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Abstract

In this paper we establish limit theorems for power variations of stochastic processes
controlled by fractional Brownian motions with Hurst parameter H ≤ 1/2. We show
that the power variations of such processes can be decomposed into the mix of several
weighted random sums plus some remainder terms, and the convergences of power
variations are dominated by different combinations of those weighted sums depending
on whether H < 1/4, H = 1/4, or H > 1/4. We show that when H ≥ 1/4 the centered
power variation converges stably at the rate n−1/2, and when H < 1/4 it converges
in probability at the rate n−2H . We determine the limit of the mixed weighted sum
based on a rough path approach developed in [33].
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1 Introduction

In this paper we establish limit theorems for power variations of low-regularity
processes in a general rough path framework. Recall that for a stochastic process
(yt, t ∈ [0, 1]) the power variation of order p > 0 (p-variation for short) is defined as

n−1∑
k=0

∣∣ytk+1
− ytk

∣∣p, (1.1)

where 0 = t0 < t1 < · · · < tn = 1 is a partition of the time interval [0, 1]. The power
variation has been widely used in quantitative finance for the estimation of volatility and
related parameters; see [1, 5, 6, 7, 8, 14] and references therein.

When y is a semimartingale the power variation has been discussed in [4, 6, 9, 27, 30,
31, 44, 45]. The case of stationary Gaussian was treated in [26, 32]. When y is a Young
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Variations of stochastic processes

integral (see [46]) driven by fractional Gaussian processes the power variation has been
investigated in [3, 16, 36]. The study of power variations (1.1) in the non-semimartingale
case is closely related to the limits of weighted random sums. For example, a key step in
[3, 16, 36] is to observe that when y is a Young integral of the form: yt =

∫ t
0
zsdxs and

the integrator x is Hölder continuous of order greater than 1/2, the increment ytk+1
− ytk

in (1.1) can be replaced by its first-order approximation ztk(xtk+1
− xtk). We refer the

reader to [12, 13, 15, 33, 34, 37, 39, 38, 41, 43] for discussions about limit theorems of
weighted random sums.

Recently, empirical evidence was found that security volatility actually has much
lower regularity than semimartingales (see [21]). The statement is further supported
by other empirical work based on both return data (see [11, 20, 22]) and option data
(see [10, 19, 35]). Motivated by these advances in quantitative finance, it is then natural
to ask the following question: Is there a limit theorem for power variations when the
process is “rougher” than semimartingale, and if so, under what conditions does the
limit theorem hold?

A main difficulty in the low-regularity case is that the aforementioned relation be-
tween y and its first-order approximation is no longer true. In fact, we will see that the
difference between the power variations of a low-regularity process y and that of its
first-order approximation has nonzero contribution to the limit of power variation. A
second difficulty is that the weighted sums corresponding to (1.1) involve functionals of
the forms |x|p and |x|p · sign(x), where x is the underlying Gaussian process for y (see
Definition 2.1 for our definition of the processes of x and y). While both functionals can
be expressed as sums of finite chaos functionals, these sums are infinite whenever p is
non-integer. So the known results in the literatures (e.g. [38, 40]) about weighted sums
do not apply, and a proper treatment for these infinite sums is required.

In this paper we show that a limit theorem of power variation does hold under the
assumption that y is a process “controlled” by a fractional Brownian motion (fBm for
short). The controlled process is a main concept in the theory of rough path, and it is
broad enough to contain two important models of stochastic processes we have in mind:
the rough integrals and the solutions to rough differential equations (see Example 2.3).
Our result generalizes [16] to fBms with any Hurst parameter H ∈ (0, 1).

Remark 1.1. It should be noted that there is no essential difference between rough
differential equations and rough integrals in the study of p-variation. In fact, for a
rough differential equation of the form yt =

∫ t
0
f(ys)dxs the process f(yt), t ≥ 0 can be

considered a controlled process of x. Therefore, the solution to a rough differential
equation can be seen as an important example of the controlled rough integral. On
the other hand, a rough integral can also be formed as the solution to a proper rough
differential equation.

Our main result can be informally stated as follows. The reader is referred to
Theorem 4.2 for a more precise statement.

Theorem 1.2. Let x be a fBm with Hurst parameter H ≤ 1/2 and (y, y′, . . . , y(`−1)) be
a process controlled by x almost surely (see Definition 2.1) for some ` ∈ N. Define the
function φ(x) = |x|p, x ∈ R for some constant p > 0, and denote φ′ and φ′′ the derivatives
of φ, and cp and σ are constants given in (3.56) and (3.61), respectively. Let

Unt = npH−1
∑

0≤tk<t

φ(ytk+1
− ytk)− cp

∫ t

0

φ(y′u)du t ∈ [0, 1]. (1.2)

Let W be a standard Brownian motion independent of x. Then
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Variations of stochastic processes

(i) For 1/4 < H ≤ 1/2, p ∈ [3,∞) ∪ {2} and ` ≥ 4 we have the convergence in law:

n1/2Un1 → σ

∫ 1

0

φ(y′u)dWu, as n→∞.

(ii) For H = 1/4, p ∈ [5,∞) ∪ {2, 4} and ` ≥ 6 the following convergence in law holds:

n1/2Un1 → σ

∫ 1

0

φ(y′u)dWu −
cp
8

∫ 1

0

φ′′(y′u)(y′′u)2du+
(p− 2)cp

24

∫ 1

0

φ′(y′u)y′′′u du

as n→∞.
(iii) For H < 1/4, p ∈ [5,∞) ∪ {2, 4} and ` ≥ 6 we have the convergence in probability:

n2HUn1 → −
cp
8

∫ 1

0

φ′′(y′u)(y′′u)2du+
(p− 2)cp

24

∫ 1

0

φ′(y′u)y′′′u du as n→∞.

As mentioned previously, the limit of power variation in the low-regularity case is
not solely determined by the first-order approximation of y. A first step of our proof is
thus to consider the higher-order approximation of y and to estimate the corresponding
weighted random sums and remainder terms. The convergences of mixed weighted sums
and power variation are based on a rough path approach developed in [33]. In particular,
we will see that the rough path approach allows us to avoid the application of Malliavin
integration by parts for functionals of infinite chaos.

Remark 1.3. The p-variation for integrals involving fBm x with Hurst parameter H < 1/2

has already been considered in the literature; see [16, 33]. However, the article [16]
focuses on the case of Young integrals only. Namely, the authors consider p-variation of
the integral

∫ t
0
usdxs in which u requires a regularity of order higher than 1−H. In the

current paper, we extend the results in [16] for an integrand process u which has the
same regularity as the fBm x. In fact, we will see in Remark 4.4 that one recovers from
Theorem 1.2 (i) the results obtained in [16, Theorem 4].

In [33] the authors have shown that the convergence Unt → 0 in probability holds as
n→∞ under the settings of Theorem 1.2, where Un is given in (1.2). The current paper
is thus a study of the asymptotic error distribution for this convergence. The reader is
referred to Remark 4.3 for a further discussion about the relation between a result in
[33] and the current contribution.

The paper is structured as follows: In Section 2 we introduce the concept of discrete
rough paths and discrete rough integrals and recall some basic results of the rough
paths theory. In Section 3 we derive some useful estimates and limit theorem results for
weighted random sums related to fBm. In Section 4 we prove the limit theorem of power
variation for processes controlled by fBm.

1.1 Notation

Let π : 0 = t0 < t1 < · · · < tn = 1 be a partition on [0, 1]. For s, t ∈ [0, 1] such that s < t,
we write Js, tK for the discrete interval that consists of tk’s such that tk ∈ [s, t] and the
two endpoints s and t. Namely, Js, tK = {tk : s ≤ tk ≤ t} ∪ {s, t}. For N ∈ N = {1, 2, . . . }
we denote the discrete simplex SN (Js, tK) = {(u1, . . . , uN ) ∈ Js, tKN : u1 < · · · < uN}.
Similarly, we denote the continuous simplex: SN ([s, t]) = {(u1, . . . , uN ) ∈ [s, t]N : u1 <

· · · < uN}.
Throughout the paper we work on a probability space (Ω,F, P ). If X is a random

variable, we denote by |X|Lp the Lp-norm of X. The letter K stands for a constant
independent of any important parameters which can change from line to line. We write
A . B if there is a constant K > 0 such that A ≤ KB. We denote [a] the integer part of
a.
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2 Preliminary results

In this section, we introduce the concept of discrete rough paths and discrete rough
integrals, and recall some basic results of the rough paths theory. In the second part of
the section we recall the elements of Wiener chaos expansion and fractional Brownian
motion.

2.1 Controlled rough paths and algebraic properties

This subsection is devoted to introducing the main rough paths notations which will
be used in the sequel. The reader is referred to [17, 18] for an introduction to the rough
path theory.

Recall that the continuous simplex Sk([0, 1]) is defined in Section 1.1. We denote by
Ck the set of functions g : Sk([0, 1]) → R such that gu1···uk

= 0 whenever ui = ui+1 for
some i ≤ k − 1. Such a function will be called a (k − 1)-increment. For f ∈ C1 and g ∈ C2
we define the operator δ as follows:

δfst = ft − fs and δgsut = gst − gsu − gut. (2.1)

We introduce a general notion of controlled rough process which will be used through-
out the paper:

Definition 2.1. Let x and y, y′, y′′, . . . , y(`−1) be real-valued continuous processes on
[0, 1]. Denote the 2-increments: xist = (δxst)

i/i!, (s, t) ∈ S2([0, 1]), i = 0, 1, . . . , `− 1. For
convenience, we also write y(0) = y, y(1) = y′, y(2) = y′′,. . . , and y = (y(0), . . . , y(`−1)). We
define the remainder processes

r
(`−1)
st = δy

(`−1)
st

r
(k)
st = δy

(k)
st − y(k+1)

s x1st − · · · − y(`−1)s x`−k−1st , k = 0, 1, . . . , `− 2, (2.2)

for (s, t) ∈ S2([0, 1]). We call y a rough path controlled by (x, `, α) almost surely for some
constant α ∈ (0, 1) if for any ε > 0 there is a finite random variable Gy ≡ Gy,ε (that

is, Gy < ∞ almost surely) such that |r(k)st | ≤ Gy(t − s)(`−k)α−ε for all (s, t) ∈ S2([0, 1])

and k = 0, 1, . . . , ` − 1. We call y a rough path controlled by (x, `, α) in Lp for some

p > 0 if there exist constants K > 0, α ∈ (0, 1) such that |r(k)st |Lp
≤ K(t− s)(`−k)α for all

(s, t) ∈ S2([0, 1]) and k = 0, . . . , `− 1.

Remark 2.2. Let x be a α-Hölder continuous path with α > 0. Let z be a rough path
controlled by (x, `, α) almost surely (see Definition 2.1). According to the rough path
theory (see e.g. [18, 24]) if we take ` = [1/α] then for t ∈ [0, 1] the compensated Riemann
sum: ∑

0≤tk<t

`−1∑
i=0

z
(i)
tk
xi+1
tktk+1

converges as n → ∞, and its limit is defined as the controlled rough integral
∫ t
0
zsdxs.

Nevertheless, the current paper aims to consider p-variation of a controlled process
in general, and not only the controlled rough integrals. So we have left the value of `
unspecified. In particular, our main result (Theorem 1.2) includes the case of y being a
rough integral: yt =

∫ t
0
zsdxs as a special case.

In the following we give some examples of controlled rough paths defined in Defini-
tion 2.1.

Example 2.3. Let xt, t ∈ [0, 1] be a standard fractional Brownian motion (fBm in the
sequel) with Hurst parameter H ∈ (0, 1) (see Section 2.3 for the definition of fBm). It is
well-known that for any ε > 0 the fBm is (H − ε)-Hölder continuous almost surely. For a
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continuous function V defined on R, we define the differential operator LV such that
for any differentiable function f we have LV f = V f ′. Denote LiV = LV ◦ · · · ◦ LV the ith
iteration of LV .

(i) Let V be a sufficiently smooth function on R. Set z(i)t = V (i)(xt) for i = 0, . . . , ` − 1.
Then (z, z′, . . . , z(`−1)) is a rough path controlled by (x, `,H) almost surely.

(ii) Let b and V be continuous functions defined on R. According to [18, Theorem 12.10],
given proper regularity conditions for b and V there exists a unique solution for the
stochastic differential equation (SDE in the sequel): dyt = b(yt)dt + V (yt)dxt. (When
x is a Brownian motion, that is when H = 1/2, the differential equation coincides the

corresponding classical Stratonovich-type SDE.) Let y′t = V (yt) and y
(i)
t = Li−1V V (yt),

i = 2, . . . , ` − 1. Then (y, y′, . . . , y(`−1)) is a rough path controlled by (x, `,H) almost
surely.

(iii) Let ` = [1/H] and let (z, z′, . . . , z(`−1)) be a rough path controlled by (x, `,H) almost
surely. Let y be the rough integral yt :=

∫ t
0
zsdxs, t ∈ [0, 1] in the sense of [24]. An explicit

example of rough integral is yt =
∫ t
0
V (xs)dxs. Denoting y′ = z, . . . , y(`) = z(`−1), then

(y, y′, . . . , y(`)) is a rough path controlled by (x, `+ 1, H) almost surely.

By Definition 2.1 it is easy to show that the partial sequence of y and the functions
of y are both controlled rough paths. We state this fact and omit the proof for sake of
conciseness. We refer the readers to e.g. [17, Lemma 4.1, Theorem 4.16, Lemma 7.3] for
related results in the multidimensional case, and refer to [25] for a theory of controlled
rough path at arbitrary level of roughness.

Lemma 2.4. Let y be a rough path controlled by (x, `, α) almost surely (resp., in Lp for
some p > 0). Then

(i) For any i = 0, . . . , `−1, (y(i), . . . , y(`−1)) is a rough path controlled by (x, `− i, α) almost
surely (resp., in Lp).

(ii) Let f : R→ R be a continuous function which has derivatives up to order (L− 1) and

the (L− 1)th derivative f (L−1) is Lipschitz. Let z(0)s = f(ys) and

z(r)s =

r∑
i=1

f (i)(ys)

i!

∑
1≤j1,...,ji≤(L∧`)−1

j1+···+ji=r

r!

j1! · · · ji!
y(j1)s · · · y(ji)s , r = 0, . . . , (L ∧ `)− 1.

for s ∈ [0, 1]. For example, we have z(1) = f ′(ys)y
′
s and z(2) = f ′′(ys)(y

′
s)

2 + f ′(ys)y
′′
s .

Then (z(0), . . . , z((L∧`)−1)) is a rough path controlled by (x, L ∧ `,H) almost surely (resp.,
in Lp).

Let us also recall an algebraic result from [33, Lemma 2.5].

Lemma 2.5. Let x, y and r(i), i = 0, . . . , `− 1 be continuous processes satisfying (2.2).
Then we have the following relation: δr(0)sut =

∑`−1
i=1 r

(i)
suxiut .

2.2 Discrete rough integrals

We introduce some “discrete” integrals defined as Riemann type sums. Namely, let
f and g be functions on S2([0, 1]) with values in vector spaces V and W , respectively.
Let Dn = {0 = t0 < · · · < tn = 1} be a generic partition of [0, 1]. We define the discrete
integral of f with respect to g as:

J ts (f, g) :=
∑

s≤tk<t

fstk ⊗ gtktk+1
, (s, t) ∈ S2([0, 1]), (2.3)

where we use the convention that J ts (f, g) = 0 whenever {tk : s ≤ tk < t} = ∅. We
highlight that f in (2.3) is a function of two variables. Similarly, if f is a path on [0, 1],
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then we define the discrete integral of f with respect to g as:

J ts (f, g) :=
∑

s≤tk<t

ftk ⊗ gtktk+1
, (s, t) ∈ S2([0, 1]). (2.4)

Remark 2.6. Let V and W be two vector spaces over a field F , with respective dimen-
sions n,m ∈ N and bases BV = {vi, i = 1, . . . , n} and BW = {wj , j = 1, . . . ,m}. Then the
tensor product space V ⊗W can be identified as the vector space of F -valued n ×m
matrices with the canonical basis, and vi⊗wj is identified with the matrix with entry 1 in
the ith row, jth column and 0 elsewhere. Let v ∈ V and w ∈W be such that v =

∑
i aivi

and w =
∑
j bjwj ∈W for some ai, bj ∈ F . Then we have v ⊗ w =

∑
i,j aibjvi ⊗ wj .

2.3 Chaos expansion and fractional Brownian motions

Let dγ(x) = (2π)−1/2e−x
2/2dx be the standard Gaussian measure on the real line,

and let f ∈ L2(γ) be such that
∫
R
f(x)dγ(x) = 0. It is well-known that the function

f can be expanded into a series of Hermite polynomials as: f(x) =
∑∞
q=d aqHq(x),

where d ≥ 1 is some integer and Hq(x) = (−1)qe
x2

2
dq

dxq e
− x2

2 is the Hermite polynomial
of order q. Recall that we have the iteration formula: Hq+1(t) = xHq(x) − H ′q(x). If
ad 6= 0, then d is called the Hermite rank of the function f . Since f ∈ L2(γ), we have
‖f‖2L2(γ)

=
∑∞
q=d |aq|2q! < ∞. The reader is referred to [42, 40] for an introduction of

chaos expansion.
Let x be a standard fractional Brownian motion (fBm for short) with Hurst parameter

H ∈ (0, 1), that is x is a continuous Gaussian process such that E[xsxt] = 1
2 (|s|2H + |t|2H−

|s − t|2H). The fBm x is almost surely γ-Hölder continuous for all γ < H. Define the
covariance function ρ by

ρ(k) = E(δx01δxk,k+1). (2.5)

Let H be the completion of the space of indicator functions with respect to the inner
product 〈1[u,v],1[s,t]〉H = E(δxuvδxst).

Remark 2.7. It can be shown that
∑
k∈Z ρ(k) = 0 whenever H < 1

2 . In fact, consider the
relation:

E[δx01(xm − x−n)] =

m−1∑
k=−n

E[δx01δxk,k+1] =

m−1∑
k=−n

ρ(k).

Then we have the convergence:

lim
n,m→∞

E[δx01(xm − x−n)] =
∑
k∈Z

ρ(k).

On the other hand, a direct computation shows that

E[δx01(xm − x−n)] = E[x1xm]− E[x1x−n]

=
1

2
(1 +m2H − (m− 1)2H)− 1

2
(1 + n2H − (n+ 1)2H). (2.6)

Note that m2H − (m − 1)2H → 0 as m → ∞ when H < 1/2. This implies that (2.6)
converges to 0, and thus

∑
k∈Z ρ(k) = 0.

The following result shows that given two sequences of stable convergence and
convergence in probability, respectively, their joint sequence is also of stable convergence.
Recall that Xn is called convergent to X stably if (Xn, Z) → (X,Z) in distribution as
n → ∞ for any Z ∈ F . The reader is referred to [2, 29] for an introduction to stable
convergence.
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Lemma 2.8. Let Y (1)
n , Y (2)

n , n ∈ N be two sequences of random variables and denote
the σ-field: FY = σ{Y (i)

n , i = 1, 2, n ∈ N}. Let Y (1) be a random variable such that

the convergence in distribution (Y
(1)
n , Z) → (Y (1), Z) as n → ∞ holds for any Z ∈

FY . Suppose that we have the convergence in probability Y
(2)
n → Y (2) as n → ∞

for some random variable Y (2). Then the convergence in distribution (Y
(1)
n , Y

(2)
n , Z)→

(Y (1), Y (2), Z) as n→∞ holds for any Z ∈ FY . In particular, we have the convergence in

distribution (Y
(1)
n + Y

(2)
n , Z)→ (Y (1) + Y (2), Z) as n→∞ for any Z ∈ FY .

Proof. Since Y (2)
n − Y (2) → 0 in probability it follows that the two sequences (Y

(1)
n , Y (2) +

(Y
(2)
n − Y (2)), Z) and (Y

(1)
n , Y (2), Z) have the same limit. On the other hand, by the

convergence in distribution of Y (1)
n and the fact that Y (2) ∈ FY we have the convergence

(Y
(1)
n , Y (2), Z) → (Y (1), Y (2), Z). We conclude that the convergence (Y

(1)
n , Y

(2)
n , Z) →

(Y (1), Y (2), Z) as n→∞ holds. This completes the proof.

3 Upper-bound estimate and limit theorem for weighted random
sums

In this section we derive some useful estimates and limit theorem results for weighted
random sums related to fBm.

3.1 Upper-bound estimate of weighted random sums

We prove a general upper-bound estimate result for weighted random sums. In the
second part of the subsection we apply this estimate result to weighted sums involving
fBms. Recall that for a continuous process xt, t ∈ [0, 1] and an integer i ∈ N we denote
the 2-increment: xist = (δxst)

i/i!, (s, t) ∈ S2([0, 1]).

Proposition 3.1. Let x be a continuous process on [0, 1]. Let y = (y(0), . . . , y(`−1)) be
a rough path on [0, 1] controlled by (x, `, α) in L2 for some α > 0 and ` ∈ N, and let
(r(i), i = 0, . . . , `− 1) be the remainder processes of y defined in Definition 2.1. Let h be
a 1-increment defined on S2(J0, 1K). Let βi ∈ [0, 1], i = 0, 1, . . . , ` − 1 be some constants
such that

β := min
i=0,...,`−1

{(`− i)α+ βi} > 1. (3.1)

Suppose that there exists a constant K > 0 such that

|J ts (xi, h)|L2
≤ K(t− s)βi (3.2)

for any (s, t) ∈ S2([0, 1]) satisfying t − s ≥ 1/n. Then we can find a constant K > 0

independent of n such that the following estimates hold:

|J ts (r(0), h)|L1
≤ K(t− s)β and |J ts (y, h)|L1

≤ K(t− s)β0 (3.3)

for (s, t) ∈ S2([0, 1]) such that t− s ≥ 1/n.

Proof. Denote Rst := J ts (r(0), h) for (s, t) ∈ S2([0, 1]). Recall that the operator δ for
2-increment is defined in (2.1). So, for (s, u, t) ∈ S3([0, 1]), we have

δRsut = J ts (r(0), h)− J us (r(0), h)− J tu(r(0), h) =
∑

u≤tk<t

(r
(0)
stk
− r(0)utk)htktk+1

. (3.4)

Note that by definition of δr(0) we have the relation r(0)stk−r
(0)
utk

= δr
(0)
sutk

+r
(0)
su . Substituting

this into (3.4) and then invoking Lemma 2.5 we obtain

δRsut = r(0)su J tu(1, h) +

`−1∑
i=1

r(i)suJ tu(xi, h). (3.5)
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We can now bound δR as follows: Taking the L1-norm on both sides of (3.5) gives

|δRsut|L1 ≤
`−1∑
i=0

|r(i)su |L2 · |J tu(xi, h)|L2 . (3.6)

Applying condition (3.2) to |J tu(xi, h)|L2
in (3.6) and invoking the relation |r(i)st |L2

≤
K(t− s)(`−i)α given in Definition 2.1 we get

|δRsut|L1
.

`−1∑
i=0

(u− s)(`−i)α(t− u)βi . (t− s)β (3.7)

for (s, u, t) ∈ S3([0, 1]) such that t− u ≥ 1/n, where β is defined in (3.1).
Take (s, t) ∈ S2([0, 1]) such that t−s ≥ 1/n. Consider the partition Js, tK of the interval

[s, t]: s < tk < · · · < tk′ < t, where k and k′ are such that tk−1 ≤ s < tk and tk′ < t ≤ tk′+1.
In the following we show that (3.7) holds for all (u1, u2, u3) ∈ S3(Js, tK). In view of (3.7) it
remains to show that the estimate (3.7) holds for |δRutk′ t|L1

, u ∈ Js, tK : u ≤ tk′ . Indeed,
by definition (2.3) we have J ttk′ (x

i, h) = 0 and

|J ttk′ (1, h)|L2 = |htk′ tk′+1
|L2 ≤ (1/n)β0 ≤ (t− s)β0 .

Applying these estimates to the right-hand side of (3.6) we obtain the estimate (3.7) for
|δRutk′ t|L1

.
By (2.3) it is clear that for any two consecutive partition points u, v in Js, tK and

u < v we have Ruv = 0. Applying the discrete sewing lemma [33, Lemma 2.5] to R

on the partition Js, tK and then invoking the estimate (3.7) of δR on S3(Js, tK) we obtain
|Rst|L1 . (t− s)β . This proves the first estimate in (3.3).

Recall that by (2.2) we have yt =
∑`−1
i=0 y

(i)
s xist + r

(0)
st . Substituting this into J ts (y, h)

we get the relation

J ts (y, h) =

`−1∑
i=0

y(i)s J ts (xi, h) + J ts (r(0), h). (3.8)

Applying (3.2) and the first estimate in (3.3) to the right-hand side of (3.8) we obtain the
desired estimate of J ts (y, h) in (3.3).

In the next result we apply Proposition 3.1 to weighted sums which involve fBms.

Proposition 3.2. Let x be a one-dimensional fBm with Hurst parameter H ≤ 1/2.
Suppose that (y, y′, . . . , y(`−1)), ` ∈ N is a process controlled by (x, `,H − ε) in L2 for
some sufficiently small ε > 0. Let f =

∑∞
q=d aqHq ∈ L2(R, γ) with Hermite rank d > 0 and

f belongs to the Sobolev space W 2(`−1),2(R, γ), where γ denotes the standard Gaussian
measure on the real line; see e.g. Page 28 in [42]. We define a family of increments
{hn;n ≥ 1} by:

hnst :=
∑

s≤tk<t

f(nHδxtktk+1
), (s, t) ∈ S2(J0, 1K). (3.9)

(i) Suppose that d > 1
2H and that ` is the least integer such that `H + 1

2 > 1, that is
` = [ 1

2H ] + 1. Then there is a constant K independent of n such that

|J ts (y, hn)|L1
≤ Kn1/2(t− s)1/2 (3.10)

for all (s, t) ∈ S2([0, 1]) satisfying t− s ≥ 1/n.
(ii) Suppose that d ≤ 1

2H and that ` = d+ 1. Then there is a constant K independent of n
such that

|J ts (y, hn)|L1
≤ Kn1−dH(t− s)1−dH (3.11)

for all (s, t) ∈ S2([0, 1]) satisfying t− s ≥ 1/n.
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Remark 3.3. The space W 2(`−1),2(R, γ) is defined in the same way as the classical
Sobolev space W 2(`−1),2(R) except that we use the measure γ in place of the Lebesgue
measure. One can consider it a Gaussian measure weighted Sobolev space.

Proof of Proposition 3.2. We assume that d > 1
2H . In the following we prove (i) by

applying Proposition 3.1. We first recall the estimate in [33, equation (4.24)]:

|J ts (xi, hn)|L2
≤ Kn1/2(t− s)iH+1/2, (s, t) ∈ S2([0, 1]) : t− s ≥ 1/n, (3.12)

for all i = 0, . . . , [ 1
2H ]. The estimate (3.12) implies that relation (3.2) holds for h := hn/

√
n

and βi := iH + 1/2. Take α = H − ε and recall that ` is the least integer such that
`H + 1/2 > 1, or `H > 1/2. It is thus readily checked that condition (3.1) is satisfied. We
conclude that (3.10) holds.

We turn to the case when d ≤ 1
2H . As before, our estimate will be an applica-

tion of Proposition 3.1. We first derive an estimate of |J ts (xi, hn)|L2
. Let f1(x) =∑∞

q=[ 1
2H ]+1 aqHq(x) and f2(x) =

∑[ 1
2H ]

q=d aqHq(x). We consider the following decomposition

hnst = h
n,(1)
st + h

n,(2)
st , (3.13)

where
h
n,(1)
st =

∑
s≤tk<t

f1(nHδxtktk+1
), h

n,(2)
st =

∑
s≤tk<t

f2(nHδxtktk+1
).

Note that the Hermite rank of f1 is greater than 1
2H . So we can apply (3.12) to get the

estimate
|J ts (xi, hn,(1))|L2

≤ Kn1/2(t− s)iH+1/2 (3.14)

for (s, t) ∈ S2([0, 1]) : t− s ≥ 1/n and i = 0, . . . , d. By assumption we have 1/2− dH > 0.
It follows that

1 ≤ n1/2−dH(t− s)1/2−dH , (3.15)

and therefore we can enlarge the bound in (3.14) to be:

|J ts (xi, hn,(1))|L2 ≤ Kn1−dH(t− s)1+iH−dH . (3.16)

Let us turn to the estimate of |J ts (xi, hn,(2))|L2
. We first have the bound

|J ts (xi, hn,2)|L2
≤

[ 1
2H ]∑
q=d

|aq| · |J ts (xi, hn,q)|L2
, (s, t) ∈ S2([0, 1]). (3.17)

Recall the estimate in [33, Lemma 4.11 (ii)]:

|J ts (xi, hn,q)|L2
.

{
n1−qH(t− s)1+iH−qH when q ≤ i
n1/2(t− s)iH+1/2 when q > i

(3.18)

for (s, t) ∈ S2([0, 1]) : t − s ≥ 1/n, i = 0, . . . , d and q < 1
2H . Substituting (3.18) into the

right-hand side of (3.17) and then applying the relation 1 ≤ n(t− s) we obtain that

|J ts (xi, hn,2)|L2
≤ Kn1−dH(t− s)1+iH−dH , (s, t) ∈ S2([0, 1]) (3.19)

for i = 0, . . . , d.
Combining the two estimates (3.16) and (3.19) and taking into account the decompo-

sition (3.13), we obtain that (3.2) holds for βi := 1 + iH − dH and h := hn/n1−dH . It is
readily checked that condition (3.1) is satisfied for ` = d+ 1. Applying Proposition 3.1
we thus conclude the desired estimate (3.11).
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3.2 Convergence of Riemann sum

Let y be a continuous process controlled by the fBm x. This subsection is devoted to
the convergence of Riemann sum for the regular integral

∫ t
0
yudu. For convenience we

will consider the uniform partition of [0, 1]: ti = i/n, i = 0, 1, . . . , n.
We start by proving the following weighted limit theorem result:

Lemma 3.4. Let x be a one-dimensional fBm with Hurst parameter H < 1/2. Let (y, y′)

be a rough path controlled by (x, 2, H) almost surely. Define the increment

hnst =
∑

s≤tk<t

∫ tk+1

tk

x1tkudu for (s, t) ∈ S2(J0, 1K). (3.20)

Then for each (s, t) ∈ S2([0, 1]) we have the convergence in probability:

n2HJ ts (y, hn)→ − 1

4H + 2

∫ t

s

y′udu as n→∞. (3.21)

Proof. The proof is divided into several steps. By localization (cf. [28, Lemma 3.4.5]) we
can and will assume that (y, y′) is controlled by (x, 2, H − ε) in L2 for any ε > 0.
Step 1: Estimate of hn. By the self-similarity of the fBm we have E[x1tkux

1
tk′u

′ ] =

n−2HE[x1k,nux
1
k′,nu′ ]. Here we have written x1k,nu instead of x1knu to avoid confusion.

Applying this relation and then the change of variable nu′ → u′ and nu→ u we get

E[|hnst|2] = n−2H−2
∑

ns≤k,k′<nt

∫ k+1

k

∫ k′+1

k′
E[x1kux

1
k′u′ ]du

′du, (s, t) ∈ S2(J0, 1K).

Applying the estimate |E[x1kux
1
k′u′ ]| . |k − k′|2H−2 for k 6= k′ we obtain

E[|hnst|2] . n−2H−2
∑

ns≤k,k′<nt
k 6=k′

|k − k′|2H−2 . n−2H−1(t− s), (s, t) ∈ S2(J0, 1K). (3.22)

Step 2: A decomposition of |J ts (x1, hn)|2L2
. Let (s, t) ∈ S2([0, 1]) such that t− s > 1/n. By

definition (2.4) we can express |J ts (x1, hn)|2L2
as

|J ts (x1, hn)|2L2
=

∑
s≤tk,tk′<t

E

∫ tk+1

tk

∫ tk′+1

tk′

x1stkx
1
stk′

x1tkux
1
tk′u

′du′du. (3.23)

Applying the moment formula for multivariate Gaussian random variables to the product
x1stkx

1
stk′

x1tkux
1
tk′u

′ in (3.23) we obtain

E
(
x1stkx

1
stk′

x1tkux
1
tk′u

′

)
= A1 +A2 +A3 , (3.24)

where

A1 = E(x1stkx
1
stk′

)E(x1tkux
1
tk′u

′) (3.25)

A2 = E(x1stkx
1
tk′u

′)E(x1tkux
1
stk′

) (3.26)

A3 = E(x1stkx
1
tku

)E(x1tk′u′x
1
stk′

) (3.27)

Step 3: Estimate of A1. Recall that
∣∣E(x1stkx1stk′ )∣∣ ≤ (t − s)2H ; see e.g. [38, Lemma

5.1]. On the other hand, similar to the estimate of E[δxtkuδxtk′u′ ] in Step 1 we have
|E(x1tkux

1
tk′u

′)| . n−2H |k−k′|2H−2. Substituting these two estimates into (3.25) we obtain
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|A1| . (t− s)2H |k − k′|2H−2n−2H . The above estimate for |A1| together with the relation∑
s≤tk,tk′<t

|k − k′|2H−2 . n(t− s) shows that

∑
s≤tk,tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

A1du
′du . (t− s)2H+1n−1−2H . (3.28)

Step 4: Estimate of A2 and A3. Recall that A2 and A3 are defined in (3.26)-(3.27). It
follows that we have ∑

s≤tk,tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

(A2 +A3)du′du = Ã2 + Ã3 , (3.29)

where

Ã2 =
∑

s≤tk,tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

〈1[s,tk],1[tk′ ,u
′]〉H〈1[tk,u],1[s,tk′ ]

〉Hdu′du

Ã3 =
∑

s≤tk,tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

〈1[s,tk],1[tk,u]〉H〈1[tk′ ,u
′],1[s,tk′ ]

〉Hdu′du. (3.30)

In the following we bound Ã2 and Ã3. We first have

|Ã2| ≤ 2
∑

s≤tk≤tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

|〈1[s,tk],1[tk′ ,u
′]〉H| · |〈1[tk,u],1[s,tk′ ]

〉H|du′du.

Invoking the elementary estimates

|〈1[tk,u],1[s,tk′ ]
〉H| ≤ n−2H and |〈1[s,tk],1[tk′ ,u

′]〉H| . n−2H |k − k′|2H−1

for tk ≤ tk′ we obtain

|Ã2| .
∑

s≤tk≤tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

n−2H · n−2H · (k′ − k)2H−1du′du

. (t− s)2H+1n−2H−1. (3.31)

We turn to the estimate of Ã3. A change of variables in (3.30) gives

Ã3 = n−4H−2
∑

ns≤k,k′<nt

Ã3,kk′ , (3.32)

where

Ã3,kk′ =

∫ k+1

k

∫ k′+1

k′
〈1[ns,k] ⊗ 1[ns,k′],1[k,u] ⊗ 1[k′,u′]〉H⊗2du′du. (3.33)

It is clear that |Ã3,kk′ | is uniformly bounded in (k, k′). Therefore, from (3.32) we obtain
the estimate

|Ã3| . (t− s)2n−4H . (3.34)

Step 5: Estimate of J ts (x1, hn). Putting together the estimates (3.28), (3.31), and (3.34)
and taking into account the decompositions (3.23)-(3.24) and (3.29) we obtain the
estimate

|J ts (x1, hn)|L2
. (t− s)n−2H (3.35)

for (s, t) ∈ S2([0, 1]) such that t− s > 1/n.
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Step 6: Convergence of the second moment of J ts (x1, hn). Let (s, t) ∈ S2([0, 1]). In this
step we show the convergence:

n2H |J ts (x1, hn)|L2
→ 1

4H + 2
(t− s) as n→∞. (3.36)

Recall our decomposition of |J ts (x1, hn)|2L2
in (3.23)-(3.24) and of A2 in (3.29). So

the estimates in (3.28), (3.31) and (3.34) together shows that the convergence of
|J ts (x1, hn)|2L2

is dominated by that of A22. Namely, we have

lim
n→∞

n4H |J ts (x1, hn)|2L2
= lim
n→∞

n4HA22. (3.37)

In the following we focus on the computation of limn→∞ n4HA22.
Recall the expression of A22 in (3.32)-(3.33). We first note that since |A22,kk′ | ∼ O(1)

we can replace the summation
∑
ns≤k,k′<nt in (3.32) by

∑
ns+nε≤k,k′<nt for 0 < ε < 1

without changing the limit of A22. Next, by stationary increment and self-similarity of
the fBm we have

〈1[ns,k] ⊗ 1[ns,k′],1[k,u] ⊗ 1[k′,u′]〉H⊗2 = 〈1[ns−k,0] ⊗ 1[ns−k′,0],1[0,u−k] ⊗ 1[0,u′−k′]〉H⊗2

= 〈1[ns−k
u−k ,0]

⊗ 1
[ns−k′
u′−k′ ,0]

,1[0,1] ⊗ 1[0,1]〉H⊗2(u− k)2H(u′ − k′)2H

= 〈1(−∞,0] ⊗ 1(−∞,0],1[0,1] ⊗ 1[0,1]〉H⊗2(u− k)2H(u′ − k′)2H + o(1),

where the last equation holds for k and k′ such that k − ns ≥ nε and k′ − ns ≥ nε. Using
the relation 〈1(−∞,0],1[0,1]〉H = −1/2 we obtain

〈1[ns,k] ⊗ 1[ns,k′],1[k,u] ⊗ 1[k′,u′]〉H⊗2 =
1

4
(u− k)2H(u′ − k′)2H + o(1). (3.38)

Substituting (3.38) into (3.32) we obtain

A22 = n−4H−2
1

4

∑
ns+nε≤k,k′<nt

∫ k+1

k

∫ k′+1

k′
(u− k)2H(u′ − k′)2Hdu′du+ n−4Ho(1)

= n−4H(t− s)2 · 1

4
(2H + 1)−2 + n−4Ho(1).

It follows that limn→∞ n4HA22 = (t− s)2 · 14 (2H + 1)−2. Recalling relation (3.37), we thus
obtain the convergence in (3.36).
Step 7: Convergence of J ts (x1, hn). In this step, we show the L2-convergence of
J ts (x1, hn):

n2HJ ts (x1, hn)→ − 1

4H + 2
(t− s). (3.39)

In view of the convergence (3.36), it suffices to show that:

n2HEJ ts (x1, hn)→ − 1

4H + 2
(t− s) as n→∞. (3.40)

The convergence (3.40) can be proved in the similar way as in Step 5. Indeed, we have:

E[J ts (x1, hn)] = E
∑

s≤tk<t

x1stk

∫ tk+1

tk

x1tkudu =
∑

s≤tk<t

∫ tk+1

tk

〈1[s,tk],1[tk,u]〉Hdu

= n−2H(t− s)(−1/2)(2H + 1)−1 + n−2Ho(1).

The convergence (3.40) then follows. The two convergences (3.36) and (3.40) together
implies that the convergence (3.39) holds.
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Step 8: Convergence of J ts (y, hn). Let (s, t) ∈ S2([0, 1]). We start by taking a partition
of [s, t]: s = s0 < s1 < · · · < sm = t such that maxj=0,...,m−1 |sj+1 − sj | ≤ 1/m for some
m < n. Then we can write

J ts (y, hn) =

m−1∑
j=0

J sj+1
sj (y, hn). (3.41)

Since (y, y′) is controlled by (x, 2, H−ε) in L2 we have the expansion ytk = ysj +y′sjx
1
sjtk

+

r
(0)
sjtk

. Substituting this into J sj+1
sj (y, hn) in (3.41) we obtain

J ts (y, hn) =

m−1∑
j=0

ysjJ sj+1
sj (1, hn) +

m−1∑
j=0

y′sjJ
sj+1
sj (x1, hn) +

m−1∑
j=0

J sj+1
sj (r(0), hn). (3.42)

In the following we consider the convergence of the three terms on the right-hand side
of (3.42).

We note that it follows from relations (3.22) and (3.35) that conditions (3.1)-(3.2) hold
for h := n2Hhn, α = H − ε, β0 := 1−H and β1 := 1. Therefore, applying Proposition 3.1
we have

n2H |J ts (r(0), hn)|L1
. (t− s)1+H−ε.

This implies that

lim
m→∞

lim sup
n→∞

n2H
∣∣∣m−1∑
j=0

J sj+1
sj (r(0), hn)

∣∣∣
L1

. lim
m→∞

m−1∑
j=0

(sj+1 − sj)1+H−ε = 0. (3.43)

We turn to the other two terms in the right-hand side of (3.42). Applying (3.22) we have

n2H
∣∣∣m−1∑
j=0

ysjJ sj+1
sj (1, hn)

∣∣∣
L1

= n2H
m−1∑
j=0

∣∣∣ysjhnsjsj+1

∣∣∣
L1

.
m−1∑
j=0

|ysj |L2(sj+1 − sj)1/2(1/n)1/2−H → 0 as n→∞. (3.44)

Finally, according to (3.39) we have the convergence in probability:

lim
m→∞

lim
n→∞

n2H
m−1∑
j=0

y′sjJ
sj+1
sj (x1, hn) = − 1

4H + 2
lim
m→∞

m−1∑
j=0

y′sj (sj+1 − sj)

= − 1

4H + 2

∫ t

0

y′udu. (3.45)

Putting together the convergences (3.43)-(3.45) and recalling the relation (3.42) we
conclude the convergence (3.21).

With Lemma 3.4 in hand, in the following we consider the convergence of a Riemann
sum.

Proposition 3.5. Let x be a one-dimensional fBm with Hurst parameter H < 1/2.
Let (y, y′, y′′) be a rough path controlled by (x, 3, H) almost surely.Then we have the
convergence in probability:

n2H

 1

n

∑
0≤tk<t

ytk −
∫ t

0

yudu

→ 0 as n→∞. (3.46)
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Proof. The proof is divided into several steps.
Step 1: A decomposition of the error of Riemann sum. We first have∫ t

0

yudu−
1

n

∑
0≤tk<t

ytk =
∑

0≤tk<t

∫ tk+1

tk

δytkudu. (3.47)

Substituting the expansion δytku = y′tkx
1
tku

+ y′′tkx
2
tku

+ r
(0)
tku

into (3.47) we get the expan-
sion: ∫ t

0

yudu−
1

n

∑
0≤tk<t

ytk = I1 + I2 + I3, (3.48)

where

I1 =
∑

0≤tk<t

y′tk

∫ tk+1

tk

x1tkudu, I2 =
∑

0≤tk<t

y′′tk

∫ tk+1

tk

x2tkudu, I3 =
∑

0≤tk<t

∫ tk+1

tk

r0tkudu.

In the following we consider the convergence of I1, I2 and I3 which together will give
the desired convergence in (3.46).
Step 2: Convergence of I1 and I3. Since |r(0)tku|L1

. n−3H it follows that

n2HI3 → 0 (3.49)

in probability as n→∞. On the other hand, a direct application of Lemma 3.4 yields the
convergence

n2HI1 → −
1

4H + 2

∫ t

s

y′′udu as n→∞. (3.50)

Step 3: Convergence of I2. We consider the following decomposition of I2:

I2 =
∑

0≤tk<t

y′′tk

∫ tk+1

tk

x2tkudu = I21 + I22,

where

I21 =
∑

0≤tk<t

y′′tk

∫ tk+1

tk

(x2tku −
1

2
(u− tk)2H)du (3.51)

I22 =
1

2

∑
0≤tk<t

y′′tk

∫ tk+1

tk

(u− tk)2Hdu =
1

2

∑
0≤tk<t

y′′tk · (1/n)2H+1(2H + 1)−1.

Note that I22 is a Riemann sum and we thus have the convergence:

n2HI22 →
1

4H + 2

∫ t

0

y′′udu in probability as n→∞.

We turn to the convergence of I21. We first note that a direct computation shows that∣∣∣ ∑
0≤tk<t

∫ tk+1

tk

(
x2tku−

1

2
(u−tk)2H

)
du
∣∣∣2
L2

.
∑

0≤tk,tk′<t

∫ tk+1

tk

∫ tk′+1

tk′

n−4H |ρ(k−k′)|2du′du

. n−4H−2n(t−s) = n−4H−1(t−s). (3.52)

Applying Proposition 3.1 to I21 in (3.51) with ` = 1 and β0 = 1−H + ε and invoking the
estimate (3.52) we obtain n2H |I21|L1

. (t− s)1−H+ε(1/n)H−ε for any ε > 0. In particular,
we have n2H |I21|L1

→ 0 as n→∞. Combining the convergence of I21 and I22 we obtain

n2HI2 →
1

4H + 2

∫ t

0

y′′udu in probability as n→∞. (3.53)

Step 4: Conclusion. Substituting the convergences of Ii, i = 1, 2, 3 in (3.49), (3.50)
and (3.53) into (3.48) we obtain the convergence (3.46).
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Remark 3.6. We conjecture that the exact rate of convergence in (3.46) is O(n−H−1/2)

given that y satisfies proper regularity conditions. We will explore this problem in a
future paper. Note that the rate o(n−2H) we have obtained in (3.46) is sufficient for our
purpose in this paper, and it requires a weaker condition of y.

In the next result we consider the convergence rate of the Riemann sum under a
weaker condition. We will also include the case when H = 1/2.

Proposition 3.7. Let x be a one-dimensional fBm with Hurst parameter H ≤ 1/2. Let
(y, y′) be a rough path controlled by (x, 2, H − ε) in L2 for some ε > 0. Then there is a
constant K independent of n such that:∣∣∣ 1

n

∑
0≤tk<t

ytk −
∫ t

0

yudu
∣∣∣
L1

≤ Kn−2H+2ε for all t ∈ [0, 1]. (3.54)

Proof. Because y is controlled by (x, 2, H) we have the relation δytku = y′tkx
1
tku

+ r
(0)
tku

.
So, similar to (3.48), we have the decomposition∫ t

0

yudu−
1

n

∑
0≤tk<t

ytk = I1 + I2, (3.55)

where

I1 =
∑

0≤tk<t

y′tk

∫ tk+1

tk

x1tkudu, I2 =
∑

0≤tk<t

∫ tk+1

tk

r0tkudu.

It is readily checked that |I2|L1
. n−2H+2ε. Let hn be defined in (3.20). Applying Propo-

sition 3.1 with h = n2H−2εhn, ` = 1 and β0 = 1−H + 2ε we obtain that n2H−2ε|I1|L1
. 1.

Combining the estimate of I1 and I2 in (3.55) we obtain the desired estimate (3.54).

3.3 Weighted p-variations

In this subsection we consider limit theorems for weighted random sums of some
fBms functionals. For p > −1, we denote

cp = E(|N |p) =
2p/2√
π

Γ

(
p+ 1

2

)
. (3.56)

It is easy to see that cp+2 = (p + 1)cp, and when p is an even integer we have cp =

E(Np) = (p− 1)(p− 3) · · · 1. We define the sign function:

sign(x) = 1,−1, 0 for x > 0, x < 0 and x = 0, respectively. (3.57)

Lemma 3.8. Let x be a fBm with Hurst parameter H < 1/2. Let (y, y′) be a process
controlled by (x, 2, H) almost surely. Take p > 1/2 and let

f(x) = |x|p+1 · sign(x), x ∈ R. (3.58)

Then we have the following convergence in probability:

nH−1
∑

0≤tk<t

ytkf(nHx1tktk+1
)→ −1

2
cp+2

∫ t

0

y′udu as n→∞. (3.59)

Proof. We prove the convergence (3.59) by applying [33, Theorem 4.14 (ii)]. It is easy
to see that the function f in (3.58) belongs to L2(γ) with Hermite rank d = 1 as long as
p > −3/2. Take ` = d+ 1 = 2. By assumption (y, y′) is a rough path controlled by (x, `,H)

almost surely.

EJP 29 (2024), paper 115.
Page 15/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1179
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variations of stochastic processes

Furthermore, one can show that f ∈ W 2,2(R, γ) when p > 1/2 (please refer to
Remark 3.3 for the definition of the Sobolev space W 2,2(R, γ)). To see this, it suffices
to show that the variables f(N), f ′(N), f ′′(N) have finite second moments. A direct
computation gives:

E[f ′′(N)2] = E[|N |2p−2],

and so the moment is finite for p > 1/2. The moments of f(N) and f ′(N) can be estimated
in the similar way.

In summary, we have shown that the conditions in [33, Theorem 4.14 (ii)] hold for
the weighted sum in (3.59). Since f is an odd function it has the decomposition f(x) =∑∞
q=0 a2q+1H2q+1(x). We compute the first coefficient: a1 = E[|N |p+1 · sign(N)N ] =

E[|N |p+2] = cp+2. Applying [33, Theorem 4.14] we thus obtain the convergence (3.59).

Let f(x) = |x|p − cp, x ∈ R. It is easily seen that f ∈ L2(γ) with Hermite rank d = 2

when p > − 1
2 . Furthermore, we have the decomposition f(x) =

∑∞
q=1 a2qH2q(x), where

the constants a2q are given by:

a2q =

q∑
r=0

(−1)r

2rr!(2q − 2r)!
c2q−2r+p, q = 1, 2, . . . . (3.60)

We also set the constant σ:

σ2 =

∞∑
q=1

(2q)!a22q
∑
k∈Z

ρ(k)2q, (3.61)

where ρ is defined in (2.5). Note that when H = 1/2 we have ρ(0) = 1 and ρ(k) = 0 for
k 6= 0, and so (3.61) gives σ = ‖f‖L2(γ) = (c2p − c2p)1/2.

The next limit theorem result is an application of [33, Theorem 4.7 and Theorem 4.14].
The proof is similar to Lemma 3.8 and is omitted for sake of conciseness. In the following
stable f.d.d.−−−−−−−−−→ stands for the stable convergence of finite dimensional distributions. That is,

we say Xn
t

stable f.d.d.−−−−−−−−−→ Xt, t ∈ [0, 1] if the finite dimensional distribution of the process
Xn
t , t ∈ [0, 1] converges stably to that of the process Xt, t ∈ [0, 1] as n→∞.

Proposition 3.9. Let x be a fBm with Hurst parameter H ≤ 1/2. Let (y(0), . . . , y(`−1)) be
a process controlled by (x, `,H) almost surely for some ` ∈ N. Let a2q and σ be constants
given in (3.60)-(3.61). Then:
(i) For 1

2 ≥ H > 1
4 , ` = 2 and p ∈ (3/2,∞) we have the convergence:

1√
n

∑
0≤tk<t

ytk(|nHx1tktk+1
|p − cp)

stable f.d.d.−−−−−−−−−→ σ

∫ t

0

ytdWt for t ∈ [0, 1], (3.62)

where W is a Wiener process independent of x.
(ii) For H = 1

4 , ` = 3 and p ∈ (7/2,∞) ∪ {2} we have the convergence:

1√
n

∑
0≤tk<t

ytk(|nHx1tktk+1
|p − cp)

stable f.d.d.−−−−−−−−−→ σ

∫ t

0

yudWu +
pcp
8

∫ t

0

y′′udu (3.63)

for t ∈ [0, 1].
(iii) For H < 1

4 , ` = 3 and p ∈ (7/2,∞) ∪ {2} we have the convergence in probability:

n2H−1
∑

0≤tk<t

ytk(|nHx1tktk+1
|p − cp) −→

pcp
8

∫ t

0

y′′udu (3.64)

for t ∈ [0, 1].
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Remark 3.10. Let us apply Propositions 3.8–3.9 to verify some classical results of
weighted sums.

For p > 0 an even integer, we recall the elementary relation cp = (p− 1)cp−2. Then
we have the relation pcp

8 = 1
4

(
p
2

)
cp−2. Substituting this relation into (3.64) and taking

yt = f(xt), we thus recover the convergence (1.23) in [38, Corollary 3].

Recall that a2q, q = 1, . . . , p/2 are coefficients of the chaos expansion for xp − cp. In
other words, we have the relation E[(Np − cp)H2q(N)] = (2q)!a2q. On the other hand,
applying integration by parts yields

E[(Np − cp)H2q(N)] = p(p− 1) · · · (p− 2q + 1)E[Np−2q] = p(p− 1) · · · (p− 2q + 1)cp−2q.

It follows that we have the relation

a2q =

(
p

2q

)
cp−2q, q = 1, . . . , p/2. (3.65)

Substituting relation (3.65) into (3.61) and taking into account that ai = 0 for i 6= 2, . . . , p,
we thus recover from (3.62)-(3.63) the convergences in (1.24)–(1.25) in [38, Corollary 3],
respectively.

Take p an even integer as before. It is clear that in this case we have |x|p+1 · sign(x) =

xp+1. So we recover from (3.59) the weighted limit theorem obtained in [23].

4 Limit theorem for p-variation of processes controlled by fBm

In this section we consider the convergence of p-variation for processes controlled
by fBm. Throughout the section we let φ(x) = |x|p, x ∈ R for p ≥ 1. We first state the
following elementary result.

Lemma 4.1. Denote by φ(j) the jth derivative of φ. For convenience we will also write
φ(x) = φ(0)(x), φ′(x) = φ(1)(x) and φ′′(x) = φ(2)(x). For j = 0, 1, . . . , [p] we set

φj(x) = |x|p−j · sign(x)j and Kj = p · · · (p− j + 1) =

j−1∏
i=0

(p− i), (4.1)

where recall that sign(x) is defined in (3.57) and we use the convention that
∏−1
i=0(p−i) =

1. For example, we have K0 = 1, K1 = p, K2 = p(p− 1). Then

(i) When p is odd, φ has derivative up to order [p]− 1, and φ([p]−1) is Lipschitz. When p is
even, φ has derivative of all orders. When p is non-integer, φ has derivative up to order
[p].

(ii) For x ∈ R we have

φ(j)(x) = Kj · φj(x), j = 0, 1, . . . , [p], (4.2)

with the exception that φ(p)(0) is undefined when p is an odd number. In particular,
when p is an odd number we have φ(j)(x) = Kjx

p−jsign(x), while when p is even we get
φ(j)(x) = Kjx

p−j .

Following is our main result. Recall that we define φ(x) = |x|p, x ∈ R, and for
a continuous process y the p-variation of y over the time interval [0, t] is defined as∑

0≤tk<t φ(δytktk+1
) =

∑
0≤tk<t |δytktk+1

|p, where tk = k/n, k = 0, 1, . . . , n is a uniform
partition of [0, 1].

Theorem 4.2. Let x be a fBm with Hurst parameter H ≤ 1/2 and (y(0), . . . , y(`−1)) be a
process controlled by (x, `,H) almost surely (see Definition 2.1) for some ` ∈ N. Let φ′
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and φ′′ be derivatives of φ defined in (4.2), and cp and σ are constants given in (3.56)
and (3.61), respectively. Let

Unt = npH−1
∑

0≤tk<t

φ(δytktk+1
)− cp

∫ t

0

φ(y′u)du t ∈ [0, 1].

Then

(i) When 1/4 < H ≤ 1/2, p ∈ [3,∞) ∪ {2} and ` ≥ 4 we have the stable f.d.d. convergence(
n1/2Un, x

)
→ (U, x), as n→∞, (4.3)

where Ut = σ
∫ t
0
φ(y′u)dWu, t ∈ [0, 1], and W is a standard Brownian motion independent

of x.

(ii) When H = 1/4, p ∈ [5,∞) ∪ {2, 4} and ` ≥ 6 we have the stable f.d.d. convergence(
n1/2Un, x

)
→ (U, x), as n→∞, (4.4)

where

Ut = σ

∫ t

0

φ(y′u)dWu −
cp
8

∫ t

0

φ′′(y′u)(y′′u)2du+
(p− 2)cp

24

∫ t

0

φ′(y′u)y′′′u du.

(iii) When H < 1/4, p ∈ [5,∞) ∪ {2, 4} and ` ≥ 6 we have the convergence in probability

n2HUnt → Ut as n→∞ (4.5)

for t ∈ [0, 1], where

Ut = −cp
8

∫ t

0

φ′′(y′u)(y′′u)2du+
(p− 2)cp

24

∫ t

0

φ′(y′u)y′′′u du.

Remark 4.3. Let us point out the cruicial difference between Proposition 3.9 and
Theorem 4.2. Proposition 3.9 is about the weighted sum

∑
tk
ztk |δxtktk+1

|p for a fBm x

with Hurst parameter H ≤ 1/2 and a process z controlled by x (see Definition 2.1), while
Theorem 4.2 is about the p-variation

∑
tk
|δytktk+1

|p of a process y controlled by x (e.g.
yt = f(xt) and y′t = f ′(xt); see again Definition 2.1). One might get an impression that
these are very similar results, and we could get one from the other. This is indeed true
when H > 1/2, as is shown in e.g. [16]. More precisely, by an elementary application of
mean value theorem one can prove that the difference between the p-variation and the
corresponding weighted sum∑

tk

|δytktk+1
|p −

∑
tk

|y′tk |
p · |δxtktk+1

|p (4.6)

is negligible comparing to the p-variation
∑
tk
|δytktk+1

|p or the weighted sum
∑
tk
|y′tk |

p ·
|δxtktk+1

|p.
However, the convergence of p-variation for the case H ≤ 1/2 is much more involved.

Specifically, when 1/4 < H ≤ 1/2 the previous argument no longer gives the neglibility
of the difference (4.6). Instead, a careful upper-bound estimate of the Lp-norm of (4.6) is
required. On the other hand, when H ≤ 1/4, the difference (4.6) is no longer negligible.
A main effort of the proof of Theorem 4.2 will be to study the limit theorem for (4.6) and
its joint distribution with the weighted sum

∑
tk
|y′tk |

p · |δxtktk+1
|p.
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Proof of Theorem 4.2. Take ε > 0 sufficiently small. Recall that y(i), r(i), i = 0, . . . , `− 1

and Gy = Gy,ε are defined in Definition 2.1. Let Gx = Gx,ε be a finite random variable
such that |x1st| ≤ Gx(t− s)H−ε. By localization (cf. [28, Lemma 3.4.5]) we can and will
assume that there exists some constant C0 > 0 such that

`−1∑
i=0

(
sup
t∈[0,1]

|y(i)t |+ sup
s,t∈[0,1]

|r(i)st |
)

+Gy +Gx < C0 almost surely. (4.7)

Note that under this assumption it is clear that (y(0), . . . , y(`−1)) is controlled by (x, `,H−
ε) in Lp for any p > 0 (see Definition 2.1).

We divide the proof into several steps.
Step 1: Taylor’s expansion of the function φ. For convenience let us denote

q =

{
p when p is an even number.

[p]− 1 otherwise.

Applying the Taylor expansion to φ(δytktk+1
) at the value y(1)tk δxtktk+1

we get

φ(δytktk+1
) = I1 + I2, (4.8)

where

I1 =

q∑
j=0

φ(j)(y
(1)
tk
x1tktk+1

)

j!
· (δytktk+1

− y(1)tk δxtktk+1
)j (4.9)

I2 =
φ(q+1)(ξk)

(q + 1)!
· (δytktk+1

− y(1)tk δxtktk+1
)q+1, (4.10)

and ξk is some value between δytktk+1
and y(1)tk δxtktk+1

.
Step 2: Estimate of I2. We first note that when p is an even number φ(q+1)(ξk) =

φ(p+1)(ξk) = 0, and so I2 = 0. In the following we assume that p is not even and by
definition of q we have q + 1 = [p]. It is clear that

|ξk| ≤ |δytktk+1
|+ |y(1)tk δxtktk+1

|. (4.11)

The relation (4.11) together with the definition of φ(q+1) in (4.1) yields

|φ(q+1)(ξk)| = |φ([p])(ξk)| . |δytktk+1
|p−[p] + |y(1)tk δxtktk+1

|p−[p]. (4.12)

Since y is controlled by x, Definition 2.1 and the assumption (4.7) gives

|δytktk+1
| ≤ Gy(1/n)H−ε ≤ C0(1/n)H−ε.

Similarly, we have |y(1)tk δxtktk+1
| . (1/n)H−ε. Substituting these two estimates into (4.12)

we get
|φ([p])(ξk)| . (1/n)(p−[p])H−ε ∧ 1, (4.13)

where we added ∧1 to include the case when p is odd.
By Definition 2.1 of controlled processes again we have the estimate |δytktk+1

−
y
(1)
tk
δxtktk+1

|L2
. (1/n)2H−ε. Applying this estimate and the estimate (4.13) to (4.10) we

obtain∣∣∣ ∑
0≤tk<t

I2

∣∣∣ ≤ ∑
0≤tk<t

|I2| . n · (1/n)(p−[p])H−ε · (1/n)2[p]H−ε = (1/n)pH+[p]H−1−2ε. (4.14)
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It follows from (4.14) that when 1/2 ≥ H > 1/4 and p ≥ 2 we have

npH−1/2
∑

0≤tk<t

I2 → 0 in probability as n→∞ (4.15)

and when H ≤ 1/4 and p ≥ 3 we have

n(p+2)H−1
∑

0≤tk<t

I2 → 0 in probability as n→∞. (4.16)

This shows that I2 does not have contribution in the limits of Un in (4.3)-(4.5) under the
given conditions in Theorem 4.2.
Step 3: Decomposition of I1. Recall that φ(j)(x) and φj(x) are defined in (4.1)-(4.2). It is
clear that

φ(j)(a · b) = Kjφj(a · b) = Kjφj(a)φj(b) for any a and b ∈ R. (4.17)

On the other hand, by (2.2) we have:

δytktk+1
− y(1)tk δxtktk+1

=

`−1∑
i=2

y
(i)
tk
xitktk+1

+ r
(0)
tktk+1

. (4.18)

Substituting (4.17)-(4.18) into (4.9) we obtain

I1 =

q∑
j=0

Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!
·

(
`−1∑
i=2

y
(i)
tk
xitktk+1

+ r
(0)
tktk+1

)j
. (4.19)

In the following we consider two different decompositions of I1 in (4.19) according to
the value of H.

When H ≤ 1/4 we consider the decomposition:

I1 = J1 + J2 + J3 + J4 + J5 + J6, (4.20)

where

J1 = K0φ0(y
(1)
tk

)φ0(x1tktk+1
) = |y(1)tk |

p · |x1tktk+1
|p

J2 = K1φ1(y
(1)
tk

)φ1(x1tktk+1
) · y(2)tk x

2
tktk+1

(4.21)

J3 = K1φ1(y
(1)
tk

)φ1(x1tktk+1
) · y(3)tk x

3
tktk+1

J4 =
K2φ2(y

(1)
tk

)φ2(x1tktk+1
)

2!
·
(
y
(2)
tk
x2tktk+1

)2
J5 =

q∑
j=0

Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!
·

(
`−1∑
i=2

y
(i)
tk
xitktk+1

)j
−

4∑
e=1

Je. (4.22)

J6 = I1 −
q∑
j=0

Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!
·

(
`−1∑
i=2

y
(i)
tk
xitktk+1

)j
. (4.23)

When H > 1/4 we consider the decomposition

I1 = J1 + J6 + (I1 − J1 − J6). (4.24)

Step 4: Estimate of J6. Recall that J6 is defined in (4.23). Note that J6 consists of the
terms in (4.19) which contain r

(0)
tktk+1

. Similar to the estimate in (4.13), invoking the
definition of controlled processes (see Definition 2.1) and the assumption (4.7) we have

|r(0)tktk+1
| . (1/n)`H−ε and |y(i)tk x

i
tktk+1

| . (1/n)2H−ε, i = 2, . . . , `− 1.
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It follows that∣∣∣∣∣∣
(
`−1∑
i=2

y
(i)
tk
xitktk+1

+ r
(0)
tktk+1

)j
−

(
`−1∑
i=2

y
(i)
tk
xitktk+1

)j∣∣∣∣∣∣ . (1/n)`H−ε(1/n)2H·(j−1)−ε. (4.25)

On the other hand, by the definition of φj in (4.1) we have the estimate∣∣∣∣∣Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!

∣∣∣∣∣ . (1/n)(p−j)H−ε. (4.26)

Substituting the two estimates (4.25)-(4.26) into (4.23) we obtain

|J6| .
q∑
j=1

(1/n)(`+2(j−1)+(p−j))H−ε . (1/n)(`−1+p)H−ε.

It follows that
|
∑

0≤tk<t

J6| ≤
∑

0≤tk<t

|J6| . (1/n)(`−1+p)H−1−ε.

It is readily checked that

npH−1/2
∑

0≤tk<t

J6 → 0 when ` ≥ 3 and H > 1/4 (4.27)

and
n(p+2)H−1

∑
0≤tk<t

J6 → 0 when ` ≥ 4 and H ≤ 1/4. (4.28)

Note that this shows that J6 does not have contribution in any of the limits of Un

in (4.3)-(4.5).
Step 5: Convergence of J1. We first consider the case when 1/2 ≥ H > 1/4. According
to Proposition 3.9 given that p > 3/2 and that |y′|p is controlled by (x, 2, H) we have the
stable f.d.d. convergence:

1√
n

∑
0≤tk<t

(npHJ1 − |y′tk |
pcp) −→ σ

∫ t

0

|y′t|pdWt as n→∞. (4.29)

Note that by Lemma 2.4 (ii) and Lemma 4.1 (i) for |y′|p to be controlled by (x, 2, H) it
requires p ≥ 2 and that y is controlled by (x, `,H) for ` ≥ 3.

On the other hand, given that |y′|p is controlled by (x, 2, H) Proposition 3.7 implies
that

1√
n

∑
0≤tk<t

|y′tk |
pcp −

√
n · cp

∫ t

0

|y′u|pdu→ 0 as n→∞. (4.30)

Combining (4.30) with the convergence in (4.29) we obtain the stable f.d.d. convergence

√
n

 ∑
0≤tk<t

npH−1J1 − cp
∫ t

0

|y′u|pdu

 −→ σ

∫ t

0

|y′u|pdWu as n→∞. (4.31)

We turn to the case when H = 1/4. According to Proposition 3.9 given that |y′|p is
controlled by (x, 3, H), p ∈ (7/2,∞) ∪ {2} we have the stable f.d.d. convergence:

1√
n

∑
0≤tk<t

(npHJ1 − |y′tk |
pcp) −→ σ

∫ t

0

|y′u|pdWu +
pcp
8

∫ t

0

(|y′u|p)′′du as n→∞,
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where (|y′u|p)′′ = (φ(y′u))′′ = φ′′(y′u)(y′′u)2 + φ′(y′u)y′′′u . By Lemma 2.4 (ii) and Lemma 4.1
(i) again this requires p ∈ [3,∞) ∪ {2} and ` ≥ 4. Similar to (4.31), we can apply
Proposition 3.5 to obtain the stable f.d.d. convergence:

√
n

 ∑
0≤tk<t

npH−1J1 − cp
∫ t

0

|y′u|pdu

 −→ σ

∫ t

0

|y′u|pdWu +
pcp
8

∫ t

0

(|y′u|p)′′du . (4.32)

When H < 1/4, given that p ∈ (7/2,∞) ∪ {2} and |y′|p is controlled by (x, 3, H) we
have the convergence in probability:

n2H−1
∑

0≤tk<t

(npHJ1 − |y′tk |
pcp)→

pcp
8

∫ t

0

(|y′u|p)′′du . (4.33)

Then it follows from Proposition 3.5 again that

n2H

 ∑
0≤tk<t

npH−1J1 − cp
∫ t

0

|y′u|pdu

 −→ pcp
8

∫ t

0

(|y′u|p)′′du in probability.

Step 6: Proof of (4.3) and the convergence of (I1 − J1 − J6). In this step we show the
convergence:

npH−1/2
∑

0≤tk<t

(I1 − J1 − J6)→ 0. (4.34)

Combining (4.34) with the convergences of I2, J6 and J1 respectively in (4.15), (4.27)
and (4.31), and invoking the relations (4.8) and (4.24) we then obtain the convergence
in (4.3).

We first note that by the definition of I1, J1 and J6 we have

∑
0≤tk<t

(I1 − J1 − J6) =
∑

0≤tk<t

q∑
j=1

Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!
·

(
`−1∑
i=2

y
(i)
tk
xitktk+1

)j
. (4.35)

It is easy to see that (4.35) consists of weighted sums of the form J t0 (z, hn) for

z =
Kjφj(y

(1)
tk

)

j!
·

∑
2≤i1,...,ij≤`−1
i1+···+ij=r

y
(i1)
tk
· · · y(ij)tk

(4.36)

and

hnst =
∑

s≤tk<t

φj(x
1
tktk+1

) · (x1tktk+1
)r =

∑
s≤tk<t

(x1tktk+1
)r|x1tktk+1

|p−jsign(x1tktk+1
)j

=
∑

s≤tk<t

|x1tktk+1
|p−j+rsign(x1tktk+1

)j+r. (4.37)

for j = 1, . . . , q and r ≥ 2j. When p− j+ r ≥ p+ 2 we can bound |hntktk+1
| . (1/n)(p+2)H−ε

and thus we have the convergence

npH−1/2J t0 (z, hn)→ 0 in probability as n→∞. (4.38)

In the following we consider the estimate of (4.37) when p − j + r < p + 2, that is
when r − j < 2. Note that this implies r − j = 1 and thus j = 1 and r = 2. So we have

J t0 (z, hn) =
∑

0≤tk<t

K1φ1(y′tk)φ1(x1tktk+1
)y′′tkx

2
tktk+1

.
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Let f(x) = φ1(x)x2, x ∈ R. It is clear that f has Hermite rank d = 1. According to
Proposition 3.2 (ii), given that (a) f ∈ W 2,2(R, γ) and (b) z = φ1(y′)y′′ defined in (4.36)
is controlled by (x, 2, H) we have J (z, hn) ∼ (1/n)H−1+H(p+1), which implies the con-
vergence (4.38). By Lemma 2.4(ii) and Lemma 4.1(i) Condition (a) requires either
2(p+ 1− 2) > −1 or that p is even, which means we must have p > 1/2. By Lemma 2.4(ii)
and Lemma 4.1(i) Condition (b) holds when p ∈ [3,∞) ∪ {2} and ` ≥ 4.

In summary, we have shown that (4.38) holds for all j and r. Invoking the decomposi-
tion of I1 − J1 − J6 in (4.35)-(4.37), we conclude (4.34) and thus (4.3).
Step 7: Convergence of J2 when H ≤ 1/4. Recall the definition of φj and J2 in (4.1)
and (4.21), respectively. So we have∑

0≤tk<t

J2 =
p

2

∑
0≤tk<t

φ1(y′tk)y′′tk |x
1
tktk+1

|p+1sign(x1tktk+1
).

Suppose that φ1(y′t)y
′′
t is controlled by (x, 2, H). According to Lemma 2.4 (ii) this requires

p ∈ [3,∞) ∪ {2} and ` ≥ 4, and in this case we have

(φ1(y′t)y
′′
t )′ = φ′1(y′t)(y

′′
t )2 + φ1(y′t)y

′′′
t .

Applying Lemma 3.8 we obtain the convergence in probability

n(p+2)H−1
∑

0≤tk<t

J2 →
p

2
(−1

2
cp+2)

∫ t

0

(φ′1(y′u)(y′′u)2 + φ1(y′u)y′′′u )du

= −1

4
(p+ 1)cp

∫ t

0

(φ′′(y′u)(y′′u)2 + φ′(y′u)y′′′u )du. (4.39)

Step 8: Convergence of J3 when H ≤ 1/4. We first rewrite J3 as

J3 = K1φ1(y
(1)
tk

)φ1(x1tktk+1
) · y(3)tk x

3
tktk+1

=
p

6
φ1(y′tk)y′′′tk |x

1
tktk+1

|p+2.

It is easy to see that we have the bound |
∑

0≤tk<t J3|Lp
. (1/n)(p+2)H . In the following

we show that
∑

0≤tk<t J3 is also convergence under proper conditions of p and `.
We consider the following decomposition

J3 =
p

6
φ1(y′tk)y′′′tk

(
|x1tktk+1

|p+2 − cp+2(1/n)(p+2)H
)

+
p

6
cp+2φ1(y′tk)y′′′tk(1/n)(p+2)H

=: J31 + J32. (4.40)

Applying Proposition 3.2 (ii) to J31 with d = 2 we obtain that n(p+2)H−1∑
0≤tk<t J31 →

0 in probability. Note that the application of Proposition 3.2 (ii) requires p ∈ [4,∞) ∪ {2}
and ` ≥ 6. On the other hand, by continuity of φ1(y′)y′′′ we have the convergence
n(p+2)H−1∑

0≤tk<t J32 →
p
6cp+2

∫ t
0
φ1(y′u)y′′′u du. Substituting these two convergence

into (4.40) we obtain

n(p+2)H−1
∑

0≤tk<t

J3 →
p

6
cp+2

∫ t

0

φ1(y′u)y′′′u du =
p+ 1

6
cp

∫ t

0

φ′(y′u)y′′′u du. (4.41)

Step 9: Convergence of J4 when H ≤ 1/4. We first rewrite J4 as

J4 =
K2φ2(y

(1)
tk

)φ2(x1tktk+1
)

2!
·
(
y
(2)
tk
x2tktk+1

)2
=
p(p− 1)

8
φ2(y′tk)(y′′tk)2 · |x1tktk+1

|p+2.

Similar to J3 by applying Proposition 3.9 (ii)–(iii) with d = 2 we obtain the convergence

n(p+2)H−1
∑

0≤tk<t

J4 →
p(p− 1)

8
cp+2

∫ t

0

φ2(y′u)(y′′u)2du

=
p+ 1

8
cp

∫ t

0

φ′′(y′u)(y′′u)2du. (4.42)
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Note that the application of Proposition 3.9 (ii)–(iii) requires p ∈ [5,∞) ∪ {2, 4} and ` ≥ 5.
Step 10: Convergence of J5. Recall that J5 is defined in (4.22). It is easy to see that we
have

J5 =
K1φ1(y

(1)
tk

)φ1(x1tktk+1
)

1!
·

(
`−1∑
i=4

y
(i)
tk
xitktk+1

)

+
K2φ2(y

(1)
tk

)φ2(x1tktk+1
)

2!
·

(
`−1∑
i=3

y
(i)
tk
xitktk+1

)2

+

q∑
j=3

Kjφj(y
(1)
tk

)φj(x
1
tktk+1

)

j!
·

(
`−1∑
i=2

y
(i)
tk
xitktk+1

)j
=: J51 + J52 + J53,

where we use the convention that
∑q
j=3 = 0 when q < 3 and that

∑`−1
i=4 y

(i)
tk
xitktk+1

= 0

when `− 1 < 4. In the following we bound each J5i, i = 1, 2, 3.
For J51 a direct estimate shows that

|J51| . |φ1(y
(1)
tk

)| · |φ1(x1tktk+1
)| ·

`−1∑
i=4

|y(i)tk | · |x
i
tktk+1

| . (1/n)(p−1)H+4H = (1/n)(p+3)H .

So we have n(p+2)H−1∑
0≤tk<t J51 → 0. Similarly, we can bound J52 and J53 by

|J52| . (1/n)(p−2)H+6H and |J53| .
bpc−1∑
j=3

(1/n)(p−j)H+2jH . (1/n)(p+3)H .

We conclude that n(p+2)H−1∑
0≤tk<t(J52+J53)→ 0 in probability as n→∞. We conclude

that the convergence in probability

n(p+2)H−1
∑

0≤tk<t

J5 → 0 as n→∞. (4.43)

Step 11: Conclusion. In Step 5 we have shown that the convergence in (4.3) holds.
Putting together the convergences (4.16), (4.28), (4.32), (4.39), (4.41), (4.42), (4.43) for
I2, Ji, i = 1, . . . , 6 and invoking Lemma 2.8, and then taking into account the decom-
positions (4.8) and (4.20), we obtain the convergence in (4.4). Finally, replacing (4.32)
by (4.33) in the argument we obtain the convergence (4.5).

Remark 4.4. Let us compare Theorem 4.2 to the classical results for p-variations.
Consider yt =

∫ t
0
zudxu. Then we have y′t = zt. When 1/4 < H ≤ 1/2, the relation (4.3)

gives the f.d.d. convergence

n1/2
[
npH−1

∑
0≤tk<t

|ytk+1
− ytk |p − cp

∫ t

0

|zu|pdu
]
→ σ

∫ t

0

|zu|pdWu

as n→∞. We note that this recovers the results obtained in [16, Theorem 4].
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