
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 29 (2024), article no. 106, 1–20.
ISSN: 1083-6489 https://doi.org/10.1214/24-EJP1171

There is no stationary p-cyclically monotone Poisson
matching in 2d*

Martin Huesmann† Francesco Mattesini‡ Felix Otto§

Abstract

We show that for p > 1 there is no p-cyclically monotone stationary matching of
two independent Poisson processes in dimension d = 2. The proof combines the
p-harmonic approximation result from [15, Theorem 1.1] with local asymptotics for
the two-dimensional matching problem. Moreover, we prove a.s. local upper bounds
of the correct order in the case p > 1, which, to the best of our knowledge, are not
readily available in the current literature.

Keywords: matching; allocation; cyclical monotonicity; stationarity; invariance; optimal trans-
port; p-minimal.
MSC2020 subject classifications: 60D05; 60G55; 52A22; 49Q22.
Submitted to EJP on December 5, 2023, final version accepted on July 3, 2024.

1 Introduction

Let {X}, {Y } ⊂ Rd be two locally finite1 random point sets. We consider their
matching, that is a (random) bijection from {X} to {Y }. More precisely we will focus on
dimension d = 2 and we are primarily interested in the case where the two random point
sets are given by two independent Poisson point process of unit intensity and the map T
is p-locally optimal for p ≥ 1, meaning that for any other bijection T̃ that differs from T

only on a finite number of points∑
X

(|T (X)−X|p − |T̃ (X)−X|p) ≤ 0. (1.1)
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Since the sum in (1.1) is finite, the latter provides a natural connection to the optimal
transport problem between the measures

µ :=
∑
X

δX and ν :=
∑
Y

δY (1.2)

related via T#µ = ν. However, note that the map T cannot be viewed as a usual minimizer
in the optimal transport problem due to the (typically) infinite number of points.

Let us now be more specific on the random setting we consider. We assume that the
σ-algebra generated by ({X}, {Y }, T ) is rich enough so that the numbers of matched
pairs (X,Y ) ∈ U × V of any two Lebesgue-measurable sets U, V ⊂ Rd (with U or V
having finite Lebesgue measure2)

NU,V := #{(X,Y ) ∈ U × V | Y = T (X)} ∈ {0, 1, . . . }

are measurable. Moreover, we assume that the law of the triple ({X}, {Y }, T ) is station-
ary, that means it is invariant under the action of the additive group Zd

({X}, {Y }, T ) 7→ ({x̄+X}, {x̄+ Y }, T (· − x̄) + x̄) for x̄ ∈ Zd. (1.3)

Note that stationarity is a structural assumption which will allow us to say that for
any shift vector x̄, the random natural numbers Nx̄+U,x̄+V and NU,V have the same
distribution. Furthermore, we make the assumption that the action (1.3) is ergodic.

The aim of this paper is to explore the geometric properties of the matching T

between two independent Poisson point processes in dimension 2. A matching in R2 is
called planar if for any choice of points X,X ′, the line segments connecting X to T (X)

and X ′ to T (X ′) do not intersect. In 2002 the following question was proposed by Peres
in [11].

Question 1.1. For two independent Poisson processes of intensity one does there exist
a stationary planar matching?

It has been shown by Holroyd in [9], that there is no translation-invariant planar
matching on the strip R× [0, 1). Yet, Question 1.1 is still unsolved in R2 and it is far from
clear what its answer should be. Again in [9], it was observed by Holroyd, that by the
triangle inequality the 1-local optimality condition (1.1) implies planarity. Hence, it is
natural to consider the following modification of Question 1.1, which has been proposed
in [10].

Question 1.2. For two independent Poisson processes of intensity one does there exist
a stationary and p-locally optimal matching?

Question 1.2 is well understood for dimension d = 1 and d ≥ 3, e.g. see [10, Theorem
2 and Theorem 7] or [12]. Nevertheless, the two dimensional setting is partially unsolved.
In [10, Theorem 7] it has been shown that stationary p-locally optimal matchings exist
for p < 1. Our result, together with the one obtained in [13], complements the one of
[10] in the regime p > 1 and d = 2, leaving unsolved the case p = 1 and of course the
question on planarity.

Theorem 1.3. For d = 2 and p > 1, there exists no stationary and ergodic ensemble
of ({X}, {Y }, T ), where {X}, {Y } are independent Poisson point processes and T is a
p-cyclically monotone bijection of {X} and {Y }.

Before commenting on the proof of Theorem 1.3 let us add some remarks on exten-
sions and variants of Theorem 1.3.

2So that the following number is finite.
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Remark 1.4. Theorem 1.3 remains true if we replace the bijection T by the a priori
more general object of a stationary coupling Q. This can be seen for instance by
directly writing the proof in terms of couplings which essentially only requires notational
changes.

Remark 1.5. Natural variants of stationary matchings are given by stationary allocations
of a point process {X}, i.e. a stationary map T : Rd → {X} such that Leb(T−1(X)) equals
E[#{X ∈ (0, 1)d}]−1, e.g. see [8, 4, 16, 14].

Mimickicking the proof of Theorem 1.3, one can show that in d = 2 there is no locally
p-optimal stationary allocation to a Poisson process. The only place which will require
minor changes is the L∞ estimate Lemma 2.4.

Remark 1.6. Since by ergodicity and stationarity we can argue on a pathwise level via
the p-harmonic approximation Theorem (cf. Section 2.3), we do not use many particular
features of the Poisson point processes µ and ν in the proof of Theorem 1.3.

We mainly use two properties: The first property is concentration around the mean.
The second property is more involved. Denote by Wp the Lp Wasserstein distance. We

use that3 1
Rd
Wp(µ BR,

µ(BR)
|BR| Leb) diverges at the same rate for R→∞ as 1

Rd
Wp−ε(µ

BR,
µ(BR)
|BR| Leb) for some ε > 0.

The proof of Theorem 1.3 goes along the same lines as in [13, Theorem 1.1], see
also [13, Section 1.1]. We already remark here that there are two new ingredients: The
p-harmonic approximation theorem and almost sure upper asymptotics for the matching
cost. The former, already shown in [15, Theorem 1.1], states that the displacement
T (X)−X is close (in the p-norm distance) to a p′-harmonic4 gradient field |∇Φ|p′−2∇Φ

provided that we are in a perturbative regime, which is quantified in terms of smallnes
of the local energy

Ep(R) :=
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|p (1.4)

and of the data term, that is the distance of µ BR and ν BR to the Lebesgue measure
on the ball BR of radius R5

Dp(R) :=
1

Rd
W p
p,BR

(µ, nµ) +
Rp

nµ
(nµ − 1)p +

1

Rd
W p
p,BR

(ν, nν) +
Rp

nν
(nν − 1)p, (1.5)

where nµ = #{X∈BR}
|BR| and nν = #{Y ∈BR}

|BR| , and Wp,Γ(µ, ν) = Wp(µ Γ, ν Γ) for a Borel

set Γ ⊂ Rd. The latter, which we state here, is our second main result and concerns
concentration properties of the matching cost.

Theorem 1.7. Let µ, ν denote two independent Poisson point processes in Rd of unit
intensity. There exists a constant C, and a random radius r∗ <∞ a. s. such that for a
(random) sequence of approximately dyadic radii6 R ≥ r∗

Dp(R) ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3.
(1.6)

We remark here that by the annealed (i. e. in expectation, see for instance [1], [2])
results for the matching problem in dimension d = 2 and by the concentration properties
of the Poisson process we may expect that Dp(R) ≤ O(ln

p
2 R). However, the standard

3Given a measure µ on a Rd and a subset Γ ⊆ Rd we denote its restriction to Γ by µ Γ( · ) := µ( · ∩ Γ).
4We denote by p′ the conjugate exponent of p, i. e. 1

p
+ 1
p′ = 1.

5We tacitly identify the (random) number density nµ with the uniform measure nµdx.
6We say that a radius R is approximately dyadic if there exists a dyadic radius R′ and a constant C ∈

(
1
2
, 2

)
such that R = CR′.
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arguments based on concentration of measures to improve the annealed result already
available in the literature to an almost sure one fail whenever p > d, see also [6, Remark
6.5] for a discussion of the problem in the setting of strong convergence of asymptotic
costs. In order to prove Theorem 1.7 we make use of the dynamical formulation of
optimal transport, which allows us to combine PDE arguments together with the already
existing concentration arguments for the Poisson point process, see Section 2.1.

1.1 Main steps in the proof of Theorem 1.3

We describe here the main steps in the proof of Theorem 1.3. For the detailed proofs
we refer the reader to Section 2.

Following the arguments of the proof of [13, Theorem 1.1], we argue by contradiction.
We show that for a locally p-optimal stationary matching T between {X} and {Y } we
have the upper bound

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ o(ln
1
2 R), (1.7)

and the lower bound (see [13, Lemma 2.4])

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≥ Ω(ln
1
2 R),

implying the desired contradiction.

We now describe the main steps and the main differences between the proof of the
upper bound (1.7) in the general case p > 1 and in the quadratic case. The first common
step is the observation that by stationarity and ergodicity the number of Poisson points
which are transported by a far distance is small in volume fraction, i. e. the following
L0-estimate on the displacement holds

#{X ∈ (−R,R)d : |T (X)−X| � 1} ≤ o(Rd), (1.8)

see [13, Lemma 2.1] for a precise statement. As in the quadratic case this will be the
only place where stationarity and ergodicity enter. The next step consists on improving
the ergodic estimate (1.8) to a uniform bound. As opposed to [13, Lemma 2.2] we cannot
rely on the monotonicity of the map T . However, the local p-optimality of the matching T
allows us to exploit the geometry of its support to improve (1.8) to

|T (X)−X| ≤ o(R) provided that X ∈ (−R,R)d, (1.9)

see Lemma 2.4. By concentration properties of the Poisson process we may assume that
#{X∈BR}
|BR| ∈ [ 1

2 , 2] for R� 1. Summing (1.9) over BR we obtain

1

Rd

∑
X∈BR

|T (X)−X|p ≤ o(Rp). (1.10)

The bound (1.10) will let us run the harmonic approximation argument already employed
in [13, Lemma 2.3]. Nevertheless, in the current setting we need a p-cost version of the
latter. By the p-harmonic approximation theorem [15, Theorem 1.1] we know that if the
energy term (1.4) and the data term (1.5) are small then the displacement T (X) −X
is close to a p′-harmonic gradient field. By (1.10) and by exchanging the roles of {X}
and {Y } in (1.10) we have Ep(R) ≤ o(Rp). On the other hand Theorem 1.7 ensures that

Dp(R) ≤ O(ln
p
2 R). Hence, we are in a position to iteratively exploit the p-harmonic
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approximation result on an increasing sequence of scales to obtain that the local energy
inherits the asymptotic of the data term Dp:

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|p ≤ O(ln
p
2 R), (1.11)

see Lemma 2.6. Combining this with the L0-estimate as in [13, Lemma 2.4] yields

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ o(ln
1
2 R),

see Lemma 2.7.

2 Proofs

2.1 Upper bound

In this section we establish the upper bound asymptotics for the data term (1.5).
The proof of Theorem 1.7 will follow from the upper bound asymptotics of the distance
between the Poisson point process on a torus [0, R)d and the Lebesgue measure. Given
two measures µ, ν on Rd, we consider their projection on the torus [0, R)d and we denote
by W̃[0,R)d;p(µ, ν) the p-Wasserstein distance on the torus [0, R)d between them. Given a

Borel set Γ ⊂ [0, R)d, we denote by W̃[0,R)d;p,Γ(µ, ν) = W̃[0,R)d;p(µ Γ, ν Γ) its restriction
to Γ.

Lemma 2.1. Let µ be a Poisson point process on the torus [0, R)d of unit intensity. There
exists a constant C, a random radius r∗ <∞ a. s. such that for any dyadic radii R ≥ r∗
and any p ≥ 1

W̃ p
[0,R)d;p

(µ, n) ≤ CRd
{

ln
p
2 R if d = 2,

1 if d ≥ 3,
(2.1)

where n = µ([0,R)d)
Rd

is the (random) number density.

We shall derive Theorem 1.7 combining Lemma 2.1 with a restriction result for the
data term, which will allow us to exchange the periodic Wasserstein distance with the
Euclidean one.

Lemma 2.2. For any positive measure µ on the torus [−2R, 2R)d there exists a constant
C > 0 such that

ˆ R+ 1
2

R− 1
2

(
W̃ p

[−4R,4R)d;p,BR̄
(µ, nR̄) +

(nR̄ − 1)p

nR̄

)
dR̄ ≤ CD̃,

provided

D̃ := W̃ p
[−4R,4R)d;p

(µ, n) +
(n− 1)p

n
� 1,

where nR̄ = µ(BR̄)
|BR̄|

and n = µ([−4R,4R)d)
(8R)d

are the (random) number densities.

The latter can be derived combining the proof of [5, Lemma 2.10] and [15, Lemma
6.1].

Proof of Theorem 1.7. Step 1. Let R ≥ 1 be an increasing sequence of approximately
dyadic radii. We claim that there exists a constant C and a random radius r∗ <∞ a. s.
such that for the fixed sequence of dyadic radii R ≥ r∗

Rp

nµ
|nµ − 1|p ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3,
(2.2)
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and
Rp

nν
|nν − 1|p ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3.
(2.3)

W.l.o.g. we focus on (2.2). Indeed, (2.3) will follow from (2.4) exchanging the role of µ
and ν and taking the maximum of this radius and the one pertaining ν. Since for large

R� 1 we have ln
p
2 R
Rp � 1 (2.2) is equivalent to 7

Rp|nµ − 1|p .

{
ln

p
2 R if d = 2,

1 if d ≥ 3.

Since nµ|BR| is Poisson distributed with parameter |BR| by Cramér-Chernoff’s bounds
[3, Theorem 1] we get for d = 2

P(Rp|nµ − 1|p > ln
p
2 R) = P(|nµ|BR| − |BR|| > CR ln

1
2 R) . exp(−C lnR)

and
P(Rp|nµ − 1|p > C) = P(|nµ|BR| − |BR|| > CRd−1) . exp(−CRd−2),

for d ≥ 3. Finally, by a Borel-Cantelli argument (2.2) holds for the fixed sequence of
approximately dyadic radii R ≥ r∗. Step 2. We claim that there exist a constant C and a

random radius r∗ <∞ a. s. such that for a (random) sequence of approximately dyadic
radii R ≥ r∗

1

Rd
W p
p,BR

(µ, nµ) +
1

Rd
W p
p,BR

(ν, nν) ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3.
(2.4)

By Lemma 2.1 we may assume that (2.1) holds with [0, R)d replaced by [0, 8R)d. Moreover,
by stationarity of the Poisson point process we may assume that there exists a random
radius r∗ <∞ a. s. such that for any dyadic R ≥ r∗ (2.1) holds in the form

1

Rd
W̃ p

[−4R,4R)d;p
(µ, ñµ) ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3,
(2.5)

where ñµ = µ([−4R,4R)d)
(8R)d

is the (random) number density. Arguing in the same manner
for ν we can deduce (possibly enlarging r∗) that

1

Rd
W̃ p

[−4R,4R)d;p
(ν, ñν) ≤ C

{
ln

p
2 R if d = 2,

1 if d ≥ 3,
(2.6)

where ñν = ν([−4R,4R)d)
(8R)d

is the (random) number density. By the restriction property of

Lemma 2.2 we may deduce that there exists a radius R′ ∼ R such that

W p
p,BR′

(µ, nµ) +W p
p,BR′

(ν, nν) = W̃ p
[−4R,4R)d;p,BR′

(µ, nµ) + W̃ p
[−4R,4R)d;p,BR′

(ν, nν)

. W̃ p
[−4R,4R)d;p

(µ, ñµ) +
Rp

ñµ
(ñµ − 1)p + W̃ p

[−4R,4R)d;p
(ν, ñν) +

Rp

ñν
(ñν − 1)p.

(2.7)

Moreover, by the same argument as in Step 1 we may assume that (2.2) holds with nµ
and nν replaced by ñµ and ñν . Combining the latter with (2.7) and (2.5) and relabeling
R′ yields (2.4).

Step 3. Conclusion. Combining (2.2), (2.3) and (2.4) yields (1.6).

7We use the notation A . B if there exists a global constant C > 0, which may only depend on d, such that
A ≤ CB. We write A ∼ B if both A . B and B . A hold.
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Let us now turn to Lemma 2.1. In view of the dynamical formulation of optimal
transport we investigate the Moser coupling [20, Appendix p. 16] between µ and nµ. Let
(·)1 denote a mollification on scale 1, say the convolution8 with the standard Gaussian.
Let φ denote the solution of the Poisson problem on [0, R)d

−∆φ = µ1 −
 

[0,R)d
µ1 = µ1 − n. (2.8)

We are interested in the spatially averaged p-moment of its gradient

F :=

 
[0,R)d

1

p
|∇φ|p for any p <∞. (2.9)

We shall establish that thanks to the spatial averaging, F has good concentration
properties around its expectation EF . As we establish, the latter is O(ln

p
2 R) for d = 2

and O(1) for d ≥ 3. What matters to us is that the probability that F � ln
p
2 R if d = 2 and

F � 1 if d ≥ 3 is very small.

Lemma 2.3. There exists a constant C <∞ such that for R ≥ C and any p ≥ 1,

P(F ≥ C ln
p
2 R) ≤ C

ln2R
if d = 2. (2.10)

and

P(F ≥ C) ≤ C

R2d−4
if d ≥ 3. (2.11)

An inspection of the proof reveals that the exponent 2 if d = 2, 2d− 4 if d ≥ 3, on the
r. h. s. could be replaced by any exponent <∞ (on which C will depend). However, it is
sufficient for our purposes that the r. h. s. of (2.10) and (2.11) is summable over dyadic
R, which holds for any exponent > 1.

The proof of Lemma 2.1 is a direct consequence of Lemma 2.3.

Proof of Lemma 2.1. Step 1. Definition of r∗. By Lemma 2.3 and a Borel-Cantelli argu-
ment we can deduce that there exists a constant C and a random radius r∗ < ∞ a. s.
such that for any dyadic radii R ≥ r∗

ˆ
[0,R)d

|∇φ|p ≤ CRd
{

ln
p
2 R if d = 2,

1 if d ≥ 3,
(2.12)

where φ solves (2.8). Moreover, arguing as for (2.2) we may assume that r∗ is large
enough so that

µ([0, R)d)

Rd
∈
[

1

2
, 2

]
for R ≥ r∗. (2.13)

Step 2. Proof of (2.1). By the triangle inequality and the semigroup contraction
property of the Wasserstein distance we may write

W̃ p
[0,R)d;p

(µ, n) . W̃ p
[0,R)d;p

(µ, µ1) + W̃ p
[0,R)d;p

(µ1, n) . 1 + W̃ p
[0,R)d;p

(µ1, n). (2.14)

We now turn to estimate the second item of the r. h. s. of (2.14). By (2.13) we have the
lower bound n ≥ 1

2 which together with (2.14) implies (2.1) by the inequalities

W̃ p
[0,R)d,p

(µ1, n) ≤ 2p−1pp
ˆ

[0,R)d
|∇φ|p

(2.12)
≤ CRd

{
ln

p
2 R if d = 2,

1 if d ≥ 3.
(2.15)

8In the torus [0, R)d.
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The first inequality in (2.15) can be derived from the dynamical description of the
transport distance, namely the Benamou-Brenier formulation of the transport distance

W̃[0,R)2;p(µ1, n) = min

{ˆ 1

0

ˆ
[0,R)d

|j|p

ρp−1
: ∂tρ+∇ · j = 0, ρ0 = µ1, ρ1 = n

}
, (2.16)

where ρ, j have to be understood as distributions on [0, 1] × [0, R)d (see for instance
[17, Theorem 5.28]). Indeed, the couple (ρ, j), with ρ = (1− t)pµ1 + (1− (1− t)p)n and
j = −p(1− t)p−1∇φ is an admissible candidate for (2.16) and by (2.13) we have the lower
bound ρ ≥ (1− t)pn ≥ 1

2 (1− t)p.

Proof of Lemma 2.3. By Jensen’s inequality we can restrict ourselves to the case p ≥ 2.
By Chebyshev’s inequality, it is enough to establish

E(F − C ln
p
2 R)4

+ . ln2(p−1)R if d = 2, (2.17)

and

E(F − C)4
+ . R4−2d if d ≥ 3, (2.18)

for some constant C. We start by ignoring the spatial averaging in (2.9) by considering

G = G(µ) := ∇φ(X) for some fixed point X

and establish its concentration. In fact, we shall derive a mixture of exponential and
Gaussian concentration:

− lnP(|G− EG| ≥M) &

{
M2

lnR for d = 2 and M � lnR

M otherwise

}
, (2.19)

which by the layer cake representation implies the Lp estimate in probability

E
1
p |G− EG|p .

{
ln

1
2 R if d = 2

1 if d ≥ 3.
(2.20)

By invariance of the ensemble and covariance of φ under reflection w. r. t. to the d

Cartesian hyper-planes crossing X, we have EG = 0, so that (2.20) sharpens to

E|G|p .

{
ln

p
2 R if d = 2

1 if d ≥ 3.
(2.21)

We now turn to the argument for (2.19). The concentration principle in [21, Proposi-
tion 3.1] already applied in [13, Lemma 2.5] monitors the change DX0

G := G(µ+ δX0
)−

G(µ) of G arising from adding a point at position X0 to the point cluster. In view of (2.8),
the effect is given by

DX0G = ∇DX0φ(X) where −∆DX0φ = (δX0)1 −R−d. (2.22)

We learn that DX0
φ is the mollified potential function for a periodic charge distribution

at X0 +(RZ)d with a constant background charge making the distribution overall neutral.
This object is well-defined on the level of its gradient and satisfies9

|DX0
G| = |∇DX0

φ(X)| .
(
dist(X,X0 + (RZ)d) + 1

)1−d
, (2.23)

9We denote by dist(x, y + (RZ)d) := mink∈(RZ)d |x− y − k| the periodic distance on the torus [0, R)d.
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There is no stationary p-c. m. Poisson matching in 2d

from which we learn, in the notation of [21, Proposition 3.1],

β := sup
X0

|DX0
G| . 1 and α2 :=

ˆ
[0,R)d

dX0|DX0
G|2 .

{
lnR if d = 2,

1 if d ≥ 3.

This implies

P(|G− EG| ≥M) ≤ 2 exp

(
−M

2β
ln

(
1 +

βM

α2

))
,

which is easily seen to imply (2.19).

It is convenient to use a different concentration principle for (2.17). While for (2.20),
we used the concentration principle for the “grand canonical ensemble” of the Poisson
point process on [0, R)2, for (2.17) is convenient to disintegrate this grand canonical
ensemble into the “canonical ensemble” EN of N i. i. d. points uniformly distributed.
Note that (2.8) assumes the form

−∆φ = µ1 −N on [0, R)d where µ =

N∑
n=1

δXn , (2.24)

where also the convolution refers to the torus [0, R)d. The advantage is that we have an
easy spectral gap estimate, which is in fact just the tensorization of the standard Poincaré
inequality with mean value zero on [0, R)d: For any suitable function F = F (X1, · · · , XN )

we have

EN (F − ENF )2 . R2EN

N∑
n=1

|∇XnF |2.

Applying this inequality with F 2 playing the role F , and appealing to the Cauchy-Schwarz
inequality in probability, we may upgrade this standard version to the exponent 4, which
will be sufficient for our purposes:

EN (F − ENF )4 . R4EN

(
N∑
n=1

|∇XnF |2
)2

.

By the Cauchy-Schwarz inequality in N , and for our F that is invariant under permuting
its argument, this yields

EN (F − ENF )4 . R4N2EN |∇XNF |4. (2.25)

We now derive a suitable representation for ∇XnF . From (2.9) we obtain for the
partial derivative ∇XnF for our F

∇XnF = R−d
ˆ

[0,R)d
|∇φ|p−2∇φ · (∇∇Xn φ̄)1, (2.26)

where −∆∇Xn φ̄ = ∇δXn on [0, R)d.

From the latter, we learn that −∇∇Xn φ̄(x) is the translation-invariant kernel, evaluated
at x −Xn, of the Helmholtz projection, i. e. the L2([0, R)d)-orthogonal projection onto
gradient fields (see [18, Theorem 2.4.9] and the discussion below). Since the latter
operator is symmetric, and commutes with mollification, (2.26) can be reformulated as

∇XnF = R−d∇u1(Xn), (2.27)
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where −∇u is the Helmholtz projection of |∇φ|p−2∇φ, that is

−∆u = ∇ · |∇φ|p−2∇φ. (2.28)

Inserting (2.27) into (2.25), we obtain

EN (F − ENF )4 .

(
N

Rd

)2

R4−2dEN |∇u1(XN )|4. (2.29)

In view of the Calderón-Zygmund estimate (see [19, Chapter I, II and III] for a
reference on classical Calderón-Zygmund’s theory) for (2.28)

 
[0,R)d

|∇u|4 ≤
 

[0,R)d
|∇φ|4(p−1), (2.30)

the plan now is to pass from EN |∇u1(XN )|4 to EN
ffl

[0,R)d
|∇u1|4. To this purpose, we will

consider φ′ defined in (2.24) with N replaced by N − 1, and u′ defined like u in (2.28)
with φ replaced by φ′. Hence provided we can

estimate EN |∇u1(XN )|4 by EN−1|∇u′1(XN )|4, (2.31)

we may proceed to capitalize on the (stochastically) independence of u′ of the uniformly
distributed XN to the effect of

EN |∇u′1(XN )|4 = EN−1

 
[0,R)d

|∇u′1|4.

Using that (·)1 contracts the norm and (2.30) we obtain by shift-covariance of ∇φ′

EN |∇u′1(XN )|4 . EN−1|∇φ′|4(p−1). (2.32)

Hence provided we may

estimate EN−1|∇φ′|4(p−1) by EN |∇φ|4(p−1) (2.33)

we hope to obtain from (2.29) that

EN (F − ENF )4 .

(
N

Rd

)2

R4−2d(EN |∇φ|4(p−1) + 1). (2.34)

Applying E to (2.34), which just means applying the Poisson distribution with mean Rd

to N , and using the Cauchy-Schwarz inequality on the latter, and its good concentration
property (on the level of the fourth moment), we obtain

E(F − ENF )4 . R4−2d
(
E|∇φ|8(p−1) + 1

) 1
2 .

Inserting (2.21) (with p replaced by 8(p− 1)) we obtain

E(F − ENF )4 .

{
ln2(p−1)R if d = 2,

R4−2d if d ≥ 3,
(2.35)

the major step towards (2.17).

We now turn to (2.31) and (2.33). Momentarily introducing j(z) := |z|p−2z we note
that

|j(z)− j(z′)| . |z′|p−2|z − z′|+ |z − z′|p−1.
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From (2.28) we deduce a representation of ∇(u − u′) as the Helmholtz projection of
j(∇φ)− j(∇φ′) on [0, R)d. In view of the mollification we obtain

|∇(u− u′)1(XN )| .
ˆ

[0,R)d

(
dist(·, XN + (RZ)d) + 1

)−d|j(∇φ)− j(∇φ′)|.

From (2.24) we obtain, cf. (2.23),

|∇(φ− φ′)| .
(
dist(·, XN + (RZ)d) + 1

)1−d
. 1.

The combination of these yields (using p− 1 ≥ 1)

|∇(u− u′)1(XN )|

.
ˆ

[0,R)d

(
dist(·, XN + (RZ)d) + 1

)1−2d
(|∇φ′|p−2 + 1).

Since by 1− 2d < −d we have
ˆ

[0,R)d

(
dist(·, XN + (RZ)d) + 1

)1−2d
. 1, (2.36)

this implies

|∇(u− u′)1(XN )|4

.
ˆ

[0,R)d

(
dist(·, XN + (RZ)d) + 1

)1−2d
(|∇φ′|4(p−2) + 1).

Applying EN , using the shift covariance on the level EN−1, and once more (2.36) gives

EN |∇(u− u′)1(XN )|4 . EN−1|∇φ′|4(p−2) + 1. (2.37)

By the triangle inequality, (2.37) deals with (2.31); by (2.21) the additional error
term is of higher order of the one already present on the r. h. s. of (2.32), and the +1 is
of higher order. The argument for (2.33) is easier. In fact, for later purpose, we shall
establish the monotonicity

f(N) := EN
1

p
|∇φ|p = ENF satisfies f(N − 1) ≤ f(N). (2.38)

Appealing to the monotonicity with p replaced by 4(p−1) we obtain (2.33). Here comes the
argument for (2.38). By convexity of z 7→ 1

p |z|
p we have 1

p |z|
p ≥ 1

p |z
′|p +|z′|p−2z′ · (z − z′),

which we use in form of

1

p
|∇φ|p ≥ 1

p
|∇φ′|p + |∇φ′|p−2∇φ′ · ∇(φ− φ′).

Since ∇φ′ is independent of ∇(φ− φ′), and since the expectation of the latter vanishes
as we discussed above based on reflection symmetry, this implies (2.38). Hence we have
completed the argument for (2.34) and thus (2.35).

It remains to post-process (2.35) to (2.17). To this purpose, we prove a partial reverse
of (2.38), namely

f(N) . f(N ′) provided N ≤ 2N ′. (2.39)

Indeed, now we start from 1
p |z|

p ≤ 1
p |z
′|p +|z|p−2z · (z − z′), in form of

1

p
|∇φ|p ≤ 1

p
|∇φ′|p + |∇φ|p−1|∇(φ− φ′)|.
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We now apply Hölder’s inequality in probability to the effect of

f(N) ≤ f(N ′) + (pf(N))
p−1
p (pf(N −N ′))

1
p

(2.38)

≤ f(N ′) + (pf(N))
p−1
p (pf(N ′))

1
p provided N ≤ 2N ′,

so that (2.39) follows from Young’s inequality.

Equipped with (2.38) and (2.39) we now may pass from (2.35) to (2.17), where we
use that by (2.21) and shift-covariance of |∇φ|p we have

EF ≤ E 1
8F 8 .

{
ln

p
2 R if d = 2,

1 if d ≥ 3.
(2.40)

We fix an N0 ∈ N with

N0 ≈ 2Rd,

so that by the concentration properties of the Poisson distribution we have thanks to the
factor of 2

P(N ≥ N0) is sub-algebraic in R while P

(
N ≤ N0

2

)
∼ 1. (2.41)

By (2.40), the first item in (2.41) transmits to

EI(N ≥ N0)(F − f(N0))4
+ (2.42)

≤
(
P(N ≥ N0)EF 8

) 1
2 is sub-algebraic in R.

Once more by (2.40), the second item in (2.41) implies by Chebyshev

f(N0)
(2.39)

. f

(
N0

2

)
. E[f(N)] = EF .

{
ln

p
2 R if d = 2

1 if d ≥ 3.
(2.43)

Now for the complementary portion to (2.42), we may appeal to (2.38) in order to connect
to (2.35):

EI(N ≤ N0)(F − f(N0))4
+ ≤ E(F − f(N))4 .

{
ln2(p−1)R if d = 2,

R4−2d if d ≥ 3.
(2.44)

The desired (2.17) now follows from combining (2.42) with (2.44) and inserting (2.43).

2.2 A L∞-estimate

In this section we improve the L0 estimate [13, Lemma 2.1] into a L∞ estimate for
the displacement |T (X)−X|. The proof of Lemma 2.4 is in the spirit of [15, Lemma 3.1],
see also [7] for an L∞ estimate in the regime p ≥ 2 using different techniques.

Lemma 2.4. For every ε > 0 there exists a random radius r∗ < ∞ a. s. such that for
every R ≥ r∗

|T (X)−X| ≤ εR provided that X ∈ (−R,R)d. (2.45)

The proof is very similar to [13, Lemma 2.2]. As opposed to the quadratic case the
support of T is not monotonic for general p ≥ 1. To overcome this additional difficulty
we need to argue by p-cyclically monotonicity to exploit the geometry of the support of
the matching. To be more precise we consider a toy case. Let 0 denote the origin in Rd

and let e1 = (1, 0, . . . , 0). We now think of the origin playing the role of a Poisson point,
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and e1 being a Poisson point, close to 0, which is transported by a moderate distance, in
particular we may suppose T (e1) = e1. By p-cyclically monotonicity we may write

|T (0)|p ≤ |T (0)− e1|p + 1.

The latter defines a constraint for T (0) in which the origin is transported. Our aim is to
understand the not admissible set in which 0 is transported. In particular, we show in
the next lemma that the region in which the origin is not transported contains a convex
set, i. e. a cone.

Lemma 2.5. Let 1 < p <∞ and α ∈ (0, π). Define the domain U ⊂ Rd

U := {x = (x1, x
′) ∈ R×Rd−1 | |x|p ≥ ((x1 − 1)2 + |x′|2)

p
2 + 2}.

Then there exists a cone with vertex v = (x̄(p, α), 0), aperture α and axis (1, 0, . . . , 0)

which lies in D.

Proof. We denote y = |x′| and introduce the function F (x, y) := (x2+y2)
p
2−((x−1)2+y2)

p
2 .

Case p ≥ 2. We claim that there exists a constant c0 > 0 such that for c ≥ c0 the
half-space

Cp = {x : x1 ≥ c} is contained in U. (2.46)

We start by noticing that by a direct calculation since p ≥ 2, for x ∈ Cp and c ≥ 1
2 we have

∂yF (x, y) ≥ 0. Thus for c ≥ 1
2 , in order to ensure (2.46) it is enough to show F (x1, 0) ≥ 2.

We note that for x ∈ Cp and c ≥ 1, the inequality F (x1, 0) ≥ 2 is satisfied if the following
holds true (

1 +
1

c− 1

)p
− 1 ≥ 2

(c− 1)p
.

By Bernoulli’s inequality, (i. e. (1 + u)n ≥ 1 + nu for n ≥ 0, u > −1) the latter is satisfied

if c ≥ 1 +
(

2
p

) 1
p−1

. Thus, choosing c0 = 1 +
(

2
p

) 1
p−1

yields (2.46).

Case 1 < p ≤ 2. We claim that there exists a constant c0 > 0 such that for c ≥ c0 the
cone

Cp = {x : y ≤ α(x1 − c)} is contained in U. (2.47)

We start by noticing that by a direct calculation since 1 < p ≤ 2, for x ∈ Cp and c ≥ 1
2 we

have ∂yF (x, y) ≤ 0. Thus it suffices to show that for x1 ≥ c it holds F (x1, α(x1 − c)) ≥ 2.
Let us denote by g(z) the function g(z) := (z2 +α2(x1−c)2)

p
2 . By the mean value theorem,

there is ξ ∈ [x1 − 1, x1] such that, for 1 < p ≤ 2

F (x1, α(x1 − c)) = g(x1)− g(x1 − 1)

= p
ξ

(ξ2 + α2(x1 − c)2)
2−p

2

≥ p ξ

(ξ2−p + α2−p(x1 − c)2−p)

≥ p x1 − 1

(1 + α2−p)x2−p
1 + α2−pc2−p

=: h(x1).

Note that since 1 < p ≤ 2 we have that h(x1)→∞ for x1 →∞ and is increasing for x1

sufficiently large, hence we can choose c0 <∞ such that h(c0) ≥ 2. Finally, noting that
for x ∈ Cp we have x1 ≥ y

α + c ≥ c0 yields (2.47).
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Proof of Lemma 2.4. Step 1. Definition of r∗ = r∗(ε) given 0 < ε� 1 as the maximum of
three r∗’s. First, by [13, Lemma 2.1], there exists a (deterministic) length L <∞ and the
(random) length r∗ <∞ such that for 4R ≥ r∗, the number density of the Poisson points
in (−2R, 2R)d transported further than the “moderate distance” L is small in the sense of

#{X ∈ (−2R, 2R)d | |T (X)−X| > L } ≤ (ε4R)d. (2.48)

Second, by Lemma 1.7 we may also assume that r∗ is so large that for R ≥ r∗, the
non-dimensionalized transportation distance of µ to its number density n is small, and
that by the concentration properties of the Poisson point process n ≈ 1, in the sense of

W p
p,(−2R,2R)d

(µ, n) +
(4R)d+p

n
(n− 1)p ≤ (ε4R)d+p. (2.49)

Third, w. l. o. g. we may assume that r∗ is so large that

L ≤ εr∗. (2.50)

We now fix a realization and R ≥ r∗.

Step 2.
There are enough Poisson points on mesoscopic scales. We claim that for any cube

Q ⊂ (−2R, 2R)d of “mesoscopic” side length

r � εR (2.51)

we have

#{X ∈ Q } & rd. (2.52)

Indeed, it follows from the definition of Wp,(−2R,2R)d(µ, n) that for any Lipschitz function
η with support in Q we have∣∣∣∣ˆ ηdµ−

ˆ
ηndy

∣∣∣∣ ≤ (Lipη)

(ˆ
Q

dµ+ n|Q|
) 1
p′

Wp,(−2R,2R)d(µ, n).

where 1
p + 1

p′ = 1. Indeed, by Hölder’s inequality∣∣∣∣ˆ ηdµ−
ˆ
ηndy

∣∣∣∣ =

∣∣∣∣ˆ (η (x)− η (y)) dπ (x, y)

∣∣∣∣
≤ (Lipη)

ˆ
|x− y|dπ

≤ (Lipη)

(ˆ
Q

dµ+ n|Q|
) 1
p′

Wp,(−2R,2R)d(µ, n).

We now specify to an η ≤ 1 supported in Q, to the effect of
´
ηdµ ≤

´
dµ = #{X ∈ Q }, so

that by Young’s inequality and the trivial inequality (x+ y)
1
p ≤ x

1
p + y

1
p for x, y > 0, p > 1

we have ˆ
ηndy . #{X ∈ Q }+ (Lipη)pW p

p,(−2R,2R)d
(µ, n)

+ (Lipη)
(
n|Q|

) 1
p′Wp,(−2R,2R)d(µ, n). (2.53)

At the same time, we may ensure
´

(−2R,2R)d
η & rd and Lipη . r−1, so that by (2.49),

which in particular ensures n ≈ 1, (2.53) turns into

rd . #{X ∈ Q }+ r−p(εR)d+p + r
d
p′−1

(εR)
d
p+1.
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Thanks to assumption (2.51) we obtain (2.52).

Step 3. Iteration. At mesoscopic distance around a given point X ∈ (−R,R)d, there
are sufficiently many Poisson points that are transported only over a moderate distance in
any direction. More precisely, we claim that for any cube Q ⊂ (−2R, 2R)d of side-length
satisfying (2.51) we have

there exists X ∈ Q with |T (X)−X| ≤ L. (2.54)

We suppose that (2.54) were violated for some cube Q. By (2.52), there are & rd of such
points. By assumption (2.51), there are thus� (εR)d Poisson points in (−2R, 2R)d that
get transported by a distance > L, which contradicts (2.48).

Step 4. Building barriers. We show that for any Poisson point X and any unitary
vector e, if we are given a cube QX with barycenter X of side-length satisfying (2.51)
and X ′ ∈ Q+ 2re such that

|T (X ′)−X ′| ≤ L

there exists a cone CX,X′ with vertexX+rρ X′−X
|X′−X| for some finite constant ρ = ρ(p, d) > 0,

aperture 1 and axis X′−X
|X′−X| such that T (X) /∈ CX,X′ . Indeed, by p-cyclically monotonicity

of T we get

|T (X)−X|p ≤ |T (X)−X|p + |T (X ′)−X ′|p ≤ |T (X ′)−X|p + |T (X)−X ′|p.

By a change of coordinates we may assume that X = 0 and X ′ = (τ, 0) with τ ∈ ( 3
2r,
√

26
2 r).

In particular, writing T (X) = (y0, y1) with y0 ∈ R and y1 ∈ Rd−1 we get

|T (X)|p ≤ (L+ τ)p + (|y0 − τ |2 + |y1|2)
p
2 .

Introduce (ỹ0, ỹ1) = 1
τ (y0, y1). Then we have

|ỹ|p ≤ (|ỹ0 − 1|2 + |ỹ1|2)
p
2 +

(
L

τ
+ 1

)p
(2.50), (2.51)
≤ (|ỹ0 − 1|2 + |ỹ1|2)

p
2 + 2.

In particular by Lemma 2.5 there exists (going back to the original coordinates) a cone
CX,X′ with vertex X + rρ X′−X

|X′−X| , aperture 1 and axis X′−X
|X′−X| such that T (X) /∈ CX,X′ .

Step 5. All Poisson points are transported over distances� R. We claim that for all
Poisson points X

|T (X)−X| . εR provided X ∈ (−R,R)d. (2.55)

Choosing c(d, p) directions ei, we get points {Xi}c(d)
i=1 with Xi ∈ QXi + 2rei for some finite

constants ρi > 0, cones CX,Xi with vertexes X + rρi
Xi−X
|Xi−X| , aperture 1 and axes Xi−X

|Xi−X|
and a finite constant ρi ≤ ρ̄ <∞ for every i such that

T (X) /∈
c(d)⋃
i=1

CX,Xi and Rd \Bρ̄r(X) ⊂
c(d)⋃
i=1

CX,Xi .

In particular,

|T (X)−X| ≤ ρ̄r . r.

Since (2.51) was the only constraint on r, we obtain (2.55).
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2.3 Application of the p-harmonic approximation theorem

Lemma 2.6. Let p > 1. There exist a constant C and a random radius r∗ <∞ a. s. such
that for every R ≥ r∗ we have

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|p ≤ C ln
p
2 R. (2.56)

Proof. The proof relies on the p-harmonic approximation result [15, Theorem 1.1]. This
result establishes that for any 0 < τ � 1, there exists an ε > 0, a constant C > 0 (which
does not depend on τ ) and a constant Cτ <∞ such that provided for some R

1

Rp
Ep(4R) +

1

Rp
Dp(4R) ≤ ε (2.57)

there exists a p-harmonic gradient field ∇Φ such that

1

Rd

∑
X∈BR or T (X)∈BR

∣∣∣T (X)−X − |∇Φ(X)|p
′−2∇Φ(X)

∣∣∣p ≤ τEp(4R) + CτDp(4R), (2.58)

and10

sup
B2R

|∇Φ|
p
p−1 ≤ C (Ep(4R) +Dp(4R)) , (2.59)

where p′ is the conjugate exponent of p. The fraction τ will be chosen at the end of the
proof.

Step 1. Definition of r∗ depending on τ . For 0 < τ � 1 let ε = ε (τ) be as above. By
Theorem 1.7 we may assume that r∗ is large enough so that for a (random) sequence of
approximately dyadic radii R ≥ r∗

Dp(R) ≤ C ln
p
2 R. (2.60)

Moreover, by Theorem 1.7 possibly enlarging r∗ and we may assume that for a (random)
sequence of approximately dyadic radii11

Dp(4R)

Rp
≤ ε

2
. (2.61)

Note that only the bound (2.60) is specific to d = 2. Moreover, the estimate (2.61) is
not sharp, but it is enough for our purpose. From now on, we restrict ourselves to the
sequence of approximately dyadic radii R coming from (2.60) and (2.61), which we may
do w. l. o. g. for (2.56). Note that by the bound on Dp (4R) in (2.61) and the second and
fourth term in the definition of Dp (R) in (1.5)

# ({X ∈ BR} ∪ {T (X) ∈ BR}) ≤ CRd. (2.62)

Moreover, we may assume that r∗ is large enough so that (2.45) holds. Since B4R ⊂
(−4R, 4R)d we may sum (2.45) over BR to obtain for R ≥ r∗

1

(4R)d

∑
X∈B4R

|T (X)−X|p ≤ ε

4
Rp.

10Note that in [13, (2.21)] the constants on the right hand side were both labeled Cτ . However, the constant
which controls supB2R

|∇Φ|2 in [13, (2.21)] does not depend on τ . This is important in the proof of (2.68). To
avoid confusion we labeled the constants in (2.58) and (2.59) differently.

11By the footnote of [15, Theorem 1.1] it suffices that (2.57) is satisfied for a sequence of radii 4R′ ∼ 4R,
thus we do not rename the sequence in (2.61).
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By symmetry, potentially enlarging r∗, we may also assume that (2.45) holds with X

replaced by T (X) so that for R ≥ r∗ both

T (X) ∈ BR ⇒ X ∈ B2R (2.63)

and
1

(4R)d

∑
T (X)∈B4R

|T (X)−X|p ≤ ε

4
Rp,

thus

Ep (4R) =
1

(4R)d

∑
X∈B4R or T (X)∈B4R

|T (X)−X|p ≤ ε

2
Rp, (2.64)

and in particular (2.57) holds. Finally by [13, Lemma 2.1] we may assume, possibly
enlarging r∗, that there exists a deterministic constant Lτ and for R ≥ r∗ we both have

# ({X ∈ QR | |T (X)−X| > Lτ} ∪ {T (X) ∈ QR | |T (X)−X| > Lτ}) ≤ τRd. (2.65)

and
Lpτ ≤ ln

p
2 R. (2.66)

Step 2. Application of harmonic approximation. For all R ≥ r∗
Ep (R) ≤ τEp (32R) + Cτ ln

p
2 R. (2.67)

We start by showing that for the (random) sequence of approximately dyadic radii of
Step 1 it holds for R ≥ r∗

Ep (R) ≤ τEp (4R) + Cτ ln
p
2 R. (2.68)

We split the sum according to whether the transportation distance is moderate or large.
On the latter we use the harmonic approximation:

1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>Lτ

|T (X)−X|p

≤ 2p

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X − |∇Φ(X)|p
′−2∇Φ (X) |p

+
2p

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>Lτ

|∇Φ(X)|
p
p−1

(2.65)
≤ 2p (τEp(4R) + CτDp(4R)) + 2pτ sup

BR

|∇Φ|2

(2.58), (2.59), (2.63)
≤ 2pτEp(4R) + 2pCτD(4R) + 2pτC(Ep(4R) +Dp(4R))

= 2pτ (1 + C)Ep(4R) + 2p (Cτ + τC)Dp(4R).

The last estimate combines to

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|p

=
1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|≤Lτ

|T (X)−X|p

+
1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>Lτ

|T (X)−X|p

(2.62)
≤ CLpτ + 2pτ (1 + C)Ep(4R) + 2p (Cτ + τC)Dp(4R)

(2.60), (2.66)
≤ 2τ (1 + C)Ep (4R) + (2p(Cτ + τC) + C) ln

p
2 R.
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Relabeling τ and Cτ , this implies (2.68). Let R be any radius R ≥ r∗. There exists a
dyadic radius R′ ≥ R satisfying (2.68) so that12

Ep(R) ≤ CEp(R′) ≤ CτEp(4R′) + CCτ ln
p
2 R′ ≤ CτEp(32R) + CCτ ln

p
2 R,

for some constant C > 0. Relabeling τ and Cτ yields (2.67).

Step 3. Iteration. Iterating (2.67), we obtain for any k ≥ 1

Ep(R) ≤ τEp(32R) + Cτ ln
p
2 R

≤ τ2Ep(322R) + τCτ ln
p
2 R+ Cτ ln

p
2 R

≤ τkEp(32kR) + Cτ

k−1∑
l=0

τ l ln
p
2 R

(2.57)
≤ ε (32pτ)

k
Rp + Cτ

k−1∑
l=0

τ l ln
p
2 R.

We now fix τ such that 32pτ < 1 to the effect of

Ep (R) ≤ C
∞∑
l=0

τ l ln
p
2 R ≤ C ln

p
2 R.

2.4 Trading integrability against asymptotics

Lemma 2.7. Let p > 1. For every ε > 0 there exists a random radius r∗ <∞ a. s. such
that

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ ε ln
1
2 R.

Proof. By Lemma 2.6, we know that there exists a random radius r∗ such that for R ≥ r∗
we have

Ep (R) =
1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X|p ≤ C ln
p
2 R. (2.69)

Let 0 < ε� 1. Possibly enlarging r∗, we may also assume by Lemma [13, Lemma 2.1]
that there exists a deterministic constant L such that for R ≥ r∗

# ({X ∈ BR | |T (X)−X| > L} ∪ {T (X) ∈ BR | |T (X)−X| > L}) ≤ εRd. (2.70)

Furthermore, note that by Lemma 1.7 and the second and fourth term in the definition
of Dp (R) in (1.5) we may also assume possibly enlarging r∗ again that for R ≥ r∗ (2.62)
holds. Finally, we may also assume possibly enlarging r∗ that for R ≥ r∗

L ≤ ε
1
p′ ln

1
2 R. (2.71)

We split again the sum into moderate and large transportation distance and apply

12Note that if R1 < R2 are two consecutive approximately dyadic radii, by definition there exists a dyadic
radius R such that R1 ∼ R and R2 ∼ 2R. In particular, R2

R1
< 8.
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Hölder’s inequality:

1

Rd

∑
X∈BR or T (X)∈BR

|T (X)−X| ≤ 1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|≤L

|T (X)−X|

+
1

Rd

∑
(X∈BR or T (X)∈BR) and |T (X)−X|>L

|T (X)−X|

(2.62), (2.69), (2.70)
≤ CL+ ε

1
p′Ep(R)

1
p

(2.71)
≤ Cε

1
p′ ln

1
2 R.

Relabeling ε proves the claim.
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