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Abstract

In this paper, we study the law of the local time processes (Lx
T (X), x ∈ R) associated

to a spectrally negative Lévy process X, in the cases T = τ+a , the first passage time of
X above a > 0 and T = τ(c), the first time it accumulates c units of local time at zero.
We describe the branching like structure of local times and Poissonian constructions of
them using excursion theory. The presence of jumps for X creates a type of excursions
which can contribute simultaneously to local times of levels above and below a given
reference point. This fact introduces dependency on local times, causing them to be
non-Markovian. Nonetheless, the overshoots and undershoots of excursions will be
useful to analyze this dependency. In both cases, local times are infinitely divisible
and we give a description of the corresponding Lévy measures in terms of excursion
measures. These are hence analogues in the spectrally negative Lévy case of the first
and second Ray-Knight theorems, originally stated for the Brownian motion.
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1 Introduction

Let X = (Xt, t ≥ 0) be a real valued spectrally negative Lévy process, that is, a
stochastic process with independent and stationary increments and no positive jumps.
Denote by S = (St, t ≥ 0) its running supremum. Its Laplace transform exists, character-
izes its law and can be expressed as

E
[
eλXt

]
= etΨ(λ), t, λ ≥ 0,
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Ray-Knight theorems for SNLP

where the function Ψ is called the Laplace exponent of X. Ψ can be expressed by the
Lévy-Khintchine formula

Ψ(λ) = dλ+
1

2
Σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1{−1<x})Π(dx),

where the triplet (d,Σ,Π) consists of d,Σ ∈ R and a σ− finite measure Π over (−∞, 0)

satisfying the condition
∫

(−∞,0)
(1 ∧ x2)Π(dx) <∞. We assume w.l.o.g. that Ψ(1) = 1. We

will denote by Φ the inverse of Ψ, which is the Laplace exponent of the inverse local time
of X reflected at its running supremum process.

From now on, we consider X to be a SNLP such that:

(A) it is of unbounded variation (which is equivalent to Σ 6= 0 or
∫ 0

−1
|x|Π(dx) =∞),

and either

(B1) Xt →∞ a.s. as t→∞ (which is equivalent to the condition Ψ′(0+) > 0);

or

(B2) X oscillates as t→∞ (which is equivalent to the condition Ψ′(0+) = 0).

One can actually remove these conditions, but we will not tackle this task here. For
deeper insight in the theory of Lévy processes, we refer to [1], [12] and [20] as our
standard references.

We are interested in studying the local time process associated to X, which is here
denoted by (Lxt (X), t ≥ 0, x ∈ R). Essentially, one interprets Lxt (X) as the amount of time
spent by X at level x on the interval [0, t]. Formally, Lxt (X) is defined as the a.s. limit

Lxt (X) := lim sup
ε→0+

1

2ε

∫ t

0

1{|Xs−x|<ε}ds, x ∈ R, t ≥ 0. (1.1)

Under rather general conditions (see [1, Ch. V]), the convergence holds also in L2

and uniformly over compact sets of t. Furthermore, local times satisfy the so-called
occupation density formula, that is,∫ T

0

f(Xs)ds
a.s.
=

∫
R

f(x)LxT (X)dx,

for any f ≥ 0 measurable and bounded and stopping times T .
Our aim is to describe the local time process (LxT (X), x ∈ R), where T is a fixed

stopping time. In general, local times indexed by the spatial variable are not easy to
describe. Nonetheless, this has been a matter of research interest since early times
of the theory of stochastic processes, perhaps originated by the pioneering works of
Ray and Knight in the decade of 1960. In particular, the theory around the so-called
isomorphism theorems, has proven to be one powerful tool to study properties of local
times.

Ray and Knight completely characterized the law of the local times in the case X is a
standard Brownian motion and T is either the first time X is above a positive level a or
the first time it accumulates a certain amount of local time at zero. These results are
known as the first and second Ray-Knight theorems, respectively, and they are expressed
in terms of squared Bessel processes as follows.

Theorem 1.1 (First Ray-Knight theorem). Let X be a Brownian motion issued from zero,
a > 0 a fixed level and

τ+
a = inf{t > 0 : Xt > a}

the first passage time above a. Then,
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Ray-Knight theorems for SNLP

i) the process (La−z
τ+
a

(X), z ∈ [0, a]) has the same law as a squared Bessel process of
dimension 2 started from 0;

ii) the process (La−z
τ+
a

(X), z ≥ a) has the same law as a squared Bessel process of

dimension 0, issued from L0
τ+
a

(X).

Moreover, conditionally on L0
τ+
a

(X) the two parts are independent.

Theorem 1.2 (Second Ray-Knight theorem). Let X be a Brownian motion issued from
zero, c > 0 a constant and

τ(c) = inf{t > 0 : L0
t (X) > c}

the first time 0 has accumulated c units of local time. Then, the process (Lyτ(c)(X), y ≥ 0)

is distributed as a squared Bessel process of dimension 0, started from c. By symmetry
of X, the law of the process (L−yτ(c)(X), y ≥ 0) is also that of a squared Bessel process of
dimension 0 started from c and it is independent from the first one.

Further details on these results can be found for instance in [16] and [17]. Because
of technical reasons and convenience on the narrative, we will present first the results
concerning an analogue of the second Ray-Knight theorem and then the first. For
Brownian motion, both theorems can be expressed using excursion theory (we refer to
Section 2 for notation and more information on excursions). Indeed, if N0 and N are the
measures of the excursions away from 0 for X and the reflected process S −X on the
space D = D(0,∞) of càdlàg paths, respectively, then local times up to τ(c) have the
representation

Lyτ(c)(X) =

∫ c

0

∫
D
`(y)K̃(ds, d`), y ∈ R, (1.2)

where K̃ is a Poisson random measure related to N0. The local time process up to τ+
a

can be expressed as

La−z
τ+
a

(X) =

∫ z∧a

0

∫
D
`(z − s)K(ds, d`), z ≥ 0, (1.3)

where K is also a Poisson random measure but related to N . Actually, as a consequence

of Lévy’s identity (|Xt|, L0
t (X))t≥0

(d)
= (St −Xt, St)t≥0 for Brownian motion, we have that

N = 2N+
0 , where N+

0 is the restriction of N0 to completely positive excursions. Hence,
equations (1.2) and (1.3) can be written in terms of a single Poisson random measure.
See Theorems 3.1 and 4.1 below for a proof of these representations in a more general
setting.

On both Ray-Knight theorems, the properties of Brownian excursions play a key role
to prove the independence of the two parts involved. Consider for instance the second
Ray-Knight theorem, in which local times of levels above and below zero are independent.
Since the Brownian motion has continuous paths, one can split the set of excursions
away from zero into two disjoint sets: the excursions completely above zero, E+, and
the ones completely below, E− (see also Figure 1(a)). Observe that only excursions in E+
contribute to the local time of positive levels, and the same is true for E− and local times
of negative levels. So, given the fact that excursions form a Poisson point process, its
restrictions to E+ and E− are independent and this results in the independence of the
processes (Lyτ(c)(X), y ≥ 0) and (L−yτ(c)(X), y ≥ 0). This fact can also be used to explain
the Markov property of local times. Indeed, conditionally on the information of the local
time at a reference level, local times of levels above and below are independent.

Another important remark about both theorems is that a squared Bessel process
of dimension 2 started from zero is in particular a continuous state branching process
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Ray-Knight theorems for SNLP

(a) (b)

Figure 1: (a) Graphic representation of equation (1.2). Excursions away from 0 appear
until 0 accumulates c units of local time and each one can contribute to the local time of
levels y > 0 and y′ < 0. (b) Graphic representation of equation (1.3). For the level a− z
with z ∈ [0, a], its local time comes from the contribution of each excursion away from
the supremum starting above that level, whilst for a− z′ with z′ ≥ a, all excursions can
contribute.

(CSBP) with linear immigration ψ(z) = 2z and branching mechanism φ(z) = z2/2.
A squared Bessel process of dimension 0 started from c is also a CSBP with the same
branching mechanism φ but no immigration. They satisfy the stochastic differential
equations

Zt =

∫ t

0

√
Zsdβs + 2t, t ≥ 0,

and

Zt = c+

∫ t

0

√
Zsdβs, t ≥ 0,

respectively, where β is a Brownian motion. These facts reflect the branching nature of
local times and bring interest on finding out if similar stochastic integral equations are
satisfied by them in a more general setting.

We would like to explore if we can obtain analogues of the Ray-Knight theorems in
the case in which the process does not have continuous trajectories, more specifically
for SNLPs. One important issue here is a consequence of a result in [8]. N. Eisenbaum
and H. Kaspi proved that if the local times of a process X have the Markov property,
then X necessarily has continuous paths. This implies that for instance, if X is a Lévy
process with negative jumps, the processes (La−z

τ+
a

(X), z ≥ 0) and (Lyτ(c)(X), y ∈ R) are
not Markovian. Hence, trying to characterize the law of the local time process yields to
a finer study of the structure of dependence between the local times at different levels.
We will explore this via excursions. Additional to the sets E+ and E−, an excursion away
from a point, say 0, can also be an element of a third set: E± (see also the forthcoming
Figure 2). This set consists of excursions starting above 0 and then jumping below, hence
having the possibility to contribute to local times of both positive and negative levels.
The positions (O0,U0) of the excursion prior to and at the first passage time below 0 are
called the overshoot and the undershoot, respectively, and will be relevant to describe
the law of local times.

Recent efforts have been made in this direction for Lévy processes. In [13], B. Li and
Z. Palmowski gave an expression for the Laplace transform of functionals of the form∫ T

0
f(Xt)dt in terms of generalized scale functions, where T = τ+

a ∧ τ−b is the first exit
time from the interval [b, a]. These functionals are strongly related to local times via the
occupation density formula mentioned before. Later, in [14] B. Li and X. Zhou obtained
joint Laplace transforms also in terms of generalized scale functions and they related
the law of local times under a change of measure with permanental processes.

EJP 29 (2024), paper 109.
Page 4/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1169
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Ray-Knight theorems for SNLP

In 2023, V. Rivero and J. Contreras [4] extended Li and Palmowski’s results for
functionals also involving the supremum S of X. Actually, we can make use of the
results there in order to gain some information on the local time process up to τ+

a ,
(La−z

τ+
a

(X), z ≥ 0). According to their notation, for a measurable and bounded function

f : R→ R+, the generalized scale function Wf is defined by

Wf (x, b) = W (x− b) exp

{∫ x

b

dsN
(

1− e−
∫ ζ
0
drf(s−e(r)), H < s− b

)}
, x ≥ b > −∞.

(1.4)
It is known that when the second entry, say v ∈ R, is fixed, Wf (·, v) is also a solution of
the integral equation

Wf (u, v) = W (u− v) +

∫ u

v

dzW (u− z)f(z)Wf (z, v), u ≥ v,

up to a positive constant. In case the function f is constant, say f ≡ q, Wf coincides
with the usual q− scale function associated to X and when f ≡ 0 we will just write W
(see [11] for further reference). In this paper, the functionWf : [0,∞)→ R+ defined by

Wf (x) := lim
b→−∞

Wf (0, b)

Wf (x, b)
= exp

{
−
∫ x

0

dsN
(

1− e−
∫ ζ
0
drf(s−e(r))

)}
, x ≥ 0, (1.5)

will play an important role. See Sections 3 and 4 to observe its connections with the
analogues of the Ray-Knight theorems in the spectrally negative case.

Finally, in [21], W. Xu explored the local times of a spectrally positive α− stable
process Y up to τ(c). Since X := −Y is spectrally negative, a consequence of their
results is that conditioned on τ(c) < ∞, the process (L−yτ(c)(X), y ≥ 0) has the law of a
non-Markovian branching system which they called rough continuous state branching
process. This class of processes is characterized for being a weak solution to certain
stochastic Volterra equations, and in particular (L−yτ(c)(X), y ≥ 0) satisfies

Zy = c(1− bW (y)) +

∫ y

0

∫ ∞
0

∫ Zs

0

(W (y − s)−W (y − s− u))Ñα(ds, du, dz),

where b is the drift of Y , W is its scale function and Ñα is certain compensated Poisson
random measure. Note that this stochastic equation is more involved than those pre-
sented before for Bessel processes. We do not intend to tackle this point of view in this
article and let it for future studies.

The content of the article is organized as follows. Section 2 is dedicated to introduce
notation and recall some properties of excursions. In Sections 3 and 4 we state our
main results. In Section 3, we perform a study of local times constituting an analogue
of the second Ray-Knight theorem. Here, we provide a Poissonian construction for
(Lyτ(c)(X), y ∈ R), proving that it is infinitely divisible, giving its corresponding Lévy
measure and emphasizing the importance of the overshoots and undershoots with respect
to zero. Regarding the process (La−z

τ+
a

(X), z ≥ 0), Section 4 contains an analogue of the
first Ray-Knight theorem. We derive a Poissonian construction and describe its law as an
infinitely divisible process, focusing on the joint law of local times under N . Section 5 is
based on the decomposition of the Lévy measure of an infinitely divisible process found
in [7], applying the ideas there to the Lévy measures of the processes of local times.
Finally, Section 6 contains some results which are useful for the main theorems and
Section 7 compiles all the proofs.

2 Preliminaries on excursions

First, we deal with the excursions away from the supremum, or equivalently, the
excursions away from 0 for S − X. Let us introduce the space E of positive right
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continuous paths with left limits and defined on an interval:

E = {e : [0, ζ]→ [0,∞) | ζ ∈ (0,∞], e((0, ζ)) ⊂ (0,∞) and e is càdlàg} .

This space is usually regarded as a subset of the more general space D = D(0,∞) of
càdlàg paths, so we might write one or the other depending on the context. For an
element e ∈ E , the right endpoint of its interval of definition is called duration or lifetime
and it is denoted by ζ(e). The supremum of e is called height and it is denoted by
H(e) = supv∈[0,ζ] e(v).

For a SNLP X, it is well known that one can take S as the local time at the supremum
and that its right continuous inverse is the subordinator (τ+

t , t ≥ 0). For t > 0, such that
τ+
t 6= τ+

t− := lims↑t τ
+
s , the supremum is constant and equal to t on the interval [τ+

t−, τ
+
t ].

Therefore, we can define

et(v) := (S −X)τ+
t−+v, 0 ≤ v ≤ τ+

t − τ+
t−,

the excursion of S −X at local time t. In this case, et ∈ E and actually, ζ(et) = τ+
t − τ+

t−.
In case τ+

t = τ+
t−, one assigns et = δ, where δ /∈ E is an auxiliary state. See also [2] and

[9] for more information.
A result of excursion theory (see for example [12, Th. 6.14]) states that there exists a

measure space (E ,Σ, N) such that Σ contains the sets of the form

{e ∈ E : ζ(e) ∈ A,H(e) ∈ B, e(ζ) ∈ C} ,

where A,B,C are Borel sets on R. Furthermore, if lim supt→∞Xt =∞ a.s. (that is, iff
Ψ′(0+) ≥ 0), then {(t, et) : t > 0, et 6= δ} is a Poisson point process of intensity ds⊗N(de).
For a deeper insight on this excursion measure, we refer to [3] and [6]. This fact explains
our hypotheses (B1) and (B2) in Section 1. In the other case, if Ψ′(0+) < 0 one obtains
a killed Poisson point process and thus similar tools are available to obtain the results.
We have chosen not to deal with this case, as to adapt the identities we have obtained,
we require more space and the paper is already rather long.

For excursions away from a point we have a similar situation, but we need a different
subordinator. Taking as a reference a given point y ∈ R, there exists an associated
subordinator σy = (σys , s ≥ 0) defined by the right inverse of the local time as follows

σys = inf{t > 0 : Lyt (X) > s}, s ≥ 0.

To formally define the excursions away from a point, we work with σy. For each s > 0, σys
corresponds to the first time the process X accumulates s units of local time at level y.
We can define the excursions by looking at the constancy times of Ly· (X), or equivalently,
at the increasing times of σy. Indeed, for each u ≥ 0 such that σyu > σyu− := lims↑u σ

y
s , we

define the excursion by

eyu(t) = Xσyu−+t, 0 ≤ t ≤ σyu − σ
y
u−,

and the quantity ζ(eyu) := σyu − σ
y
u− is called its length. We also denote its height by

H(eyu) = supv∈[0,ζ] e
y
u(v). The excursion process is a Poisson point process on the space

[0,∞)× Ey, where Ey is the space of càdlàg paths with lifetime, starting and ending at
y, and the intensity is given by the product of the Lebesgue measure and the so-called
Itô measure: ds ⊗ Ny(de). Again, this space can be seen as a subspace of D. More
information on the excursion measure away from a point can be found in [18]. The
previous paragraphs allow to use the tools from the theory of Poisson point processes,
such as the compensation and exponential formulas, to perform computations related to
excursions of X.

The following Proposition involving scale functions and quantities related to N , will
be useful in some of the results later.
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Proposition 2.1. Let f : R → R+ a measurable and bounded function. Then, the
functionWf in (1.5) is well defined and it is a solution of the following equation involving
the scale function W of X:

F (x) = 1−
∫ ∞

0

dz(W (x)−W (x− z))f(x− z)F (z), x > 0. (2.1)

Moreover, define

Gf (x) = Êx

[
exp

{
−
∫ τ−0

0

dsf(x−Xs)

}]
, x ≥ 0,

and
gf (x) = N

[
1− e−

∫ ζ
0
drf(x−e(r))

]
= N

[
1− e−

∫∞
0
dyf(x−y)Lyζ (e)

]
, x ∈ R.

Then,

Gf (x) =Wf (x) = exp

{
−
∫ x

0

dsgf (s)

}
,

and in particular we have the relation

d

dx
(− logGf )(x) = gf (x).

Notation We end this section introducing some further notation. Throughout this work,
we will write Px and Ex to denote the law of X started from x ∈ R, and by P̂x and Êx
the law of the dual X̂ of X (we omit the subscripts when x = 0). Additionally, several
excursion measures will appear, including N , the excursion measure away from the
supremum for X, and Nx and N̂x, the excursion measures away from x for X and X̂,
respectively. Concerning local times, we will indicate between parentheses the reference
process for which local time is being measured, e.g., Lxt (X) for the local time at x up
to time t for the process X. On the other hand, when making computations under the
excursion measures, we will write `xt for the local time at x up to time t of a generic
excursion, and we refer to the corresponding excursion measure to identify the type of
excursion involved and the conditions for it. For instance, N̂x(`yt ∈ dz, τ−0 < ζ) stands for
the law of the local time at y up to time t of an excursion away from x for X̂, for which
its first passage time below zero occurs before its lifetime ζ. Finally, for any ω ∈ RR+,

we write ω = (ω−, ω+), with ω− ∈ R(−∞,0]
+ given by ω−(y) = ω(y), y ≤ 0 and ω+ ∈ R(0,∞)

+

given by ω+(z) = ω(z), z > 0.

3 Second Ray-Knight theorem

Recall that a non-negative infinitely divisible process ψ = (ψx, x ∈ E) is characterized
by its Lévy measure µ, and as such it satisfies

E
[
e−
∫
E
f(x)ψxdx

]
= exp

{
−
∫
RR+

(
1− e−

∫
E
f(x)ω(x)dx

)
µ(dω)

}
,

for any non-negative, measurable and bounded function f . In [7], N. Eisenbaum provides
a deeper understanding of the Lévy measure by decomposing it into two parts, essentially
corresponding to the information of a process between the first and last visits to a point
and the complement. In our case, we will explore this decomposition in Section 5.

We begin with the following theorem, which also holds for more general Markov
processes with local times, but it is included here for sake of completeness. It establishes
that the local times up to τ(c) are infinitely divisible and also provides a Poissonian
representation of them.
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Theorem 3.1. Let X be a spectrally negative Lévy process and denote by N0 the
associated excursion measure away from zero for X. Assume X satisfies hypothesis (A)
and (B2). Then, the local time process (Lyτ(c)(X), y ∈ R) is infinitely divisible and its

Lévy measure µ(c) is given by

µ(c)(dω) = cN0(`·ζ ∈ dω),

that is, the image of the excursion measure away from zero N0 under the function that
maps an excursion into its local time process up to its lifetime ζ. Moreover, local time
process admits the representation

Lyτ(c)(X) =

∫ c

0

∫
D
`(y)K̃(ds, d`), y ∈ R, (3.1)

where K̃ is a Poisson random measure of intensity ds ⊗ M̃(d`), M̃ being the image of
N0 under the map that associates an excursion e its local time process up to its lifetime:

e 7→
(
`rζ(e), r ∈ R

)
.

This representation for local times is similar to that in [15, Ch. 6] for CSBP processes.
In that context, the intensity of the Poisson random measure K̃ is ds ⊗ QH and QH
is a measure that has the information of both an entrance law and the transitions of
a branching process and it is known as the Kuznetsov measure (see [5, Ch. XIX]). In
our setting, M̃ cannot be a Kuznetsov measure, since otherwise local times would be
Markovian.

Our main purpose is to get a finer description of the Poissonian construction in (3.1)
and provide information on µ(c). For that end, we start by defining the concept of
overshoot and undershoot of a path. These quantities tell us the relative position of
the path prior and at the first passage time below a given level x. In general, for a
càdlàg path Y having only negative jumps and a level x such that Y0 ≥ x, we denote by
(Ox(Y ),Ux(Y )) to the pair of values

(Ox(Y ),Ux(Y )) = (Yτ−x (Y )− − x, Yτ−x (Y ) − x),

where τ−x (Y ) = inf{t > 0 : Yt < x}. Notice that if Y crosses down x continuously,
both quantities are equal to zero. That is the reason we did not see their role in the
Brownian motion case, since it has continuous paths. Nonetheless, since in this case the
trajectories have negative jumps, they will arise naturally and will be really important
for path decompositions.

According to [18], N0 is now carried by the partition of the space of excursions into
the sets E+ t E− t E±, which consist in completely positive, completely negative and
mixed excursions, respectively. Observe that an excursion e ∈ E+ contributes only to
the local times of positive levels. Similarly, e ∈ E− only contributes to negative levels.
But, unlike the Brownian motion case, when the process has one-sided jumps there is
an additional kind of excursions, E±, which can add to the local time of both positive
and negative levels. As a consequence, we cannot split the information of local times
above and below a point into functions of disjoint sets of excursions, hence losing the
independence mentioned for the Brownian motion in Theorems 1.1 and 1.2. This also
translates to the absence of the Markov property for the process of local times.

A typical excursion e ∈ E± starts positive and then it jumps below 0, at time τ−0 (e).
After this time, since the path does not have positive jumps, it will creep upwards 0 and
end at its lifetime ζ(e). Therefore, we can decompose e into the paths e←− and e−→, where

e←−(t) = e((τ−0 (e)− t)−), 0 ≤ t ≤ τ−0 (e)
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(a) (b) (c)

Figure 2: Typical excursions away from zero in (a) E+, (b) E− and (c) E±.

and
e−→(t) = e(τ−0 (e) + t), 0 ≤ t ≤ ζ(e)− τ−0 (e).

As we mentioned before, the position relative to 0 before and at first passage are
called the overshoot and undershoot at 0 of the path, that is, O0(e) = e(τ−0 −) > 0 and
U0(e) = e(τ−0 ) < 0. By the strong Markov property at time τ−0 , it turns out that e←− and e−→
are conditionally independent given (O0,U0). Moreover, the reversed path e←− has the

same law as the dual X̂ started from O0 and killed at its first hitting time of 0, denoted
by Ê0

O0
. On the other hand, e−→ has the same law as X started from U0 and killed at its

first hitting time of 0, denoted by E0
U0

. We can actually compute the joint law of (O0,U0)

in the set E± under N0, as can be read in Lemma 6.1. This helps to obtain the following
refined version of Theorem 3.1.

Theorem 3.2. Let X be a spectrally negative Lévy process satisfying (A) and (B2).
Then, the Lévy measure µ(c) associated to the local time process (Lyτ(c)(X), y ∈ R) can
be decomposed as

µ(c)(dω) = cN0(`·ζ ∈ dω) = cN0(`·ζ ∈ dω, E+) + cN0(`·ζ ∈ dω, E−) + cN0(`·ζ ∈ dω, E±),

and when restricted to E±,

N0(`·ζ ∈ dω, E±) =

∫
(0,∞)

∫
(−∞,0)

dbΠ(du− b)Ê0
b ⊗ E0

u(L·ζ ∈ dω);

where
Ê0
b ⊗ E0

u(L·ζ ∈ dω) := Êb

(
L·
τ−0

(X) ∈ dω+

)
Eu

(
L·
τ+
0

(X) ∈ dω−
)
.

In particular, for any f : R→ [0,∞) measurable and bounded, if we write f = f+ + f−,
with f+ = f1(0,∞) and f− = f1(−∞,0), the Laplace transform of

∫
R
f(y)Lyτ(c)(X)dy is

given by

E
[
e
−
∫
R
f(y)Ly

τ(c)
(X)dy

]
= exp

{
−cN0

[
1− e−

∫
R
f(y)`yζdy

]}
= exp

{
−cN0

[
1− e−

∫
(0,∞)

f+(y)`yζdy, E+
]}

× exp
{
−cN0

[
1− e−

∫
(−∞,0)

f−(y)`yζdy, E−
]}

× exp

{
−c
∫

(0,∞)

∫
(−∞,0)

dbΠ(du− b)
[
1−Wf+,b

(b)Wf−,u(−u)
]}

,

whereWf+,b
andWf−,u are defined as in (1.5) with f+,b(r) := f+(−r + b) and f−,u(r) :=

f−(r + u).

In particular, since in Xu’s α− stable case [21] there is no Brownian component
(therefore N0 is only carried by E±) and they only consider negative levels, the expression

EJP 29 (2024), paper 109.
Page 9/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1169
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Ray-Knight theorems for SNLP

above in that case simplifies to

E
[
e
−
∫
(−∞,0)

f−(y)Ly
τ(c)

(X)dy
]

= exp

{
−c
∫

(−∞,0)

N0 (U0 ∈ du, E±)
[
1− E0

u

(
e−
∫
(−∞,0)

f−(y)Lyζ (X)dy
)]}

= exp

{
−c
∫

(0,∞)

db

∫
(−∞,0)

Π(du− b)
[
1−Wf−,u(−u)

]}
.

The consideration on the overshoots and undershoots also allow to provide a further
Poissonian construction involving them. Some results on transformations of Poisson
point processes will be used and we refer to [10, Ch. 12] and [19, Ch. 4] for further
details.

Suppose that X satisfies hypotheses (A) and (B2) and let us assume for now that it
does not have a Brownian component. Then, all excursions of X away from 0 belong
to the set E±. Using the additive property of local times, for any y > 0, Lyτ(c)(X) can be

decomposed as the sum of the local time at y of each excursion (s, e0
s) away from 0 up to

local time c. Observe that, for a generic excursion e0, given its overshoot b = O0(e0), the
law of the reversed path e←−

0 under N0 is Ê0
b , that is, the same law as X̂ started from b and

killed at the first hitting time of zero. Therefore, conditionally on O0(e0), this path can be
decomposed again in excursions away from the infimum, say {(r, er) : 0 < r < O0(e0)},
and express the local time at y in terms of the local time at y − r of er. A similar
computation can be performed for Lzτ(c)(X), for any z < 0, by decomposing the path e−→

0

into excursions away from the supremum, say {(v, ev) : U0(e0) < v < 0}. Observe that
the law N̂ of the excursions away from the infimum for X̂ coincides with N because of
duality and hence everything can be expressed in terms of this measure. Figure 3 shows
a graphic representation of this decomposition.

Figure 3: Representation of a typical excursion away from zero e ∈ E± split into e←−
and e−→. The reversed path e←− is further decomposed into excursions away from the
infimum which contribute to the local time of levels y > 0 and e−→ is decomposed into
excursions away from the supremum, contributing to the local time of levels z < 0.

Repeating the above construction for each excursion away from 0, we have that the
excursions away from zero can be seen as an atom in a marked Poisson point process
that can be written as

{(s,O0(e0
s),U0(e0

s), ((r, e
s
r), 0 < r < O0(e0

s)), ((v, e
s
v),U0(e0

s) < v < 0)), s > 0}. (3.2)

To be more formal, denote by M the space of Poisson random measures over
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(0,∞)×D. We define a Markovian kernel κ̂ from (0,∞) toM by

κ̂(b, dY ) = P̂

( ∑
0<r<b

δ(r,er) ∈ dY

)
, b > 0, Y ∈M, (3.3)

that is, the law of a random variable taking values inM, which is given by a Poisson
random measure with intensity dr1{r∈(0,b)}N(e ∈ dω). This kernel will be useful in
Section 4 to establish the law of local times under N . For a non-negative and measurable
function G :M→ R, we write

κ̂(b,G) :=

∫
M
κ̂(b, dY )G(Y ) = Ê

[
G

( ∑
0<r<b

δ(r,er)

)]
.

Furthermore, for later use, for any measurable functional H : RR 7→ R+ we define

κ̂
(
b,H

(
Lzζ , z ∈ R

))
:= Ê

[
H

( ∑
0<r<b

`z−rζ (er), z ∈ R

)]
. (3.4)

One example of functional that will arise often in our calculations is, for any positive and
measurable test function f : R 7→ R+ and any measurable set A,

H
(
Lzζ , z ∈ R

)
= exp

{
−
∫
A

f(z)Lzζdz

}
;

and for such a functional we have

κ̂

(
b, exp

{
−
∫
A

f(z)Lzζdz

})
= Ê

[
exp

{
−
∑

0<r<b

∫
A

f(z)`z−rζ (er)dz

}]
.

Analogously, we define a kernel κ from (−∞, 0) toM by

κ(u, dZ) = P

( ∑
u<v<0

δ(v,ev) ∈ dZ

)
, u < 0, Z ∈M, (3.5)

which corresponds to the law of a random variable onM, which is a Poisson random
measure of intensity dv1{v∈(u,0)}N(e ∈ dω).

Observe that, since the set {(s, e0
s) : 0 < s ≤ c} of excursions away from 0 form a

Poisson point process, then the corresponding overshoots and undershoots

{(s, (O0(e0
s),U0(e0

s))) : 0 < s ≤ c}

are also a Poisson point process, now with intensity m̃±(ds, db, du) := ds ⊗ N0(O0 ∈
db,U0 ∈ du, E±). Therefore, the intensity of the marked process is given by

m±(ds, db, du, dY, dZ) = m̃±(ds, db, du)κ̂(b, dY )κ(u, dZ).

Let M±(ds, db, du, dY, dZ) be a Poisson random measure on (0,∞)2 × (−∞, 0)×M2 with
intensity m±(ds, db, du, dY, dZ). By the above considerations, we can describe the local
time process in terms of M±. Moreover, since the generic Poisson random measures
Y and Z can be written as Y =

∑
0<r<b δ(r,er) and Z =

∑
u<v<0 δ(v,ev), with an abuse

of notation we can regard M± as a Poisson random measure over (0,∞)2 × (−∞, 0) ×
((0,∞) × D)2 with intensity m±(ds, db, du, dr, de, dv, de), where (dr, de) and (dv, de) are
the atoms in (3.2). In order to provide separate expressions for local times of positive
and negative levels, we denote by

M1
±(ds, db, dr, de) = M±(ds, db, (−∞, 0), dr, de, (0,∞),D),
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the restriction of M± to the information on the overshoots and by

M2
±(ds, du, dv, de) = M±(ds, (0,∞), du, (0,∞),D, dv, de),

the marginal related to the undershoots.
Now, if we remove the condition that X does not have a Brownian component, we

additionally have to deal with excursions belonging to E+ and E−. Let M+(ds, de) and
M−(ds, de) be Poisson random measures on (0,∞)×D with intensities dsN0(de, E+) and
dsN0(de, E−), respectively. Since E+, E− and E± form a partition, the measures M+, M−
and M± are independent. Hence, we obtain the following Poissonian representation for
local times of positive and negative levels up to τ(c).

Theorem 3.3. Let X be a SNLP satisfying (A) and (B2). Then, the following Poissonian
representations hold:

Lyτ(c)(X) =

∫ c

0

∫
D
`yζ(e)(e)M+(ds, de) +

∫ c

0

∫ ∞
0

∫ b∧y

0

∫
D
`y−rζ(e) (e)M1

±(ds, db, dr, de), (3.6)

for all y > 0, and

Lzτ(c)(X) =

∫ c

0

∫
D
`zζ(e)(e)M−(ds, de) +

∫ c

0

∫ 0

−∞

∫ 0

u∨z

∫
D
`v−zζ(e) (e)M2

±(ds, du, dv, de), (3.7)

for all z < 0.

Remark 3.4. Recall that in the case of continuous paths, the processes of local times
(Lyτ(c)(X), y ≥ 0) and (Lzτ(c)(X), z ≤ 0) are independent without any conditioning, as in
Theorem 1.2. In our case that is not true but as a consequence of the above Poissonian
construction, if we condition to the whole Poisson point process of overshoots and
undershoots at 0, the independence is recovered (notice that M+ and M− do not alter
the conditional independence, since they are carried by disjoint sets of excursions).

4 First Ray-Knight theorem

As in the previous section, we start showing that local times up to τ+
a are infinitely

divisible and admit a Poissonian representation.

Theorem 4.1. Let X be a spectrally negative Lévy process and denote by N the associ-
ated excursion measure away from zero for S −X. Assume X satisfies hypothesis (A)
and (B1) or (B2). Then, the local time process (La−z

τ+
a

(X), z ≥ 0) is infinitely divisible

and its Lévy measure ν(a) is given by

ν(a)(dω) =

∫ a

0

N(`·−sζ 1{·−s>0} ∈ dω)ds,

where for each s, N(`·−sζ 1{·−s>0} ∈ dω) is the image of N under the map that assigns
to each excursion its local time process shifted by s. Moreover, local times admit the
representation

La−z
τ+
a

(X) =

{∫ z
0

∫
D `(z − s)K(ds, d`), z ∈ [0, a],∫ a

0

∫
D `(z − s)K(ds, d`), z ≥ a,

(4.1)

where K is a Poisson random measure of intensity ds⊗M(d`), M being the image of N
under the map that associates an excursion e to its local time process up to its lifetime:

e 7→
(
`rζ(e), r ∈ R

)
.

This representation is similar to that in [15, Ch. 6] for CB processes with linear
immigration but, as in the case of τ(c), M cannot be a Kuznetsov measure. Nonetheless,
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certain branching-like structure can be recovered for local times, in the sense that
we now explain (see also Figure 4 below). The local time of X at each level can be
decomposed as the sum of the local time contributions of these excursions to that
level. We view the excursions from level a downwards and think of them as individuals
immigrating. The linear behavior of immigration comes from the fact that the supremum
is linear on the local time scale. Since S takes values on [0, a], there is no extra immigrants
for negative levels, which explains the difference in the representation in Theorem 4.1
for levels in [0, a] and levels in (−∞, 0]. For the branching part, if 0 < x < y, an excursion
which has a contribution to the local time at a− x will also have a contribution at a− y if
the excursion is deep enough. So, we can interpret the contribution of an excursion to
La−y
τ+
a

(X) as a “mass branching” from La−x
τ+
a

(X), and because of the lack of positive jumps
we can “track” the descendants of level a− x.

Figure 4: A path of X (bold line) and its supremum (dashed line) up to the time it
surpasses level a.

We can get a better understanding of the Lévy measure ν(a) by studying the law of
local times under N . This turns out to be difficult if one wants to consider all the levels
but it is tractable when considering a positive reference level x > 0, which can be made
arbitrarily small.

Given x > 0, an excursion e away from the supremum with height H(e) < x has local
time equal to zero at levels y ≥ x. Hence, we will restrict ourselves to those excursions
satisfying H(e) > x. On the event H(e) > x, we know that, by the absence of negative
jumps under N , the first hitting time Tx(e) occurs before the lifetime ζ(e). Then, by the
strong Markov property and the additivity of local times we can write

`yζ(e)(e) = `yTx(e)(e) + `yζ(e)(e) ◦ θTx(e), y > x,

which splits the local time process for levels y > x into two independent components: the
information before hitting x and the information after, the latter being able to be written
in terms of the excursions away from x. Both terms can be described in a Poissonian
way, similar to the one in the previous section, as we will see next.

We begin with (`yTx(e)(e), y > x). We only need to consider the event τ+
x (e) < Tx(e) <

ζ(e), since on the event τ+
x (e) = Tx(e), the accumulated local time up to Tx(e) is zero

for levels y ≥ x. Therefore, the first overshoot of the excursion at x will play a key
role (see Lemma 6.2 for its law under N ) and conditionally on it, we can use a similar
decomposition of the path into excursions away from the infimum as in the previous
section. This yields the following theorem.

Theorem 4.2. Let X be a spectrally negative Lévy process satisfying (A) and (B1)
or (B2), and N its excursion measure away from the supremum. For any measurable
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functional F : R
(x,∞)
+ → R+ with F (0) = 0, we have that

N(F (`yTx , y > x), H > x) =

∫ ∞
0

N(Ox ∈ db, τ+
x < Tx < ζ)κ̂(b, F (Ly−xζ , y > x)),

with κ̂ as in (3.4). In particular, for any f : (x,∞)→ R+ measurable and bounded,

N

(
exp

{
−
∫ ∞
x

f(y)`yTxdy

}
, H > x

)
=

∫ x

0

d`

∫
(0,∞)

Π̂(db+ `)W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)
Wfx,b(b),

where Π̂ is given by Π̂(A) = Π(−A), fx,b(z) := f(x+ b− z), z < b andWfx,b as in (1.5).

Now focus on (`yζ(e)(e) ◦ θTx(e), y > x). Starting from time Tx(e), we can decompose
the path into excursions away from x. This bears some similarities with the situation of
the second Ray-Knight Theorem in which we had “c” excursions away from 0, but in this
case we have as many excursions away from x as the local time `xζ(e)(e), which can be

proved that is exponentially distributed with parameter q0
x := N̂x(τ−0 < ζ). This and the

distribution of the overshoots of the excursions away from x (see Lemma 6.4) lead to the
following theorem.

Theorem 4.3. Let X be a spectrally negative Lévy process satisfying (A) and (B1) or
(B2) and N its excursion measure away from the supremum. Denote q0

x = N̂x(τ−0 < ζ).
Then, q0

x = 1/W (x) and Lx
τ−0

is exponentially distributed with parameter q0
x under Êx.

Moreover, for any measurable function f : (x,∞)→ R+, we have that

N

(
exp

{
−
∫ ∞
x

f(y)`yζ ◦ θTxdy
}
, H > x

)
= N(H > x)Êx

[
exp

{
−Lx

τ−0
N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)}]
(4.2)

=
W ′(x)

W (x)

1

1 +W (x)N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

) .
The term under N̂x can be further decomposed into

N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)
= N̂x

(
1− e−

∫∞
x
f(y)`yζdy, Ex+

)
+ N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ, Ex±

)
,

where Ex+ is the set of excursions which are completely above x and Ex± are the excursions
away from x which start negative and then jump above x. For this latter set, we have
the following expression in terms of the law of the overshoot:

N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ, Ex±

)
=

∫
(0,∞)

N̂x(Ox ∈ db, τ−0 > ζ, Ex±)

[
1− exp

{
−
∫ b

0

dsN
(

1− e−
∫∞
s+x

f(y)`y−x−sζ dy
)}]

=

∫
(0,∞)

N̂x(Ox ∈ db, τ−0 > ζ, Ex±)
[
1−Wfx,b(b)

]
,

where fx,b(z) = f(x+ b− z), z < b andWfx,b as in (1.5).
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Remark 4.4. Observe that the identity (4.2) is reminiscent of the branching property.
Indeed, we can rewrite it as

N
(
e−
∫∞
x
f(y)`yζ◦θTxdy, H > x

)
N(H > x)

= Êx

[
exp

{
−Lx

τ−0
N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)}]
.

The left hand side can be seen as an expected value conditioned to H > x, which is
equivalent to having a positive amount of local time at x. And on the right hand side,
we have that the contribution to the local time of each level y is coming from the Lx

τ−0

“individuals” present at level x. In this case, the term corresponding to N̂x can be
interpreted as the corresponding cumulant. Besides, if we consider a single level y > x,
the Proposition 4.7 below provides an explicit expression for this cumulant.

It turns out that, without splitting the information at time Tx(e) for local times of
levels bigger than x, a similar property is satisfied. Actually, we can consider a functional
of all levels above x as before or just consider a finite set of points, as the following
proposition states.

Proposition 4.5. Let X be a spectrally negative Lévy process satisfying (A) and (B1)
or (B2), N its excursion measure away from the supremum and Nz, N̂z the excursion
measures away from z for X and its dual X̂, respectively. Let x > 0 and f : (x,∞)→ R+

a measurable and bounded function. Denote by

ux(f) := N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)
= N0

(
1− e−

∫∞
x
f(y)`x−yζ dy, τ+

x > ζ
)
.

Then,

N
(

1− e−λ`
x
ζ−
∫∞
x
f(y)`yζdy

)
= N

(
1− e−(λ+ux(f))`xζ−

∫∞
x
f(y)`yTxdy

)
, λ ≥ 0.

Alternatively, if 0 < x < y1, . . . , yn are n distinct points and

ux;y1,...,yn(β1, . . . , βn) := N̂x

(
1− e−β1`

y1
ζ −···−βn`

yn
ζ , τ−0 > ζ

)
,

then, for any λ, β1, . . . , βn ≥ 0,

N
(

1− e−λ`
x
ζ−β1`

y1
ζ −···−βn`

yn
ζ

)
= N

(
1− e−(λ+ux;y1,...,yn (β1,...,βn))`xζ−β1`

y1
Tx
−···−βn`ynTx

)
.

We end this section with explicit expressions of the law of the local time of a single
point under N and N̂x, which can be given in terms of scale functions.

Proposition 4.6. Let X be a spectrally negative Lévy process satisfying (A) and (B1)
or (B2) and N its excursion measure away from the supremum. Let

uy(λ) := N
(

1− e−λ`
y
ζ

)
, y > 0, λ ≥ 0.

This quantity can be expressed in terms of the scale function W as follows

uy(λ) =
λW ′(y)

1 + λW (y)
, λ ≥ 0, y ≥ 0.

Proposition 4.7. Let X be a spectrally negative Lévy process satisfying (A) and (B1)
or (B2) and N̂z the excursion measure away from z for X̂. Let us define, for any x > 0,

vx,y(λ) := N̂x

((
1− e−λ`

y
ζ

)
1{τ−0 >ζ}

)
, y ≥ x, λ ≥ 0.
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Then,

vx,y(λ) = N̂0
x(H > y)

(
λW (y − x)

1 + λW (y − x)

)
, λ ≥ 0, y ≥ x,

where N̂0
x(·) := N̂x

(
·; τ−0 > ζ

)
. Moreover,

N̂0
x(H > y) =

σ2

2

W ′(y − x)

W (y − x)

+

∫ x

0

W (x− z)
W (x)

(
Π(−∞,−z)−

∫ −z
−z−(y−x)

W (u+ z + y − x)

W (y − x)
Π(du)

)
dz.

5 Decomposition of Lévy measures

Recall that a non-negative infinitely divisible process ψ = (ψx, x ∈ E) is characterized
by its Lévy measure µ. Given a reference state h ∈ E, Eisenbaum [7] also describes
in their Theorem 1.2 a way to decompose µ into µh + µh. The measure µh(dω) =

1{ω(h)=0}µ(dω) is the Lévy measure of the process ψ conditioned to ψh = 0 and hence, the
measure µh(dω) = 1{ω(h)>0}µ(dω) corresponds to the information of the process between
successive visits to state h.

As an application, we provide some information on this decomposition of the Lévy
measures µ(c), relative to (Lyτ(c)(X), y ∈ R) and ν(a), corresponding to (La−z

τ+
a

(X), z ≥ 0).

Consider first the measure µ(c), which is given by µ(c)(dω) = cN0(`·ζ ∈ dω). For a posi-
tive level h, we can identify one of the components of the corresponding decomposition
in terms of an exit problem (and hence in terms of scale functions), as can be seen in the
next proposition.

Proposition 5.1. Let µ(c) be the Lévy measure of the process (Lyτ(c)(X), y ∈ R) and
h > 0 fixed. Decompose

µ(c)(dω) = µ
(c)
h (dω) + µ

(c)
h (dω) = 1{ω(h)=0}µ

(c)(dω) + 1{ω(h)>0}µ
(c)(dω).

Then,

µ
(c)
h (dω) = cN0

[
`·ζ ∈ dω, τ+

h > ζ
]

= cN0

[
`·ζ ∈ dω, τ+

h > ζ, E+
]

+ cN0

[
`·ζ ∈ dω, E−

]
+ c

∫
(0,h)

∫
(−∞,0)

dbΠ(du− b)Ê0
b ⊗ E0

u(L·ζ ∈ dω, τ+
h > ζ),

where Ê0
b ⊗ E0

u(L·ζ ∈ dω, τ
+
h > ζ) := Êb

(
L·
τ−0
∈ dω+, τ

+
h > τ−0

)
Eu

(
L·
τ+
0

∈ dω−
)

. In par-

ticular, if X does not have a Brownian component (Σ = 0), then for any f : R+ → R

measurable and bounded,∫
RR+

(
1− e−

∫∞
0
f(x)ω(x)dx

)
µ

(c)
h (dω) = c

∫ h

0

dbΠ(−∞,−b)
Wf̂ (−b,−h)

Wf̂ (0,−h)
,

where f̂(s) = f(−s) and Wf̂ as in (1.4).

Proof of Proposition 5.1. In this case, we know that µ(c)(dω) = cN0(`·ζ ∈ dω). Hence, for

h > 0, we have that `hζ = 0 under N0 if and only if the excursion e away from 0 does not
reach level h. This means that positive excursions must not have height bigger than h
and that the paths e←− for mixed excursions have overshoots less than h and from this
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point, the reversed path must exit the interval [0, h] by below. So we identify in this case

µ
(c)
h as

µ
(c)
h (dω) = cN0

[
`·ζ ∈ dω, τ+

h > ζ
]

= cN0

[
`·ζ ∈ dω, τ+

h > ζ, E+
]

+ cN0

[
`·ζ ∈ dω, E−

]
+ c

∫
(0,h)

∫
(−∞,0)

dbΠ(du− b)Ê0
b ⊗ E0

u(L·ζ ∈ dω, τ+
h > ζ).

In particular, if one only considers positive levels the last term simplifies to Êb(L·ζ ∈
dω+, τ

+
h > τ−0 ), which is the law of local times of X̂ issued from b and seen up to first

time it exits [0, h] from above. An expression for Laplace transforms of this exit problem
is given in terms generalized scale functions (see (1.4)). Indeed, if f is measurable and
bounded and has support on R+,

Ê0
b

(
e−
∫∞
0
f(x)Lxζdx, τ+

h > ζ
)

= Êb

(
e
−
∫∞
0
f(x)Lx

τ
−
0

dx
, τ+
h > τ−0

)
= Êb

(
e−
∫ τ−0
0 f(Xs)ds, τ+

h > τ−0

)
= E−b

(
e−
∫ τ+

0
0 f̂(Xs)ds, τ−−h > τ+

0

)
=
Wf̂ (−b,−h)

Wf̂ (0,−h)
.

Hence, if X does not have a Brownian component, we conclude that∫
RR+

(
1− e−

∫∞
0
f(x)ω(x)dx

)
νh(dω) = c

∫ h

0

dbΠ(−∞,−b)
Wf̂ (−b,−h)

Wf̂ (0,−h)
.

Now consider the Lévy measure ν(a), which from Theorem 4.1 is given by ν(a)(dω) =∫ a
0
N(`·−sζ 1{·−s>0} ∈ dω)ds. It turns out that, for a fixed h > 0, we can make use of the

results of Theorems 4.2 and 4.3 to describe certain functionals of both ν(a)
h and ν(a)

h .

Proposition 5.2. Let ν(a) be the Lévy measure of the process (La−z
τ+
a

(X), z ≥ 0) and

h > 0 fixed. Decompose

ν(a)(dω) = ν
(a)
h (dω) + ν

(a)
h (dω) = 1{ω(h)=0}ν

(a)(dω) + 1{ω(h)>0}ν
(a)(dω).

Then,

ν
(a)
h (dω) =

∫ a∧h

0

dsN(`·−sζ 1{·−s>0} ∈ dω, τ+
h−s > ζ) +

∫ a

a∧h
dsN(`·−sζ 1{·−s>0} ∈ dω).

Moreover, if F is any non-negative, measurable and bounded functional,

ν
(a)
h (F (ωy, y ≥ h)) =

∫ a

0

dsN(F (`y−sTh
, y − s > h), H > h)

=

∫ a

0

ds

∫
(0,∞)

N(Oh ∈ db, τ+
h < Th < ζ)κ̂(b, F (Ly−s−hζ , y − s > h)),

with κ̂ as in (3.4), and on the other hand,

ν
(a)
h (F (ωy, y > h)) =

∫ a

0

dsN(F (`y−sζ ◦ θTh , y − s > h), H > h).
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Proof of Proposition 5.2. In this case one has that `h−sζ = 0 if and only if either s ≥ h or
s < h and the excursion away from the supremum does not reach level h− s. Therefore,
we obtain

ν
(a)
h (dω) = ν(a)(dω)

∣∣∣∣
{ω(h)=0}

=

∫ a∧h

0

dsN(`·−sζ 1{·−s>0} ∈ dω, τ+
h−s > ζ) +

∫ a

a∧h
dsN(`·−sζ 1{·−s>0} ∈ dω),

where the last term disappears if h ≥ a. Recall that Theorem 4.2 gives an expression
for the law of local times of levels bigger than a reference level h > 0 under N . Since
the process (`yTh , y > h) codes the information of the local times of levels bigger than h
previous to its first hitting time, this implies we can actually use that result to provide
information on ν

(a)
h . Therefore, if F is any non-negative, measurable and bounded

functional,

ν
(a)
h (F (ωy, y ≥ h)) =

∫ a

0

dsN(F (`y−sTh
, y − s > h), H > h)

=

∫ a

0

ds

∫
(0,∞)

N(Oh ∈ db, τ+
h < Th < ζ)κ̂(b, F (Ly−s−hζ , y − s > h)).

Similarly, in Theorem 4.3 the process (`yζ ◦ θTh , y > h) encodes the information of the
excursion from the first to the last visit to h, which implies we can recover information
on the measure ν(a)

h . Then, for any measurable, bounded and non-negative functional F ,

ν
(a)
h (F (ωy, y > h)) =

∫ a

0

dsN(F (`y−sζ ◦ θTh , y − s > h), H > h).

In particular, if the functional on the above proposition is of the form F ((ωy, y > h)) =

exp
{
−
∫∞
h
f(y)ωydy

}
, we can write

ν
(a)
h (F (ωy, y ≥ h))

=

∫ a

0

ds

∫ x

0

d`

∫
(0,∞)

Π̂(db+ `)W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)
Wfx,b,s(b),

where fx,b,s(z) := f(x+ b+ s− z), z < s+ b. Similarly,

ν
(a)
h (F (ωy, y > h)) = N(H > h)

∫ a

0

dsÊh

[
exp

{
−Lh

τ−0
N̂x

(
1− e−

∫∞
h
f(s+y)`yζdy, τ−0 > ζ

)}]
.

6 Auxiliary results

The next lemma provides the joint law of the overshoot and undershoot of an excursion
under the measure N0.

Lemma 6.1. Let (U0(e),O0(e)) = (e(τ−0 ), e(τ−0 −)) be the undershoot and overshoot of
an excursion e away from zero. Then,

N0 (h(U0,O0), E±) =

∫ ∞
0

dz

∫
(−∞,0)

Π(dy)h(z + y, z)1{z+y<0}, (6.1)

for any measurable and bounded function h : (−∞, 0)× (0,∞)→ R+. Said otherwise,

N0(U0 ∈ dy,O0 ∈ dz, E±) = dzΠ(dy − z)1{z>0}1{y<0}. (6.2)
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Taking marginals in the above expression we get that, for any f : (−∞, 0) → R+ and
g : (0,∞)→ R+ measurable and bounded,

N0 (f(U0), E±) =

∫ ∞
0

dz

∫
(−∞,0)

Π(dy)f(z + y)1{z+y<0}

=

∫ ∞
0

dz

∫
(−∞,z)

Π(dy − z)f(y)1{y<0}

and

N0 (g(O0), E±) =

∫ ∞
0

dzg(z)Π(−∞,−z).

Proof of Lemma 6.1. Recall that E± corresponds to the set of excursions for which
{0 < τ−0 < ζ}. Observe that this condition is fulfilled if and only if there exists an
s ∈ (0, ζ) such that ∆s := e(s) − e(s−) < 0, e(s−) > 0 and e(s−) + ∆s < 0. Let us
define

Gs(y) = h(e(s−) + y, e(s−))1{y<0}1{e(s−)>0}1{e(s−)+y<0}1{s<ζ}.

Then, we have the following identity

h(e(τ−0 ), e(τ−0 −))1{0<τ−0 <ζ}
=

∑
0<s<∞

Gs(∆s)1{∆s 6=0}.

Indeed, by the observation above the indicator on the left hand side is non-zero if
and only if there exists an s ∈ (0,∞) satisfying the previous conditions. Moreover,
by the absence of positive jumps that s is unique and coincides with τ−0 . Therefore,
we can use the compensation formula under N0 (see for instance [18, Eq. (18)]) to
obtain

N0

(
h(e(τ−0 ), e(τ−0 −))1{0<τ−0 <ζ}

)
= N0

(∫ ∞
0

ds

∫
(−∞,0)

Π(dy)Gs(y)

)

= N0

(∫ ∞
0

ds

∫
(−∞,0)

Π(dy)h(e(s−) + y, e(s−))1{y<0}1{e(s−)>0}1{e(s−)+y<0}1{s<ζ}

)

= N0

(∫ ζ

0

ds1{e(s−)>0}

∫
(−∞,0)

Π(dy)h(e(s−) + y, e(s−))1{e(s−)+y<0}

)
.

Since the set of times {s : e(s−) 6= e(s)} in which the excursion is discontinuous has
Lebesgue measure zero, we can replace e(s−) by e(s). Therefore,

= N0

(∫ ζ

0

ds1{e(s)>0}

∫
(−∞,0)

Π(dy)h(e(s) + y, e(s))1{e(s)+y<0}

)

= N0

(∫ ζ

0

ds1{e(s)>0}h̃(e(s))

)
,

where h̃(z) =
∫

(−∞,0)
Π(dy)h(z+y, z)1{z+y<0}. Then, using the fact that Φ(0) = 0 because

of assumptions (B1) or (B2) and using identity (20) from [18] with λ ↓ 0, we conclude
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that

N0

(
h(e(τ−0 ), e(τ−0 −))1{0<τ−0 <ζ}

)
= N0

(∫ ζ

0

ds1{s<τ−0 }
h̃(e(s))

)

=

∫ ∞
0

dzh̃(z)

=

∫ ∞
0

dz

∫
(−∞,0)

Π(dy)h(z + y, z)1{z+y<0}

=

∫ ∞
0

dz

∫
(−∞,z)

Π(dy − z)h(y, z)1{y<0}

=

∫ ∞
0

dz

∫
(−∞,0)

Π(dy − z)h(y, z).

The rest of the proof follows readily.

The following lemma expresses the law of the overshoot with respect to a positive
reference level under the measure N .

Lemma 6.2. For any x > 0 and any measurable and bounded function f : R2 → R+,

N
(
e(τ+

x ) = x, τ+
x < ζ

)
=
σ2

2

[
[W ′(x)]2

W (x)
−W ′′(x)

]
,

and

N
(
f(e(τ+

x −), e(τ+
x )); e(τ+

x ) > x, τ+
x < ζ

)
=

∫ x

0

d`W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)
×
∫ 0

−∞
Π(dy)f(x− `, x− `− y)1{0>`+y}.

In particular, taking f to be a function of only the overshoot, f(e(τ+
x −), e(τ+

x )) =

g(e(τ+
x )− x), and with the notation Π̂(A) := Π(−A), we have that

N
(
g(e(τ+

x )− x);Tx < τ+
x < ζ

)
=

∫ x

0

d`W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)∫ ∞
0

Π̂(dy)g(y − `)1{y>`}

=

∫ x

0

d`W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)∫ ∞
0

Π̂(dy + `)g(y)1{y>0},

which provides the law of the overshoot with respect to x under N .

Proof of Lemma 6.2. We will use here a result from L. Chaumont and R. Doney in [3]
which tells us a way to approximate N as a certain limit involving E. Indeed, if gβ(z) =
(1−ezΦ(β))

Φ(β) , z ∈ R, using that in our case Φ(0) = 0 we have that

lim
β↓0

gβ(z) := g(z) = −z, z < 0.

Their result states that

lim
z→0−

1

g(z)
Ez(F, t < τ+

0 ) = N̂(F, t < ζ),

for any functional F up to time t and N̂ being the excursion measure away from the
supremum for X̂. (We notice that the cited result from [3] includes a multiplicative
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constant depending on the normalization of the local time, and in our case it equals 1

because we assumed that Ψ(1) = 1 = Φ(1).) This is translated to N as

lim
z→0−

1

g(z)
Ê−z(F, t < τ−0 ) = N(F, t < ζ),

or equivalently,

lim
z→0+

1

z
Êz(F, t < τ−0 ) = N(F, t < ζ).

The so-called Kesten’s identity (see for instance [11]):

Pz

(
Xτ−0

= 0, τ−0 <∞
)

=
σ2

2
(W ′(z)− Φ(0)W (z)), z > 0,

will also be useful for the result.
We will use the above facts for the following computation. We can calculate, for

x > 0

N
(
e(τ+

x ) = x, τ+
x < ζ

)
= lim
z→0+

1

z
Êz

(
Xτ+

x
= x, τ+

x < τ−0

)
= lim
z→0+

1

z
E
(
Xτ−z−x

= z − x, τ−z−x < τ+
z

)
= lim
z→0+

1

z

[
E
(
Xτ−z−x

= z − x, τ−z−x <∞
)

−E
(
Xτ−z−x

= z − x, τ+
z < τ−z−x

)]
.

Then, using Kesten’s identity and the fact that Φ(0) = 0, we get

N
(
e(τ+

x ) = x, τ+
x < ζ

)
= lim
z→0+

1

z

[
σ2

2
W ′(x− z)− E

(
Pz

(
Xτ−z−x

= z − x, τ−z−x <∞
)
, τ+
z < τ−z−x

)]
= lim
z→0+

1

z

[
σ2

2
W ′(x− z)− Px

(
Xτ−0

= 0, τ−0 <∞
) W (x− z)

W (x)

]
= lim
z→0+

1

z

[
σ2

2
W ′(x− z)− σ2

2
W ′(x)

W (x− z)
W (x)

]
=
σ2

2
lim
z→0+

[
W ′(x− z)−W ′(x)

z
+
W ′(x)

z
− W ′(x)

W (x)

W (x− z)−W (x) +W (x)

z

]
=
σ2

2
lim
z→0+

[
W ′(x− z)−W ′(x)

z
− W ′(x)

W (x)

W (x− z)−W (x)

z

]
=
σ2

2

[
−W ′′(x) +

W ′(x)

W (x)
W ′(x)

]
=
σ2

2

[
[W ′(x)]2

W (x)
−W ′′(x)

]
,

where in the second line we used the strong Markov property at time τ+
z and the fact

that Xτ+
z

= z because of the absence of positive jumps. We conclude that

N
(
e(τ+

x ) = x, τ+
x < ζ

)
=
σ2

2

[
[W ′(x)]2

W (x)
−W ′′(x)

]
.
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For the other identity, consider g : R → R+ measurable and bounded. We will use
the fact that the potential of X̂ killed when it exits the closed interval [0, x] for the first
time is given in terms of scale functions, as can be seen in [12, Theorem 8.7]. Indeed,
we have

Û0g(z) : = Êz

(∫ τ+
x ∧τ

−
0

0

dtg(Xt)

)
= E−z

(∫ τ−−x∧τ
+
0

0

dtg(−Xt)

)

= Ex−z

(∫ τ−0 ∧τ
+
x

0

dtg(−Xt + x)

)

=

∫ x

0

dv

(
W (x− z)
W (x)

W (x− v)−W (x− z − v)

)
g(−v + x)

=

∫ x

0

dv

(
W (x− z)
W (x)

W (v)−W (v − z)
)
g(v).

This and the previous limit result of Chaumont and Doney allows to give an expression
for the potential up to τ+

x under N . Namely,

N

(∫ τ+
x

0

dtg(e(t)), τ+
x < ζ

)
= lim
z→0+

1

z

[
Êz

(∫ τ+
x ∧τ

−
0

0

dtg(Xt)

)]

= lim
z→0+

1

z

∫ x

0

dv

(
W (x− z)
W (x)

W (v)−W (v − z)
)
g(v)

=

∫ x

0

dv

(
W ′(v)− W (v)W ′(x)

W (x)

)
g(v),

where we have used that

1

z

(
W (x− z)
W (x)

W (v)−W (v − z)
)

=
1

z

(
W (x− z)−W (x) +W (x)

W (x)
W (v)−W (v − z)

)
=

(
W (x− z)−W (x)

z

W (v)

W (x)
− W (v − z)−W (v)

z

)
→W ′(v)− W (v)W ′(x)

W (x)
,

as z → 0+.

We will now use the compensation formula, as in the proof of Lemma 6.1, to com-
pute the joint law N (f(e(τ+

x −), e(τ+
x )), e(τ+

x ) > x, τ+
x < ζ) in terms of the jumps ∆s of

the excursion. Indeed, the event {τ+
x < ζ, e(τ+

x ) > x} is equivalent to the existence of
s ∈ (0, ζ) such that supr∈(0,s) e(r) < x and e(s−) + ∆s > x (observe that such s is unique
by definition). Define then

Gs(y) = f(e(s−), e(s−) + y)1{sup(0,s) e<x}1{e(s−)+y>x}1{s<ζ}, s > 0,

to write

f(e(τ+
x −), e(τ+

x )), 1{e(τ+
x )>x,τ+

x <ζ} =
∑

0<s<∞
Gs(∆s)1{∆s>0}.
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Using the compensation formula we get

N
(
f(e(τ+

x −), e(τ+
x )), 1{e(τ+

x )>x,τ+
x <ζ}

)
= N

( ∑
0<s<∞

Gs(∆s)1{∆s>0}

)

= N

(∫ ∞
0

ds

∫
(0,∞)

Π̂(dy)Gs(y)

)

= N

(∫ ∞
0

ds

∫
(0,∞)

Π̂(dy)f(e(s−), e(s−) + y)1{sup(0,s) e<x}1{e(s−)+y>x}1{s<ζ}

)

= N

(∫ ζ

0

ds1{sup(0,s) e<x}

∫
(0,∞)

Π̂(dy)f(e(s), e(s) + y)1{e(s)+y>x}

)

= N

(∫ ζ

0

ds1{τ+
x >s}

∫
(0,∞)

Π̂(dy)f(e(s), e(s) + y)1{e(s)+y>x}

)

= N

(∫ τ+
x

0

dsg(e(s)), τ+
x < ζ

)
,

where g(v) =
∫

(0,∞)
Π̂(dy)f(v, v+y)1{v+y>x}. Therefore, applying the previously obtained

formula for the potential under N , we conclude that

N
(
f(e(τ+

x −), e(τ+
x )), 1{e(τ+

x )>x,τ+
x <ζ}

)
=

∫ x

0

dv

(
W ′(v)− W ′(x)W (v)

W (x)

)
g(v)

=

∫ x

0

dv

(
W ′(v)− W ′(x)W (v)

W (x)

)∫
(−∞,0)

Π(dy)f(v, v − y)1{v−y>x}

=

∫ x

0

d`

(
W ′(x− `)− W ′(x)W (x− `)

W (x)

)∫
(−∞,0)

Π(dy)f(x− `, x− `− y)1{x−`−y>x}

=

∫ x

0

d`W (x− `)
(
W ′(x− `)
W (x− `)

− W ′(x)

W (x)

)∫
(−∞,0)

Π(dy)f(x− `, x− `− y)1{0>`+y},

completing the proof.

The next result is an auxiliary lemma to compute the law of the overshoot under N̂x.

Lemma 6.3. Let x > 0, q ≥ 0 and f : R→ R+ measurable and bounded. Then,

N0

(∫ τ+
x (e)∧τ−0 (e)

0

e−qtf(e(t))dt

)
=

∫ x

0

W (q)(x− y)

W (q)(x)
f(y)dy. (6.3)

Proof of Lemma 6.3. Denote by τ(e) = τ+
x (e)∧ τ−0 (e). From the Markov property at time

ε > 0, we have

N0

(∫ τ+
x (e)∧τ−0 (e)

0

e−qtf(e(t))dt

)

= lim
ε→0+

N0

(∫ τ(e)

ε

e−qεe−q(t−ε)f(e(t))dt, ε < ζ ∧ τ(e)

)

= lim
ε→0+

N0

(
Ee(ε)

[∫ τ+
x ∧τ

−
0

0

e−qtf(Xt)dt

]
, ε < eq ∧ ζ ∧ τ(e)

)
,
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where eq is an independent exponential random variable of parameter q. On one hand,
by the resolvent formula in [11, Theorem 2.7], we have that for any z ∈ (0, x],

Ez

[∫ τ+
x ∧τ

−
0

0

e−qtf(Xt)dt

]
=

∫ x

0

[
W (q)(x− y)

W (q)(x)
W (q)(z)−W (q)(z − y)

]
f(y)dy

= W (q)(z)

∫ x

0

[
W (q)(x− y)

W (q)(x)
− W (q)(z − y)

W (q)(z)
1{y≤z}

]
f(y)dy.

Therefore,

lim
z→0+

1

W (q)(z)
Ez

[∫ τ+
x ∧τ

−
0

0

e−qtf(Xt)dt

]
=

∫ x

0

W (q)(x− y)

W (q)(x)
f(y)dy,

as a consequence of the dominated convergence theorem, since 0 ≤ W (q)(x−y)
W (q)(x)

≤ 1, f
is bounded and 1{y≤z} ↓ 0 as z ↓ 0. On the other hand, from [18, Lemma 3], there is a
function hq such that

lim
z→0+

hq(z)

W (q)(z)
= 1− σ2

2
Φ′(q)Φ(q).

Actually, the result is for the quotient hq(z)/W (z), but it is also proven there that
W (q)(z)/W (z)→ 1 as z → 0, which leads to the above limit. Additionally, from the proof
of their Theorem 3 [18, pp. 97], the function hq also satisfies

lim
ε→0+

N0

(
hq(e(ε)), ε < ζ ∧ τ−0 (e)

)
= 1− σ2

2
Φ′(q)Φ(q).

Furthermore, from here we can also prove that

lim
ε→0+

N0 (hq(e(ε)), ε < eq ∧ ζ ∧ τ(e)) = 1− σ2

2
Φ′(q)Φ(q),

since, for ε small, the N0− measure of excursions that surpass level x in [0, ε] is small
and tends to 0 as ε→ 0+ and also 1{eq>ε} ↑ 1 as ε→ 0+. Putting all the previous pieces
together, and using that on the event ε < τ(e) the excursion is positive in (0, ε], we
conclude using a dominated convergence argument that

N0

(∫ τ+
x (e)∧τ−0 (e)

0

e−qtf(e(t))dt

)

= lim
ε→0+

N0

(
Ee(ε)

[∫ τ+
x ∧τ

−
0

0

e−qtf(Xt)dt

]
, ε < eq ∧ ζ ∧ τ(e)

)

= lim
ε→0+

N0

(
1

W (q)(e(ε))
Ee(ε)

[∫ τ+
x ∧τ

−
0

0

e−qtf(Xt)dt

]
W (q)(e(ε))

hq(e(ε))
hq(e(ε))1{ε<eq∧ζ∧τ(e)}

)

=

∫ x

0

W (q)(x− y)

W (q)(x)
f(y)dy.

This lemma gives the law of the overshoot under N̂x in terms of the scale function W
and the jump measure Π.

Lemma 6.4. Let g : R→ R+ measurable and bounded and denote by Π̂(dy) = Π(−dy).
Then,

N̂x
(
g(Ox), τ−0 > ζ, Ex±

)
=

∫ x

0

dz
W (x− z)
W (x)

∫
(0,∞)

Π̂(dy + z)g(y).
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Proof of Lemma 6.4. By space invariance and duality, we have that

N̂x
(
g(Ox), τ−0 > ζ, Ex±

)
= N̂0

(
g(O0), τ−−x > ζ, E±

)
= N0

(
g(−U0), τ+

x > ζ, E±
)
,

which is almost the law of the undershoot we have computed in Lemma 6.1 but with the
additional condition {τ+

x > ζ}, which means that the excursion prior to τ−0 does not go
above x. Let h(u, b) := g(−u). Mimicking the computations in the proof of the op. cit.
lemma but now considering

Gs(y) = h(e(s−) + y, e(s−))1{y<0}1{e(s−)∈(0,x)}1{e(s−)+y<0}1{s<ζ}1{supr∈(0,s) e(r)<x},

we get that

N0

(
g(−U0), τ+

x > ζ, E±
)

= N0

(∫ ∞
0

ds

∫
(−∞,0)

Π(dy)Gs(y)

)

= N0

(∫ ζ

0

ds1{e(s)∈(0,x)}1{supr∈(0,s) e(r)<x}

∫
(−∞,0)

Π(dy)h(e(s) + y, e(s))1{e(s)+y<0}

)

= N0

(∫ ζ

0

ds1{e(s)∈(0,x)}1{s<τ−0 ∧τ
+
x }

∫
(−∞,0)

Π(dy)h(e(s) + y, e(s))1{e(s)+y<0}

)

= N0

(∫ τ+
x ∧τ

−
0

0

ds1{e(s)>0}h̃(e(s))

)
.

Applying Lemma 6.3, we obtain the claimed identity.

7 Proofs

We start by presenting the proof that the local time process (Lyτ(c), y ∈ R) is infinitely
divisible and its Poissonian representation.

Proof of Theorem 3.1. Recall from Section 2 that

σ0
s = inf{t > 0 : L0

t (X) > s}, s > 0,

is the right continuous inverse of the local time at zero. Then, for those times s such that
σ0
s > σ0

s− := limt↑s σ
0
t , we define the excursion away from zero at local time s by

e0
s(u) = Xσ0

s−+u, u ∈ [0, σ0
s − σ0

s−],

and the set of excursions {(s, e0
s) : s > 0} is a Poisson point process of intensity ds⊗N0(de).

Let M(ds, de) be the corresponding Poisson point measure. From the occupation formula,
for any function f measurable and bounded we have

∫
R

Lyτ(c)(X)f(y)dy =

∫ τ(c)

0

f(Xt)dt.

On the other hand, by regularity of X for (−∞, 0) and (0,∞) (which is a consequence
of hypothesis (A)), we can decompose the integral on the right hand side into the
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contributions of each excursion away from zero as∫ τ(c)

0

f(Xt)dt =
∑

0<s<c

∫ σ0
s

σ0
s−

f(Xt)dt =
∑

0<s<c

∫ ζ(e0
s)

0

f(e0
s(t))dt

=
∑

0<s<c

∫
R

`yζ(e0
s)

(e0
s)f(y)dy

=

∫
R

( ∑
0<s<c

`yζ(e0
s)

(e0
s)

)
f(y)dy,

where in the second in last line we used again the occupation density formula for the
local times of each excursion. We can write the last line in terms of M as∫

R

`yζ(e0
s)

(e0
s)f(y)dy =

∫
R

(∫ c

0

∫
D
`yζ(e)(e)M(ds, de)

)
f(y)dy.

Therefore, ∫
R

`yτ(c)f(y)dy =

∫
R

(∫ c

0

∫
D
`yζ(e)(e)M(ds, de)

)
f(y)dy,

and since this holds for any measurable and bounded function f , we conclude that

Lyτ(c)(X) =

∫ c

0

∫
D
`yζ(e)(e)M(ds, de),

for a.e.-y. Then, the full identity follows using the right continuity in the space variable
of local times. Finally, if K̃ is the image of M under the function that maps e to its local
times (hence with intensity ds⊗ M̃(d`) and M̃(d`) being the image of N0 under the same
map) then

Lyτ(c)(X) =

∫ c

0

∫
D
`(y)K̃(ds, d`).

We now prove the infinite divisibility. From the strong Markov property of X and the
fact that local times are additive, it follows that for any n ≥ 1 we can split the local times
into the information up to τ(c/n) and the information after as

Lyτ(c)(X) = Lyτ(c/n)(X) + Lyτ(c)(X) ◦ θτ(c/n), y ∈ R.

Since Xτ(c/n) = 0, we can write Lyτ(c)(X) ◦ θτ(c/n) in terms of the process (X̃t :=

Xτ(c/n)+t, t ≥ 0) which is independent of the information up to τ(c/n) and has the
same law of X. Indeed,

Lyτ(c)(X) ◦ θτ(c/n) = Ly
τ̃(n−1

n c)
(X̃),

where τ̃(n−1
n c) is the first time X̃ accumulates n−1

n c units of local time at 0. Hence,

Lyτ(c)(X) = Lyτ(c/n)(X) + Ly
τ̃(n−1

n c)
(X̃).

Repeating the argument for X̃ and using induction, we conclude that we can write

Lyτ(c)(X)
(d)
=

n∑
k=1

Lyτk(c/n)(X
(k)), y ∈ R,

where X(k) are i.i.d. copies of X starting from zero and the stopping times τk(c/n) =

inf
{
t > 0 : L0

t (X
(k)) > c/n

}
are the first times each copy accumulates c/n units of local
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time at 0. This proves that the local time process is infinitely divisible. We can identify
the associated Lévy measure µ(c), that is, a measure that satisfies

E
[
e
−
∫
R
f(y)Ly

τ(c)
(X)dy

]
= exp

{
−
∫
RR+

(
1− e−

∫
R
f(y)ω(y)dy

)
µ(c)(dω)

}
,

for any non-negative, measurable and bounded function f . Using the occupation formula
one has that ∫

R

f(y)Lyτ(c)(X)dy =

∫ τ(c)

0

f(Xs)ds,

and decomposing the integral on the right hand side into excursions away from 0 as
before, from the exponential formula we obtain

E
[
e−
∫ τ(c)
0 f(Xs)ds

]
= exp

{
−c
∫
D

(
1− e−

∫
R
f(y)`yζ (e)dy

)
N0(de)

}
.

The latter yields the following identity for the Lévy measure of local times up to τ(c),

µ(c)(dω) = cN0(`·ζ ∈ dω).

We now present the proof of the expression of the refined version of the Lévy
measure µ(c).

Proof of Theorem 3.2. For the representation of N0 in the set E± we just condition on the
overshoot and undershoot (O0,U0) of the excursion e and use the strong Markov property
at time τ−0 to get the conditional independence of the paths e←− and e−→. Lemma 6.1 pro-
vides an expression for the joint density of (O0,U0), proving the second expression. And
for the last one, using the occupation formula and decomposing the path in excursions
away from the supremum as in the proof of Proposition 2.1, one obtains for u < 0

E0
u

(
e−
∫
(−∞,0)

f−(y)Lyζdy
)

= Eu

(
e−
∫ τ+

0
0 f−(Xr)dr

)
= exp

{
−
∫ 0

u

dsN
[
1− e−

∫ ζ
0
f−(s−e(r))dr

]}
=Wf−,u(−u).

Proceeding analogously for b > 0, we obtain the desired expression for the Laplace
transform.

The next proof concerns the Poissonian representation of (Lyτ(c), y ∈ R) involving the
overshoots and undershoots.

Proof of Theorem 3.3. We only show equation (3.6), as the proof of (3.7) is analogous.
We will do it by considering Laplace transforms. Let f : (0,∞) → R+ measurable and
bounded and call G(y) the right hand side of (3.6). For an element Y ∈M, the space of
Poisson random measures, we will denote by 〈Y, F 〉 at the integral of a functional F with
respect to Y . In particular, when F is the functional

∫∞
0
f(y)`y−·ζ (·)1{y−·>0}dy, recalling

that a Poisson random measure Y ∈M is written in terms of its atoms Y =
∑
r>0 δ(r,er),

we have that

〈Y, F 〉 =

〈
Y,

∫ ∞
0

f(y)`y−·ζ (·)1{y−·>0}dy

〉
=
∑
r>0

∫ ∞
0

f(y)`y−rζ (er)1{y−r>0}dy.
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Using that M+ and M1
± are independent we have that

E

[
exp

{
−
∫ ∞

0

f(y)G(y)dy

}]
= E

[
exp

{
−
∫ c

0

∫
D

(∫ ∞
0

f(y)`yζ (e)dy

)
M+(ds, de)

}]
× E

[
exp

{
−
∫ c

0

∫
(0,∞)

∫
M

〈
Y,

(∫ ∞
0

f(y)`y−·ζ (·)1{y−·>0}dy

)〉
M1
±(ds, db, dY )

}]
.

Using the exponential formula, the first term equals

E

[
exp

{
−
∫ c

0

∫
D

(∫ ∞
0

f(y)`yζ (e)dy

)
M+(ds, de)

}]
= exp

{
−
∫ c

0

∫
D
dsN0(de, E+)(1− e−

∫∞
0
f(y)`yζdy)

}
= exp

{
−cN0

(
1− e−

∫∞
0
f(y)`yζdy, E+

)}
.

Similarly,

E

[
exp

{
−
∫ c

0

∫
(0,∞)

∫
M

〈
Y,

(∫ ∞
0

f(y)`y−·ζ (·)1{y−·>0}dy

)〉
M1
±(ds, db, dY )

}]

= exp

{
−
∫ c

0

∫
(0,∞)

∫
M
dsN0(O0 ∈ db, E±)κ̂(b, dY )

(
1− e−〈<Y,

∫∞
0
f(y)`y−·ζ (·)1{y−·>0}dy〉

)}

= exp

{
−c
∫

(0,∞)

dbΠ(−∞,−b)E

(
1− exp

{
−
∑

0<r<b

∫ ∞
0

f(y)`y−rζ (er)1{y−r>0}dy

})}

= exp

{
−c
∫

(0,∞)

dbΠ(−∞,−b)

(
1− exp

{
−
∫ b∧y

0

drN
(

1− e−
∫∞
0
f(y)`y−rζ dy

)})}
.

Therefore, comparing with the Laplace transform in Theorem 3.2, we conclude that

E

[
exp

{
−
∫ ∞

0

f(y)G(y)dy

}]
= E

[
exp

{
−
∫ ∞

0

f(y)Lyτ(c)(X)dy

}]
,

which proves the Poissonian representation of local times.

The following proof concerns the Poissonian representation and the infinite divisibility
property of the local time process (La−z

τ+
a

(X), z ≥ 0).

Proofs of Theorem 4.1. Let M ′(ds, de) be the Poisson point measure of excursions away
from the supremum and f : R2 → R+ measurable and bounded. Again, hypothesis (A)
implies that 0 is regular for both (−∞, 0) and (0,∞) and [12, Th.6.7] implies that the set
of times in which X reaches new suprema on compact intervals has Lebesgue measure
0. Therefore, we have the following decomposition:∫ τ+

a

0

f(St −Xt, Xt)dt =
∑

0<v<a

∫ τ+
v

τ+
v−

f(St −Xt, Xt)dt

=
∑

0<v<a

∫ ζ(ev)

0

f(ev(t), v − ev(t))dt.
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Applying the occupation density formula, we can express the latter quantity in terms
of M ′ as∑

0<v<a

∫ ζ(ev)

0

f(ev(t), v − ev(t))dt =
∑

0<v<a

∫
R

f(u, v − u)`uζv(e)(e)du

=
∑

0<v<a

∫
[0,∞)

f(u, v − u)`uζv(e)(e)du

=

∫
[0,∞)

(∫ a

0

∫
D
f(u, s− u)`uζ(e)(e)M ′(ds, de)

)
du.

Now we use Fubini’s theorem and the change of variables z = s− u to obtain∫ τ+
a

0

f(St −Xt, Xt)dt =

∫ a

0

∫
D

(∫
R

f(s− z, z)`s−zζ(e)(e)1{s−z≥0}dz

)
M ′(ds, de)

=

∫
(−∞,a]

(∫ a

0

∫
D
`s−zζ(e)(e)1{s−z≥0}M

′(ds, de)

)
f(s− z, z)dz.

On the other hand, from the occupation formula for X and taking f only depending
on the second entry we have∫

(−∞,a]

f(z)Lz
τ+
a

(X)dz =

∫ τ+
a

0

f(Xt)dt

=

∫
(−∞,a]

(∫ a

0

∫
D
`s−zζ(e)(e)1{s−z>0}M

′(ds, de)

)
f(z)dz,

and since this holds for any test function f , we conclude that

Lz
τ+
a

(X) =

∫ a

0

∫
D
`s−zζ(e)(e)1{s−z>0}M

′(ds, de)

for almost every z ∈ (−∞, a]. The last equality holds for all z by using the right continuity
of local times.

To complete the proof we focus on the reversed process La−z
τ+
a

(X), with z ≥ 0.
Since Lebesgue measure is invariant under translations, the Poisson point measure
M(ds, de) := M ′(a− ds, de) for s ∈ [0, a] has the same intensity as M restricted to [0, a].
Hence, we can write

La−z
τ+
a

(X) =

∫ a

0

∫
D
`s−a+z
ζ(e) (e)1{s−a+z>0}M

′(ds, de)

=

∫ a

0

∫
D
`z−sζ(e)(e)1{z−s>0}M(ds, de)

=

{∫ z
0

∫
D `

z−s
ζ(e)(e)M(ds, de), z ∈ [0, a],∫ a

0

∫
D `

z−s
ζ(e)(e)M(ds, de), z ≥ a,

=

{∫ z
0

∫
D e(z − s)K(ds, de), z ∈ [0, a],∫ a

0

∫
D e(z − s)K(ds, de), z ≥ a,

which concludes the result.
We now show that local times are infinitely divisible. We split the information up to

τ+
a/n and after to obtain for any n ≥ 1 that

Lx
τ+
a

(X) = Lx
τ+
a/n

(X) + Lx
τ+
a

(X) ◦ θτ+
a/n
, x ∈ R.
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Since Xτ+
a/n

= a/n, we can write Lx
τ+
a

(X) ◦ θτ+
a/n

in terms of the process (X̃t := Xτa/n+t −
a/n, t ≥ 0), which is independent of the information up to τ+

a/n and has the same law as
X started from 0. Indeed,

Lx
τ+
a

(X) ◦ θτ+
a/n

= L
x−a/n
τ̃+
n−1
n

a

(X̃), x ∈ R,

where τ̃+
n−1
n a

is the first passage time above n−1
n a for X̃. Applying this argument induc-

tively, we conclude that

Lx
τ+
a

(X)
(d)
=

n∑
k=1

L
x− k−1

n a

τ+,k
a/n

(X(k)), x ∈ R,

where X(k) are i.i.d. copies of X started from 0 and τ+,k
a/n are the corresponding first

passage times above a/n. This implies the infinite divisibility of (Lx
τ+
a

(X), x ∈ R).

We now identify the corresponding Lévy measure. Indeed, using that∫ ∞
0

f(y)La−y
τ+
a

(X)dy =

∫ a

−∞
f(a− z)Lz

τ+
a

(X)dz =

∫ τ+
a

0

f(a−Xs)ds

and decomposing the last integral into excursions away from the supremum, again from
the exponential formula one gets

E

[
e−
∫ τ+
a

0 f(a−Xs)ds
]

= exp

{
−
∫ a

0

∫
D

(
1− e−

∫ ζ
0
f(a−s+e(r))dr

)
N(de)ds

}
= exp

{
−
∫ a

0

∫
D

(
1− e−

∫∞
0
f(a−s+z)`zζ(e)dz

)
N(de)ds

}
= exp

{
−
∫ a

0

∫
D

(
1− e−

∫∞
0
f(s+z)`zζ(e)dz

)
N(de)ds

}
= exp

{
−
∫ a

0

∫
D

(
1− e−

∫∞
0
f(y)`y−sζ (e)1{y−s>0}dy

)
N(de)ds

}
.

Therefore, we can write

E

[
e
−
∫∞
0
f(y)La−y

τ
+
a

(X)dy
]

= exp

{
−
∫
RR+

(
1− e−

∫
R
f(y)ω(y)dy

)
ν(a)(dω)

}
,

where

ν(a)(dω) =

∫ a

0

dsN(`·−sζ 1{·−s>0} ∈ dω).

The following two proofs show the law of local times prior to the first hitting time of
a positive level x and between the first and last visits to it.

Proof of Theorem 4.2. For x > 0, it might happen that τ+
x (e) = Tx(e), which implies

that the excursion reaches x for the first time continuously and coming from below.
In this case, LyTx(e)(e) = 0 for any y > x. Then, we only have to deal with the case

τ+
x (e) < Tx(e) < ζ(e) in which the excursion goes above x for the first time by a jump,

hence having a first strictly positive overshoot Ox(e) with respect to x. Conditionally
on Ox(e) = b > 0, by the strong Markov property the path between τ+

x (e) and Tx(e) has
the law Êxx+b, which is the law of X̂ started from x+ b and killed when it reaches x for
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the first time. This, together with the expression for the law of the overshoots from
Lemma 6.2 implies

N
[
F (`yTx , y > x), H > x

]
= N

[
F (`yTx , y > x)1{τ+

x <Tx<ζ}

]
= N

[
1{τ+

x <Tx<ζ}Ê
x
e(τ+

x )

(
F (LyTx , y > x)

)]
=

∫
(0,∞)

N(Ox ∈ db, τ+
x < Tx < ζ)Êb

(
F (Ly−x

τ−0
, y > x)

)
,

and for each y > x, the total local time Ly−x
τ−0

(X) is decomposed under Êb in the contribu-

tions to it of the excursions away from the infimum {(r, er), r > 0} as

Ly−x
τ−0

(X) =
∑

0<r<b

Ly−x−rζ(er) (er)1{y−x>r}.

Hence,

N
[
F (`yTx , y > x), H > x

]
=

∫
(0,∞)

N(Ox ∈ db, τ+
x < Tx < ζ)Êb

(
F

( ∑
0<r<b

Ly−x−rζ(er) (er)1{y−x>r}, y > x

))

=

∫
(0,∞)

N(Ox ∈ db, τ+
x < Tx < ζ)κ̂(b, F (Ly−xζ , y > x)),

proving the result. For the particular case, we have

N

[
exp

{
−
∫ ∞
x

f(y)`yTxdy

}
, H > x

]
= N

[
1{τ+

x <Tx<ζ} exp

{
−
∫ Tx

0

f(e(s))1{e(s)>x}ds

}]

=

∫
(0,∞)

N(Ox ∈ db, τ+
x < Tx < ζ)Êxx+b

(
exp

{
−
∫ ζ

0

f(Xs)1{Xs>x}ds

})
.

For the expected value, we use duality to obtain

Êxx+b

(
exp

{
−
∫ ζ

0

f(Xs)ds

})
= E0

(
exp

{
−
∫ τ+

b

0

f(x+ b−Xs)ds

})

and we decompose as usual the right hand side into excursions away from the supre-
mum:

E0

(
exp

{
−
∫ τ+

b

0

f(x+ b−Xs)ds

})
= exp

{
−
∫ b

0

dsN
[
1− e−

∫ ζ
0
drf(x+b−s+e(r))

]}
.

And by defining fx,b(z) := f(x+ b− z), z < b we have that

exp

{
−
∫ b

0

dsN
[
1− e−

∫ ζ
0
drf(x+b−s+e(r))

]}
= exp

{
−
∫ b

0

dsN
[
1− e−

∫ ζ
0
drfx,b(s−e(r))

]}
=Wfx,b(b).
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Proof of Theorem 4.3. Equation (4.2) comes from the strong Markov Property. Since X
has no positive jumps, paths under N have no negative jumps. Hence, in the event H > x

we necessarily have that Tx(e) < ζ(e), that is, the excursion hits x before its lifetime.
Conditioning on Tx(e), in which we know that e(Tx) = x, from the Markov property we
have

N

(
exp

{
−
∫ ∞
x

f(y)`yζ ◦ θTxdy
}
, H > x

)
= N

(
Êx

[
exp

{
−
∫ ∞
x

f(y)Ly
τ−0
dy

}]
, H > x

)
= N (H > x) Êx

[
exp

{
−
∫ ∞
x

f(y)Ly
τ−0
dy

}]
.

From here, to compute the expected value we could proceed as in the last part of the
previous proof, since by the occupation formula,

Êx

[
exp

{
−
∫ ∞
x

f(y)Ly
τ−0
dy

}]
= E

[
exp

{
−
∫ τ+

x

0

f(x−Xs)1{Xs<0}ds

}]
.

Nonetheless, in order to emphasize the role of the excursion overshoots and give
insight in the branching-like structure of local times, we will next make the computation
in a different way. Indeed, recall that under Êx, the local time Lx

τ−0
determines the

number of excursions away from x that the dual process X̂ performs before passing
below 0. Actually, we will verify that it follows an exponential distribution of parameter
N̂x(τ−0 < ζ). Hence, conditionally on this quantity, we will determine the value of the
additive functional

∫∞
x
f(y)Ly

τ−0
dy from the contributions of each of the excursions from x.

We begin with the distribution of Lx
τ−0

. For any t > 0, under Êx, the event {Lx
τ−0

> t}
corresponds to the event in which none of the excursions away from x up to local time t
has visited (−∞, 0). By denoting {(s, êxs ) : s > 0} the Poisson point process of excursions
away from x, with corresponding intensity measure N̂x, we have

P̂x

(
Lx
τ−0

> t
)

= P̂x
(
#
{

(s, êxs ) : 0 < s ≤ t, τ−0 (êxs ) < ζ(êxs )
}

= 0
)

= e−tN̂x(τ
−
0 <ζ)

= e−q
0
xt,

which proves the assertion. We now compute q0
x. Observe that, by duality, N̂x(τ−0 < ζ) =

N0(τ+
x < ζ). Intersecting the latter event with the partition of the set of excursions away

from 0, we obtain

N0(τ+
x < ζ) = N0(τ+

x < ζ, E+) +N0(τ+
x < ζ, E−) +N0(τ+

x < ζ, E±)

= N0(τ+
x < ζ, τ−0 = ζ) +N0(τ+

x < ζ, τ−0 = 0) +N0(τ+
x < ζ, 0 < τ−0 < ζ)

= N0(τ+
x < τ−0 = ζ) +N0(τ+

x < τ−0 < ζ).

From the last identity on the proof of Theorem 3 in [18], there exists a constant c+ (which
is equal to 1 using the same argument as in the proof of Lemma 6.2) such that

N0(τ+
x < τ−0 < ζ) = c+N(τ+

x < ζ, e(ζ−) > 0),

whilst from (ii) in the same theorem we have that

N0(τ+
x < τ−0 = ζ) = c+N(τ+

x < ζ, e(ζ−) = 0).

Adding these two identities we obtain

q0
x = N0(τ+

x < ζ) = N(τ+
x < ζ),
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and it is known that this last quantity equals 1
W (x) (see [1, Proposition 15, Ch. VII]).

Now, conditionally on Lx
τ−0

, we decompose the functional
∫∞
x
f(y)Ly

τ−0
dy into the sum

of the corresponding contribution of each excursion away from x: (êxs , 0 < s < Lx
τ−0

).

As pointed above, each one of these excursions satisfy τ−0 (êxs ) > ζ(êxs ). Using the
exponential formula we obtain

Êx

[
exp

{
−
∫ ∞
x

f(y)Ly
τ−0
dy

}]
=

∫ ∞
0

drq0
xe
−rq0

xÊx

[
exp

{
−
∑

0<s<r

∫ ∞
x

f(y)`yζ (êxs )dy

}]

=

∫ ∞
0

drq0
xe
−rq0

x exp
{
−rN̂x

[
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

]}
= Êx

[
exp

{
−Lx

τ−0
N̂x

[
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

]}]
=

q0
x

q0
x + N̂x

[
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

]
=

1

1 +W (x)N̂x

[
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

] ,
which implies the first part of the theorem.

For the second part, we know that under N̂x, excursions away from x are partitioned
into those completely above x (Ex+), those completely below x (Ex−) and those starting
below and then jumping above x (Ex±). Excursions in Ex− do not contribute to the local
times of levels bigger than x and hence we restrict to the other two sets. In Ex+, the
condition τ−0 (e) > ζ(e) is automatically fulfilled, so we can omit it. Finally, for an
excursion in Ex±, there is an unique positive overshoot Ox(e) at time τ+

x (e) and the part
of the excursion contributing to levels y > x is from τ+

x (e) to ζ(e), which, conditionally
on Ox(e) = b, we have seen that has the law Êxx+b and therefore can be decomposed
into excursions away from the infimum, as in the proof of Theorem 4.2. Using the
computations there we have that

N̂x

[
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ, Ex±

]
=

∫ ∞
0

N̂x(Ox ∈ db, τ−0 > ζ, Ex±)Êx+b

[
1− e

−
∫∞
x
f(y)Ly

τ
−
x
dy
]

=

∫ ∞
0

N̂x(Ox ∈ db, τ−0 > ζ, Ex±)

[
1− exp

{
−
∫ b

0

dsN
[
1− e−

∫∞
x
f(y)`y−x−sζ 1{y−s>x}dy

]}]
,

which concludes the proof.

Finally, the proofs of the proposition relative to the scale function Wf and the
propositions from Section 6 can be found below.

Proof of Proposition 2.1. The functionWf from (1.5) is well defined, since

lim
b→−∞

Wf (0, b)

Wf (x, b)
= lim
b→−∞

W (−b)
W (x− b)

exp

{
−
∫ x

0

dsN
(

1− e−
∫ ζ
0
drf(s−e(r)), H < s− b

)}
= lim
b→∞

W (b)

W (x+ b)
exp

{
−
∫ x

0

dsN
(

1− e−
∫ ζ
0
drf(s−e(r)), H < s+ b

)}
.

The first quotient equals P0(τ+
x < τ−−b) and converges to P0(τ+

x <∞) when b→∞, which
is equal to one because of hypothesis (B1) or (B2). And when b → ∞, the condition
H < s+ b inside the exponential is replaced by H <∞ but again, since under (B1) or
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(B2) we have lim supt→∞Xt = ∞, this implies that the excursions with infinite height
have zero mass under N .

Now let us check that Gf defined as in the statement coincides withWf and solves
equation (2.1). For x > 0, assumptions (B1) and (B2) imply that lim supt→∞Xt = ∞
and therefore τ−0 <∞ P̂x− a.s. Then, for x > 0,

Gf (x) = Êx

[
exp

{
−
∫ τ−0

0

dsf(x−Xs)

}]

= 1− Êx

[
1− exp

{
−
∫ τ−0

0

dsf(x−Xs)

}]

= 1− Êx

[∫ τ−0

0

dtf(x−Xt) exp

{
−
∫ τ−0

t

dsf(x−Xs)

}]
,

where in the last line we use the fact that if f̃(t) := exp
{
−
∫ τ−0
t

dsf(x−Xs)
}

, t ∈ [0, τ−0 ],

then f̃ ′(t) = f(x−Xt)f̃(t) and f̃(τ−0 )− f̃(0) = 1− exp
{
−
∫ τ−0

0
dsf(x−Xs)

}
. Applying the

Markov property at time t inside the expression in the last line we obtain

Gf (x) = 1− Êx

[∫ τ−0

0

dtf(x−Xt)ÊXt

[
exp

{
−
∫ τ−0

0

dsf(x−Xs)

}]]

= 1− Êx

[∫ τ−0

0

dtf(x−Xt)Gf (Xt)

]
,

which can be written in terms of the potential Û0 of X̂ killed at τ−0 as

Gf (x) = 1−
∫ ∞

0

Û0(x, dz)f(x− z)Gf (z).

According to [12, Corollary 8.8], Û0 can also be expressed in terms of scale functions as

Gf (x) = 1−
∫ ∞

0

dz(W (x)−W (x− z))f(x− z)Gf (z).

This and the fact that Gf (0) = 1 because of the assumption of unbounded variation,
implies the equation (2.1).

For the other part, we notice that

Gf (x) = Êx

[
exp

{
−
∫ τ−0

0

dsf(x−Xs)

}]
= E−x

[
exp

{
−
∫ τ+

0

0

dsf(x+Xs)

}]

= E0

[
exp

{
−
∫ τ+

x

0

dsf(Xs)

}]
,

and decomposing into excursions away from the supremum between 0 and x and using
the exponential formula we get

Gf (x) = exp

{
−
∫ x

0

dsN
[
1− e−

∫ ζ
0
duf(s−e(u))

]}
= exp

{
−
∫ x

0

dsgf (s)

}
,

which also proves that Gf (x) =Wf (x). The relation d
dx (− logGf )(x) = gf (x) now follows

from a simple differentiation of the latter equation.
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Proof of Proposition 4.5. We start by noticing that

N
((

1− e−λ`
x
ζ−
∫∞
x
f(y)`yζdy

)
1{H<x}

)
= 0,

since for an excursion to accumulate local time at x and the levels above, it must have
height bigger that x. Then, on the event H > x, applying the Markov property at time
Tx(e) we have that

N
(

1− e−λ`
x
ζ−
∫∞
x
f(y)`yζdy

)
= N

((
1− e−λ`

x
ζ−
∫∞
x
f(y)`yζdy

)
1{H>x}

)
= N

((
1− e−

∫∞
x
f(y)`yTxdy

)
1{H>x}

)
+N

(
e−
∫∞
x
f(y)`yTxdyÊx

[
1− e

−λLx
τ
−
0

−
∫∞
x
f(y)Ly

τ
−
0

dy
]

1{H>x}

)
.

It is known that under Êx the total local time at x up to the first passage time below
0, Lx

τ−0
, follows an exponential distribution of parameter qx = N̂x(τ−0 < ζ) (see the proof

of Theorem 4.3). Also note that the total local time at levels y1, . . . yn > x, is the addition
of the accumulated local time inside each excursion from x. This implies

Êx

[
1− e

−λLx
τ
−
0

−
∫∞
x
f(y)Ly

τ
−
0

dy
]

= Êx

[
1− e

−λLx
τ
−
0

−
∑

0<t<Lx

τ
−
0

∫∞
x
f(y)`yζ (ext )dy

]
.

Denote by (exs (τ−0 > ζs), s > 0) the excursions away from x that occur before τ−0 .
Then,

Êx

[
e
−λLx

τ
−
0

−
∫∞
x
f(y)Ly

τ
−
0

]
=

∫ ∞
0

dtqxe
−tqx−λtÊx

(
exp

{
−
∑

0<s<t

∫ ∞
x

f(y)`yζ (exs (τ−0 > ζs))dy

})

=

∫ ∞
0

dtqxe
−tqx−λt exp

{
−tN̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)}
=

∫ ∞
0

dtqx exp
{
−t
[
qx + λ+ N̂x

(
1− e−

∫∞
x
f(y)`yζdy, τ−0 > ζ

)]}
,

where the second equation holds by the exponential formula. Recalling that ux(f) =

N̂x

(
1− e−

∫∞
x
f(y)`yζ , τ−0 > ζ

)
= N0

(
1− e−

∫∞
x
f(x−y)`yζdy, τ+

x > ζ
)

, we conclude

Êx

[
1− e

−λLx
τ
−
0

−
∫∞
x
f(y)Lyζ

]
= Êx

[
1− e

−(λ+ux(f))Lx
τ
−
0

]
.

Using this, we get

N
(

1− e−λ`
x
ζ−
∫∞
x
f(y)`yζdy

)
= N

((
1− e−

∫∞
x
f(y)`yTxdy

)
1{H>x}

)
+N

(
e−
∫∞
x
f(y)`yTxdyÊx

[
1− e

−λLx
τ
−
0

−
∫∞
x
f(y)Ly

τ
−
0

]
1{H>x}

)
= N

((
1− e−

∫∞
x
f(y)`yTxdy

)
1{H>x}

)
+N

(
e−
∫∞
x
f(y)LyTxdyÊx

[
1− e

−(λ+ux(f))Lx
τ
−
0

]
1{H>x}

)
= N

((
1− e−(λ+ux(f))`xζ◦θTx−

∫∞
x
f(y)`yTxdy

)
1{H>x}

)
= N

(
1− e−(λ+ux(f))`xζ−

∫∞
x
f(y)`yTxdy

)
,
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where the last expression follows from the fact that since an excursion does not accumu-
late local time at x prior to its first visit to it, then `xζ (e) ◦ θTx(e) = `xζ (e). The result on
the joint law of local times at n different points, `y1

ζ , . . . , `
yn
ζ is proved in the same way,

just replacing everywhere the integral by the sum
∑n
k=1 βk`

yk
ζ .

Proof of Proposition 4.6. By the Markov property under N applied at time Ty

uy(λ) = N
(

1− e−λ`
y
ζ

)
= N

((
1− e−λ`

y
ζ

)
1{H>y}

)
= N (H > y)−N

(
e−λ`

y
ζ1{H>y}

)
= N (H > y)−N (H > y) Êy

(
e
−λLy

τ
−
0

)
= N (H > y)−N (H > y) Ê

(
e
−λL0

τ
−
−y

)
As in the proof of Theorem 4.3, L0

τ−−y
follows an exponential distribution with parameter

N̂0(τ−−y < ζ) under Ê, where we have also calculated that

N̂0(τ−−y < ζ) = N0(τ+
y < ζ) =

1

W (y)
, y > 0.

The rest of the calculation now follows from the fact that

N (H > y) =
W ′(y)

W (y)
, y > 0,

(see [12, Lemma 8.2]).

Proof of Proposition 4.7. Observe that vx,y(λ) = N̂0
x

(
1− e−λ`

y
ζ

)
. Since the excursion

does not accumulate local time if the path does not reach y, then

N̂0
x

(
1− e−λ`

y
ζ

)
= N̂0

x

[(
1− e−λ`

y
ζ

)
1{Ty<ζ}

]
.

From the Markov property at time Ty(e),

vx,y(λ) = N̂0
x

[(
1− e−λ`

y
ζ

)
1{Ty<ζ}

]
= N̂0

x

[
1{Ty<ζ}Êy

(
1− e−λL

y
Tx

)]
= N̂0

x [Ty < ζ]− N̂0
x [Ty < ζ] Ê0

(
e
−λL0

Tx−y

)
.

Because of regularity and the absence of negative jumps, Tx−y = τ−x−y under Ê0. As
in the previous proposition, L0

τ−x−y
follows an exponential distribution of parameter

N̂0(τ−x−y < ζ) = N0(τ+
y−x < ζ) = 1

W (y−x) , which implies Ê0

(
e
−λL0

Tx−y

)
= 1

1+λW (y−x) .

Therefore,

vx,y(λ) = N̂0
x [Ty < ζ]

λW (y − x)

1 + λW (y − x)
.

Now, under N̂0
x the event {Ty(e) < ζ(e), τ+

y (e) > ζ(e)} has zero measure because of

regularity of 0 for (0,∞). Since there are no negative jumps under N̂0
x , we also have

{τ+
y (e) < ζ(e)} ⊂ {Ty(e) < ζ(e)}. Hence,

N̂0
x [Ty < ζ] = N̂0

x

[
Ty < ζ, τ+

y > ζ
]

+ N̂0
x

[
Ty < ζ, τ+

y < ζ
]

= N̂0
x

[
τ+
y < ζ

]
,
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and therefore,

N̂0
x [Ty < ζ] = N̂x

[
τ+
y < ζ < τ−0

]
= N̂0

[
τ+
y−x < ζ < τ−−x

]
= N0

[
τ−x−y < ζ < τ+

x

]
.

To provide an expression for the last expression this in terms of W , we intersect the
event inside N0 with the partition E+, E−, E±. Excursions on E+ are completely above
zero and therefore do not reach the negative level x−y. On E− excursions are completely
negative, and hence the condition τ+

x (e) > ζ(e) is fulfilled. Additionally, from Theorem 3

in [18] we know that N0 on E− is a multiple of N̂ , which is the pushforward of N under
the map that sends each path to its negative. Therefore,

N0

[
τ−x−y < ζ < τ+

x , E−
]

= N0

[
τ−x−y < ζ, E−

]
=
σ2

2
N̂
[
τ−x−y < ζ

]
=
σ2

2
N
[
τ+
y−x < ζ

]
,

and using the fact that W is differentiable and W ′(z) = W (z)N(H > z) (see [12, Lemma
8.2]), we conclude that

N0

[
τ−x−y < ζ < τ+

x , E−
]

=
σ2

2
N
[
τ+
y−x < ζ

]
=
σ2

2
N [H > y − x] =

σ2

2

W ′(y − x)

W (y − x)
.

Finally, on E± excursions start above zero, then jump below and die at the next hitting
time at zero. Therefore,

N0

[
τ−x−y < ζ < τ+

x , E±
]

= N0

[
τ−x−y < ζ < τ+

x , 0 < τ−0 < ζ
]

= N0

[
sup

s∈(0,τ−0 ]

e(s) < x, τ−x−y < ζ, 0 < τ−0 < ζ

]
.

From the Markov property at time τ−0 (e), the excursion after the jump follows the
same law as X started from e(τ−0 ) and killed at the first passage time above zero. This
fact together with a conditioning on the time the jump occurs implies that the expression
on the right hand side of the display above equals

N0

[
1{

sup
s∈(0,τ

−
0 ]

e(s)<x

}Pe(τ−0 )

(
τ−x−y < τ+

0

)]

= N0

[
1{

sup
s∈(0,τ

−
0 ]

e(s)<x

}1{e(τ−0 −)>0,e(τ−0 )<0}Pe(τ−0 )

(
τ−x−y < τ+

0

)]

= N0

[∫ ∞
0

dt1{sups∈(0,t] e(s)<x}1{e(t−)>0}

∫ 0

−∞
Π(du)1{e(t−)+u<0}Pe(t−)+u

(
τ−x−y < τ+

0

)]
= N0

[∫ ∞
0

dt1{sups∈(0,t] e(s)<x}1{e(t)>0}

∫ 0

−∞
Π(du)1{e(t)+u<0}Pe(t)+u

(
τ−x−y < τ+

0

)]
=

∫ ∞
0

dtN0

[
1{sups∈(0,t] e(s)<x}1{e(t)>0}h(e(t))

]
,

where

h(z) =

∫ 0

−∞
Π(du)1{z+u<0}Pz+u

(
τ−x−y < τ+

0

)
=

∫ −z
−∞

Π(du)Pz+u
(
τ−x−y < τ+

0

)
, z > 0.

Observe that if u ≤ −z − (y − x) then Pz+u
(
τ−x−y < τ+

0

)
= 1. On the other hand, if

−z− (y−x) < u < −z then the latter probability is just the exit problem from the interval
[x− y, 0] starting from z + u, so Pz+u

(
τ−x−y < τ+

0

)
= 1− W (u+z+y−x)

W (y−x) .
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From the same computation as in the proof of Lemma 6.4, we know that

N0

[
1{sups∈(0,t] e(s)<x}1{e(t)>0}h(e(t))

]
=

∫ x

0

dze−Φ(0)zh(z)− 1

W (x)

∫ x

0

dz
(
e−Φ(0)zW (x)−W (x− z)

)
h(z)

=

∫ x

0

dz
W (x− z)
W (x)

h(z)

=

∫ x

0

dz
W (x− z)
W (x)

(
Π(−∞, z)−

∫ −z
−z−(y−x)

Π(du)
W (u+ z + y − x)

W (y − x)

)
.

Putting the previous computations together we conclude that

N̂0
x [Ty < ζ] =

σ2

2

W ′(y − x)

W (y − x)

+

∫ x

0

dz
W (x− z)
W (x)

(
Π(−∞,−z)−

∫ −z
−z−(y−x)

Π(du)
W (u+ z + y − x)

W (y − x)

)
.
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