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The extremal process of branching Brownian motion
with absorption*†
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Abstract

In this paper, we study branching Brownian motion with absorption, in which particles
undergo Brownian motions with drift and are killed upon reaching the origin. We
prove that the extremal process of this branching Brownian motion with absorption
converges to a randomly shifted decorated Poisson point process. Furthermore, we
show that the law of the right-most particle converges to the law of a randomly shifted
Gumbel random variable.

Keywords: branching Brownian motion; extremal process; Poisson point process.
MSC2020 subject classifications: Primary 60J80, Secondary 60G70.
Submitted to EJP on October 8, 2023, final version accepted on September 22, 2024.

1 Introduction

1.1 Background

A classical branching Brownian motion (BBM) in R can be constructed as follows.
Initially there is a single particle at the origin of the real line and this particle moves
as a 1-dimensional standard Brownian motion B = {B(t), t ≥ 0}. After an independent
exponential time with parameter 1, the initial particle dies and produces L offspring. L is
a positive integer-valued random variable with EL = 2 and EL2 <∞. Starting from their
positions of creation, each of these particles evolves independently and according to the
same law as their parent. We denote by Nt the collection of particles alive at time t. For
any u ∈ Nt and s ≤ t, let Xu(s) be the position at time s of particle u or its ancestor alive
at that time. The maximum of the BBM at time t is defined as Mt := max{Xu(t) : u ∈ Nt}.
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Branching Brownian motion with absorption

McKean [32] established the connection between BBM and the Fisher-Kolmogorov-
Petrovskii-Piskounov (F-KPP) reaction-diffusion equation

∂u

∂t
=

1

2

∂2u

∂x2
+ f(u)− u, (1.1)

where f(s) = E(sL) and u : R+ ×R→ [0, 1]. More precisely, it is shown in [32] that, for
any [0, 1]-valued function g on R, u(t, x) = E

[∏
v∈Nt g(x+Xv(t))

]
is a solution of (1.1)

with initial condition u(0, x) = g(x). The F-KPP equation has been studied intensively by
both analytic techniques (see, for example, Kolmogorov et al. [24] and Fisher [14]) and
probabilistic methods (see, for instance, McKean [32], Bramson [9, 10], Harris [15] and
Kyprianou [25]).

Define

mt :=
√

2t− 3

2
√

2
log t.

Bramson [9] established that

lim
t→∞

P(Mt ≤ mt + z) = lim
t→∞

u(t,mt + z) = w(z), z ∈ R,

where w solves the ordinary differential equation

1

2
w′′ +

√
2w′ + f(w)− w = 0.

Define
Zt =

∑
u∈Nt

(
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t), (1.2)

then Zt is known as the derivative martingale of the BBM, see Kyprianou [25]. Lalley
and Sellke [26] provided the following representation of w for dyadic BBM

w(z) := E
[
e−C∗e

−
√

2zZ∞
]
, (1.3)

where C∗ is a positive constant and Z∞ := limt→∞ Zt P-almost surely. The behavior of
the particles at the tip of BBMs was investigated by Aïdékon, Berestycki, Brunet and Shi
[1] as well as Arguin, Bovier and Kistler [3]. They considered the extremal process of
BBM, which is defined by ∑

u∈Nt

δXu(t)−mt ,

and showed that it converges in law to a randomly shifted decorated Poisson point
process (DPPP). A DPPP E is determined by two components: an intensity measure
µ which is a (random) measure on R, and a decoration process. Conditioned on µ,
let
∑
i δpi be a Poisson point process with intensity µ, and let {

∑
j δdij} be a family of

independent point processes with law D. Then E =
∑
i,j δpi+dij is a DPPP with intensity

µ and decoration D, denoted by DPPP (µ,D). Aïdékon et al. [1] and Arguin et al. [3]
obtained that

lim
t→∞

∑
u∈Nt

δXu(t)−mt = DPPP
(√

2C∗Z∞e
−
√
2xdx,D

√
2
)

in law ,

where C∗ is the positive constant given by (1.3) and

D
√
2(·) := lim

t→∞
P

(∑
u∈Nt

δXu(t)−Mt
∈ ·
∣∣∣Mt ≥

√
2t

)
. (1.4)
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Branching Brownian motion with absorption

In the recent paper [8], Berestycki et al. studied the extremal process of BBM in Rd.
For irreducible multitype branching Brownian motion, we refer the readers to Hou et al.
[19] and for reducible multitype branching Brownian motion, we refer the readers to
Belloum et al. [4] and Ma et al. [29].

In this paper, we consider the extremal process of BBM with absorption. We will
focus on a branching Brownian motion with drift −ρ, in which particles are absorbed
at the origin. The process can be defined as follows. Starting with a single particle at
x > 0, this particle moves according to a 1-dimensional Brownian motion with drift −ρ
(ρ ∈ R) until an independent exponentially distributed time with rate 1. When the initial
particle dies, it produces a random number L ≥ 1 particles at the place of its death.
These offspring particles evolve independently from their birth place, according the
same law as their parent. Assume that L has distribution {pk, k ≥ 1} with EL = 2 and
EL2 <∞. We add an absorbing barrier at the origin, i.e. particles hitting the barrier are
instantly killed without producing offspring. The set Ñ−ρt denotes the particles of the
BBM with absorption alive at time t. For any u ∈ Ñ−ρt and s ≤ t, we still use Xu(s) to
denote the position of its time s ancestor (which may be itself at time s). Define

Ỹ −ρt :=
∑

u∈Ñ−ρt

δXu(t),

which is a point process describing the number and positions of individuals alive at time
t. The extinction time of the BBM with absorption is defined as

ζ−ρ := inf{t > 0 : Ñ−ρt = ∅}.

Let M̃−ρt := max{Xu(t) : u ∈ Ñ−ρt } be the right-most position of the particles in Ñ−ρt .
The law of the BBM with absorption starting from single particle at x is denoted by Px
and its expectation is denoted by Ex.

The asymptotic behavior of branching Brownian motion (BBM) with absorption has
been studied extensively in the literature. Kesten [23] proved that the process dies out
almost surely when ρ ≥

√
2 while there is a positive probability of survival when ρ <

√
2.

Therefore, ρ =
√

2 is the critical drift separating the supercritical case ρ <
√

2 and the
subcritical ρ >

√
2. In the critical case, Kesten [23] obtained upper and lower bounds

on the survival probability, which were improved by Berestycki et al. [6]. Maillard and
Schweinsberg [31] have further improved these results. In the supercritical case, Harris
et al. [17] studied properties of the right-most particle and provided a probabilistic proof
of the classical result on the one-sided F-KPP traveling wave solution of speed −ρ. For
dyadic branching, they proved that

lim
t→∞

M̃−ρt
t

=
√

2− ρ on {ζ−ρ =∞}, Px-a.s. (1.5)

and g(x) := Px(ζ−ρ <∞) is the unique solution to
1

2
g′′ − ρg′ + g2 − g = 0, x > 0,

g(0+) = 1, g(∞) = 0.

Louidor and Saglietti [28] showed that the number of particles inside any fixed set
normalized by the mean population size converges to an explicit limit almost surely. In
the subcritical case, the large time asymptotic behavior for the survival probability was
given by Harris and Harris [16]. For the BBM with absorption in the near-critical case,
Berestycki et al. [5] and Liu [27] are good references.

In this paper, we study the extremal process of one-dimensional branching Brownian
motions with absorption and prove that the limit of this point process converges to a
randomly shifted decorated Poisson point process.
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Branching Brownian motion with absorption

1.2 Main results

Define
Z̃−ρt :=

∑
u∈Ñ−ρt

((
√

2− ρ)t−Xu(t))e
√
2(Xu(t)−(

√
2−ρ)t),

and

m−ρt := (
√

2− ρ)t− 3

2
√

2
log t.

Our first main result, which is Theorem 1.1 below, deals with the convergence of the
process Z̃−ρt as t→∞.

Theorem 1.1. For any x > 0 and ρ <
√

2, the limit Z̃−ρ∞ := limt→∞ Z̃−ρt exists Px-almost
surely. Moreover, the events {Z̃−ρ∞ > 0} and {ζ−ρ =∞} agree up to a Px-null set.

Define the extremal process of the BBM with absorption by

E−ρt :=
∑

u∈Ñ−ρt

δXu(t)−m−ρt
.

The following theorem gives the convergence of the extremal process. We show that the
limit of E−ρt is a Poisson random measure with exponential intensity in which each atom
is decorated by an independent point measure with law D

√
2.

Theorem 1.2. For any x > 0 and ρ <
√

2, we have under Px

lim
t→∞

E−ρt = DPPP
(√

2C∗Z̃
−ρ
∞ e−

√
2ydy,D

√
2
)

in law

where C∗ is as in (1.3) and D
√
2 is defined by (1.4).

Remark 1.3. Theorem 1.2 is our main result. It states that the logarithmic correction in
the median of M̃−ρt for BBM with absorption is identical to that of classical branching
Brownian motion. Additionally, the decorations are also the same. The only difference
lies in the intensity of the Poisson point process.

It is worth noting that BBM with absorption has a positive probability of extinction
and Z̃−ρ∞ has the same probability of being degenerate. Therefore, on the non-extinction
event, the limit of the extremal process is non-degenerate.

Remark 1.4. Kesten [23, Theorem 1] obtained the asymptotic behaviors of the expecta-
tion of the size of Ñ−ρt for different values of ρ. Specifically, when ρ < 0, ρ = 0 or ρ > 0,
the asymptotic behaviors are different. For ρ > 0, there exists a positive constant C > 0

such that the expectation of the size of Ñ−ρt is approximately Ct−3/2et−
ρ2

2 t as t → ∞.
When ρ = 0 (or ρ < 0), the expectation of the size of Ñ−ρt is approximately Ct−1/2et (or
Cet) as t→∞. This suggests that the logarithmic correction of m−ρt might be different
depending on whether ρ > 0 or not. However, Theorem 1.2 shows that the logarithmic
correction of m−ρt does not depend on the sign of ρ.

As a corollary to the above theorem, we can show that the law of M̃−ρt converges to
the law of a randomly shifted Gumbel random variable as t→∞.

Corollary 1.5. Suppose x > 0 and ρ <
√

2. For any z ∈ R, we have

lim
t→∞

Px(M̃−ρt −m−ρt ≤ z) = Ex(e−C∗Z̃
−ρ
∞ e−

√
2z

).

Now we briefly describe our strategy for proving the main results. First, we introduce
a model equivalent to the BBM with absorption defined above. In this model, the spatial
motion is a standard Brownian motion but the absorbing barrier has a drift. There is a
close connection between the two models, but the calculations are easier for the latter.
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Branching Brownian motion with absorption

Therefore, in this paper, we will prove the equivalent results for the latter. The key to
the proof is to guess the precise growth rate of M̃−ρt . (1.5) indicates that the asymptotic
speed of the right-most particle in the BBM with absorption is

√
2− ρ on the survival set.

Therefore, as t→∞, the influence of the absorbing barrier on the right-most particle will
continuously decrease. Based on this analysis, we guess that M̃−ρt still has a logarithmic
correction term and the extremal process converges to a decorated Poisson random
measure. Only the intensity of the Poisson point process is different from that of classical
BBM.

In the proof of Theorem 1.1, we adapt some ideas from [17, 25] to prove the con-
vergence of Z̃−ρt using the method of non-negative supermartingale approximation.
Furthermore, based on the ideas in [17], we show that {Z̃−ρ∞ > 0} and {ζ−ρ =∞} agree
up to a Px-null set. In the proof of Theorem 1.2, we first define the point process Est
using the idea of truncating the absorption barrier at time s and use Est to approximate
the extremal process of the BBM with absorption. Then we can use the results on the
extremal process of the classical BBM to obtain the convergence of Est . Next, we use
some ideas from [4, 29] to prove that the difference between the Laplace functional of
Est and that of the extremal process tends to 0 as t, s → ∞. In this way, we obtain the
convergence of the extremal process.

The remainder of the paper is structured as follows. In the next section we introduce
a model equivalent to BBM with absorption and state some well-known results on
branching Brownian motions. In Section 3, we prove Theorem 1.1. Section 4 is devoted
to proving Theorem 1.2.

2 Preliminaries

2.1 An equivalent model of BBM with absorption

We consider the following BBM with absorption. Initially there is a single particle
at x > 0. This particle moves as a standard Brownian motion B = {B(t), t ≥ 0} and is
killed when it hits the line {(y, t) : y = ρt} for some ρ ∈ R. The particle produces L
offspring after an independent exponential time η with parameter 1 if it survives up to
this moment. We assume that L has distribution {pk, k ≥ 1} with EL = 2 and EL2 <∞.
Starting from their positions of creation, each of these children evolves independently
and according to the same law as their parent.

We define a BBM associated to the aforementioned BBM with absorption. When
particles hit the line {(y, t) : y = ρt}, we suppose that they are not killed and evolve as a
standard BBM. Let Nt be the set of particles of the BBM alive at time t. For any u ∈ Nt
and s ≤ t, let Xu(s) be the position of the time s ancestor of u (which may be its own
position at time s). Define

Ñt := {u ∈ Nt : ∀s ≤ t,Xu(s) > ρs}, (2.1)

then Ñt is the set of particles of this BBM with absorption alive at time t. Define

Yt :=
∑
u∈Nt

δXu(t), Ỹt :=
∑
u∈Ñt

δXu(t),

Ft = σ(Ys : s ≤ t) and F = ∪t≥0Ft. Then {Yt, t ≥ 0} and {Ỹt, t ≥ 0} are point processes
describing the number and positions, at time t, of individuals of BBM and BBM with
absorption respectively. We define Px as the law of BBM with one initial particle at
x ∈ R, that is Px(Y0 = δx) = 1. We use Ex to denote the expectation with respect to
Px. For simplicity, P0 and E0 will be written as P and E, respectively. Let (Ω,F ,Px) be
the probability space where the branching Brownian motion is defined on. Since Ỹt is a
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Branching Brownian motion with absorption

subprocess of Yt, we can still work with the probabilities {Px : x > 0}. Let

ζ := inf{t > 0 : Ñt = ∅}

be the extinction time of the BBM with absorption and

M̃t := max{Xu(t) : u ∈ Ñt}

be the right-most position in the particle system at time t. Now we compare Ỹ −ρt and
Ỹt, that is, the BBM with absorption described in Sections 1 and 2. It follows from the
definition of Ỹt that the point process Ỹt shifted by −ρt is given by

Ỹt − ρt =
∑
u∈Ñt

δXu(t)−ρt.

It is easy to show that

{Ỹt − ρt,Px}
d
= {Ỹ −ρt ,Px}.

Define
Z̃t :=

∑
u∈Ñt

(
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t), (2.2)

then {Z̃t,Px}
d
= {Z̃−ρt ,Px}. Recall that mt :=

√
2t − 3

2
√
2

log t and define the extremal

process of {Ỹt : t ≥ 0} by

Et :=
∑
u∈Ñt

δXu(t)−mt .

Based on the above analysis, to prove Theorem 1.1 and 1.2, it is equivalent to show the
following theorems.

Theorem 2.1. For any x > 0 and ρ <
√

2, the limit Z̃∞ := limt→∞ Z̃t exists Px-almost
surely. Moreover, the events {Z̃∞ > 0} and {ζ =∞} agree up to a Px-null set.

Theorem 2.2. For any x > 0 and ρ <
√

2, we have under Px

lim
t→∞

Et = DPPP
(√

2C∗Z̃∞e
−
√
2xdx,D

√
2
)

in law

where C∗ is as in (1.3) and D
√
2 is defined by (1.4).

In the rest of the paper, we consider the BBM with absorption Ỹt.

2.2 Some properties of branching Brownian motion

Throughout this paper we use {Bt, t ≥ 0;Qx} to denote a standard Brownian motion
starting from x. Expectation with respect to Qx will be denoted by EQx . Q0 and EQ0 will be
written as Q and EQ, respectively. Let {FBt : t ≥ 0} be the natural filtration of Brownian
motion. For BBMs, the many-to-one lemma (see [18]) is fundamental. Here we state the
stopping line version, which can be found in [30, §2.3].

For any space-time domain D, define

τD := inf{t ≥ 0 : (t, Bt) /∈ D}.

For any u ∈ ∪t≥0Nt, let τD(u) be the stopping time for {Xu(t)}. Define the stopping line

LD := {(u, t) ∈ (∪t≥0Nt)× [0,∞) : u ∈ Nt, τD(u) = t} , (2.3)

and ND := {u ∈ ∪t≥0Nt : (u, t) ∈ LD for some t}. We refer to [12] for the precise
definition.
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Branching Brownian motion with absorption

Lemma 2.3 (Many-to-one Lemma). Let F : C[0,∞) → R be a bounded measurable
function such that F (Bs, s ≤ τD) is FBτD -measurable. Then for any t > 0

Ex

[ ∑
u∈ND

F (Xu(s), s ≤ τD(u))

]
= EQx [eτDF (Bs, s ≤ τD)] ,

where C[0,∞) denotes the space of continuous functions from [0,∞) to R.

Remark 2.4. When τD = t, the many-to-one formula above reduces to the following
classical many-to-one formula:

Ex

[∑
u∈Nt

F (Xu(s), s ≤ t)

]
= EQx

[
etF (Bs, s ≤ t)

]
. (2.4)

Now we introduce some results on the additive and derivative martingales of BBM.
Define the process

Wt :=
∑
u∈Nt

e
√
2Xu(t)−2t,

then {Wt,Px} is called the additive martingale of BBM starting from x. {Wt} corresponds
to {Wt(λ)} with λ = λ in [25]. Similarly, the derivative martingale {Zt} given by (1.2)
corresponds to {∂Wt(λ)} in [25]. By [25, Theorem 1 and 3], we have the following
lemma.

Lemma 2.5. For any y ∈ R, the limits W∞ := limt→∞Wt and Z∞ := limt→∞ Zt exist
Px-almost surely. Furthermore, W∞ = 0 and Z∞ ∈ (0,∞) Px-almost surely.

Note that while Zt can be negative, Kyprianou [25] used a non-negative martingale
{V zt ,P} to approximate {Zt,P}. For any z > 0, define

N̂z
t := {u ∈ Nt : ∀s ≤ t,Xu(s) < z +

√
2s} (2.5)

and
V zt :=

∑
u∈N̂zt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t). (2.6)

According to [25, Theorem 13], for any x < z, the limit V z∞ := lim
t→∞

V zt exists Px-almost

surely and is an L1(Px)-limit. Define the event

γ(z,
√
2) := {ω ∈ Ω : ∀t ≥ 0,∀u ∈ Nt, Xu(t) ≤ z +

√
2t}. (2.7)

By the proof of [25, Corollary 10], we know that on γ(z,
√
2),

V z∞ = Z∞

and
P(γ(z,

√
2)) ↑ 1 as z ↑ ∞. (2.8)

To prove Theorem 1.2, we also need some results about Mt and the extremal process of
the classical BBM. The following estimate of the tail probability of Mt can be found in [2,
Corollary 10].

Lemma 2.6. For y > 1 and t ≥ t0, where t0 is a large constant,

P

(
Mt ≥

√
2t− 3

2
√

2
log t+ y

)
≤ bye−

√
2y− y

2

2t +
3

2
√

2
y log t

t

for some constant b > 0.
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Branching Brownian motion with absorption

Let T be the set of continuous non-negative bounded functions, with support bounded
on the left. For any measurable function f and σ-finite measure µ on R, we use 〈f, µ〉
to denote the integral of f with respect to µ. The following result can be found in [7,
Lemma 4.4].

Lemma 2.7. Let (Pt,P∞) be point processes on R with P∞((0,∞)) <∞ a.s. Let maxPt
(t ∈ [0,∞]) be the position of the rightmost atom in the point measure Pt. Then the
following statements are equivalent:

(i) limt→∞ Pt = P∞ and limt→∞maxPt = maxP∞ in law.

(ii) limt→∞(Pt,maxPt) = (P∞,maxP∞) in law.

(iii) For all ϕ ∈ T , limt→∞E[e−〈Pt,ϕ〉] = E[e−〈P∞,ϕ〉].

The following lemma gives the convergence of Laplace functionals of the extremal
process for BBM, see, for example, [4, Lemma 3.4].

Lemma 2.8. For all function ϕ ∈ T , it holds that

lim
t→∞

E
[
e−

∑
u∈Nt

ϕ(Xu(t)−mt)
]

=E

[
exp

{
−C∗Z∞

∫ (
1− E(e−〈D

√
2,ϕ(·+z)〉)

)√
2e−
√
2zdz

}]
,

where D
√
2 is a random measure distributed according to the law D

√
2.

Remark 2.9. For simplicity, we put

C(ϕ) = C∗

∫ (
1− E(e−〈D

√
2,ϕ(·+z)〉)

)√
2e−
√
2zdz. (2.9)

By Lemma 2.8, a simple calculation using a change of variables yields that

lim
t→∞

E[e−
∑
u∈Nt

ϕ(y+Xu(t)−mt)] = E
[
exp

{
−C(ϕ)Z∞e

√
2y
}]

. (2.10)

3 Proof of Theorem 1.1

In this section, we fix x > 0 and ρ <
√

2. Recall that Ñt is the set of particles that are
alive at time t and have not been absorbed by the line {(y, s) : y = ρs} up to time t. To
prove Theorem 1.1, we first prove the following two lemmas.

Lemma 3.1. Define

W̃t :=
∑
u∈Ñt

e
√
2(Xu(t)−

√
2t), (3.1)

then {W̃t,Px} is a non-negative supermartingale. Moreover, the limit W̃∞ := limt→∞ W̃t

exists and is equal to zero Px-almost surely.

Proof. For any s < t, define

W̃ s
t :=

∑
v∈Ñs

∑
u>v,u∈Nt

e
√
2(Xu(t)−

√
2t),

where the notation u > v means that u is a descendant of v. Notice that the set
Ñs
t := {u ∈ Nt : ∃v ∈ Ñs s.t. u > v} contains all the particles alive at time t, which

do not hit the line segment {(y, r) : y = ρr, 0 ≤ r ≤ s}. Hence, Ñt ⊂ Ñs
t ⊂ Nt and

W̃t ≤ W̃ s
t ≤Wt. Since {Wt,Py} is a martingale, we have EyWt = e

√
2y for any y ∈ R. By
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Branching Brownian motion with absorption

the branching property,

Ex

[
W̃ s
t

∣∣Fs] =
∑
v∈Ñs

e−2sEx

 ∑
u>v,u∈Nt

e
√
2(Xu(t)−

√
2(t−s))

∣∣∣Fs


=
∑
v∈Ñs

e−2sEXv(s)Wt−s(v)

=
∑
v∈Ñs

e−2se
√
2Xv(s) = W̃s,

where given Fs, {Wt−s(v), v ∈ Ñs} are independent copies of Wt−s. Therefore,

Ex

[
W̃t

∣∣Fs] ≤ Ex [W̃ s
t

∣∣Fs] = W̃s,

which implies that {W̃t,Px} is a non-negative supermartingale. Hence the limit W̃∞ =

limt→∞ W̃t exists Px-almost surely. Since W̃t ≤ Wt, it follows from Lemma 2.5 that
W̃∞ = 0 Px-almost surely. This gives the desired result.

Using a similar proof method to Lemma 3.1, we will now prove the convergence of
Z̃t. Since Z̃t can be negative, the proof of Lemma 3.1 is not applicable to Z̃t. Therefore,
for any z > x, we define the following non-negative process:

Ṽ zt :=
∑

u∈Ñt∩N̂zt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t). (3.2)

Then we will prove the convergence of Ṽ zt using the proof method of Lemma 3.1 and
further use Ṽ zt to approximate Z̃t. Now we have the following lemma.

Lemma 3.2. For any z > x, {Ṽ zt ,Px} is a non-negative supermartingale. The limit
Ṽ z∞ := limt→∞ Ṽ zt exists Px-almost surely. Moreover, Ṽ z∞ is non-degenerate, that is,
Px(Ṽ z∞ = 0) < 1.

Proof. First, we show that {Ṽ zt ,Px} is a non-negative supermartingale. Recall that N̂z
t is

defined by (2.5). For s < t, define

Ṽ z,st :=
∑

v∈Ñs∩N̂zs

∑
u>v,u∈N̂zt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t). (3.3)

By the branching property, we have

Ex

[
Ṽ z,st

∣∣Fs] =
∑

v∈Ñs∩N̂zs

Ex

 ∑
u>v,u∈N̂zt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t)
∣∣∣Fs


=
∑

v∈Ñs∩N̂zs

Ex

 ∑
u>v,u∈N̂zt

(z +
√

2s+
√

2(t− s)−Xu(t))e
√
2(Xu(t)−

√
2(t−s))−2s

∣∣∣Fs


=
∑

v∈Ñs∩N̂zs

e−2sEXv(s)V
z+
√
2s

t−s (v),

where given Fs, V z+
√
2s

t−s (v) is the counterpart of V z+
√
2s

t−s for the BBM starting from Xv(s).

By [25, Theorem 9], {V zt ,Py} is a martingale and EyV zt = (z − y)e
√
2y for any y < z. So

we have
Ex

[
Ṽ z,st

∣∣Fs] =
∑

v∈Ñs∩N̂zs

e−2s(z +
√

2s−Xv(s))e
√
2Xv(s) = Ṽ zs
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Branching Brownian motion with absorption

and
Ex

[
Ṽ zt
∣∣Fs] ≤ Ex [Ṽ z,st

∣∣Fs] = Ṽ zs .

Thus, {Ṽ zt ,Px} is a non-negative supermartingale and must converge Px-almost surely.
Next we will prove that the limit Ṽ z∞ is non-degenerate. Note that Ṽ zt ≤ V zt , {Ṽ zt ,Px}

is a supermartingale and {V zt ,Px} is a martingale. Define

Uzt := V zt − Ṽ zt .

Therefore,
Ex[Uzt |Fs] = Ex[V zt − Ṽ zt |Fs] ≥ V zs − Ṽ zs = Uzs .

This implies that {Uzt ,Px} is a non-negative submartingale. Moreover, the limit

lim
t→∞

Uzt = lim
t→∞

(V zt − Ṽ zt ) = V z∞ − Ṽ z∞ (3.4)

exists. Let Uz∞ := limt→∞ Uzt . By [25, Theorem 13], V z∞ is an L1(Px)-limit and hence

ExV
z
∞ = ExV

z
0 = (z − x)e

√
2x. Therefore, to show that Ṽ z∞ is non-degenerate, it is

sufficient to prove that ExUz∞ < (z − x)e
√
2x. By definitions (2.6) and (3.2), we obtain

that

ExU
z
t = Ex

 ∑
u∈N̂zt , u/∈Ñt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t)

 .
For any a, b ∈ R, we define the following two stopping times with respect to Brownian
motion:

τ ba := inf{s ≥ 0 : Bs ≥ a+ bs},
τ ba := inf{s ≥ 0 : Bs ≤ a+ bs}. (3.5)

Then by the many-to-one formula (2.4), we have

ExU
z
t = etEQx

[
(z +

√
2t−Bt)e

√
2(Bt−

√
2t)1{τ

√
2

z >t, τρ0≤t}

]
= EQx

[
e
√
2(Bt−x)−t(z +

√
2t−Bt)e

√
2x1{τ

√
2

z >t, τρ0≤t}

]
= EQ,

√
2

x

[
(z +

√
2t−Bt)e

√
2x1{τ

√
2

z >t, τρ0≤t}

]
, (3.6)

where the last equality follows from Girsanov’s theorem, {Bt,Q
√
2

x } is a Brownian motion

with drift
√

2 starting from x and EQ,
√
2

x is expectation with respect to Q
√
2

x . Let B̂t =√
2t− (Bt − x), then {B̂t,Q

√
2

x } is a standard Brownian motion starting from 0. We write

P̂ and Ê for Q
√
2

x and EQ,
√
2

x respectively, so that {B̂t : t ≥ 0} is a standard Brownian
motion starting from 0 under P̂. We now define

τ̂lower := inf{s ≥ 0 : B̂s ≤ x− z},

τ̂upper := inf{s ≥ 0 : B̂s ≥ (
√

2− ρ)s+ x}.

We see that τ
√
2

z = τ̂lower and τρ0 = τ̂upper. It follows from (3.6) that

e−
√
2xExU

z
t = Ê

[
(z − x+ B̂t)1{τ̂lower>t, τ̂upper≤t}

]
= Ê

[
(z − x+ B̂t∧τ̂lower)1{τ̂lower>t, τ̂upper≤t}

]
= Ê

[
(z − x+ B̂t∧τ̂lower)

]
− Ê

[
(z − x+ B̂t∧τ̂lower)1{τ̂lower≤t}

]
− Ê

[
(z − x+ B̂t)1{τ̂lower∧τ̂upper>t}

]
. (3.7)
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Branching Brownian motion with absorption

By the optional stopping theorem,

Ê
[
(z − x+ B̂t∧τ̂lower)

]
= z − x. (3.8)

Moreover, since t ∧ τ̂lower = τ̂lower on the event {τ̂lower ≤ t}, we have

Ê
[
(z − x+ B̂t∧τ̂lower)1{τ̂lower≤t}

]
= Ê

[
(z − x+ B̂τ̂lower)1{τ̂lower≤t}

]
= 0. (3.9)

Now observe that Xt := e−t(z − x+ B̂e2t−1) is a standard Ornstein-Uhlenbeck process
(O-U process) started at z − x. We define

τX0 := inf{s ≥ 0 : Xs ≤ 0},

τXupper := inf{s ≥ 0 : Xs ≥ e−s[(
√

2− ρ)(e2s − 1) + z]}.

It follows that

{τ̂lower ∧ τ̂upper > t} = {τX0 ∧ τXupper > t}.

Since the principal right eigenfunction for the O-U process killed at 0 is h(x) = x, with
eigenvalue −1. The Doob’s transform is therefore given by

dP̃y

dP̂

∣∣∣
σ(Xs:s≤t)

=
h(Xt)

h(y)
et1{τX0 >t}.

This implies that under P̃y, {Xt : t ≥ 0} is an O-U process conditioned never to hit 0 and
it is a positive recurrent process. Then we see that

Ê
[
(z − x+ B̂t)1{τ̂lower∧τ̂upper>t}

]
= Ê

[
eth(Xt)1{τX0 ∧τXupper>t}

]
= h(z − x)P̃z−x(τXupper > t).

We have that there exists c∗ ∈ (0, 1) such that

lim
t→∞

P̃z−x(τXupper > t) = P̃z−x(τXupper =∞) = c∗,

which yields that

lim
t→∞

Ê
[
(z − x+ B̂t)1{τ̂lower∧τ̂upper>t}

]
= c∗(z − x).

By (3.7), (3.8), (3.9) and Fatou’s lemma, we obtain that

ExU
z
∞ ≤ lim inf

t→∞
ExU

z
t = e

√
2x(1− c∗)(z − x).

This, combined with (3.4), gives that ExṼ z∞ = ExV
z
∞ − ExUz∞ > 0. Since Ṽ z∞ is non-

negative, we know that Ṽ z∞ is non-degenerate. This completes the proof.

Recall that Z̃t, γ(z,
√
2), W̃t and Ṽ zt are defined by (2.2), (2.7), (3.1) and (3.2), respec-

tively. Next, we will give the proof of Theorem 1.1. Based on the argument in Section 2,
it is equivalent to proving Theorem 2.1.

Proof of Theorem 1.1. Notice that on γ(z,
√
2), Nt = N̂z

t for any t > 0. Hence, we have on
γ(z,
√
2) that

Ṽ zt = zW̃t + Z̃t.
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Branching Brownian motion with absorption

Letting t→∞, it yields that on γ(z,
√
2) the limit limt→∞(zW̃t + Z̃t) exists and is equal to

Ṽ z∞. It follows from Lemma 3.1 that limt→∞ W̃t = 0 Px-almost surely. Therefore, we get
that on γ(z,

√
2),

lim
t→∞

Z̃t = Ṽ z∞. (3.10)

Since P(γ(z,
√
2)) ↑ 1 as z ↑ ∞, we know that limt→∞ Z̃t exists Px-almost surely and we

use Z̃∞ to denote this limit.

Next we will prove that Z̃∞ is non-degenerate, that is, Px(Z̃∞ = 0) < 1. Notice that
for z1 ≤ z2, N̂z1

t ⊂ N̂
z2
t , so we have that

Ṽ z1t =
∑

u∈Ñt∩N̂
z1
t

(z1 +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t)

≤
∑

u∈Ñt∩N̂
z2
t

(z2 +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t) = Ṽ z2t .

Letting t → ∞, this implies Ṽ z1∞ ≤ Ṽ z2∞ Px-almost surely. Combining this with (3.10)
and γ(z1,

√
2) ⊂ γ(z2,

√
2), we get that Ṽ z∞ ≤ Z̃∞ for any z > 0. By Lemma 3.2, we have

Px(Ṽ z∞ = 0) < 1 for z > x and hence Z̃∞ is non-degenerate. It remains to prove that
{Z̃∞ > 0} and {ζ =∞} are equivalent up to a Px-null set. Define the function

g(x) := Px(ζ <∞).

It follows from [17, Theorem 13] that g is the unique solution to the following ordinary
differential equation 

1

2
g′′ − ρg′ + f(g)− g = 0, x > 0,

g(0+) = 1, g(∞) = 0.
(3.11)

Note that [17] assumed a dyadic branching mechanism. However, [17, Theorem 13] holds
true under our assumptions regarding the branching mechanism. The only difference in
the proof lies in the spine decomposition, as discussed in [17, Section 2]. In our case,
the particle along the spine produces a random number of particles, which has the law
{p̃k := kpk/2} (for BBM, refer to works such as [11, 25]). Importantly, this modification
does not impact the validity of [17, Theorems 9, 11 and 13]. Therefore, [17, Theorem
13] remains applicable in the general case.

According to the definition of Z̃t, it is easy to verify that {ζ <∞} ⊂ {Z̃∞ = 0}. Thus,

Px(Z̃∞ = 0) = Px(ζ <∞) + Px(Z̃∞ = 0; ζ =∞).

So it suffices to show that Px(Z̃∞ = 0) = Px(ζ <∞). Define h(x) := Px(Z̃∞ = 0). Hence,
h(x) satisfies the boundary condition limx→0+ h(x) = 1. Since

Z̃t =
∑
v∈Ñs

∑
u∈Ñt,u>v

(√
2t−Xu(t)

)
e
√
2(Xu(t)−

√
2t)

=
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)

∑
u>v,u∈Ñt

(
√

2(t− s)− (Xu(t)−Xv(s)))e
√
2((Xu(t)−Xv(s))−

√
2(t−s))

+
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)

∑
u>v,u∈Ñt

(
√

2s+Xv(s))e
√
2((Xu(t)−Xv(s))−

√
2(t−s))

d
=
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)
(
Z̃t−s(v,Xv(s)− ρs) + (

√
2s+Xv(s))W̃t−s(v,Xv(s)− ρs)

)
,
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Branching Brownian motion with absorption

where given Fs, {(Z̃t−s(v,Xv(s) − ρs), W̃t−s(v,Xv(s) − ρs)), v ∈ Ñs} are independent
copies of (Z̃t−s, W̃t−s) starting fromXv(s)−ρs. By Lemma 2.5, we know that limt→∞ W̃t−s
= 0 almost surely. Letting t→∞, it follows that

Z̃∞
d
=
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)Z̃∞(v,Xv(s)− ρs),

where given Fs, {Z̃∞(v,Xv(s)− ρs), v ∈ Ñs} are independent copies of {Z̃∞,PXv(s)−ρs}.
Therefore,

h(x) = Px

∑
v∈Ñs

Z̃∞(v,Xv(s)− ρs) = 0

 = Ex

 ∏
v∈Ñs

h(Xv(s)− ρs)

 .

It follows from [17, Proof of Theorem 4] that

1

2
h′′ − ρh′ + f(h)− h = 0.

By (3.2) and (3.10), it is easy to show that h(x) is non-increasing in x. For fixed time
s > 0, by the definition (2.1), we have

h(x) = Ex

( ∏
v∈Ns

[h(Xv(s)− ρs)]1{∀r≤s:Xv(r)≥ρr}

)

= E

( ∏
v∈Ns

[h(x+Xv(s)− ρs)]1{∀r≤s:x+Xv(r)≥ρr}

)
(3.12)

For any v ∈ Ns, 1{∀r≤s:x+Xv(r)≥ρr} → 1 as x tends to infinity. Letting x→∞ on the both
side of (3.12) and by the bounded convergence theorem, we have

h(∞) = E

( ∏
v∈Ns

h(∞)

)
.

Hence h(∞) = 0 or 1. Since Z̃∞ is non-degenerate, we have h(∞) = 0. Therefore,
h(x) satisfies the equation (3.11) and by the uniqueness of solutions to (3.11), we have
Px(Z̃∞ = 0) = Px(ζ <∞). This completes the proof.

4 Proof of Theorem 1.2

For any 0 < s < t, define

Est :=
∑
v∈Ñs

∑
u>v,u∈Nt

δXu(t)−mt . (4.1)

The point process Est will play an important role in the proof of the convergence of Et.
Define

Z̃st :=
∑
v∈Ñs

∑
u>v,u∈Nt

(
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t).

Recall that
Ñs
t = {u ∈ Nt : ∃v ∈ Ñs, s.t. u > v},

then we also have another representation for Z̃st :

Z̃st =
∑
u∈Ñst

(
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t).
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Branching Brownian motion with absorption

For t ≤ s, define Z̃st := Z̃t. In the following lemma, we will show that the limit of Z̃st as
t → ∞ exists Px-almost surely and is related to the limit of the Laplace functionals of
Est . Recall that T is the set of continuous non-negative bounded functions, with support
bounded on the left.

Lemma 4.1. Suppose x > 0, ρ <
√

2 and Ñt is given by (2.1). For any s > 0,

Z̃s∞ := lim
t→∞

Z̃st

exists Px-almost surely. Furthermore, for any non-negative function ϕ ∈ T ,

lim
t→∞

Exe
−〈Est ,ϕ〉 = Ex

[
exp

{
−C∗Z̃s∞

∫ (
1− E(e−〈D

√
2,ϕ(·+z)〉)

)√
2e−
√
2zdz

}]
, (4.2)

where D
√
2 is a random measure distributed according to the law D

√
2.

Proof. The proof of the existence of Z̃s∞ is similar to that of Z̃∞. Recall the definition of
Ṽ z,st given in (3.3). Using the similar argument in the proof of Theorem 1.1, we can see
that if the limit of Ṽ z,st exists as t→∞, then on γ(z,

√
2),

lim
t→∞

Z̃st = lim
t→∞

Ṽ z,st . (4.3)

For s ≤ t1 < t2, notice that

Ṽ z,st2 =
∑

v∈Ñst1∩N̂
z
t1

∑
u>v,u∈N̂zt2

(z +
√

2t2 −Xu(t2))e
√
2(Xu(t2)−

√
2t2).

By the branching property and EyV zt = (z − y)e
√
2y, we get that

Ex

[
Ṽ z,st2

∣∣Ft1] =
∑

v∈Ñst1∩N̂
z
t1

Ex

 ∑
u>v,u∈N̂zt2

(z +
√

2t2 −Xu(t2))e
√
2(Xu(t2)−

√
2t2)
∣∣∣Ft1


=

∑
v∈Ñst1∩N̂

z
t1

e−2t1Ex

 ∑
u>v,u∈N̂zt2

(z +
√

2(t1 + t2 − t1)−Xu(t2))e
√
2(Xu(t2)−

√
2(t2−t1))

∣∣∣Ft1


=
∑

v∈Ñst1∩N̂
z
t1

e−2t1EXv(t1)V
z+
√
2t1

t2−t1 (v) =
∑

v∈Ñst1∩N̂
z
t1

e−2t1(z +
√

2t1 −Xv(t1))e
√
2Xv(t1)

= Ṽ z,st1 ,

where given Fs, V z+
√
2t1

t2−t1 (v) is the counterpart of V z+
√
2t1

t2−t1 for the BBM starting from

Xv(t1). Hence {Ṽ z,st , t ≥ s,Px} is a non-negative martingale and must converge to some
limit, say Ṽ z,s∞ . By (2.8) and (4.3), we obtain that Z̃s∞ = limt→∞ Z̃st exists Px-almost
surely.

Now we will prove (4.2). By (4.1) and the branching property and Markov property,

Ex

[
e−〈E

s
t ,ϕ〉|Fs

]
=
∏
v∈Ñs

EXv(s)

[
e
−

∑
u∈Nt−s

ϕ(Xu(t−s)−mt)
]
.

Notice that

Xu(t− s)−mt = Xu(t− s)−mt−s −
√

2s+
3

2
√

2
log

t

t− s
and limt→∞

3
2
√
2

log t
t−s = 0, so by (2.10) we get that given the starting point Xv(s)

lim
t→∞

EXv(s)

[
e
−

∑
u∈Nt−s

ϕ(Xu(t−s)−mt)
]

= E
[
exp

{
−C(ϕ)Z∞(v)e

√
2(Xv(s)−

√
2s)
}
|Xv(s)

]
,
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where given Fs, {Z∞(v), v ∈ Ñs} are independent copies of {Z∞,P}. By the bounded
convergence theorem, we have

lim
t→∞

Exe
−〈Est ,ϕ〉 = Ex

 ∏
v∈Ñs

lim
t→∞

E
[
e−

∑
u>v,u∈Nt

ϕ(Xu(t)−mt)|Fs
]

= Ex

 ∏
v∈Ñs

E
[
exp

{
−C(ϕ)Z∞(v)e

√
2(Xv(s)−

√
2s)
}
|Xv(s)

]
= Ex

exp

−C(ϕ)
∑
v∈Ñs

Z∞(v)e
√
2(Xv(s)−

√
2s)


 .

Since

Z̃st =
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)

 ∑
u>v,u∈Nt

(
√

2s+Xv(s))e
√
2((Xu(t)−Xv(s))−

√
2(t−s))

+
∑

u>v,u∈Nt

(
√

2(t− s)− (Xu(t)−Xv(s)))e
√
2((Xu(t)−Xv(s))−

√
2(t−s))


d
=
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)
(

(
√

2s+Xv(s))Wt−s(v) + Zt−s(v)
)
,

where given Fs, {(Zt−s(v),Wt−s(v)), v ∈ Ñs} are independent copies of (Zt−s,Wt−s) for
BBM starting from 0. Letting t→∞, it follows from Lemma 2.5 that

Z̃s∞
d
=
∑
v∈Ñs

e
√
2(Xv(s)−

√
2s)Z∞(v).

Therefore,

lim
t→∞

Exe
−〈Est ,ϕ〉 = Ex

[
e−C(ϕ)Z̃s∞

]
.

This completes the proof.

In the following lemma, we show that the limit of Z̃s∞ as s→∞ exists and is equal to
Z̃∞.

Lemma 4.2. Suppose x > 0 and ρ <
√

2. The limit lims→∞ Z̃s∞ exists Px-almost surely
and is equal to Z̃∞.

Proof. By (3.10) and (4.3), we know that on γ(z,
√
2), Z̃s∞ = Ṽ z,s∞ and Z̃∞ = Ṽ z∞ almost

surely. Therefore, it suffices to show that lims→∞ Ṽ z,s∞ = Ṽ z∞. By Lemma 3.2 and the proof
of Lemma 4.1, {Ṽ zt , t ≥ 0,Px} is a supermartingale and {Ṽ z,st , t ≥ s,Px} is a non-negative
martingale. Combining this with Ṽ z,st ≥ Ṽ zt , we obtain that {Ṽ z,st − Ṽ zt , t ≥ s,Px} is a
non-negative submartingale and converges to Ṽ z,s∞ − Ṽ z∞. For any u ∈ Nt, define

τ(u) := τρ0(u) = inf{s ∈ [0, t] : Xu(s) ≤ ρs},

where inf ∅ is defined by +∞. By Fatou’s lemma and (2.4), we have

Ex[Ṽ z,s∞ − Ṽ z∞] ≤ lim inf
t→∞

Ex

[
Ṽ z,st − Ṽ zt

]
= lim inf

t→∞
Ex

 ∑
u∈N̂zt

(z +
√

2t−Xu(t))e
√
2(Xu(t)−

√
2t)1{τ(u)∈(s,t)}


= lim inf

t→∞
etEQx

[
(z +

√
2t−Bt)e

√
2(Bt−

√
2t)1{τ

√
2

z >t, τρ0∈(s,t)}

]
.
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Using a similar argument and notation to the proof of Lemma 3.2, we get that

Ex[Ṽ z,s∞ − Ṽ z∞] ≤ lim inf
t→∞

e
√
2xEQ,

√
2

x

[
(z +

√
2t−Bt)1{τ√2

z >t, τρ0∈(s,t)}

]
.

Recall that B̂t =
√

2t− (Bt − x) and {B̂t,Q
√
2

x } is a standard Brownian motion starting
from 0. For any a, b ∈ R, define the following two stopping times with respect to B̂

σba := inf{s ≥ 0 : B̂s ≥ a+ bs},

σba := inf{s ≥ 0 : B̂s ≤ a+ bs}.

Then define

dQ
(
√
2,z)

x

dQ
√
2

x

∣∣∣∣
FB̂t

=
z − x+ B̂t
z − x

1{σ0
−(z−x)>t}

,

where F B̂t is the natural filtration of Brownian motion {B̂t,Q
√
2

x }. According to [20],

{z − x+ B̂t,Q
(
√
2,z)

x } is a standard Bessel-3 process starting from z − x. We use EQ,(
√
2,z)

x

to denote the expectation with respect to Q(
√
2,z)

x . It follows that

Ex[Ṽ z,s∞ − Ṽ z∞] ≤ lim inf
t→∞

e
√
2xEQ,

√
2

x

[
(z − x+ B̂t)1{σ0

x−z>t, σ
√

2−ρ
x ∈(s,t)}

]
= lim inf

t→∞
(z − x)e

√
2xEQ,(

√
2,z)

x

[
1{σ

√
2−ρ

x ∈(s,t)}

]
= (z − x)e

√
2xEQ,(

√
2,z)

x

[
1{σ

√
2−ρ

x ∈(s,∞)}

]
,

where σ
√
2−ρ

x = inf{s ≥ 0 : z − x + B̂s ≥ z + (
√

2 − ρ)s}. Therefore, it follows from the
bounded convergence theorem that

lim
s→∞

Ex[Ṽ z,s∞ − Ṽ z∞] ≤ lim
s→∞

(z − x)e
√
2xEQ,(

√
2,z)

x

[
1{σ

√
2−ρ

x ∈(s,∞)}

]
= 0.

Since for any s1 ≤ s2 ≤ t, Ṽ z,s1t ≥ Ṽ z,s2t Px-almost surely, it holds that Ṽ z,s1∞ ≥ Ṽ z,s2∞
Px-almost surely. So the limit lims→∞ Ṽ z,s∞ exists Px-almost surely. By the monotone
convergence theorem, we get that

Ex[ lim
s→∞

Ṽ z,s∞ − Ṽ z∞] = lim
s→∞

Ex[Ṽ z,s∞ − Ṽ z∞] = 0.

Since lim
s→∞

Ṽ z,s∞ − Ṽ z∞ ≥ 0, we have lim
s→∞

Ṽ z,s∞ = Ṽ z∞ Px-almost surely. Hence we have

lim
s→∞

Z̃s∞ = Z̃∞ on γ(z,
√
2). By (2.8), we get the desired result.

In the following lemma, we prove that the probability that any particle hits the line
{(y, s) : y = ρs} at a large time s and has descendants above mt at time t� s converges
to zero as t goes to infinity followed by s going to infinity.

Lemma 4.3. For any A > 0, it holds that

lim
s→∞

lim sup
t→∞

Px(∃u ∈ Nt : s ≤ τ(u) ≤ t,Xu(t) ≥ mt −A) = 0. (4.4)

Proof. Let p ∈ (0, 1) and

I := Px(∃u ∈ Nt : τ(u) ∈ (pt, t], Xu(t) ≥ mt −A),

II := Px(∃u ∈ Nt : τ(u) ∈ [s, pt], Xu(t) ≥ mt −A),
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then Px(∃u ∈ Nt : τ(u) ∈ [s, t], Xu(t) ≥ mt −A) = I + II. Notice that

I ≤ Ex

[∑
u∈Nt

1{τ(u)∈(pt,t],Xu(t)≥mt−A}

]
.

According to Lemma 2.3 and the strong Markov property, we get that

I ≤ EQx [et1{τρ0∈(pt,t], Bt≥mt−A}]

= EQx

[
et1{τρ0∈(pt,t]}E

Q
x [1{Bt≥mt−A}|Fτρ0 ]

]
= EQx

[
et1{τρ0∈(pt,t]}QBτρ0

[Bt−τρ0 ≥ mt −A]
]
,

where τρ0 is defined by (3.5). Since Bτρ0 = ρτρ0, we have the following estimate

I ≤ et
∫ t

pt

Qx(τρ0 ∈ dr)Qρr(Bt−r ≥ mt −A)

= et
∫ t

pt

Qx(τρ0 ∈ dr)Q
(
Bt−r ≥

√
2(t− r) + (

√
2− ρ)r − 3

2
√

2
log t−A

)
.

For any y ∈ R, an application of Markov’s inequality shows that

et−rQ(Bt−r ≥
√

2(t− r) + y) ≤ e−
√
2y.

It follows from [22, Section 3.5.C] that

Qx(τρ0 ∈ dr) =
x√

2πr3
exp

{
− (x− ρr)2

2r

}
Therefore,

I ≤
∫ t

pt

er
x√

2πr3
e−

(x−ρr)2
2r e−(2−

√
2ρ)r+ 3

2 log t+
√
2Adr

=

∫ t

pt

x√
2π

t
3
2

r
3
2

e
−( ρ√

2
−1)2r− x22r+xρ+

√
2A

dr

≤ C
∫ t

pt

1

p
3
2

e
−( ρ√

2
−1)2r

dr

≤ C

p
3
2

∫ ∞
pt

e
−( ρ√

2
−1)2r

dr → 0, as t→∞,

where C is a positive constant only depending on x, ρ,A and we used ρ <
√

2 here.
For any a, b ∈ R, define the space-time domain

Db
a := {(t, x) : t > 0, x > a+ bt}.

Recall that the definition of stopping line (2.3). Since

II = Px (∃u ∈ Nt : τ(u) ∈ [s, pt], Xu(t) ≥ mt −A)

= Px

(
∃v ∈ NDρ0 : τ(v) ∈ [s, pt], ∃u > v, u ∈ Nt, Xu(t) ≥ mt −A

)
and this probability is less than or equal to the expectation of the number of v ∈ NDρ0
which satisfies τ(v) ∈ [s, pt] and ∃u > v, u ∈ Nt, Xu(t) ≥ mt − A, we have the following
estimate

II ≤ Ex
[ ∑
v∈NDρ0

1{τ(v)∈[s,pt], ∃u>v,u∈Nt,Xu(t)≥mt−A}

]
.
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By the strong Markov branching property (see Jagers [21, Theorem 4.14], also see
Dynkin [13, Theorem 1.5] for the corresponding property for superprocesses, where this
property is called the special Markov property),

II ≤ Ex

[
Ex

( ∑
v∈NDρ0

1{τ(v)∈[s,pt], ∃u>v,u∈Nt,Xu(t)≥mt−A}|Fτρ0

)]

= Ex

[ ∑
v∈NDρ0

1{τ(v)∈[s,pt]}PXv(τ(v))(Mt−τ(v)(v) ≥ mt −A)

]
,

where Fτρ0 be the natural filtration generated by the spatial paths and the number
of offspring of the individuals before hitting the stopping line LDρ0 and Mt−τ(v)(v) =

maxu>v,u∈Nt Xu(t). By Lemma 2.3, we get that

II ≤
∫ pt

s

erQx(τρ0 ∈ dr)Pρr(Mt−r(v) ≥ mt −A)

=

∫ pt

s

erQx(τρ0 ∈ dr)P

(
Mt−r(v) ≥ mt−r +

√
2r − 3

2
√

2
log

t

t− r
−A− ρr

)
.

Let y = (
√

2− ρ)r− 3
2
√
2

log t
t−r −A. Since

√
2− ρ > 0 and t/(t− r) < 1/(1− p), for s large

enough, it holds that y > 1 for any r ∈ [s, pt]. By Lemma 2.6, we have

II ≤
∫ pt

s

er
x√

2πr3
e−

(x−ρr)2
2r bye

−
√
2y− y2

2(t−r)+
3

2
√

2
y

log(t−r)
t−r dr

≤
∫ pt

s

er
x√

2πr3
e−

(x−ρr)2
2r bye−

√
2y+1dr,

where the last inequality follows from

− y2

2(t− r)
+

3

2
√

2
y

log(t− r)
t− r

≤ 1

for all t− r large enough. Therefore,

II ≤ C
∫ pt

s

er
x√

2πr3
e−

(x−ρr)2
2r re−(2−

√
2ρ)r+ 3

2 log t
t−r dr

≤ C
∫ pt

s

rx√
2πr3

e−(1−
√
2ρ+ ρ2

2 )r− x22r+
3
2 log t

t−r dr

≤ C
∫ pt

s

rx√
2πr3

(
t

(1− p)t
)

3
2 e−

(x−(
√

2−ρ)r)2
2r dr

≤ CEQx [τ
√
2−ρ

0 1{τ
√

2−ρ
0 ≥s}],

where the positive constant C is changed line by line and only depends on x, ρ,A. By

[22, Exercise 3.5.10], a direct calculation shows that EQx [τ
√
2−ρ

0 ] = x√
2−ρ . Therefore, by

the dominated convergence theorem,

lim
s→∞

EQx [τ
√
2−ρ

0 1{τ
√

2−ρ
0 ≥s}] = 0.

Thus,
lim
s→∞

lim sup
t→∞

Px(∃u ∈ Nt : τ(u) ∈ [s, pt], Xu(t) ≥ mt −A) = 0.

This completes the proof.
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Based on the above lemmas, we now present the proof of Theorem 1.2.

Proof of Theorem 1.2. It is equivalent to prove Theorem 2.2. Recall that T is the set
of continuous non-negative bounded functions, with support bounded on the left. For
any ϕ ∈ T , let A be chosen such that supp(ϕ) ⊂ [−A,∞). Note that only on the event
{∃u ∈ Nt : τ(u) ≥ s,Xu(t) ≥ mt − A} are the point processes Est and Et not equal on
supp(ϕ). Therefore,

|Ex(e−〈E
s
t ,ϕ〉)− Ex(e−〈Et,ϕ〉)| ≤ Px(∃u ∈ Nt : τ(u) ≥ s,Xu(t) ≥ mt −A). (4.5)

By Lemma 4.2 and the bounded convergence theorem, it holds that

lim
s→∞

Ex(e−C(ϕ)Z̃s∞) = Ex(e−C(ϕ)Z̃∞), (4.6)

where C(ϕ) is given by (2.9). By (4.2), (4.4), (4.5) and (4.6), we get that

lim sup
t→∞

|Ex(e−〈Et,ϕ〉)− Ex(e−C(ϕ)Z̃∞)| ≤ lim
s→∞

lim sup
t→∞

|Ex(e−〈E
s
t ,ϕ〉)− Ex(e−〈Et,ϕ〉)|

+ lim sup
t→∞

|Ex(e−〈E
s
t ,ϕ〉)− Ex(e−C(ϕ)Z̃s∞)|+ lim

s→∞
|Ex(e−C(ϕ)Z̃s∞)− Ex(e−C(ϕ)Z̃∞)|

= 0.

By the definition of C(ϕ) and Campbell formula for Poisson random measure, a direct

calculation shows that the Laplace functionals of DPPP
(√

2C∗Z̃∞e
−
√
2xdx,D

√
2
)

is

Ex(e−C(ϕ)Z̃∞). By Lemma 2.7, the proof is complete.

We now provide a proof of Corollary 1.5 by combining the convergence of the extremal
process and the property of D

√
2.

Proof of Corollary 1.5. Define

E−ρ := DPPP
(√

2C∗Z̃
−ρ
∞ e−

√
2zdz,D

√
2
)
,

and let Q−ρ be the Poisson point process with intensity
√

2C∗Z̃
−ρ
∞ e−

√
2zdz. According to

Theorem 1.2 and Lemma 2.7

lim
t→∞

max E−ρt = max E−ρ in law .

Since decoration D
√
2 has no effect on the maximum of the limit of extremal process, it

follows that

lim
t→∞

Px

(
M̃−ρt −m−ρt ≤ z

)
= Px

(
E−ρ(z,∞) = 0

)
= Px

(
Q−ρ(z,∞) = 0

)
= Ex

[
Ex

[
e−

∫∞
z

√
2C∗Z̃

−ρ
∞ e−

√
2ydy|Z̃−ρ∞

]]
= Ex

[
e−C∗e

−
√

2zZ̃−ρ∞

]
.

The proof is complete.
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