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Abstract

In Zd, d ≥ 2, we consider random walks in a balanced random environment with a
finite range of dependence. We first obtain both positive and negative exponential
moment bounds for the invariant measure of the process of the environment as viewed
from the particle. We then deduce the exponential integrability for both the lower
and upper bounds of the heat kernel of the RWRE which greatly improves the known
Lp bounds. Using these bounds, we prove the optimal decay rate for the semigroup
generated by the heat kernel for d ≥ 3 when the environment is i.i.d. As a consequence,
we deduce a functional central limit theorem for the environment viewed from the
particle.
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1 Introduction

In the model of random walks in random environment (RWRE), the invariant measure
for the process of the environment viewed from the particle plays a crucial role in the
study of the limiting behavior, cf. [47, 46, 39, 23, 50] and references therein. It has been
used to derive the central limit theorem (CLT) and to determine the effective equations
in homogenization, cf. e.g., [42, 36, 22, 38, 32, 27]. For time-reversible random walks in
random environment, Kipnis and Varadhan [37] proved a functional central limit theorem
(FCLT) which states that the process of the environment as viewed from the particle
(centered at the invariant measure) has a diffusive scaling limit. It is interesting to
investigate whether such behavior is still shared by non-ballistic RWRE models which in
general are non-reversible in time.

*XG is supported by Simons Foundation’s Collaboration Grant for Mathematicians #852943. HT is supported
in part by NSF CAREER award DMS-1843320 and a Vilas Faculty Early-Career Investigator Award.

†Department of Mathematical Sciences, University of Cincinnati, E-mail: guoxq@ucmail.uc.edu
‡Department of Mathematics, University of Wisconsin Madison, E-mail: hung@math.wisc.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1251
https://orcid.org/0000-0002-0650-1338
https://orcid.org/0000-0002-9244-3823
https://ams.org/mathscinet/msc/msc2020.html
mailto:guoxq@ucmail.uc.edu
mailto:hung@math.wisc.edu


Stochastic integrability of heat-kernels for RWBRE

The Gaussian bounds of the heat kernel, which compare the transition probability of
the RWRE to that of the Brownian motion, offer finer descriptions of the diffusivity than
the CLT. Such heat kernel estimates (HKE) have been established for RWRE where either
the invariant measure is explicitly known (e.g., the conductance model [19, 20, 5, 1])
or models where the environment process decorrelates with a relatively fast speed
(e.g., ballistic RWRE [9]). For general RWRE, the HKE, which is usually in terms of
the invariant measure, is not expected to achieve deterministic Gaussian bounds. (An
important class of such models is the random walk in a balanced environment, a process
generated by a non-divergence form operator [29, 28, 45]). Although the HKE may
have Gaussian bounds in the limit, the lack of good moments of the random HKE could
significantly limit its applicability in the quantitative comparison to the Brownian motion.
Therefore it is essential to establish good stochastic integrability for both the invariant
measure and the HKE.

In this article we consider random walks in a uniformly elliptic, balanced random
environment in Zd for d ≥ 2. We will prove the exponential integrability for both the
lower and upper bounds of the invariant measure and the heat kernel, greatly improving
known results of Ld/(d−1) integrability in the ergodic setting. Of course, the Ld/(d−1)

integrability holds in the weaker stationary and ergodic setting, while we need a finite
range of dependence condition to obtain the exponential integrability. Furthermore, we
will obtain optimal variance decay rate for the semigroup generated by the heat kernel
in dimensions d ≥ 3. As a consequence, we deduce a FCLT for the environment viewed
from the particle. Our results are crucially inspired by an argument from Armstrong and
Lin [3].

1.1 Settings

Let Sd×d be the set of d× d positive-definite diagonal matrices. A map

ω : Zd → Sd×d

is called an environment. Denote the set of all environments by Ω and let P be a
probability measure on Ω so that{

ω(x) = diag[ω1(x), . . . , ωd(x)], x ∈ Zd
}

is stationary and ergodic with respect to the spatial shifts θx : Ω → Ω defined by

(θxω)(·) = ω(x+ ·).

Expectation with respect to P is denoted by E or EP.
Let {e1, . . . , ed} be the canonical basis for Rd. We set

ω(x, x± ei) :=
ωi(x)

2trω(x)
for i = 1, . . . , d, (1.1)

and ω(x, y) = 0 if |x− y| 6= 1. Namely, we normalize ω to get a transition probability. We
remark that the configuration of {ω(x, y) : x, y ∈ Zd} is called a balanced environment in
the literature [42, 35, 11].

Definition 1.1. For a fixed ω ∈ Ω, the random walk (Xn)n≥0 in the environment ω started
at x ∈ Zd is a Markov chain in Zd with law P xω specified by P xω (X0 = x) = 1 and

P xω (Xn+1 = z|Xn = y) = ω(y, z). (1.2)

The expectation with respect to P xω is written as Exω. When the starting point of the
random walk is 0, we sometimes omit the superscript and simply write P 0

ω , E
0
ω as Pω and
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Stochastic integrability of heat-kernels for RWBRE

Eω, respectively. Notice that under P 0
ω, ω ∈ Ω, the process

ω̄i = θXi
ω ∈ Ω, i ∈ Z≥0,

is also a Markov chain, called the environment viewed from the particle process. With
abuse of notation, we enlarge our probability space so that Pω still denotes the joint law
of the random walks and (ω̄i)i≥0.

We also consider the continuous-time RWRE (Yt) started at x ∈ Zd on Zd.
Definition 1.2. For any function u : Zd → R, we let ∇2

iu(x) = u(x+ei)+u(x−ei)−2u(x)

for 1 ≤ i ≤ d. Define ∇2 = diag[∇2
1, . . . ,∇2

d], which is a diagonal matrix. Let (Yt)t≥0 be
the Markov process on Zd with generator

Lωu(x) =
∑
y

ω(x, y)[u(y)− u(x)] =
1

2trω(x)
tr(ω(x)∇2u). (1.3)

With abuse of notation, we still let P xω denote the quenched law of (Yt). If there is
no ambiguity from the context, we also write, for x, y ∈ Zd, n ∈ Z, t ∈ R, the transition
kernels of the discrete and continuous time walks as

pωn(x, y) = P xω (Xn = y), and pωt (x, y) = P xω (Yt = y),

respectively. We still denote the process of the environment viewed from the particle as

ω̄t = θYtω, t ∈ R≥0. (1.4)

Both the discrete- and continuous-time RWRE share the same trajectory, and their
behavior are very much the same. The solutions to the Dirichlet problem can be
characterized using the discrete-time RWRE, whereas for the transition kernels it is
easier to manipulate the continuous-time case where the derivatives in time have less
cumbersome notation compared to theirs discrete counterparts. Hence we will use both
(Xn) and (Yt) in our paper for convenience.

1.2 Main assumptions

We assume the following points throughout the paper.

(A1) The measure P is translation-invariant under shifts {θx : x ∈ Zd}, and P has a finite
range ∆ > 0 of dependence. That is, for any subsets A,B ⊂ Zd with dist(A,B) =

inf{|x − y| : x ∈ A, y ∈ B} ≥ ∆, the collections of variables {ω(x) : x ∈ A} and
{ω(y) : y ∈ B} are independent.

(A2) ω
trω ≥ 2κI for P-almost every ω and some constant κ ∈ (0, 1

2d ].

Of course, a special case of (A1) is the i.i.d. assumption below.

(A3)
{
ω(x), x ∈ Zd

}
are i.i.d. under the probability measure P.

In this paper, we use c, C to denote positive constants which may change from line
to line but that only depend on the dimension d and the ellipticity constant κ unless
otherwise stated. We write A . B if A ≤ CB, and A � B if both A . B and A & B hold.

1.3 Earlier results in the literature

The following quenched central limit theorem (QCLT) was proved by Lawler [42],
which is a discrete version of Papanicolaou, Varadhan [47].

Theorem A. Assume (A2) and that law P of the environment is translation-invariant and
ergodic under spatial shifts {θx : x ∈ Zd}. Then
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Stochastic integrability of heat-kernels for RWBRE

(i) There exists a probability measure Q ∼ P such that (ω̄i)i≥0 is an ergodic (with
respect to time shifts) sequence under law Q× Pω.

(ii) For P-almost every ω, the rescaled path Xn2t/n converges weakly (under law Pω)
to a Brownian motion with covariance matrix ā = EQ[ω/trω] > 0.

QCLT for the balanced RWRE in static environments under weaker ellipticity assump-
tions can be found at [35, 11]. For dynamic balanced random environment, QCLT was
established in [25] and finer results concerning the local limit theorem and heat kernel
estimates were obtained at [24]. An algebraic rate of convergence for the QCLT in the
balanced environment was obtained in [32]. When the RWRE is allowed to make long
jumps, non-CLT stable limits of the balanced random walk are considered in [17, 18].
We refer to the lecture notes [13, 50, 12, 26, 41] for QCLT results in different models of
RWRE.

Denote the Radon-Nikodym derivative of Q with respect to P as

ρ(ω) = dQ/dP(ω). (1.5)

For any x ∈ Zd and finite set A ⊂ Zd, we write

ρω(x) := ρ(θxω) and ρω(A) =
∑
x∈A

ρω(x).

It is known that (see, e.g., [24]) for P-almost all ω, the measure ρω(·) on Zd is the
unique (up to a multiplicative constant) invariant measure for the RWRE (Xn)n≥0. In this
sense, Q is the steady state for the environmental process. To investigate the long term
behavior of the RWRE and the homogenization of the corresponding diffusion equations,
it is essential to characterize the invariant measure ρω. For ergodic balanced random
environments, the following stochastic bounds for the invariant measure ρω and the heat
kernel were proved in [42, 29, 24].

For r ≥ 0, t > 0, denote by

h(r, t) =
r2

r ∨ t
+ r log

(r
t
∨ 1
)
, r ≥ 0, t > 0. (1.6)

Theorem B. Assume (A2) and that law P of the environment is translation-invariant and
ergodic under spatial shifts {θx : x ∈ Zd}. There exist constants q > d

d−1 and p > 0 both
depending on (d, κ) such that

(i)
E[ρq] <∞, E[ρ−p] <∞;

(ii) P-almost surely, for any r > 0,

ρω(B2r) ≤ Cρω(Br);

(iii) P-almost surely, for all x ∈ Zd, t > 0,

cρω(0)

ρω(B√
t)
e−C|x|2/t ≤ pωt (x, 0) ≤

Cρω(0)

ρω(B√
t)
e−ch(|x|,t). (1.7)

Moreover, for x ∈ Zd, t > 0,

‖pωt (0, x)‖Lq(P) ≤
C

(t+ 1)d/2
e−ch(|x|,t), (1.8)

‖pωt (0, x)‖L−p(P) ≥
c

(t+ 1)d/2
e−C|x|2/t. (1.9)
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Remark 1.3. The positive moment bound in (i) with q = d
d−1 was obtained by Lawler

[42]. The negative moment bound (i) and volume-doubling property (ii) were proved by
Bauman [6]. The Lq bound of the invariant measure in (i) and a heat kernel moment
bound of ‖pωt (0, x)‖Lq(P) were obtained by Fabes and Stroock [29]. Note that although
[6, 29] are results for deterministic operators, they yield the corresponding stochastic
integrability of the RWRE by Birkhoff’s ergodic theorem. Deterministic heat kernel
bounds of the form (1.7) were shown by Escauriaza [28] in the PDE setting, and by
Mustapha [45] for discrete time balanced random walks. In the more general dynamic
ergodic balanced environment setting, Theorem B was proved by Deuschel and the
first named author [24]. The optimality of the Lq moment, q > d

d−1 , of the heat kernel

was also discussed in [29, (4.10)] with examples where q could be as close to d
d−1 as

possible. Note that in the general time-dependent environment setting, the number d
d−1

in Theorem B, which is due to the integrability of ρ in the static environment should be
replaced by d+1

d .

Roughly speaking, the term ρω(0)
ρω(B√

t)
in the HKE is the long term ratio between the

time the RWRE visits the origin and the time it spends in the ball B√
t. For the special

deterministic environment a ≡ I, i.e., when the RWRE is a simple random walk, we have
ρ ≡ 1 and this term becomes a constant Ct−d/2.

However, as an important feature of the non-divergence form model, both ρω and
ρω(0)td/2

ρω(B√
t)

are not expected to have deterministic upper and (nonzero) lower bounds in

general. For instance, Gantert’s example in [50, Page 281] shows that there exists
a uniformly elliptic balanced environment with an arbitrarily strong local “blocking”
property so that ρω(0) > 0 can be as small as we want. In other words, there are
examples of balanced i.i.d. uniformly elliptic random environments with the property
P(infx∈Zd ρω(x) = 0) = 1. The poor stochastic integrability of the heat kernel bounds
could greatly limit their usefulness in the prediction of the diffusive behavior of the
RWRE.

One of the goals in this paper is to show that, in a balanced environment with finite
range of dependence, both ρω and the heat kernel have positive and negative exponential
moment bounds.

Since Q is the limiting ergodic measure of the environment, it is expected that, as t→
∞, ψ(ω̄t) → EQ[ψ] almost surely for ψ ∈ L1(P). (Recall the process ω̄t of the environment
as viewed from the particle in (1.4).) When the balanced environment satisfies a finite
range of dependence and ψ is an L∞(P) local function, it is shown in [32, Theorem 1.2]
that, with overwhelming annealed probability, the average t−1

∫ t
0
ψ(ω̄s) ds converges

to EQ[ψ] at an algebraic speed. For time-reversible RWRE, Kipnis and Varadhan [37]
proved that the process of the environment as viewed from the particle has diffusive
behavior. Further, in the conductance model where the walk is generated by divergence
form operators, algebraic rates for the decay of Eω[ψ(ω̄t)] are obtained in [44, 31, 21].

Another goal in this paper is to establish the optimal decay rate of Eω[ψ(ω̄t)]− EQψ

for the the balanced RWRE. To this end, we will adapt the strategy of Gloria, Neukamm,
Otto [31] on the semigroup decay of divergence form equations into the non-divergence
form setting.

In our proof of improved moment bounds for the invariant measure and heat kernels,
we will employ the following quantitative homogenization result for the elliptic non-
divergence form operator Lω.

We need some notations to describe the homogenization problem. For a function f
on Rd we let D2f denote the Hessian matrix of f . For any function u : Zd → R, recall
that ∇2

iu(x) = u(x+ ei) + u(x− ei)− 2u(x) for 1 ≤ i ≤ d. Also, ∇2 = diag[∇2
1, . . . ,∇2

d] is a
diagonal matrix. For r > 0, y ∈ Rd we let
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Br(y) =
{
x ∈ Rd : |x− y| < r

}
, Br(y) = Br(y) ∩Zd

denote the continuous and discrete balls with center y and radius r, respectively. When
y = 0, we also write Br = Br(0) and Br = Br(0). For any B ⊂ Zd, its discrete boundary
is the set

∂B :=
{
z ∈ Zd \B : dist(z, x) = 1 for some x ∈ B

}
.

Let B̄ = B ∪ ∂B. Note that with abuse of notation, whenever confusion does not occur,
we also use ∂A and Ā to denote the usual continuous boundary and closure of A ⊂ Rd,
respectively.

A function ψ : Ω → R is said to be local if it is measurable and depends only on the
environment {ω(x) : x ∈ S} in a finite set S ⊂ Zd.

Proposition C. Assume (A1), (A2), and that the ψ is a local function. Recall the measure
Q in Theorem A. Suppose g ∈ Cα(∂B1), f ∈ Cα(B1) for some α ∈ (0, 1], and ψ is
a measurable function of ω(0) with ‖ψ/trω‖∞ := ess supω

|ψ(ω(0))|
ω(0) < ∞. Let ū be the

solution of the Dirichlet problem{
1
2 tr(āD

2ū) = fψ̄ in B1,

ū = g on ∂B1,

with ā = EQ[ω/trω] > 0 being a positive-definite matrix and ψ̄ = EQ[ψ/trω].
For any q ∈ (0, d), there exist a random variable Xq = Xq(ω, d, κ) with E[exp(cX d

q )] <

∞, and a constant β = β(d, κ, q) ∈ (0, 1) such that for any y ∈ B3R, the solution u of{ 1
2 tr(ω∇

2u(x)) = 1
R2 f(

x−y
R )ψ(θx−yω) x ∈ BR(y),

u(x) = g( x−y|x−y| ) x ∈ ∂BR(y)
(1.10)

satisfies, with A1 = ‖f‖C0,α(B1)
‖ ψ
tr(ω)‖∞ + [g]C0,α(∂B1),

max
x∈BR(y)

∣∣∣u(x)− ū(x−yR )
∣∣∣. A1(1 + XqR

−q/d)R−αβ , (1.11)

Remark 1.4. The proof of Proposition C, which is a small modification of [32, Theo-
rem 1.5], can be found in the Appendix.

In terms of the quantitative homogenization of elliptic non-divergence form operators
in the PDE setting, Yurinski derived a second moment estimate of the homogenization
error in [49] for linear elliptic case, and Caffarelli, Souganidis [16] proved a logarithmic
convergence rate for the nonlinear case. Afterwards, Armstrong, Smart [4] achieved
an algebraic convergence rate for fully nonlinear elliptic equations. Armstrong, Lin [3]
obtained quantitative estimates for the approximate corrector problems.

In the random walks in a balanced random environment setting, the above algebraic
rate (1.11) was proved in [32] by Peterson and the authors, following ideas of Armstrong,
Smart [4] in the PDE setting. When the environment is non-elliptic but genuinely d-
dimensional and i.i.d., Harnack inequalities with near optimal constants were proved in
[8] for elliptic operators by Berger, Cohen, Deuschel and the first named author, and in
[10] for parabolic operators by Berger and Criens, respectively.

1.4 Main results

For RWRE in a balanced, uniformly elliptic environment with a finite range of depen-
dence, we will establish natural lower and upper bounds for both the invariant measure
and the heat kernel (Theorem 1.5) which possess both positive and negative exponential
moments, greatly improving the stochastic integrability in Theorem B for the ergodic
setting. When the environment is i.i.d., we will obtain the optimal decay rate of the
semigroup generated by the heat kernel for d ≥ 3 in Theorem 1.6.
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Theorem 1.5. Assume (A1), (A2), and d ≥ 2. Let s = s(d, κ) = 2 + 1
2κ − d ≥ 2. For any

ε > 0, there exists a random variable H (ω) = H (ω, d, κ, ε) > 0 with E[exp(cH d−ε)] <∞
such that the following properties hold.

(a) For P-almost all ω,
cH −s ≤ ρ(ω) ≤ CH d−1.

In particular, for any q ∈ (−d
s ,

d
d−1 ), we have

E[exp (cρq)] <∞.

(b) For any r ≥ 1 and P-almost all ω,

cH −s ≤ rdρω(0)

ρω(Br)
≤ CH d−1.

(c) Recall the function h in (1.6). For any x ∈ Zd, t > 0, and P-almost all ω,

pωt (x, 0) ≤ CH d−1(1 + t)−d/2e−ch(|x|,t),

pωt (x, 0) ≥ cH −s(1 + t)−d/2e−C|x|2/t.

Recall the continuous time RWRE (Yt)t≥0 in Definition 1.2. For any measurable
function ζ : Ω → R, we define its stationary extension ζ̄ : Zd × Ω → R as

ζ̄(x) = ζ̄(x;ω) := ζ(θxω).

Define the semigroup Pt, t ≥ 0, on RΩ by

Ptζ(ω) = E0
ω[ζ(ω̄

t)] =
∑
z

pωt (0, z)ζ̄(z;ω).

The following theorem estimates the speed of decorrelation of the environmental
process ω̄t from the original environment under (A3). It gives a rate t−d/4 of decay for
the semigroup, which is optimal. A function ζ : Ω → R is said to be local if it depends
only on the environment {ω(x) : x ∈ S} in a finite set S ⊂ Zd. The smallest such a set S
is called the support of ζ and denoted by Supp(ζ).

Theorem 1.6. Assume (A2), (A3), and d ≥ 3. For any local measurable function ζ : Ω → R

with ‖ζ‖∞ ≤ 1 and t ≥ 0, we have, for C = C(d, κ,#Supp(ζ)),

VarQ(Ptζ) ≤ C(1 + t)−d/2; (1.12)

‖Ptζ − EQζ‖L1(P) + ‖Ptζ − E[Ptζ]‖Lp(P) ≤ Cp(1 + t)−d/4 for all p ∈ (0, 2). (1.13)

For divergence form operators, optimal diffusive decay of the semigroup generated by
the heat kernel was obtained by Gloria, Neukamm, Otto [31], de Buyer, Mourrat [21]. Our
proof of Theorem 1.6 is motivated by the approach of [31], which uses an Efron-Stein type
inequality and the Duhamel representation formula for the vertical derivative. However,
unlike the divergence form setting [31], there are no deterministic Gaussian bounds for
the heat kernel, and the steady state Q of the environment process (ω̄t)t≥0 is not only
different from the original measure P but also without an explicit formula. To overcome
these difficulties, our heat kernel estimates and the (negative and positive) exponential
moment bounds of the Radon-Nikodym derivative dP

dQ in Theorem 1.5 play crucial roles.
Another feature of our non-divergence setting is that there are no Caccioppoli estimates
for p > 2. See Lemma 3.2.
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As a consequence of Theorem 1.6 and the CLT of [22], we obtain a CLT for the
additive functional of the environmental process. Recall that ω̄t = θYt

ω is an ergodic
process under the law Q× Pω and time shifts. The following CLT says that, when d ≥ 3,
the fluctuation around the ergodic mean is approximately Gaussian under the diffusive
rescaling.

Corollary 1.7. Assume (A2), (A3). Let d ≥ 3. For P-almost all ω and any bounded
measurable local function ζ of the environment with EQζ = 0, the Pω law of

1√
t

∫ t

0

ζ(ω̄s) ds

converges weakly to a Brownian motion with a deterministic diffusivity constant.

Another immediate consequence of Theorem 1.6 is the existence of a stationary
corrector in d ≥ 5 for the non-divergence form homogenization problem (1.10).

Corollary 1.8. Assume (A2), (A3). When d ≥ 5, for any bounded local measurable
function ζ : Ω → R, there exists φ : Ω → R such that φ ∈ Lp(P) for all p ∈ (0, 2), and for
P-almost all ω, its stationary extension φ̄(x) = φ(θxω) solves

Lωφ̄(x) = ζ̄(x)− EQ[ζ], for all x ∈ Zd. (1.14)

Remark 1.9. In the classical periodic environment setting, it is well-known that the
existence of a stationary corrector implies that the optimal homogenization error of
problem (1.10) is generically of scale R−1. Readers may refer to the classical books [7,
36] for the derivation of the rate in the periodic setting, and [34, 48, 33] for discussions
on the optimality of the rates.

We remark that our Corollary 1.8 is a weaker version of [3, Theorem 7.1] where a
stretched exponential tail was obtained for the corrector. Neverthless, our Corollary 1.8
is an immediate consequence of the optimal semigroup decay rate.

To obtain the above results, we need to study properties of the Green functions. For
d ≥ 2, R ≥ 1, denote the exit time from BR of the RWRE by

τ = τR = inf{n ≥ 0 : Xn /∈ BR}. (1.15)

Definition 1.10. For R ≥ 1, ω ∈ Ω, x ∈ Zd, S ⊂ Zd, the Green function GR(·, ·) in the
ball BR for the balanced random walk is defined by

GR(x, S) = GωR(x, S) := Exω

[
τR−1∑
n=0

1Xn∈S

]
, x ∈ B̄R.

We also write GR(x, y) := GωR(x, {y}) and GR(x) := G(x, 0).

Note that for d ≥ 3, by [35, Theorem 1], the RWRE is transient, and so the Green
function in the whole space

Gω(x) := lim
R→∞

GR(x) <∞

is well-defined for all x ∈ Zd, P-almost surely. Whereas, when d = 2, the RWRE is
recurrent, and thus the Green function in the whole Z2 is infinity. In this case, the
potential kernel

A(x) = Aω(x) =

∞∑
n=0

[pωn(0, 0)− pωn(x, 0)], x ∈ Z2, (1.16)
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is well-defined. Note that G and A are both non-negative functions, and, for x ∈ Zd,

LωG(x) = −1x=0, if d ≥ 3,

and

LωA(x) = 1x=0, if d = 2.

Theorem 1.11. Assume (A1), (A2). For r > 0, let

U(r) :=

{
− log r d = 2,

r2−d d ≥ 3.
(1.17)

For any ε > 0, there exists a random variable H =H (ω, d, κ, ε) > 0withE[exp(cH d−ε)]<

∞ such that, P-almost surely, for all x ∈ BR,

H −s[U(|x|+ 1)− U(R+ 2)] . GωR(x) . H d−1[U(|x|+ 1)− U(R+ 2)],

where s = s(d, κ) = 2 + 1
2κ − d ≥ 2.

In terms of the Green function of non-divergence form operators, Ld/(d−1) and Lq,
q > d

d−1 upper bounds were proved by Bauman [6] and Fabes, Stroock [29]. For non-
divergence form operators in a random environment with a finite range of dependence,
an upper bound for the Green function of the approximate corrector with exponential
integrability was obtained by Armstrong, Lin [3]. For balanced RW in a time-dependent
ergodic environments, positive and negative moment bounds and scaling limits of the
Green’s function were obtained by Deuschel and the first named author in [24].

Our proof of the bounds of GωR follows the idea of Armstrong, Lin [3, Proposition 4.1].
In Theorem 1.11, we apply their idea to obtain both upper and lower bounds for the
Green function GR in a finite region.

With the bounds in Theorem 1.11 and the heat kernel estimates Theorem 1.5, we can
deduce bounds of the Green functions on the whole space.

Corollary 1.12. Assume (A1), (A2). Let s be as in Theorem 1.11. For any ε > 0, there
exists a random variable H = H (ω, d, κ, ε) > 0 with E[exp(cH d−ε)] < ∞ such that,
P-almost surely, for all x ∈ Zd,

H −s log(|x|+ 1) . Aω(x) . H log(|x|+ 1), when d = 2;

H −s(1 + |x|)2−d . Gω(x) . H d−1(1 + |x|)2−d, when d ≥ 3.

The proof of Corollary 1.12 will be given in Section 3.2.

2 Bounds of the Green function in a ball

By the Markov property, GR(x, S) satisfies GR = 0 on ∂BR and

LωGR(x, S) = −1x∈S , x ∈ BR. (2.1)

We will establish upper and lower bounds of the Green function GR (Theorem 1.11) by
comparingGR to test functions, an idea we learnt from Armstrong-Lin [3, Proposition 4.1].
Note that [3] only obtained an upper bound of the Green function corresponding to the
“approximate” operator defined on the whole Rd, while our Green function corresponds
to the original non-divergence form operator within a finite ball BR. Hence, in our case,
the challenge lies in finding appropriate test functions (for both lower and upper bounds)
so that they have the desired boundary values and concavity near the discrete boundary.
More details are explained below.

EJP 29 (2024), paper 194.
Page 9/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1251
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic integrability of heat-kernels for RWBRE

Let us call a function u : Zd → R ω-harmonic on A ⊂ Zd if Lωu(y) = 0 for y ∈ A.
Clearly, the Green function GR(x, 0) is ω-harmonic on BR \ {0}.

To obtain the upper bound, we construct a function h which is almost ω-harmonic
away from the origin and with (almost) zero boundary values, so that GR − h is sub-
harmonic at places that are either close to the origin or the boundary of BR. As a result,
if (GR − h)(x0) = maxBR

(GR − h) were positive, then the maximum principle forces the
maximizer x0 to be sufficiently far away from both the origin and the boundary. This
allows enough space for the homogenization to occur around x0, i.e., h is close to its
continuous harmonic counterpart up to an algebraic error. On the other hand, by the
maximal principle, the ω-harmonic counterpart of GR − h (which is an algebraic error
away from GR − h) cannot achieve its maximum over the ball B̄|x0|/2(x0) in the center.
This would contradict the assumption that the maximizer is x0, if we can exploit the fact
that h is ω-superharmonic to give it enough room to absorb the algebraic error.

The proof of the lower bound follows similar philosophy.
The following Lemmas contain properties of some deterministic functions that will be

useful in our construction of the test functions in the next subsections.

Lemma 2.1. Let δ = β/2, where β = β(d, κ, qε) is as defined in Proposition C. Define
ζ̄, ξ̄ : (0,∞) → R as

ζ̄(r) =

{
−(log r) exp(r−δ/δ) d = 2

r2−d exp(−r−δ/δ) d ≥ 3,

ξ̄(r) =

{
−(log r) exp(−r−δ/δ) d = 2

r2−d exp(r−δ/δ) d ≥ 3.

Define two functions ζ, ξ : Rd \ {0} → R as

ζ(y) = ζ̄(|y|), and ξ(y) = ξ̄(|y|), y 6= 0.

Then, the following statements hold.

(i) ζ̄, ξ̄ are decreasing functions on (C,∞). Moreover, for r ≥ C,

−ζ̄ ′(r) � r1−d, and
1

2
r1−d ≤ −ξ̄′(r) ≤

(
d− 1

2

)
r1−d.

(ii) For |y| ≥ C, we have

−∆ζ(y) ≥ |y|−(2+δ)|ζ(y)|, and −∆ξ(y) ≤ −|y|−(2+δ)|ξ(y)|.

(iii) For |y| ≥ 2 and k ∈ N, there exists C = C(k, d) such that

|Dkζ(y)| ≤ C|y|−k|ζ(y)|, and |Dkξ(y)| ≤ C|y|−k|ξ(y)|.

Lemma 2.2. There exist constants α0 ∈ (0, 1) and A0 ≥ 1 depending on κ such that, for
any α ∈ (0, α0), A ≥ A0,

Lω(e
−2α|x|/R) ≤ 0 in BR \BR/2, when R ≥ A0; (2.2)

Lω(e
−A|x|2) ≥ −1x=0, x ∈ Zd; (2.3)

Lω(e
−A|x|2/R2

) > 0, x ∈ BR \BR/2, when R ≥ A2. (2.4)

The proof of Lemma 2.2 is in Section A.2 of the Appendix.
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2.1 Upper bounds of Green’s functions

Recall Xq in Proposition C. For any ε ∈ (0, 1), we write

R0 = R0(ω, d, κ, ε) := X
d/(d−ε)
d−ε +K,

where K is a sufficiently large constant depending on (d, κ), and denote the exit time
from BR0 as

s0 = min{n ≥ 0 : Xn /∈ BR0}. (2.5)

Note that R0 plays the role of a “homogenization radius” in the sense that for all R ≥ R0

and y ∈ B3R, the upper bound in (1.11) can be replaced by the algebraic term CA1R
−αβ .

Let α = α(d, κ) > 0 be a constant to be determined in Lemma 2.4, and set

Cα,R :=
[ζ̄(R/2)− ζ̄(R)]Rd−2

e−α+2α/R − e−2α
� α−1, when R ≥ R0.

Definition 2.3. Let ζ̄, ζ be as in Lemma 2.1. For any fixed R ≥ 4R0, we define a function
h : B̄R → [0,∞) by

h(x) =


h1(x), x ∈ BR0 ,

h2(x), x ∈ BR/2 \BR0 ,

h3(x), x ∈ B̄R \BR/2,
where the functions h1, h2, h3 are defined as below

h1(y) = Eyω[h2(Xs0) + |Xs0 | − |y|], y ∈ B̄R0
,

h2(y) = Rd−1
0

[
(α−1 − 1)(ζ̄(R/2)− ζ̄(R)) + ζ(y)− ζ̄(R)

]
, y ∈ Rd \ {0},

h3(y) = Rd−1
0 α−1Cα,RR

2−d[e−2α(|y|−1)/R − e−2α], y ∈ Rd.

Note that h2 is defined first and the definition of h1 follows.

Lemma 2.4. When R ≥ 4R0, there exists a constant α > 0 such that the functions
h1, h2, h3, h given in Definition 2.3 have the following properties.

(a) Lωh1(x) = −Lω(|x|) ≤ −1x=0 for x ∈ BR0
;

(b) h1 = h2 on ∂BR0 , and h2 = h3 on ∂BR/2;

(c) h2 ≥ h1 in BR0
\BR0/2.

(d) h2 ≥ h3 in BR \BR/2, and h2 ≤ h3 in BR/2 \BR/2−1.

(e) Lωh3 ≤ 0 in BR \BR/2.

Proof. (a) and (b) are obvious. To see (c), note that h2(x)− h1(x) = Exω[f(|x|)− f(|Xs0 |)],
where f(r) = r +Rd−1

0 ζ̄(r). Since R0 ≥ K, by Lemma 2.1(i), taking K sufficiently large,
f(r) is a decreasing function for r ∈ [R0/2, R0 + 1].

Next, we will prove (d). Indeed, we can write, for y ∈ Rd \ {0},

h2(y)− h3(y) = Rd−1
0 a(|y|) +A(R0, R),

where A(R0, R) is a constant, and a(r) = ζ̄(r) − α−1Cα,RR
2−de−2α(r−1)/R. For r ∈

[R/2− 1, R], by Lemma 2.1(i), taking α > 0 sufficiently small, we have

a′(r) ≥ −Cr1−d + 2Cα,Re
−2αR1−d ≥ −Cr1−d + cα−1R1−d ≥ 0.

Hence, h2 − h3 is radially increasing in BR \BR/2−1. Item (d) then follows from the fact
that h2 − h3 = 0 on ∂BR/2.

Item (e) is a consequence of (2.2) in Lemma 2.2.
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Proof of the upper bound in Theorem 1.11. For 0 < a < b and d ≥ 2, we have an elemen-
tary inequality

b− a ≤ bd−1(U(a)− U(b)). (2.6)

When R ∈ (1, 4R0], note that for x ∈ BR one has Lω[GR(x) − (R + 1 − |x|)] ≥ 0, and
GR = 0 ≤ R+ 1− |x| on ∂BR. By the maximum principle, we have, for x ∈ BR,

GR(x) ≤ R+ 1− |x|
(2.6)
≤ (R+ 2)d−1[U(|x|+ 1)− U(R+ 2)].

Hence the upper bound in Theorem 1.11 holds when R ∈ (1, 4R0]. It remains to consider
the case R > 4R0.

First, we will prove via contradiction that

GR ≤ h in B̄R. (2.7)

Assume by contradiction that (2.7) fails, i.e., maxB̄R
(GR − h) > 0. By Lemma 2.4(a),

Lω(GR − h) ≥ 0 in BR0
and so maxB̄R

(GR − h) is achieved outside of BR0
. Further, note

that (GR − h)|∂BR
= (−h3)|∂BR

≤ 0. By Lemma 2.4(e), Lω(GR − h3) ≥ 0 in BR \ BR/2,
and so, by the maximum principle and Lemma 2.4(d),

max
B̄R\BR/2

(GR − h) ≤ max
∂(BR\BR/2)

(GR − h3) ≤ 0 ∨ max
BR/2\BR0

(GR − h).

Hence, if maxB̄R
(GR − h) > 0, then there exists x0 ∈ BR/2 \BR0

so that

(GR − h)(x0) = max
B̄R

(GR − h) > 0.

Since x0 ∈ BR/2 \BR0
, by Lemma 2.4(c)(d),

(GR − h2)(x0) ≥ max
B̄|x0|/2(x0)

(GR − h2),

which is equivalent to

(GR −Rd−1
0 ζ)(x0) ≥ max

B̄|x0|/2(x0)
(GR −Rd−1

0 ζ). (2.8)

Recall ā = EQ[ω/trω] > 0. Without loss of generality, assume that ā = I, and set

ζ̃(y) := ζ(y) + c|x0|−(2+δ)|ζ(x0)||y − x0|2, y ∈ Rd \ {0},

where c > 0 is chosen so that (by Lemma 2.1(ii))

∆ζ̃(y) ≤ −|y|−(2+δ)|ζ(y)|+ 2nc|x0|−(2+δ)|ζ(x0)| ≤ 0 for y ∈ B|x0|/2(x0).

Then (by Lemma 2.1(iii)) |Dζ̃| ≤ C|x0|−1|ζ(x0)| in B1+|x0|/2(x0), and

(GR −Rd−1
0 ζ̃)(x0)

(2.8)
≥ max

∂B|x0|/2(x0)
(GR −Rd−1

0 ζ̃) + CRd−1
0 |x0|−δ|ζ(x0)|. (2.9)

Let v̄ : B̄1 → R and v : B̄|x0|/2(x0) → R be the solutions of (Here ā = I.){
tr(āD2v̄) = ∆v̄ = 0 x ∈ B1

v̄(x) = Rd−1
0 ζ̃(x0 +

|x0|
2 x) x ∈ ∂B1,

and {
Lωv(x) = 0 x ∈ B|x0|/2(x0)

v(x) = v̄( x−x0

|x−x0| ) x ∈ ∂B|x0|/2(x0).
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We will show that v can be controlled by Rd−1
0 ζ̃ both on the boundary and inside of

B|x0|/2(x0). Indeed, for x ∈ ∂B|x0|/2(x0),

|v(x)−Rd−1
0 ζ̃(x)| = Rd−1

0

∣∣∣ζ̃(x0 + |x0|(x−x0)
2|x−x0| )− ζ̃(x)

∣∣∣
≤ Rd−1

0 sup
B̄1+|x0|/2(x0)

|Dζ̃|

≤ CRd−1
0 |x0|−1|ζ(x0)|. (2.10)

For x ∈ B|x0|/2(x0), applying Proposition C with q = d− ε to the case α = 1, there exists
β = β(d, κ, ε) ∈ (0, 1) such that

v(x) ≤ v̄( x−x0

|x0|/2 ) + C|x0|−βRd−1
0 sup

y∈∂B1

∣∣∣Dζ̃(x0 + |x0|
2 y)

∣∣∣
≤ v̄( x−x0

|x0|/2 ) + CRd−1
0 |x0|−β |ζ(x0)|. (2.11)

Furthermore, using the fact that ∆ζ̃(x0 +
|x0|
2 x) ≤ 0 for x ∈ B1, we get v̄(x) ≤ Rd−1

0 ζ̃(x0 +
|x0|
2 x) in B1. This, together with (2.11), yields, for x ∈ B|x0|/2(x0),

v(x) ≤ Rd−1
0 ζ̃(x) + CRd−1

0 |x0|−β |ζ(x0)|. (2.12)

Notice that (GR − v) is an ω-harmonic function on B|x0|/2(x0), and so

max
B|x0|/2(x0)

(GR − v) ≤ max
∂B|x0|/2(x0)

(GR − v).

Therefore, combining this inequality and (2.10), (2.12), we get

max
B|x0|/2(x0)

(GR −Rd−1
0 ζ̃) ≤ max

∂B|x0|/2(x0)
(GR −Rd−1

0 ζ̃) + CRd−1
0 |x0|−β |ζ(x0)|

which contradicts (2.9), since |x0| ∈ (R0, R), δ = β/2 by definition in Lemma 2.1, and
R0 ≥ K is chosen to be sufficiently large. Inequality (2.7) is proved.

Finally, when x ∈ BR/2 \BR0 , we have GR(x)
(2.7)
≤ h2(x), and, by Lemma 2.1(i),

h2(x) ≤ Rd−1
0 α−1[ζ̄(|x|)− ζ̄(R)]

. Rd−1
0

∫ R

|x|
(−ζ̄)′(r) dr

. Rd−1
0

∫ R

|x|
r1−d dr . Rd−1

0 [U(|x|)− U(R)]. (2.13)

When x ∈ BR0
\ {0},

GR(x)
(2.7)
≤ h1(x) = Exω[h2(Xs0) + |Xs0 | − |x|]
(2.13),(2.6)

. Rd−1
0 Exω[U(|Xs0 |)− U(R) + U(|x|)− U(|Xs0 |)]

= Rd−1
0 [U(|x|)− U(R)].

Note that, for |x| ≥ 1, U(|x|)− U(R) . U(|x|+ 1)− U(R+ 2).
When x ∈ BR \BR/2,

GR ≤ h3 ≤ CRd−1
0 R2−d(e−2α(|x|−1)/R − e−2α)

. Rd−1
0 R2−d(1− |x|−1

R ) = Rd−1
0 R1−d(R+ 1− |x|)

(2.6)

. Rd−1
0 [U(|x|+ 1)− U(R+ 2)].

The upper bound in Theorem 1.11 is proved by putting H = R0.
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2.2 Lower bounds of Green’s functions

The proof of the lower bound of Theorem 1.11, which is similar to that of the upper
bound, is via comparing GR to appropriate test functions. However, unlike the Green
function in the whole space, GR is defined only in bounded region, and so the test
functions should be carefully designed to capture the behavior of GR near the boundary.

Lemma 2.5. Define η̄ : R→ (0,∞) as η̄(r) = (1 + r2)−θ, where

θ := 1/(4κ) ≥ d/2. (2.14)

Define η : Rd → R as
η(y) = η̄(|y|).

There exists a constant C0 = C0(d, κ) > 0 such that, for x ∈ Zd,

Lωη(x) ≥ −1x∈BC0θ2
.

The proof of Lemma 2.5 is in Section A.2 of the Appendix.

Let γ = γ(κ) > 0 be a large constant to be determined, and set

Cγ,R :=
[ξ̄(R/2)− ξ̄(R)]Rd−2

e−γ/4 − e−γ
� eγ/4 when R ≥ R0.

Definition 2.6. Recall ξ, ξ̄, η, η̄, θ from Lemma 2.1 and Lemma 2.5. For any fixed R ≥ 4R0,
we define three functions `i, i = 1, 2, 3, as

`1(y) = Eyω[`2(Xs0) + η(y)− η(Xs0)], y ∈ B̄R0
;

`2(y) = Rd−2−2θ
0

[
(γ−2 − 1)(ξ̄(R/2)− ξ̄(R)) + ξ(y)− ξ̄(R))

]
, y ∈ Rd \ {0};

`3(y) = Rd−2−2θ
0 γ−2Cγ,RR

2−d(e−γ|y|
2/R2

− e−γ), y ∈ Rd,

Note that `2 is defined first and the definition of `1 follows. Also, for R ≥ 4R0, we define
a function ` : B̄R → R by

`(x) =


`1(x), x ∈ BR0

,

`2(x), x ∈ BR/2 \BR0
,

`3(x), x ∈ B̄R \BR/2.

Lemma 2.7. When R ≥ 4R0, there exists a constant γ > 0 such that the functions
`1, `2, `3, ` given in Definition 2.6 have the following properties.

(a) Lω`1 = Lωη ≥ −1x∈BC0θ2
for x ∈ BR0

;

(b) `1 = `2 on ∂BR0
, and `2 = `3 on ∂BR/2;

(c) `2 ≤ `1 in BR0
\BR0/2.

(d) `2 ≤ `3 in BR \BR/2, and `2 ≥ `3 in BR/2 \BR/2−2.

(e) Lω`3 ≥ 0 in BR \BR/2.

Proof. (a) follows from Lemma 2.5, and (b) follows from definition. To see (c), note that
`1− `2 = Exω[f(|Xs0 |)− f(|x|)], where f(r) = Rd−2−2θ

0 ξ̄(r)− η̄(r). Since R0 ≥ K, by taking
K sufficiently large and by Lemma 2.1(i), we have

f ′(r) ≥ −(d− 1/2)Rd−2−2θ
0 r1−d + 2θ(1 + 1

r2 )
−θ−1rd−2−2θ

(2.14)
≥ (d− 1/2)(rd−2−2θ −Rd−2−2θ

0 ) ≥ 0
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and so f(r) is decreasing for r ∈ [R0/2, R0]. Item (c) is proved.
Next, we will show (d). Indeed, we can write, for y 6= 0,

`2(y)− `3(y) = Rd−2−2θ
0 a(|y|) +A(R0, R),

where A(R0, R) is a constant, and a(r) = ξ̄(r)− γ−2Cγ,RR
2−de−γr

2/R2

. By Lemma 2.1(i),

a′(r) ≤ −cr1−d + Cγ−1CγR
−de−γr

2/R2

≤ cr1−d
(
−1 + Cγ−1( rR )

d
)
< 0

for r ∈ [R/2 − 2, R] if γ is chosen to be sufficiently large. Hence, `2 − `3 is radially
decreasing in BR \ BR/2−2. Item (d) then follows from the fact that `2 = `3 on ∂BR/2.
Item (e) is a consequence of (2.4) in Lemma 2.2.

Proof of the lower bound in Theorem 1.11: It suffices to show that, for x ∈ BR,

GωR(x) & Rd−2−2θ
0 (U(|x|+ 1)− U(R+ 1)). (2.15)

Recall U(r) in (1.17). Indeed, (2.15) is equivalent to the lower bound of Theorem 1.11
when x ∈ BR−1. When x ∈ BR \ BR−1, R ≥ 2, taking y ∈ BR with |y| ≤ |x| − 1 and
|x− y|1 ≤ 2d, by the assumption (A2), inequality (2.15) yields

GR(x) ≥ Pωx (X|x−y|1 = y)GR(y)

& Rd−2−2θ
0 (U(|x|)− U(R+ 1))

& Rd−2−2θ
0 (U(|x|+ 1)− U(R+ 2)).

Our proof of (2.15) consists of several steps. Let C0 be as in Lemma 2.5 and recall
τ = τR in (1.15).

When R ∈ (1, 2C0θ
2), by (2.3), taking A = A(κ) ≥ 1 sufficiently large,

Lω[GR − (e−A|x|2 − e−AR
2

)] ≤ 0 in BR.

Since GR = 0 ≥ (e−A|x|2 − e−AR
2

) on ∂BR, by the maximum principle, we have GR ≥
e−A|x|2 − e−AR

2

in BR. Thus, using the inequality ea ≥ 1+ a for a ≥ 0, we get, for x ∈ BR,
(Note that R � 1 in this case.)

GR ≥ e−AR
2
(
eA(R2−|x|2) − 1

)
≥ e−AR

2

(R2 − |x|2) & R− |x|

By the fact a ≥ log(1 + a), a ≥ 0, we have R− |x| & log R+1
|x|+1 . Moreover, since R � 1, for

d ≥ 3, we also have R− |x| & (|x|+ 1)2−d − (R+ 1)2−d. Thus (2.15) holds for this case.
When R ≥ 2C0θ

2, by assumption (A2), for x ∈ BR and any y ∈ BC0θ2 ,

GR(x) ≥
∞∑
i=0

P xω (Xi = y, i < τR)P
y
ω(y /∈ {X1, . . . , X|y|1}, X|y|1 = 0)

≥ GR(x, y)κ
|y|1 & GR(x, y),

and so (Recall GR(·, ·) in Definition 1.10.)

GR(x) & GR(x,BC0θ2) =: HR(x), x ∈ BR. (2.16)

Thus it suffices to obtain the corresponding lower bound for HR defined above.
When R ∈ (2C0θ

2, 4R0], since (by Lemma 2.5) Lω(HR− η) ≤ 0 in BR, by the maximum
principle, we have HR ≥ η − η̄(R) in BR. Notice that

η̄(r1)− η̄(r2) & Rd−2−2θ
0 (U(r1 + 1)− U(r2 + 1)), ∀r1 < r2 ≤ 4R0. (2.17)
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Indeed, for d = 2,

η̄(r1)− η̄(r2) ≥
[(

1+r21
1+r22

)−θ
− 1

]
(1 + r22)

−θ

≥ CR−2θ
0 log

1+r22
1+r21

≥ CR−2θ
0 log 1+r2

1+r1
,

where we used the fact a ≥ log(1 + a) for a ≥ 0 in the second inequality. For d ≥ 3,
recalling that θ ≥ d/2 in (2.14),

η̄(r1)− η̄(r2) = (1 + r21)
−θ − (1 + r22)

−θ

≥ (1 + r22)
d/2−1−θ[(1 + r21)

1−d/2 − (1 + r22)
1−d/2]

& Rd−2−2θ
0 [(1 + r1)

2−d − (1 + r2)
2−d]

Hence, we obtain HR & Rd−2−2θ
0 (U(|x|+ 1)− U(R+ 1)) for this case.

It remains to consider the case R ≥ 4R0. To this end, we will prove

(GR
(2.16)

& )HR ≥ ` in B̄R. (2.18)

Assume by contradiction that (2.18) fails, i.e., maxB̄R
(` − HR) > 0. By Lemma 2.7(a),

maxB̄R
(` − HR) is achieved outside of BR0

. Further, note that (` − HR)|∂BR
≤ 0. By

Lemma 2.7 (e), (d), and the maximum principle,

max
B̄R\BR/2

(`−HR) ≤ max
∂(BR\BR/2)

(`3 −HR) ≤ 0 ∨ max
BR/2\BR0

(`−HR).

Hence, if maxB̄R
(`−HR) > 0, then there exists x0 ∈ BR/2 \BR0 such that

(`−HR)(x0) = max
B̄R

(`−HR).

Since x0 ∈ BR/2 \BR0 , by Lemma 2.7(c), (d),

(`2 −HR)(x0) ≥ max
B̄|x0|/2(x0)

(`2 −HR),

which is equivalent to

(Rd−2−2θ
0 ξ −HR)(x0) ≥ max

B̄|x0|/2(x0)
(Rd−2−2θ

0 ξ −HR).

Without loss of generality, assume ā = I, and set, for y ∈ Rd \ {0},

ξ̃(y) := ξ(y)− c|x0|−(2+δ)|ξ(x0)||y − x0|2,

where c > 0 is chosen so that (Lemma 2.1(ii)) −∆ξ̃ ≤ 0 for |y| ≥ C. Then

(Rd−2−2θ
0 ξ̃ −HR)(x0) ≥ max

∂B|x0|/2(x0)
(Rd−2−2θ

0 ξ̃ −HR) + cRd−2−2θ
0 |x0|−δ|ξ(x0)|. (2.19)

Next, let g(x) = ξ̃(x0 +
|x0|
2 x), and let v be the solution of{

Lωv(x) = 0 x ∈ B|x0|/2(x0)

v(x) = Rd−2−2θ
0 g( x−x0

|x−x0| ) x ∈ ∂B|x0|/2(x0).

Note that v is close to Rd−2−2θ
0 ξ̃ on ∂B|x0|/2(x0) in the sense that

∣∣∣g( x−x0

|x−x0| ) − ξ̃(x)
∣∣∣≤

C|x0|−1|ξ(x0)| for x ∈ ∂B|x0|/2(x0). Comparing the Lω-harmonic functions v and HR in
B̄|x0|/2(x0) via the maximum principle, we have, for x ∈ B|x0|/2(x0),

HR(x) + max
∂B|x0|/2(x0)

(Rd−2−2θ
0 ξ̃ −HR) ≥ v(x)− cRd−2−2θ

0 |x0|−1|ξ(x0)|. (2.20)
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By Proposition C, for x ∈ B|x0|/2(x0),

v(x) ≥ v̄( x−x0

|x0|/2 )−CR
d−2−2θ
0 |x0|−β [g]C0,1(∂B1) ≥ v̄( x−x0

|x0|/2 )−CR
d−2−2θ
0 |x0|−β |ξ(x0)|, (2.21)

where v̄ solves {
tr(āD2v̄) = ∆v̄ = 0 x ∈ B1

v̄(x) = Rd−2−2θ
0 g(x) x ∈ ∂B1.

Furthermore, using the fact that ∆g(x) = |x0|2∆ξ̃(x0 + |x0|
2 x) ≥ 0 for x ∈ B1, we get

v̄ ≥ Rd−2−2θ
0 g in B1. Therefore, by (2.20), (2.21), for x ∈ B|x0|/2(x0),

Rd−2−2θ
0 g( x−x0

|x0|/2 )−HR(x) ≤ max
∂B|x0|/2(x0)

(Rd−2−2θ
0 ξ̃ −HR) + CRd−2−2θ

0 |x0|−β |ξ(x0)|.

Noting that g( x−x0

|x0|/2 ) = ξ̃(x), the above inequality contradicts (2.19) since |x0| > R0 ≥ K,
where K is chosen to be sufficiently large. Inequality (2.18) is proved.

When x ∈ BR/2 \BR0
, we have GR

(2.18)

& `2, and, by Lemma 2.1(i),

`2 ≥ Rd−2−2θ
0 [ξ̄(|x|)− ξ̄(R)]

& Rd−2−2θ
0

∫ R

|x|
r1−d dr

& Rd−2−2θ
0 (U(|x|+ 1)− U(R+ 1)). (2.22)

When x ∈ BR0
,

GR
(2.18)

& `1 = Exω[`2(Xs0) + η(x)− η(Xs0)]

(2.22),(2.17)

& Rd−2−2θ
0 Exω [U(|Xs0 |+ 1)− U(R+ 1) + U(|x|+ 1)− U(|Xs0 |+ 1)]

= Rd−2−2θ
0 [U(|x|+ 1)− U(R+ 1)].

Finally, when x ∈ BR \BR/2, using the inequality ea ≥ 1 + a for a ≥ 0,

GR
(2.18)

& `3 & Rd−2−2θ
0 R2−d

(
eγ(1−|x|2/R2) − 1

)
& Rd−2−2θ

0 R2−d(1− |x|2
R2 ) & Rd−2−2θ

0 R2−d(1− |x|
R ).

For d = 2, note that 1− |x|
R � R

|x| − 1 ≥ log R
|x| . For d = 3, clearly

R2−d(1− |x|
R ) & |x|2−d(1− ( |x|R )d−2).

Our proof is complete.

3 Heat kernel bounds and consequences

3.1 Integrability of ρ and the heat kernel bounds

Using bounds of the Green functions, we will obtain the exponential integrability
(under P) of the Radon-Nikodym derivative ρ(ω) (defined in (1.5)) and of the heat kernel
of the RWRE.

The goal of this section is to prove Theorem 1.5. Recall the continuous-time RWRE in
Definition 1.2 and its transition kernel pt(x, y). We remark that for the time continuous
random walk (Yt), setting

τY = τYR := inf{t ≥ 0 : Yt /∈ BR}, (3.1)
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the corresponding Green functions of (Yt) can be defined similarly as∫ ∞

0

pωt (x, S) dt, d ≥ 3, and Exω

[∫ τY

0

1Yt∈S dt

]
, d ≥ 2,

and they have the same values as G(x, S) and GR(x, S), respectively. Thus we do not
need to distinguish notations in discrete and continuous time cases and use G(x, S) and
GR(x, S) to denote Green’s functions in both settings.

Corollary 3.1. Assume (A1), (A2) and d = 2. For any ε > 0, there exists a random
variable H = H (ω, d, κ, ε) > 0 with E[exp(cH d−ε)] <∞ such that P-almost surely, for
R > 0, ∫ R2

0

pωt (x, 0) dt . H (1 + log R+1
|x|+1 ), ∀x ∈ BR.

Proof. We only consider R ≥ 4, because for R < 4 and x ∈ BR we can simply use the
statement for R = 4 to get an upper bound H (1 + log 5

|x|+1 ) . H .

Let Rk := 2k−1R, and define recursively T0 = 0,

Tk := min{t ≥ Tk−1 : Yt /∈ BRk
}, k ∈ N.

Set NR = max{n ≥ 0 : Tn ≤ R2}. Then, using the strong Markov property, a.s.,

Exω

[∫ R2

0

1Yt=0 dt

]
≤ Exω

[ ∞∑
k=1

∫ Tk

Tk−1

1{Yt=0,Tk−1≤R2} dt

]

≤
∞∑
k=1

Exω
[
GωRk

(YTk−1
)1{Tk−1≤R2}

]
. GωR(x) + H

∞∑
k=2

P xω (Tk−1 ≤ R2),

where we used (by Theorem 1.11) the fact GωRk
(YTk−1

) . H , k ≥ 2, in the last inequality.
Note that (Yt) is a martingale. By Hoeffding’s inequality, for k ≥ 1,

P xω (Tk ≤ R2) ≤ P xω

(
sup
t≤R2

|Yt| ≥ Rk

)
≤ Ce−cR

2
k/R

2

≤ C exp(−c4k).

The conclusion follows.

Proof of Theorem 1.5: First, we will show the upper bounds in (a) and (b). To this end,
for r ≥ 1, we take x0 ∈ ∂Br. We claim that

|x0|2−dH d−1 &
∫ r2

r2/2

pωt (x0, 0) dt & r2
ρω(0)

ρω(Br)
. (3.2)

Indeed, the lower bound of (3.2) follows from the volume doubling property Theorem B(ii)
and integrating the lower bound of (1.7). For d = 2, the upper bound in (3.2) is a
consequence of Corollary 3.1. When d ≥ 3, by the upper bound in Theorem 1.11,∫ r2

r2/2

pωt (x0, 0) dt ≤ Gω(x0) = lim
R→∞

GωR(x0) . |x0|2−dH d−1,

which gives the upper bound in (3.2).
Note that |x0| � r. The upper bound in (b) is proved. The upper bound in (a) then

follows from taking r → ∞ and the ergodic theorem.
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To obtain the lower bound in (b), for r ≥ 5. Recall τr in (1.15) and Gr(·, ·) in Defini-
tion 1.10. For any fixed y0 ∈ ∂Br/2, the function v(x) = Gr(y0, x)/ρω(x) solves the adjoint
equation

L∗
ωv(x) :=

∑
y

ω∗(x, y)[v(y)− v(x)] = 0, x ∈ Br/2, (3.3)

where
ω∗(x, y) := ρω(y)ω(y, x)/ρω(x). (3.4)

Here, we used the facts that
∑
y ρω(y)ω(y, x) = ρω(x) and

∑
y Gr(y0, y)ω(y, x) = Gr(y0, x).

By the Harnack inequality for the adjoint operator [24, Theorem 6], we have v(0) � v(x)

for all x ∈ Br/4. Hence

Gr(y0, 0)
ρω(Br/4)

ρω(0)
� Gr(y0, Br/4). (3.5)

Moreover, since (|Xn|2 − n) is a martingale under Pω, by the optional stopping lemma
we get Ey0ω [|Xτr |2 − τr] = |y0|2 ≥ 0, and so

Gr(y0, Br/4) ≤ Ey0ω [τr] ≤ Ey0ω [|Xτr |2] ≤ Cr2.

The above inequality, together with (3.5) and Theorem 1.11, yields

ρω(0)

ρω(Br/4)
&

Gr(y0, 0)

Gr(y0, Br/4)
&

H −sr2−d

r2
& H −sr−d.

The lower bound in Theorem 1.5(b) follows. Letting r → ∞, we also get the lower bound
in (a).

3.2 The Green functions on the whole space: proof of Corollary 1.12

Proof of Corollary 1.12. The statement for d ≥ 3 is an immediate consequence of Theo-
rem 1.11. Thus it remains to prove the statement for d = 2 and |x| ≥ 1.

To show the bounds for d = 2, recall that Aω(x) is ω-harmonic on Zd \ {0}. Applying
the Harnack inequality Theorem A.1 (Actually we only need the elliptic version, e.g.,
[40, 43]) to a constant number of balls centered on ∂B|x|, we get

Aω(x) � Aω(y) for all y ∈ ∂B|x|.

In particular, letting τr = inf{t : Yt /∈ Br} be the exit time from Br, we have

Aω(x) � E0
ω[A(Yτ|x|)].

We claim that E0
ω[A(YτR)] = GωR(0) for R > 0. Indeed, the function

v(y) := Eyω
[ ∫ ∞

0

pωt (Y0, 0)− pωt (YτR , 0) dt
]

satisfies Lωv(y) = 1y=0 and v|∂BR
= 0. Hence, by (2.1), we have

v(y) = GωR(y) for y ∈ BR.

In particular, v(0) = GωR(0), and the claim is proved. Therefore,

Aω(x) � E0
ω[A(Yτ|x|)] = Gω|x|(0)

Therefore, the upper and lower bounds of Aω(x) follow from the inequality

H −s log(1 + |x|) . Gω|x|(0) . H log(1 + |x|)

due to Theorem 1.11. Our proof is complete.
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3.3 Optimal semigroup decay for d ≥ 3 in i.i.d. environments: proof of Theo-
rem 1.6

The Efron-Stein inequality (3.8) of Boucheron, Bousquet, and Massart [14] for i.i.d.
ensembles will be used in our derivation of the variance decay for the semi-group. Notice
that we assume (A3) throughout this subsection.

Let ω′(x), x ∈ Zd, be independent copies of ω(x), x ∈ Zd. For any y ∈ Zd, let ω′
y ∈ Ω

be the environment such that

ω′
y(x) =

{
ω(x) if x 6= y,

ω′(y) if x = y.

That is, ω′
y is a modification of ω only at location y. For any measurable function Z of the

environment ω, we write, for y ∈ Zd,

Z ′
y = Z(ω′

y), ∂′yZ(ω) = Z ′
y − Z, (3.6)

and set

V (Z) =
∑
y∈Zd

(∂′yZ)
2. (3.7)

By an Lp version of Efron-Stein inequality [14, Theorem 3], for q ≥ 2,

E[|Z − EZ|q] ≤ Cqq/2E[V q/2]. (3.8)

Following the strategy of [31], our proof of the diffusive decay of the semi-group {Pt}
will make use of the Efron-Stein type inequality (3.8) and the Duhamel representation
formula (3.11) for the vertical derivative. Let us reemphasize that, in the non-divergence
form setting, there is no deterministic Gaussian bounds for the heat kernel, and the
steady state Q of the environment process (ω̄t)t≥0 is not the same as the original measure
P. To overcome these difficulties, we employ crucially the heat kernel estimates and
the (negative and positive) moment bounds of the Radon-Nikodym derivative dP

dQ in
Theorem 1.5.

For any ζ ∈ L1(Ω), we write

v(t) := Ptζ(ω).

Then, its stationary extension v̄(t, x) solves the parabolic equation{
∂tv̄(t, x)− Lω v̄(t, x) = g(t, x) t ≥ 0, x ∈ Zd,
v̄(0, x) = g0(x) x ∈ Zd, (3.9)

with g(t, x) = 0 and g0(x) = ζ̄(x;ω). In general, the solution of (3.9) can be represented
by Duhamel’s formula

v̄(t, x) =
∑
z

pωt (x, z)g0(z) +

∫ t

0

pωt−s(x, z)g(s, z) ds. (3.10)

To apply (3.8), recall notations Z ′
y and ∂′yZ in (3.6). By enlarging the probability

space, we still use P to denote the joint law of (ω, ω′). For y ∈ Zd, applying ∂′y to (3.9),
we get that ∂′y v̄ satisfies{

∂t(∂
′
y v̄)(t, x)− Lω(∂

′
y v̄)(t, x) = (∂′yωi(x))∇2

i v̄
′
y(t, x) t ≥ 0, x ∈ Zd,

(∂′y v̄)(0, x) = ∂′y ζ̄(x), x ∈ Zd.
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Here we used the convention of summation over repeated integer indices. Hence, by
formula (3.10), ∂′y v̄ has the representation

∂′y v̄(t, x) =
∑
z

[
pωt (x, z)∂

′
y ζ̄(z) +

d∑
i=1

∫ t

0

pωt−s(x, z)(∂
′
yωi(z))∇2

i v̄
′
y(s, z) ds

]

=
∑

z∈y+Supp(ζ)

pωt (x, z)∂
′
y ζ̄(z) +

d∑
i=1

∫ t

0

pωt−s(x, y)(∂
′
yωi(y))∇2

i v̄
′
y(s, y) ds, (3.11)

where in the last equality we used the fact ∂′yωi(z) = 0 for y 6= z, and that ∂′y ζ̄(z) = 0 for
z /∈ y + Supp(ζ).

Proof of Theorem 1.6: Recall the notation V (·) in (3.7) and that we assume (A3). We
write

K(y, s) = K(y, s;ω, ω′) :=

d∑
i=1

(∂′yωi(y))∇2
i v̄

′
y(s, y).

We also write Hz := H (θzω) and S := Supp(ζ). Without loss of generality, assume
EQζ = 0. Using (3.11), for any p > 1,

‖V (v(t))‖p = ‖
∑
y

(∂′y v̄(t, 0))
2‖p

. ‖
∑
y

(∑
z∈S

pωt (0, z + y)

)2

‖p + ‖
∑
y

(∫ t

0

pωt−s(0, y)K(y, s) ds

)2

‖p

. (#S)2‖
∑
y

pωt (0, y)
2‖p +

∫ t

0

‖
∑
y

pωt−s(0, y)
2K(y, s)2‖1/2p ds

=: (#S)2I + II2, (3.12)

where #S denote the cardinality of S, and in the last inequality we applied the Cauchy-
Schwarz inequality and Minkowski’s integral inequality to the two norms respectively.
Then, by Theorem 1.5(c),

I = ‖
∑
y

pωt (0, y)
2‖p . (1 + t)−d‖

∑
z

H 2(d−1)
z e−ch(|z|,t)‖p

. (1 + t)−d
∑
z

e−ch(|z|,t)‖H 2(d−1)
z ‖p

. (1 + t)−d/2‖H 2(d−1)p‖1/p1 , (3.13)

where in the last inequality we used the translation invariance of P to get ‖H 2(d−1)
z ‖p =

‖H 2(d−1)‖p = ‖H 2(d−1)p‖1/p1 .
Further, using Theorem 1.5(c) again,

II .
∫ t

0

(1 + t− s)−d/2

(∑
y

e−ch(|y|,t−s)‖H 2(d−1)
y K(y, s)2‖p

)1/2

ds

.
∫ t

0

(1 + t− s)−d/4‖H 2(d−1)pK(0, s)2‖1/(2p)1 ds (3.14)

where in the last inequality we used the translation-invariance of P and the fact that
‖v̄‖∞ . 1.
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Let p′ > 1 denote the Hölder conjugate of p > 1. Since E[exp(cH d−ε)] < ∞ for all
ε > 0, we know that E[H k] <∞ for all k > 0. In particular, ‖H 2(d−1)p‖p′ <∞. Hence

‖H 2(d−1)pK(0, s)2‖1 ≤ ‖H 2(d−1)p‖p′‖K(0, s)2‖p

≤ Cp

d∑
i=1

‖∇2
i v̄(s, 0)‖

2
2p

≤ Cp
∑
e:|e|=1

‖|v̄(s, e)− v̄(s, 0)|2/p‖1/p1

Hölder
≤ Cp‖ρ−1/p

ω ‖1/pp′

∑
e:|e|=1

‖ρω|v̄(s, e)− v̄(s, 0)|2‖1/p
2

1 (3.15)

where in the third inequality we used the fact ‖v̄‖∞ ≤ 1. Then, setting

u(t) := VarQ(v(t)),

by (3.15), Theorem 1.5(b) and Lemma 3.2, we obtain

‖H 2(d−1)pK(0, s)2‖1 ≤ Cp
∑
e

EQ[(v̄(s, e)− v̄(s, 0))2]1/p
2

≤ Cp(−
d

dt
u)1/p

2

. (3.16)

This inequality, together with (3.12),(3.13), (3.14), implies

‖V (v(t))‖1/2p .p (1 + t)−d/4 +

∫ t

0

(1 + t− s)−d/4(− d

dt
u)1/(2p

3) ds,

where .p means that the multiplicative constant depends on (p, d, κ).
Furthermore, by Hölder’s inequality and Theorem 1.5(a),

u(t) ≤ EQ[(v(t)− Ev(t))2] ≤ ‖ρω‖p′‖(v(t)− Ev(t))
2‖p .p ‖V (v(t))‖p

where we applied (3.8) in the last inequality.
Therefore, we conclude that, for any p > 1,

u(t)1/2 .p (1 + t)−d/4 +

∫ t

0

(1 + t− s)−d/4(− d
dtu(s))

1/(2p3) ds.

When d ≥ 3, we can take p > 1 sufficiently close to 1 and apply [2, Lemma 3.5]) (Under
the notation of [2], we apply it to the case γ = d/4 and δ = 1/p3.) to obtain

VarQ(v(t)) = u(t) . (1 + t)−d/2.

Thus, (1.12) is proved. By Hölder’s inequality,

‖v(t)‖1 ≤ ‖ρ−1
ω ‖1/21 ‖ρωv(t)2‖1/21 ≤ Cu(t)1/2 ≤ C(1 + t)−d/4.

Then, by the triangle inequality, we get EQ[(v(t) − Ev(t))2] . (1 + t)−d/2. By Hölder’s
inequality, for any q > 1,

‖|v(t)− Ev(t)|2/q‖1 ≤ ‖ρ−1/q
ω ‖q′‖ρ

1/q|v(t)− Ev(t)|2/q‖q .q EQ[(v(t)− Ev(t))
2]1/q.

Display (1.13) is proved.

Lemma 3.2. For any bounded measurable function ζ ∈ RΩ,

d

dt
VarQ(v(t)) . −

∑
e:|e|=1

EQ
[
(v̄(t, e)− v̄(t, 0))2

]
.
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Proof. Without loss of generality, assume E[v(t)] = 0. In the following, Lω only acts on
the spatial variables. Then

d

dt
EQ[v(t)

2] = 2EQ[v(t)Lω v̄(t, 0)]

= EQ

Lω(v̄(t, 0)2)− ∑
e:|e|=1

ω(0, e)(v̄(t, e)− v̄(t, 0))2


= −

∑
e:|e|=1

EQ
[
ω(0, e)(v̄(t, e)− v̄(t, 0))2

]
where in the last equality we used the fact that (since (ω̄t)t≥0 is stationary under Q×Pω)
for any f ∈ L1(Q), EQ[Lω f̄(0;ω)] = 0. The lemma follows by the uniform ellipticity
assumption.

3.4 Proof of Corollary 1.8 in i.i.d. environments: Existence of a stationary
corrector for d ≥ 5

Proof of Corollary 1.8: Without loss of generality, assume EQ[ζ] = 0. By Theorem 1.6,
since

∫∞
0

(1 + t)−d/4 dt <∞ when d ≥ 5, the limit

φ(ω) = lim
t→∞

φt(ω) := − lim
t→∞

∫ t

0

(Psζ) ds (3.17)

exists in Lp(P) for any p ∈ (0, 2). By (3.9), φ̄t(x) satisfies

Lωφ̄t(x) = ζ(θxω)− Ptζ(θxω), x ∈ Zd.

Note that by Theorem 1.6, limt→∞ Ptζ = 0 in Lp(P), ∀p ∈ (0, 2). Therefore, taking Lp(P)
limits as t→ ∞, we conclude that φ̄ satisfies Lωφ̄(x) = ζ̄(x) P-a.s., x ∈ Zd.

A Appendix

Define the parabolic operator Lω as

Lωu(x, t) =
∑
y:y∼x

ω(x, y)[u(y, t)− u(x, t)]− ∂tu(x, t)

for every function u : Zd ×R→ R which is differentiable in t.

Theorem A.1. ([24, Proposition 5]) Assume ω
trω > 2κI for some κ > 0 and R > 0. Any

non-negative function u with Lωu = 0 in B2R × (0, 4R2) satisfies

sup
BR×(R2,2R2)

u ≤ C inf
BR×(3R2,4R2)

u.

The following Hölder estimate is a standard consequence of the Harnack inequality
Theorem A.1.

Corollary A.2. Assume ω
trω > 2κI for some κ > 0 and (x0, t0) ∈ Zd ×R. There exists γ =

γ(d, κ) ∈ (0, 1) such that any non-negative function uwith Lωu = 0 inBR(x0)×(t0−R2, t0),
R > 0, satisfies

|u(x̂)− u(ŷ)| ≤ C
( r
R

)γ
sup

BR(x0)×(t0−R2,t0)

u

for all x̂, ŷ ∈ Br(x0)× (t0 − r2, t0) and r ∈ (0, R).
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A.1 Proof of Proposition C

Our proof of Proposition C follows similar lines as the proof of [32, Theorem 1.5],
with necessary modifications to address the fact that g and f have less regularity than
the functions in [32, Theorem 1.5].

Before giving a proof, recall that by [32, Proposition 2.1], for any p ∈ (0, d), there
exists δp depending on (d, κ, p) such that for any R > 0, the solution φ : B̄R → R of{

Lωφ = ā− a in BR,
φ = 0 on ∂BR

(A.1)

satisfies
P(max

BR

|φ| ≥ CR2−δp) ≤ C exp(−cRp). (A.2)

Set δ := δ1. For q ∈ (0, d), let γ = γ(d, κ, q) be the constant

γ = min

{
d− q

d(1 + δ)
,
1

2

}
(A.3)

and set
R0 := Rγ , σ = min{n ≥ 0 : Xn −X0 /∈ BR0

}.

Let
ω0 = ω

tr(ω) , ψ0 = ψ0(ω) =
ψ

tr(ω) .

Following [32, Definition 4.1], we define bad points.

Definition A.1. Let δ = δ(d, κ) be as above. We say that a point x is good (and otherwise
bad) if for any ζ(ω) ∈ {ψ0, ω0},∣∣∣Exω[ σ−1∑

i=0

(EQ[ζ]− ζ(ω̄i))
]∣∣∣≤ C‖ζ‖∞R

2−δ
0 .

Note that by (A.2) and Chebyshev’s inequality, P(x is bad) . e−CR0R2−δ
0 . e−cR0 .

We will give first the proof for the special case g ∈ C2,α(∂B1). It is a small modification
of the proof of [32, Theorem 1.5].

Proof of Proposition C for the case f ∈ Cα(B1), g ∈ C2,α(∂B1) and y=0: Note that if g ∈
C2,α(∂B1), it can be extended to be a function g̃ ∈ C2,α(B2) such that

|g̃|2,α;B2 ≤ C|g|2,α;∂B1
.

By [30, Theorem 6.6],

|ū|2,α,B1
. |f |0,α;B1

‖ ψ
tr(ω)‖∞ + |g|2,α;∂B1

=: A (A.4)

Step 1. Set ūR(x) = ū(x/R) for x ∈ B̄R. We will show that in BR, ūR is very close to the
solution û : B̄R → R of{

Lωû = 1
2 tr[ω0D

2ūR] in BR
û = g( x|x| ) on ∂BR.

To this end, define u+, u− by u±(x) = g̃( x
R+1 )± CA (R+1)2−|x|2

R2 , x ∈ B̄R+1. Here
A is as defined in (A.4). Then, for x ∈ BR+1, taking C large enough,

tr[āD2(u+ − ūR+1)] ≤
c

R2
(|g|2,α;B1 + |f |0;B1 − CA) ≤ 0,

EJP 29 (2024), paper 194.
Page 24/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1251
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic integrability of heat-kernels for RWBRE

and similarly tr[ā(u− − ūR+1)] ≥ 0. The comparison principle then yields

u− ≤ ūR+1 ≤ u+ in BR+1.

In particular, for x ∈ ∂BR, |ūR+1(x)− g̃( x
R+1 )| . A (R+1)2−|x|2

R2 . A
R and so

max
∂BR

|û− ūR+1| = max
x∈∂BR

|g( x|x| )− ūR+1(x)| .
A

R
. (A.5)

Moreover, noting that D2ūR(x) = R−2D2ū( xR ), in BR,

|Lω(û− ūR+1)| = |tr[ω0(D
2ūR −∇2ūR+1)]|

≤ |tr[ω0(D
2ūR −D2ūR+1)]|+ |tr[ω0(D

2ūR+1 −∇2ūR+1)]|

. R−2−α|ū|2,α;B̄1

(A.4)

. AR−2−α. (A.6)

Hence, by the ABP maximum principle [32, Lemmas 2.3 and 2.4], (A.5) and (A.6)
imply maxBR

|û− ūR+1| . AR−α, and so, by (A.4),

max
BR

|û− ūR| . AR−α.

Step 2. Let v = u− û. Then v solves{
Lωv = 1

2 tr[(ā− ω0)D
2ūR] +

1
R2 f(

x
R )(ψ0 − ψ̄) in BR

v = 0 on ∂BR.

Note that, for x ∈ BR−R0 and y ∈ BR0(x),

|D2ūR(x)−D2ūR(y)| ≤ R−2(R0

R )α[ū]2,α;B1

(A.4)

. AR−2(R0

R )α,

|f( xR )− f( yR )| ≤
(
R0

R

)α
[f ]α;B1 .

Hence, if x ∈ BR−R0 is a good point, setting

ω̄i0 := ω0(Xi) and ψi0 := ψ0(θXi
ω),

and noting that Exω[σ] ≤ (R0 + 1)2, we have

Exω[v(Xσ)− v(x)]

= Exω

[
σ−1∑
i=0

1
2 tr[(ω̄

i
0 − ā)D2ūR(Xi)] +

1
R2 f(

Xi

R )(ψ̄ − ψi0)

]

. tr

[
Exω[

σ−1∑
i=0

(ω̄i0 − ā)]D2ūR(x)

]
+ 1

R2 f(
x
R )E

x
ω[

σ−1∑
i=0

(ψ̄ − ψi0)] +A
Rα

0

R2+αE
x
ω[σ]

. 1
R2

∣∣∣Exω[σ−1∑
i=0

(ω̄i0 − ā)]
∣∣∣|ū|2;B1

+ 1
R2 |f |0;B1

∣∣∣Exω[σ−1∑
i=0

(ψ̄ − ψi0)]
∣∣∣+A (R0

R

)2+α
. AR−2R2−δ

0 +A
(
R0

R

)2+α
. AR−2−αδγR2

0.

Let τR = min{n ≥ 0 : Xn /∈ BR} and set

w(x) = v(x) + C1AR
−2−αδγExω[τR].

Then, for any good point x ∈ BR−R0 , by choosing C1 big enough,

Exω[w(Xσ)− w(x)] = Exω[v(Xσ)− v(x)]− C1AR
−2−αδγExω[σ] < 0,
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where we used the fact that Exω[σ] ≥ R2
0. This implies

∂w(x;BR) = ∅ for any good point x ∈ BR−R0
(A.7)

where ∂w(x;BR) denote the sub-differential set of w at x with respect to BR.
For the definition of the sub-differential set and the ABP inequality, we refer to
[32, Definition 2.2, Lemmas 2.3 and 2.4]. Next, we will apply the ABP inequality
to bound |v| from the above.

By [32, Lemma 2.4], since

Lωw = Lωv − C1AR
−2−αδγ . AR−2,

we know that |∂w(x;BR)| . AdR−2d for x ∈ BR. Let

BR = BR(ω, γ) := #bad points in BR−R0 ,

where #S denotes the cardinality of a set S. Display (A.7) then yields

|∂w(BR)| . [BR +#(BR \BR−R0
)]AdR−2d . (BR +Rd−1+γ)AdR−2d.

Hence, by the ABP inequality [32, Lemma 2.4],

min
BR

w ≥ −CR|∂w(BR)|1/d & −A(R−1B
1/d
R +R−(1−γ)/d).

Therefore, noting that maxx∈BR
Exω[τR] ≤ (R+ 1)2 and choosing δ < 1/d,

min
BR

v ≥ min
BR

w − CAR−αδγ & −A(R−1B
1/d
R +R−αγδ).

Similar bound for minBR
(−v) can be obtained by substituting f, g by −f,−g in

the problem. Therefore

max
BR

|v| . A(R−1B
1/d
R +R−αγδ).

Step 3. Combining results in Steps 1 and 2, we get

max
BR

|u− ūR| . A(R−1B
1/d
R +R−αγδ).

It is shown in Step 6 of [32, Page 24, Proof of Theorem 1.5] that, with

X = X (ω) := max
R≥1

R−γB
1/d
R , (A.8)

we have E[exp(cX d)] <∞. Therefore, recalling the values of γ,A in (A.3), (A.4),
we conclude that

max
BR

|u− ūR| . R−αγδ(1 +R−q/dX )(|f |0,α;B1
‖ψ0‖∞ + |g|2,α;∂B1

). (A.9)

In what follows, we will relax the regularity of g to be C0,α(∂B1).

Proof of Proposition C. First, we consider the case y = 0. The function g ∈ C0,α(∂B1)

can be extended into Rd so that g ∈ C0,α(Rd) and

|g|0,α;B2
≤ C|g|0,α;∂B1

.
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We can further obtain a smooth perturbation of it. To this end, let ρ ∈ C∞(Rd) be a
mollifier supported on B1 with

∫
B1
ρdx = 1. For h ∈ (0, 1), set ρh(x) := h−dρ(xh ), and let

gh = ρh ∗ g. That is, gh(x) =
∫
Rd ρh(x− z)g(z) dz. Then gh satisfies{

|g − gh|0;∂B1
≤ Chα|g|0,α;∂B1

|gh|2,α;∂B1
≤ Ch−2|g|0,α;∂B1

.

Next, for h ∈ (0, 1), let v : B̄R → R and v̄ : B̄1 → R be solutions of{
1
2 tr(ω∇

2v) = 1
R2 f(

x
R )ψ(θxω) in BR

v(x) = gh(
x
R ) for x ∈ ∂BR

and {
tr(āD2v̄) = fψ̄ in B1

v̄ = gh on ∂B1.

Then, maxB1
|ū− v̄| ≤ max∂B1

|g − gh| ≤ hα|g|0,α;∂B1
, and

max
BR

|u− v| ≤ max
∂BR

|g( xR )− gh(
x
R )| ≤ Chα|g|0,α;∂B1

.

Moreover, by (A.9), with A1 = ‖f‖C0,α(B1)
‖ ψ
tr(ω)‖∞ + [g]C0,α(∂B1) as in Proposition C,

max
x∈BR

|v(x)− v̄(
x

R
)| . R−αγδ(1 +R−q/dX )(|f |0,α;B1‖

ψ
tr(ω)‖∞ + |gh|2,α;∂B1)

. A1h
−2R−αγδ(1 +R−q/dX ).

Notice that up to an additive constant, we may assume that inf∂B1 g = 0, so that
|g|0,α;∂B1

≤ C[g]0,α;∂B1
. Therefore, putting h = R−αγδ/3, by the triangle inequality,

max
x∈BR

|u− ū( xR )| . A1R
−αγδ/3(1 +R−q/dX ). (A.10)

We proved Proposition C for the case y = 0 with β = γδ/3.
Finally, for any y ∈ B3R, it follows from (A.10) that

max
x∈BR(y)

∣∣∣ū(x−yR )− u(x)
∣∣∣. A1R

−αβ(1 + X (θyω)R
−q/d).

Let
BR(y) = BR(θyω, γ) := #bad points in BR−R0

(y).

Observe that BR(y) ≤ B4R(0). Thus, recalling the definition of X in (A.8),

X (θyω) ≤ max
R≥1

R−γB
1/d
4R ≤ 4γX .

Our proof of Proposition C is complete.

A.2 Proofs of Lemmas 2.5 and 2.2

Proof of Lemma 2.5: By direct computation, for any i = 1, . . . , d, x ∈ Zd,

∂2i η(x) = θ(1 + |x|2)−θ−2[4(θ + 1)x2i − 2|x|2 − 2], (A.11)

|∂3i η(x)| ≤ Cθ3|x|(1 + |x|2)−θ−2.

Moreover, noting that for any y ∈ Rd and x /∈ Bθ with |y − x| ≤ 1,

|∂3i η(y)| ≤ Cθ3( 1+θθ )θ+2|x|(1 + |x|2)−θ−2 ≤ Cθ3|x|(1 + |x|2)−θ−2
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and |∇2
i η(x)− ∂2i η(x)| ≤ C supy:|y−x|≤1 |∂3i η(y)|, we have, for a sufficiently large constant

C0(κ) > 1 and x /∈ BC0θ2 ,

Lωη(x) ≥
d∑
i=1

ωi(x)

2trω(x)

[
∂2i η(x)− Cθ3|x|(1 + |x|2)−θ−2

]
(A.11)
≥ θ(1 + |x|2)−θ−2[4κ(θ + 1)|x|2 − |x|2 − 1− Cθ2|x|] > 0.

On the other hand, for x ∈ BC0θ2 , clearly Lωη(x) ≥ −η(x) ≥ −1.

The lemma is proved.

Proof of Lemma 2.2. Computations show that, for x 6= 0, i = 1, . . . , d,

∂2i e
−2α|x|/R =

(
− 2α

|x| +
2αx2

i

|x|3 +
4α2x2

i

R|x|2

)
R−1e−2α|x|/R,

∂3i e
−2α|x|/R =

(
6α

R
+

3

|x|
− 4αx2i
R|x|2

− 4α2x2i
R2|x|

− 3x2i
|x|3

)
2αxi
R|x|2

e−2α|x|/R.

Note that, for i = 1, . . . , d, x ∈ BR \BR/2,∣∣∣(∂2i − 1
2∇

2
i )e

−2α|x|/R
∣∣∣≤ C sup

y:|y−x|≤1

∣∣∣∂3i e−2α|y|/R
∣∣∣≤ Cα

R3
e−2α|x|/R,

and so ∣∣∣ d∑
i=1

ω(x, x+ ei)(∂
2
i − 1

2∇
2
i )e

−2α|x|/R
∣∣∣≤ Cα

R3
e−2α|x|/R. (A.12)

Further, by taking K > 0 sufficiently large (note R ≥ K), and choosing α > 0 to be
sufficiently small, we have, for x ∈ BR \BR/2,

d∑
i=1

ω(x, x+ ei)∂
2
i e

−2α|x|/R

=

d∑
i=1

ω(x, x+ ei)
(
− 2α

|x| +
2αx2

i

|x|3 +
4α2x2

i

R|x|2

)
R−1e−2α|x|/R

≤
(
− α

|x| +
(1−2κ)α|x|2

|x|3 + 2(1−2κ)α2|x|2
R|x|2

)
R−1e−2α|x|/R

≤ C(−1 + Cα) αR2 e
−2α|x|/R ≤ −Cα

R2 e
−2α|x|/R.

This, together with (A.12), implies,

Lωe
−2α|x|/R ≤ −Cα

R e−2α|x|/R, for x ∈ BR \BR/2.

Display (2.2) is proved.
To prove (2.3), note that when x = 0, Lω(e−A|x|2) = e−A − 1 > −1. When x ∈ Z2 \ {0},

choosing A > 0 sufficiently large,

Lω(e
−A|x|2) = e−A|x|2

[
d∑
i=1

ω(x, x+ ei)(e
2Axi−A + e−2Axi−A)− 1

]
≥ e−A|x|2 [κe2A−A − 1] > 0.

Display (2.3) is proved.
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It remains to prove (2.4). Using the inequalities ea + e−a ≥ 2 + a2, ea ≥ 1 + a, we get,
by taking A sufficiently large, for x ∈ BR \BR/2,

Lω(e
−A|x|2/R2

) = e−A|x|2/R2
d∑
i=1

ω(x, x+ ei)
[
e−A(1+2xi)/R

2

+ e−A(1−2xi)/R
2

− 2
]

≥ e−A|x|2/R2
d∑
i=1

ω(x, x+ ei)
[
e−A/R

2

(2 + 4A2x2i /R
4)− 2

]
≥ A

R2 e
−A|x|2/R2

d∑
i=1

ω(x, x+ ei)
[
4Ax2

i

R2 (1− A
R2 )− 1

]
≥ A

R2 e
−A|x|2/R2

[
2κA|x|2

R2
− 1

]
> 0.

Our proof is complete.
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