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Abstract

In this paper we study a version of (non-Markovian) first passage percolation on graphs,
where the transmission time between two connected vertices is non-iid, but increases
by a penalty factor polynomial in their expected degrees. Based on the exponent of
the penalty-polynomial, this makes it increasingly harder to transmit to and from high-
degree vertices. This choice is motivated by awareness or time-limitations. For the iid
part of the transmission times we allow any nonnegative distribution with regularly
varying behaviour at 0. For the underlying graph models we choose spatial random
graphs that have power-law degree distributions, so that the effect of the penalisation
becomes visible: (finite and infinite) Geometric Inhomogeneous Random Graphs, and
Scale-Free Percolation. In these spatial models, the connection probability between
two vertices depends on their spatial distance and on their expected degrees. We prove
that upon increasing the penalty exponent, the transmission time between two far
away vertices x, y sweeps through four universal phases even for a single underlying
graph: explosive (tight transmission times), polylogarithmic, polynomial but sublinear
(|x − y|η0+o(1)) for an explicit η0 < 1), and linear (Θ(|x − y|)) in their Euclidean
distance. Further, none of these phases are restricted to phase boundaries, and those
are non-trivial in the main model parameters: the tail of the degree-distribution, a
long-range parameter, and the exponent of regular variation of the iid part of the
transmission times. In this paper we present proofs of lower bounds for the latter two
phases and the upper bound for the linear phase. These complement the matching
upper bounds for the polynomial regime in our companion paper.
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Degree-dependent FPP on spatial random graphs

1 Introduction

First passage percolation (FPP) is a natural way to understand geodesics in random
metric spaces. In this paper, we investigate a natural extension of Markovian and non-
Markovian first passage percolation, where the transmission time of the first passage
percolation process across an edge depends on its direct surroundings in the underlying
graph, in particular on the expected degrees of the sending and receiving vertex [32].
We set the transmission time through each edge uv as Luv(WuWv)

µ, where Luv is a
non-negative iid factor with distribution that varies regularly near 0 with exponent β,
Wu,Wv are constant multiples of the expected degrees of the vertices u, v, and µ is
the penalty exponent. We then let the process run according to the standard rules of
first passage percolation: transmission time between x and y is the the total sum of
transmission time on edges on a path between x, y, minimised over all paths between
x and y. We abbreviate this process as 1-FPP for short. For the underlying graph
models we choose spatial models with power-law degree distributions, i.e., with highly
varying degrees, so that the dependence of the transmissions on the local surroundings
causes non-negligible effects. The dependence caused via setting µ ≥ 0 is so that the
transmission time from and towards high-degree vertices is slowed down by a polynomial
of their expected degrees, which makes it harder, but not impossible, to transmit to
and from “superspreaders”. The 1-FPP model is inspired by degree-dependent bond
percolation [29] and by topology-biased random walks [11,20,36,41,46], in which the
transition probabilities from a vertex depend on the degrees of its neighbours. Those
works also assume a polynomial dependence on the degrees.

This new one-dependent FPP process has several interesting features. It reveals
topological features of the underlying graphs hidden from classical versions. Classical
FPP tend to strongly depend on the highest degree vertices and shows the ‘explosion’
phenomenon on spatial graphs with highly varying degrees for all regularly varying
transmission-time distributions, i.e., the process reaches infinitely many vertices in finite
time [34]. However, with 1-FPP explosion can be stopped efficiently by increasing the
exponent µ of the penalty polynomial above a given value [32], thus, only changing the
dynamics of the process to/from outlier vertices but keeping the underlying graph fully
intact. We study what happens in the sub-explosive regime. In a sequence of papers we
prove that as the penalty exponent increases, the transmission time between two far
away vertices x, y in the infinite component sweeps through four universal phases:

(i) it converges to a limiting a.s. finite random variable, i.e., it grows explosively.

(ii) it grows polylogarithmically with the Euclidean distance as ∼ (log |x − y|)∆0+o(1)

for some ∆0 ≥ 1);

Phase (i) was our previous work [32]. We treat phase (ii) and the upper bound for phase
(iii) in the companion paper [33]. The focus of this paper is to prove the lower bounds to
the following phases (iii)-(iv); and the upper bound to phase (iv) :

(iii) it grows polynomially as |x− y|η0+o(1) for an explicitly given η0 < 1;

(iv) it grows linearly proportionally to |x− y|.

See also Table 1. Possibly the most interesting phase here is (iii): sublinear polynomial
transmission times imply polynomial intrinsic ball-growth faster than the dimension of
the underlying space. This is rare in spatial graph models, and shows that 1-FPP cannot
simply be mapped and studied as a simpler process (like graph distances) on a spatial
graph with different parameters. Indeed, in this paper we show that in the polynomial
regime all long edges around x, y carry polynomial transmission times in the distance
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Degree-dependent FPP on spatial random graphs

they bridge; thus the shortest path between x, y must contain edges of polynomial cost,
resulting in the lower bound |x− y|η0−o(1) with an explicit η0 < 1. This is hand-in-hand
with the constructive proof we give as a matching upper bound in [33], thus our result in
phase (iii) is sharp. The o(1) additive factor in the exponent is due to our current quite
general assumptions on the iid factor L and on the connection probability, but could be
possibly sharpened by imposing stronger assumptions there.

Table 1: Summary of our results. In 1-FPP, the transmission time on edge xy

is Lxy(WxWy)µ where Wx,Wy are constant multiples of the expected degrees
of the vertices x, y, and Lxy is an iid random variable with a regularly varying
distribution function near 0 with exponent β ∈ (0,∞]. The parameter τ ∈ (2, 3)

is the exponent of the power-law degree distribution, the underlying graph has
doubly-logarithmic graph distances. The transmission time dC(0, x) between 0 and
a far vertex x passes through four different phases as µ, the penalty exponent,
increases. When the long-range parameter α ∈ (1, 2), long edges between low-
degree vertices cause polylogarithmic transmission times, so increasing µ stops
explosion but it has no further effect. When α > 2, these edges are absent from
the graph. Here there are three sub-explosive phases. In this paper we focus on
the polynomial phases: we prove the lower bound for the strict polynomial phase,
(with an explicit η0 in (1.7)). In particular, all long edges near 0, x have polynomial
transmission times in the distance they bridge. We also prove both the upper
and lower bound for the linear distance regime, and the lower bound much more
generally when τ > 3. All regimes hold on proper intervals for µ.

Graph param. 1-FPP parameters Behaviour of 1-FPP transmission times

Weak decay:
τ ∈ (2, 3)

α ∈ (1, 2)

µ < 3−τ
2β

Explosive:
dC(0, x) = Θ(1)

µ > 3−τ
2β

Polylogarithmic:
dC(0, x) = (log |x|)∆0+o(1),∆0 > 1

Strong decay:
τ ∈ (2, 3)

α > 2

µ < 3−τ
2β

Explosive:
dC(0, x) = Θ(1)

µ ∈
(

3−τ
2β ,

3−τ
β

) Polylogarithmic:
dC(0, x) = (log |x|)∆0+o(1),∆0 > 1

µ ∈
(

3−τ
β , 3−τ

min{β,d(α−2)} + 1
d

) Strict Polynomial:
dC(0, x) = |x|η0±o(1), η0 < 1

µ > 3−τ
min{β,d(α−2)} + 1

d

Linear:
d ≥ 2 : dC(0, x) = Θ(|x|)

d = 1 : κ|x| ≤ dC(0, x) ≤ |x|1+o(1)

Non-scale-free:
τ > 3, α > 2

P(L > 0) = 1, µ ≥ 0
Linear:

dC(0, x) ≥ κ|x|

In phase (iv), we prove that the transmission time between two vertices x and y is
between κ1|x−y| and κ2|x−y| for two constants κ1, κ2 > 0. The lower bound is valid in all
dimensions and the upper bound valid in dimension at least 2. In dimension 1 we prove
an upper bound of |x−y|1+o(1) in the accompanying paper [33]. Nevertheless, near-linear
distances in dimension 1 are somewhat surprising, since generally long-range spatial
models either do not percolate in dimension 1 or show shorter distances [9,16,42,44].
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Degree-dependent FPP on spatial random graphs

An important message of our results is that the change in the phases can be obtained
by changing only the dynamics of the process, (i.e., increasing the penalty exponent µ),
while keeping the underlying graph intact. This rich behaviour arises despite the fact
that the underlying graphs have doubly-logarithmic graph distances.

Growth phases of FPP and graph distances in other models. By contrast, in
other models studied so far the behaviour of intrinsic distances is less rich, and the strict
polynomial phase (iii) is absent or restricted only to phase transition boundaries. Sparse
spatial graphs with finite-variance degrees (e.g. percolation, long-range percolation,
random geometric graphs etc.) generally show linear graph distances/transmission
times (phase (iv)) when long edges are absent [3,4,15,40], or polylogarithmic distances
(phase (ii)) when long edges are present [9, 10, 28]. In spatial models with infinite-
variance degrees, classical FPP explodes for all edge transmission-time distributions
Lxy with regularly varying behaviour near 0. For the process to be sub-explosive,
L has to be at least doubly-exponentially flat near 0, and then transmission times
are at most the same order as the doubly-logarithmic graph distances [34, 45]; in
particular, there is no analogue of phases (ii)–(iv). The same happens on non-spatial
models with infinite variance degrees [1, 30]. On sparse non-spatial graph models
with finite-variance degrees, classical FPP universally shows Malthusian behaviour, i.e.,
exponential growth [7], (for any distribution L > 0 almost surely). Transmission times
between two uniformly chosen vertices are then logarithmic in the graph size (phase
(ii)). There is some work on one-dependent FPP on non-spatial graphs: the process
either explodes [43], with the same criterion for explosion as for spatial graphs in [32],
or becomes Malthusian [23]. So only phases (i) and (ii) can occur.

We generally see that the strict polynomial phase is missing from models. So far,
the only known graph model that exhibits this behaviour is long-range percolation on
its phase boundary α = 2, which is recently proven to show polynomial distances [5].
Even among degenerate models (i.e., with a complete graph as the underlying graph),
long-range first passage percolation [14] is the only other model where a similarly rich
set of phases is proven to occur. Long-range FPP uses exponential transmission times
that depend on the Euclidean distance of the edge. The Markov property and the fact
that there is no fixed underlying graph makes proof techniques in [14] unavailable in
the context of 1-FPP on fixed graphs. We refer the reader to the discussion in [33] for
details, and also for a thorough discussion of other related literature.

Summarising, one-dependent FPP is the first process that displays a full interpolation
between the four phases on a single non-degenerate graph model. Moreover, the phase
boundaries for one-dependent FPP depend non-trivially on the main model parameters:
the degree power-law exponent τ , the parameter α controlling the prevalence of long-
range edges, and the behaviour of Lxy near 0 characterised by β, see Table 1 for our
results. We leave the investigation of any phase-boundary cases in the parameter space,
i.e., where µ takes the value that separates two phases of growth, for future work.

Motivation. Arguably, 1-FPP with its variety of regimes reflects spreading processes
on real networks better than simpler models (e.g., iid FPP), since the speed of dissemina-
tion in social networks can range from extremely fast (e.g., when news or memes spread
through social media) to rather slow, geometry-dominated patterns (e.g., as diseases
spread through regions and countries), with change only in the dynamics of the process
but not (much) in the underlying network. The choice of degree-dependent transmission
times is not just motivated by the related work mentioned above, but comes directly
from applications. Actual contacts do not scale linearly with network connectivity due
to limited time or awareness [22], and this type of penalty has been used to model the
sublinear impact of superspreaders as a function of contacts [25,31,39].

Two papers, two techniques. In our companion paper [33] we develop methods
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of a very different flavour that allow us to construct paths for the upper bounds for
all sub-explosive phases at once, at the cost of the o(1) factor in the exponent. This
construction works in the quenched setting, i.e., with revealed vertex set, then uses a
multi-scale argument to construct the polylogarithmic/polynomial path. We think that
both proof techniques (the ones there and the ones here) deserve their own exposition,
hence we present them as two separate papers.

1.1 Main methodological contributions

For the lower bounds, we develop an (iterative) renormalisation method that allows
us to treat both the strict polynomial as well as the linear regime at once. We take the
renormalisation method from Berger [6] as our starting point, who proved a linear lower
bound for graph distances in long-range percolation. We have to overcome several issues
that occur in 1-FPP but do not occur for graph distances. Firstly, in 1-FPP the edges carry
transmission times, (or costs, for short), and costs are neither bounded from below by 1,
nor are independent, because costs out of a vertex carry the same penalty factor coming
from the expected degree of the vertex. Secondly, the underlying graphs we consider
contain an excessive amount of long edges on all scales, which is due to the presence
of very high degree vertices or ‘hubs’, that make graph distances doubly-logarithmic.
Thirdly, the proof in [6] uses Kingman’s subadditive ergodic theorem, while for 1-FPP
this is unavailable (especially in the polynomial regime).

Nevertheless, we are able to set up a renormalisation argument that takes all the
above issues into account, in particular, we quantify that long edges do exist when
τ ∈ (2, 3) (which is implied by the doubly-logarithmic graph distances), but these edges
are typically very expensive. Although we follow broadly the proof in [6], our formulation
gives the lower bound directly for all vertices, while [6] only showed it along a sequence
of norms for the vertices, and then used Kingman’s subadditive ergodic theorem to extend
the result to all vertices. We avoid this by improving on the conditions in [6, Lemma
2] for the 1-FPP, which allows us to extend the proof to non-linear regimes, in which
Kingman’s theorem is not applicable (see Proposition 2.6 and the proof on page 28). See
Section 1.4 for a more detailed outline.

Proof outline for the upper bounds. The upper bound in the linear regime in dimension
at least two is also proved via renormalisation, here however a single renormalisation
step suffices. Namely, for a sufficiently large constantM , we introduce an auxiliary graph:
let GM = (VM , EM ) be formed by vertices with weights in the interval IM := [M, 2M ]

and edges with edge-cost at most M3µ among them. The restriction 2M on the weights
of vertices guarantees that 1-FPP restricted to vertices with weight in IM have penalty
at most 4µM2µ, and hence a typical edge among vertices in VM is also part of EM . The
auxiliary graph GM can be stochastically dominated from below by a random geometric
graph, and when τ ∈ (2, 3), its average degree increases with M . We then use a boxing
argument to renormalise to a site-bond percolation ω?, and use a result by Antal and
Pisztora [3] that distances in the infinite component C?∞ of ω? scale linearly with the
Euclidean distance. We then generalise a local-density result of Deuschel and Pisztora
in [19], saying that the infinite cluster C?∞ of ω? comes near every vertex z ∈ Zd, to hold
also for the infinite component of quite general models of random geometric graph with
high edge density (see Definition 3.4), and thus also for GM , see Corollary 3.9. These
results may be of independent interest. The local density result allows us to connect the
starting vertices 0, x to a nearby vertex in GM at low cost, without having to deal with
dependencies between the selection of the path and the edge-costs.

When τ > 3, the edge-density in GM decreases with M , which is why infinite
geometric inhomogeneous random graphs (IGIRG) on Rd and scale-free percolation
(SFP) on Zd with τ > 3 are both non-robust under percolation, while with τ ∈ (2, 3) they
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are robust. The upper bound thus does not hold for the τ > 3 case. A proof of linear
distances for τ > 3, α > 2 assuming high edge-density could go along a similar reasoning
as above, namely renormalisation. To prove it for arbitrary supercritical edge-density is
nontrivial, since the path has to avoid high-degree vertices (because of the penalties in
1-FPP), which are exactly the vertices keeping the infinite component together. We leave
this for future work.

For finite models in a box, we additionally need to ensure that the constructed paths
stay inside the box of the graph. For this we prove that there exist linear distance paths
between any sites u and v in the infinite component which deviate “little” from the
straight line segment Sun,vn (this is implicitly present in [3], and we prove it for general
models of random geometric graphs with high-density, see Lemma 3.8). Hence, for
random vertices un, vn in the giant component of a geometric inhomogeneous random
graph (GIRG), there is a.a.s. a cheap path πun,vn from un to vn in the corresponding
IGIRG with small deviation. Since un and vn are random, they are unlikely to be close to
the boundary of the box, and hence πun,vn is completely contained in the GIRG.

1.2 Graph models

We will consider undirected, simple graphs with vertex set V ⊆ Rd. We use stan-
dard graph notation, which we summarise along with other common terminology in
Section 1.5.

We consider three random graph models: Scale-Free Percolation (SFP), Infinite Geo-
metric Inhomogeneous Random Graphs (IGIRG)1, and (finite) Geometric Inhomogeneous
Random Graphs (GIRG). Since the latter model contains Hyperbolic Random Graphs
(HypRG) as special case, our results also hold for HypRG. The main difference between
the models is the vertex set V. For SFP, we use V := Zd, where d ∈ N. For IGIRG, V is
given by a Poisson point process on Rd of intensity one with respect to the Lebesgue
measure. The formal definition is:

Definition 1.1 (SFP, IGIRG, GIRG). Let d ∈ N, τ > 2, α ∈ (1,∞), and c > c > 0. Let
` : [1,∞) → (0,∞) be a slowly varying function, and let h : Rd × [1,∞)× [1,∞) → [0, 1]

be a function satisfying

c ·min

{
1,
w1w2

|x|d

}α
≤ h(x,w1, w2) ≤ c ·min

{
1,
w1w2

|x|d

}α
. (1.1)

We call d the dimension, τ the power-law exponent, α the long-range parameter, and h
the connection probability.

For SFP, set V := Zd, for IGIRG, let V be given by a Poisson point process on Rd of
intensity one.2 For each x ∈ V, we draw a weight Wx independently from a probability
distribution on [1,∞) satisfying

FW (w) = P(W ≤ w) = 1− `(w)

wτ−1
. (1.2)

We denote the weight vector (Wx)x∈V byW. Conditioned on V andW, every edge xy is
present independently with probability h(x− y,Wx,Wy).

A finite GIRG is obtained by restricting an IGIRG to a cube Qn of volume n centred at
0.

For finite GIRG models we are interested in the behaviour as n→∞. Definition 1.1
leads to a slightly less general model than those e.g. in [13] and [32]. There, the original

1They have also been called EGIRG, where E stands for extended [34].
2If we take an IGIRG and rescale the underlying space Rd by a factor λ, then we obtain a random graph

which satisfies all conditions of IGIRGs except that the density of the Poisson point process is λ−d instead of
one. Thus it is no restriction to assume density one.
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definition had a different scaling of the geometric space vs connection probabilities.
However, the resulting graphs are identical in distribution after rescaling, see [32] for a
comparison. Finally, [13] considered the torus topology on the cube, identifying “left”
and “right” boundaries, but this does not make a difference for our results. Next we
define 1-dependent FPP on these graphs.

Definition 1.2 (1-dependent first passage percolation (1-FPP)). Let G(V, E) be a graph
where to each vertex v ∈ V there is an associated vertex-weight Wv. For each edge
xy ∈ E , draw an iid random variable Lxy from distribution L, and set the transmission
cost of an edge xy as

C(xy) := Lxy(WxWy)µ (1.3)

for a fixed parameter µ > 0 called the penalty strength. Setting C(xy) defines a cost-
distance dC between the vertices (see (1.21) below), that we call 1-dependent first
passage percolation. We define the cost-ball BCr (x) of radius r ≥ 0 around a vertex x to
be the set of all vertices to which there is a path of cost at most r from x.

We emphasize that in the case of SFP, IGIRG, GIRG, we use the same vertex weights
(Wv)v∈V for generating the graph as well as for determining the cost of the edges, while
in general the definition would allow for different choices as well. We usually assume that
the cumulative distribution function (cdf) FL : [0,∞)→ [0, 1] of L satisfies the following
(exceptions of this assumption will be made explicit when applicable):

Assumption 1.3. There exist constants t0, c1, c2, β > 0 such that

c1t
β ≤ FL(t) ≤ c2tβ for all t ∈ [0, t0]. (1.4)

Without much effort, Assumption 1.3 could be relaxed to limx→0 logFL(x)/ log x = β,
but having the stronger form in (1.4) increases the readability of the paper. For the same
reason, we also exclude extensions to α =∞ in Definition 1.1 and β =∞ in (1.4) from
the main body of the paper, and discuss those separately in Section 1.3.1.

We will call the set of parameters

par := {d, τ, α, µ, β, c, c, c1, c2, t0} (1.5)

the model parameters. We generally take the standpoint that we consider µ to be the
easiest parameter to change, e.g. by adjusting behaviour of individuals corresponding to
high-degree vertices, increasing µ means gradually slowing down the spreading process
around high-degree vertices. We also phrase our results from this point of view.

1.3 Results

We now present two phases (polynomial but sublinear, and linear) of the transmission
times between two far away nodes. Without loss of generality we fix one of the endpoints
as 0 ∈ Rd. For IGIRG and GIRG, this means that we condition on the vertex set V
containing 0, i.e., we consider the resulting Palm distribution. Recall the power-law
exponent τ of vertex-weights from (1.2), the long-range parameter α from the connection
probability in (1.1), and β of the transmission times from Assumption 1.3. We assume
τ ∈ (2, 3), this ensures that the degree distribution has finite mean but infinite variance,
and that graph-distance balls grow doubly-logarithmically [12]. In the companion
paper [33] and in [32] we show that cost-distances are at most polylogarithmic if α < 2

or if µ < (3 − τ)/β. Thus here we only consider the complementary case (neglecting
phase boundaries) that α > 2 and µ > (3− τ)/β. We first define the two values that will
separate the phases of growth as µ changes:

µlog :=
3− τ
β

, µpol :=
1

d
+

3− τ
min{β, d(α− 2)}

=: max{µlog + 1
d , µpol,α} (1.6)
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with µpol,α := 1
d + 3−τ

d(α−2) = α−(τ−1)
d(α−2) . These values are thus all positive when τ ∈ (2, 3)

and β > 0, and finite under Assumption 1.3 since β > 0. When α > 2 then µpol,α is above
1/d as well. The values are also well-defined for τ = 3, see Theorem 1.12 below about
results with τ ≥ 3. Then we define the polynomial growth exponent. For α > 2, τ ∈ (2, 3),
for all µ > µlog, let

η0 = η0(d, α, τ, β, µ) :=

{
1 if µ > µpol,

min {d(µ− µlog), µ/µpol,α} if µ ≤ µpol,
(1.7)

and note that η0 > 0 for all µ > µlog, and η0 < 1 exactly when µ < µpol by (1.6). We
present special cases when α = ∞ or β = ∞ and extensions to τ ≥ 3 in Section 1.3.1
below.

Theorem 1.4 (Polynomial Lower Bound). Consider 1-FPP on IGIRG, GIRG, or SFP of
Definition 1.1 satisfying the assumptions given in (1.2)–(1.4). Assume that α > 2,
τ ∈ (2, 3), and µ > µlog. Then for any ε > 0 almost surely there exists r > 0 (independent
of n in case of finite GIRG) such that

for all x ∈ V with |x| ≥ r : dC(0, x) ≥ |x|η0−ε.

Note that r is random, so it depends on the instance of IGIRG. For GIRG, “independent
of n” means that for every q > 0 there is r0 = r0(q) independent of n such that we can
satisfy Theorem 1.4 with an r such that P(r > r0) < q.3 Note that the lower bound holds
simultaneously for all vertices x at distance at least r from 0.

This means that we also obtain a geometric bound on the location of the cost-ball
around 0. However, the matching upper bounds in [33] are not uniform over all x with
‖x‖ = r, so we can only bound the cost-ball in one direction. We rephrase Theorem 1.4
in terms of intrinsic ball growth.

Corollary 1.5. Consider 1-FPP on IGIRG, GIRG, or SFP of Definition 1.1 satisfying the
assumptions given in (1.2)–(1.4) and with 0 ∈ V. Assume that α > 2, τ ∈ (2, 3), and
µ > µlog. Then for all ε > 0, almost surely there exists r0 such that for all r ≥ r0,

(a) BCr (0) ⊆ {x ∈ Rd : |x| ≤ r1/η0+ε}, and

(b) |BCr (0)| ≤ rd/η0+ε.

Part (a) of Corollary 1.5 rephrases Theorem 1.4, and (b) follows from (a) when
considering the fact that the number of vertices in a (Euclidean) ball of radius r1/η0+ε

around 0 concentrates around the volume of this ball (uniformly for all r ≥ r0), both for
IGIRG and SFP.

To provide context, we cite the corresponding upper bound from [33]. For τ ∈ (2, 3),
for all edge-densities, the infinite component exists, is unique, and has positive density,
but not necessarily density one.4 Hence for an upper bound we need to condition on 0

and x both being in the infinite component.

Theorem 1.6 (Polynomial Upper Bound [33]). Consider 1-FPP on IGIRG or SFP of Defini-
tion 1.1 satisfying the assumptions given in (1.2)–(1.4) with 0 ∈ V. Assume that α > 2,
τ ∈ (2, 3), and µ > µlog. Let C∞ be the infinite component. Then for any ε > 0,

lim
|x|→∞

P
(
dC(0, x) ≤ |x|η0+ε | 0, x ∈ C∞

)
= 1. (1.8)

3For fixed q, the r0 in our proof grows like exp(c · log(1/q) · log log(1/q)) for a constant c > 0, see Remark 2.5.
4In SFP, there are choices of h that enforce all nearest-neighbour edges to be present, so density one is

possible, but not guaranteed.
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In [33] we also prove a corresponding theorem for finite GIRGs that we omit here.
Observe that Theorem 1.6 does not hold simultaneously for all vertices at a certain
norm, rather, the convergence holds in probability. The reason for this is that we did
not make any assumptions on the tail-behaviour of the distribution of L, and hence we
cannot exclude (clusters of) vertices with all edges having very large L values so that
these are reached much later, violating the upper bound in (1.8). Hence Theorem 1.6
is not strong enough to provide an analogous lower bound to Corollary 1.5(a), since
for that we would need a statement over all vertices in distance at most r. Yet, even
though some vertices at norm r might have long cost-distance to 0, linearly many of them
do satisfy dC(0, x) ≤ |x|η0+ε, so we still obtain the following corollary when combining
Theorems 1.4 and 1.6:

Corollary 1.7. Consider 1-FPP on IGIRG or SFP of Definition 1.1 satisfying the assump-
tions given in (1.2)–(1.4) with 0 ∈ V. Assume that α > 2, τ ∈ (2, 3), and µ > µlog. Let C∞
be the infinite component. Then for any ε > 0,

lim
|x|→∞

P

(∣∣∣∣ log dC(0, x)

log |x|
− η0

∣∣∣∣ ≤ ε | 0, x ∈ C∞) = 1, (1.9)

lim
r→∞

P

(∣∣∣∣ log |BCr (0)|
log r

− d

η0

∣∣∣∣ ≤ ε | 0 ∈ C∞) = 1. (1.10)

Note that (1.10) follows immediately from (1.9) because for the lower bound on
|BCr (0)| it suffices that a constant fraction of vertices at distance at most r have cost-
distance at most r1/η0+ε, which is implied by (the upper bound in) (1.9). Hence we do
obtain an absolute value in (1.10) within the P sign.

Our next result refines Theorem 1.4 and (1.9) in Corollary 1.7 when η0 = 1 in (1.7).
I.e., when µ > µpol, we can sharpen both upper and lower bounds if the dimension is at
least 2:

Theorem 1.8. Consider 1-FPP on IGIRG or SFP of Definition 1.1 satisfying the as-
sumptions given in (1.2)–(1.4) with 0 ∈ V. Assume that α > 2, τ ∈ (2, 3), µ > µpol,
and additionally d ≥ 2. Let C∞ be the infinite component. Then there exist constants
κ1, κ2 > 0 depending only on the model parameters such that

lim
|x|→∞

P (κ1|x| < dC(0, x) < κ2|x| | 0, x ∈ C∞) = 1. (1.11)

The lower bound also holds in dimension 1.

The lower bound is actually valid in a more general setting, see Theorem 1.12 below.
Our proof of the lower bound is a generalisation of ideas from Berger [6] to the edge-
weighted one-dependent setting, and indeed we recover his result on graph-distances in
Long-Range Percolation and the extension to Scale-Free Percolation in [17] when we set
α > 2, τ > 3, µ = 0, β =∞. However, we give a proof that avoids Kingman’s subadditive
ergodic theorem that both papers [6,17] use. As a corollary to our proof we obtain the
following result.

Corollary 1.9. Consider the setting of Theorem 1.8. Let π?0,x be any path between 0 and
x realising the cost-distance dC(0, x). Then there is a constant κ3 > 0 (depending only
on the model parameters) such that π?0,x is contained in Bκ3|x|(0) asymptotically almost
surely:

lim
|x|→∞

P
(
π?0,x ⊂ Bκ3|x|(0)

)
= 1. (1.12)

The statements of Theorem 1.4 and Corollary 1.5 remain valid in finite-sized GIRGs,
since finite GIRGs are obtained as subgraphs of IGIRG, and hence distances can only
increase in GIRG versus the surrounding infinite model. For the upper bound in Theo-
rem 1.8, the extension to finite GIRGs requires a proof:
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Theorem 1.10. Consider GIRG of Definition 1.1 satisfying the assumptions given
in (1.2)–(1.4). Assume that α > 2, τ ∈ (2, 3), µ > µpol, and additionally d ≥ 2. Let

C(n)
max be the largest component in Qn. Let un, vn be two vertices chosen uniformly at

random from C(n)
max. Then there exist constants κ1, κ2 > 0 depending only on the model

parameters such that

lim
n→∞

P (κ1|un − vn| < dC(un, vn) < κ2|un − vn|) = 1. (1.13)

Next we present extensions, in particular for the τ > 3, α > 2 case where we have
very mild conditions on the distribution of L, see Corollary 1.13 below.

1.3.1 Limit cases and extensions

The results above naturally extend to cases/models that may informally be described as
α =∞ or β =∞, and to some extent to τ ≥ 3 as well. We start with α =∞. This means
that we replace the condition (1.1) on the connection probability h(·) by

h(x,w1, w2)

{
= 0, if w1w2

|x|d < c′,

≥ c if w1w2

|x|d ≥ 1,
(1.14)

for some constants c, c′ ∈ (0, 1], and where h(x,w1, w2) can take arbitrary values in [0, 1]

when w1w2/|x|d ∈ [c′, 1). We use the bound w1w2

|x|d ≥ 1 in the second row for convenience,
as it allows us to write the proofs for different cases in a consistent way, but it could
easily be replaced by w1w2

|x|d ≥ c
′′ for any other constant c′′ ≥ c′. The connectivity function

h in (1.14) covers the so-called threshold regime for hyperbolic random graphs when
we also set d = 1, see [13, Theorem 2.3]. In this case, when τ ∈ (2, 3), we extend the
definitions (1.6) and (1.7) in the natural way, since limα→∞ µpol,α = 1/d:

µlog :=
3− τ
β

, µpol :=
1

d
+

3− τ
β

, η0 :=

{
1 if µ > µpol,

d · (µ− µlog) if µ ≤ µpol.
(1.15)

To describe the case β =∞, we replace (1.4) by the condition

lim
t→0

FL(t)/tβ = 0 for all 0 < β <∞. (1.16)

This means that the cdf of L > 0 is flatter than any polynomial near 0. In particular, this
condition is satisfied if FL has no probability mass around zero, for example in the case
L ≡ 1.

In this case, we again replace (1.6)-(1.7) naturally by

µlog := 0, µpol := max{ 1
d , µpol,α}, η0 :=

{
1 if µ > µpol,

min{dµ, µ/µpol,α} if µ ≤ µpol.
(1.17)

We mention that these definitions stay valid also for τ = 3. Finally, in the case α = β =∞
we replace (1.6)-(1.7) by

µlog := 0, µpol := 1
d , η0 := min{1, dµ}. (1.18)

Our main results still hold for these limit regimes. We remark that the corresponding
upper bounds also hold, see [33, Theorem 1.8].

Theorem 1.11 (Extension to threshold IGIRGs/GIRGs, and β =∞).

(a) Theorems 1.4, 1.8, and 1.10 still hold for α = ∞ if we replace the definitions of
µpol, µlog, η0 in (1.6)-(1.7) by their values in (1.15).
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(b) Theorems 1.4, 1.8, and 1.10 still hold for β = ∞ if we replace the definitions of
µpol, µlog, η0 in (1.6)-(1.7) by their values in (1.17).

(c) Theorems 1.4, 1.8, and 1.10 still hold for α = β =∞ if we replace the definitions of
µpol, µlog, η0 in (1.6)-(1.7) by their values in (1.18).

In Theorem 1.11(b), the requirement that µ > µlog = 0 implies that we exclude the
case µ = 0. Indeed, µ = 0 means the setting of classical iid first-passage percolation,
where whenever τ ∈ (2, 3), explosion occurs under mild conditions on L, see [34,
Theorems 2.11, 2.12]. Theorem 1.11(a) implies the analogous result for hyperbolic
random graphs (HypRG) by setting d = 1 in (1.15), except for some technical details. By
our Definition 1.1, the number of vertices in a finite GIRG is random, and has Poisson
distribution with parameter n, while in the usual definition of HypRG [27, 35] and
GIRG [13] the number of vertices is exactly n. Further, in HypRG the distribution of the
vertex-weights is n-dependent W (n), so that W (n) converges to a limiting distribution
W [34]. These issues can be overcome by coupling techniques e.g. presented in [34]: a
model with exactly n vertices can be squeezed between two GIRGs with Poisson intensity
1−

√
4 log n/n and 1 +

√
4 log n/n, and one can couple n-dependent and limiting vertex-

weights to each other, respectively, but we avoid spelling out the details and refer the
reader to [34, Claims 3.2, 3.3].

Finally, the lower bounds in Theorems 1.4 and 1.8 also hold under much weaker, but
more technical conditions. In particular, for τ > 3 we can strongly relax Assumption 1.3
on L.

Theorem 1.12. Consider 1-FPP on IGIRG or SFP of Definition 1.1 satisfying the assump-
tions given in (1.2)–(1.3) with 0 ∈ V (but not necessarily Assumption 1.3 on L). Assume
that α > 2 and τ ∈ (2,∞).

(1) Conditions for polynomial distance lower bound. If τ ∈ (2, 3] and L satisfies
Assumption 1.3 with some β ∈ (0,∞] so that µ > µlog, then for all ε > 0, almost surely
there is r > 0 such that

for all x ∈ V with |x| ≥ r : dC(0, x) ≥ |x|η0−ε. (1.19)

(2) Conditions for strictly linear distance lower bound. If either τ > 3 and µ ≥ 0,
and L in (1.3) satisfies P(L > 0) = 1, or τ ∈ (2, 3] and L satisfies Assumption 1.3 with
some β > 0 so that µ > µpol, then there exists κ > 0 such that almost surely there is
r > 0 such that

for all x ∈ V with |x| ≥ r : dC(0, x) ≥ κ|x|. (1.20)

Compared to Theorems 1.4 and 1.8, Theorem 1.12 covers the boundary case τ = 3.
More importantly, it states that the linear lower bound in (1.20) holds for τ > 3 and α > 2

under very mild conditions on L and µ, i.e., we allow arbitrary edge weight distributions
L that have no probability mass at zero, and arbitrary penalty strength µ ≥ 0. This
includes classical first passage percolation by setting µ = 0 and L arbitrary, a.s. positive,
but also the case L ≡ 1 and µ = 0, giving graph distances. In this latter case we recover
the result of Berger [6] for long-range percolation (LRP) and its extension by Deprez,
Hazra, and Wüthrich [17] for SFP. We state the case of classical (iid) first passage
percolation on finite variance degree models (τ > 3) with long-range parameter α > 2 as
an immediate corollary.

Corollary 1.13. Consider classical first passage percolation with iid transmission times
from distribution L satisfying P(L > 0) = 1 on IGIRG, GIRG or SFP of Definition 1.1 with
τ > 3, α > 2. Then there exists κ > 0 such that almost surely there is r > 0 such that

for all x ∈ V with |x| ≥ r : dC(0, x) ≥ κ|x|.
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In Theorem 1.12, (unlike in Theorem 1.8), since we state lower bounds, we do not
condition on 0, x ∈ C∞. In the case τ > 3, an infinite component does not need to exist
(it depends on the constants and slowly varying functions), so conditioning on 0, x ∈ C∞
would not make sense. However, for parameters that ensure an infinite component
of positive density, the event 0, x ∈ C∞ has positive probability, and (1.19) and (1.20)
remain true after conditioning.

Discontinuity at τ = 3. Remarkably, for τ > 3 there is no analogue to the strictly
polynomial regime in Theorem 1.4, even though algebraically the limits of limτ↗3 µpol =

1/d and limτ↗3 η0 = µd exist and are in (0, 1). So if we fix some µ < 1/d and let τ ↗ 3,
the cost-distances grow polynomially with exponents bounded away from one (e.g., they
approach 1/2 from below for µ = 1/(2d)). But as soon as τ > 3 is reached, the exponent
“jumps” to one. In other words, even though µpol converges to a positive limit 1/d as
τ ↗ 3, it drops to 0 as soon as τ > 3 is reached. In this sense, the parameter space is
discontinuous in η0 and µpol.

1.4 Proof outline and organisation of the paper

Proof outline of the lower bounds. For lower bounds, we need to show that every
path from a vertex x to 0 is expensive. For this, we quantify the property that “most
long edges are expensive” in Lemma 2.2. This allows us to generalise a renormalisation
method from Berger [6]. For long-range percolation, Berger considers a growing system
of boxes around the origin and defines a box Q as good if it does not contain edges
of linear length in the box size and the same property holds recursively for most of
its child-boxes, which are a certain set of non-disjoint sub-boxes that cover Q multiple
times. In the setting of 1-FPP, we modify this definition since long edges do exist when
τ ∈ (2, 3) (which is implied by the doubly-logarithmic graph distances), but these edges
are typically very expensive. We then show inductively the deterministic statement that
once a box is good, the cost-distance is “large” between any pair of vertices inside the
box with Euclidean distance linear in the box size. By “large”, we mean either linear,
or polynomial with an exponent less than one, in the Euclidean distance, depending
on the model parameters, which is unlike the linear graph-distances in [6]. Polynomial
cost-distances occur when µ ∈ (µlog, µpol). For the inductive step, for any two sufficiently
distant vertices u, v in the same good box Q, we use that any path πu,v between them
must either (i) contain a long and thus expensive edge, or (ii) has many long disjoint
sub-segments in good child-boxes of Q, whose costs we can lower-bound by induction.
See Figure 1.

We give the definition of good boxes in the FPP setting in Section 2.2, after calculating
the probability that long but cheap edges exist in a box in Section 2.1. In Section 2.3 we
then show that there are no cheap paths within a good box, and in Section 2.4 that there
are no cheap paths at all, excluding thus cheap paths that leave and return to the same
box. We avoid Kingman’s subadditive theorem in Proposition 2.6, see also the proof on
page 28. Finally, in Section 2.5 we show the analogous lower bounds for α =∞ and/or
β =∞ in Theorem 1.11 using coupling arguments.

The proof of the upper bound (that we sketched already in Section 1.1) can be found
in Section 3.

1.5 Notation

The graphs in this paper are undirected, simple graphs with vertex set V ⊆ Rd. For a
graph G = (V, E) and a set A ⊆ Rd, we denote by G[A] the induced subgraph of G with
vertex set V ∩A. For two vertices x, y ∈ V, we denote the edge between them by xy. For
a path π, we denote the number of edges in π by |π|.
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Q

x

0
π

Good child-boxes

Bad child-boxes

Figure 1: Illustration of the inductive step for the lower bound proof. The big
box is good, hence all edges in it that are longer than one-hundredth of the
smaller boxes’ side-length are already too expensive. So, any cheap-enough path
π between 0 and x contained in Q only uses edges shorter than that. There are
only a few bad child-boxes, since Q is good, and we remove the edges of π with
at least one end-point in bad child-boxes. We select from the remaining edges of
π enough sub-segments such that each sub-segment is fully contained in a good
child-box of Q and connects two sufficiently far vertices within that child-box.
Three sub-segments are shown in bold, together with their corresponding child-
boxes. By induction we have a lower bound on the costs of these sub-segments,
and summing up those yields a lower bound on C(π).

Given a cost function C : E → [0,∞] on the edges, the cost of a collection of edges π is
the sum of the costs of the edges in the collection, C(π) :=

∑
e∈π C(e). For convenience

we define C(xx) := 0 for all x ∈ V. We define the cost-distance between vertices x and y
as

dC(x, y) := inf{C(π) : π is a path from x to y in G}. (1.21)

We define the graph distance dG(x, y) similarly, when we set all edge-costs to 1. The
graph will usually be clear from the context.

We denote the Euclidean norm of x ∈ Rd by |x|. We denote by Br(x) := {y ∈ Rd :

|x − y| ≤ r} the Euclidean ball with radius r ≥ 0 around x, and by Br(x) := {y ∈ V :

|x− y| ≤ r} = Br(x) ∩ V the set of vertices in this ball. The minimal notation difference
is intentional, as we do not expect any confusion to arise between the two sets. The
graph-distance ball and cost-distance ball (or cost-ball for short) around a vertex x

are the vertex sets BGr (x) := {y ∈ V : dG(x, y) ≤ r} and BCr (x) := {y ∈ V : dC(x, y) ≤ r},
respectively. We set Br := Br(0), and similarly for Br, BGr , and BCr , if 0 is a vertex. We
denote by ∂Br(x) := Br(x) \ {y ∈ Rd : |x− y| < r}, and similarly for ∂Br, ∂BGr , and ∂BCr .
In particular, ∂BG1 (v) is the neighbourhood of a vertex v.

For parameters a, b > 0 (model parameters or otherwise), we use “for all a�? b”
as shortcut for “∀b > 0 : ∃a0 = a0(b) : ∀a ≥ a0”. We also say “a�? b” to mean that
a ≥ a0(b). We use a�? b analogously, and may use more than two parameters. For
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example, “for a�? b, c” means “∀b, c > 0 : ∃a0 = a0(b, c) : ∀a ≥ a0”. A measurable
function ` : (0,∞)→ (0,∞) is slowly varying if limx→∞ `(ax)/`(x) = 1 for all a > 0. We
denote the natural logarithm by log. For n ∈ N we abbreviate [n] := {1, . . . , n}. For
S ⊆ Rd, we denote the Lebesgue measure of S by Vol(S).

2 Lower bounds

The main part of this section is the proof of Theorem 1.12, which in turn implies
the lower bounds in Theorem 1.4 and Theorem 1.8. Note that the corresponding lower
bound for GIRG in Theorem 1.10 also follows trivially since GIRG is a subgraph of IGIRG.
Throughout the section, we will maintain Assumption 1.3 on L unless explicitly noted
otherwise.

Before we start with the proof, we note an elementary lemma stating that the product
of two random variables with regularly varying tails sharing the same tail exponent again
has a regularly varying tail with the same tail exponent.

Lemma 2.1. Let X,Y be two independent positive random variables with cumulative
distributions FX(x) = 1 − `1(x)x−τ and FY (y) = 1 − `2(y)y−τ , respectively, where `1
and `2 are slowly varying functions. Then the cumulative distribution of their product
Z := XY is given by FZ(z) = 1− `?(z)z−τ for some slowly varying function `?.

Proof. This is a consequence of [21, Corollary, Page 3].

2.1 Upper bound on the number of long and cheap edges

As mentioned in Section 1.1, we start with developing a renormalisation argument.
The argument builds on the basic observation that a box is unlikely to contain an edge
that is both long in Euclidean distance and cheap, i.e., its cost is small. This follows from
a straightforward but tedious calculation and is summarised in the following lemma. The
more interesting part of the proof comes afterwards, when we turn this basic property
into the statement that all paths between a vertex x and 0 are at least polynomially
expensive.

Lemma 2.2. Consider 1-FPP on IGIRG or SFP of Definition 1.1 satisfying the assumptions
given in (1.2)–(1.4) with 0 ∈ V. Assume that τ ∈ (2,∞) and β > 0. For all ε > 0, if N > 0

is sufficiently large relative to ε, then the following holds. Let A > N and a > 0. Then
the expected number of edges in [−A/2, A/2]d with length at least N and cost at most
Nad is at mostA

dNε
(
N−d(α−1) +N−d(τ−2)

)
if a ≥ µ,

AdNε
(
N−d(α−1) +N−d(α−1− aµ (α−(τ−1))) +N−d(τ−2+(µ−a)β)

)
if a < µ.

(2.1)

The formula for the case a ≥ µ remains valid without the restriction on the cost of the
edges, and in this case L does not need to satisfy Assumption 1.3. Further, for IGIRG,
the formula is also valid under the Palm measures P0 or P0,x where we condition on
having a vertex with unknown weight at 0 ∈ Rd or on having two vertices with unknown
weight at location 0, x ∈ Rd, respectively.

Before the proof, let us informally explain the formula, suppressing slowly varying
factors in the discussion. The factor Ad is simply the (expected) number of vertices
in [−A/2, A/2]d. The term Nε comes from applying Potter’s bound [8] to bound the
slowly varying function that appears in the distribution function of the vertex weights
in (1.2) when we integrate over the distribution of the products of weights WuWv in the
connectivity function in (1.1).
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For the case a ≥ µ, the two terms in the brackets represent two types of edges.
Consider a vertex v of constant weight. Then first term N−d(α−1) counts the expected
number of neighbours u in distance ∼ N (e.g., in distance [N, 2N ]) of constant weight,
up to negligible factors. The second term N−d(τ−2) counts the number of neighbours
u in distance ∼N of weight ∼Nd, which is exactly the weight needed to get constant
connection probability from (1.1). When a ≥ µ, the cost of such edges is typically
less than Nad, which is why we can ignore the cost condition in this case. There are
potentially other possibilities, but their contribution to the expectation is negligible.

In the case a < µ, the first term N−d(α−1) is similar to the case a ≥ µ, coming from
edges between vertices of constant weight, and so the cost is typically constant as
well. The third term N−d((τ−2)+(µ−a)β) comes from edges between vertices of weights
Wv ∼ 1 and Wu ∼ Nd. These receive a cost penalty of Ndµ, so the probability that the
edge has cost at most Nad is roughly FL(N−d(µ−a)) ≈ N−d(µ−a)β. Finally, the second
term N−d(α−1−a/µ(α−(τ−1))) comes from edges between vertices of weights Wv ∼ 1 and
Wu ∼ Nad/µ. With this weight, the typical cost of the edge is Nad, so the cost condition
is satisfied. For fixed v, there are Θ(Nd) vertices u in distance ∼N , they have probability
N−(ad/µ)(τ−1) to be of weight Wu ∼ Nad/µ, and the probability to be adjacent to v with
this weight is (Nad/µ/Nd)α by (1.1). (All up to negligible terms.) Together, this yields
the second term. Note that the term (Nad/µ/Nd)α for the connection probability is only
correct if the bracket is at most one, i.e., if a < µ.

Proof of Lemma 2.2. Throughout this proof, we will denote by C1, C2, . . . finite positive
constants depending on ε and the set par of model parameters. For readability, we
allow these to appear in the middle of a calculation without necessarily being defined
beforehand. Note that the statement of the lemma is stronger for smaller ε > 0. So
without loss of generality, we can assume that we take a ε > 0 small enough so that

−d(τ − 2) + ε/2 < 0 and − d(α− 1) + ε/2 < 0. (2.2)

If α− (τ − 1)− µβ < 0, we can also assume that

α− (τ − 1)− µβ + ε
µ

2ad
< 0. (2.3)

Let E(A,N, a) denote the expected number of edges in [−A/2, A/2]d with length at least
N and cost at most Nad. We first compute E(A,N, a) for SFP, having vertex set Zd. Let

Λ(r) := E[(1 ∧WxWy/r
d)αFL(Nad(WxWy)−µ)]. (2.4)

Using conditional expectation we have

E(A,N, a) =
∑

x,y∈[−A/2,A/2]d∩Zd
|x−y|≥N

E
[
1{xy is an edge} · 1{C(xy)≤Nad}

]

≤
∑

x,y∈[−A/2,A/2]d∩Zd
N≤|x−y|≤dA

E

[
c

(
1 ∧ WxWy

|x− y|d

)α
· FL(Nad(WxWy)−µ)

]

= c
∑

x∈[−A/2,A/2]d∩Zd

∑
y∈[−A/2,A/2]d∩Zd
N≤|x−y|≤dA

Λ(|x− y|).

Note that the number of vertices |Zd ∩ [−A/2, A/2]d| ≤ C1A
d. In order to simplify

calculations, we will replace the second sum by an integral. More precisely, by usual
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isoperimetric inequalities for Zd, there is a constant C2 = C2(d) such that

E(A,N, a) ≤ C2A
d

∫ dA

r=N

rd−1Λ(r) dr. (2.5)

For IGIRG, we obtain the same formula (2.5) in a simpler way. In expectation, there are
Ad vertices in [−A/2, A/2]d. For any fixed vertex, the expected number of neighbours
in IGIRG in distance between N and dA with edge cost at most Nad is given by the
integral

∫ dA
r=N

rd−1Λ(r) dr. Since dA bounds the diameter of [−A/2, A/2]d, this includes
all neighbours of this type in [−A/2, A/2]d. Hence, the upper bound (2.5) also holds for
IGIRG and its subgraph GIRG. The same bound remains true under the Palm measures
P0,P0,x by possibly increasing the constant prefactor C2 to account for the edges
emanating from the two extra vertices.

Next we bound Λ(r) in (2.5). Defined in (2.4), Λ(r) only depends on the product
WxWy =: Z, not on the individual weights of the two vertices. By Lemma 2.1, the
distribution of Z is of the form fZ(z) = `?(z)z−τ , where `? is a slowly varying function.
For the sake of simplicity, we will work with Z having a density, but a proof using only
Lebesgue-Stieltjes integration is similar. We recall from (2.5) that r > N and rewrite (2.4)
using law of total probability as

Λ(r) =

∫ ∞
z=1

(
1 ∧ z

rd

)α
· FL(Nadz−µ) · `

?(z)

zτ
dz. (2.6)

We now split into cases depending on the value of a.

Case 1: a ≥ µ. In this case we first show that for all ε > 0, for all sufficiently large r
(i.e., larger than some r0(ε)),

Λ(r) ≤ C3(r−d(τ−1) + r−dα)rε/2. (2.7)

We split the inner integral of (2.6) in two parts, at rd. The first part is given by

I1 :=

∫ rd

z=1

(
1 ∧ z

rd

)α
· FL(Nadz−µ)︸ ︷︷ ︸

≤1

·`
?(z)

zτ
dz ≤ r−αd

∫ rd

z=1

zα−τ `?(z) dz. (2.8)

Since r > N , and we will later let N → ∞, we can use Karamata’s theorem [8, Prop.
1.5.6], and obtain that for α− (τ − 1) > 0,

I1 ≤ r−αd
∫ rd

z=1

zα−τ `?(z) dz ≤ r−αdC4r
d(α−(τ−1))`?(rd) ≤ C4r

−d(τ−1)+ε/2 (2.9)

for N (and thus r) large enough, where we used Potter’s bound [8] to get `?(r) = o(rε/(2d))

as r → ∞, and thus for sufficiently large N (and hence r) we obtain that I1 in (2.8) in
the α > τ − 1 case is bounded from above by the first term in (2.7). If α− τ + 1 = 0, we
again use `?(z) = o(zε/(2d)) as z →∞ to get

I1 ≤ C5r
−αd

∫ rd

z=1

zε/(2d)−1 dz ≤ C6r
−αd+ε/2, (2.10)

which is the second term in (2.7). Finally, when α < τ − 1, we use Potter’s bound [8] to
get `?(z) ≤ C7z

ε as z →∞, and since α− τ + ε < −1 we get that the integral is bounded
by some constant and hence the bound (2.10) remains valid. Combining equations (2.9)–
(2.10), we obtain that regardless of the relation between α and τ − 1, I1 satisfies the
bound in (2.7). The second part of the inner integral in (2.6) is

I2 :=

∫ ∞
z=rd

(
1 ∧ z

rd

)α
· FL(Nadz−µ) · `

?(z)

zτ
dz ≤

∫ ∞
z=rd

z−τ `?(z) dz,
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since FL ≤ 1 always holds. Since rd →∞ as N →∞, Proposition 1.5.10 of [8] tells us
that for N large enough

I2 ≤
∫ ∞
z=rd

z−τ `?(z) dz ≤ C8r
−d(τ−1)`?(rd)

Again using Potter’s bound, for sufficiently large N we have that I2 is dominated by the
first term in (2.7). This finishes the proof that (2.7) holds when a ≥ µ.

Returning the attention to E(A,N, a) in (2.5), and using now (2.7), we have for τ > 2

E(A,N, a) ≤ C2A
d

∫ dA

r=N

rd−1C3(r−d(τ−1) + r−dα)rε/2dr

= C9A
d

∫ dA

r=N

r−d(τ−2)+ε/2−1 + r−d(α−1)+ε/2−1 dr

(2.2)
≤ C10A

dNε/2
(
N−d(τ−2) +N−d(α−1)

)
≤ AdNε

(
N−d(τ−2) +N−d(α−1)

)
,

where the last inequality holds for N large enough. Thus we have proved (2.1) when
a ≥ µ. Observe that we used a trivial bound FL ≤ 1 in the proofs, hence we get
that the statement also holds without any restriction on the edge-costs and without
Assumption 1.3.

Case 2: a < µ. In this case we also start bounding Λ(r) in (2.6) first. We recall the

constant t0 from (1.4). Note that t−1/µ
0 Nad/µ is smaller than Nd (and thus rd) for N large

enough. We assume this inequality and split the integral of (2.6) into three parts. In the
first part we bound the factor FL by 1 from above:

Ĩ1 :=

∫ t
−1/µ
0 Nad/µ

z=1

(
1 ∧ z

rd

)α
· FL(Nadz−µ) · z−τ `?(z) dz ≤ r−dα

∫ t
−1/µ
0 Nad/µ

z=1

zα−τ `?(z) dz.

This is the same as I1 in the previous case, except for the upper limit of integration.
Using the same reasoning, we get that

Ĩ1 ≤ C11(t0)r−dα
(
Nε/2 +N

ad
µ (α−τ+1)+ε/2

)
(2.11)

for N large enough. In the second part the argument of FL will be at most t0, hence we
can use that FL(t) ≤ c2tβ in this regime:

Ĩ2 :=

∫ rd

z=t
−1/µ
0 Nad/µ

(
1 ∧ z

rd

)α
· FL(Nadz−µ) · z−τ `?(z) dz

(1.4)
≤ c2r

−dα
∫ rd

z=t
−1/µ
0 Nad/µ

zα−τ (Nadz−µ)β`?(z) dz

= c2N
adβr−dα

∫ rd

z=t
−1/µ
0 Nad/µ

zα−τ−µβ`?(z) dz.

If α− τ − µβ + 1 > 0, we can again use Proposition 1.5.8 of [8] on the integral to get that

Ĩ2 ≤ c2Nadβr−dαC12r
d(α−τ−µβ+1)`?(rd) ≤ C13N

adβr−d(τ+µβ−1)+ε/2 (2.12)

for N large enough by Potter’s bound. If α− τ −µβ+ 1 = 0, we use `?(z) = o(z
ε
2d ) to get

Ĩ2 ≤ C14N
adβr−dα

∫ rd

z=t
−1/µ
0 Nad/µ

z
ε
2d−1 dz ≤ C15N

adβr−d(τ−1+µβ)+ε/2. (2.13)
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Finally, when α− τ − µβ + 1 < 0, we use Potter’s bound to get `?(z) = o(z
µε
2ad ), and since

in this case we assume that (2.3) holds, the integral is convergent and we have

Ĩ2 ≤ C16N
adβr−dα

∫ rd

z=t
−1/µ
0 Nad/µ

zα−τ−µβ+ µε
2ad dz ≤ C17r

−dαN
ad
µ (α−τ+1)+ε/2. (2.14)

Combining equations (2.12)–(2.14), and using the fact that r ≥ N in the inner integral,
we get

Ĩ2 ≤ C18

(
Nadβr−d(τ−1+µβ) + r−dαN

ad
µ (α−τ+1)

)
rε/2. (2.15)

Finally, the third part of the integral in Λ(r) in (2.6) is given by

Ĩ3 :=

∫ ∞
z=rd

(
1 ∧ z

rd

)α
· FL(Nadz−µ) · z−τ `?(z) dz ≤ c2Nadβ

∫ ∞
z=rd

z−µβ−τ `?(z) dz.

Again, we can apply Proposition 1.5.10 of [8] to treat the inner integral and get, by
Potter’s bound when N is sufficiently large,

Ĩ3 ≤ C19N
adβr−d(τ−1+µβ)`?(rd) ≤ C20N

adβr−d(τ−1+µβ)+ε/2. (2.16)

Combining (2.11), (2.15) and (2.16), while keeping in mind that r ≥ N , we get

Λ(r) = Ĩ1 + Ĩ2 + Ĩ3 ≤ C21

(
r−dα + r−dαN

ad
µ (α−τ+1) +Nadβr−d(τ+µβ−1)

)
rε/2.

Returning again to (2.5), using this bound on Λ(r) we obtain

E(A,N, a) ≤C22A
d

∫ dA

r=N

r−d(α−1)+ε/2−1
(

1 +N
ad
µ (α−τ+1)

)
+ r−d(τ−2+µβ)+ε/2−1Nadβ dr

(2.2)
≤ C23A

dNε/2
(
N−d(α−1) +N−d(α−1− aµ (α−τ+1)) +N−d(τ−2+(µ−a)β)

)
≤AdNε

(
N−d(α−1) +N−d(α−1− aµ (α−τ+1)) +N−d(τ−2+(µ−a)β)

)
,

where the last inequality holds for N large enough. Thus we have proved (2.1) when
a < µ.

2.2 Good blocks

In the renormalisation scheme, we shall cover the space with blocks (i.e., boxes) that
are iteratively contained in larger and larger blocks. The smallest blocks are level-1
blocks, and we group them together in level-2 blocks, and so on. A level-k block thus
contains sub-blocks of level k − 1, which in turn contains sub-blocks of level k − 2, and
so on until we reach the level-1 blocks. Now we turn to the definition of good blocks.
Berger [6] defined them as blocks that do not contain edges of linear length (in the block
size), and additionally the same property must hold for certain translates and recursively
for most of its sub-blocks. In our setting, we have to modify the definition since long
edges do exist. However, we can define a block to be ‘good’ if all edges of linear length
are costly enough and arrive at the following definition.

Definition 2.3. Let k0 := 16 · 30d, let A1 > 1 and u ∈ (0, 1) be constants, and define
Ak := A1(k!)2 for all k ≥ k0.

A k-block is defined as a d-dimensional cube of side length Ak. For k > k0, there is a
natural partition of a k-block Q into k2d many (k − 1)-blocks; we call these the children
of Q. We denote by Qk the k-block centred at the origin.

We will define the notion of goodness recursively. Let η ∈ (0, 1]. We say that a k0-block
Q is η-good if every edge internal to Q has cost at least u. For k > k0 and a k-block Q,
consider all 3d k-blocks Q′ of the form Q+ jAk−1/2 for j ∈ {−1, 0, 1}d. We say that Q is
η-good if for all Q′ = Q+ jAk−1/2:
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(i) Every edge internal to Q′ of length larger than Ak−1/100 has cost at least uAηk.

(ii) All but at most 3d children of Q′ are η-good.

We will fixA1 and then u in Definition 2.3 such that they satisfy equations (2.21), (2.24),
(2.28), (2.32) and (2.36) below. We will also assume that A1 is large enough so that the
upper bound of Lemma 2.2 holds for certain choices of N and ε specified case-by-case
below in (2.22), (2.23), (2.25), (2.29) and (2.30). Recall the definitions of µpol from (1.6)
and η0 from (1.7).

Proposition 2.4. Consider 1-FPP on IGIRG or SFP of Definition 1.1 satisfying the as-
sumptions given in (1.2)–(1.3) with 0 ∈ V, but L not necessarily satisfying Assumption 1.3.
Assume that

1) α > 2, τ > 3, µ ≥ 0 arbitrary, and the distribution of L is arbitrary satisfying P(L >

0) = 1. Then there are choices for A1 and u in Definition 2.3 for which a.s. there
exists k1 ≥ k0 such that Qk is 1-good for all k ≥ k1.

2) α > 2, τ ∈ (2, 3], µ > µlog, and L satisfies (1.4) in Assumption 1.3. Then for any
δ > 0 there are choices for A1 and u in Definition 2.3 for which a.s. there exists
k1 ≥ k0 such that Qk is (η0 − δ)-good for all k ≥ k1.

3) α > 2, τ ∈ (2, 3], µ > µpol, and L satisfies (1.4) in Assumption 1.3. Then there are
choices for A1 and u in Definition 2.3 for which a.s. there exists k1 ≥ k0 such that Qk
is 1-good for all k ≥ k1.

Remark 2.5. Proposition 2.4 implicitly limits the type of paths present between two
vertices: a path either uses short edges (of which it needs to use many if the endpoints
are far away) or it uses long edges, which do have high cost. We will see that in Case 1
paths that have long edges are simply not present. In Case 3 they are present, but the
cost of long edges is so high that the paths are not more efficient than paths which
only use short edges (corresponding to case η0 = 1 of linear cost-distances). Case 2 is
most exotic: long edges are present, but their cost is on a polynomial scale compared to
their Euclidean length, and their precise exponent will give polynomial (but nonlinear)
cost-distances.

The proof we will give follows closely the one in [17, Lemma 14]. We show that

P(Qk is not (η0 − δ)-good) ≤ e−k (2.17)

for k ≥ k0, where δ is an arbitrary positive constant for Case 2 and δ = 0 for Cases 1
and 3. (The same inequality holds true under both Palm measures P0,P0,x as well). Thus

P(∀k ≥ k′ : Qk is (η0 − δ)-good)) ≥ 1−
∑
k≥k′

e−k ≥ 1− 2e−k
′
.

The existence of k1 (so that Qk is (η0 − δ)-good for all k ≥ k1) then follows from the
Borel-Cantelli Lemma, and for a fixed q > 0 we can achieve P(k1 ≤ k′) ≥ 1 − q for
k′ = | log(q/2)|. We will show in the later parts of the section that the lower bounds on
cost-distances follow deterministically from Proposition 2.4, for all vertices in distance
at least r0 := c · Ak1 for a constant c, and thus for all vertices in distance r ≥ r0 =

c · A| log(q/2)| = cA1 · (| log(q/2)|!)2 ≥ ec
′·log(1/q)·log log(1/q) for a constant c′ > 0. However,

we did not try to optimise these bounds.
Compared to [17] developed for graph distances, in order to show (2.17) we addition-

ally need to derive an upper bound on the probability that property (i) of Definition 2.3
fails, i.e., to handle the cost of edges as well, not just their length. We do this using
Lemma 2.2.
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Proof of Proposition 2.4. In order to unify notation, we define η0 := 1 and δ := 0 in
Cases 1 and 3, which is also consistent with the definition of η0 in (1.7). So we need
to show (η0 − δ)-goodness in all three cases. We fix the values of A1 and u from
Definition 2.3. They will both depend on the set par of model parameters and on δ

(in Case 2). We will first choose A1 to be suitably large, and then choose u to be
suitably small as a function of A1. We will prove the result using the Borel-Cantelli
Lemma, by showing that

∑
k≥k0 P (Qk is not (η0 − δ)-good) is a finite sum. By writing

Pmax(·) := max{P(·),P0(·),P0,x(·)}, let

ψk := Pmax(Qk is not (η0 − δ)-good). (2.18)

This choice ensures that k-blocks appearing in larger k′-blocks not centred at 0 are also
bad with probability at most ψk. We will show inductively that ψk ≤ e−k. Note that our
choice of k0 = 16 · 30d in Definition 2.3 ensures that

3dk4de−2(k−1) ≤ 1
2e
−k for all k ≥ k0. (2.19)

Base case. We start by bounding ψk0 . Let E0,E0,x denote expectation under the Palm
measures P0,P0,x, respectively, and denote by Emax(·) the maximum of E[·],E0[·],E0,x[·].
Let |E(Qk0)| be the number of edges inside Qk0 . Then |E(Qk0)| has finite expectation
because the number of vertices in Qk is fixed (in SFP) or has a finite second moment (in
IGIRG), and the number of edges with both endpoints within Qk is at most the square of
the number of the vertices. The same is true under both Palm measures P0,P0,x. Let

T := Emax[|E(Qk0)|]. (2.20)

We always assume P(L > 0) = 1 (Assumption 1.3 is a stronger assumption), so we can
choose the constant u ∈ (0, 1) from Definition 2.3 small enough so that

FL(u) ≤ e−2k0/(4T ). (2.21)

Since the vertex-weights are always at least 1 and µ ≥ 0, for each edge it holds that
C(e) ≥ Le. Hence by Markov’s inequality and a union bound,

ψk0 = Pmax(∃e ∈ Qk0 with C(e) < u) ≤ Pmax(∃e ∈ Qk0 with Le ≤ u)

≤ Pmax(|E(Qk0)| > 2ek0T ) + Pmax(∃e ∈ Qk0 with Le ≤ u | |E(Qk0)| ≤ 2ek0T )

≤ 1

2
e−k0 + 2ek0Emax[|E(Qk0)|] · e

−2k0

4T
= e−k0 .

Bounding the failure probability of property (i). For the induction step, we need to
derive an upper bound for the probability that property (i) in the definition of (η0 − δ)-
goodness fails. Since we work under the conditioning that 0 ∈ V, (and later possibly
under the presence of an extra vertex at x ∈ Rd), not all blocks have the same distribution
under these measures. Yet, since Lemma 2.2 is valid with or without the presence of
these vertices, the same upper bound holds for all blocks when counting the expected
number of edges that are long but too cheap. Using Markov’s inequality and translation
invariance, for any fixed j ∈ {−1, 0, 1}d we have

Pmax(Qk + jAk−1/2 fails to have property (i))

≤ Emax[|{vw ⊂ Qk edge : |v − w| ≥ Ak−1/100, C(vw) ≤ uAη0−δk }|] =: E(k).

We will bound E(k) from above using Lemma 2.2. We will specify ε, a in Lemma 2.2 later,
only depending on par. Then we will set A := Ak, N := Ak−1/100 < A, and choose A1
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large enough (with respect to ε, a) so that Lemma 2.2 can be applied. When we are able
to set a ≥ µ, with these choices of A,N then we obtain, for some constant C > 0 that
depends only on par,

E(k) ≤ Adk ·
Aεk−1

100ε

(
A
−d(α−1)
k−1

100−d(α−1)
+

A
−d(τ−2)
k−1

100−d(τ−2)

)
≤ 100Ck2d

(
A
−d(α−2)+ε
k−1 +A

−d(τ−3)+ε
k−1

)
,

(2.22)

where we substituted Ak = k2Ak−1 for the second inequality. Recall that this bound
holds for any L and does not require Assumption 1.3. Observe that the second term only
tends to zero when τ > 3, so we can set a ≥ µ only when τ > 3. For τ ≤ 3, we will have
to set a < µ, again A := Ak, N := Ak−1/100 < A. By possibly increasing the constant
C > 0, if A1 is sufficiently large so that Lemma 2.2 can be applied then (2.1) yields

E(k) ≤ Adk ·
Aεk−1

100ε

 A
−d(α−1)
k−1

100−d(α−1)
+
A
−d(α−1− aµ (α−(τ−1)))

k−1

100−d(α−1− aµ (α−τ+1))
+

A
−d(τ−2+(µ−a)β)
k−1

100−d(τ−2+(µ−a)β)


≤ 100Ck2d

(
A
−d(α−2)+ε
k−1 +A

−d(α−2− aµ (α−(τ−1)))+ε

k−1 +A
−d(τ−3+(µ−a)β)+ε
k−1

)
,

(2.23)

Note that this case of Lemma 2.2 required Assumption 1.3 on L.
We now split into cases depending on the values of τ and µ to specify a and ε.

Proposition 2.4 always assumes α > 2 but we emphasise this for readability.

Case 1: τ > 3, α > 2, and µ ≥ 0, L > 0 a.s., otherwise arbitrary. In this case we
have η0 = 1 and δ = 0. Let us choose a > max{µ, 1/d}. Then since ad > 1 = η0 we can
choose A1 so large that(

Ak−1

100

)ad
≥ Ak−1k

2 = Ak for all k > k0. (2.24)

Since τ > 3, α > 2, we will set in (2.22)

ε :=
d

2
min {α− 2, τ − 3} > 0. (2.25)

Substituting this ε into the upper bound (2.22) yields

E(k) ≤ 2 · 100Ck2dA−εk−1 ≤ 100C+1A−ε1 k2d((k − 1)!)−2ε.

Case 2: τ ∈ (2, 3], α > 2, and µ ∈ (µlog, µpol]. In this case, δ > 0 and Assumption 1.3
needs to hold for L. Define

a := min

{
µ− 3− τ

β
,
µ(α− 2)

α− (τ − 1)

}
− δ

2d
=
η0

d
− δ

2d
, (2.26)

where the last equation can be seen by using η0 from (1.7) and µlog = (3−τ)/β from (1.6).
Also note that η0 > 0 since µ > µlog = (3 − τ)/β, and α > 2 ≥ (τ − 1), and that the
statement of Proposition 2.4 is stronger for smaller δ. Therefore, we can assume that
a > 0. Note also that the first term of the minimum is at most µ and δ > 0, which implies
a < µ. (In fact, the second term of the minimum is also at most µ.) Moreover, by the
definition of a and the fact that α > 2 implies α− (τ − 1) > 0, rearranging (2.26) yields
that

3− τ − (µ− a)β ≤ −βδ
2d
, 2− α+

a

µ
(α− (τ − 1)) ≤ − (α− (τ − 1))δ

2µd
. (2.27)
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We choose A1 large enough so that(
Ak−1

100

)η0−δ/2
=

(
Ak

100k2

)η0−δ/2
≥ Aη0−δk > uAη0−δk for all k > k0. (2.28)

By definition of a, cf. equation (2.26), (Ak−1/100)ad = (Ak−1/100)η0−δ/2 > uAη0−δk as
desired. Using α− (τ − 1) > 0 the first term in the upper bound (2.23) is dominated by
the second term, and (2.23) becomes

E(k) ≤ 2 · 100Ck2d
(
A
−d(α−2− aµ (α−τ+1))+ε

k−1 +A
−d(τ−3+(µ−a)β)+ε
k−1

)
.

Now we set

ε :=
δ

4
min

{
β,
α− (τ − 1)

µ

}
> 0. (2.29)

Using this ε, combined with (2.27), it follows that

E(k) ≤ 100C+1k2dA−εk−1 = 100C+1A−ε1 k2d((k − 1)!)−2ε.

Case 3: τ ∈ (2, 3], α > 2, and µ > µpol. Here again we need Assumption 1.3 to
hold for L, and we have η0 = 1 and δ = 0. Remembering the definition of µpol in (1.6),
rearranging µ > µpol yields that both d(α−2)−(α−τ+1)/µ > 0 and d(τ−3+(µ−1/d)β) > 0,
hold. So we will show that we can set in (2.23) the following values of ε and a:

ε :=
1

4
min

{
d(α− 2)− α− (τ − 1)

µ
, d (τ − 3 + (µ− 1/d)β)

}
> 0, (2.30)

and

a :=
1

2

(1

d
+ min

{
µ(α− 2)

α− (τ − 1)
, µ− 3− τ

β

})
> 0. (2.31)

We establish first that indeed a < µ and also that ad > 1. To see the first, observe
that a averages 1/d with the minimum of two different quantities. By (1.6) we have
1/d ≤ µpol < µ. Since τ ∈ (2, 3], (α− 2)/(α− (τ − 1)) ≤ 1 and so µ(α− 2)/(α− τ + 1) ≤ µ,
and µ − (3 − τ)/β ≤ µ. This implies in particular that a averages one quantity strictly
smaller than µ with another quantity smaller or equal to µ, showing that a < µ. Since
µ > µpol, rearranging also yields

µ(α− 2)

α− (τ − 1)
>

1

d
and µ− 3− τ

β
>

1

d
,

so a > 1/d. This implies ad > 1 = η0, and thus, we can choose A1 so large that(
Ak−1

100

)ad
≥ Ak = Aη0−δk > uAη0−δk for all k > k0. (2.32)

Since α > 2 and τ ≤ 3, we have α − (τ − 1) > 0 and thus, as in Case 2 the upper
bound (2.23) becomes

E(k) ≤ 2 · 100Ck2d
(
A
−d(α−2− aµ (α−(τ−1)))+ε

k−1 +A
−d(τ−3+(µ−a)β)+ε
k−1

)
. (2.33)

The definition of ε in (2.30) and a in (2.31) implies 2ε ≤ 1
2d(τ − 3 + (µ − 1/d)β) and

a ≤ 1
2 (1/d+ µ− (3− τ)/β). From these, it is elementary to check that

−d(τ − 3 + (µ− a)β) ≤ −2ε.
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Likewise, from 2ε ≤ 1
2 (d(α− 2)− (α− (τ − 1)/µ)) and a ≤ 1

2 (1/d+ µ(α− 2)/(α− τ + 1))

we derive

−d
(
α− 2− a

µ
(α− τ + 1)

)
≤ −2ε,

so (2.33) simplifies to

E(k) ≤ 100C+1k2dA−εk−1 = 100C+1A−ε1 k2d((k − 1)!)−2ε.

We remark that our approach does not give δ = 0 in the boundary case µ = µpol for
τ ∈ (2, 3), which would yield linear distances. The reason is that for δ = 0 we can not
find a value of a such that ad > 1 holds, and which give a negative exponent in the error
bound (2.1). Since Lemma 2.2 is essentially tight, this means that there exist long edges
whose cost is sublinear in their length.

Induction step. Combining the three cases above, we conclude that in all cases we
have for an appropriately chosen ε > 0 (depending on the values of µ and τ )

Pmax(Qk + jAk−1/2 fails to have property (i)) ≤ E(k) ≤ 100C+1A−ε1 k2d((k − 1)!)−2ε.

(2.34)

Importantly, both C and ε depend only on par. We define

C ′ = C ′(A1) := 100C+1A−ε1 , (2.35)

which is a constant depending on par and A1.
We note that for k > k0, the k-block Qk is not (η0 − δ)-good if at least one of its 3d

translations Qk+jAk−1/2, j ∈ {−1, 0, 1}d fails to have property (i) or (ii) of Definition 2.3.
The failure probability of property (i) is bounded by (2.34). Therefore, translation
invariance together with a union bound, and recalling property (ii), implies that

ψk ≤ 3d
(
C ′k2d((k − 1)!)−2ε + P(at least 3d + 1 children of Qk are not (η0 − δ)-good)

)
.

Observe the following: if a block has at least 3d + 1 bad child-blocks, one can find at
least one pair of non-neighbouring bad child-blocks. Hence the event in the probability
above implies that there are at least two children-blocks Q?k−1 and Q??k−1 of Qk that are
not (η0 − δ)-good and whose centres have distance at least 2Ak−1. In particular, any
vertex in Q?k−1 is at least Ak−1 Euclidean distance away from any vertex in Q??k−1, which
ensures that the events {Q?k−1 is not (η0 − δ)-good} and {Q??k−1 is not (η0 − δ)-good} are

independent. Since there are k2d many child-blocks of Qk, there is at most
(
k2d

2

)
≤ k4d

many ways to choose Q?k−1 and Q??k−1, that are independently bad with probability at
most ψk−1. So we deduce the bound

ψk ≤ 3d
(
C ′k2d((k − 1)!)−ε + k4dψ2

k−1

)
.

Note that C ′ → 0 as A1 →∞, by (2.35). Thus, we can choose A1 large enough (and this
choice only depends on par and ε) so that for all k > k0,

ψk ≤ 1
2e
−k + 3dk4dψ2

k−1. (2.36)

We now prove by induction on k that

ψk ≤ e−k (2.37)
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for all k ≥ k0. Indeed, we have already seen that (2.37) holds for k = k0. For k > k0,
assuming that (2.37) holds for k − 1, we get

ψk ≤ 1
2e
−k + 3dk4dψ2

k−1 ≤ 1
2e
−k + 3dk4de−2(k−1)

(2.19)
≤ 1

2e
−k + 1

2e
−k = e−k.

This shows by induction that (2.37) holds for all k ≥ k0, which yields∑
k≥k0

P (Qk is not (η0 − δ)-good) =
∑
k≥k0

ψk ≤
∑
k≥k0

e−k < +∞

and concludes the proof of Proposition 2.4 by the Borel-Cantelli Lemma.

2.3 Paths within good blocks

The next proposition carries out the renormalisation scheme and is an important step
in proving Theorem 1.8 and Theorem 1.4.

Proposition 2.6. Let η ∈ (0, 1] and recall k0 from Definition 2.3. There exists a constant
u? depending only on par and η such that for all k ≥ k0 the following holds.

(1) If Q is an η-good k-block and x, y ∈ Q satisfy |x− y| > Ak/16, then every path from
x to y within Q has cost at least u?|x− y|η (deterministically).

(2) If the (k − 1)-block Q′ and the k-block Q centred at x are both η-good, and if
y ∈ Q satisfies |x− y| > Ak−1/8, then every path from x to y within Q has cost at least
u?|x− y|η/30d+2 (deterministically).

Remark 2.7. Our proof of (1) is an adaptation of the proof of Lemma 2 in [6], with
the difference that the continuous-valued edge-cost make the argument slightly more
complicated. The statement of (2) allows us to prove strictly linear cost-distances in
the case η = 1, avoiding Kingman’s subadditive ergodic theorem that finishes the proof
in [6]. Note that since (2) is symmetric, we could also require a condition for the blocks
centred at y instead of x.

Proof of Proposition 2.6. We will show the following claim by induction: there exists a
constant C1 (which depends on the same parameters as u? does) such that for every
k ≥ k0, if Q is an η-good k-block and x, y ∈ Q satisfy |x− y| > Ak/16, then every path π
from x to y within Q has cost at least

C(π) ≥ C1Λ(k)|x− y|η, where Λ(k) :=

k∏
h=k0

(
1− k0

h2

)
. (2.38)

Then taking u? = C1

∏∞
h=k0

(1− k0/h
2) > 0 shows (1). To show (2), we will slightly modify

the last step of the induction in (1). To ease notation, we will assume that Q = Qk, i.e., Q
is the k-block centred at the origin.

For the base case, consider x, y ∈ Qk0 that satisfy |x − y| > Ak0/16, where Qk0 is a
η-good k0-block. Then any path between x and y contains at least one edge and since
Qk0 is an η-good k0-block, the path has cost at least u by Definition 2.3. It is here that
we use the assumption that P(L > 0) = 1, compare it to the base case in the proof of
Proposition 2.4, i.e., at and below (2.21).

Since |x− y| ≤ Ak0
√
d, and η ≤ 1, we define C1 := u/(Ak0

√
d) so that (2.38) holds for

k = k0. Note that C1 ≤ u/
√
d.

Now assume that (2.38) holds already until k − 1 for some k > k0. Let us consider
an η-good k-block Qk, and x, y ∈ Qk with |x− y| > Ak/16. Let π = (v1, . . . , vl) be a path
from v1 = x to vl = y within Qk.
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Case A: If π contains one or more edges of length greater than Ak−1/100, then since
Qk is η-good, by property (i) of Definition 2.3, the path has cost at least

uAηk ≥
u|x− y|η
√
d
η ≥ C1|x− y|η ≥ C1Λ(k)|x− y|η,

since η ≤ 1, so we are done.
Case B: When every edge of π has length at most Ak−1/100, we will split π in subpaths

as follows. Remember that for every translation Qk + jAk−1/2 of Qk, j ∈ {−1, 0, 1}d,
at most 3d children of Qk + jAk−1/2 are not η-good (call these bad), thus we have in
total at most 9d bad child-blocks in the union of all translations (some might overlap).
Denote these bad children by B1, B2, . . . , Bp with p ≤ 9d, and let B := B1 ∪ . . . ∪ Bp.
If π ∩ B = ∅, define π1 := π. Otherwise, we will decompose π into good segments πs
followed by bad segments σt, so that π is the concatenation of the good and bad segments:
π = (π1, σ1, π2, σ2, . . . , πS−1, σT , πS) for some S, T , where some of these segments might
be empty, and the last vertex of a segment is the first vertex of the next segment.

We now divide the vertices of π = (v1, . . . , vl) into the segments. Intuitively, the
edge-set of good segments stay fully outside of bad child-blocks. Let a1 be the smallest
index i ≤ l so that vi ∈ B and let b1 be the index of the containing bad child-blocks:
va1 ∈ Bb1 (choose b1 arbitrarily if there is more than one possibility). Then we set
π1 = (v1, . . . , va1−1) as the first good segment. Let z1 be the largest value z such that
vz ∈ Bb1 , then σ1 = (va1−1, . . . , vz1+1) is the first bad segment. (Note that there may be
vertices on this segment outside Bb1 .) Inductively, let as+1 be the smallest a > zs so that
va ∈ B, let bs+1 be so that vas+1 ∈ Bbs+1 and let zs+1 be the largest z with vz ∈ Bbs+1 . The
further good segments are then defined as π2 := (vz1+1, . . . , va2−1) and so on, up to πS ,
and the bad segments as σ1 := (va1−1, . . . , vz1+1), σ2 := (va2−1, . . . , vz2+1) and so on up to
σT . Observe that the bad segment σt contains the two edges vat−1vat and vztvzt+1 not
fully contained in Bbt . So, the good segments contain edges that are completely outside
the bad set B. Note that S − 1 ≤ T ≤ p ≤ 9d, and S − 1 may or may not equal T since
two bad segments may directly follow each other.

For a path ρ, denote by D(ρ) the Euclidean distance between its endpoints. Moreover,
for v, w ∈ ρ, let ρ[v, w] be the subpath (segment) from v to w on ρ. By the triangle
inequality, |x − y| ≤

∑S
s=1D(πs) +

∑T
t=1D(σt). Moreover, since the diameter of Bbt is√

dAk−1 (since Bbt is a level k−1 block), and every edge in π has length at most Ak−1/100

(by assumption of Case B), for every bad segment σt we have

D(σt) ≤ |vat − vzt |+ |vat−1 − vat |+ |vzt − vzt+1| ≤
√
dAk−1 + 2Ak−1/100 ≤ 2dAk−1.

(2.39)

Let

I := {s ∈ {1, . . . , S} | D(πs) > Ak−1/2} (2.40)

be those good segments where the two endpoints span at leastAk−1/2 Euclidean distance.
Then

∑
s/∈I D(πs) ≤ SAk−1/2, trivially, since there are S good segments. Since the

inductive statement assumes |x− y| > Ak/16, this and (2.39) gives a somewhat involved
pigeon-hole principle on the triangle inequality above:

∑
s∈I
D(πs) ≥ |x− y| −

T∑
t=1

D(σt)−
∑
s/∈I

D(πs) ≥ |x− y| − (2dT + S/2)Ak−1

(?)

≥ |x− y| − 30dAk−1

(†)
≥
(

1− 16 · 30d

k2

)
|x− y| (2)

=

(
1− k0

k2

)
|x− y|,

(2.41)
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where we used that S − 1, T ≤ 9d to get inequality (?), that |x − y| ≥ Ak/16 and that
Ak = k2Ak−1 to get (†), and then the definition of k0 in Definition 2.3 to get (2). For later
reference, we note that under the condition |x− y| ≥ 2 · 30dAk−1 (that we will assume in
proving (2)), the following weaker version of (2.41) still holds:∑

s∈I
D(πs) ≥ |x− y| − 30dAk−1 ≥

1

2
|x− y|. (2.42)

Returning to the proof of (2.38), observe that (2.41) bounds the total Euclidean distance
D spanned by the endpoints of good segments πs. Now we will work towards switching
D to C, the cost of the segment. We claim that if s ∈ I, then

C(πs) ≥ C1Λ(k − 1)D(πs)
η. (2.43)

In order to prove (2.43), we will show inductively that we can partition πs = (vzs+1, . . .,
vas+1−1) into sub-segments πs,i = πs[xs,i, ys,i] (where ys,i = xs,i+1, i.e., the end-vertex of
a sub-segment is the starting vertex of the next sub-segment) for i = 1, . . . , qs, such that
for all i:

(I) D(πs,i) > Ak−1/16,

(II) πs,i ⊆ BAk−1/4(xs,i),

i.e., the whole segment is contained in the Euclidean ball of radius Ak−1/4 centred
around xs,i and its endpoints span enough Euclidean distance. We will construct the πs,i
greedily, with the induction hypothesis that if πs is not covered by the first i sub-segments
(i.e. if πs 6= ∪ij=1πs,j), then |ys,i − vas+1−1| > Ak−1/16 (remembering that vas+1−1 is the
last vertex of πs).

For the base case i = 0, we take ys,0 to be the first vertex of πs, and since s ∈ I,
by (2.40), we have |ys,0 − vas+1−1| = D(πs) > Ak−1/2 > Ak−1/16, so the induction
hypothesis is satisfied.

Now assume by induction that we already have πs,1, . . . , πs,i satisfying (I), (II) and
|ys,i − vas+1−1| > Ak−1/16 for some i ≥ 1, and let us construct πs,i+1.

Case B1: If the segment πs[ys,i, vas+1−1] satisfies (II), that is, if πs[ys,i, vas+1−1] ⊆
BAk−1/4(ys,i) then we define qs := i + 1, πs,qs := πs[ys,i, vas+1−1] and the procedure
terminates. πs,qs also satisfies (I) since D(πs,qs) = |ys,i − vas+1−1| > Ak−1/16 because of
our assumption that qs > i.

Case B2: If πs[ys,i, vas+1−1] * BAk−1/4(ys,i) we distinguish two cases depending on
|ys,i − vas+1−1|.
Case B2a: |ys,i − vas+1−1| ≥ 5Ak−1/32. Define πs,i+1 to be the path obtained by following
πs from xs,i+1 := ys,i until reaching the first vertex on πs that spans larger than Ak−1/16

Euclidean distance from xs,i+1, and let this vertex be ys,i+1. The vertex ys,i+1 exists
since |xs,i+1 − vas+1−1| = |ys,i − vas+1−1| > Ak−1/16 was our assumption. Then πs,i+1

satisfies (I) by our definition of ys,i+1. Since every edge of πs has length at most
Ak−1/100 (since we are under Case B), and every vertex of πs,i+1 = πs[xs,i+1, ys,i+1]

except ys,i+1 is within distance Ak−1/16 of xs,i+1, πs,i+1 is also contained in a ball of
radius Ak−1/16 +Ak−1/100 < Ak−1/4 centred at xs,i+1, and thus (II) is satisfied as well.
Finally, by the triangle inequality we have

|ys,i+1 − vas+1−1| ≥ |ys,i − vas+1−1| − |ys,i − ys,i+1|
≥ 5Ak−1/32− (Ak−1/16 +Ak−1/100) > Ak−1/16,

which shows the induction step for this case.
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Case B2b : |ys,i − vas+1−1| < 5Ak−1/32. Intuitively, this case means that while ys,i
is close to vas+1−1 in space, the path πs[ys,i, vas+1−1] wanders far off and then comes
back before reaching the last vertex vas+1−1. Let y′ be the first vertex on the path πs
starting from xs,i+1 := ys,i such that |y′ − xs,i+1| ≥ Ak−1/4 (this vertex must exist since
πs[ys,i, vas+1−1] * BAk−1/4(ys,i), since we are under Case B2). Then define ys,i+1 to be
the vertex right before y′ on πs[xs,i+1, y

′] and let πs,i+1 := πs[xs,i+1, ys,i+1]. Again, since
every edge of πs has length at most Ak−1/100 (since we are under Case B), we have
D(πs,i+1) ≥ |xs,i+1 − y′| − |ys,i+1 − y′| ≥ Ak−1/4−Ak−1/100 > Ak−1/16 so (I) is satisfied.
Moreover, πs,i+1 satisfies (II) by our definition of ys,i+1. Finally, we use the triangle
inequality to get

|ys,i+1 − vas+1−1| ≥ |y′ − xs,i+1| − |ys,i+1 − y′| − |vas+1−1 − xs,i+1|
≥ Ak−1/4−Ak−1/100− 5Ak−1/32 > Ak−1/16,

which concludes the induction step.
The reason for requiring (II) is that the obtained partition of πs has the property

that every sub-segment πs,i is contained in a η-good (k − 1)-block (among the children
of Qk and its translations). This is due to a geometric statement: any ball of radius
Ak−1/4 within Qk is contained in at least one k − 1-level block that is a child of some
shift Qk + jAk−1/2 for some j ∈ {−1, 0, 1}d. By (I) and the induction hypothesis (2.38),
we have C(πs,i) ≥ C1Λ(k − 1)D(πs,i)

η and therefore

C(πs) =

qs∑
i=1

C(πs,i) ≥ C1Λ(k − 1)

qs∑
i=1

D(πs,i)
η

(?)

≥ C1Λ(k − 1)

(
qs∑
i=1

D(πs,i)

)η
(4)

≥ C1Λ(k − 1)D(πs)
η,

where we got inequality (?) as follows: since η ≤ 1 the function xη is sublinear, i.e.,
xη + yη ≥ (x+ y)η, and (4) is the triangle inequality applied on πs and its sub-segments.
This shows (2.43). Recall now the set I from (2.40), and the pigeon-hole argument
in (2.41), which holds under the assumption |x− y| ≥ Ak/16. By the same sublinearity
argument (?) of the function xη, we can finally deduce that

C(π) ≥
∑
s∈I
C(πs)

(2.43)
≥ C1Λ(k − 1)

∑
s∈I
D(πs)

η
(?)

≥ C1Λ(k − 1)

(∑
s∈I
D(πs)

)η
(2.41)
≥ C1Λ(k − 1)

(
1− k0

k2

)η
|x− y|η

η≤1

≥ C1Λ(k)|x− y|η,
(2.44)

where Λ(k) is defined in (2.38). This finishes the inductive demonstration of (2.38) and
concludes the proof of part (1) of the proposition.

For part (2), we discriminate two sub-cases. If |x− y| ≥ 2 · 30dAk−1, then (2.42) holds,
and we can repeat the calculation in (2.44), getting

C(π) ≥ C1Λ(k − 1)

(∑
s∈I
D(πs)

)η
(2.42)
≥ 2−ηC1Λ(k − 1)|x− y|η,

which is stronger than required. So consider the remaining case, Ak−1/8 < |x − y| <
2 · 30dAk−1. As before, if the path π from x to y contains an edge of length more than
Ak−1/100, the claim follows from Qk being η-good (Case A). So assume otherwise. Then
there exists a vertex on π with |x− v| ∈ (Ak−1/16, Ak−1/8]. Let v be the first such vertex
on π (starting from x), and let π′ = π[x, v]. Then v ∈ Q′ (the (k-1)-block centred at x)
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and π′ ⊆ Q′. Since Q′ is good by prerequisite, we may apply part (1) to the path π′ and
conclude

C(π) ≥ C(π′) ≥ u?|x− v|η ≥ u?
(
Ak−1

16

)η
≥ u?

(
|x− y|
32 · 30d

)η η≤1

≥ u?|x− y|η/30d+2,

as required, finishing the proof of Proposition 2.6.

2.4 Proofs of lower bounds

We are now ready to prove Theorem 1.12.

Proof of Theorem 1.12. We will prove both claims (1.19) and (1.20) simultaneously by
showing that the bound

dC(0, x) ≥ u?|x|η

30d+2
√
d

(2.45)

holds simultaneously for all xwith sufficiently large |x| =: r, where u? is the constant from
Proposition 2.4. The only difference between the two statements is that we prove (2.45)
for all η < η0 if µ ∈ (µlog, µpol], and for η := η0 = 1 in the cases µ > µpol or τ > 3.

By Proposition 2.4, a.s. there is some (random) k1 ≥ k0 such that for all k ≥ k1, the
k-block Qk centred around 0 is η-good in the sense of Definition 2.3: every edge of
length larger than Ak−1/100, internal to Qk and its shifts Q′ = Qk + jAk−1/2 by vectors
j ∈ {−1, 0, 1}d, has cost at least u?Aηk, and there are at most 3d bad child-blocks of Qk
and/or the Q′s. This is the only place where we need to discriminate between the cases
τ ∈ (2, 3) and µ ∈ (µlog, µpol], or τ ∈ (2, 3) and µ > µpol; or τ > 3. Proposition 2.4 allows
us to choose η := η0 = 1 only in the latter two cases, otherwise we choose η = η0 − δ for
an arbitrarily small δ > 0.

For each vertex x ∈ Rd, define k?(x) to be the smallest integer k ∈ N with x ∈ Qk. We
will show that (2.45) holds for all x with k?(x) ≥ k1 + 1, which in particular implies the
inequality for all |x| >

√
dAk1/2. So let us fix some x and suppose that k? := k?(x) ≥ k1+1.

In particular we have |x| ≤
√
dAk?/2. Let π be a path from 0 to x, and let k′ be the

smallest index such that π ⊆ Qk′ . Note that k′ ≥ k? because x 6∈ Qk?−1. Then there
exists a vertex v on π in Qk′ \Qk′−1, and in particular |v| > Ak′−1/2. If k′ = k? then we
pick v := x, otherwise we pick any such vertex v. By the second part of Proposition 2.6,
we have

C(π) ≥ u?|v|η/30d+2. (2.46)

In the case k′ = k?, (2.45) follows from x = v and thus |v| = |x|. In the case k′ > k?,
it follows from |v| > Ak′−1/2 ≥ Ak?/2 ≥ |x|/

√
d and η ≤ 1, finishing the proof of (1.19)

and (1.20).

Theorem 1.12 contains Theorem 1.4 and the lower bound in Theorem 1.8 as special
cases. Moreover, Corollaries 1.5 and 1.7 follow immediately from Theorem 1.4 and from
Theorems 1.4 and 1.6, respectively. Finally, the lower bound in Theorem 1.10 is a trivial
consequence of Theorem 1.8 since GIRG is a subgraph of IGIRG, which can only increase
distances. We now prove Corollary 1.9, and then the limit cases of Theorem 1.11 in the
next subsection.

Proof of Corollary 1.9. To prove this corollary we assume the upper bound of Theo-
rem 1.8, which is proved in Section 3. In other words we assume that there exists a
constant κ2 such that lim|x|→∞P(C(π?0,x) < κ2|x|) = 1. Given this constant κ2 we define
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κ3 := κ230d+2/u?. Let π0,x be any path that leaves the ball Bκ3|x|(0). We prove now us-
ing (2.46) that π0,x cannot be optimal. Indeed, let v ∈ π0,x be any vertex with |v| ≥ κ3|x|,
and apply (2.46) to v, which gives with η = 1 that

C(π0,x) ≥ u?|v|/30d+2 ≥ u?κ3|x|/30d+2 = κ2|x|.

Hence, with probability tending to 1, any such path π0,x cannot be optimal.

2.5 Limit cases, lower bounds

In this section, we prove the lower bounds in the limit cases, i.e., we prove the lower
bounds in Theorem 1.11. We achieve this by coupling a model with α =∞ to a suitable
model with α <∞, and likewise for β =∞. For α =∞, we will keep the vertex set and
the weights identical in the two coupled models, but we use a subset of edges of the
α < ∞ model to obtain the α = ∞ model (with identical costs, where edges are kept).
For β =∞, we can use the same vertex set and weights, and the same edge set in the
two coupled models with β =∞ and β <∞, but we decrease the edge costs.

Proof of Theorem 1.11 (lower bounds). (a) First consider the case α = ∞. For Theo-
rem 1.4, we need to study the case µ > µlog = (3− τ)/β from (1.15) and show that for
sufficiently large |x|,

dC(0, x) ≥ |x|η0,∞−ε, (2.47)

where, recalling that µpol = (3− τ)/β + 1/d in the α =∞ case (see (1.15)),

η0,∞ =

{
1 if µ > µpol,

d · (µ− µlog) if µ ≤ µpol.

To show (2.47), we will show that IGIRG (and also GIRG and SFP) are monotone in α

in the following sense. We first explain it for α < ∞. Let α, α′ ∈ (1,∞) with α′ < α.
Let c ≥ c > 0, and consider a realisation of IGIRG, say G, with parameters α, c, c > 0,
and arbitrary other parameters. Set c′ := c′ := c and consider a second IGIRG G′ with
parameters α′, c′, c′, and otherwise identical parameters to G. Then conditioned on the
vertex set V and the weight vector W, by (1.1), the edge probabilities of G (of G′) are
given by a function h (a function h′), and h and h′ satisfy the relation

h(x,w1, w2) ≤ c ·min{1, (w1w2)/|x|d}α ≤ c′ ·min{1, (w1w2)/|x|d}α
′
≤ h′(x,w1, w2).

Therefore, we can couple G to G′ such that G is a subgraph of G′. Note that G′ has the
same model parameters as G except for α′, and except for the parameters c, c whose
values do not appear in Theorem 1.4, nor in any of the other theorems. For α =∞ and
any α′ ∈ (1,∞), the same coupling is possible, as we show next. In this case, the defining
equation (1.14) for h includes two parameters c, c′ > 0, and requires that h(x,w1, w2) = 0

for (w1w2)/|x|d < c′ and h(x,w1, w2) ≥ c for (w1w2)/|x|d ≥ 1. In all other cases, we still
have h(x,w1, w2) ≤ 1 because it is a probability. Hence by setting

h′(x,w1, w2) :=

{
c ·min{1, (w1w2)/|x|d}α′ if w1w2

|x|d < c′,

1 if w1w2

|x|d ≥ c
′,

we can ensure that h′(x,w1, w2) ≥ h(x,w1, w2) for all x,w1, w2. Moreover, it can easily
be checked that h′ satisfies the conditions in (1.1) for α′ with c′ := max{1, c, (c′)−α′} and
c′ := min{1, c}, i.e., we obtain an IGIRG model with parameter α′.

To resume the proof of Theorem 1.11, consider IGIRG G for α = ∞, and for some
β, µ, τ such that µ > µlog, and let ε > 0. We claim that there exists α′ < ∞ such that
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η′0 := η0(α′, β, µ, τ) > η0,∞ − ε
2 . Indeed, this follows because we have defined η0,∞

such that limα′→∞ η0(α′, β, µ, τ) = η0,∞, as can be seen by comparing η0 in (1.7) (see
also (1.6)) to η0,∞ in (1.15). Now we couple G with an IGIRG G′ with parameter α′ (and
different c, c), but identical parameters β, µ, τ . Theorem 1.4 applies to G′, so we obtain
for sufficiently large |x|,

dG
′

C (0, x) ≥ |x|η0,∞−ε. (2.48)

Since G is a subgraph of G′, cost-distances in G are larger, so (2.48) remains true if we
replace dG

′

C by dGC .
Likewise, for the linear lower bound in Theorem 1.8 with α =∞, for any µ > µpol (i.e,

η0,∞ = 1) we can find α′ such that η0(α′, β, µ, τ) = 1 with the same parameters β, µ, τ .
Hence, the same coupling also shows that for sufficiently large |x|,

dC(0, x) > κ1|x|.

This implies the lower bound in Theorem 1.8 for α =∞.
Finally, the same argument also holds for GIRG, since for fixed r > 0, two randomly

chosen vertices un, vn in a box of volume n will a.a.s. satisfy |un − vn| ≥ r as n → ∞.
Thus the lower bound in Theorem 1.10 is also implied. This concludes the case α =∞.

(b)&(c) Now we come to the case β =∞. Note that we have shown part (a) already,
so in particular the couplings that we construct now are also valid when α = β =∞. The
idea is the same as for α =∞, but the coupling is much easier. Since the parameter β
does not influence the graph structure, we can use the same graph, but with different
transmission costs. More precisely, consider IGIRG G with β =∞, i.e., the cumulative
distribution FL of the cost variables satisfies limt→0 FL(t)/tβ = 0 for all 0 < β < ∞.
For any β′ ∈ (0,∞), there exists t0 ∈ (0, 1) such that the distribution F ′L given by
F ′L(t) = tβ

′
for t < t0 and F ′L(t) = 1 for t ≥ t0 dominates FL. The distribution F ′L satisfies

condition (1.4), so it yields an IGIRG model. Hence, we can couple G to an IGIRG G′ with
any parameter β′ ∈ (0,∞) (and otherwise identical parameters except for the parameters
t0, c1, c2 that appear in (1.4)) such that G and G′ are the same graph, and for every edge
the transmission cost in G is at least as large as in G′.

We can now turn to proving the lower bound in Theorem 1.4 for β =∞, so consider
IGIRG G for β =∞, and let µ > 0 = µlog. According to (1.17), in this case we set η0,∞ := 1

for µ > µpol and η0,∞ := min{dµ, µ/µpol,α} otherwise. Since η0,∞ = limβ′→∞ η0(α, β′, µ, τ),
we can find β′ ∈ (0,∞) such that η′0 := η0(α, β′, µ, τ) ≥ η0,∞ − ε

2 , and couple G to an
IGIRG G′ with parameter β′, as described above. Moreover, by choosing β′ large enough,
we can also ensure that µ > µlog(β′, τ, µ) = (3− τ)/β′. Then we can apply Theorem 1.4
to G′, and obtain that for sufficiently large |x|,

dG
′

C (0, x) ≥ |x|η
′
0−ε/2.

Since cost-distances in G′ are less or equal than cost-distances in G, the statement
remains true if we replace dG

′

C by dGC , and since η′0 − ε
2 ≥ η0,∞ − ε, we may replace η′0 − ε

2

by η0,∞ − ε. This yields the lower bound of Theorem 1.4 for G. As before, the proof for
SFP is verbatim the same, and the proofs of the linear lower bound (i.e., the lower bound
in Theorem 1.8) and the lower bound for GIRG (the lower bound of Theorem 1.10) are
analogous. This concludes the case β =∞, and concludes the proof of the lower bounds
of Theorem 1.11.

3 Linear regime, upper bound

In the following section, we prove the upper bound of Theorem 1.8, that cost-distance
in IGIRG and SFP scales at most linearly with Euclidean distance and the corresponding
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part of Theorem 1.10 for finite GIRGs in a box. We shall make the renormalisation
argument outlined on page 5 quantitative. We start by classical results on iid bond
percolation, but first a definition:

Definition 3.1 (Deviation from straight line). Given u, v ∈ Rd, let Su,v denote the line
segment between u, v. For x ∈ Rd we define the deviation devuv(x) := ‖x − Su,v‖.
Given a path π = x1 . . . xk in a graph G with vertices in Rd, we define the deviation
of π from Suv as devuv(π) := max{devuv(xi) : i ∈ [k]}. Finally, let the deviation of π be
dev(π) := max{devx1xk(xi) : i ∈ [k]}, i.e., its deviation from the segment between the
endpoints.

The next two lemmas state two properties for bond percolation with high enough
edge-density in Zd. First, the density of the infinite component is large in every ball
B(log r)3/2(y), where y may vary through rd vertices around the origin. Second, vertices
in the infinite component can be joined by a path of linear length with small deviation.
The first statement is implicit in [19], the second in [3]. We give proofs in the appendix
for completeness on pages 40 and 41 respectively. Recall the notation a �? b, c and
a�? b, c meaning that a needs to be respectively sufficiently small/large in terms of the
parameters b, c from Section 1.5.

Lemma 3.2 (Locally high-density infinite cluster in bond-percolation). Let d ∈ N with
d ≥ 2, let ε, δ, σ ∈ (0, 1), and let r > 0. Let ω? be an iid Bernoulli bond percolation on Zd

with edge-retention probability p := 1− ε. Then whenever r�? ε, δ, and ε�? σ, d, then
almost surely ω? has a unique infinite component C?∞ with P(0 ∈ C?∞) ≥ 1− σ and

∀x ∈ Zd : P
(
∀y ∈ Br(x),

|B(log r)3/2(y) ∩ C?∞|
|B(log r)3/2(y) ∩Zd|

≥ 1− σ
)
≥ 1− δ. (3.1)

Lemma 3.3 (Linear distances in bond-percolation). Let d ∈ N with d ≥ 2, let ζ, ε, c ∈ (0, 1),
and let κ, r > 0. Let ω? be an iid Bernoulli bond percolation on Zd with edge-retention
probability p := 1 − ε. Let C?∞ be the infinite component of ω?. For all x ∈ Zd, let
A?linear(r, κ, ζ, x) be the event that for all y ∈ C?∞ \Br(x) there is a path π from x to y with
length at most |π| ≤ κ|x − y| and deviation at most dev(π) ≤ ζ|x − y|. Then whenever
r�? ζ, ε, and κ, 1/ε, 1/c�? d,

P(A?linear(r, κ, ζ, x) | x ∈ C?∞) ≥ 1− e−cr. (3.2)

3.1 General high-density random geometric graphs and
renormalisation-coupling

In order to apply Lemmas 3.2 and 3.3 to IGIRG and SFP, we will need a coupling
to bond percolation. We provide this in Lemma 3.5 for any graph model satisfying
Definition 3.4 below. Given a graph G = (V, E) with vertex set V ⊆ Rd and a set A ⊆ Rd,
we write G[A] for the induced subgraph of G on V[A] := V ∩ A. Two (half-open) boxes
are called neighbouring if their closures have non-empty intersection.

Definition 3.4 (Dense geometric random graphs, generally). Let d ∈ N and let S be a
partition of Rd into half-open boxes of the form [a1, a1 +R)× · · · × [ad, ad +R) for some
a1, . . . , ad ∈ R and side-length R > 0. When S is given, for all z ∈ Zd, we write Sz for
the unique box in S containing R ·z. Let G = (V, E) be a random graph whose vertex
set is either Zd or is given by a homogeneous PPP on Rd. For all ε > 0, we say G is an
(R, ε)-dense geometric graph with boxing scheme S if it satisfies the following properties
(i)-(iii), and we call G a strong (R,D, ε)-dense geometric graph if it satisfies (i)-(iv):

(i) G[S1] and G[S2] are independent for any disjoint Lebesgue measurable sets S1, S2;

(ii) for all boxes S ∈ S, P(G[S] is non-empty and connected ) ≥ 1− ε;
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(iii) for all neighbouring boxes S1, S2 ∈ S,

P(G[S1 ∪ S2] contains at least one edge from S1 to S2) ≥ 1− ε;

(iv) for all boxes S ∈ S, P(G[S] has diameter at most D ) ≥ 1− ε.

Observe that z 7→ Sz is a bijection from Zd to S; this forms the basis of the coupling in
Lemma 3.5 below, essentially acting as renormalisation. In IGIRG and SFP, the random
graph GM described at the start of the section will take the role of the dense geometric
graph (see Corollary 3.9).

Lemma 3.5 (Renormalisation-coupling to bond-percolation). Let d ∈ N, ε ∈ (0, 1), and
K,R > 0. Suppose K, 1/ε�?R, d and let G be an (R, ε)-dense geometric graph with box-
ing scheme S, and let ω? be an iid Bernoulli bond percolation with retention probability
1− 20dε. Then there exists a coupling between G and ω? such that whenever z1z2 is open
in ω?: G[Sz1 ] and G[Sz2 ] are non-empty and connected; G[Sz1 ] and G[Sz2 ] contain at most
K vertices each; and there is an edge from V[Sz1 ] to V[Sz2 ] in G.

Proof. In Definition 3.4, the vertex set is either a homogeneous PPP or Zd. If V is a
homogeneous PPP, there exists K > 0 such that for all boxes S ∈ S,

P(|V[S]| ≤ K) ≥ 1− ε. (3.3)

If V = Zd, then |V[S]| ≤ (R+ 1)d and so (3.3) holds trivially with K = (R+ 1)d.
We now carry out a one-step renormalisation and define a site-bond percolation ω on

Zd. Recall that S in Definition 3.4 is a boxing scheme with side-length R and Sz is the
box containing R·z for z ∈ Zd. In the renormalised lattice, we set a site z ∈ Zd occupied
in ω if G[Sz] contains at most K vertices and is connected. We set two neighbouring sites
z, z′ connected by an open bond in ω if both sites are occupied and there is at least one
edge in G between G[Sz], G[Sz′ ]. By Definition 3.4(i), sites are occupied independently of
each other in ω with probability at least 1− 2ε by (i), (ii) and (3.3), and bonds that do not
share a site are also open independently by (i). However, bonds that do share a site (zz′

and zz′′) are not open independently since they are both influenced by G[Sz].
We now couple ω to a Bernoulli bond percolation ω? on Zd. Similar ideas have

been used before — see [2,37] in particular. By Definition 3.4(ii) and (iii) and by (3.3),
every bond is open with probability at least 1 − 5ε, where the factor of 5 comes from
a union bound over the two sites being occupied and over (iii). We next show an
approximate independence as follows. Consider a bond zz′ in ω, and let N(zz′) :=

{bonds incident to z or z′} \ {zz′}, with size |N(zz′)| = 4d − 2. For any set of bonds
S ⊆ N(zz′),

P(zz′ open in ω | all bonds in S open) ≥ P(zz′ open and all bonds in S open)

≥ 1− (4d− 1) · 5ε ≥ 1− 20dε =: p

by a union bound. Using that bonds that do not share a site are independently
open, one can iterate this argument to show that for every finite set S of bonds,
P(all bonds in S are open) ≥ p|S|. Hence, by Strassen’s theorem [38] we can couple ω
with an independent bond percolation ω? on Zd with retention-probability p, where every
open bond in ω? is open in ω.

Definition 3.6 (Bernoulli-induced infinite subgraph). Let ε ∈ (0, 1) be such that Lemma 3.2
applies with ε3.2 := 20dε for some r > 0 and some δ, σ ∈ (0, 1). Let G be an (R, ε)-dense
geometric graph with boxing scheme S and let ω? be an iid Bernoulli bond percolation
process with retention probability p := 1 − 20dε given by the coupling of Lemma 3.5.

EJP 29 (2024), paper 175.
Page 32/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1216
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Degree-dependent FPP on spatial random graphs

When d ≥ 2, write C?∞ for the (unique) infinite component of ω? guaranteed by Lemma 3.2.
We define then the following infinite subgraph of G:

H∞(G,S, ω?) =
⋃
z∈C?∞

V[Sz]. (3.4)

When there is no danger of confusion, we write H∞ := H∞(G,S, ω?) and we may not
explicitly define the bond percolation process ω?.

The graph H∞ corresponds to vertices in renormalised boxes that belong to C?∞ of the
renormalised bond-percolation model, hence we “blow-up” C?∞ to correspond to boxes
in G. By the connectivity of C∞, also G[H∞] is a.s. connected by the properties of the
coupling set out in Lemma 3.5. However, H∞ may only be a proper subset of some
infinite component C∞ of G. Moreover, G need not have a unique infinite component.
Indeed, suppose G is a random graph model with a PPP as V, where each vertex is
coloured red or blue independently at random, and there is no edge with endpoints of
different colours. If the probability of ‘red’ is sufficiently high with respect to the box
side length R, so that with probability at least 1− ε a box S ∈ S contains no blue vertices,
then Definition 3.4(i)–(ii) may be satisfied, and there will be an infinite component of
red vertices. However, there may also be an infinite component of blue vertices with
arbitrary behaviour. Of course, if ε is small, then H∞ has density larger than 1/2 and
so no other infinite component can have density larger than 1/2, so H∞ is the uniquely
determined as the infinite component with density close to 1.

3.2 Local denseness and linear distances in dense geometric random graphs

We now show in Lemma 3.7 that H∞ is “locally dense” in G, with density close to
one, and in Lemma 3.8 that H∞ is a well-connected set containing short low-deviation
paths between many pairs of vertices.

Lemma 3.7 (Locally high-density Bernoulli-induced infinite subgraph). Let d ∈ N with
d ≥ 2, let ε, δ, σ ∈ (0, 1), and let r,R > 0. Suppose that r�? ε, δ, R, and that ε�? σ, d. Let
G be an (R, ε)-dense geometric graph with boxing scheme S. Then a.s. H∞ is infinite
and G[H∞] defined in (3.4) is connected, for any box S ∈ S, P(V ∩ S ⊆ H∞) ≥ 1− σ and
moreover

∀x ∈ Rd : P

(
∀y ∈ Br(x),

|B(log r)2(y) ∩H∞|
|B(log r)2(y) ∩ V|

≥ 1− σ
)
≥ 1− δ. (3.5)

The statement in (3.5) gets stronger if one decreases the radius (log r)2, since then the
infinite subgraph H∞ is present already at lower radii near every vertex y inside Br(x).
For our proofs later, (log r)2 is more than strong enough, but one could improve (3.5) to
having Θ(log r) as radius around y. If the vertex set of G is Zd, then Lemma 3.7 follows
from Lemma 3.2 (applied with some σ3.2 that is sufficiently small compared to σ in (3.5))
by the coupling in Lemma 3.5. If the vertex set comes from a Poisson point process,
we use that the number of vertices in the boxes B(log r)2(y) ∩H∞ concentrates around
its mean and that only at most σ3.2-fraction of boxes have too few/too many vertices in
B(log r)2(y) \ H∞. The details are straightforward and we give a proof of Lemma 3.7 in
the appendix on page 43.

Lemma 3.8 (Linear graph distances in dense geometric random graphs). Let d ∈ N
with d ≥ 2, let ζ, ε, δ ∈ (0, 1), and let κ, r,R,C > 0. Let G be an (R, ε)-dense geometric
graph with boxing scheme S. For x ∈ V, let Alinear(r, κ, C, ζ, x) be the event that for all
u ∈ Br(x)∩H∞ and v ∈ H∞, there is a path from u to v in G of length at most κ|u−v|+C

and deviation at most ζ|u − v| + C. Then whenever C�? r�? ε, δ, ζ, R, d and κ�?R, d

and ε�? d, then P(Alinear(r, κ, C, ζ, x)) ≥ 1− δ.
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Proof. Let ω? be a bond percolation process with retention probability 1 − 20dε as
required in Lemma 3.5, so that H∞ = H∞(G,S, ω?) in (3.4) exists. Indeed, since ε�? d,
by Lemma 3.2 ω? has a unique infinite component C?∞ a.s. and H∞ is well-defined. Let
K > 0 be as in Lemma 3.5, so that K is a function of d and R, and let κ′ =

√
κ and

C ′ =
√
C.

Denote the event A?linear(r/R, κ
′, ζ, z) of Lemma 3.3 by A?1(z), so if A?1(z) occurs then

there is a short low-deviation path from z to any site in C?∞ \ Br/R(z). Let A?2(z) be
the event that for all v ∈ C?∞ ∩ Br/R(z), there is a path in ω? from z to v of length and
deviation at most C ′. Observe that if A?1(z) ∩ A?2(z) occurs, then for all v ∈ C?∞ there is a
path in ω? from z to v of length at most C ′ + κ′|z − v| and deviation at most C ′ + ζ|z − v|.
Recall that for z ∈ Zd, we denote by Sz the box in S that contains R·z. We define our
last event as

A+(x) :=
⋂

z∈Zd :Sz∩Br(x) 6=∅

((
A?1(z) ∩ A?2(z)

)
∪ {z /∈ C?∞}

)
.

Using the coupling of Lemma 3.5 we will prove that

A+(x) ⊆ Alinear(r, κ, C, ζ, x), (3.6)∑
z∈Zd:Sz∩Br(x)6=∅

P
(
¬A?1(z) ∩ {z ∈ C?∞}

)
≤ δ/2, (3.7)

P

( ⋂
z∈Zd:Sz∩Br(x)6=∅

(
A?2(z) ∪ {z /∈ C?∞}

))
≥ 1− δ/2. (3.8)

Given (3.6)–(3.8), a union bound gives that P(Alinear(r, κ, C, ζ, x)) ≥ P(A+) ≥ 1 − δ, as
required. We first prove (3.7), starting with∑

z∈Zd :Sz∩Br(x)6=∅

P
(
¬A?1(z) ∩ {z ∈ C?∞}

)
≤

∑
z∈Zd :Sz∩Br(x)6=∅

P
(
¬A?1(z) | z ∈ C?∞

)
.

By Lemma 3.3, since κ′�? d�? ε and r�? ε, ζ, R, d, there exists c3.3 depending only on
d such that each term in the sum is at most e−c3.3r/R. Since Sz is a box of side-length R,
the number of terms |{z ∈ Zd : Sz ∩Br(x)}| is at most (3r/R)d, and r�? δ,R, d (and thus
r�? c3.3), ∑

z∈Zd :Sz∩Br(x) 6=∅

P
(
¬A?1(z) ∩ {z ∈ C?∞}

)
≤ (3r/R)de−c 3.3r/R ≤ δ/2

for all sufficiently large r given δ. We next prove (3.8). The maximum length and
deviation of a path between any pair of sites in C?∞ ∩B3r/R(x) is a random variable which

is a.s. finite, so since C ′ =
√
C�? δ, r this maximum must be at most C ′ with probability

at least 1− δ/2, for all sufficiently large C ′. Thus (3.8) follows.
Finally, we prove (3.6). Suppose A+(x) occurs, let u ∈ Br(x) ∩ H∞, and let v ∈ H∞

two vertices in G. Let u− ∈ Zd be such that u ∈ Su− , and let v− ∈ Zd be such that
v ∈ Sv− ; thus u− = bu/Rc and v− = bv/Rc, and u−, v− ∈ C?∞ per definition of H∞ in (3.4).
Since A+(x) occurs and u− ∈ C?∞, the event A?1(u−) ∩ A?2(u−) also occurs; thus there
exists a path π? = z1 . . . zm (for some m) from u− to v− in ω? with

|π?| ≤ C ′ + κ′|u− − v−|, dev(π?) ≤ C ′ + ζ|u− − v−|.

The statement of the lemma becomes weaker with larger κ, so we may just prove it for
one fixed value κ = κ(R, d), and deduce it for all larger values of κ. We may thus assume
for this fixed value of κ that C ′�? κ and C ′�? κ

′ =
√
κ. For the same reason we may
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assume C ′�? ζ. Since also C ′�?R, d and the diameter of each box is at most R
√
d, we

have

|π?| ≤ 2C ′ + κ′|u− v|/R, dev(π?) ≤ 2C ′ + ζ|u− v|/R. (3.9)

By the properties of the coupling with ω? set out in Lemma 3.5, for each zi ∈ π?, the
graph G[Bzi ] is connected and contains between 1 and K vertices, and for all i ≤ m− 1

there is an edge between G[Bzi ] and G[Bzi+1
]. Since u ∈ Bz1 and v ∈ Bzm , we can thus

find a path πG from u to v in G[Bz1 ∪ · · · ∪ Bzm ]. Since each box contains at most K
vertices, it follows from (3.9) that

|πG| ≤ Km = K(|π?|+ 1) ≤ 2Kκ′|u− v|/R+K(2C ′ + 1).

Likewise, since each box has side length R and diameter at most R
√
d,

dev(πG) ≤ R
√
d+R · dev(π?) ≤ ζ|u− v|+ 2RC ′ +R

√
d.

Recall that K is a function of d and R, and that κ,C�? d,R; we therefore recover
|πG| ≤ κ|u− v|+ C and dev(πG) ≤ ζ|u− v|+ C. Thus Alinear(r, κ, C, ζ, x) occurs, and so
A+(x) ⊆ Alinear(r, κ, C, ζ, x) as claimed.

We will state the following corollary in a stronger form than necessary here; part (iii)
and the ‘strong’ version of part (i) below is only used in our companion paper [33] but
not in this paper. Recall from (1.5) that par is the set of model parameters. In order to be
able to talk about a number of vertices being in the vertex set, we shall work conditional
on one of two events; these conditionings might be trivial for SFP. In particular, we write
F := {x1, . . . , xt ∈ V} to mean that the locations x1, . . . , xt ∈ Rd are part of the vertex set
with unknown vertex weights from distribution FW , and FM := {x1, . . . , xt ∈ VM} for the
event that the locations x1, . . . , xt are part of the vertex set with unknown vertex weights
in the interval [M, 2M ] for some large constant M . In other words, we (sometimes) work
under certain Palm-measures of the underlying Poisson process.

Corollary 3.9 (Linear costs in Bernoulli-induced infinite subgraph in IGIRG and SFP).
Consider 1-FPP in Definition 1.2 on a graph G = (V, E) that is an IGIRG or SFP satisfying
assumptions (1.2)–(1.4) with τ ∈ (2, 3). Let δ, ε, σ ∈ (0, 1), let r,M,C, κ, ζ, t > 0, and
let R := M2/d/

√
d. Suppose C�? r�?M, ζ, δ, and that κ�?M�? ε, σ, t, par. Finally,

suppose that ε�? σ, par. Let IM := [M, 2M ], and let GM = (VM , EM ) be the subgraph
of G formed by vertices VM := {v ∈ V : Wv ∈ IM} and edges EM := {uv ∈ E : u, v ∈
VM , C(uv) ≤ M3µ}. For t as above, let {x1, . . . , xt} ⊆ Zd for SFP and {x1, . . . , xt} ⊆ Rd
for IGIRG, and let F := {x1, . . . , xt ∈ V} and FM := {x1, . . . , xt ∈ VM}. Then:

(i) For all dimensions d ≥ 1, conditioned on either F or FM , the graph GM is a
strong (R, 2, e−M

3−τ−ε
)-dense and an (R, ε)-dense geometric graph in the sense of

Definition 3.4.

(ii) For all dimensions d ≥ 2, a.s. H∞ is infinite, G[H∞] is connected, G has a unique
infinite component C∞, and H∞ ⊆ V(C∞) ∩ VM .

(iii) For all dimensions d ≥ 2, and x ∈ Rd,

P
(
∀y ∈ Br(x),

|B(log r)2(y) ∩H∞|
|B(log r)2(y) ∩ VM |

≥ 1− σ
∣∣∣F) ≥ 1− δ. (3.10)

(iv) For x ∈ Rd, let Alinearcost(r, κ, C, ζ, x) be the event that for all u ∈ Br(x)∩H∞ and all
v ∈ H∞, there is a path from u to v of cost at most κ|u−v|+C and deviation at most
ζ|u− v|+ C. Then for all dimensions d ≥ 2, P(Alinearcost(r, κ, C, ζ, z) | F) ≥ 1− δ.
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Proof. Let S be a boxing scheme of side length R = M2/d/
√
d. Using Definition 3.4, we

now prove that GM is a strong (R, 2, ε3.4)-dense geometric graph for ε3.4 := e−M
3−τ−ε

with boxing scheme S. Note that this automatically implies that (R, ε)-dense since
M�? ε. Definition 3.4(i) follows from the definitions of the models. For the other
conditions we first lower-bound the expected number of vertices in a box S ∈ S. In both
IGIRG and SFP, we use (1.2) to bound:

P(W ∈ IM ) = (1− FW (M))− (1− FW (2M)) =
`(M)

Mτ−1
− `(2M)

(2M)τ−1

= M−(τ−1)`(M)

(
1− 2−(τ−1) `(2M)

`(M)

)
≥M−(τ−1)−ε/4,

(3.11)

where to obtain the last inequality we used that ` is slowly-varying, so `(2M)/`(M)→ 1,
and that M�? ε. In IGIRG, VM follows a homogeneous PPP with intensity P(W ∈ IM ) on
Rd; since S has side length R, |VM [S]| is therefore a Poisson random variable with mean
λM (Rd) := RdP(W ∈ IM ), which is at least RdM−(τ−1)−ε/4 = d−d/2M3−τ−ε/4. Since
τ < 3, the exponent is positive since we assumed ε�? par small, and so λM ≥M3−τ−ε/2

since M�? d, ε. Similarly, in SFP the number of vertices in VM [S] follows a binomial
distribution with mean λM (Zd) := |Zd ∩ S| · P(W ∈ IM ) ≥ d−d/2M3−τ−ε/4/2, (where the
factor of 2 suffices to account for boundary effects since M is large), which is again at
least M3−τ−ε/2 for M�? ε.

We now study the edge probabilities within the box S. Consider two vertices u, v ∈
VM [S]. Their distance is most the diameter of the box,

√
dR ≤M2/d, and Wu,Wv ∈ IM =

[M, 2M ] so WuWv/|u − v|d ≥ 1 holds. Recall that the edges have cost (WuWv)
µLuv ≤

4M2µLuv in 1-FPP, while we keep the edge in GM only if this edge cost is at most M3µ.
Thus for all vertices u, v ∈ VM [S],

P
(
uv ∈ E , C(uv) ≤M3µ | u, v ∈ VM [S]

)
≥ c

(
1 ∧ WuWv

|u− v|d

)α
· FL

(
(WuWv)

−µM3µ
)

≥ cFL(4−µMµ) ≥ c/2,
(3.12)

where the last inequality holds since M�? par. Note that (3.12) holds uniformly over
the weights in IM and locations of vertices in S, and is also valid when α = ∞ or
β =∞. With the vertex set VM exposed, the presence of edges in GM [S] can therefore
stochastically dominates an independent collection of Bernoulli(c/2) random variables.

Thus, the graph GM [S] dominates an Erdős-Rényi random graph with number of ver-
tices distributed as Poisson(λM (Rd)) or binomial with mean λM (Zd) with λM (Rd), λM (Zd)

both at least M3−τ−ε/2, and constant connection probability c/2. This Erdős-Rényi ran-
dom graph is non-empty and connected with diameter two with probability at least
1− exp(−Θ(λM )) ≥ 1− exp(−M3−τ−ε) = 1− ε3.4, see [24, Theorem 7.1]. Hence, GM sat-
isfies conditions (ii)–(iv) of Definition 3.4 with ε3.4 and is thus a strong (R, 2, ε3.4)-dense
geometric graph, which proves that (i) of Corollary 3.9 holds unconditionally. Moreover,
since R�? t, the above argument still holds conditioned on any intersection F of at most
t events of the form z ∈ V or z ∈ VM ; from this point on in the proof, we always condition
on F , and the only property of GM we use is that it is an (R, ε)-dense geometric graph
conditioned on F .

When d ≥ 2, let ω? be an iid Bernoulli bond percolation with retention probability
1 − 20dε, and recall H∞ := H∞(GM ,S, ω?) from (3.4) in Definition 3.6. Since ε�? σ, d

and r�? ε, δ, R, Corollary 3.9(ii)–(iii) are now immediate from Lemma 3.7, except the
uniqueness of C∞, which was proved earlier in [16] for SFP and in [18] for IGIRG.
Recall the definition of Alinear(r, κ, C, ζ, x) from Lemma 3.8: in particular, that the graph
distance in GM between two vertices is κ times the Euclidean distance. Since every
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edge of GM has cost at most M3µ, the cost distance then is at most κM3µ between
those vertices in GM . Hence, Alinearcost(r, κ, C, ζ, z) ⊇ Alinear(r, κ/M

3µ, C, ζ, z); thus
Corollary 3.9(iv) follows from Lemma 3.8.

The above proof works whenever 3 − τ > 0, which guarantees that the expected
degree of vertices in GM , i.e., M3−τ+o(1), grows with M . We chose the box-size R = M2/d

so that it corresponds to the connectivity radius of a vertex in VM . For τ > 3, the expected
degree in GM tends to 0 as M increases and so GM has no infinite component for large
M (even if we removed the restriction on edge costs).

3.3 Connecting to the infinite subgraph of the auxiliary graph

Corollary 3.9(iv) guarantees linear-cost low-deviation paths within H∞ ⊆ C∞ when
d ≥ 2. However, when connecting two arbitrary vertices, e.g. 0 and x, in IGIRG/SFP, we
cannot assume that they fall in H∞. We solve this issue using the following two claims.

Claim 3.10 (The infinite cluster of IGIRG/SFP is dense). Let G = (V, E) be an IGIRG or
SFP satisfying assumptions (1.2)–(1.4) with d ≥ 2 and τ ∈ (2, 3). Then there exists ρ > 0

such that for all u, v ∈ Rd (for IGIRG) or u, v ∈ Zd (for SFP), we have P(u, v ∈ C∞ | u, v ∈
V) ≥ ρ.
Claim 3.11 (Connecting to the Bernoulli-induced infinite subgraph). Consider the setting
of Corollary 3.9 with d ≥ 2, recall H∞ ⊆ VM from (3.4), and let C∞ be the infinite
component of G containing H∞. Let u, v ∈ Rd (for IGIRG) or Zd (for SFP). Then,
whenever r�?M, δ,

P
(
∃u? ∈ H∞∩Br(u); ∃ a path πGu,u? ⊆ E(G) :

V(πGu,u?) ⊆ Br(u), C(πGu,u?) ≤ C | u, v ∈ C∞
)
≥ 1− δ.

(3.13)

Proof of Claim 3.10. Fix two locations u, v ∈ Rd or u, v ∈ Zd, and let M�? par, and
recall from the calculation in (3.11) that

P(u, v ∈ VM | u, v ∈ V) = P(W ∈ IM )2 ≥M−2(τ−1)−ε/2 ≥M−2τ .

Further, by Corollary 3.9 (i), GM is an (R, ε)-dense geometric graph even when condi-
tioned on the event FM = {u, v ∈ VM}. This means that the coupling in Lemma 3.5
remains valid under the conditioning, and the high-density result P(S ∩ V ⊆ H∞ | u, v ∈
VM ) ≥ 1− σ in Lemma 3.7 holds also conditioned on u, v ∈ VM . So, a union bound yields
that

P(u, v ∈ H∞ | u, v ∈ VM ) ≥ 1− P(u /∈ H∞ | u, v ∈ VM )− P(v /∈ H∞ | u, v ∈ VM )

≥ 1− 2σ ≥ 1/2,

whenever σ ≤ 1/4. Hence

P(u, v ∈ H∞ | u, v ∈ V) = P(u, v ∈ H∞ | u, v ∈ VM ) · P(u, v ∈ VM | u, v ∈ V) ≥ 1/(2M2τ ).

Since H∞ ⊆ V (C∞) by Corollary 3.9(ii), the result follows with ρ = 1/(2M2τ ).

Proof of Claim 3.11. For r′ > 0 let B?(r′,M, u) := H∞ ∩Br′(u). By Corollary 3.9(ii)–(iii),
applied with δ/2 instead of δ, H∞ has a positive density in VM around u. Hence, for
r′�?M, δ,

P(B?(r′,M, u) = ∅ | u, v ∈ C∞) ≤ δ/2. (3.14)
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Fix such r′. Because H∞ ⊆ C∞ connected, paths exists within C∞ to vertices in H∞. In
particular, conditioned on u, v ∈ C∞, fix any procedure to uniquely select a path πGuu?
from u to each u? ∈ B?(r′,M, u) (for example, take the paths with lowest deviation,
breaking ties by random coin-flips). Then the random variables

X := inf{r > 0 | ∀u? ∈ B?(r′,M, u) : V (πGuu?) ⊆ Br(u)},
Y := inf{C > 0 | ∀u? ∈ B?(r′,M, u) : C(πGuu?) ≤ C},

are a.s. finite conditioned on u, v ∈ C∞. On choosing r and C suitably large, we have

P(X > r or Y > C | u, v ∈ C∞) ≤ δ/2, (3.15)

and the result follows from a union bound over (3.14) and (3.15).

The next corollary combines the previous claims and lemmas and constructs a
linear-cost low deviation path between two vertices in the unique infinite component of
SFP/IGIRG.

Corollary 3.12 (Linear costs in 1-FPP on IGIRG/SFP). Consider 1-FPP on IGIRG or SFP of
Definition 1.1 satisfying the assumptions given in (1.2)–(1.4) with 0 ∈ V. Assume that
the dimension d ≥ 2, and α > 2, τ ∈ (2, 3), µ > µpol. Let κ, r > 0, and let δ, ζ ∈ (0, 1).
Suppose r�? δ, ζ, par, and that κ�? par. Let C∞ be the unique infinite component
guaranteed by Corollary 3.9(ii). Let u, v ∈ Rd for IGIRG or Zd for SFP with |u− v| ≥ r.
Let Alinearcost(u, v, κ, ζ) be the event that there is a path joining u and v in G with cost at
most κ|u− v| and deviation at most ζ|u− v|. Then

P(Alinearcost(u, v, κ, ζ) | u, v ∈ C∞) ≥ 1− δ.

Proof. Let ρ ∈ (0, 1) be as in Claim 3.10. Let r3.9, C3.9 > 0 be as in Corollary 3.9(iv)
applied with κ3.9 = κ/2, δ3.9 = ρδ/3, ζ3.9 = ζ/2 and t3.9 = 2 (and any suitable values
of ε, M , σ). Let r3.11 and C3.11 be as in Claim 3.11 applied with δ3.11 = δ/3. In Corol-
lary 3.9(iv), the requirement r3.9�?M, ζ, δ is assumed and in Claim 3.11 r3.11�?M ,
thus we may increase the first value to assume r3.9 ≥ r3.11. We may assume that
r�? r3.9, r 3.11, C3.9, C 3.11. We define events as follows.

(a) Let A1 be the event that there is a path π1 from u to some vertex u? ∈ H∞∩Br 3.11(u)

of cost at most C3.11 and with V(π1) ⊆ Br 3.11(u).

(b) Let A2 be the event that every vertex u1 ∈ H∞ ∩ Br3.9(u) is joined to every vertex
u′2 ∈ H∞ by a path π2

u1,u2
of cost at most (κ/2)|u1 − u2|+ C3.9 and deviation at most

(ζ/2)|u1 − u2|+ C3.9.

(c) Let A3 be the event that there is a path π3 from some vertex v? in H∞ ∩Br3.11(v) to
v of cost at most C3.11 and with V(π3) ⊆ Br 3.11

(v).

Observe that if A1 ∩ A2 ∩ A3 occurs, then since |u− v| ≥ r is large, the path π1π2
u?,v?π

3

has cost at most κ|u− v|/2 + C3.9 + 2C 3.11 ≤ κ|u− v| and deviation at most ζ|u− v|/2 +

C3.9 + 2r 3.11 ≤ ζ|u− v|. We must therefore prove

P(A1 ∩ A2 ∩ A3 | u, v ∈ C∞) ≥ 1− δ. (3.16)

By our choice of r3.11 and C3.11, Claim 3.11 implies that

P(¬A1 | u, v ∈ C∞) ≤ δ/3, P(¬A3 | u, v ∈ C∞) ≤ δ/3.

Similarly, by Corollary 3.9(iv) we have P(¬A2 | u, v ∈ V) ≤ ρδ/3. Thus by Lemma 3.10,

P(¬A2 | u, v ∈ C∞) ≤ P(¬A2 | u, v ∈ V)

P(u, v ∈ C∞ | u, v ∈ V)
≤ ρδ/3

ρ
= δ/3.

Applying a union bound, (3.16) follows as required.
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Proof of Theorems 1.8 and 1.11. We have already proven the lower bounds: namely the
lower bound of Theorem 1.8 follows directly from (1.20) in Theorem 1.12, with proof on
page 28, and the proof of the lower bound in Theorem 1.11 can be found on page 29.
The upper bounds of both theorems follow from Corollary 3.12.

It remains to prove Theorem 1.10, which states that all results also hold in the finite
GIRG model if un, vn are chosen uniformly at random from the largest component C(n)

max.

Proof of Theorem 1.10. Let κ1 > 0 be small enough to take the role of κ in (1.20) in
Theorem 1.12, and let κ2 > 0 be large enough to take the role of κ in Corollary 3.12. Let
Gn = (Vn, En) be a GIRG satisfying the assumptions of the theorem statement, let C(n)

max

be the largest component of Gn, and let un and vn be vertices chosen independently and
uniformly at random from C(n)

max. For all u, v ∈ Rd and all graphs H, let A(H,u, v) be the
event that u and v have cost-distance between κ1|u−v| and κ2|u−v| in the (sub)graph H.
Then it suffices to prove that for all δ ∈ (0, 1), whenever n�? δ, P(¬A(Gn, un, vn)) ≤ δ

holds.
Let xn, yn ∈ Vn be chosen independently and uniformly at random from Vn. Whenever

n�? δ; it is known [32, Theorem 3.11] that C(n)
max has constant density whp, so with

probability at least 1/2, we have |C(n)
max| ≥ δ1/4|Vn|. Thus P(xn, yn ∈ C(n)

max) ≥
√
δ/2, and so

P(¬A(Gn, un, vn)) = P(¬A(Gn, xn, yn) | xn, yn ∈ C(n)
max)

≤ 2P(¬A(Gn, xn, yn) and xn, yn ∈ C(n)
max)/

√
δ.

Recall that for all n > 0, Qn := [−n1/d/2, n1/d/2]d. Let x′n, y
′
n ∈ Qn be random points

chosen independently and uniformly at random from the Lebesgue measure in Qn. Let V ′n
be a Poisson point process of unit intensity conditioned on x′n, y

′
n ∈ V ′n, i.e. a Palm process.

It is known that the total variation distance of (V ′, x′n, y′n) from (V, xn, yn) converges to
zero as n→∞, and in particular is at most δ3/2/12 when n is sufficiently large. Thus on
taking G′n to be a GIRG with vertex set V ′n, we have

P(¬A(Gn, un, vn)) ≤ (2/
√
δ)(δ3/2/12) + 2P(¬A(G′n, x

′
n, y
′
n) and x′n, y

′
n ∈ C(n)

max)/
√
δ.

We may couple G′n to an IGIRG G+ in such a way that Gn = G+[Qn]. Let C∞ be the infinite
component of G+. Further, the giant component of G′n is part of C∞ with probability

tending to 1 as n tends to infinity, see [34]. So for n large enough, P(C(n)
max * C∞) ≤

δ3/2/12, and hence

P(¬A(Gn, un, vn)) ≤ δ/3 + 2P(¬A(G′n, x
′
n, y
′
n) and x′n, y

′
n ∈ C∞)/

√
δ.

Let r be large enough for Corollary 3.12 and Theorem 1.12 to apply to δ3/2/12, taking
ζ = δ2 in Corollary 3.12. Let X be the set of pairs (x, y) ∈ Q(1−dδ2)n such that |x− y| ≥ r,
and let Xn be the event that (x′n, y

′
n) ∈ X. Observe that P(¬Xn) ≤ δ3/2/12 if δ�? d and

n�? r. Thus

P(¬A(Gn, un, vn)) ≤ δ/2 + 2P(¬A(G′n, x
′
n, y
′
n) and x′n, y

′
n ∈ C∞ | Xn and x′n, y

′
n ∈ Vn)/

√
δ

≤ δ/2 + 2 max
x,y∈X

P(¬A(G′n, x, y) | xn = x, yn = y, x, y ∈ C∞)/
√
δ.

By Theorem 1.12, the lower cost bound in the event A(G′n, x, y) fails with probability at
most δ3/2/8. Moreover, when x, y ∈ Q(1−dδ2)n, the upper cost bound in A(G′n, x, y) occurs
whenever x and y are joined by a path in C∞ with cost at most κ|x− y| and deviation at
most δ2|x− y| ≤ δ2nd; thus by Corollary 3.12, the upper bound fails with probability at
most δ3/2/8. By a union bound, it follows that P(¬A(Gn, un, vn) ≤ δ as required.
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Supplementary material

A Appendix

Here we prove Lemmas 3.2, 3.3 and 3.7. For Lemma 3.2 we use the following theorem,
which is a simplified version of [19, Theorem 1.1].

Theorem A.1. For all d ∈ N with d ≥ 2 and all σ ∈ (0, 1/2) there exists p0 = p0(σ, d) ∈
(0, 1) such that the following holds. Let ω? be an iid Bernoulli bond percolation on Zd

with edge-retention probability p ≥ p0. For S ⊆ Rd, let

Adense(S, σ) := {S contains a unique cluster C with |C| ≥ (1− σ)Vol(S)}. (A.1)

Let Sn = [−n/2, n/2]d. Then

lim sup
n→∞

1

nd−1
logP(¬Adense(Sn, σ)) < 0.

The corresponding [19, Theorem 1.1] is stated for site percolation. Since the event
Adense(S, δ) is monotone; the same result for bond percolation also holds via the standard
domination in which we retain a vertex in a coupled site percolation process if and only if
we retain all its edges in bond percolation. We now use Theorem A.1 to prove Lemma 3.2,
showing that the infinite cluster ω of a high-density Bernoulli bond-percolation has locally
high density, see also (3.1).

Proof of Lemma 3.2. The statement that P(0 ∈ C?∞) ≥ 1− σ as the edge-retention prob-
ability 1− ε tends to 1 follows directly from the continuity of the the theta-function in
the supercritical regime (in particular, near 1), see [26]. We move on to showing (3.1).
By translation invariance, it is enough to show the statement for x = 0 ∈ Zd. Recall
Adense(Sn, σ) from (A.1) and that Sn = [−n/2, n/2]d. By Theorem A.1, taking p0 := 1− ε
and η�? σ, since the dimension is d ≥ 2,

∀n ≥ n0 : P(Adense(Sn, σ/2)) ≥ 1− exp(−ηnd−1) ≥ 1− exp(−ηn). (A.2)

By the Borel-Cantelli lemma, almost surely Adense(Sn, σ/2) occurs for all but finitely many
values of n. Moreover, if Adense(Sn, σ/2) and Adense(Sn+1, σ/2) both occur for suitably
large n, their respective clusters must intersect by the pigeonhole principle and hence
must be equal. Thus almost surely there exists a single cluster C?∞ such that for all but
finitely many n, |C?∞ ∩ Sn| ≥ (1− σ/2)Vol(Sn). Such a cluster is necessarily both infinite
and unique, as required. Hence, let

A∞(S, σ/2) := {|S ∩ C?∞| ≥ (1− σ/2)Vol(S)}. (A.3)

Then using (A.2), and the above intersection property when one moves from Si to Si+1,
there exists n1 ≥ n0 such that

∀n ≥ n1 : P(A∞(Sn, σ/2)) ≥ 1−
∑
i≥n

P(¬Adense(Si, σ/2)) ≥ 1− exp(−ηn/2). (A.4)

We now develop a boxing scheme. By definition, S4r = [−2r, 2r]d which fully contains
Br(0), and further, for each y ∈ Br(0), also B(log r)3/2(y) is fully contained in S4r. For

all r > 0, let `(r) := (log r)4/3, so that r = exp(`(r)3/4). Let S4r be a partition of S4r

into at most (4r/`(r))d boxes of (equal) side length ` ∈ [`(r), 2`(r)]. We may assume that
r�? δ, σ, η such that `(r) ≥ n1 and furthermore:

(i) (4r/`(r))d · exp(−η`/2) = 4d exp(d`(r)3/4 − η`/2)/`(r)d ≤ δ for all ` ∈ [`(r), 2`(r)] and
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(ii) for all y ∈ Br(x), there exist disjoint boxes S(y)

1 , . . . , S(y)

t ∈ S4r such that S(y)

i ⊆
B(log r)3/2(y) for all i ∈ [t] and such that Vol(S(y)

1 ∪· · ·∪S
(y)

t ) ≥ (1−σ/2)|B(log r)3/2(y)∩
Zd|.

Here, (i) implies that the probability that there is a box S in the boxing scheme S4r for
which A∞(S, σ/2) does not holds is at most δ, by combining (A.4) with a union bound
over the at most (4r/`(r))d boxes. So, introducing Agood(4r, σ/2) as the event that for all
S ∈ S4r, the event A∞(S, σ/2) in (A.3) occurs, then

P(Agood(4r, σ/2)) ≥ 1− (4r/`(r))d exp(−η`/2) ≥ 1− δ. (A.5)

Suppose that Agood(4r, σ/2) occurs, fix some y ∈ Br(0) and let S(y)

1 , . . . , S(y)

t be the boxes
in (ii) contained in B(log r)3/2(y). Then by the uniqueness of the cluster C?∞,

|B(log r)3/2(y) ∩ C?∞|
|B(log r)3/2(y) ∩Zd|

≥ 1

|B(log r)3/2(y) ∩Zd|
∑
i∈[t]

|S(y)

i ∩ C
?
∞|

≥ 1

|B(log r)3/2(y) ∩Zd|
∑
i∈[t]

(1− σ
2 )Vol(S(y)

i ) ≥ (1− σ
2 )2 > 1− σ,

where in the last step we used that the union of the boxes S(y)

1 , . . . , S(y)

t covers at least 1−σ
proportion of the vertices in |B(log r)3/2(y)∩Zd| by (ii). Hence, (3.1) follows from (A.5).

We next prove Lemma 3.3, which states that the infinite component of highly super-
critical Bernoulli bond percolation has linear graph distances realised by paths with
sublinear deviation.

Proof of Lemma 3.3. We first recall a result on linear scaling of distances in C?∞. Let
{x ↔ y} be the event that x, y ∈ Zd lie in the same component of ω?, and let d?(x, y)

denote their graph distance in ω?. By [3, Theorem 1.1], there exists κ′, ε0 > 0 such that
for all ε ≤ ε0 and for all a ∈ Zd,5

lim sup
|y|→∞

1

|x− y|
logP

(
{x↔ y} ∩ {d?(x, y) > κ′|x− y|}

)
< 0. (A.6)

We say that a site x ∈ Zd has r-linear scaling if x ∈ C?∞ and

d?(x, y) ≤ κ′|x− y| holds for all y ∈ C?∞ \Br(x). (A.7)

By a union bound over all y ∈ Zd \Br(x), it follows from (A.6) that there exist c1, r1 > 0

(depending on d) such that for all x ∈ Zd and r ≥ r1,

P
(
x has r-linear scaling or x /∈ C?∞

)
≥ 1− e−c1r. (A.8)

We now use (A.8) to show that there exist constants c2, r2 > 0 (depending on ζ and d) such
that if x, y ∈ C?∞ and |x− y| ≥ r2, then with probability at least 1− e−c2|x−y| there exists
a linear-length low-deviation path from x to y. Let κ := 2

√
dκ′ and K := (κ′ + 1)

√
d/ζ,

and let x, y ∈ C?∞. Cover the straight line segment Sx,y by a sequence of k ≤ 2K cubes
Q(1), . . . , Q(k) in such a way that (see also Figure 2):

(a) each cube Q(i) has side length |x− y|/K;

5The formulation of [3, Theorem 1.1] allows κ′ to depend on the edge-retention probability p = 1−ε because
it allows p to be arbitrarily close to the criticality threshold. So it is not quite clear from the formulation that
κ′ is independent of ε. However, the condition ε ≤ ε0 means that our p is bounded away from the criticality
threshold, and the proof in [3] relies on a domination argument, so we may use the same κ′ for all ε ≤ ε0.
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x

Q(1)

Q(3)

y

s1

s2

Q(2)π1

π2

π3

≥ |x− y|/(2K)

|x− y|/K

|x−y|
8K

Figure 2: Example for k = 3 cubes covering the line from x to y. Any two
adjacent cubes overlap by at least 4−dVol(Q(i)) and contain a cube of side-length
|x− y|/(8K) and any two intersections have distance at least r/2 = |x− y|/(2K),
where r = |x− y|/K is the side-length of the cubes.

(b) Q(1) is the cube covering x, Q(k) is the cube covering y, and Q(i) ∩Q(i+1) ∩ Sx,y 6= ∅
for all i ∈ [k − 1];

(c) for all i ∈ [k − 1], the intersection Q(i) ∩ Q(i+1) contains a cube of side-length |x −
y|/(8K);

(d) all pair of sites a, b that fall into distinct sets in the list {x}, Q(1) ∩ Q(2), Q(2) ∩
Q(3), . . . , Q(k−1) ∩Q(k), {y} satisfy |a− b| ≥ |x− y|/(2K).

Then the following events occur with probability at least 1− e−c2|x−y| if |x− y| ≥ r2

(we specify c2 and r2 below):

(i) For all i ∈ [k − 1], Q(i) ∩Q(i+1) contains at least one site si ∈ C?∞;

(ii) Both x and y have r-linear scaling with r = |x− y|/(2K) conditioned on x, y ∈ C?∞;

(iii) For all i ∈ [k − 1], all sites z ∈ Q(i) ∩ Q(i+1) ∩ C?∞ have r-linear scaling with r =

|x− y|/(2K).

Indeed, since ε�? d, C?∞ has density at least 1/2 and since the intersection Q(i) ∩ Q(i)

contains a cube S of side-length |x − y|/(8K), (A.4) applies, i.e., the event in (A.3)
that S ∩ C∞ contains linearly vertices in the volume of S holds with probability 1 −
exp(−η|x− y|/(8K)). This event implies that there is at least one vertex in C?∞ ∩ S and
with c3 := η/8K, there exists r3 > 0 depending on ζ, d such that (i) holds with probability
at least 1 − e−c3|x−y| whenever |x − y| ≥ r3. Moreover, using (A.8) and a union bound
over i ∈ [k − 1] and over all sites z ∈ Q(i) ∩Q(i+1) (polynomially many in |x− y|) and over
x, y, we deduce that there exists r4 > 0 depending on d such that (ii) and (iii) also hold
with probability 1− e−c1|x−y|/(4K) whenever |x− y| ≥ r4. Taking r2 = max{r3, r4} and c2
small enough so that e−c3r + e−c1r/(4K) ≤ e−c2r for all r ≥ r2 guarantees that the above
events occur with probability at least 1− e−c2|x−y| whenever |x− y| ≥ r2.
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Suppose the events in (i)–(ii) all occur. Choose now for all i ∈ [k − 1] sites si ∈
C?∞ ∩Q(i) ∩Q(i+1). Writing s0 = x, sk = y, it holds for all i ∈ [k] that

|si−1 − si| > |x− y|/(2K) and |si−1 − si| ≤
√
d|x− y|/K. (A.9)

Then the r-linear-scaling property of si and si−1 with r = |x− y|/(2K) in (A.7), combined
with (A.9), implies deterministically that for all i ∈ [k] there exists a path πi from si−1 to
si in C?∞ of length at most κ′

√
d|x− y|/K. Since si−1 has distance at most

√
d|x− y|/K

from the segment Sx,y and πi contains nearest neighbour edges, by the definition of
K = (κ′ + 1)

√
d/ζ at the beginning of the proof and Definition 3.1,

devxy(πi) ≤ κ′
√
d|x− y|/K +

√
d|x− y|/K = ζ|x− y|. (A.10)

Let π = π1 . . . πk; then since k ≤ 2K, and κ = 2
√
dκ′, π has length at most kκ′

√
d|x −

y|/K ≤ κ|x − y| and deviation at most max(devxy(πi)) ≤ ζ|x − y| (see Definition 3.1).
Therefore, we have shown that if x, y ∈ C?∞ and |x − y| ≥ r2, then with probability at
least 1− e−c2|x−y| there exists a path π from x to y with length at most |π| ≤ κ|x− y| and
deviation at most dev(π) ≤ ζ|x − y|. Taking a union bound over all y ∈ C?∞ \ Br(x) and
taking |x− y| ≥ r�? ζ yields (3.2) with c = c2/2.

Lastly, we prove Lemma 3.7, which uses Lemma 3.2 to obtain that the infinite
subgraph H∞ of a (R, ε)-dense random geometric graph also has overall high density.

Proof of Lemma 3.7. Let ω? be a bond percolation process with retention probability
1− 20dε. We take ε small enough that Lemma 3.2 applies with σ3.2 = σ3 and δ3.2 = δ/3;
thus ω? has a unique infinite component C?∞ and H∞ is well-defined in (3.4). Then, since
H∞ consists of those boxes Sz for which z ∈ Zd belong to C?∞ in ω?, if z ∈ C?∞, z has at
least one open adjacent bond. By the defining coupling in Lemma 3.5, such a bond is only
open in ω? if G[Sz] is non-empty and connected. This implies that if z ∈ C∞ then all the
vertices in G[Sz] are in H∞. Since P(0 ∈ C?∞) ≥ 1− σ 3.2 in Lemma 3.2, the translation
invariance of Zd readily implies that for any box S, P(V ∩ S ⊆ H∞) ≥ 1− σ3.2 ≥ 1− σ.

We turn to prove (3.5). Throughout, let ρ = (log r)2 for brevity. We set out some
preliminary notation and observations. Recall that for all z ∈ Zd, Sz is the unique box
in S such that Rz ∈ Sz and that boxes have side-length R. For all sets A ⊆ Rd we write
A? = {z ∈ Zd : Sz ⊆ A}; for the renormalisation of A, thus Boxes(A) :=

⋃
z∈A? Sz is the

union of all boxes fully contained in A. Finally, for all y ∈ Rd, by by/Rc we mean taking
lower-integer part of each coordinate, here by/Rc is the renormalised site, i.e., in Zd,
corresponding to the (box containing) z ∈ Rd. Clearly then y ∈ Sby/Rc. Since r�?R,

and the diameter of each box is
√
dR, it is not hard to see that for all y ∈ Rd, and with

ρ = (log r)2,

Bρ−R
√
d(y) ⊆ Boxes(Bρ(y)) ⊆ Bρ(y),

Bρ/R−2
√
d(by/Rc) ∩Z

d ⊆ Bρ(y)? ⊆ Bρ/R+
√
d(by/Rc),

Bρ−R
√
d(y)? ⊆ Bρ(Rby/Rc)? ∩Bρ(y)?.

Thus there exists C > 0 depending on R and d (but not on r and thus neither on ρ) such
that for all y ∈ Rd, ∣∣Vol(Bρ(y))−Rd|Bρ(y)?|

∣∣ ≤ Cρd−1 ≤ σ4ρd, (A.11)∣∣|Bρ(y)?| − |Bρ/R(by/Rc) ∩Zd|
∣∣ ≤ Cρd−1 ≤ σ4ρd, (A.12)

|Bρ(Rby/Rc)? \Bρ(y)?| ≤ Cρd−1 ≤ σ4ρd. (A.13)
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These all intuitively recover the isoperimetric properties of Rd: for sufficiently large
ρ, the volume of a ball of radius ρ can be well approximated by a boxing scheme of
side-length R (A.11), and also the number of boxes we need both have error of order
ρ(d−1)/d (A.12), and switching from a renormalised set around y to the renormalised set
around the renormalised site corresponding to y also causes small error (A.13).

Now we relate (3.1) to (3.5). Note that (3.1) has radius (log r)3/2 inside the probability
sign concerning overall high density in ω?, while (3.5) has radius (log r)2 concerning
overall high density of H∞ in G. Hence, given r,R, let r? be such that (log r?)3/2 =

(log r)2/R, i.e. r? := exp(((log r)2/R)2/3), and clearly for all sufficiently large r�?R,
r? > 2r/R. We will now apply Lemma 3.2 with r = r?. Then, the radius inside the
fraction in (3.1) is exactly (log r?)3/2 = (log r)2/R. So, for x ∈ Rd, when we write the
event in (3.1) for the site bx/Rc ∈ Zd and using radius r? and σ3.2 = σ3, we obtain

A?dense(x, r?) =
{
∀y ∈ Br?(bx/Rc) :

|B(log r)2/R(y) ∩ C?∞|
|B(log r)2/R(y) ∩Zd|

≥ 1− σ3
}
. (A.14)

Now applying Lemma 3.2 yields directly that P(A?dense) ≥ 1− δ 3.2 = 1− δ/3. When we
consider any y ∈ Br(x) in Rd, clearly by/Rc ∈ B2r/R(x) ⊆ Br?(bx/Rc) because r? ≥ 2r/R;
thus if (A.14) holds, then also

∀y ∈ Br(x) :
|B(log r)2/R(by/Rc) ∩ C?∞|
|B(log r)2/R(by/Rc) ∩Zd|

≥ 1− σ3.

Note that B(log r)2/R(by/Rc), when we move from sites in Zd to boxes in S, corresponds
roughly to the set of boxes contained in B(log r)2(y). In fact (A.12) exactly quantifies the
error being small. Hence, since r is large, it follows from (A.12) that A?dense(x, r?) also
implies the following event:

Adense(x, r) :=
{
∀y ∈ Br(x) :

|B(log r)2(y)? ∩ C?∞|
|B(log r)2(y)?|

≥ 1− 2σ3
}
. (A.15)

We have shown that

P(Adense(x, r)) ≥ P(A?dense(x, r?)) ≥ 1− δ/3. (A.16)

Interpreting the event on the lhs, Adense says that sites in C?∞ form high density in
B(log r)2(y)?, or equivalently that boxes containing vertices ofH∞ are dense in B(log r)2(y);
meanwhile, the event in (3.5) says that the vertices inside these boxes are dense in
B(log r)2(y) ∩ V. Thus we can achieve the high density in (3.5) if we can control the
number of vertices per box.

We now prove a concentration bound for the number of vertices of G in a given
collection of boxes; since C?∞ is random, we basically will sum the errors over all
realisations of C?∞ satisfying Adense(x, r). We again abbreviate ρ := (log r)2. Here below,
we denote by A any set in Bρ(y)? with number of vertices |A| ≤ 2σ3|Bρ(y)?| so that A
can essentially serve as a possible realisation of the complement of C?∞ inside the ball
Bρ(y)? when the event Adense(x, r) holds. Then, define Abox as

Abox :=
⋂

y∈Br(x)

⋂
A⊆Bρ(y)?

|A|≤2σ3|Bρ(y)?|

{∣∣∣ ⋃
z∈Bρ(y)?\A

V[Sz]
∣∣∣ ≥ (1− σ/5)Vol(Bρ(y))

}}
, (A.17)

i.e., that leaving out the boxes in any not-too-large set A from Bρ(y)?, the remaining
boxes still contain enough vertices proportional to the volume. When V = Zd, Abox
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always occurs. For V a Poisson point process, we dominate Abox by an intersection of
events as follows. For all y ∈ Rd and A ⊆ Zd, let

Abox(y,A) :=

{∣∣∣ ⋃
z∈Bρ(y)?\A

V[Sz]
∣∣∣ ≥ (1− σ/10)Rd|Bρ(y)?|

}
. (A.18)

Applying (A.11) yields that (1 − σ/10)Rd|Bρ(y)?| ≥ (1 − σ/5)Vol(Bρ(y)). Moreover,
by (A.13), we can lower-bound Bρ(y)? in (A.17) by Bρ(Rby/rc)? \Ay for some set Ay with
|Ay| ≤ σ3|Bρ(y)?|, effectively discretising the continuous intersection over y ∈ Br(x).
Thus

Abox ⊇
⋂

y∈Br(x)

⋂
A⊆Bρ(y)?

|A|≤2σ3|Bρ(y)?|

Abox(y,A) ⊇
⋂

y∈Br(x)

⋂
A⊆Bρ(Rby/Rc)?

|A|≤4σ3|Bρ(Rby/Rc)?|

Abox(Rby/Rc, A)

⊇
⋂

z∈B2r(x)?

⋂
A⊆Bρ(Rz)?

|A|≤4σ3|Bρ(Rz)?|

Abox(Rz,A), (A.19)

We obtained the last row by noting that the rhs of the first row is the same event for all y
with the same renormalised site by/Rc. When V is a PPP, the number of vertices in boxes
in Bρ(y)? \A in (A.18) follows a Poisson distribution with mean Rd|Bρ(y)? \A|; thus when
|A| ≤ 4σ3|Bρ(y)?|, this mean is at least (1− σ/20)Rd|Bρ(y)?|, and so by a Chernoff bound
we arrive to

P(¬Abox(y,A)) ≤ exp(−σ2ρd/300).

Now some combinatorics to deal with the union when taking the complement event
in (A.19): since σ is small, the number of sets A ⊆ Bρ(Rz)

? with |A| ≤ 4σ3|Bρ(Rz)?|
is at most exp(σ2ρd/600). Moreover, there are at most 4(r/R)d choices of z ∈ B2r(x)?

in (A.19). Hence using a union bound, ρ = (log r)2, and r�? δ, σ, for Poisson V,

P(Abox) ≥ 1− 4(r/R)d exp(σ2ρd/600) · exp(−σ2ρd/300) ≥ 1− δ/3. (A.20)

Our final event, Aball, says that all radius-ρ = (log r)2 balls near x contain at most roughly
the expected number of vertices, so that

Aball =
⋂

y∈Br(x)

{
|Bρ(y) ∩ V| ≤ (1 + σ/5)Vol(Bρ(y))

}
⊇

⋂
y∈Br(x)∩Zd

{
|Bρ(y) ∩ V| ≤ (1 + σ/10)Vol(Bρ(y))

}
.

(A.21)

where in the second row we discretised the space to obtain a finite intersection at the
cost of reducing the error to σ/10. It is then immediate from Chernoff bounds and a
union bound over y that

P(Aball) ≥ 1− δ/3. (A.22)

Now by a union bound on their complements in (A.16), (A.20), (A.22), the intersection
Adense ∩Abox ∩Aball occurs with probability at least 1− δ. Assume the intersection of the
three events occur and let y ∈ Br(x). Since Adense occurs, |Bρ(y)? \ C?∞| ≤ 2σ3|Bρ(y)?|.
Since Abox also occurs in (A.15), taking A = Bρ(y)? \ C?∞ yields

|Bρ(y) ∩H∞| =
∣∣∣Bρ(y) ∩

⋃
z∈C?∞

V[Sz]
∣∣∣ ≥ ∣∣∣ ⋃

z∈Bρ(y)?∩C?∞

V[Sz]
∣∣∣ ≥ (1− σ/5)Vol(Bρ(y)).

Finally, since Aball occurs in (A.21), it follows that

|Bρ(y) ∩H∞|
|Bρ(y) ∩ V|

≥ (1− σ/5)Vol(Bρ(y))

(1 + σ/5)Vol(Bρ(y))
≥ 1− σ.
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Hence, the event in (3.5) is implied by the intersection of Adense ∩ Abox ∩ Aball, which
finishes the proof of (3.5).
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