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Abstract

We consider the Hamiltonians of mean-field spin glasses, which are certain random
functions HN defined on high-dimensional cubes or spheres in RN . The asymptotic
maximum values of these functions were famously obtained by Talagrand and later by
Panchenko and by Chen. The landscape of approximate maxima of HN is described by
various forms of replica symmetry breaking exhibiting a broad range of behaviors. We
study the problem of efficiently computing an approximate maximizer of HN .

We give a two-phase message passing algorithm to approximately maximize HN

when a no overlap gap condition holds. This generalizes the recent works [Sub21,
Mon19, AMS21] by allowing a non-trivial external field. For even Ising spin glasses
with constant external field, our algorithm succeeds exactly when existing methods
fail to rule out approximate maximization for a wide class of algorithms. Moreover we
give a branching variant of our algorithm which constructs a full ultrametric tree of
approximate maxima.

Keywords: spin glasses; optimization; approximate message passing.
MSC2020 subject classifications: 60G15.
Submitted to EJP on August 6, 2022, final version accepted on December 17, 2023.
Supersedes arXiv:2105.03506.

Contents

1 Introduction 2

2 Technical preliminaries 10

3 The main algorithm 13

4 Constructing many approximate maximizers 21

5 Spherical models 22

6 Impossibility of approximate maximization under an overlap gap 27

*Department of Statistics, Harvard University, Cambridge, MA, USA. E-mail: msellke@fas.harvard.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/23-EJP1066
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2105.03506
mailto:msellke@fas.harvard.edu


Optimizing mean field spin glasses with external field

7 Proof of Lemmas 1.6, 1.8 and 2.9 29

8 Incremental AMP proofs 34

References 43

1 Introduction

Optimizing non-convex functions in high dimensions is well-known to be computation-
ally intractible in general. In this paper we study the optimization of a natural class of
random non-convex functions, namely the Hamiltonians of mean-field spin glasses. These
functions HN are defined on either the cube ΣN = {−1, 1}N or the sphere SN−1(

√
N) of

radius
√
N and have been studied since [SK75] as models for the behavior of disordered

magnetic systems.
The distribution of an N -dimensional mean-field spin glass Hamiltonian HN is de-

scribed by an exponentially decaying sequence (cp)p≥2 of non-negative real numbers
as well as an external field probability distribution Lh on R with finite second moment.
Given these data, one samples h1, . . . , hN ∼ Lh and standard Gaussians gi1,...,ip ∼ N(0, 1)

and then defines HN : RN → R by

HN (x) =
∑
i

hixi + H̃N (x),

H̃N (x) =

∞∑
p=2

cp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipxi1 . . . xip .

The distribution of the non-linear part H̃N is characterized by the mixture function
ξ(z) =

∑
p≥2 c

2
pz
p – there are no issues of convergence for |z| ≤ 1 + η thanks to the

exponential decay assumption. We assume throughout that ξ is not the zero function
so that we study a genuine spin glass. H̃N is then a centered Gaussian process with
covariance

E
[
H̃N (x1)H̃N (x2)

]
= Nξ

(
〈x1,x2〉
N

)
.

Spin glasses were introduced to model the magnetic properties of diluted materials
and have been studied in statistical physics and probability since the seminal work

[SK75]. In this context, the object of study is the Gibbs measure eβHN (x)dµ(x)
ZN,β

where

β > 0 is the inverse-temperature, µ(x) is a fixed reference measure and ZN,β is a random
normalizing constant known as the partition function. The most common choice is to take
µ(·) the uniform measure on ΣN = {−1, 1}N , and another canonical choice is the uniform
measure on SN−1(

√
N). These two choices define Ising and spherical spin glasses. The

quantity of primary interest is the free energy

FN (β) = logEx∼µ
[
eβHN (x)

]
.

The in-probability normalized limit F (β) = p-limN→∞
FN (β)
N of the free energy at temper-

ature β is famously given by an infinite-dimensional variational problem known as the
Parisi formula (or the Cristanti-Sommers formula in the spherical case) as we review in
the next section. These free energies are well-concentrated and taking a second limit
limβ→∞

F (β)
β yields the asymptotic ground state energies

GS(ξ,Lh) = p-lim
N→∞

max
x∈ΣN

HN (x)

N
,

GSsph(ξ,Lh) = p-lim
N→∞

max
x∈SN−1(

√
N)

HN (x)

N
.
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Optimizing mean field spin glasses with external field

From the point of view of optimization, spin glass Hamiltonians serve as natural
examples of highly non-convex functions. Indeed, the landscape of HN can exhibit quite
complicated behavior. For instance HN may have exponentially many near-maxima on
ΣN [Cha09, DEZ+15, CHL18]. The structure of these near-maxima is highly nontrivial;
the Gibbs measures on ΣN are approximate ultrametrics in a certain sense, at least in
the so-called generic models [Jag17, CS21]. Moreover spherical spin glasses typically
have exponentially many local maxima and saddle points, which are natural barriers to
gradient descent and similar optimization algorithms [ABA13, Auf13, Sub17, AMMN19].
The utility of a rich model of random functions is made clear by a comparison to the theory
of high-dimensional non-convex optimization in the worst-case setting. In the black-
box model of optimization based on querying function values, gradients, and Hessians,
approximately optimizing an unknown non-convex function in high-dimension efficiently
is trivially impossible and substantial effort has gone towards the more modest task
of finding a local optimum or stationary point [CDHS17, AAZB+17, CDHS18, CDHS19,
JNG+21]. Even for quadratic polynomials in N variables, it is quasi-NP hard to reach
within a factor log(N)ε of the optimum [ABE+05]. For polynomials of degree p ≥ 3 on the
sphere, [BBH+12] proves that even an approximation ratio e(logN)ε is computationally
infeasible to obtain.

Despite the worst-case obstructions just outlined, a series of recent works have
found great success in approximately maximizing certain spin glass Hamiltonians.
By approximate maximization we always mean maximization up to a factor (1 + ε),
where ε > 0 is an arbitrarily small positive constant; we similarly refer to a point
x ∈ ΣN or x ∈ SN−1(

√
N) achieving such a nearly optimal value as an approximate

maximizer (where the small constant ε is implicit). Subag showed in [Sub21] how to
approximately maximize spherical spin glasses by using top eigenvectors of the Hes-
sian ∇2HN . Subsequently [Mon19, AMS21] developed a message passing algorithm
with similar guarantees for the Ising case. These works all operate under an assump-
tion of no overlap gap, a condition which is expected (known in the spherical setting)
to hold for some but not all models (ξ,Lh) – otherwise they achieve an explicit, sub-
optimal energy value. Such a no overlap gap assumption is expected to be necessary
to find approximate maxima efficiently. Indeed, the works [AJ18, GJ21, GJW20] rule
out various algorithms for optimizing spin glasses when an overlap gap holds. Vari-
ants of the overlap gap property have been shown to rule out (1 + ε)-approximation
by certain classes of algorithms for random optimization problems on sparse graphs
[MMZ05, ACORT11, GS14, RV17, GS17, CGP+19, Wei22]. Overlap gaps have also been
proposed as evidence of computational hardness for a range of statistical tasks including
planted clique, planted dense submatrix, sparse regression, and sparse principal com-
ponent analysis [GZ17, GL18, GJS21, GZ19, AWZ20]. We discuss overlap gaps more in
Subsection 1.2 and Section 6.

The aforementioned algorithms in [Sub21, Mon19, AMS21] are all restricted to
settings with no external field, i.e. with hi = 0 for all i. Our main purpose is to
generalize these results to allow for an external field. We focus primarily on the Ising
case and explain in Section 5 how to handle the easier spherical models. Our main
algorithm consists of two stages of message passing. The first stage is inspired by the
work [Bol14] which constructs solutions to the TAP equations for the SK model at high
temperature. We construct approximate solutions to the generalized TAP equations
of [Sub18, CPS21a, CPS21b], which heuristically amounts to locating the root of the
ultrametric tree of approximate maxima. The second stage is similar to [Mon19, AMS21]
and uses incremental approximate message passing to descend the ultrametric tree
by simulating the SDE corresponding to a candidate solution for the Parisi variational
problem. A related two-stage message passing algorithm was recently introduced in our
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joint work with A.E. Alaoui on the negative spherical perceptron [AS22].

While the primary goal in this line of work is to construct a single approximate
maximizer, Subag beautifully observed in [Sub21, Remark 6] that an extension of his
Hessian-based construction for spherical models produces approximate maximizers
arranged into a completely arbitary ultrametric space obeying an obvious diameter upper
bound. The overlap gap property essentially states that distances between approximate
maximizers cannot take certain values, and so this is a sort of constructive converse
result. In Section 4 we give a branching version of our main algorithm, following a
suggestion of [AM20], which constructs an arbitrary ultrametric space of approximate
maximizers in the Ising case (again subject to a diameter upper bound).

1.1 Optimizing Ising spin glasses

To state our results we require the Parisi formula for the ground state of a mean field
Ising spin glass as given in [AC17]. Let U be the function space

U =

{
γ : [0, 1)→ [0,∞) : γ is non-decreasing,

∫ 1

0

γ(t)dt <∞
}
.

The functions γ are meant to correspond to cumulative distribution functions –
for finite β the corresponding Parisi formula requires γ(1) = 1, but this constraint
disappears in renormalizing to obtain a zero-temperature limit. For γ ∈ U we take
Φγ(t, x) : [0, 1]×R→ R to be the solution of the following Parisi PDE:

∂tΦγ(t, x) +
1

2
ξ′′(t)

(
∂xxΦγ(t, x) + γ(t)

(
∂xΦγ(t, x)

)2)
= 0,

Φγ(1, x) = |x|.

This PDE is known to be well-posed, see Proposition 2.6. Intimately related to the above
PDE is the stochastic differential equation

dXt = ξ′′(t)γ(t)∂xΦγ(t,Xt)dt+
√
ξ′′(t)dBt, X0 ∼ Lh. (1.1)

which we call the Parisi SDE. The Parisi functional P : U → R with external field
distribution Lh is given by:

Pξ,Lh(γ) = Eh∼Lh
[
Φγ(0, h)

]
− 1

2

∫ 1

0

tξ′′(t)γ(t)dt. (1.2)

The Parisi formula for the ground state energy is as follows.

Theorem 1.1 ([Tal06b, Pan14, AC17, CHL18]).

GS(ξ,Lh) = inf
γ∈U

Pξ,Lh(γ).

Moreover the minimum is attained at a unique γU
∗ ∈ U .

Through the paper, γU
∗ will always refer to the minimizer of Theorem 1.1. We now turn

to algorithms. In [Mon19], Montanari introduced the class of incremental approximate
message passing (IAMP) algorithms to optimize the SK model. These are a special
form of the well-studied approximate message passing (AMP) algorithms, reviewed in
Subsection 2.1. The work [AMS21] showed that the maximum asympototic value of HN

achievable by IAMP algorithms is given by the minimizer of P, assuming it exists, over a
larger class of non-monotone functions, when Lh = δ0 so there is no external field. This
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larger class is:

L =

{
γ : [0, 1)→ [0,∞) : γ is right-continuous, ‖ξ′′ · γ‖TV [0,t] <∞∀t ∈ [0, 1),∫ 1

0

ξ′′(t)γ(t)dt <∞
}
.

Here TV [0, t] denotes the total variation norm

‖f‖TV [0,t] ≡ sup
n

sup
0≤t0<t1<···<tk≤t

k∑
i=1

|f(ti)− f(ti−1)|.

The Parisi PDE (1.2) and associated SDE extend also to L . We denote by γL
∗ ∈ L

the minimizer of P over L , assuming that it exists. Note that uniqueness always holds
by Lemma 1.6 below. We remark that [AMS21] does not include the right-continuity
constraint in defining L , however this constraint only serves to eliminate ambiguities
between γ1, γ2 differing on sets of measure 0. In fact [AMS21] assumes γ ∈ L is
right-continuous from Lemma 6.9 onward.

Theorem 1.2 ([AMS21, Theorem 3]). With Lh = δ0, suppose infγ∈L P(γ) is achieved at
γL
∗ ∈ L . Then for any ε > 0 there exists an efficient AMP algorithm which outputs
σ ∈ ΣN satisfying

HN (σ)

N
≥ P

(
γL
∗
)
− ε (1.3)

with probability tending to 1 as N →∞.

We clarify our use of the word “efficient” in Subsection 2.1 – in short, it means that
Oε(1) evaluations of ∇H̃N and first/second partial derivatives of ΦγL

∗
are required. In

general, minimizing over the larger space L instead of U may decrease the infimum
value of P, so that IAMP algorithms fail to approximately maximize HN . However if γU

∗
is strictly increasing, then the infima are equal.

Corollary 1.3 ([AMS21, Corollary 2.2]). With Lh = δ0, suppose that γU
∗ is strictly in-

creasing on [0, 1). Then γU
∗ = γL

∗ . Consequently for any ε > 0 there is an efficient AMP
algorithm which outputs σ ∈ ΣN satisfying

HN (σ)

N
≥ GS(ξ,Lh)− ε (1.4)

with probability tending to 1 as N →∞.

We define the support supp(γ) of γ ∈ L to be the closure in [0, 1) of S(γ) ≡ {x ∈
[0, 1) : γ(x) > 0}. Note that this is not the same as the support of the signed measure
with CDF γ.

We now present our new results when there is a non-trivial external field distribution
Lh 6= δ0. The following proposition shows that this forces γU

∗ (t) = 0 in a neighborhood of
t = 0, hence Corollary 1.3 cannot apply. The proof is exactly the same as [Pan, Lemma
A.19] (which is the same result for positive temperature).

Proposition 1.4. We have 0 ∈ supp(γU
∗ ) if and only if Lh = δ0.

Despite this, we will show that approximate maximization is still possible with an
external field if γU

∗ is strictly increasing on [q, 1) for q = inf(supp(γU
∗ )). If this condition

holds, we give a two-phase approximate message passing algorithm which first locates a
suitable point m` with L2 norm ‖m`‖ ≈

√
qN , and then proceeds as in the no-external-

field case. The relevant condition is precisely defined as follows.
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Definition 1.5. For γ∗ ∈ L , let q = inf(supp(γ∗)). We say γ∗ is q-optimizable if, with Xt

given by (1.1):
E
[
∂xΦγ∗(t,Xt)

2
]

= t, t ∈ [q, 1). (1.5)

We say γ∗ ∈ L is optimizable if it is q-optimizable for q = inf(supp(γ∗)). We say that
(ξ,Lh) is optimizable, or equivalently that the no overlap gap property holds for (ξ,Lh),
if the function γU

∗ is optimizable.

In [Mon19], the widely believed conjecture that (in our language) the Sherrington-
Kirkpatrick model with ξ(x) = x2/2 is optimizable was assumed. Our preliminary
numerical simulations suggest that the SK model remains optimizable with any constant
external field Lh = δh. However even without external field, proving this conjecture
rigorously seems to be very difficult.

For q ∈ [0, 1), let Lq = {γ ∈ L : inf(supp(γ)) ≥ q} consist of functions in L vanishing
on [0, q). The next lemma shows optimizability is equivalent to minimizing P over either
L or Lq. It is related to results in [AC15, JT16, AMS21] which show that γU

∗ and γL
∗

satisfy (1.5), in the former case when t is a point of increase for γU
∗ . The proof is given

in Section 7.

Lemma 1.6. For γ∗ ∈ L and q = inf(supp(γ∗)), the following are equivalent:

1. γ∗ is optimizable.

2. P(γ∗) = infγ∈L P(γ).

3. P(γ∗) = infγ∈Lq
P(γ).

Moreover if a minimizer exists in either variational problem just above, then it is unique.

Lemma 1.6 implies that any optimizable γ∗ is in fact the unique minimizer γL
∗ ∈ L of

the Parisi functional. However throughout much of the paper we will use γ∗ to denote
general optimizable function without making use of this result. We made this choice
because while Lemma 1.6 is important to make sense of our results, it is not necessary
for proving e.g. Theorem 1.7 below. We now state our main results.

Theorem 1.7. Suppose γ∗ ∈ L is optimizable. Then for any ε > 0 there exists an
efficient AMP algorithm which outputs σ ∈ ΣN such that

HN (σ)

N
≥ P(γ∗)− ε

with probability tending to 1 as N →∞.

Lemma 1.8. If γU
∗ strictly increases on [q, 1) for q = inf(supp(γU

∗ )), then no overlap gap
holds, i.e. γU

∗ is optimizable.

Corollary 1.9. Suppose no overlap gap holds. Then for any ε > 0 an efficient AMP
algorithm outputs σ ∈ ΣN satisfying

HN (σ)

N
≥ GS(ξ,Lh)− ε

with probability tending to 1 as N →∞.

Remark 1.10. Unlike for U the infimum infγ∈L P(γ) need not be achieved, i.e. an
optimizable γ∗ need not exist. For instance, one has ξ′′(0) = 0 whenever c2 = 0. On the
other hand if γ is optimizable, Corollary 7.1 and Lemma 7.6 (with q = 0) yield∫ t

0

ξ′′(s)E
[
∂xxΦγ∗(s,Xs)

2
]
ds = E

[
∂xΦγ∗(t,Xt)

2
]
≥ t, t ≥ 0.

In light of Lemma 7.2 the integrand on the left-hand side is O(ξ′′(s)) = o(1) so the above
cannot hold for small t. Hence if c2 = 0 there exists no optimizable γ∗. We conjecture
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that conversely a minimizing γL
∗ ∈ L exists whenever c2 > 0, but we do not have a

proof.

Remark 1.11. By the symmetry of H̃N , the external field can also be a deterministic
vector h = (h1, . . . , hN ). As long as the empirical distribution of the values (hi)i∈[N ]

is close to Lh in W2 distance and the external field is independent of H̃N , exactly the
same results hold – see [AMS21, Appendix A, Theorem 6] for the corresponding AMP
statement in this slightly more general setting.

1.2 Optimizability and no overlap gap

In contrast to Corollary 1.9, the paper [GJ21] rules out approximate maximization
using AMP for pure p-spin models without external field based on an overlap gap property
whenever p ≥ 4 is even. In formulating this result, [GJ21] defines an AMP algorithm
to be any iteration of the form given in Subsection 2.1 with Lipschitz non-linearities
f0, f1, . . . , f` which outputs σ = max(−1,min(1, f`(z

0, . . . ,z`))), the final iterate f` pro-
jected into [−1, 1]N . Here ` is a large constant which cannot grow with N . (In [AMS21]
and the present work, the final iterate is rounded to be in ΣN but this step does not
change the asymptotic value of HN and is essentially irrelevant – see for instance Equa-
tion (3.14).) In fact for a broad class of models, their main result based on the overlap
gap property applies exactly when γU

∗ is not optimizable. This justifies our definition of
(ξ,Lh) as having “no overlap gap” if and only if it is optimizable.

Proposition 1.12. Suppose γU
∗ is not optimizable, where ξ is an even polynomial and

the external field Lh = δh is constant. Then there is ε > 0 such that for any AMP
algorithm with random output σ,

P

[
HN (σ)

N
≤ GSξ,h − ε

]
≥ 1− e−Ω(N).

The proof of Proposition 1.12 is identical to that of [GJ21, Theorem 3.3] and we
give an outline in Section 6. Taken together, Corollary 1.9 and Proposition 1.12 exactly
characterize the mean-field Ising spin glasses for which approximate maximization is
possible by AMP, at least when ξ is even and the external field is constant. We remark
that similar lower bounds were studied for the class of constant-degree polynomial
algorithms in [GJW20]. These results also extend to any non-optimizable Ising spin
glass with even ξ and constant h, ruling out approximate maximization algorithms in a
slightly weaker sense. Constant-degree polynomials encompass AMP in most cases by
approximating each non-linearity f` by a polynomial in a suitable sense, see e.g. [Mon19,
Theorem 6].

We conclude this subsection with a brief discussion on our terminology. Our definition
of optimizability is closely related to “full” or “continuous” replica symmetry breaking.
For example, the definitions of full RSB used in [Mon19, Sub21] essentially coincide with
0-optimizability. However these terms seem to be slightly ambiguous, as they can also
refer to functions γU

∗ which are strictly increasing on any nontrivial interval instead of
being piece-wise constant as in finite RSB. For example, the physics paper [CKP+14]
describes “the case where the function ∆(x) is allowed to have a continuous part: this
can be thought as an appropriate limit of the k-RSB construction when k → ∞ and is
therefore called ‘fullRSB’ or ‘∞-RSB’ ”. Adding to the potential confusion, [ACZ20] uses
the term “infinite step” RSB to refer to functions γU

∗ with infinity many points of increase,
possibly at a discrete set. We therefore use “no overlap gap” as an unambiguous term
for the condition that γU

∗ is optimizable, while keeping in mind that it closely is implied
via Lemma 1.8 by a strong, specific form of full RSB.

EJP 29 (2024), paper 4.
Page 7/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1066
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimizing mean field spin glasses with external field

1.3 Branching IAMP and spherical spin glasses

Under no overlap gap, one expects that any finite ultrametric space of diameter at

most
√

2(1− q) (with size independent of N ) can be realized by approximate maximizers

of HN . In fact a modification of our q-IAMP algorithm is capable of explicitly producing
such realizations. In Section 4 we give a branching q-IAMP algorithm which for any
finite ultrametric space X and optimizable γ∗ constructs points (σx)x∈X such that
HN (σx)

N ' P(γ∗) and ‖σx−σy‖2√
N

' dX(x, y) for each x, y ∈ X. Recall that an ultrametric
space X is a metric space which satisfies the ultrametric triangle inequality

dX(x, y) ≤ max
(
dX(x, z), dX(y, z)

)
, ∀ x, y, z ∈ X.

Moreover any finite ultrametric can be canonically identified with the leaf set of a rooted
tree, see e.g. [BD98].

The idea is to occasionally reset the IAMP part of the algorithm with external ran-
domness. A similar strategy was proposed but not analyzed in [AM20].

Theorem 1.13. Let γ∗ ∈ L be optimizable, and fix a finite ultrametric space (X, dX)

with diameter at most
√

2(1− q) as well as ε > 0. Then an efficient AMP algorithm

constructs points {σx|x ∈ X} in ΣN satisfying

HN (σx)

N
≥ P(γ∗)− ε, x ∈ X,

‖σx − σy‖√
N

∈
[
dX(x, y)− ε, dX(x, y) + ε

]
, x, y ∈ X

with probability tending to 1 as N →∞.

In Section 5 we give corresponding results for spherical spin glasses, extending
[Sub21] to the case of non-trivial external field. At zero temperature, [CS17, Theorem 1]
determines the free energy in spherical spin glasses based on a positive, non-decreasing
function α : [0, 1)→ [0,∞) as well as a constant L. (See also [JT17] for related results.)
More precisely, they show the asymptotic ground state energy is given by the unique
minimizer to the variational problem:

GSsph(ξ, h) = min
L,α∈K

Q(L,α); (1.6)

K =

{
(L,α) ∈ (0,∞)×U : L >

∫ 1

0

α(s)ds

}
;

2Q(L,α) =
(
ξ′(1) + h2

)
L−

∫ 1

0

ξ′′(q)

(∫ q

0

α(s)ds

)
dq +

∫ 1

0

dq

L−
∫ q

0
α(s)ds

.

The associated definition of no overlap gap is as follows.

Definition 1.14. The spherical mixed p-spin model is said no overlap gap if for some
q
sph
∈ [0, 1), the unique minimizing α ∈ U in (1.6) is strictly increasing on [q

sph
, 1) and

satisfies α(q) = 0 for q ≤ q
sph

.

Unlike the Ising case, we do not formulate a generalized variational principle and
only show how to achieve a natural energy value, which coincides with the ground state
energy when no overlap gap holds by [CS17, Proposition 2]. We also exactly characterize
the spherical models exhibiting no overlap gap, which slightly extends the same result.

Theorem 1.15. Suppose ξ and Lh satisfy E[h2] + ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1) be

the unique solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then the spherical spin glass with

EJP 29 (2024), paper 4.
Page 8/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1066
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimizing mean field spin glasses with external field

parameters ξ,Lh has no overlap gap if and only if ξ′′(q)−1/2 is concave on q ∈ [q
sph
, 1], in

which case α is supported on [q
sph
, 1] and takes the explicit form

α(s) =

{
0, s ∈ [0, q

sph
)

ξ′′′(s)
2ξ′′(s)3/2

, s ∈ [q
sph
, 1].

Moreover the ground-state energy satisfies

GSsph(ξ,Lh) ≥ q
sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq

with equality if and only if no overlap gap occurs.

Theorem 1.16. Suppose ξ and h ∼ Lh satisfy E[h2] + ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1)

be the unique solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then there exists an efficient

AMP algorithm outputting σ ∈ SN−1(
√
N) such that

HN (σ)

N
' q

sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq.

If on the other hand E[h2] + ξ′(1) ≥ ξ′′(1), then there is an efficient AMP algorithm
outputting σ ∈ SN−1(

√
N) with

HN (σ)

N
'
√
E
[
h2
]

+ ξ′(1).

Remark 1.17. If E[h2] + ξ′(1) ≥ ξ′′(1) then the model is replica-symmetric by [CS17,
Proposition 1]. When E[h2] + ξ′(1) < ξ′′(1), the function f(q) = qξ′′(q)− ξ′(q)− E[h2] is
increasing and satisfies f(0) < 0 < f(1), hence has a unique root q

sph
∈ (0, 1).

Remark 1.18. Subsequently to the present work and in collaboration with Brice Huang,
we showed in [HS21] that the algorithms presented in this paper are optimal in some
sense. More precisely, it is shown that Proposition 1.12 can be strengthed to say that

P

[
HN (σ)

N
≤ inf
γ∈L

P(γ) + ε

]
≥ 1− e−Ω(N) (1.7)

for any ε > 0. Here, as in Proposition 1.12, σ ∈ [−1, 1]N is the output of an AMP
algorithm whose number of iterations is independent of N . This result applies more
generally to arbitrary algorithms with suitably Lipschitz dependence on the disorder
variables defining HN . In the spherical case, [HS21] similarly shows that the energy
attained in Theorem 1.16 is asymptotically best possible for Lipschitz algorithms; see
Proposition 2.2 therein.

The essential idea of [HS21] is to consider general finite ultrametric spaces (with size
independent of N ) of points σ with large energy. They show that for E > infγ∈L P(γ),
the level sets

SE ≡
{
σ ∈ [−1, 1]N :

HN (σ)

N
≥ E

}
do not contain approximately isometric embeddings of sufficiently complicated finite
ultrametrics. (Technically proving (1.7) requires a more complicated obstruction involv-
ing a correlated family of different Hamiltonians.) Theorem 1.13 is a sharp converse
to and was a key inspiration for this result, as it constructs arbitrary finite ultrametric
configurations at energy P(γ∗) for optimizable γ∗. See the introduction of [HS21] for
further discussion and implications.
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2 Technical preliminaries

We will use ordinary lower-case letters for scalars (m,x, . . . , ) and bold lower-case
for vectors (m,x). Ordinary upper-case letters are used for the state-evolution limits of
AMP as in Proposition 2.3 such as (Xδ

j , Z
δ
j , N

δ
j ) as well as for continuous-time stochastic

processes such as (Xt, Zt, Nt). We denote limits in probability as N →∞ by p-limN→∞(·).
We write x ' y to indicate that p-limN→∞(x− y) = 0 where x, y are random scalars.

We will use the ordinary inner product 〈x,y〉 =
∑N
i=1 xiyi as well as the normalized

inner product 〈x,y〉N =
∑N
i=1 xiyi
N . Here x = (x1, . . . , xN ) ∈ RN and similarly for y.

Associated with these are the norms ‖x‖ =
√
〈x,x〉 and ‖x‖N =

√
〈x,x〉N . We will

also use the notation 〈x〉N =
∑N
i=1 xi
N . Often, for example in (2.3), we apply a scalar

function f to a vector x ∈ RN . This will always mean that f is applied entrywise, i.e.
f(x1, . . . , xN ) = (f(x1), . . . , f(xN )). Similarly for a function f : R`+1 → R, we define

f
(
x0,x1, . . . ,x`

)
=
(
f
(
x0

1, x
1
1, . . . , x

`
1

)
, f
(
x0

2, x
1
2, . . . , x

`
2

)
, . . . f

(
x0
N , x

1
N , . . . , x

`
N

))
∈ RN .

(2.1)
The following useful a priori estimate shows that all derivatives of H̃N have order

1 in the ‖ · ‖N norm. Note that we do not apply any non-standard normalization in the
definitions of gradients, Hessians, etc. We use ‖ · ‖op to denote the operator norm of a
tensor T ∈ (RN )⊗k of arbitrary order k:

‖T ‖op = sup
x∈RN

|〈T ,x⊗k〉|
‖x‖k

. (2.2)

Proposition 2.1 ([ASZ20, Lemma C.1]). Fix a mixture function ξ, external field distribu-
tion Lh, k ∈ Z+, η ∈ R+, and assume that the coefficients of ξ decay exponentially. Then
for suitable C = C(ξ,Lh, k, η),

P
[

sup
‖x‖≤(1+η)

√
N

‖∇kH̃N (x)‖op ≤ CN1− k2
]
≥ 1− e−Ω(N).

2.1 Review of approximate message passing

Here we review the general class of approximate message passing (AMP) algorithms.
AMP algorithms are a flexible class of efficient algorithms based on a random matrix
or, in our setting, mixed tensor. To specify an AMP algorithm, we fix a probability
distribution p0 on R with finite second moment and a sequence f0, f1, . . . of Lipschitz
functions f` : R`+1 → R, with f−1 = 0. The functions f` will often be referred to as
non-linearities. We begin by taking z0 ∈ RN to have i.i.d. coordinates (z0

i )i∈[N ] ∼ p0.
Then we recursively define z1, z2, . . . via

z`+1 = ∇H̃N

(
f`
(
z0, . . . ,z`

))
−
∑̀
j=1

d`,jfj−1

(
z0, . . . ,zj−1

)
, (2.3)

d`,j = ξ′′
(〈
f`
(
z0, . . . ,z`

)
, fj−1

(
z0, . . . ,zj−1

)〉
N

)
· E
[
∂f`
∂Zj

(
Z0, . . . , Z`

)]
. (2.4)

Here the non-linearity f` is applied coordinate-wise as in (2.1). Moreover Z0 ∼ p0 while
(Z`)`≥1 is an independent centered Gaussian process with covariance Q`,j = E[Z`Zj ]

defined recursively by

Q`+1,j+1 = ξ′
(
E
[
f`
(
Z0, . . . , Z`

)
fj
(
Z0, . . . , Zj

)])
, `, j ≥ 0. (2.5)

The key property of AMP, stated below in Proposition 2.3, is that for any ` the
empirical distribution of the N sequences (z1

i , z
2
i , . . . ,z

`
i)i∈[N ] converges in distribution

to the law of the Gaussian process (Z1, . . . , Z`) as N →∞. This is called state evolution.
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Definition 2.2. For non-negative integers n,m the function ψ : R` → R is pseudo-
Lipschitz if for some constant L and any x, y ∈ R`,

‖ψ(x)− ψ(y)‖ ≤ L(1 + ‖x‖+ ‖y‖)‖x− y‖.

Proposition 2.3 ([AMS21, Proposition 3.1]). For any pseudo-Lipschitz ψ : R`+1 → R, the
AMP iterates satisfy

p-lim
N→∞

〈
ψ
(
z0, . . . ,z`

)〉
N

= E
[
ψ
(
Z0, . . . , Z`

)]
.

The first version of state evolution was given for Gaussian random matrices in
[Bol14, BM11]. Since then it has been extended to more general situations in many
works including [JM13, BLM15, BMN19, CL21, Fan22]. As state evolution holds for
essentially arbitrary non-linearities f`, it allows a great deal of flexibility in solving
problems involving random matrices or tensors.

We remark that [AMS21, Proposition 3.1] is phrased in terms of a random mixed ten-
sorW , i.e. a sequence of p-tensors (W (p) ∈ (RN )⊗p)p≥2 – see Equation (3.2) therein. The
two descriptions are equivalent because W is constructed so that

∑
p≥2 cp〈W

(p),x⊗p〉 =

H̃N (x). While the tensor language is better suited to proving state evolution, for our
purposes it is more convenient to express AMP just in terms of H̃N and ∇H̃N .

Let us finally discuss the efficiency of our AMP algorithms. The algorithms we give
are described by parameters q̄ and ` and require oracle access to the function Φγ∗(t, x)

and its derivatives. We do not address the complexity of computing Φγ∗(t, x). However as
stated in [Mon19, AMS21] it seems unlikely to present a major obstacle because solving
for γU

∗ is a convex problem which only must be solved once for each (ξ,Lh). Moreover
[AM20] demonstrates that these algorithms are practical to implement.

In the end, our algorithms output rounded points σ with σi = sign(f`(z
0
i , . . . ,z

`
i)) for

a large value ` = `(q̄, `). The outputs satisfy

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
= H∗

for some asymptotic energy value H∗. To achieve an ε-approximation to the value H∗,
the parameters q̄ and ` must be sent to 1 and∞ which requires a diverging number of
iterations. In particular let χ denote the complexity of computing ∇H̃N at a point and
let χ1 denote the complexity of computing a single coordinate of ∇H̃N at a point. Then
the total complexity needed to achieve energy H∗ − ε is C(ε)(χ+N) +Nχ1. When ξ is
a polynomial this complexity is linear in the size of the input specifying HN – see the
comments following [AMS21, Remark 2.1]. In the statements of our results, we refer to
such algorithms as “efficient AMP algorithms”.

2.2 Initializing AMP

Here we explain some technical points involved in initializing our AMP algorithms and
why they arise. First, we would like to use a random external field hi which varies from
coordinate to coordinate. In the most natural AMP implementation, this requires that
the non-linearities f` correspondingly depend on the coordinate rather than being fixed,
which is not allowed in state evolution. Second we would like to use many i.i.d. Gaussian
vectors throughout the branching version of the algorithm. However Proposition 2.3
allows only a single initial vector z0 as a source of external randomness independent
of HN . One could prove a suitable generalization of Proposition 2.3, but we instead
build these additional vectors into the initialization of the AMP algorithm as a sort of
preprocessing phase. To indicate that our constructions here are preparation for the
“real algorithm”, we reparametrize so the preparatory iterates have negative index.
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We begin by taking p0 = Lh to be the distribution of the external field itself, and ini-
tialize (z−K)i = hi ∼ Lh for some constant K ∈ Z+. We then set f−K(z−K) = z−K√

Eh∼Lh [h2]

and f−k(z−K , . . . ,z−k) = z−k for 2 ≤ k ≤ K. Finally we set f−1(z−K , . . . ,z−1) = cz−1 for
some constant c > 0 which the algorithm is free to choose. (Note that the functions f−k
correspond to entry-wise applications of the form in (2.1).) State evolution immediately
implies the following

Proposition 2.4. In the state evolution N → ∞ limit, the empirical distribution of
(z−Ki , . . . , z0

i ) (for i ∈ [N ] uniformly random) converges in probability to the law of an in-
dependent (K+1)-tuple (Z−K , Z−K+1, . . . , Z−1, Z0) with Z−K ∼ Lh, (Z−K+1, . . . , Z−1) ∼
N(0, IK−1) i.i.d. standard Gaussian, and Z0 ∼ N(0, c2).

In fact taking K = 1 suffices for the main construction in the paper. In Section 4
we require larger values of K for branching IAMP, where the iterates (z−K+1, . . . ,z−1)

serve as proxies for i.i.d. Gaussian vectors.

Remark 2.5. Because the sum defining the Onsager correction term in (2.3) starts at
j = 1, the effect of the external field hi on future AMP iterates does not enter into any
Onsager correction terms in this paper.

2.3 Properties of the Parisi PDE and SDE

Quite a lot is known about the solution Φγ to the Parisi PDE. The next results hold
for any γ ∈ L and are taken from [AMS21]. Similar results for γ ∈ U appear in
[AC15, JT16].

Proposition 2.6 ([AMS21, Lemmas 6.2, 6.4]). For any γ ∈ L , the solution Φγ(t, x) to the
Parisi PDE is continuous on [0, 1] × R, convex in x, and further satisfies the following
regularity properties for any ε > 0.

(a) ∂jxΦ ∈ L∞([0, 1− ε];L2(R) ∩ L∞(R)) for j ≥ 2.

(b) ∂tΦ ∈ L∞([0, 1]×R) and ∂t∂jxΦ ∈ L∞([0, 1− ε];L2(R) ∩ L∞(R)) for j ≥ 1.

Proposition 2.7 ([AMS21, Lemmas 6.2, 6.4]). For any γ ∈ L , Φγ satisfies

|∂xΦγ(t, x)| ≤ 1

for all (t, x) ∈ [0, 1]×R.

Proposition 2.8 ([AMS21, Lemma 6.5]). For any γ ∈ L , the Parisi SDE (1.1) has unique
strong solution (Xt)t∈[0,1] which is a.s. continuous and satisfies

∂xΦγ(t,Xt) =

∫ t

0

√
ξ′′(s) ∂xxΦγ(s,Xs) dBs. (2.6)

Finally we give two additional properties for optimizable γ∗, which are proved in
Section 7.

Lemma 2.9. If γ∗ ∈ L is q-optimizable then it satisfies:

E
[
∂xxΦγ∗(t,Xt)

2
]

=
1

ξ′′(t)
, t ≥ q, (2.7)

E
[
∂xxΦγ∗(t,Xt)

]
≥
∫ 1

t

γ∗(s)ds, t ∈ [0, 1]. (2.8)

Remark 2.10. We expect (2.8) to hold with equality; if this is true, then our analysis
in Subsection 3.3 shows that Theorem 1.7 holds as a two-sided estimate. Conversely,
the main result of [HS21] implies such a two-sided estimate when ξ is even; retracing
Subsection 3.3 then implies (2.8) is indeed an equality in such cases. However this is
unsatisfyingly indirect and it would be interesting to give a direct proof.
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3 The main algorithm

In this section we explain our main AMP algorithm and prove Theorem 1.7. Through-
out we take γ∗ ∈ L to be q-optimizable for q = inf(supp(γ∗)) ∈ [0, 1).

3.1 Phase 1: finding the root

Here we give the first phase of the algorithm, which proceeds for a large constant
number ` of iterations after initialization and approximately converges to a fixed point.
The AMP iterates during this first phase are denoted by (wk)−K≤k≤`. We rely on the
function

f(x) = ∂xΦγ∗(q, x)

and use non-linearities

fk
(
h,w−K+1, . . . ,w0,w1, . . . ,wk

)
= f

(
h+wk

)
for all k ≥ 1. (As a reminder, if f is a scalar function, f(xk) is evaluated entrywise
as explained in (2.1).) Proposition 2.6 implies that each fk is Lipschitz, so that state

evolution applies to the AMP iterates. In the initialization phase we take c =
√
ξ′(q) as

described in Subsection 2.2, so that the coordinates w0
i are asymptotically distributed as

centered Gaussians with variance ξ′(q) in the N →∞ limit. Moreover we set mk = f(xk)

where xk = wk + h. This yields the following iteration.

wk+1 = ∇H̃N

(
f
(
xk
))
− f

(
xk−1

)
ξ′′
(〈
f
(
xk
)
, f
(
xk−1

)〉
N

)〈
f ′
(
xk
)〉
N

(3.1)

= ∇H̃N

(
mk
)
−mk−1ξ′′

(〈
mk,mk−1

〉
N

)〈
∂xxΦγ∗

(
q,xk

)〉
N
,

xk+1 = wk+1 + h

mk = f
(
xk
)

= fk
(
wk
)
.

Lemma 3.1. For f as defined above, h ∼ Lh and Z ∼ N(0, 1) an independent standard
Gaussian,

Eh,Z
[
f
(
h+ Z

√
ξ′(q)

)2]
= q (3.2)

Eh,Z
[
f ′
(
h+ Z

√
ξ′(q)

)2]
=

1

ξ′′(q)
. (3.3)

Proof. The identities follow by taking t = q in the definition of optimizability as well as

Lemma 2.9. Here we use the fact that Xt
d
= X0 + Z

√
ξ′(t) is a time-changed Brownian

motion started from X0 for t ≤ q.

Next with (Z,Z ′, Z ′′) ∼ N(0, I3) independent of h ∼ Lh, define for t ≤ ξ′(q) the
function

φ(t) = Eh,Z,Z
′,Z′′

[
f
(
h+ Z

√
t+ Z ′

√
ξ′(q)− t

)
f
(
h+ Z

√
t+ Z ′′

√
ξ′(q)− t

)]
. (3.4)

Define also ψ(t) = ξ′(φ(t)). It follows from (3.2) that

φ
(
ξ′(q)

)
= q. (3.5)

Lemma 3.2. The function ψ is strictly increasing and strictly convex on [0, ξ′(q)]. More-
over

ψ
(
ξ′(q)

)
= ξ′(q), ψ′

(
ξ′(q)

)
= 1.

Finally ψ(t) > t for all t < ξ′(q).
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Proof. Using Gaussian integration by parts as in [Bol14, Lemma 2.2], we find

φ′(t) = Eh,Z,Z
′,Z′′

[
f ′
(
h+
√
tZ +

√
ξ′(q)− tZ ′

)
f ′
(
h+
√
tZ +

√
ξ′(q)− tZ ′′

)]
= Eh,Z

[
EZ
′[
f ′
(
h+
√
tZ +

√
ξ′(q)− tZ ′

)]2]
,

φ′′(t) = E
[
f ′′
(
h+
√
tZ +

√
ξ′(q)− tZ ′

)
f ′′
(
h+
√
tZ +

√
ξ′(q)− tZ ′′

)]
= Eh,Z

[
EZ
′[
f ′′
(
h+
√
tZ +

√
ξ′(q)− tZ ′

)]2]
.

These expressions are each strictly positive, as the optimizability of γ∗ implies that f ′, f ′′

are not identically zero. Therefore φ is increasing and convex. Since ξ′ is also increasing
and convex (being a power series with non-negative coefficients) we conclude the same
about their composition ψ. The values ψ(ξ′(q)) = ξ′(q) and ψ′(ξ′(q)) = 1 follow from
Lemma 3.1 and the chain rule. Finally the last claim follows by strict convexity of ψ and
ψ′(ξ′(q)) = 1.

Next, let h,W−1, (W j , Xj ,M j)j≥0 be the state evolution limit of the coordinates of(
h,w−1,w0,x0,m0, . . . ,wk,xk,mk

)
as N → ∞. Hence each W j is a centered Gaussian and Xj = W j + h, M j+1 = f(Xj)

hold for j ≥ 0. Define the sequence (a0, a1, . . . ) recursively by a0 = 0 and ak+1 = ψ(ak).

Lemma 3.3. For all non-negative integers 0 ≤ j < k, the following equalities hold:

E
[(
W j
)2]

= ξ′(q) (3.6)

E
[
W jW k

]
= aj (3.7)

E
[(
M j
)2]

= q (3.8)

E
[
M jMk

]
= φ(aj). (3.9)

Moreover (W j)j≥0 is independent of h.

Proof. We proceed by induction on j, first showing (3.6) and (3.8) together. As a base
case, (3.6) holds for j = 0 by initialization. For the inductive step, assume first that (3.6)
holds for j. Then state evolution and (3.5) yield

E
[(
M j
)2]

= φ
(
ξ′(q)

)
= q

so that (3.6) implies (3.8) for each j ≥ 0. On the other hand, state evolution directly
implies that if (3.8) holds for j then (3.6) holds for j + 1. This establishes (3.6) and (3.8)
for all j ≥ 0.

We similarly show (3.7) and (3.9) together by induction, beginning with (3.7) when
j = 0. By the initialization of Subsection 2.2 it follows that the random variables
h,W−1,W 0 are jointly independent. State evolution implies that W k−1 is independent of
W−1 for any k ≥ 0. Then state evolution yields for any k ≥ 1:

E
[
W 0W k

]
= ξ′

(
E
[
M−1Mk−1

])
= ξ′(E

[
W−1f

(
W k−1

])
= ξ′(0)

= 0.

Just as above, it follows from state evolution that (3.7) for (j, k) implies (3.9) for (j, k)

which in turn implies (3.7) for (j + 1, k + 1). Hence induction on j proves (3.7) and (3.9)
for all (j, k). Finally the last independence assertion is immediate from state evolution
just because h is the first step in the AMP iteration.
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Lemma 3.4.
lim
k→∞

ak = ξ′(q).

Proof. Since ψ is strictly increasing and maps [0, ξ′(q)]→ [0, ξ′(q)], it follows that (ak)k≥0

is a strictly increasing sequence with limiting value in [0, ξ′(q)]. Let a∞ = limk→∞ ak be
this limit. Then continuity implies ψ(a∞) = a∞ which by the last part of Lemma 3.2
implies a∞ = ξ′(q). This concludes the proof.

We now compute the limiting energy

lim
k→∞

p-lim
N→∞

HN (mk)

N

from the first phase. Since the first phase is similar to many “standard” AMP algo-
rithms, this step is comparable to the computation of their final objective value, for
example [DAM17, Lemma 6.3]. This computation is straightforward when H̃N is a ho-
mogeneous polynomial of degree p, because one can just rearrange the equation for an
AMP iteration to solve for

H̃N

(
mk
)

= p−1
〈
mk,∇H̃N

(
mk
)〉
.

However it requires more work in our setting because ∇H̃N acts differently on terms
of different degrees. We circumvent this mismatch by applying state evolution to a
t-dependent auxiliary AMP step and integrating in t.

Lemma 3.5. With Xt the Parisi SDE (1.1),

lim
k→∞

p-lim
N→∞

HN (mk)

N
= ξ′(q) · E

[
∂xxΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
+ E

[
h · ∂xΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
= ξ′(q) · E

[
∂xxΦγ∗(q,Xq)

]
+ E

[
h · ∂xΦγ∗(q,Xq)

]
.

Proof. The equivalence of the latter two expressions follows from the fact that Xq ∼
X0 + N(0, ξ′(q)) so we focus on the first equality. Observe that

HN (mk)

N
=
〈
h,mk

〉
N

+

∫ 1

0

〈
mk,∇H̃N

(
tmk

)〉
N

dt (3.10)

holds for any vector mk by considering each monomial term of HN . Our main task
now reduces to computing the in-probability limit of the integrand as a function of t.
Proposition 2.1 ensures that t → 〈mk,∇H̃N (tmk)〉N is Lipschitz assuming ‖mk‖N ≤
1 + o(1). This holds with high probability for each k as N → ∞ by state evolution and
Proposition 2.7, so we may freely interchange the limit in probability with the integral.

To compute the integrand 〈mk,∇H̃N (tmk)〉N we analyze a modified AMP which
agrees with the AMP we have considered so far up to step k, whereupon we replace the
non-linearity fk(h,wk) = f(wk + h) = f(xk) by

f̃k
(
h,wk

)
≡ t · f

(
xk
)

for arbitrary t ∈ (0, 1). We obtain the new iterate

yk+1(t) ≡ ∇H̃N

(
tmk

)
− tmk−1ξ′′

(
t
〈
mk,mk−1

〉
N

)〈
f ′
(
xk
)〉
N
.

Rearranging yields〈
mk,∇H̃N

(
tmk

)〉
N

=
〈
mk,yk+1(t)

〉
N

+ t
〈
mk,mk−1

〉
N
ξ′′
(
t
〈
mk,mk−1

〉
N

)〈
f ′
(
xk
)〉
N

'
〈
mk,yk+1(t)

〉
N

+ tak−1ξ
′′(tφ(ak−1)

)〈
f ′
(
xk
)〉
N
.
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We evaluate the N →∞ limit in probability of the first term, via the state evolution limits
W k, Xk, Y k+1(t). State evolution directly implies

E
[
W kY k+1(t)

]
= ξ′

(
t · E

[
Mk−1Mk

])
= ξ′

(
tφ(ak−1)

)
.

Since h is independent of (W k, Y k+1) we use Gaussian integration by parts to derive

E
[
f
(
Xk
)
Y k+1(t)

]
= E

[
f
(
h+W k

)
Y k+1(t)

]
= E

[
f ′
(
h+W k

)]
· E
[
W kY k+1(t)

]
= E

[
f ′
(
h+ Z

√
ξ′(q)

)]
· ξ′
(
tφ(ak−1)

)
.

Integrating with respect to t yields∫ 1

0

〈
mk,∇H̃N

(
tmk

)〉
N

dt

' E
[
f ′
(
h+ Z

√
ξ′(q)

)]
·
∫ 1

0

ξ′
(
tφ(ak−1)

)
+ tφ(ak−1)ξ′′

(
tφ(ak−1)

)
dt

= E
[
∂xxΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
·
[
tξ′
(
tφ(ak−1)

)]∣∣t=1

t=0

Finally the first term in (3.10) gives energy contribution〈
h,mk

〉
N
' E

[
h · f

(
Z
√
ξ′(q)

)]
= E

[
h · ∂xΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
.

Since limk→∞ ak−1 = ξ′(q) and ψ(ξ′(q)) = ξ′(q) combining concludes the proof.

3.2 Phase 2: incremental AMP

We now switch to IAMP, which has a more complicated definition. We will begin from
the iterates x`,m` from phase 1 for a large ` ∈ Z+. Our implementation follows that of
[AMS21, AS22] and we relegate several proofs to Section 8. First define the functions

u(t, x) = ∂xxΦγ∗(t, x), v(t, x) = ξ′′(t)γ∗(t)∂xΦγ∗(t, x).

Set ε0 =
q

φ(a`−1) − 1 and δ = q((1 + ε0)2)− 1); observe that ε0, δ → 0 as `→∞.1 Define

the sequence (qδ` )`≥` by
qδ` = q + (`− `)δ.

Fix q̄ ∈ (q, 1); the value q̄ will be taken close to 1 after sending `→∞. In particular we

will assume δ < 1− q̄ holds and set ` = min{` ∈ Z+ : qδ` ≥ q̄}. Also define

n` ≡ (1 + ε0)m`.

Set z` = w`. So far, we have defined (x`, z`,n`). We turn to inductively defining the
triples (x`, z`,n`) for ` ≤ ` ≤ `. First, the values (z`)`≥` are defined as AMP iterates via

z`+1 = ∇H̃N

(
f`
(
z0, . . . ,z`

))
−
∑̀
j=0

d`,jfj−1

(
z0, . . . ,zj−1

)
,

d`,j = ξ′′(E
[
f`
(
Z0, . . . , Z`

)
fj−1

(
Z0, . . . , Zj−1

])
· E
[
∂f`
∂zj

(
Z0, . . . , Z`

)]
.

(3.11)

1When q = 0, ε0 is not defined. In this case we simply take δ > 0 small and begin IAMP at n` = 0 as in
[AMS21].
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(The non-linearities f` will be specified below). The sequence (x`+1)`≥` is defined by

x`+1 ≡ x` +
∑̀
j=`

v
(
qδj ,x

j
)
δ +

∑̀
j=`

(
zj+1 − zj

)
= x` + v

(
qδ` ,x

`
)
δ +

(
z`+1 − z`

)
, ` ≤ ` ≤ `− 1.

As usual, v(qδj , ·) is applied component-wise so that v(qδj ,x
j)i = v(qδj , x

j
i ). Next define the

scalar function

uδ`(x) =
δu(qδ` , x)

(ξ′(qδ` )− ξ′(qδ`−1))E[u(qδ` ;X
δ
` )2]

and consider for ` ≥ ` the recursive definition

n`+1 ≡ n` +
∑̀
j=`

uδj
(
xj
)(
zj+1 − zj

)
(3.12)

= n` + uδ`
(
x`
)(
z`+1 − z`

)
.

We define the non-linearity f` : R`+1 → R to recursively satisfy

f`
(
z0, . . . ,z`

)
= n`, ` > `.

It is not difficult to verify that the equations above form a “closed loop” uniquely
determining the sequence (x`, z`,n`)`≥`. Since (x`i , n

`
i) is determined by the sequence

(z
`
i , . . . , z

`
i ) we may define the state evolution limiting random variables (Xδ

` , N
δ
` , Z

δ
` )`≥`.

We emphasize that the IAMP just defined is part of the same q-AMP algorithm as the first
phase defined in the previous subsection. However the variable naming has changed
so that the main iterates are z` for ` ≥ ` rather than w` for ` ≤ `. In particular there is
no problem in applying state evolution even though the two AMP phases take different
forms.

To complete the algorithm, we output the coordinate-wise sign σ = sign(n`) where

sign(x) =

{
1, x ≥ 0

−1, x ≤ 0.

The key to analyzing the AMP algorithm above is an SDE description in the δ → 0

limit. Define the filtration
Fδ` = σ

((
Zδk , N

δ
k

)
0≤k≤`

)
(3.13)

for the state evolution limiting process.

Lemma 3.6. The sequences (Zδ` , Z
δ
`+1, . . . ) and (Nδ

` , N
δ
`+1, . . . ) satisfy for each ` ≥ `:

E
[(
Zδ`+1 − Zδ`

)
Zδj
]

= 0, for all `+ 1 ≤ j ≤ `

E
[(
Zδ`+1 − Zδ`

)2|Fδ` ] = ξ′
(
qδ`+1

)
− ξ′

(
qδ`
)

E
[(
Zδ`
)2]

= ξ′
(
qδ`
)
]

E
[(
Nδ
`+1 −Nδ

`

)
|Fδ`
]

= 0

E
[(
Nδ
`+1 −Nδ

`

)2]
= δ

E
[(
Nδ
`

)2]
= qδ`+1.

From Lemma 3.6 and the fact that (Zδ` , Z
δ
`+1, . . . ) form a Gaussian process, it fol-

lows that there is a coupling with a standard Brownian motion (Bt)t∈[0,1] such that
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∫ qδ`
0

√
ξ′′(t)dBt = Zδ` for each `. Denote by (Ft)t∈[0,1] the associated natural filtration.

Recall that Xt is defined as the solution to the SDE

dXt = γ∗(t)∂xΦγ∗(t,Xt)dt+
√
ξ′′(t)dBt

with initialization X0 ∼ Lh. Recalling Proposition 2.8, define processes (Nt, Zt)t∈[0,1] by

Nt ≡ ∂xΦγ∗(t,Xt)

= ∂xΦγ∗(q,Xq) +

∫ t

q

√
ξ′′(s)u(s,Xs)dBs,

Zt ≡
∫ t

0

√
ξ′′(s)dBs.

The next lemma states that these continuous-time processes are the δ → 0 limit of
(Xδ

` , N
δ
` , Z

δ
` )`≥`.

Lemma 3.7. Fix q̄ ∈ (q, 1). There exists a coupling between the families of triples
{(Zδ` , Xδ

` , N
δ
` )}`≥0 and {(Zt, Xt, Nt)}t≥0 such that the following holds for a constant

C > 0. For large enough `, and every ` ≥ ` with q` ≤ q̄,

max
`≤j≤`

E
[(
Xδ
j −Xqj

)2] ≤ Cδ,
max
`≤j≤`

E
[(
Nδ
j −Nqj

)2] ≤ Cδ.
Lemmas 3.6 and 3.7 are proved in Section 8.

3.3 Computing the final energy

In this subsection we establish Theorem 1.7 by showing limq̄→1lim`→∞p-limN→∞
HN (σ)
N

= P(γ∗). First we show that the replacements m` → n` and n` → σ have negligible
effect on the asymptotic value attained.

Lemma 3.8.

lim
q̄→1

lim
`→∞

p-lim
N→∞

∣∣∣∣HN (σ)−HN (n`)

N

∣∣∣∣ = 0, (3.14)

lim
`→∞

p-lim
N→∞

∣∣∣∣HN (m`)−HN (n`)

N

∣∣∣∣ = 0. (3.15)

Proof. Proposition 2.7 implies that Nt ∈ [−1, 1] almost surely, while optimizability of γ∗
implies that E[(Nt)

2] = t for t ∈ [q, q̄]. It follows that

lim
q̄→1

lim
`→∞

p-lim
N→∞

‖n` − sign
(
n`
)
‖N = lim

q̄→1

√
E
[(
Nq̄ − sign(Nq̄)

)2]
= 0.

The limit (3.14) follows from Proposition 2.1 with k = 1. (3.15) follows similarly as

n` −m` = ε0m
`

and ε0 → 0 as `→∞ while p-limN→∞ ‖m`‖N ≤ 1 thanks to Proposition 2.7.

In the next lemma, proved in Section 8, we compute the energy gain during IAMP.

Lemma 3.9.

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (n`)−HN (n`)

N
=

∫ 1

q

ξ′′(t)E
[
u(t,Xt)

]
dt. (3.16)
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We now put everything together. Recall from Lemma 3.5 that

lim
`→∞

p-lim
N→∞

HN (m`)

N
= ξ′(q) · E

[
∂xxΦγ∗(q,Xq)

]
+ E

[
h · ∂xΦγ∗(q,Xq)

]
.

Proposition 2.8 implies that the process ∂xΦγ∗(t,Xt) is a martingale, while Lemma 2.9

states that E[u(t,Xt)] = E[∂xxΦγ∗(t,Xt)]≥
∫ 1

t
γ∗(s)ds. Substituting, we find

lim
`→∞

p-lim
N→∞

HN (m`)

N
≥ ξ′(q)

∫ 1

q

γ∗(s)ds+ E
[
h · ∂xΦγ∗(0, h)

]
.

Using again that E[u(t,Xt)] =
∫ 1

t
γ∗(s)ds, the right-hand side of (3.16) is

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (n`)−HN (n`)

N
≥
∫ 1

q

ξ′′(t)

∫ 1

t

γ∗(s)dsdt

=

∫ 1

q

∫ s

q

ξ′′(t)γ∗(s)dtds

=

∫ 1

q

(
ξ′(s)− ξ′(q)

)
γ∗(s)ds

=

∫ 1

0

ξ′(s)γ∗(s)ds− ξ′(q)
∫ 1

q

γ∗(s)ds.

Combining with Lemma 3.8 yields

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
≥ lim
q̄→1

lim
`→∞

p-lim
N→∞

1

N
·
(
HN

(
sign

(
n`
))
−HN

(
n`
)

+HN

(
n`
)
−HN

(
n`
)

+HN

(
n`
)
−HN

(
m`
)

+HN

(
m`
))

≥ Eh∼Lh
[
h · ∂xΦγ∗(0, h)

]
+

∫ 1

0

ξ′(s)γ∗(s)ds. (3.17)

Having estimated the limiting energy achieved by our q-AMP algorithm, it remains to
verify that the value in Equation (3.17) is Pξ,h(γ∗). Define

Ψγ∗(t, x) = Φγ∗(t, x)− x∂xΦγ∗(t, x)

for (t, x) ∈ [0, 1]×R. We also use some identities computed in [AMS21].

Proposition 3.10 ([AMS21, Lemma 6.13]). For any γ ∈ L , the following identities hold:

d

dt
E
[
Φγ(t,Xt)

]
=

1

2
ξ′′(t)γ(t)E

[
∂xΦγ(t,Xt)

2
]

d

dt
E
[
Xt∂xΦγ(t,Xt)

]
= ξ′′(t)γ(t)E

[
∂xΦγ(t,Xt)

2
]

+ ξ′′(t)E
[
∂xxΦγ(t,Xt)

]
.

Lemma 3.11. For h ∼ Lh, q̄ ≥ q, and Xt as in (1.1),

E
[
Φγ∗(0, h)

]
= E

[
h · ∂xΦγ∗(0, h)

]
+ E

[
Ψγ∗(q̄, Xq̄)

]
+

1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]

dt+

∫ q̄

0

ξ′′(t)E
[
∂xxΦγ∗(t,Xt)

]
dt.
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Proof. We write

E
[
Ψγ∗(q̄, Xq̄)−Ψγ∗(0, X0)

]
=

∫ q̄

0

d

ds
E
[
Ψγ∗(s,Xs)

]∣∣
s=t

dt

=

∫ q̄

0

d

ds
E
[
Φγ∗(s,Xs)−Xs∂xΦγ∗(s,Xs)

]∣∣
s=t

dt

= −1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]
dt

−
∫ q̄

0

ξ′′(t)E
[
∂xxΦγ∗(t,Xt)

]
dt.

Rearranging shows:

E
[
Φγ∗(0, X0)

]
= E

[
X0∂xΦγ∗(0, X0)

]
+ E

[
Ψγ∗(q̄, Xq̄)

]
+

1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]
dt+

∫ q̄

0

ξ′′(t)E
[
∂xxΦγ∗(t,Xt)

]
dt.

As X0 = h this concludes the proof.

Proof of Theorem 1.7. Note that γ∗(t) > 0 implies t ≥ q and hence by optimizability

E
[(
∂xΦγ∗(t,Xt)

)2]
= t.

Meanwhile for any t ∈ [0, 1],

E
[
∂xxΦγ∗(t,Xt)

]
=

∫ 1

t

γ∗(t)dt.

Therefore

Φγ∗(0, h) = h · ∂xΦγ∗(0, h) + E
[
Ψγ∗(q̄, Xq̄)

]
+

1

2

∫ q̄

0

ξ′′(t)γ∗(t)tdt+

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt.

Recalling (1.2), we find

P(γ∗) = Eh
[
Φγ∗(0, h)

]
− 1

2

∫ 1

0

ξ′′(t)γ∗(t)tdt

= Eh
[
h · ∂xΦγ∗(0, h)

]
+ E

[
Ψγ∗(q̄, Xq̄)

]
+

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt+ oq̄→1(1).

As in [AMS21, Proof of Theorem 3.2] limq̄→1 Ψγ∗(q̄, x) = 0 holds uniformly in x. Moreover

lim
q̄→1

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt =

∫ 1

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt

=

∫ 1

0

∫ s

0

ξ′′(t)γ∗(s)dtds

=

∫ 1

0

ξ′(s)γ∗(s)ds.

Combining the above and comparing with (3.17) yields

P(γ∗) = Eh
[
h · ∂xΦγ∗(0, h)

]
+

∫ 1

0

ξ′(s)γ∗(s)ds

≤ lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
.

This completes the proof of Theorem 1.7.
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4 Constructing many approximate maximizers

Here we explain the modifications needed for branching IAMP and Theorem 1.13.
The proofs are a slight extension of those for the main algorithm, and in fact we give
many proofs for IAMP directly in this more general setting in Section 8. Let us fix
values Q = (q1, . . . , qm) with q ≤ q1 < · · · < qm < 1 and an index B ∈ [m]. To construct
a pair of approximate maximizers with overlap qB we first construct n` exactly as in
Subsection 3.1. For each i < B, set g(qi,1) = g(qi,2) = z−ki,1 = z−ki,2 ∈ RN for some
ki,1 = ki,2 ≤ K as in Subsection 2.2. For each B ≤ i ≤ m, set g(qi,1) = z−ki,1 and
g(qi,2) = z−ki,2 where ki,1 6= ki,2. Because the vectors g(qi,a) are constructed using AMP,
we require some additional conditions. We impose the separation condition

ki,a′ − `δqi > kj,a − `δqj > 0 (4.1)

for all i > j and a, a′ ∈ {1, 2}. (In particular, it implies that ki,a′ 6= kj,a for i 6= j.) It is
not hard to satisfy (4.1) by choosing the values ki,a sequentially in increasing order of i.
Finally we insist that maxi,a(ki,a) + `+ 1 < K, where h = z−K was the AMP initialization,
which is satisfied by choosing K large at the end.

Having fixed this setup, we proceed by defining mk,1 = mk,2 = mk for k ≥ 0

exactly as in the original first phase. Next we generate two sequences of IAMP iterates
using (3.12) except at times corresponding to qi ∈ Q, altogether generating n`,a for ` > `

and a ∈ {1, 2} via:

n`,a =

{
n`−1,a +

√
δg(qi,a), ` = `δqi ≡ `+

⌈
(qi − q)δ

⌉
+ 1 for some i ∈ [m]

n`−1,a + uδ`−1

(
x`−1,a

)(
z`,a − z`−1,a

)
, else.

(4.2)
Recalling Subsection 2.2, this is an AMP algorithm of the required form. The defini-

tions of x`,a, z`,a are the same as in e.g. (3.11) with superscript a everywhere, though
note that now the definition

fj−1

(
z−K , . . . ,z0, z1,a, . . . ,zj−1,a

)
= nj−1,a

of fj−1 has explicit dependence on the negatively indexed variables through g(qi,a).
The following result follows immediately from Lemmas 8.5, 8.6 and readily implies
Theorem 1.13.

Lemma 4.1. For optimizable γ∗,

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (n`,a)

N
≥ P(γ∗), a ∈ {1, 2}

lim
q̄→1

lim
`→∞

p-lim
N→∞

〈n`,1,n`,2〉
N

= qB .

Next we extend this construction to general finite ultrametric spaces X. Recall that
any finite ultrametric space X with all pairwise distances in the set {

√
2(1− qi)}i∈[m]

can be identified with a rooted tree T whose leaves ∂T are in bijection with X, and so
that dX(xi, xj) =

√
2(1− qk) is equivalent to leaves i, j having least common ancestor at

depth k.
Given such T , we may assign to each non-root vertex u ∈ T a distinct initialization

iterate g(u) = z−ku . We require that

1. The ku are pairwise distinct.

2. Analogously to (4.1),
ku′ − `δqi > ku − `δqj

if qj = depth(u) < depth(u′) = qi.
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3. maxu(ku) + `+ 1 < K.

Again, these conditions are easy to satisfy by choosing ku in increasing order of depth(u)

with ties broken arbitrarily.
Then for each x ∈ X, we first construct mk,x = mk for k ≥ 0 exactly as in the original

first phase, which does not depend on x. Next, denoting by

root = v0, v1, . . . , vm = x ∈ ∂T = X

the root-to-leaf path for x within T , we compute the analog of (4.2):

n`,x =

{
n`−1,x +

√
δg(kvi ), ` = `δqi for some i ∈ [m]

n`−1,x + uδ`−1

(
x`−1,x

)(
z`,x − z`−1,x

)
, else.

(4.3)

Again, x`,x, z`,x are defined using the same recursions as before.

Theorem 1.13. Let γ∗ ∈ L be optimizable, and fix a finite ultrametric space (X, dX)

with diameter at most
√

2(1− q) as well as ε > 0. Then an efficient AMP algorithm

constructs points {σx|x ∈ X} in ΣN satisfying

HN (σx)

N
≥ P(γ∗)− ε, x ∈ X,

‖σx − σy‖√
N

∈
[
dX(x, y)− ε, dX(x, y) + ε

]
, x, y ∈ X

with probability tending to 1 as N →∞.

Proof. It is easy to see that for each distinct x, y ∈ X, the behavior of the pair n`,x,n`,y

in (4.3) is identical to n`,1,n`,2 in (4.2) (e.g. both pairs have the same joint law with
HN ). Applying Lemma 4.1 to all such pairs, we find that the iterates n`,x satisfy
HN (n`,x)

N ≥ P(γ∗) − ε and 〈n`,x,n`,y〉N ' qj if dX(x, y) =
√

2(1− qj). The conclusion

follows by rounding n`,x → σx ∈ ΣN for each x ∈ X as in the main algorithm.

We remark that our construction differs from the one proposed in [AM20] only
because we construct the vectors g(u) using AMP rather than taking them to be literally
independent Gaussian vectors. While the latter construction almost certainly works as
well, the analysis seems to require a more general version of state evolution.

5 Spherical models

We now consider the case of spherical spin glasses with external field. The law of
the Hamiltonian HN is specified according to the same formula as before depending on
(ξ,L), however the state space is the sphere SN−1(

√
N) instead of the hypercube. The

free energy in this case is given by a similar Parisi-type formula, however it turns out to
dramatically simplify under no overlap gap so we do not give the general formula. At
positive temperature the spherical free energy was computed non-rigorously in [CS92]
and rigorously in [Tal06a, Che13], but we rely on [CS17] which directly treats the
zero-temperature setting.

Remark 5.1. Due to rotational invariance, for spherical models all that matters about
Lh is the squared L2 norm Eh∼Lh [h2]. In particular unlike the Ising case there is no
loss of generality in assuming h is constant. We continue to work with coordinates hi
sampled i.i.d. from Lh and implicitly use this observation when interpreting the results
of [CS17].
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Our treatment of spherical models is less detailed and we simply show how to
obtain the energy value in Theorem 1.15 which is the ground state in models with
supp(γ∗) = [q, 1). In the case that E[h2] + ξ′(1) < ξ′′(1), we let q

sph
∈ [0, 1] be the unique

solution to

q
sph
ξ′′(q

sph
) = E

[
h2
]

+ ξ′(q
sph

).

When E[h2] + ξ′(1) ≥ ξ′′(1), we simply set q
sph

= 1.

Note that when h = 0 almost surely it follows that q
sph

= 0, which is the setting of
[Sub21]. Generate initial iterates (

w−Ksph , . . . ,w
0
sph

)
as in Subsection 2.2. For non-zero h we take c =

√
E[h2] + ξ′(q

sph
) so that

‖w0
sph‖N '

√
E
[
h2
]

+ ξ′(q
sph

).

Generate further iterates via the following AMP iteration.

wk+1
sph = ∇H̃N

(
mk

sph

)
−mk−1

sph ξ
′′(〈mk

sph,m
k−1
sph

〉)√ q
sph

E[h2] + ξ′(q
sph

)
(5.1)

xksph = wk
sph + h

mk
sph = xksph ·

√
q
sph

E[h2] + ξ′(q
sph

)
.

The next lemma is the spherical analog of Lemmas 3.3, 3.4, 3.5 – the proof is similar
to the Ising case and is given in the next subsection.

Lemma 5.2. Using the AMP of (5.1), the asymptotic overlaps and energies satisfy

lim
k,`→∞

p-lim
N→∞

〈wk
sph,w

`
sph〉

N
= ξ′(q

sph
),

lim
k,`→∞

p-lim
N→∞

〈xksph,x`sph〉
N

= E
[
h2
]

+ ξ′(q
sph

),

lim
k,`→∞

p-lim
N→∞

〈mk
sph,m

`
sph〉

N
= q

sph
,

lim
k,`→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q
sph

(
E
[
h2
]

+ ξ′(q
sph

)
)
. (5.2)

Proof of Theorem 1.16. The latter two parts of Lemma 5.2 directly imply Theorem 1.16
in the case that E[h2] + ξ′(1) ≥ ξ′′(1) (recall q

sph
= 1 in this case). Indeed, it suffices to

take

σsph =
m`

sph

‖m`
sph‖N

∈ SN−1(
√
N) (5.3)

for a sufficiently large constant `. When E[h2] + ξ′(1) < ξ′′(1), we can conclude by
mimicking the IAMP phase using the simple non-linearities u(t, x) = u(t) = ξ′′(t)−1/2 and
v(t, x) = 0 – see also [AMS21, Remark 2.2]. Lemma 3.9 then shows the energy gain from
IAMP is ∫ 1

q

ξ′′(t)u(t)dt =

∫ 1

q

ξ′′(t)1/2.
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As in the Ising case, we may start IAMP from m = mk for a large constant k. Combining
with (5.2) and defining σsph via (5.3) with m` an IAMP iterate, we obtain

p-lim
N→∞

HN (σsph)

N
≥ q

sph
ξ′′(q

sph
)1/2 +

∫ 1

q
sph

ξ′′(q
sph

)1/2dq.

Alternatively to IAMP, in the spherical setting it is possible to use the approach of [Sub21].
Indeed [Sub21, Theorem 4] immediately extends to an algorithm taking in an arbitrary
point m with ‖m‖N ≤ 1 and outputting a point m∗ ∈ SN−1(

√
N) (which may depend on

HN ) satisfying
HN (m∗)−HN (m)

N
≥
∫ 1

‖m‖2N

√
ξ′′(q)dq − ε

with probability 1− oN→∞(1) for any desired ε > 0. Either approach completes the proof
of Theorem 1.16.

5.1 Proof of Lemma 5.2

For t ∈ [0, ξ′(q
sph

)], take h ∼ Lh and (Z,Z ′, Z ′′) ∼ N(0, I3) and define the function

φsph(t) =
q
sph

(E[h2] + t)

E[h2] + ξ′(q
sph

)

=
q
sph

E[h2] + ξ′(q
sph

)

· Eh,Z,Z
′,Z′′

[(
h+ Z

√
t+ Z ′

√
ξ′(q

sph
)− t

)(
h+ Z

√
t+ Z ′′

√
ξ′(q

sph
)− t

)]
so that φsph(ξ′(qsph)) = q

sph
. Define ψsph(t) = ξ′(φsph(t)).

Lemma 5.3. ψsph is strictly increasing and convex on [0, ξ′(q
sph

)] and

ψsph

(
ξ′(q

sph
)
)

= ξ′(q
sph

), (5.4)

ψ′sph
(
ξ′(q

sph
)
)

= 1, (5.5)

ψsph(t) > t, ∀t < ξ′(q
sph

). (5.6)

Proof. Since ξ′ is strictly increasing and convex and φsph is affine and increasing, it
follows that ψsph is strictly increasing and convex. (5.4) is equivalent to the equation
q
sph
ξ′′(q

sph
) = E[h2] + ξ′(q

sph
) defining q

sph
. To show (5.5) we use the chain rule to write

ψ′sph
(
ξ′(q

sph
)
)

= ξ′′
(
φsph

(
ξ′(q

sph
)
))
· φ′sph

(
ξ′(q

sph
)
)

= ξ′′(q
sph

) ·
(
ξ′′(q

sph
)
)−1

= 1.

Equations (5.4) and (5.5) and the convexity of ψsph just shown imply (5.6)

Let h,W−1
sph , (W

j
sph, X

j
sph,M

j
sph)

k
j=0 be the state evolution limit of the coordinates of(

h,w−1
sph,w

0
sph,x

0
sph,m

0
sph, . . . ,w

k
sph,x

k
sph,m

k
sph

)
as N →∞. Define the sequence (b0, b1, . . . ) recursively by b0 = 0 and bk+1 = ψsph(bk).

Lemma 5.4. For all non-negative integers 0 ≤ j < k the following equalities hold:

E
[(
W j

sph

)2]
= ξ′(q

sph
)

E
[
W j

sphW
k
sph

]
= bj

E
[(
M j

sph

)2]
= q

sph

E
[
M j

sphM
k
sph

]
= φsph(bj).
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Proof. Follows from state evolution and induction exactly as in Lemma 3.3.

Lemma 5.5.

lim
k→∞

bk = ξ′(q
sph

),

lim
k→∞

φsph(bk) = q
sph
.

Proof. As in the proof of Lemma 3.4, the sequence b1, b2, . . . , must converge up to a limit,
and this limit must be a fixed point for ψsph, implying the first claim. The second claim
follows by continuity of φsph.

Lemma 5.6.

lim
k→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q
sph

(
E
[
h2
]

+ ξ′(q
sph

)
)
.

Proof. We use again the identity

HN (mk
sph)

N
=
〈
h,mk

sph

〉
N

+

∫ 1

0

〈
mk

sph,∇H̃N

(
tmk

sph

)〉
N

dt

and interchange the limit in probability with the integral. To compute the main term
p-limN→∞〈mk

sph,∇H̃N ((tmk
sph)〉 we introduce an auxiliary AMP step

yk+1
sph = ∇H̃N

(
tmk

sph

)
− tmk−1

sph ξ
′′(t〈mk

sph,m
k−1
sph

〉)√ q
sph

E[h2] + ξ′(q
sph

)
.

Rearranging yields〈
mk

sph,∇H̃N

(
tmk

sph

)〉
N

=
〈
mk

sph,y
k+1
sph

〉
N

+ t
〈
mk

sph,m
k−1
sph

〉
N
ξ′′
(
t
〈
mk

sph,m
k−1
sph

〉
N

)√ q
sph

E[h2] + ξ′(q
sph

)

'
〈
mk

sph,y
k+1
sph

〉
N

+ tbk−1ξ
′′(tφ(bk−1)

)√ q
sph

E[h2] + ξ′(q
sph

)
.

For the first term, Gaussian integration by parts with

g(x) = (x+ h) ·
√

q
sph

E[h2] + ξ′(q
sph

)

yields

E
[
g
(
Xk

sph

)
Y k+1

]
= E

[
g′
(
Xk

sph

)]
· E
[
Xk

sphY
k+1
sph

]
= ξ′

(
tφsph(bk−1)

)√ q
sph

E[h2] + ξ′(q
sph

)
.

Integrating with respect to t, we find∫ 1

0

〈
mk

sph,∇H̃N

(
tmk

sph

)〉
N

dt

' E
[
g′
(
Z
√
ξ′(q

sph
)
)]
·
∫ 1

0

ξ′
(
tφsph(bk−1)

)
+ tφsph(bk−1)ξ′′

(
tφsph(bk−1)

)
=
[
tξ′
(
tφsph(bk−1)

)]∣∣t=1

t=0
·
√

q
sph

E[h2] + ξ′(q
sph

)

= ψsph(bk−1)

√
q
sph

E[h2] + ξ′(q
sph

)
.

EJP 29 (2024), paper 4.
Page 25/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1066
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimizing mean field spin glasses with external field

Finally the first term gives energy contribution

h
〈
mk

sph

〉
N
' E

[
h
(
h+ Z

√
ξ′(bk−1)

)]√ q
sph

E[h2] + ξ′(q
sph

)

= E
[
h2
]√ q

sph

E[h2] + ξ′(q
sph

)
.

Since limk→∞ bk−1 = ξ′(q
sph

) and ψsph(ξ
′(q

sph
)) = ξ′(q

sph
) we conclude

lim
k→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q
sph

(
E
[
h2
]

+ ξ′(q
sph

)
)
.

Proof of Lemma 5.2. The result follows from the preceding lemmas.

5.2 Proof of Theorem 1.15

It follows from our algorithm that GSsph(ξ,Lh) ≥ q
sph
ξ′′(q

sph
)1/2 +

∫ 1

q
sph

ξ′′(q
sph

)1/2dq.

We now characterize the models in which equality holds, which coincide with those
exhibiting no overlap gap. Moreover we give an alternate proof of the lower bound for
GS(ξ,Lh)sph which shows that equality holds exactly in no overlap gap models. We thank
Wei-Kuo Chen for communicating the latter proof.

Theorem 1.15. Suppose ξ and Lh satisfy E[h2] + ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1) be

the unique solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then the spherical spin glass with

parameters ξ,Lh has no overlap gap if and only if ξ′′(q)−1/2 is concave on q ∈ [q
sph
, 1], in

which case α is supported on [q
sph
, 1] and takes the explicit form

α(s) =

{
0, s ∈ [0, q

sph
)

ξ′′′(s)
2ξ′′(s)3/2

, s ∈ [q
sph
, 1].

Moreover the ground-state energy satisfies

GSsph(ξ,Lh) ≥ q
sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq

with equality if and only if no overlap gap occurs.

Proof. We use the results and notation of [CS17]. If ξ′′(q)−1/2 is concave on [q
sph
, 1] then

the proof of Proposition 2 in [CS17] applies verbatim to show that the support of α is
[q

sph
, 1]. In fact it explicitly shows α(s) = ξ′′′(s)

2ξ′′(s)3/2
for s ∈ [q

sph
, 1]).

In the other direction, we show that if no overlap gap holds and E[h2] + ξ′(1) < ξ′′(1),
then ξ′′(q)−1/2 is concave on [q

sph
, 1]. we use the statement and notation of [CS17,

Theorem 2]. Assume α is supported on the interval [q
sph
, 1]. The last condition in [CS17,

Theorem 2] states that g(u) =
∫ 1

u
ḡ(s)ds = 0 for all u ∈ [q

sph
, 1], and therefore ḡ(s) = 0 for

s ∈ [q
sph
, 1], where

ḡ(s) ≡ ξ′(s) + h2 −
∫ s

0

dq

(L−
∫ q

0
α(r)dr)2

.

Setting s = q
sph

yields E[h2] + ξ′(q
sph

) = q
sph
L−2, i.e. L =

√
q
sph

E[h2]+ξ′(q
sph

) . Differentiat-

ing, all s ≥ q
sph

satisfy

ξ′′(s) =
1

(L−
∫ s
q
sph

α(r)dr)2
. (5.7)
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Taking s = q
sph

in (5.7) shows L = ξ′′(q
sph

)−1/2, hence E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
).

Rearranging (5.7) yields

L−
∫ s

q
sph

α(r)dr = ξ′′(s)−1/2, s ≥ q
sph
.

As α must be non-decreasing based on [CS17, Equation (9)] it follows that ξ′′(s)−1/2 is
concave on s ∈ [q

sph
, 1]. This completes the proof of the first equivalence. We turn to the

value of GSsph(ξ,Lh), first computing

E
[
h2
]

+ ξ′(1) = qξ′′(q
sph

) +

∫ 1

q
sph

ξ′′(q
sph

)dq

=

∫ q
sph

0

ξ′′(q
sph

)dq +

∫ 1

q
sph

ξ′′(q
sph

)dq.

Letting L >
∫ 1

0
α(s)ds and let a(q) =

∫ q
0
α(s)ds, we find

2Q(L,α) =
(
E
[
h2
]

+ ξ′(1)
)
L−

∫ 1

0

ξ′′(q)a(q)dq +

∫ 1

0

dq

L− a(q)

=

∫ q
sph

0

(
ξ′′(q

sph
)L− ξ′′(q)a(q)

)
dq +

∫ q
sph

0

dq

L− a(q)

+

∫ 1

q
sph

(
ξ′′(q)

(
L− a(q)

)
+

1

L− a(q)

)
dq.

Since ξ′′ is increasing, AM-GM shows the second-to-last line is at most∫ q
sph

0

ξ′′(q)
(
L− a(q)

)
dq +

∫ q
sph

0

dq

L− a(q)
≥ 2

∫ q
sph

0

√
ξ′′(q

sph
)dq = 2q

√
ξ′′(q

sph
), (5.8)

and similarly ∫ 1

q
sph

(
ξ′′(q)

(
L− a(q)

)
+

1

L− a(q)

)
dq ≥ 2

∫ 1

q
sph

√
ξ′′(q)dq. (5.9)

Combining, we conclude the lower bound on GSsph(ξ,Lh). Moreover for equality to hold
in (5.8) and (5.9) we must have

ξ′′(q)−1/2 =

{
L− a(q), ∀q ∈ [0, q

sph
],

L− a(q), ∀q ∈ [q
sph
, 1).

The first equality forces α(s) = 0 on [0, q
sph

) and L = ξ′′(q0)−1/2, while the second equality

implies α(q) = − d
dsξ
′′(q)−1/2 for all q ∈ [q

sph
, 1]. Taken together this means that equality

in the GSsph lower bound implies no overlap gap, completing the proof.

6 Impossibility of approximate maximization under an overlap
gap

Here we explain the modifications of [GJ21, GJW20] needed to establish Proposi-
tion 1.12. Throughout this section we assume that ξ(t) =

∑
p∈{2,4,...,2P} c

2
pt
p is an even

polynomial and that the external field (h, h, . . . , h) is constant and deterministic. We
take q = inf(supp(γU

∗ )) and let HN,0, HN,1 be i.i.d. copies of HN and for t ∈ [0, 1] let

HN,t ≡
√
tHN,1 +

√
1− tHN,0. Moreover we define HN ≡ {HN,t : t ∈ [0, 1]}.
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Definition 6.1. The model (ξ, h) satisfies the path overlap gap property with parameters

ε > 0 and 0 < ν1 < ν2 < 1 if the following holds with probability at least 1 − e−KN

K for
some K = K(ξ, h) > 0. For every pair Hs, Ht ∈ HN and every σs,σt satisfying

Hr(σr)

N
≥ GSξ,h − ε, r ∈ {s, t}

it also holds that
|〈σs,σt〉N | ∈ [0, ν1] ∪ [ν2, 1].

Definition 6.2. The pair (H,H ′) of Hamiltonians are ν-separated above µ if for any
x,y ∈ ΣN with H(x) ≥ µ,H ′(y) ≥ µ, it holds that |〈x,y〉N | ≤ ν.

Lemma 6.3. For any t ∈ (0, 1), there exists qt = qt(t, ξ, h) ∈ [0, q] such that the following
holds. For any ε > 0 there is δ(ε) > 0 and K(t, ξ, h, ε) such that with probability at least

1− e−KN

K , every pair σ0,σt ∈ ΣN satisfying

HN,s(σs)

N
≥ GSξ,h − δ, s ∈ {0, t}

also satisfies |〈σ0,σt〉N | ∈ [qt − ε, qt + ε].

Proof. This follows from [CHL18, Proof of Theorem 2], in particular inequality (48)
therein implies that for some δ(ε) > 0:

1

N
max

σ0,σt∈ΣN
〈σ0,σt〉N /∈[qt−ε,qt+ε]

HN,0(σ0) +HN,t(σt) ≤
(

1

N
max

σ0,σt∈ΣN
HN,0(σ0) +HN,t(σt)

)
− δ.

Lemma 6.4. If (ξ, h) is not optimizable, then there exist ε(ξ, h) > 0 and q < a < b < 1 and

K(ξ, h) such that with probability 1− e−KN

K the following holds. Every pair σ0,σ1 ∈ ΣN

satisfying
HN (σi)

N
≥ GSξ,h − ε, i ∈ {0, 1}

also satisfies |〈σ0,σ1〉N | /∈ [a, b].

Proof. The proof is identical to that of [CGP+19, Theorem 3] using the 2-dimensional
Guerra-Talagrand bound. Indeed [CGP+19, Lemma 5.4] exactly establishes that even
pure p-spin models are not optimizable, i.e.

E
[(
∂xΦγ∗(t,Xt)

)2]
< t (6.1)

holds for some t ∈ [0, 1) where γ∗ = γU
∗ . The remainder of the proof (just below

[CGP+19, Lemma 5.4]) is fully general and we give an outline below. The point is that
by (6.1) must hold in some non-empty open subset of (0, 1), thus in a non-empty interval

[a, b]. For each t ∈ [a, b], one considers the Hamiltonian HN (σ)+HN (σ′)
2 on two-replica

configurations (σ,σ′) with overlap constraint 〈σ,σ′〉N = t. The free energy of this
constrained system can be upper-bounded using an interpolation argument; the relevant
Parisi order parameter γ̃ must increase, except that it may decrease by a factor of at
most 2 at t, i.e. it only needs to satisfy

lim
s↑t

γ̃(s) ≤ 2 lim
s↓t

γ̃(s). (6.2)

Taking γ̃ = γU
∗ recovers the single-replica value. However when (6.1) holds, γ̃ = γU

∗ is no
longer locally optimal since γ̃ lives in a larger function space due to the relaxation (6.2).
Hence the constrained two-replica ground state energy is strictly smaller. This argument
can be applied for all O(N) values t ∈ [a, b] ∩Z/N , yielding the result.

EJP 29 (2024), paper 4.
Page 28/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1066
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Optimizing mean field spin glasses with external field

Lemma 6.5. If (ξ, h) is not optimizable, then there exists ε(ξ, h) > 0 and 0 ≤ ν1 < ν2 ≤ 1

and K > 0 such that with probability at least 1− e−KN

N :

1. The model (ξ, h) satisfies the path overlap gap property with parameters (ε, ν1, ν2).

2. HN,0, HN,1 are ν1 separated above GSξ,h − ε.

Proof. The proof is identical to [GJ21, Theorem 3.4]. In short, one discretizes HN
into {HN,kδ : 0 ≤ k ≤ δ−1} for some small δ > 0 using Proposition 2.1 and then
applies Lemma 6.3 to control the values HN,s(σs), HN,t(σt) for s 6= t and Lemma 6.4
to control the cases that s = t. Indeed in the proof of [GJ21, Theorem 3.4], the former
is accomplished using [CGP+19, Theorem 3] while the latter is accomplished using
[CHL18, Theorem 2]. The preceding lemmas exactly generalize the relevant statements
to non-optimizable models.

Proof of Proposition 1.12. Given Lemma 6.5, the proof is identical to that of [GJ21,
Theorem 3.3]. Indeed, that proof does not depend on ξ. The main input is [GJ21,
Conjecture 3.2]. This is shown to be implied by the combination of [GJ21, Theorem 3.4]
and [GJ21, Conjecture 3.6]. Lemma 6.5 above suitably extends the former, while the
latter (for general (ξ, h)) is the main result of our subsequent work [Sel21]. The proof of
[GJ21, Theorem 3.3] also uses [GJ21, Theorem 4.2 and 6.1]; these follow from general
concentration of measure results on Gaussian space and easily extend to general ξ.

We remark that Lemma 6.5 is also the only property of pure even p-spin models used
in [GJW20, Theorem 2.4] to rule out approximate maximization (in a slightly weaker
sense) by constant degree polynomials. Therefore their result also applies under the
more general conditions of Proposition 1.12.

7 Proof of Lemmas 1.6, 1.8 and 2.9

We first recall several existing results.

Corollary 7.1 ([AMS21, Corollary 6.6]). For any γ ∈ L and any t ∈ [0, 1),

E
[
∂xΦγ(t,Xt)

2
]

=

∫ t

0

ξ′′(s)E
[(
∂xxΦγ(s,Xs)

)2]
ds.

Lemma 7.2 ([AMS21, Corollary 6.6 and Lemma 6.7]). For any γ ∈ L , the values

E
[
∂xΦγ(t,Xt)

2
]
, E

[
∂xxΦγ(t,Xt)

2
]

are continuous functions of t ∈ [0, 1).

Proposition 7.3 ([AMS21, Proposition 6.8]). Let γ ∈ L , and δ : [0, 1)→ R be such that
‖ξ′′δ‖TV [0,t] <∞ for all t ∈ [0, 1), ‖ξ′′δ‖1 <∞, and δ(t) = 0 for t ∈ (1−ε, 1], ε > 0. Further
assume that γ + sδ ≥ 0 for all s ∈ [0, s0) for some positive s0. Then

dP

ds
(γ + sδ)

∣∣∣∣
s=0+

=
1

2

∫ 1

0

ξ′′(t)δ(t)
(
E
[
∂xΦγ(t,Xt)

2
]
− t
)

dt. (7.1)

Lemma 7.4 ([AMS21, Lemma 6.9]). The support of γ ∈ Lq is a disjoint union of countably
many intervals S(γ) =

⋃
α∈A Iα, where Iα = (aα, bα) or Iα = [aα, bα), q ≤ aα < bα ≤ 1,

and A is countable.

Lemma 7.5. The function P = Pξ,Lh is strictly convex on L .

Proof. The proof is identical to [AC15, Theorem 2] and [CHL18, Lemma 5] which show
strict convexity on U .
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Throughout this section we let γ
Lq

∗ be the minimizer of P over Lq, assuming it exists.

Note that we will eventually show in Lemma 1.6 that γ
Lq

∗ = γL
∗ if either minimizer exists.

Lemma 7.6. Assume γ
Lq

∗ exists. Then

t ∈ supp
(
γ

Lq

∗
)
⇒ E

[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= t, (7.2)

t ≥ q ⇒ E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ t. (7.3)

Proof. We first show Equation (7.2). For q ≤ t1 < t2 < 1 we take δ(t) = γ
Lq

∗ (t)1t∈[t1,t2).

Clearly γ
Lq

∗ + sδ ∈ Lq. Since γ
Lq

∗ minimizes P(·) over Lq,

0 ≤ dP

ds

(
γ

Lq

∗ + sδ
)∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)γ
Lq

∗ (t)
(
E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t
)

dt.

Since t1, t2 are arbitrary and ξ′′(t) > 0 for t ∈ (0, 1), this implies

γ
Lq

∗ (t)
(
E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t
)

= 0

for almost every t ∈ [q, 1). Since γ
Lq

∗ (t) is right-continuous and E[∂xΦ
γ

Lq
∗

(t,Xt)
2] is

continuous by Lemma 7.2, it follows that γ
Lq

∗ (t)(E[∂xΦ
γ

Lq
∗

(t,Xt)
2] − t) = 0 for every

t ∈ [q, 1). This in turns implies E[∂xΦ
γ

Lq
∗

(t,Xt)
2] = t for every t ∈ S(γ

Lq

∗ ) by right-

continuity of γ
Lq

∗ . This can be extended to all t ∈ supp(γ
Lq

∗ ) by again using continuity of
t 7→ E[∂xΦ

γ
Lq
∗

(t,Xt)
2].

Next consider Eq. (7.3), where it suffices now to consider t ∈ [q, 1) \ supp(γ
Lq

∗ ).

By Lemma 7.4, [q, 1) \ supp(γ
Lq

∗ ) is a disjoint union of open intervals. Let J be such
an interval, and consider any [t1, t2] ⊆ J . Set δ(t) = I(t ∈ (t1, t2]), and notice that

γ
Lq

∗ + sδ ∈ Lq for s ≥ 0. By Proposition 7.3, we have

0 ≤ dP

ds
(γ + sδ)

∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)
(
E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t
)

dt.

Since t1, t2 are arbitrary, ξ′′(t) > 0 for t ∈ (0, 1) and t 7→ E[∂xΦ
γ

Lq
∗

(t,Xt)
2] is continuous,

this implies E[∂xΦ
γ

Lq
∗

(t,Xt)
2] ≥ t for all t ∈ J , and hence all t ∈ [q, 1) \ supp(γ

Lq

∗ ).

Corollary 7.7. Assume γ
Lq

∗ exists. Then

t ∈ supp
(
γ

Lq

∗
)
⇒ ξ′′(t)E

[
∂xxΦ

γ
Lq
∗

(t,Xt)
2
]

= 1.

Proof. By Lemma 7.4, supp(γ
Lq

∗ ) is a disjoint union of closed intervals with non-empty
interior. Let K be one such interval. Then, for any [t1, t2] ∈ K, Corollary 7.1 and
Lemma 7.6 imply

t2 − t1 = E
[
∂xΦ(t2, Xt2)2

]
− E

[
∂xΦ(t1, Xt1)2

]
=

∫ t2

t1

ξ′′(t)E
[
∂xxΦ(t,Xt)

2
]
dt.

Since t1, t2 are arbitrary, ξ′′(t)E[∂xxΦ(t,Xt)
2] = 1 for almost every t ∈ K. By Lemma 7.2

it follows that ξ′′(t)E[∂xxΦ(t,Xt)
2] = 1 for all t ∈ supp(γ

Lq

∗ ).
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Lemma 7.8 ([AMS21, Lemma 6.12]). Let γ ∈ L satisfy γ(t) = 0 for all t ∈ (t1, 1), where
t1 < 1. Then, for any t∗ ∈ (t1, 1), the probability distribution of Xt∗ has a density pt∗ with
respect to the Lebesgue measure. Further, for any t∗ ∈ (t1, 1) and any M ∈ R≥0, there
exists ε(t∗,M, γ) > 0 such that

inf
|x|≤M,t∈[t∗,1]

pt(x) ≥ ε(t∗,M, γ).

Lemma 7.9. If a minimizer γ
Lq

∗ exists, then supp(γ
Lq

∗ ) = [q, 1).

Proof. By Lemma 7.4, [q, 1) \ supp(γ
Lq

∗ ) is a countable union of disjoint intervals, open
in [q, 1). First assume that at least one of these intervals is of the form (t1, t2) with
q ≤ t1 < t2 < 1. By Lemma 7.6 and Corollary 7.7 we know that

E
[
∂xΦ

γ
Lq
∗

(ti, Xti)
2
]

= ti, ξ′′(ti)E
[
∂xxΦ

γ
Lq
∗

(ti, Xti)
2
]

= 1, i ∈ {1, 2}, (7.4)

E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ t ∀t ∈ (t1, t2). (7.5)

Further, for t ∈ (t1, t2), Φ
γ

Lq
∗

solves the PDE

∂tΦγLq
∗

(t, x) +
ξ′′(t)

2
∂xxΦ

γ
Lq
∗

(t, x) = 0

which is simply the heat equation up to a time change. We therefore obtain

Φ
γ

Lq
∗

(t, x) = EZ∼N(0,1)
[
Φ
γ

Lq
∗

(
t2, x+

√
ξ′(t2)− ξ′(t)Z

)]
, ∀t ∈ (t1, t2].

Differentiating this equation and using dominated convergence (recall that ∂xxΦ
γ

Lq
∗

(t2, x)

is bounded by Proposition 2.6), we obtain

∂xxΦ
γ

Lq
∗

(t, x) = EZ∼N(0,1)
[
∂xxΦ

γ
Lq
∗

(
t2, x+

√
ξ′(t2)− ξ′(t)Z

)]
.

Because dXt =
√
ξ′′(t) dBt, we can rewrite the last equation as

∂xxΦ
γ

Lq
∗

(t,Xt) = E
[
∂xxΦ

γ
Lq
∗

(t2, Xt2)|Xt

]
.

By Jensen’s inequality,

E
[
∂xxΦ

γ
Lq
∗

(t,Xt)
2
]
≤ E

[
∂xxΦ

γ
Lq
∗

(t2, Xt2)2
]

=
1

ξ′′(t2)
, (7.6)

where in the last step we used Eq. (7.4). Using Corollary 7.1 we get, for t ∈ [t1, t2]

E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= E
[
∂xΦ

γ
Lq
∗

(t1, Xt1)2
]

+

∫ t

t1

ξ′′(s)E
[
∂xxΦ

γ
Lq
∗

(s,Xs)
2
]

ds

≤ t1 +

∫ t

t1

ξ′′(s)

ξ′′(t2)
ds < t,

where in the last step we used the fact that t 7→ ξ′′(t) is increasing. The last equation is

in contradiction with Eq. (7.5), and therefore [q, 1)\ supp(γ
Lq

∗ ) is either empty or consists
of a single interval (t1, 1).

In order to complete the proof, we need to rule out the case [q, 1) \ supp(γ
Lq

∗ ) = (t1, 1).

Assume for sake of contradiction that indeed [q, 1) \ supp(γ
Lq

∗ ) = (t1, 1). For t ∈ (t1, 1), let
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r = r(t) = ξ′(1)−ξ′(t), and notice that r(t) is decreasing with r(t) = ξ′′(1)(1−t)+O((1−t)2)

as t→ 1. By solving the Parisi PDE in the interval (t1, 1), we find that for all t ∈ (t1, 1),

∂xΦ
γ

Lq
∗

(t, x) = EZ∼N(0,1)

[
sign

(
Z +

x√
r(t)

)]
and therefore

1− E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= E

[
Q

(
Xt√
r(t)

)]
,

Q(x) ≡ 1− EZ∼N(0,1)
[
sign(x+ Z)

]2
.

Note that 0 ≤ Q(x) ≤ 1 is continuous, with Q(0) = 1. Hence, there exists a numerical
constant δ0 ∈ (0, 1) such that Q(x) ≥ 1/2 for |x| ≤ δ0. Therefore, fixing t∗ ∈ (t1, 1), for
any t ∈ (t∗, 1)

1− E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ 1

2
P
[
|Xt| ≤ δ0

√
r(t)

]
(a)

≥ δ0ε(t∗, 1, γ)
√
r(t)

(b)

≥ C
√

1− t,

where (a) follows by Lemma 7.8 and (b) holds for some C = C(γ) > 0. We therefore
obtain E[∂xΦ

γ
Lq
∗

(t,Xt)
2] ≤ 1−C

√
1− t, which contradicts Lemma 7.6 for t close enough

to 1.

In the next lemma, we show that minimization of P over L subsumes minimization
over Lq. A priori, one might expect that tuning the value of q could lead to many different
minima.

Lemma 7.10. For γ, γ̂ ∈ L , define the function γ(ε) ∈ L by:

γ(ε)(t) =

{
γ(t), 0 ≤ t < 1− ε,
γ̂(t), 1− ε ≤ t < 1.

Then limε→0 P(γ(ε)) = P(γ).

Proof. Using [AMS21, Proposition 6.1(c)] and continuity, we have ‖P(γ) − P(γ(ε))‖ ≤
C‖γ − γ(ε)‖ for a constant C depending only on ξ. The right-hand side tends to zero as
ε→ 0 by the definition of L .

Lemma 7.11. Suppose γ
Lq

∗ exists. Then γL
∗ = γ

Lq

∗ .

Proof. Let f(t) = E[∂xΦ
γ

Lq
∗

(t,Xt)
2]. First we show that f(t) ≥ t for all 0 ≤ t ≤ q. Recall

that Xt is simply a time-changed Brownian motion on 0 ≤ t ≤ q while Φ
γ

Lq
∗

solves

the time-changed heat equation on the same time interval, therefore ∂xxΦ
γ

Lq
∗

(t,Xt) =

Et[∂xxΦ
γ

Lq
∗

(q,Xq)]. By Jensen’s inequality, it follows that for all 0 ≤ t ≤ q,

E
[
∂xxΦ

γ
Lq
∗

(t,Xt)
2
]
≤ E

[
∂xxΦ

γ
Lq
∗

(q,Xq)
2
]

=
1

ξ′′(q)

≤ 1

ξ′′(t)
.

In the last line we used that ξ′′ is increasing as ξ is a power series with non-negative
coefficients. Next, from Lemma 7.6 and Lemma 7.9 it follows that f(q) = q. In light of
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Corollary 7.1, we showed just above that f ′(t) ≤ 1 for t ≤ q. It now follows that f(t) ≥ t
for all 0 ≤ t ≤ q.

Next, Proposition 7.3 combined with Corollary 7.1 and Lemma 7.6 imply that d
dsP((1−

s)γ
Lq

∗ + sγ)|s=0+ ≥ 0 for any γ ∈ L agreeing with γ
Lq

∗ on [1− ε, 1) for some ε > 0. Using
convexity of P as guaranteed by Lemma 7.5, this implies that

P
(
γ

Lq

∗
)
≤ P(γ)

for any such γ. Assuming for sake of contradiction that some γ∗ ∈ L satisfies P(γ∗) <

P(γ
Lq

∗ ), define γ(ε) ∈ L by

γ(ε)(t) =

{
γ∗(t), 0 ≤ t < 1− ε,
γ

Lq

∗ , 1− ε ≤ t < 1.

Then Lemma 7.10 implies that limε→0 P(γ(ε)) = P(γ∗) < P(γ
Lq

∗ ). This contradicts the
above for small enough ε, completing the proof.

We now restate and prove Lemmas 1.6 and 1.8.

Lemma 7.12. For γ∗ ∈ L and q = inf(supp(γ∗)), the following are equivalent:

1. γ∗ is optimizable.

2. P(γ∗) = infγ∈L P(γ).

3. P(γ∗) = infγ∈Lq P(γ).

Moreover if a minimizer exists in either variational problem just above, then it is unique.

Proof. Lemma 7.5 immediately implies uniqueness of minimizers. The second statement
immediately implies the third, while Lemma 7.11 provides the converse result. To show
that the first statement implies the third, we observe that Proposition 7.3 immediately
yields

d

ds
P
(
(1− s)γ∗ + sγ

)∣∣∣∣
s=0+

= 0

for any γ ∈ Lq when γ∗ is optimizable; this implies the third statement by again invoking
Lemma 7.5. It only remains to show that if P(γ∗) = infγ∈L P(γ), then γ∗ is q-optimizable,
which follows from Lemmas 7.6 and 7.9.

Lemma 7.13. If γU
∗ strictly increases on [q, 1) for q = inf(supp(γU

∗ )), then no overlap
gap holds, i.e. γU

∗ is optimizable.

Proof. Fix q < t1 < t2 < 1 and define δ(t) = [γU
∗ (t1) − γU

∗ (t)]I(t1,t2)(t). It is easy to see
that this satisfies the assumptions of Proposition 7.3 with s0 = 1. Letting γs = γU

∗ + sδ,

dP

ds

(
γs
)∣∣∣∣
s=0+

= −1

2

∫ t2

t1

ξ′′(t)
(
γU
∗ (t)− γU

∗ (t1)
) (
E
[
∂xΦγU

∗
(t,Xt)

2
]
− t
)

dt.

On the other hand, γs ∈ U for s ∈ [0, 1] (since γU
∗ is strictly increasing on [q, 1)), so∫ t2

t1

ξ′′(t)
(
γU
∗ (t)− γU

∗ (t1)
) (
E
[
∂xΦγU

∗
(t,Xt)

2
]
− t
)

dt ≤ 0,

for all t1 < t2. Since γU
∗ (t)− γU

∗ (t1) > 0 strictly for all t > t1, this implies

E
[
∂xΦγU

∗
(t,Xt)

2
]
≤ t
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for almost every t, and therefore for every t. The inequality

E
[
∂xΦγU

∗
(t,Xt)

2
]
≥ t

is proved in the same way using δ(t) = [γU
∗ (t2)− γU

∗ (t)]I(t1,t2)(t).

Finally we turn to Lemma 2.9.

Proof of Lemma 2.9. First, (2.7) is clear given Corollary 7.1. To establish (2.8), we first
show that

d
(
∂xxΦγ∗(t,Xt)

)
= −ξ′′(t)γ∗(t)

(
∂xxΦγ∗(t,Xt)

)2
dt+ ∂xxxΦγ∗(t,Xt)

√
ξ′′(t)dBt. (7.7)

Indeed (7.7) follows by using Ito’s formula to derive

d
(
∂xxΦγ∗(t,Xt)

)
=

(
∂txxΦγ∗(t,Xt) + ∂xΦγ∗(t,Xt)∂xxxΦγ∗(t,Xt)ξ

′′(t)γ∗(t) +
ξ′′(t)∂xxxxΦγ∗(t,Xt)

2

)
dt

+ ∂xxxΦγ∗(t,Xt)
√
ξ′′(t)dBt

and taking the second derivative with respect to x of the Parisi PDE to obtain

0 = ∂xx

(
∂tΦγ∗(t, x) +

ξ′′(t)

2

(
∂xxΦγ∗(t, x) + γ∗(t)

(
∂xΦγ∗(t, x)

)2))
= ∂txxΦγ∗(t, x) +

ξ′′(t)∂xxxxΦγ∗(t, x)

2
+ ξ′′(t)γ∗(t)

((
∂xxΦγ∗(t, x)

)2
+ ∂xΦγ∗(t, x)∂xxxΦγ∗(t, x)

)
.

In particular (7.7) implies that for all t ∈ [0, 1),

d

dt
E
[
∂xxΦγ∗(t, x)

]
= −ξ′′(t)γ∗(t)E

[(
∂xxΦγ∗(t, x)

)2]
= −γ∗(t).

Therefore to show (2.8) it suffices to show limt→1E[∂xxΦγ∗(t,Xt)] ≥ 0, but this is clear
by convexity of Φγ∗(t, ·).

8 Incremental AMP proofs

We will prove Lemma 8.3 which generalizes Lemma 3.6 to the setting of branching
AMP and describes the limiting Gaussian processes Nδ

`,a, Z
δ
`,a. We recall the setup of

Section 4 and in particular continue to use the value qB ∈ (q, 1) to define the time `δqB
at which Zδ`δqB ,1

= Zδ`δqB ,2
last holds. For the branching setting we slightly generalize the

filtration (3.13) to
Fδ` = σ

((
Zδk,a, N

δ
k,a

)
0≤k≤`,a∈{1,2}

)
.

Crucially note that we restrict here to k ≥ 0, i.e. we do not include the preparatory
iterates with negative index. We remark that if we consider all the IAMP iterates
(Zδ`,a, N

δ
`,a) together in the linear order given by (`, a)→ 2`+ a, then these are iterates of

a standard AMP algorithm since each iterate depends only on the previous ones. (This is
because in (2.4) the last expectation is zero when f` does not depend on Zj , which is the
case if f` and Zj correspond to different values of a after the two branches separate.)
Moreover it is easy to see that the Onsager correction terms are not affected by this
rewriting. Therefore we may continue to use state evolution in the natural way even
though we do not think of the iterates as actually being totally ordered.
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Lemma 8.1. In branching IAMP, Fδ` is jointly independent of the iterates (Z−j)J`<j≤K
for

J` ≡ max
(
{`} ∪

{
ki,a + `− `δqi : `δqi ≤ `, a ∈ {1, 2}

})
.

Proof. We proceed by induction over `, the base case ` = 0 following from Proposition 2.4.
Because the random variables Z`k,a form a Gaussian process it suffices to verify that

E
[
Zδ`,aZ

−j] = 0

holds whenever j > J`. By state evolution,

E
[
Zδ`,aZ

−j] = ξ′
([
Nδ
`−1,aZ

−j−1
])
.

By definition Nδ
`−1,a is Fδ`−1-measurable. Since ξ′(0) = 0 it suffices to show that Fδ`−1 is

independent of Z−j−1. By the inductive hypothesis, this holds if j + 1 > J`−1. This in
turn follows from the easy-to-verify fact that J` − 1 ≥ J`−1, completing the proof.

Corollary 8.2. Let Gδqj ,a be the state evolution limit of g(qj ,a) for each (j, a) ∈ [m]× [2].

Then the law of (Gδqi,1, G
δ
qi,2) conditioned on Fδ`δqi−1 is N(0, I2).

Proof. Since ki,1 6= ki,2 it follows from Proposition 2.4 that (Gδqi,1, G
δ
qi,2) ∼ N(0, I2) holds

as an unconditional law. Since we chose the values ki,a such that ki,a−`δqi > kj,a′−`δqj > 0

for any i > j and a, a′ ∈ {1, 2}, it follows that ki,a > J`δqi−1. Applying Lemma 8.1 now
concludes the proof.

Lemma 8.3. The sequences (Zδ`,a, Z
δ
`+1,a, . . . ) and (Nδ

`,a, N
δ
`+1,a, . . . ) satisfy for ` ≥ `:

E
[(
Zδ`+1,a − Zδ`,a

)
Zδj,a

]
= 0, for all `+ 1 ≤ j ≤ ` (8.1)

E
[(
Zδ`+1,a − Zδ`,a

)2|Fδ` ] = ξ′
(
qδ`+1

)
− ξ′

(
qδ`
)

(8.2)

E
[(
Zδ`+1,1 − Zδ`,1

)(
Zδ`+1,2 − Zδ`,2

)
|Fδ`
]

=
(
ξ′
(
qδ`+1

)
− ξ′

(
qδ`
))
· 1`<`δqB (8.3)

E
[(
Zδ`,a

)2]
= ξ′

(
qδ`
)

(8.4)

E
[(
Nδ
`+1,a −Nδ

`,a

)
|Fδ`
]

= 0 (8.5)

E
[(
Nδ
`+1,a −Nδ

`,a

)2|Fδ` ] = δ (8.6)

E
[(
Nδ
`+1,1 −Nδ

`,1

)(
Nδ
`+1,2 −Nδ

`,2

)
|Fδ`
]

= δ · 1`<`δqB (8.7)

E
[(
Nδ
`,a

)2]
= qδ`+1. (8.8)

Proof. We recall that (Zδ`,a)`≥`,a∈{1,2} is a Gaussian process, which means we can ignore

the conditioning on Fδ` in proving Equation (8.2). First we check that Equations (8.4)
and (8.8) hold for ` = `. For Equation (8.8), by definition of δ:

E
[(
Nδ
`,a

)2]
= (1 + ε0)2E

[(
M `
)2]

= (1 + ε0)2q = q + δ = qδ1.

For Equation (8.4),
E
[(
Zδ`,a

)2]
= ξ′

(
E
[(
M `−1

)2])
= ξ′(q).

Observe now that if Equations (8.1), (8.2), (8.5), (8.6) hold for ` ≤ ` ≤ k then so do
Equations (8.4) and (8.8), as

E
[(
Nδ
`+1,a

)2]
= E

[(
Nδ
`+1,a −Nδ

`,a

)2]
+ 2 · E

[(
Nδ
`+1,a −Nδ

`,a

)
Nδ
`,a

]
+ E

[(
Nδ
`,a

)2]
and similarly for E[(Zδ`+1,a)2]. Therefore to show the six identities (8.1), (8.2), (8.5), (8.6),
(8.4) and (8.8) it suffices to check the base case ` = ` for Equations (8.1), (8.2), (8.5), (8.6)
and to perform an inductive step to show these four identities for ` = k + 1, assuming
all six of these equations as inductive hypotheses for ` ≤ k. We turn to doing this, and
finally show Equations (8.3), 8.7 at the end.
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Base case for Equations (8.1), (8.2), (8.5), (8.6) Note that here, none of the pertur-
bations g(qi,a) appear yet. We begin with Equation (8.1):

E
[(
Zδ`+1,a − Zδ`,a

)
Zδ`,a

]
= ξ′

(
E
[
Nδ
`,aM

`−1
])
− ξ′

(
E
[
M `−1M `−1

])
= ξ′

(
(1 + ε0)E

[
M `M `−1

])
− ξ′(q)

= ξ′
(
(1 + ε0)φ(a`−1)

)
− ξ′(q)

= ξ′(q)− ξ′(q)
= 0.

This means E[Zδ`+1,a|Zδ`,a] = Zδ`,a. Hence

E
[(
Zδ`+2,a − Zδ`+1,a

)
Zδ`+1,a

]
= ξ′

(
E
[
Nδ
`+1N

δ
`,a

])
− ξ′

(
E
[
Nδ
`,aN

δ
`,a

])
.

To see that the above expression vanishes, it suffices to show that

E
[(
Nδ
`+1,a −Nδ

`,a

)
Nδ
`,a

]
= 0.

This follows since we just showed E[Zδ`+1,a|Zδ`,a] = Zδ`,a and we have

E
[(
Nδ
`+1,a −Nδ

`,a

)
Nδ
`,a

]
= E

[
uδ`,a

(
Xδ
`,a

)(
Zδ`+1,a − Zδ`,a

)]
= E

[
uδ`,a

(
Zδ`,a

)(
Zδ`+1,a − Zδ`,a

)]
Next we verify the base case for Equation (8.2). Using the base case of Equation (8.1)

in the first step we compute:

E
[(
Zδ`+1,a − Zδ`,a

)2]
= E

[(
Zδ`+1,a

)2]− E[(Zδ`,a)2]
= ξ′

(
E
[(
Nδ
`,a

)2])− ξ′(q)
= ξ′

(
(1 + ε0)2q

)
− ξ′(q)

= ξ′(q + δ)− ξ′(q)
= ξ′

(
qδ`+1

)
− ξ′(q).

Continuing, we verify the base case for Equation (8.5). First note that

E
[(
Nδ
`+1,a −Nδ

`,a

)
|Fδ`
]

= E
[
uδ`
(
Xδ
`,a

)(
Zδ`+1,a − Zδ`,a

)
| Fδ`

]
= 0.

The last line holds because Xδ
`,a is Fδ` -measurable and E[Zδ`+1,a−Zδ`,a|Fδ` ] = 0 as deduced

above. Finally for Equation (8.6) using the martingale property again we obtain:

E
[(
Nδ
`+1,a −Nδ

`,a

)2]
= E

[(
uδ`
(
Xδ
`,a

))2(
Zδ`+1,a − Zδ`,a

)2]
= E

[
δ

ξ′(qδ`+1,a)− ξ′(qδ` )
(
ξ′
(
qδ`+1

)
− ξ′

(
qδ`
))]

= δ.

Here the second line follows from the definition of uδ` , and we can multiply the two
expectations because E[(Zδ`+1,a − Zδ`,a)2|Fδ`,a] is constant while the other term is Fδ`,a
measurable.

Inductive step We now induct, assuming all 6 identities (8.1), (8.2), (8.5), (8.6), (8.4)
and (8.8) up to ` and showing Equations (8.1), (8.2), (8.5), (8.6) for `+ 1. We begin with
Equation (8.1). Let `+ 1 ≤ j ≤ `. State evolution implies

E
[(
Zδ`+1,a − Zδ`,a

)
Zδj,a

]
= ξ′

(
E
[
Nδ
`,aN

δ
j−1,a

])
− ξ′

(
E
[
Nδ
`−1,aN

δ
j−1,a

])
.
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To show this equals 0 we must show

E
[
Nδ
`,aN

δ
j−1,a

]
= E

[
Nδ
`−1,aN

δ
j−1,a

]
.

When ` = `δqi for some i ∈ [m] this follows from Corollary 8.2. Assuming ` 6= `δqi for all i,
the difference between the left and right sides is

E
[
uδ`−1

(
Xδ
`−1,a

)(
Zδ`,a − Zδ`−1,a

)
Nδ
j−1,a

]
.

Since Nδ
j−1,a is Fδ`−1 measurable and E[Zδ`,a|Fδ`−1] = Zδ`−1,a holds by inductive hypothesis,

we conclude the inductive step for Equation (8.1).
We continue to Equation (8.2). Using Equation (8.1) just proven in the first step we

get

E
[(
Zδ`+1,a − Zδ`,a

)2]
= E

[(
Zδ`+1,a

)2 − (Zδ`,a)2]
= ξ′

(
E
[
Nδ
`,aN

δ
`,a

])
− ξ′

(
E
[
Nδ
`−1,aN

δ
`−1,a

])
= ξ′

(
qδ`+1

)
− ξ′

(
qδ`
)

Next we show Equation (8.5) continues to hold. If `+ 1 = `δqi for some i ∈ [m] again
follows from Corollary 8.2. When ` + 1 6= `δqi for all i, it follows from the definition of
the sequence Nδ

`,a and the just proven fact that (Zδ`,a)`≥`+1 forms a martingale sequence.

Finally we show Equation (8.6) continues to hold inductively. Again for ` + 1 = `δqi it
follows from Corollary 8.2, and otherwise by definition

E
[(
uδ`
)2]

=
δ

ξ′(qδ` )− ξ′(qδ`−1)
.

Moreover what we showed before implies E[(Zδ`+1,a − Zδ`,a)2|Fδ` ] = ξ′(qδ` ) − ξ′(qδ`−1).
Applying these observations to the identity

E
[(
Nδ
`+1,a −Nδ

`

)2|F`] =
(
uδ`
)2
E
[(
Zδ`+1,a − Zδ`,a

)2]
implies Equation (8.6) continues to hold.

Equations (8.3) and (8.7) Finally we consider (8.3) and (8.7). For ` < `δqi they follow
directly from (8.2), (8.6). For ` = `δqi , (8.7) is trivial while (8.3) immediately follows
from state evolution. For ` > `δqi , (8.7) follows from the inductive hypothesis and the
computation

E
[(
Nδ
`+1,1 −Nδ

`,1

)(
Nδ
`+1,2 −Nδ

`,2

)
|Fδ`
]

=
(
uδ`
)2
E
[(
Zδ`+1,1 − Zδ`,1

)(
Zδ`+1,2 − Zδ`,2

)
|Fδ`
]

= 0.

Finally for ` > `δqi , (8.3) follows from the expansion

E
[(
Zδ`+1,1 − Zδ`,1

)(
Zδ`+1,2 − Zδ`,2

)]
= ξ′

(
E
[
Nδ
`,1N

δ
`,2

])
− ξ′

(
E
[
Nδ
`−1,1N

δ
`,2

])
− ξ′

(
E
[
Nδ
`−1,1N

δ
`,2

])
+ ξ′

(
E
[
Nδ
`−1,1N

δ
`−1,2

])
and the fact that all 4 terms on the right hand side are equal thanks to (8.5), (8.7).

8.1 Diffusive scaling limit

We begin with the following slight generalization of Lemma 3.7 which allows for the
additional perturbation steps of branching IAMP but still considers only a single sample
path.
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Lemma 8.4. Fix q̄ ∈ (q, 1) and an index a. There exists a coupling between the families
of triples {(Zδ`,a, Xδ

`,a, N
δ
`,a)}`≥0 and {(Zt, Xt, Nt)}t≥0 such that the following holds for a

constant C > 0. For large enough `, and every ` ≥ ` with q` ≤ q̄,

max
`≤j≤`

E
[(
Xδ
j,a −Xqj

)2] ≤ Cδ, (8.9)

max
`≤j≤`

E
[(
Nδ
j,a −Nqj

)2] ≤ Cδ. (8.10)

Proof. We prove the scaling limits for Xδ
` and Nδ

` separately, inducting over ` in each
proof. We suppress the index a as it is irrevelant.

Scaling limit for Xδ
` We begin by checking the claim for ` = `. Recalling that∫ q`+1

0

√
ξ′′(t)dBt = Z`+1, we have

E
[(
Xδ
` −Xq

)2]
= E

[(
Zδ` −

∫ q`+1

0

√
ξ′′(t)dBt

)2]
≤ 2E

[(
Zδ` − Zδ`+1

)2]
+ 2E

[(∫ q`+1

q

√
ξ′′(t)dBt

)2]
= 4
(
ξ′(q`+1)− ξ′(q)

)
≤ Cδ.

We continue using a standard self-bounding argument. Let ` ≥ `+ 1 such that q` ≤ q̄.
Define ∆X

` = Xδ
` −Xq` . Then

∆X
` −∆X

`−1 =

∫ qδ`

qδ`−1

(
v
(
qδ`−1;Xδ

`

)
− v(t;Xt)

)
dt+ Zδ` − Zδ`−1 −

∫ qδ`

qδ`−1

√
ξ′′(s)dBs

=

∫ qδ`

qδ`−1

(
v
(
qδ`−1;Xδ

`

)
− v(t;Xt)

)
dt

=

∫ qδ`

qδ`−1

(
v
(
qδ`−1;Xδ

`

)
− v
(
qδ`−1;Xt

))
dt+

∫ qδ`

qδ`−1

(
v
(
qδ`−1;Xt

)
− v(t;Xt)

)
dt.

The first term just above is at most C
∫ qδj
qδj−1

|Xδ
j − Xt|dt since v is Lipschitz in space

uniformly for t ∈ [0, 1]. For the second term we estimate

∑̀
k=`+1

∫ qδk

qδk−1

∣∣v(qδk−1;Xt

)
− v(t;Xt)

∣∣dt
≤
∑̀
k=`+1

∫ qδk

qδk−1

{∣∣v(qδk−1;Xt

)
− v(t;Xt)

∣∣+
∣∣v(t;Xt)− v

(
qδk;Xt

)∣∣}dt

≤ δ
∑̀
k=`+1

sup
qδk−1≤t≤q

δ
k

{∣∣v(qδk−1;Xt

)
− v(t;Xt)

∣∣+
∣∣v(t;Xt)− v

(
qδk;Xt

)∣∣}
≤ δ sup

t1,...,tk

∑̀
k=`+1

{∣∣v(qδk−1;Xtk

)
− v(tk;Xtk)

∣∣+
∣∣v(tk;Xtk)− v

(
qδk;Xtk

)∣∣}
≤ Cδ,
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where the last inequality follows from the strong total variation of v. Combining the
bounds and summing over j, we find

|∆X
` | ≤ |∆X

` |+
∑̀
j=`+1

|∆X
j −∆X

j−1| ≤ C
∑̀
j=`+1

∫ qδj

qδj−1

|Xδ
j −Xt|dt+ 2Cδ.

Squaring and taking expectations,

E
[(

∆X
`

)2] ≤ 2C2E

( ∑̀
j=`+1

∫ qδj

qδj−1

|Xδ
j −Xt|dt

)2

+ 10C2δ2

≤ 2C2(`− `)δ
∑̀
j=`+1

∫ qδj

qδj−1

E|Xδ
j −Xt|2dt+ 10C2δ2.

Furthermore, E|Xδ
j −Xt|2 ≤ 2E|Xδ

j −Xqδj
|2 +2E|Xqδj

−Xt|2. It is clear that E|Xt−Xs|2 ≤
C|t− s| for all t, s, as ξ′′ is bounded on [0, 1]. Therefore

E
[(

∆X
`

)2] ≤ 4C2(`− `)δ2
∑̀
j=`+1

E
[(

∆X
j

)2]
+ 4C3(`− `)δ

∑̀
j=`+1

∫ qδj

qδj−1

δdt+ 10C2δ2.

The middle term is proportional to (` − `)2δ3. Using (` − `)δ ≤ 1 we obtain that for δ
smaller than an absolute constant, it holds that

E
[(

∆X
`

)2] ≤ Cδ `−1∑
j=`+1

E
[(

∆X
j

)2]
+ Cδ,

for a different absolute constant C. This implies E[(∆X
` )2] ≤ Cδ as desired.

Scaling limit for Nδ
` Again we begin by checking that ` = `. We compute:

E
[(
Nδ
` −Nq

)2]
= E

[(
(1 + ε0)∂xΦγ∗(q,X`)− ∂xΦγ∗(q,Xq)

)2]
≤ 2ε2

0E
[(
∂xΦγ∗(q,X`)

)2]
+ 2E

[(
∂xΦγ∗(q,X`)− ∂xΦγ∗(q,Xq)

)2]
= Cε2

0 + CE
[(
Xδ
` −Xq

)2]
≤ Cδ.

Here we have used again the inequality (x− z)2 ≤ 2(x− y)2 + 2(y − z)2 and the fact that
derivatives of Φγ∗ are bounded, as well as ε2

0 ≤ δ/q. At the end we use the bound on
E[(Xδ

` −Xq)
2] shown in the previous part of this proof. Next we turn to ` ≥ ` + 1. We

have(
Nδ
j+1 −Nqδj+1

)
−
(
Nδ
j −Nqδj

)
= uδj

(
Xδ
j

)(
Zδj+1 − Zδj

)
−
∫ qδj+1

qδj

√
ξ′′(t)u(t,Xt)dBt

=

∫ qδj+1

qδj

√
ξ′′(t)

(
uδj
(
Xδ
j

)
− u(t,Xt)

)
dBt,

and so

E
[(
Nδ
` −Nqδ`

)2] ≤ 2 · E
[(
Nδ
` −Nq

)2]
+2 · E

[(
`−1∑
j=`

∫ qδj+1

qδj

√
ξ′′(t)

(
uδj
(
Xδ
j

)
− u(t,Xt)

)
dBt

)2]

≤ 2Cδ + 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
uδj
(
Xδ
j

)
− u(t,Xt)

)2]
ξ′′(t)dt. (8.11)
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Recall that uδj(x) = u(qδj ;x)/Σδj for j ≥ 1 where Σδj is given by

(
Σδj
)2

=
ξ′(qδj+1)− ξ′(qδj )

δ
E
[
u
(
qδj ;X

δ
j

)2]
.

We first show the bound ∣∣(Σδj)2 − 1
∣∣ ≤ C√δ (8.12)

for δ small enough, which is of independent interest. Since u is bounded and ξ′′′ is
bounded on [0, 1], we have∣∣(Σδj)2 − ξ′′(qδj )E[u(qδj ;Xδ

j

)2]∣∣ ≤ Cδ.
Observe now that

E
[
|Xδ

j −Xqδj
|
]
≤
√
δ +

E[|Xδ
j −Xqδj

|2]
√
δ

≤ C
√
δ.

Since u is Lipschitz in space and bounded, this implies∣∣(Σδj)2 − ξ′′(qδj )E[u(qδj ;Xqδj

)2]∣∣ ≤ C√δ.
Since E[N2

t ] = t for all t ∈ [0, 1] and t 7→ u(t,Xt) is a.s. continuous, Lebesgue’s differenti-
ation theorem implies that for all t ∈ [0, 1],

ξ′′(t)E
[
u(t;Xt)

2
]

= 1,

and hence |(Σδj)2 − 1| ≤ C
√
δ for δ smaller than some absolute constant. This implies the

bound |uδj(Xδ
j )− u(qδj ;X

δ
j )| ≤ C| 1

Σδj
− 1| ≤ C

√
δ. Now, going back to Eq. (8.11), we have

E
[(
Nδ
` −Nqδ`

)2] ≤ 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
uδj
(
Xδ
j

)
− u
(
qδj ;X

δ
j

))2]
ξ′′(t)dt

+ 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u
(
qδj ;X

δ
j

)
− u(t,Xt)

)2]
ξ′′(t)dt.

From what we just established the first term is at most C(`− `)δ2 ≤ Cδ. To estimate the
second term we compute:

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u
(
qδj ;X

δ
j

)
− u(t,Xt)

)2]
ξ′′(t)dt

≤ C
`−1∑
j=`

∫ qδj+1

qδj

E
[(
u
(
qδj ;X

δ
j

)
− u
(
qδj , Xqδj

))2]
dt

+ C

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u
(
qδj ;Xqδj

)
− u
(
qδj , Xt

))2]
dt

+ C

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u
(
qδj ;Xt

)
− u(t,Xt)

)2]
dt

= I + II + III.

Since u is Lipschitz in space, we obtain I ≤ C(` − `)δ2. From E[|Xt −Xs|2] ≤ C|t − s|,
we obtain II ≤ C(` − `)δ2. Finally, since u is Lipschitz in time uniformly in space and
(`− `)δ ≤ 1, it follows that III ≤ Cδ. Altogether we obtain

E
[(
Nδ
` −Nqδ`

)2] ≤ Cδ
concluding the proof.
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We now extend Lemmas 3.7, 8.4 to describe the joint scaling limit of multiple branches,
which become independent at the branching time. Let (Bat )t∈[0,1],a∈{1,2} be standard
Brownian motions with B1

t = B2
t for t ≤ qB and with independent increments after

time qB. Couple Bat with (Zδ`,a)`≥0 via

Zδj,a =

∫ qδj

0

√
ξ′′(t)dBat

and natural filtration (Ft)t∈[0,1] with Ft = σ((B1
s , B

2
s )s≤t). We consider for a ∈ {1, 2} the

SDE
dXa

t = γ∗(t)∂xΦγ∗
(
t,Xa

t

)
dt+

√
ξ′′(t)dBat

with initial condition Xa
0 = 0, and define

Na
t ≡ ∂xΦγ∗

(
q,Xa

q

)
+

∫ t

q

√
ξ′′(s)u

(
s,Xa

s

)
dBas = ∂xΦγ∗

(
t,Xa

t

)
,

Zat ≡
∫ t

0

√
ξ′′(s)dBas .

Lemma 8.5. Fix q̄ ∈ (q, 1). There exists a coupling between the families of triples
{(Zδ`,a, Xδ

`,a, N
δ
`,a)}`≥0,a∈{1,2} and {(Zat , Xa

t , N
a
t )}t≥0,a∈{1,2} such that the following holds.

For some δ0 > 0 and constant C > 0, for every δ ≤ δ0 and ` ≥ ` with q` ≤ q̄ we have

max
`≤j≤`

E
[(
Xδ
j,a −Xa

qj

)2] ≤ Cδ,
max
`≤j≤`

E
[(
Nδ
j,a −Na

qj

)2] ≤ Cδ.
Proof. We generate the desired “grand coupling” by starting with (B1

t , B
2
t ) as above,

generating (Z1
t , Z

2
t ), and then setting Zδj,a = Za

qδj
for each a ∈ {1, 2} and j ≤ ` as

in the coupling of Lemma 8.4. It follows from Lemma 8.3 that this results in the
correct law for (Zδj,a)j∈N,a∈{1,2}. Now, all 3 continuous-time functions in the coupling
of Lemma 8.4 are determined almost surely by Zt. Furthermore all 3 discrete-time
functions are determined almost surely by the sequence Zδj . Therefore the coupling
just constructed between {Zδ`,a}`≥0,a∈{1,2} and {Zat }t≥0,a∈{1,2} automatically extends to

a coupling of {(Zδ`,a, Xδ
`,a, N

δ
`,a)}`≥0,a∈{1,2} and {(Zat , Xa

t , N
a
t )}t≥0,a∈{1,2}. Since the two

a-marginals of the coupling just constructed both agree with that of Lemma 8.4, the
claimed approximation estimates carry over as well, concluding the proof.

8.2 The energy gain of incremental AMP

Here we prove Lemma 3.9, stated for the branching case.

Lemma 8.6.

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (n`,a)−HN (n`,a)

N
=

∫ 1

q

ξ′′(t)E
[
u(t,Xt)

]
dt. (8.13)

Proof. We give the main part of the proof for the ordinary (non-branching) version of
the algorithm and explain at the end why the same arguments apply in the branching
case. Recall that δ = δ(`) → 0 as ` → ∞, which we will implicitly use throughout the

proof. Observe also that 〈h,n` −n`〉N ' 0 because the values (Nδ
` )`≥` form a martingale

sequence. Therefore it suffices to compute the in-probability limit of H̃N (n`)−H̃N (n`)
N . The

key is to write

H̃N (n`)− H̃N (n`)

N
=

`−1∑
`=`

H̃N (n`+1)− H̃N (n`)

N
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and use a Taylor series approximation of the summand. In particular for F ∈ C3(R),
applying Taylor’s approximation theorem twice yields

F (1)− F (0) = aF ′(0) +
1

2
F ′′(0) +O

(
sup
a∈[0,1]

|F ′′′(a)|
)

= F ′(0) +
1

2

(
F ′(a)− F ′(0)

)
+O

(
sup
a∈[0,1]

|F ′′′(a)|
)

=
1

2

(
F ′(1) + F ′(0)

)
+O

(
sup
a∈[0,1]

|F ′′′(a)|
)
.

Assuming sup`
‖n`‖√
N
≤ 1 + η, which holds with high probability for any η > 0 if ` is

large enough, we apply this estimate with F (a) = H̃N ((1−a)n` +an`+1). Recalling (2.2),
the result is:∣∣∣∣H̃N

(
n`+1

)
− H̃N

(
n`
)
− 1

2

〈
∇H̃N

(
n`
)

+∇H̃N

(
n`+1

)
,n`+1 − n`

〉∣∣∣∣
≤ O

(
sup

‖v‖≤(1+η)
√
N

∥∥∇3H̃N (v)
∥∥

op

)
‖n`+1 − n`‖3.

Proposition 2.1 implies that

sup
|v|≤(1+η)

√
N

∥∥∇3H̃N (v)
∥∥

op ≤ O(N−1/2

with high probability. On the other hand p-limN→∞ ‖n`+1 − n`‖ =
√
δN for each ` ≤ ` ≤

`− 1. Summing and recalling that `− ` ≤ δ−1 yields the high-probability estimate

`−1∑
`=`

∣∣∣∣H̃N

(
n`+1

)
− H̃N

(
n`
)
− 1

2

〈
∇H̃N

(
n`
)

+∇H̃N

(
n`+1

)
,n`+1 − n`

〉∣∣∣∣
≤

`−1∑
`=`

O
(

sup
‖x‖≤(1+η)

√
N

∥∥∇3H̃N (x)
∥∥

op

)
· sup

`

∥∥n`+1 − n`
∥∥3

≤ O(N
√
δ).

Because `→∞ implies δ → 0 this term vanishes in the limit, and it remains to show

lim
q̄→1

lim
`→∞

p-lim
N→∞

`−1∑
`=`

1

2

〈
∇H̃N

(
n`
)

+∇H̃N

(
n`+1

)
,n`+1 − n`

〉
N

=

∫ 1

q

ξ′′(t)E
[
u(t,Xt)

]
dt.

Next, observe by (3.11) that:

∇H̃N

(
n`
)

= z`+1 +
∑̀
j=0

d`,jn
j−1. (8.14)

Passing to the limiting Gaussian process (Zδk)k∈Z+ via state evolution, and ignoring for
now the constant number of branching updates,

p-lim
N→∞

〈
∇H̃N

(
n`
)
,n`+1 − n`

〉
N

= E
[
Zδ`+1

(
Nδ
`+1 −Nδ

`

)]
+
∑̀
j=0

d`,jE
[
Nδ
j−1

(
Nδ
`+1 −Nδ

`

)]
,

p-lim
N→∞

〈
∇H̃N

(
n`+1

)
,n`+1 − n`

〉
N

= E
[
Zδ`+2

(
Nδ
`+1 −Nδ

`

)]
+

`+1∑
j=0

d`+1,jE
[
Nδ
j−1

(
Nδ
`+1−Nδ

`

)]
.
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As (Nδ
k )k≥Z+ is a martingale process, it follows that the right-hand expectations all

vanish. Similarly it holds that

E
[
Zδ`+2

(
Nδ
`+1 −Nδ

`

)]
= E

[
Zδ`+1

(
Nδ
`+1 −Nδ

`

)]
E
[
Zδ`
(
Nδ
`+1 −Nδ

`

)]
= 0.

Rewriting and using Lemma 8.3 in the last step,

p-lim
N→∞

1

2

〈
∇H̃N

(
n`
)

+∇H̃N

(
n`+1

)
,n`+1 − n`

〉
N

= E
[(
Zδ`+1 − Zδ`

)(
Nδ
`+1 −Nδ

`

)]
= E

[
uδ`
(
Xδ
`

)(
Zδ`+1 − Zδ`

)2]
= E

[
E
[
uδ`
(
Xδ
`

)(
Zδ`+1 − Zδ`

)2|Fδ` ]]
=
(
ξ′
(
qδ`+1

)
− ξ′

(
qδ`
))
· E
[
uδ`
(
Xδ
`

)]
=
(
ξ′
(
qδ`+1

)
− ξ′

(
qδ`
))
·
E[uqδ` (Xδ

` )]

Σδ`
.

Recalling (8.12), the fact that ut(x) is uniformly Lipschitz in x for t ∈ [0, q̄], the fact
that ξ′(qδ`+1)− ξ′(qδ` ) = δξ′′(qδ` ) +O(δ2) and the coupling of Lemma 8.4, it follows that

p-lim
N→∞

1

2

〈
∇H̃N

(
n`
)

+∇H̃N

(
n`+1

)
,n`+1 − n`

〉
N

= δξ′′
(
qδ`
)
E
[
uqδ` (Xqδ`

)
]

+Oq̄
(
δ3/2

)
.

Summing over ` and using continuity of ut(x) in t, it follows that

lim
`→∞

p-lim
N→∞

H̃N (n`)− H̃N (n`)

N
=

∫ q̄

q

ξ′′(t)E
[
u(t,Xt)

]
dt.

Sending q̄ → 1 now concludes the proof when there are no branching steps. Extending
the proof to cover branching steps is not difficult and we explain it now. Everything up
to (8.14) is still valid, and if the number |Q| of branching steps is m, then the full analysis
applies to all but m terms. However the simple uniform bound

H̃N

(
n`+1

)
− H̃N

(
n`
)
≤ ‖n`+1 − n`‖ · sup

‖x‖N≤1+ η
2

‖∇H̃N (x)‖

≤ O(
√
Nδ) ·O(

√
N)

≤ O(N
√
δ)

holds with high probability. Here we used Proposition 2.7 to deduce ‖n`‖N , ‖n`+1‖N ≤
1 + o(1) with high probability, and also Proposition 2.1 and Equation (8.6). Therefore all
telescoping terms, branching or not, uniformly contribute O(N

√
δ) energy in probability.

As a result, even when a constant number of non-branching terms are replaced by
branching terms, the same analysis applies up to error O(N

√
δ), yielding the same

asymptotic energy for branching q-IAMP and completing the proof.
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