to say that (ωf

ρ, ρ) is also invariantly
amenable. We can then apply Theorem 5.1 to find an end faithful spanning tree as
a graph factor of i.i.d. We can apply Lemma 3.5 to get a locally finite generating set
{Ci}i>1 for E f . Taking each element with probability 1/2 and applying (3.1) yields the
desired factor. This last step can be carried out in a standard way: use independent Unif
[0, 1] labels to select a uniformly random vertex in Ci (e.g., the one with minimal label),
and then use yet another independent Unif [0, 1] on that vertex to sample a Bernoulli
(1/2) variable εi. Then we compute

∑
εiCi to get the desired factor.

Case (c) Suppose now that ωf does not have infinitely many geodesic cycles through
any vertex almost surely. Let C be the collection of all geodesic cycles in (G, ρ), which by
assumption is locally finite. We claim that C generates the free cycle space E f . Indeed,
suppose some cycle C ∈ E f is not in the span of C. Let C be such a cycle of minimal
length. Since C is not itself geodesic, some pair of vertices in C are connected by a
shorter path. This allows us to write C as a sum of two shorter cycles, which must be
in the span of C, contradicting the assumption that such C exists. This shows that C
generates the free cycle space E f . Finally, taking each element with probability 1/2, and
applying (3.1) yields the desired factor.

Map case If M is planar map, we can take the collection of all finite degree faces of ωf

as a locally finite generating set (this replaces the step of finding such a generating set
using spanning trees in the wired case). Indeed, it is a standard fact that every cycle in
a planar map is the sum of all the faces in the finite component enclosed by it. As before,
we can assign a random parity to each cycle as a factor of i.i.d. because they are finite.

This finishes the proof of Theorem 1.2.

Remark 5.4. If G is amenable and vertex transitive, then it is a result of Raoufi [44]
that the free and wired Loop O(1) measures coincide away from criticality (notably for
low temperatures). Thus, in this case, we can alternatively conclude that the free Loop
O(1) is a graph factor of i.i.d. using Theorem 1.1.

Remark 5.5. If (G, ρ) is vertex transitive and nonunimodular, then the steps where the
proof of Theorem 1.1 fails are as follows. If the FK-Ising clusters are transient, then we
do not know if the WUSF is one-ended (see [37] for a condition of uniform transience
which ensures this). In the recurrent case, we would need a version of Timár’s result
(we believe this case is vacuous). We point out that planar, one-ended, quasi-transitive
graphs are always unimodular (see [39, Theorem 8.25]).

In the free case, the arguments for planar maps and for graphs with finitely many
geodesic cycles through each v do not require the unimodularity condition, and the
result holds.

6 Perspectives and open questions

Question 6.1. Suppose (G, ρ) is a unimodular random rooted graph which is recurrent
almost surely. Show that the wired uniform spanning tree is a graph factor of i.i.d.

This is open even in the case of Z2. We believe that for Z2, the result of Lis and
Duminil–Copin [20] on double random currents and its connection with dimers could be
a potential approach. However a more robust approach is more desirable, so we do not
pursue that in this article.
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We now turn to the condition involving geodesic cycles in Theorem 1.2. One situation
where it is satisfied is if a sample from supercritical FK-Ising satisfies a weak version
of Gromov hyperbolicity which we now define. Given three vertices x, y, z, let Txyz be
the union of γxy, γyz and γzx, where γuv is a geodesic joining u and v. This is called a
geodesic triangle. Such a triangle is δ-thin if the distance between any vertex in γyz and
γxy∪γxz is at most δ, and the same is true for the other permutations of {x, y, z}. A graph
is anchored Gromov hyperbolic if for every v there exists a δ (which may depend upon v)
such that any geodesic triangle through v is δ-thin. It is straighforward to see that if ω
is almost surely anchored Gromov hyperbolic, then the last condition in Theorem 1.2
is satisfied: indeed an arbitrarily long geodesic cycle can be used to create a geodesic
triangle which is not δ-thin for arbitrarily large δ. It is not unreasonable to believe
that if G is Gromov hyperbolic, then an FK-Ising sample for a supercritical value of p is
anchored Gromov hyperbolic, but we do not pursue this in this article.

Question 6.2. Suppose pc(G) < p < 1. Could φfG,p,0 include infinitely many geodesic
cycles through the root? Here pc(G) is the critical probability for FK-Ising in G.

As discussed above, answering the following question will settle question 6.2 in the
Gromov hyperbolic setting.

Question 6.3. Suppose G is Gromov hyperbolic. Show that for p > pc, almost surely
every infinite cluster of φfG,p,0 is anchored Gromov hyperbolic.

Our results rely on a connection to FK-Ising which is only known for x, y ∈ [0, 1]. This
raises the following question:

Question 6.4. Suppose max{x, y} > 1. Are the free or wired Loop O(1) measures well
defined on infinite graphs, and if so are they graph factors of i.i.d.?

In some cases simple duality relations can yield a positive answer to the above
question. If all vertices of G have even degree then complement of the open edges yield
a Loop O(1) model with parameters 1/x, y, so we can apply our theorem in this case if
x > 1, y ∈ [0, 1]. If all the vertices have odd degree, then the complement of the open
vertices and open edges yield a Loop O(1) model with parameter 1/x, 1/y. Thus we can
apply our theorem if x > 1, y > 1.
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