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Abstract

The self-repelling random walk with directed edges was introduced by Téth and Vet6 in
2008 [23] as a nearest-neighbor random walk on Z that is non-Markovian: at each step,
the probability to cross a directed edge depends on the number of previous crossings
of this directed edge. Téth and Vet found this walk to have a very peculiar behavior,
and conjectured that, denoting the walk by (X,,)men, for any ¢ > 0 the quantity
ﬁX |n¢) converges in distribution to a non-trivial limit when N tends to +oo, but
the process (ﬁXLNiJ )¢>0 does not converge in distribution. In this paper, we prove
not only that (\/LWX |Nt])t>0 admits no limit in distribution in the standard Skorohod
topology, but more importantly that the trajectories of the random walk still satisfy
another limit theorem, of a new kind. Indeed, we show that for n suitably smaller than
N and T in a large family of stopping times, the process (%(XTNthn?'/Z — X1y ))t>0
admits a non-trivial limit in distribution. The proof partly relies on combinations of
reflected and absorbed Brownian motions which may be interesting in their own right.
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1 Introduction

The “true” self-avoiding random walk was introduced by Amit, Parisi and Peliti in [1]
in order to approximate a random self-avoiding path on Z¢, which cannot be constructed
step by step in a straightforward way, by a random walk constructed step by step. In
dimension 1, it is a random walk on Z that is discrete-time, nearest-neighbor and non-
Markovian (in this paper, the term “random walk” will often be used for non-Markovian
processes), defined so that at each time, if the process is at i € Z, it may go to ¢+ 1 or

*Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue
René-Descartes, 67000 Strasbourg, France. E-mail: laure.mareche@math.unistra.fr

TInstitut de Mathématiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 8, CH-1015 Lau-
sanne. E-mail: thomas.mountford@epfl.ch


https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1156
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2306.04320
mailto:laure.mareche@math.unistra.fr
mailto:thomas.mountford@epfl.ch

Limit theorems for trajectory of self-repelling random walk with directed edges

1 — 1 with a transition probability depending on the time already spent by the process at
sites 7 + 1 and ¢ — 1 (the local time at these sites). This transition probability is defined
so that the process is self-repelling: if the process spent more time at ¢ + 1 than ati — 1
in the past, it will have a larger probability to go to ¢ — 1 than to ¢ + 1.

However, the non-Markovian nature of the “true” self-avoiding random walk makes it
hard to study. This led to the introduction by Téth in the fundamental series of papers
[18, 19, 20] of models where the probability of going to 7 + 1 or ¢ — 1 does not depend on
the local time at the sites ¢ + 1 and 7 — 1, but instead of the local time of the non-oriented
edges {i,i + 1} and {i,7 — 1}, that is of the number of times the process already went
through these edges. These processes are easier to study because they allow the use
of a Ray-Knight argument: under some conditions, the local times on the edges form
a Markov process, and its Markovian nature allows its analysis. This kind of argument
was first used for simple random walks (see the original papers of Knight [9] and Ray
[16]), then applied to random walks in random environments in [7]. In [18, 19, 20], T6th
was able to extend this Ray-Knight argument to self-repelling random walks and proved
that the process of their local times, once properly rescaled, converges in distribution.
The limit, as well as the rescaling, depends on the exact definition of the transition
probabilities, but is always a random process, either a power of a reflected Brownian
motion or a gluing of squared Bessel processes (a non-Markovian random walk with
a deterministic limit was studied by Téth in [21], but it is very different as it is self-
attracting instead of self-repelling: the more an edge was crossed in the past, the more
likely it is to be crossed again).

In [23], Téth and Vet introduced a self-repelling random walk whose transition
probabilities are defined through the local time on oriented edges rather than non-
oriented ones. This random walk (X,,),en on Z is defined as follows. Let w : Z
(0,400) be a non-decreasing, non-constant function. If the cardinal of a set A is denoted
by |A|, for any m € IN, i € Z, we denote

E:I:

m,i

=H0<k<m—1|(Xp, Xpy1) = (i,i £1)}] (1.1)
the local time of the oriented edge (i,7 + 1), and

Api =07 —0F . (1.2)

3 m, m,i
We then set Xy = 0, and for all m € NN,

w(Am x,,)

P(X =X 1)=1-P(X, =X,,—1) = .
( m—+1 m T ) ( n+1 1 ) w(Am,Xm)+w(_Am,Xm)

(1.3)

On an intuitive level, it is not a priori clear why this processs should behave differently
from the processes with non-oriented edges, especially the process introduced by Téth
in [19], which seems to be very similar when w is exponential. However, the process
of Téth and Vetd [23] exhibits a sharply different behavior. Indeed, building on the
Ray Knight techniques developed by Téth in [18, 19, 20], T6th and Vet proved in [23]
that the renormalized process of the local times of (X,,)men does converge, but to a
deterministic limit forming a triangle f(z) = (1 — |z|)+, instead of a random process
(the fluctuations around this deterministic limit were studied by the first author in [11]).
Since this model behaves differently from the self-repelling models previously studied, it
is interesting to explore its behavior in more depth.

In [13], Pimentel, Valle and the second author proved that % converges in distribu-
tion to the uniform distribution on [—1, 1]: the random walk has a diffusive scaling. This
suggests the process (%X |n2¢] )t>0 should converge in distribution when n tends to +oo,
which would be a diffusive renormalization. However, the simulations of Téth and Vet6
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in [23] seem to indicate that this process does not converge. This is the starting point of
this work.

We prove not only that (%X |n2t])t>0 has no limit with respect to the topology of
continuous real processes on [0, +00), but the stronger result that there is no limit point
in the standard Skorohod topology for cadlag processes on [0, +o0) (see [15] or [4] for
an introduction to this topology).

Proposition 1.1. (%X\_tnzj )t€[0,+00) @dmits no limit point in distribution in the standard
Skorohod topology for cadlag processes on [0, +00) when n tends to +oo.

Proposition 1.1 means that there is no diffusive renormalization, but we show nonethe-
less that a non-trivial renormalization of the process exists. This renormalization is the
first result of its kind to our knowledge: we show that there exist stopping times of order
N? so that for n < N, the random walk started at these stopping times and considered
on a scale n admits a superdiffusive renormalization. We define the scale n as follows:

n = ¢(N) where 3o > 1, Ny € N*, YN > Ny, p(N) < N*/* and Gl 6(N) = oo
—+00
(1.4)

and ¢ : N* — IN*. For any m € IN, i € Z, let us denote
T, =inf{k > 0|6, = m}. (1.5)

We set § > 0, » € R. For any N € IN*, we denote (Y;V),cr+ the continuous process
defined by

X - X
YN — CTivon ey M0 T T vy (1.6)
t n .
when tn3/2 is an integer and by linear interpolation otherwise. We prove the following.

Theorem 1.2. (YtN)te[O’Jroo) converges in distribution in the topology of continuous real
processes on [0, +00) when N tends to +o0, to a limit different from the null function.

Theorem 1.2 means that locally after T:[tNHJ | N’ the process (X,,)men has a su-

perdiffusive behavior. It thus fluctuates more quickly than diffusively, which explains
why (%X |tn2] )te[0,400) @dmits no limit in distribution. Once Theorem 1.2 is established,
proving Proposition 1.1 is rather easy. In order to show Theorem 1.2, we follow the ap-
proach recently introduced by Kosygina, Peterson and the second author [10] for another
kind of non-Markovian random walk, called an excited random walk with Markovian
cookie stacks. They used that approach to prove the convergence of their renormalized
random walk to a Brownian motion perturbed at extrema. For some ¢ > 0, we consider
“mesoscopic times” depending on N: Ty = TTNQJ,LNI_J, and T4 is the first moment m

after T}, at which |X,, — X7, | = |en]. The convergence of (Y;"),c[9 1) can be deduced
from the convergence in distribution of the 1 (X7, ,, — X7, ) and the — (T4 — T)) when
N, and therefore n, tends to 400, which is obtained by using Ray-Knight arguments for
the process (X7, +m)men-

There are important differences between the argument in [10] and ours. In [10], the
behavior when X,,, was near the extremities of the range of (X,,)o<m<r, Was different
from its behavior in the “bulk” of the range. In our work, the normalization considered
keeps the process far from the extremities of the range, so we never need to take this
different behavior into account.

Furthermore, the Ray-Knight arguments for the process (Xr, +m)men give a different
law for its local times than in [10], so they need a different treatment. Interestingly,
the behavior of (X7, +m)men is close to that of the random walk of [19], which allows
to use arguments similar to those in [19], though the processes are different enough
so they do not suffice. We roughly have that (Z; Ar,,,.;)i is a random walk reflected
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on or absorbed by (Zi Ar, ;)i (see Definition 6.1 for the notion of reflection), which we
may consider as an “environment”, hence (ﬁ E; Ar,,,,j)i converges in distribution to

a Brownian motion reflected by or absorbed on the limit of (ﬁ Z; Ar, ;)i- In [19] the
environment was absent, therefore we had to find new ideas to control the interaction
between (Z; ATy, ;)i and (Z; Ar, ;)i- Moreover, we need to study the properties of
the limit processes, which lead us to study combinations of reflected and absorbed
Brownian motions which we consider novel and of interest in their own right. Indeed,
Brownian motions reflected on other Brownian motions have been studied before (see
[2, 17, 22, 25]), but the results found in those papers were insufficient for our purposes.

Finally, the limit of the random walk in [10] was known, expected from prior results
on particular cases. Here the limit is unknown, and we do not identify it beyond noting
that it exists and is continuous. It is not obvious whether the limit is intimately related
to the process of [24, 14], and it would be useful to develop the ideas presented here to
understand this limit process better. The lack of knowledge about the limit forced us
to find novel arguments to prove the convergence. An attribute of our approach is that
the “coarse-graining” with the mesoscopic times relies purely on Ray-Knight properties.
This, we feel, gives it the potential to be generalized to yield limits for a much larger
class of self-interacting random walks.

The paper unfolds as follows. In Section 2 we give an outline of the proof. In Section 3
we give the proofs of Theorem 1.2 and Proposition 1.1 conditionally on the results proven
in the later sections. In Section 4 we introduce much notation, and auxiliary random
variables we will use throughout the paper. Section 5 considers some “bad events”
outside which the environment and some associated variables behave well, and proves
that they have very small probability. In Section 6, we prove that outside of the bad
events, (Z; ATy, )i is indeed close to a random walk reflected on the environment.
Section 7 is the most important in that it shows that with very high probability, the
stopping times T} do not accumulate and 7} — Tp is at least of order kn3/2. We need
such a control on the T}, because we do not know the limit of (KN)te[0,+oo): it is the most
novel part of the work. Section 8 discusses the limit process of the environment and
introduces the reflected/absorbed processes which may be of interest in their own right;
this section is mostly independent from the rest of the paper. Finally, in Section 9, we
prove that the environments indeed converge to these limit processes and we use this
convergence to deduce the convergence in distribution of the “mesoscopic quantities”
L(Xr,,, — Xr,) and #(Tkﬂ — Ty). Some arguments that are necessary to complete
the proof but not very specific or novel are omitted, but can be found in the appendix of
the arXiv version of the paper [12].

2 Outline of the proof

This section being an outline, most of its content will be non-rigorous. We first outline
how to prove Theorem 1.2, which is done rigorously in Section 3.1 modulo subsequent
technical results. In order to prove the convergence in distribution of the renormalized
process (VY )te[0,+o), We need to prove its tightness and the convergence of its finite-
dimensional marginals. Let us concentrate on the finite-dimensional marginals for
now.

The proof of the convergence of the finite-dimensional marginals (Proposition 3.1)
is partially inspired from the method introduced by Kosygina, Peterson and the second
author in [10]: we define “mesoscopic times” (T )ren S0 that Ty = T\_iNng_N’»KJ' and Ty
is the first time m after T}, at which |X,,, — Xp| = |en]|. For m € {Tk,...,Tp+1} we
have |X,, — Xr,| < |en], hence if t € [ (Tx — To), =37 (Tk+1 — To)] we have V¥ —
%(XT,c — X71,)| < €. Consequently, if we can prove the convergence in distribution of the
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L(Xr1,,, — Xr,) and the — (T4 — Tx) (Proposition 9.1), we can prove that the finite-
dimensional marginals of (VY )te[0,+oc) are close to those of a limit process depending
on &, which we may call (Yf);c[0,+00). In [10], the limit of (Y,"V);c(0,+o0) Was known, and
(the equivalent of) (Y;7).c[0,+) cOnverges towards it when ¢ tends to 0, so this suffices.
However, here we do not know the limit of (Y,V);c[,+oc), Which forces us to add another
step. We notice that if the finite-dimensional marginals converge, then their limit has
to be close to the finite-dimensional marginals of (Y;?)c[0,4+ ) for any ¢, so the limit is
uniquely determined. Consequently, if the finite-dimensional marginals are tight, then
they converge.

However, this means we also have to prove the tightness of the finite-dimensional
marginals. In order to do that, we prove that the #(Tk — Tp) are at least of order
k (or rather k times a constant), which is the work of Section 7. Indeed, when m €
{To,To + 1,..., T} we have |X,, — Xq,| < klen|, thus —= (T} — Tp) is the smallest
time at which (Y/¥),c[0,40) can reach ke. Therefore, if #(Tk —Tp) tends to +o00 with
k, then the finite-dimensional marginals of (YtN )te[O,Jroo) will be tight, hence they will
converge. Consequently, to prove the convergence of the finite-dimensional marginals
of (YN)te[o,+00), it is sufficient to prove that ns%(T;C — Tp) is of order k as well as the
convergence in distribution of the %(XTk o — X1y, nB—l/z(TkH — T). Actually, proving
that also yields the tightness of the process (YtN )tE[O,Jroo) (Proposition 3.2). Indeed, it
is tight when (X,,)men does not fluctuate too quickly, which is the same thing as the
#(Tkﬂ — Ty.) not being too small. Therefore, we have two main things to prove: the
convergence in distribution of the (X1, ,, — X7,), =37 (Tk+1 — T%) (Proposition 9.1) and
the fact that #(Tk — Tp) is of order k (Proposition 7.7).

2.1 Convergence in distribution of the 1 (X7, ., — X1,), =7 (Ths1 — Tk)

As was done in [10], we prove this convergence through a study of “mesoscopic” local
times. We let 3, be the first time m after 7}, at which X, = X7, — len] (see (4.3)), then
5;}9 will be Tj11 if (X7, +m)men reaches Xp, — |en| before X7, + |en]. For any i € Z, let
L]*~ the local time on the oriented edge (i — 1,7) between times T} and Br, . that is the
number of times the process went from ¢ — 1 to ¢ between times T} and 7, (rigorously
defined in Definition 4.1). Then we will have X7, ,, = X7, — |en] if and only if there
exists i € {X7,,..., X1, + |en]} so that L/*~ = 0, because this means that before Br,
i.e. before (X7, +m)men goes to X1, — |en], it does not reach ¢ hence does not reach
X7, + [en]. Consequently, one can know whether Xr, ., = X7, — |en| or X7, + [en] by
looking at the local times LiT’“’f. Moreover, if X7, , = X7, — |en], we have T}, = Br,
and at each step made between times 7}, and 7, the random walk crosses an edge, so
one can compute 71 — T from the local times LiT’“*, and if X7, ., = X7, + len|, one
can compute Ty ; — T} from local times defined in a symmetric way. In order to establish
the convergence in distribution of the  (Xr,,, — Xr,), #(Tkﬂ — Tk), it is thus enough
to understand the local times L?’“’_.

As in [10], we will study these local times through a Ray-Knight argument, that
is by exploiting their Markov properties. However, the use of the ideas of [10] stops
here, because the dynamics of our process is different from theirs. We are able to
express L?’“_ as roughly Z’ C;TF“_’E - Zi C;TF’“_’B (Fact 4.2), where the CJT’“’_’E, defined

in Definition 4.1, are small modifications of the AB; y (see (1.2)) and the C,TkmB, also
.

J

defined in Definition 4.1, are small modifications of the A7, ;. We thus express LZT’“’* as
the difference between the random walk >_° CJ.T’“"_’E and the random walk >_° CJ.T’“’_’B . We
then need to study these walks, hence the A Bz i and Arg, ;. Part of this study resembles

what was done in [19], though there are very ikmportant differences.
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We first notice that (A,, ;). resembles a Markov chain. We are only interested in
i > Xr, — |en], since (X;;,)men does not go below X7, — [en] between times 7}, and S,
) L?’“’f =0 fori < Xr, — |en]. We notice that given the transition probabilities (1.3),
when X,, = i the probability for X,,;; to be i — 1 or ¢ + 1, hence for A,,;1; to be
Ay, +1lor A, ; —1, depends only on A,, x,, = A,, ;, therefore if we only keep track of
the changes of A, ;, we get a Markov chain (whose transition probabilities are given
in (4.4)). If we only keep track of the values of A,, ; when A,,, ; = A,,_1 ;+1 (respectively
Ap,i = Ap—1,; — 1), which means the last move of the walk at i was to go to the left
of i (respectively to the right), we obtain another Markov chain, the ¢&-Markov chain
(respectively the ©-Markov chain). These chains correspond respectively to the —7, and
n— defined in (4.5) and (4.6). Their equilibrium measures are called p; and p_, defined
in (4.9) and (4.8).

This yields that the A BT, i are roughly i.i.d. with law p; and independent from the
Ar, ; (Proposition 4.7). Indeed, we have Xﬁ;k = Xr, — |en], so for i > Xp, — |en], our
self-repelling random walk is at the left of ¢ at time 5&, hence A Br i is a step of the
@-Markov chain at ¢. If LiT’“’f is large, the @-Markov chain at ¢ made many steps between
times T} and B;k, therefore at time B;k it will have forgotten the value of A7, ; and the
law of Aﬂ;k7i will be close to p;. This implies that when LiT’“’f is large, the A b7, i are
roughly i.i.d. with law p; and independent from the Ar, ;.

This allows to understand the behavior of ZZ CjT’“’*’E , which is done in Sections 5
and 6. Indeed, since LZ-T"’_ is roughly Zi Q;TF’“_’E - Zi (J-T’“_’B, this means that when
S ka’f’E is well above 3" ka’f’B, then (f’“"E behaves like a random walk with i.i.d.
increments independent from Zi (J.T’“_’B . Furthermore, we have roughly Zi (].T’“—’E —
Zi CJ.T*”f’B = LiT‘”* with LiT*"f non-negative, hence ZZ ngk"’*’E remains larger than
S CJ-T’“’_’B at all times. More precisely, for i € {Xp, — |en]|,..., X1, }, the process
Zi CjT’“’*’E will behave like a random walk reflected on the “environment” ZZ CjT’“’*’B

(Proposition 6.5). Moreover, for ¢ > Xr,, when LiT""f = 0 then (X,,)men does not reach i
between times 7}, and 7, (that is when going from X7, to Xr, —[en]), so it will not reach
any j > i, So L?""_ = 0 for any j > 7. This implies that as soon as Zi CJT’“’_’E = Zi CJ»T""_’B
then Zj C;F,k’f’E = Zj §jT,’“7’B for any j > ¢, which means the random walk Zz C]T’“’*’E is

“absorbed” by the environment Zi CJT’“’*’B when it hits said environment.

We can now study the behavior of Zi (jT’“*’B and Zz C]Tk’*’E when N tends to +oo,
which was done in Section 9. If ﬁ Zi Cf"'"’B converges to some limit process, then
ﬁ ZZ CjT’“’*’E converges to a Brownian motion that is partly reflected on the limit of
ﬁ ZZ CJ-T"”f’B and partly absorbed by this limit. We can then use the convergence of
ﬁ Zi Cf"’_’E to deduce the convergence of ﬁ Zi (J-T"“’_’B. It is thus possible to prove
the joint convergence of the ﬁ S CJ-T’“_’B, ﬁ pOK cjka’_’E by induction on k, which is

Proposition 9.4. This yields control of the LiT*”*. In [19], T6th used a similar strategy to
prove the convergence of the local times process of a self-repelling random walk with
undirected edges, but he had no equivalent of % S CJ.T’“’_’B (his random walk is simply
reflected on 0).

There are three major problems for putting this approach into practice to prove
the convergence in distribution of the 1 (Xr, , — X1,), =37 (Tkt1 — Tx). Firstly, though
we know that when ' (f’“"’E is well above 3’ erk’_’B, then 3 CyT’"_E behaves like a

random walk with i.i.d. increments independent from Zl Cf’“’_7B, we do not have this
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sort of control when Z’ CjT‘“"*’E is close to ZZ (jT’“’*’B, so it is not that easy to prove

that Zi Q-T"’_’E behaves like a random walk reflected on Zi C]-T’“’_’B . Our model being
very different from the one studied by Téth in [19], we had to find a novel argument,
which is used in the proof of Proposition 5.1. We notice that though when LiT’“ " is small
the @©-Markov chain at ¢ is not at equilibrium, it can be coupled with another that is at
equilibrium, and can therefore be controlled. Even with this control, we need to establish

rather complex inequalities (see (6.3)) to prove ZZ C]-T’“’f’E is close to a random walk

reflected on 3’ C]-T’“_’B .

The second problem lies in the definition of the limit process of ﬁ Zz C]-T’““’_’B.

Indeed, T11 is By, when there exists i € {Xry,..., X7, + [en]} so that LTw= =0, ie.
S ngkv*vE =3 CJ.T’“’f’B, which means " (jT’“"*’E is absorbed by Y_" CjT“"f’B. In this case

we have A7, ,, ; = A, , hence the (]-T"‘“’_’B can be obtained from the A ;- ; hence from
’ Ty Ty,

the CJ-T’“*’E. The limit of ﬁ S CjT’““’_’B is then obtained from the limit of ﬁ S CjT’“*’E,

E

and this works roughly in the case where the limit of ﬁ Zi C]-T’“_’ is absorbed by

the limit of ﬁ Zi (].T"’_’B . However, we also have to consider the case Tj1 # (7,
that is X7, ,, = X7, + [en]. We can study it in the same way that the case Xp,_, =
X1, — |en], defining symmetric quantities (iT kB , CiT = F We then get that the behavior
B . o

, can be obtained from the limit of

of the. At .., hence the limit of ﬁ PN CJT"’“”’ -
ﬁ > CJ-T"”J“E when the latter is absorbed by the limit of ﬁ S CjT’“’J“B. Consedquently, to
be able to construct the limit process of % S CJ-T"“’_’B (which is done in Definition 8.5),

we have to show that the probability that the limit of ﬁ Zi CJT’“’J”’E is absorbed by the

limit of ﬁ Zi CJ.T""J“B is one minus the probability the limit of ﬁ Zi (f""_’E is absorbed

by the limit of ﬁ ZZ CjT’“"*’B. In order to do that, in Section 8.1 we study the following
setting: we have a Brownian motion reflected by some function called the “barrier”
from time —1 to time 0 and absorbed by the barrier from time 0 to time 1, and another
Brownian motion going backwards, reflected above the same barrier from time 1 to
time 0 and absorbed by the barrier from time 0 to time —1. We prove several conditions
(Propositions 8.1, 8.3 and 8.4) for the probability that the first Brownian motion actually
gets absorbed to be one minus the probability that the second Brownian motion is
absorbed. We believe this study to be of independent interest.

The third problem lies in deducing rigorously the convergence of %(XTk: o — X7)
from the convergence of the processes ﬁ ST CjT’“’f’B and ﬁ S CJVT’“’f’E. Indeed, we

know that X7, ., = Xp, — |en] if and only if S Cf’“*’E gets absorbed by Q;TF’“*’B, but
proving that the probability of this absorption converges to the probability of absorption
of the limit processs requires some property of continuity of the absorption time for
the limit process. In order to show such a property, in Section 8.2 we study the limit
processes of the environments ﬁ S CjT’“’*’B, k € IN. These limit processes, constructed
in Definition 8.5, may be interesting on their own: they are the sequence of processes
obtained by firstly running either a Brownian motion first reflected then absorbed on
another Brownian motion, conditioned to absorption, or a backwards Brownian motion
with the same properties, and then iterating this procedure by reflecting and absorbing
the new Brownian motion on the resulting process. We prove that the law of the limit
processes thus obtained, on certain small intervals, is close in some sense either to the
law of a Brownian motion or to the law of a Brownian motion reflected on a Brownian
motion (Proposition 8.9). These latter processes being easy to control, this allows us to
deduce the required continuity property.

EJP 29 (2024), paper 98. https://www.imstat.org/ejp
Page 7/60


https://doi.org/10.1214/24-EJP1156
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorems for trajectory of self-repelling random walk with directed edges

2.2 5 (T} — Tp) is of order k

This relies on an entirely novel argument, laid out in Section 7. We first link T} 1 — T}
to the behavior of the walks Zi CJ-Tk’_’E , Zi CjT’“_’B . As we already mentioned at the
beginning of Section 2.1, if Bi- = T}, we can deduce T}, — T}, from the L;TF’”"_; actually we
roughly have Ty, — T = 2> LiT’*"_, where the sumisoni € {Xp, —|en],..., Xn, +|en]}.
We also know that L]*~ is the difference between the random walks S C]T’“_’E and
S C]Tk’f’B, and that ¥ Cka"’*’E is an i.i.d. random walk reflected on 3" CjT‘“"*’B for
i€ {Xr, —|en],..., X} and absorbed by 3’ CJ-T’“’_’B fori e {Xr,,..., X1, +|en]}. Since
we need only a lower bound on Ty — T, =2 L;TF’“’_, we can consider only the sum on
ie{Xrp, —|en],...,Xp,}, where the walk 5° CJT"’*’E is reflected. Then since >’ CjT‘“"*’E

. . i -Ty,—,B
is an i.i.d. random walk reflected on )" G

walk which we call Zl CJT’“*’I (the construction of the (jT’“’*’I can be found just before
Proposition 4.10). We deduce L'*~ = Zi Cf’“’_’E — Zi CJ-T’“’_’B > Zi CJ-T""_’I — Zi CJ-T’”"_’B.

If 3 CJ.T’“’_’B was an i.i.d. random walk too, 3* CJ-Tk’_’I -y C]-Tk’_’B would be an i.i.d.
random walk, hence Ty11 — T =2 LiT’“’f would be larger than the integral of an i.i.d.
random walk on an interval of length of order n. Since such a random walk may go to
an height of order /n, we would have T;; — T}, of order n®/?, hence — (Ty+1 — Tk)

would be of order 1, hence #(Tk — Ty) would be of order k. Consequently, it is enough

, it will be larger than some i.i.d. random

to prove that Zl CjT’“’*’B is close to an i.i.d. random walk. The arguments will differ
depending on the evolution of the process prior to 7.

For k = 0, then Zi CJ.T’“_’B will be close to an i.i.d. random walk. Indeed, the CJTO’_’B
are based on the Ag, ;, and if ¢ is at the right of Xp, (respectively at its left), the last
move of the process at ¢ before T;; was going to the left (respectively to the right), hence
Ar, i is a step of the @-Markov chain at ¢ (respectively the ©-Markov chain at 7). Now,
at time Ty = TTNQMNIJ, the local times around X7, = | Nz| £+ 1 are not far from | N6],
hence they are large enough for the ¢- and ©-Markov chains to be at equilibrium. These
Markov chains are also independent for different ;. We deduce that at the right of X7,
the A, ; are ii.d. with law py, and at the left of X7, the Ag, ; arei.i.d. with law p_. This
will imply Zi (fo’f’B is an i.i.d. random walk. Zi CJT’“*’B will also be an i.i.d. random
walk if between times T, and T}, the process (X,,)men never went between X, and
Xr,,,, since in this case, for i between X7, and X7, , we have Ag, . = Aq, ;.

Another favorable case is when the “mesoscopic process” (X, )ren does a U-turn,
that is when Xr,,, = Xp + [en] = X7,_, (in the following we consider X7, , =
X7, — len] = X7, to fix the notation). Indeed, the ¢/*' " are based on the Ay, ;, and

K3
in this case X7, = X1,_, + |en], hence the Ag, ; can be deduced from the ¢, *~ 7.

3
Furthermore, the process " CJ.T""l’+’E is roughly a reflected i.i.d. random walk, hence is

above an i.i.d. random walk, which allows to control it, hence to control Zl C]T’“’_B. The
case of a U-turn is thus tractable.

However, if the mesoscopic process does not do a U-turn, for example if X7, , =
X1, — len| = X1,_, — 2|en], things quickly become more complicated. Indeed, we need
to control the Ap, ., ; on {X7,,..., X7, + |en]}, since if at some point after time 7},
the mesoscopic process goes from X, to X7, + |en], then the environment will be
based on these Ay, ;. As Tj11 = B, the A, ; = Aﬁiﬂ can be deduced from the

CiT’“_’E, so we have to control those. Now, since X7,,, = X7, — [en], between times
Ty and Ty the process (X, )men may enter {Xr,,..., X7, + |en]}, but will not reach
X1, + |en]. Let ip the rightmost site of Z that is reached. We already saw that on
(X1, oy X, + [en] ), CJ.T’“’_’E is an i.i.d. random walk absorbed by " ka’_’B. For

1 < ip, we have L;TF’“’_ >0, so Zi CJT’“’_’E is not yet absorbed, thus Zl Cf’“’_’E behaves as
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an i.i.d. random walk, hence we can control it. For ¢ > ig, since (X,,)men does not reach
i between times T}, and T},, we have Ag,,,; = Ar, ;, and since X7, = X7, — |en],
we have T}, = Bi-_l' hence the Ar, ; can be deduced from the CiTk’l’_’E. We then notice
that since we consider i € {Xr,,...,Xn, + |en]}, we have i € {Xp,_, — |en],..., Xn._, },
and that for such ¢ the process Zi CjT‘""l’*’E is a reflected i.i.d. random walk, hence is
larger than an i.i.d. random walk, therefore we can control it. To sum up, we have two
cases, both of which can be controlled, so this will still give a tractable environment for

the next time the mesoscopic process goes from X1, to Xp, + [en].

However, if before that the mesoscopic process makes a visit from X7, — |en] to
X1, and back, then during the shift from X7, to X7, — |en], (Xm)men may visit some
i€ {Xn,,...,Xn, + |en]}, which will change their A,, ; and give us another case to take
into account. Since there is no limit on the number of such visits, the environment on
{Xr,,..., X1, + |en|} can become uncontrollable. In order to solve this problem, we
devised an algorithm that keeps track of the control we have on the environment, and
used it to prove that whatever the path of the mesoscopic process (X7, )ren, there is
always a positive fraction of its steps in which we can control the environment, hence
for which #(Tkﬂ — Ty.) is of order 1. This is enough to prove #(T;€ —Tp) is of order
k (Proposition 7.7).

2.3 Proof of Proposition 1.1

In order to prove this proposition, which is done in Section 3.2, we need to show
(Xm)men fluctuates too quickly for (%XLNth)tE[O,JFOO) to have a limit. In order to do
that, we reuse some of the techniques developed for the proof of Theorem 1.2. If
we choose again T = TE—LNG |, [Nz’ but we take T the first time m after Ty at which
| X — X1,| = |eN| (instead of |en| as in the proof of Theorem 1.2), we can prove that
ﬁ(Tl — Tp) converges in distribution (Lemma 9.2), which implies T} — T is of order
N3/2, This means the time needed for (X,,)mcw to move on a scale N is of order N3/2,
therefore the time needed for (%XLNHJ )te[0,+0c) to move on a scale 1 is of order 1/N1/2,

It is thus clear the latter process cannot converge when N tends to +oco.

3 Proof of Theorem 1.2 and Proposition 1.1

In this section, we give the proofs of Theorem 1.2 and Proposition 1.1, conditionally on
important results which will be proven in the following sections. We recall the definition
of n given in (1.4) and that of (YtN)te[O,Jroo) spelled out in (1.6). We need to introduce
several other objects. Remembering the definition of Tﬁve I,INz) given in (1.5), for any
e > 0 we define (as at the beginning of Section 2):

To = T} yg) | na) a0 VE € N, Tiopr = inf{(k' > Tp | | Xp — Xz,| = |en]}.

The T} depend on n and ¢, but we do not write it in the notation to make it lighter. The
T} are “mesoscopic times”. For k € IN, we also set Z; = 1;.7(Xn, — X7,), which is a
“mesoscopic walk”.

We also need to define some “bad events” B, By, B, ..., Bg such that outside of these
bad events, “the process behaves well”. Since their definition is long, technical, and
unnecessary to understand this section, we do not give it here and rather refer to the
definitions in Propositions 4.8, 4.7, as well as to the beginning of Section 5. We also need
some ¢ > 0 which will depend on ¢, given by (7.1). Finally, if ;4 is a probability measure
and f a function taking real values, we denote p(f) the expectation of f under p.
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3.1 Proof of Theorem 1.2

To prove that (Y,V )te[o,+00) COnverges in distribution in the topology of continuous
real processes on [0, +00), it is enough to show the two following propositions.

Proposition 3.1. For any { € IN*, forany 0 < t; < --- < t,, (YN,...,V})) converges in
distribution when N — +o00.

Proposition 3.2. For any ¢ > 0, for any 61,92 > 0, there exists 63 > 0 such that for N
large enough, we have P(supg< ;<p s <5, |V — Y| > 61) < da.

Given Propositions 3.1 and 3.2, all that remains to prove Theorem 1.2 is to prove the
following lemma.

Lemma 3.3. (YtN)te[o,Jroo) does not converge in distribution to the null function in the
topology of continuous real processes on [0, +00).

We now prove Propositions 3.1 and 3.2, as well as Lemma 3.3.

Proof of Proposition 3.1. We first show ((Y/Y,...,Y;)V))yen~ is tight. For this part of the
proof, we choose ¢ = 1. We fix § > 0. We notice that for any K € N*, if (V... V,)V) ¢
[~ K, K], then Tx — Ty < [t,n%/?]. This implies

IP((Yt[lvv e 7Ytiv) ¢ [_K7 K]e)

6 6
<PB)+P (U BT> +P (TK — Ty < [tm®?],8°0 ) B:) :
r=0

r=0

The results in the later sections allow us to prove that this tends to 0 when N tends to
+o00. Indeed, Proposition 4.8 yields P(B) < e=e/n! TN hen n is large enough, and
by assumption n tends to +oco when N tends to +o0o, hence P(5) tends to 0 when N tends
to +oo. Similarly, by Proposition 5.8, IP(Uf:O B,.) < e=¢nn)® when n is large enough,
hence IP(UEZO B,) tends to 0 when N tends to +oo. In addition, by Proposition 7.7, if we
choose K large enough so that K > 239 and 1/2X < §/2, then when n is large enough

&3/2rq
we have

6 6
P (TK — Ty < [ten®?1,B°0 ) zs,e) <P <TK — Ty < K%(gn)3/2,sc N 35) <6/2.
r=0 r=0

Therefore, for such a K, when N is large enough P((Y;Y,...,V}Y) ¢ [-K, K]*) < 6, which
is enough to prove the tightness of ((Y,Y,..., V")) yven-.
It remains to prove that all subsequences of ((Y;",...,Y,Y))yen+ that converge do so

to the same limit. Let ((Y;f(N), cee Y;f(N)))Ne]N* be a converging subsequence, and p be
its limit law. Let f: R — R be a continuous function with compact support. We are going
to study p(f). Let §; > 0. f is uniformly continuous, hence if we denote ||(y1,-..,%¢)|lcoc =
max;<p<¢ |[yer| for any (y1,...,y) € RY, there exists d, > 0 such that if y,3’ € R’ satisfy
ly — ¥'|lc < 02 then |f(y) — f(y')] < ;. For any ¢ > 0, for any ¢ € {1,...,¢}, we
define 7 = sup{k € N : T}, — Ty < t¢n*?}. Then T,, < Ty + tyn*? < Ty, 11, hence
|XT0+U5/"3/2J — XTQ;/l < I_ETLJ and |XT0+|'tL;/n3/2‘\ — XTT£/| < I_ETLJ, which implies ‘Y;ZX —

L(Xp  —Xg,)| < =2, therefore |Y,Y — £l ZN | < ¢, Therefore when ¢ < 4, we have
Tyl 0 n tyr Tyt

n n

f(l@Y,..-,nf)—f(LE”JZN.-.,WZiZ)’s&l. (3.1)

n n

Let us study f(%ZN

N ..., ErlZN) . By Proposition 9.1, we have that ((Z)Y, —75 (Th —
Tk—1)))ken+ converges in distribution to the law ((Zy, Tk))ren+ defined in Definition 8.5

when N tends to +oo (in the sense of convergence of the finite-dimensional marginals).
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Moreover, (ZY,...,ZY) is a function of ((Z}, —7 (T —Tk—1)))ren-+, and since by Proposi-
tion 9.1 the Zl,z,:l T, k € IN have no atoms, almost surely for all k € IN*, Z:':1 Ty # to
for all ¢ € {1,...,¢}, therefore almost surely ((Zx, T%))ren- is a point of continuity of

. . N
this function. Consequently, (Z;,..

. Zﬁ\e’ ) converges in distribution when N tends to
+00. We denote p. its limiting law, which is also the limiting law of L‘En—”J(ZiY v Z).
Now, from (3.1) we deduce |u(f) — pe(f)| < 01. To sum up, for any §; > 0, when ¢ is small
enough we have |u(f) — pe(f)| < 1, hence p(f) = lim. o pe(f). This means u(f) does
not depend on the choice of the subsequence, thus i does not depend on the choice of

the subsequence, which ends the proof. O

Proof of Proposition 3.2. Let ¢ > 0, d1,d2 > 0. In this proof, we will set ¢ = %1. Then for
any m,m’ € N, if there exists k € IN such that m,m’ € [Ty, Ti+2], then |X,, — X,/| < 3en.
This implies that for any s, ¢ € [0, 9], if sn%/2 + Ty, tn*/? + Ty € [T, Ty42) then |[VV YN | <
3¢ = 6;. Now for 63 > 0, K € IN*, if T, > 9n®/2 + T, and for each k € {0,..., K — 1} we
have Ty, — Ty > 03n®/?, then for any s,¢ € [0,%] so that |s — t| < J3 there exists k € IN
such that sn®/2 4 Ty, tn®/? + Ty € [T, Thyz), so we obtain |Y,N — YN| < ¢;, therefore
SUDg< s 1< [s—t|<ds | i — Yi'| < 01. We deduce

K—1
P sup VY — VN > 61| <P(Tk <9n®?+ Tp) + Z P(Ty1 — Ti < 63n°/2).
0<s,6<0, |5 — ] <55 pors

We set K so that 1/25 < 6,/8 and ¥ < K {2;(¢)3/2. Then we have

6 6
P(Tx < 9n®? +Ty) <P Tx — To < K- (en)*?,8°n ( Bs | + PB)+ P | | B, |-
120 r=0 r=0

By Proposition 7.7, when N is large enough, the first term is at most /6. By Proposi-

tion 4.8, P(B) tends to 0 when n tends to +oo, so if N is large enough, P(B) < §5/6. By

Proposition 5.8, P(Ufzo B,) < e~<n™)” when n is large enough, so IP(U?IO B.) < 65/6

when N is large enough. We deduce P(Tx < 9n®/? +T,) < §,/2 when N is large enough.
Furthermore for any &k € {0,..., K — 1}, we notice

1
P(Tjy1 — Ty < 03n%?) =P (3/2(Tk+1 —Tj) < 53) -
n

Now, by Proposition 9.1, #(Tkﬂ — Ty) converges in distribution to the law Tkﬂ
defined in Definition 8.5, thus when N is large enough ]P(#(Tk.ﬂ —Tp) < d3) <
P(Typy1 < 03) + 2. In addition, Proposition 9.1 yields that for any k € {0,..., K — 1} we
have P(Ty+1 = 0) = 0, hence we can choose 3 > 0 so that for any k € {0,..., K — 1},
P(Tis1 < 03) < 22 For such d3, we obtain that for any k € {0,..., K — 1} we have
P(Thy1 — Tj < 83n°/?) < 2‘3—;{ when N is large enough.

Consequently, there exists d3 > 0 such that P(supo< ;<g,(s_t<s, |Y:" — Ya' | > 61) < 62
when N is large enough. O

Proof of Lemma 3.3. We assume by contradiction that (VY )te[0,+oc) converges in dis-
tribution to the null function in the topology of continuous real processes on [0, +0)
when N tends to +oco. Then, by the Skorohod Representation Theorem, there exists a
probability space containing random variables (YtN )te[o,+o0) for any N € IN* so that the
(Y;")1e[0,100) have the same distribution as the (Y;¥);c(o +o0), @nd (Y;V);c[0, 1) CONVerges
almost surely to the null function in the topology of continuous real processes on [0, +00)
when N tends to +oo. Then for any M > 0 we have P(sup;cg [YN| > 1/2) tends to
0 when N tends to +oo, thus P(sup,c(o s [Y/'| > 1/2) tends to 0 when N tends to +oc.
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In this proof, we set ¢ = 1. Then for any M > 0 we have that IP( = (T —Ty) < M)
tends to 0 when NV tends to +oco. However, by Proposition 9.1, — /2 (T1 Ty) converges
in distribution to the Tl defined in Definition 8.5 when N tends to +oo, and Tl has no
atoms. This implies that for any M > 0, we have P(T} < M) = 0, which is impossible.
This ends the proof. O

3.2 Proof of Proposition 1.1

Forany ¢t € R*, N € IN*, we denote Y;" = +X|:n2). By the definition of the Skorohod
topology (see Theorem 10 of Chapter VI of [15]), it is enough to prove that for any
subsequence (fftw(N))NE]N*, there exists d1,d2 > 0 so that for any ¥ > 0 large enough, for
any M € IN* and any 0 = tg < - -- < tp; = 1, we have

lli\fm sup P <1I<ng)1(w inf{(53 >0 | Jt e (ti—hti} with DA/;Z}(N) — f/tlfi(iv)‘ <dzift;_1 <s<t
—+o00 A

and |V — Ytlf(N” <3 ift <s <t} > 52) > 05.

Moreover, the process (ﬁw(N))te[o,Jroo) has jumps of size 1/¢(N), which tends to 0
when N tends to +o0o, so it is enough to show that for any ¥ > 1, M € IN* and any
0=ty <--- <ty =19, we have

lim P(3ie{l,...,M AR AL
N oo ( Pe{l }7tl i | > 32V2

Letd > 1, M e N*and 0 = ¢y < --- < tpy = ¥. We notice that if there exist s,¢ € [0, 9]
so that |s — | < minj<;<a |t; — t;—1| but |§A/w(N) - Aw(N)\ > —L_, then there exists

8v2’

i€ {1 ., M} so that maxy, <<y, \Yw( ) th(i\f We will choose ¢ = 5> and

> 5 e

———, where T and T} are equivalents of T, 77 which we define now. We set z = 0,
0 = 2%, T§ = T ynp0 (s6€ (1.5), and T{ = inf{m > T} ||X,, — Xz| = [0(N)/2]}
(this definition differs slightly from the definition of 77, as ¥/(/N) replaces N and 6¢(N)/2
replaces en). We then have

5= wuv)

1 1
¥(N) 8v2
when N is large enough. Consequently, we only have to prove that

m P <y 1 T it —tia]) =1
M E\ e =Y uve T wve S By )=

. - 9
V0 = Y| = o 0(N) /2] > 1 =

In order to do that, we remark that Corollary 1 of [23] states that > converges in prob-

w(N)
ability to 402 = 4(20) = ¥ when N tends to +oo, which implies limy_, IP(WA‘})Z >
30) = 0, thus we only have to prove limy s 4 oo P(ﬁ—% > Y Amini<i<nr [ti—ti—1]) =
0. Moreover, by Lemma 9.2 i N) ——=7(T] — T}) converges in distribution when N tends to

400, which is sufficient and ends the proof.

4 Notation and auxiliary random variables

If a,b € R, we set a A b = min(a,b), a Vb = max(a,b), and a1 = max(a,0). For any
set A and any function f : A — R, we denote || f||cc = sup,c4 |f(z)|. For any m € N, we
define

Fm=0(Xo, X1,...,Xm) (4.1)
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Let € > 0. € may take different values throughout the paper, but the one used will
always be clear from the context. Remembering that TL N6, Nz Was defined in (1.5), we
recall the following definition already given at the beginning of Section 3:

Ty = T}y |na) AN VE € N, Ty = inf{k' > Ti || Xpo — Xr, | = [en]}. (4.2)

For any m € IN, we also introduce the stopping times (compatible with those defined at
the beginning of Section 2.1):

BE =inf{m’ >m| X, = X,n % |en]}. (4.3)

Proposition 1 of [23] states that almost surely, for any ¢ € Z, m,m’ € IN, the local time
Efw. defined in (1.1) will reach m/ in finite time, therefore all these stopping times are
finite. We recall the definition of the A,, ; in (1.2).

Definition 4.1. For any m € N, we define random variables (;
follows:

m,+,B , (" F fori e 7 as

. o
g;”’vB{ Ama=1/2 00 Xy g P = - Ay 12,

_Am,'i =+ 1/2 if1 > X,

an,+,B _ {Am,i + 1/2 if'q S va

m,+,E
D T A~ 12 ifi > Xy, 204G = A 12

We also define L™= = |{m < m’ < BE | (X, Xowr1) = (i — 1,4)}].

The superscript B stands for “beginning”, and the superscript F for “end”, since we
will use the corresponding random variables respectively at the beginning and at the
end of “steps of the mesoscopic walk (X7, )ren”-

Fact 4.2. For i > X,, — |en] + 1, we have L[] = L7"~ + ™% — ("7, and for
i < Xy + len) — 1 we have LT = L7V} 4+ ¢ 08 — P,

Proof. We write the proof for L}, ; the argument for L7 is similar. We have

m— _ gt _ ot _ = + - -
L2+1 o KB;L'L ém’z ( Bm. st gﬁwml) (gm’l E ) T KBTVL % fm’z
N Ry

Now, % — £, , is the number of times X goes from ¢ to ¢ — 1 between m and 3,,,, which

is L™ 4+ 1if4 g X, and L) if i > X,,, hence the result. O

In order to control the behavior of the ¢;™ +B Qm’i’E , we recall some definitions

and properties from [23]. We define a Markov chain (£(m))..en on Z by the following
transition probabilities:

w(-Em)
w(é(m)) +w(=£(m))
We notice that for any ¢ € Z the jump chain of (A,, ;)men has the law of (£(m))men-

For any m € IN, we denote by 7, (m) (respectively 7_(m)) the time of the m-th upwards
(respectively downwards) step of &:

PE(m+1)=&m)+1) =1-PEm +1) =£(m) - 1) = (4.4)

72(0) =0and Vm € N, 74 (m + 1) = inf{m’ > 7. (m) [£(m) =&(m' — 1) £ 1} (4.5)

which can easily be seen to be finite. The processes (17— (m))men and (14 (m))men defined
by
n(m) = =€(r(m))  and 9 (m) = (- (m)) (4.6)
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for any m € IN are Markov chains on Z. Moreover, and one can check that £ and —¢ have
the same law, which implies n; and 7_ have the same law. In what follows, 1 will refer
to a Markov chain with this law.

For any m € N, i > X,,, — |en], at time 3, the process (X,,/)m en is at the left of i,
thus the last time (X, )./ ew Was at i it went to the left, hence the last step of (A, ;)m/en
before time ,, was an upwards step. Moreover, the number of upwards steps made
by (Am/,i)m ey between times m and 3, is [{m < m/ < B | (X, Xoy1) = (4,1 — 1)} =
E; ;— Ui This implies Ag- = (7 (é_ —0,0) = —n(é_ —{,,;) where ¢ starts at
A:;l, son starts at —Ap, 4, w1th the trans1t1ons of§ n 1ndependent of Fons A j < 1.
Similarly, if i < X, 4 |en], we have A, = n(ﬁgmyi — £ ) with n(0) = A, . We deduce

that

7

n(LI"7) + 1/2 with (0) = —A,,; ifi> X,

(2

(B {n(Lm’ +1)+1/2 with n(0) = —A,,; if X — |en] <i < X, @

Vie Z,¢TF = gLl 4+ 1/2 with 7(0) = Ay, .

In [23], it was proven that the measure p_ defined as follows is the unique invariant
probability measure of 7:

R B L2/ s
VieZ, p_(i)= m H w0) with Z(w Z H W) (4.8)
j=1 €7 =1

We notice that foranyi € IN, p_(—i—1) = p_(%), so p_ is symmetric with respect to —1/2.
Therefore, we may define the measure p; on Z by

Vi€ Z,py(i) =p-(i—1) = p—(—i). (4.9)
p— and p, have respective expectations —1/2 and 1/2. We also denote py the measure
on 3 + Z defined by

1 1
Vi€ 5+ Zopoli) = p- (12> (4.10)

which has expectation 0. The measure pg is very important, since the law of the
¢Tma®tB Tt E will be close to po under “good conditions”. In particular, these
variables will have expectation close to 0.

m,i

Remark 4.3. We could study our random walk (X,,),cn “starting from a random envi-
ronment”, that is setting the Ay ;, ¢ € Z to random variables instead of setting them to 0,
and then evolving (X,,)men and the (A, ;)men, @ € Z according to the usual rules. This
yields a new random walk (Xm)mE]N and an “environment” process on (Am,i)melN,iEZ
which evolves as follows:

1. We choose the Aoﬂ-, 1 € Z to be independent, with distribution p_ for: < 0, p4 for
i > 0 and % fori = 0. We set Xy = 0.
% _ % 1 _P(¥ Y 1) — wd,, %)
2. Foranym > 0, P(X,,41 = X;n+1) = 1-P(X,11 = X0 —1) = P o
=A%~ (Xm+1 —Xm)-

3. Form > 0, we set Am+1}i = Am’i fori # Xm and Amﬂ %,

Let po be the law of (Ag;);ez and for all m > 0 let pu, be the law of (A,, ;);cz shifted
by the “tagged particle” X,,, that is the law of (Am, %, +i)i€Z‘ Then direct calculation
shows that for each m > 0, u,, = pp. So with this particular measure g for the initial
environment, the distribution of the environment is stationary, hence the increments of
(Xm)men are stationary. Though of course knowing that X; = 1 will typically mean that
the conditional distribution of (Au)iez shifted by 1 is not py.

EJP 29 (2024), paper 98. https://www.imstat.org/ejp
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A slight modification of our arguments (to deal with the distribution of (Ao,i)iEZ)
shows that the motion of (X,,)men is governed by Theorem 1.2. Unlike the motion of
the tagged particle in an exclusion process with a non nearest neighbor jump kernel or
in high dimension with an initial product measure (see [8]), our environment does not
evolve outside of the position of X,,L. In this it is like the Markov chain cookie random
walk studied by [10] where the intial distribution of the environment is 7_ for: < 0, 7+
for7 > 0 and % = 7 for ¢« = 0. However, in the Markov chain cookie random walk,
the “tagged particle” does have a motion that (under diffusive scaling) converges to a
Brownian motion, which is not the case in our model (as the limit has non-Brownian
scaling properties). The two models, though similar, thus have a different behavior, and
the reason for that is not clear, though obviously the operator for our process does not
fall into the domain of Kipnis-Varadhan analysis.

In order to control the behavior of 7, thus of the (™8, ¢+ F

i i , we will need the
following lemma, proved in [23].

Lemma 4.4 (Lemma 1 of [23]). There exist constants ¢ = ¢(w) > 0 and C = C(w) < o
such that for any m > 0,

P(y(m) = ilp(0) =0) < Ce ™ and 3" [P(n(m) = iln(0) = 0) — p_(i)| < Ce™™".
i€Z
We now state two easy coupling lemmas, which we will need in order to define
auxiliary random variables.

Lemma 4.5. For any probability laws p and v on Z, for any random variables V,, with
law p and U independent from V), uniform on [0, 1], one can construct a random variable
V., of law v depending only on V,, and U such that P(V,, # V, ) is minimal.

Proof. We suppose 1 # v, as if y = v we can take V,, = V,,. The construction is as follows.
. v(V,

If p(V,) < v(Vy), we set V, = V.. If (V) > v(V,), we set V, = V, if U € [0, Z324], and

foranyie Z\{V,},V, =iif Uisin

(u(vn V) = v(V,) EyeiV) 0D+ (V)

N(V;L) N(Vu) ZjeZ(V(j) —u(4))+ ’ N(Vu) N(Vu) Zjez(l/(j) —u(J))+
It is straightforward to check that V, has law v and that P(V,, # V,,) = >~ 2 (1(j) —v(5))+.
hence is minimal. O

Lemma 4.6. It is possible to couple two processes 1 and 1’ with n’(0) = n(0) — 1 so that
forany ¢ € N, n(¢) — 1 < n/(£) < n(0).

Proof. 1t is enough to couple n(1) and 7'(1) so that (1) — 1 < »’(1) < n(1). For this,
we set U a random variable uniform on [0, 1], and we set 7(1) = ¢ when U € (P(7(1) >
i+1),P(f(1) > )] for 7 = n or /. n and n’ have the right marginal laws. We only have to
prove that for any i € 7,

P/(1) >i+1) <P(p(l) >i+1) and  P(y(1) >i) < P(y(1) > i 1).

Now, for any ¢ € Z, one can check that P(7(1) > i) = H;-:ﬁ(o) #Zj()ﬂ) if ¢ > 7(0), and
P(7(1) >4) = 1ifi < 7(0). Since 1'(0) < n(0), we deduce P(n'(1) > i+1) < P(n(1) > i+1).
Now, if i < n(0), i —1 < 1(0), so P(n(1) > i) =P(n'(1) > i—1) =1, and if i > n(0) we
have

i—1

, w(—j) w(—j) / :
Pin1)>i)= [ ——7—=< — R pey)>i—1)
sty W) T Ty W)+ w(=))
since % is non-increasing. This ends the proof of the lemma. O
EJP 29 (2024), paper 98. https://www.imstat.org/ejp
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We are now in position to control the laws of the ATin i form > NO/2,i€Z, 1 €
{+, —}. Heuristically, the Ar. ; are steps of chains 7 or n; and these chains have made
a large number of steps before time T}, ; since m is large, hence the Ar. ; will have
law close to the invariant measure of or —n, that is p_ or p,. More prec1se1y, we have
the following proposition (remember the definitions of n and F,,, given in (1.4), (4.1)).

Proposition 4.7. For any m > N6/2, i € Z, . € {+,—}, there exists a collection of
random variables (ATL j)jez, an event BJ""*, and constants Cy = Cy(w,e) < oo and

co = co(w) > 0, so that when n is large enough, P(B)""") < Coe—con ™V Byt

contains {there exists i —n(*" D/ |en| -1 < j <i4+n@ D/ en| +1,Aq.  ;# Aqe 53,
By depends only on Fr. and on random variables independent from X, and the
(A ..j)jez are independent with the following laws:

o for.=—, AT% .j haslaw p_ forj <i—1and ATin ..j haslaw p, for j > i;
« forv =+, Aq. ; haslaw p_ forj <iand Ary. ; haslaw p, forj>i+1.

Proof. We write the argument for « = —; the case + = + is similar. We begin by
constructing (ATL i j)jez. This construction is inspired from the one in Section 3.3 of
[23]. We have XTL —1 =1, thus for j <+ — 1, the last time before T}, , that the process
(X' )mrez Was at J, 'it went to the right, hence the last step of (Am/y -)m/G]N before time
T!, , is an downwards step. Moreover, the number of downwards steps of (A, ;)m/en
before time T! . is £ . We deduce that Ap- ;=& (E;C, D) =i- (W ),

m,t T, J o

where the 7; _ are independent copies of  starting from 0 (and the §j are 1ndependent
copies of ¢ starting from 0). In the same way, for j > i, Ap- =& (T+(€T, J)) =

—Nj+ (- J) where the 7n; , are independent, independent from the n; _, j < —1, and

start from 0. We will drop the index + or — from the n; 1 for convenience. By Lemmas 4.4
and 4.5, we can introduce random variables r; i.i.d. of law p_ such that for any j,
P(n;([N6/4]) # r;) < Ce=N/4. For any j, we define another copy of 1, (1);(£))¢> [N 4],
so that 7);([N0/4]) = r;, if n;([N0/4]) = r;, 1;(€) = n;(¢) for any ¢ > [N6/4], and the 7;
are independent. For j <i— 1, we set A S = (Z;, LV [N6/4]), and for j > i we
set Ap- . = —ﬁj(fi iV [NO/4]).

m,ir]

To show that the ATf _; are independent with the required laws, we notice that since
p— is invariant for n, 7; (6) has law p_ for any ¢ > [N6/4]. Now, for j > i, we notice that

(L. = E; g O E;, Tt depending only on the position of i and j with respect

nlz] m,i0

- _ - _ (-
to 0. Furthermore, KT; i ETm i —Ap- = nj,l(éT;N_l), and

™m,i’

we recall that {__ = = m, so one can prove by induction that F, . depends only on

m,i’ m,i?

the n;, ¢ < j’ < j, which are independent from 7};, therefore ATf . is independent from

the n;,,7;,, j/ < j, and has law p;. The same argument can be used for j <i — 1 to show

that é;_ _depends only on the 7;/, j < j' <iso ATf - has law p_ and is independent

71117

from the 7;,7;,, j > j. This implies the ATf jare 1ndependent with the required laws.
We now define B ~. We set
By T ={3jsothati—n@ V4 en| —1<j <i+n@ V4 en| +1,n;([NO/4]) #1751,
ng'éi’_ ={3jsothati—n@ V4 en| <j<it+n@ D/ en) |AL 4> pla—b/4y,

and By~ = Bg’l’i’_ U Bénéi’_ To show that B]""~ contains the required event, we notice
that forany j € Z, {7 = = Ap- .+ é;_ ~and \E‘_ - Zf;_ _,I <1, so we have
EJP 29 (2024), paper 98. https://www.imstat.org/ejp
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+ _ - _
|et i KTT_M-J| < \AT;M_”]-| + 1 and MT;,M‘H

we recall that é,;_ . = m. We deduce that when n is large enough, for any 0 < s <

n(@=D/4| en], if \ATL
fori—s—1<j<i—1,andif |Ap-

m,i?

é;;,wﬂ" < |AT;’N.| + 1. In addition,

m,i

Sl <n@ D/t foralli—s < j<i—1, then [¢f_  —m| < den(o+D)/2

m,i 0

;I < n(@=1/4 forall i < j < i+ s then |£;, —m| <
4en(et1/2 for i < j < i+ s+ 1. Consequently, if (Bg’};v*)c is satisfied and n is large
enough, foralli —n(*D/4|en| -1 <j <i—1wehave £ = >m—4en(®t)/2 > [Ng/4],

m,i0

and forall i < j <i+nl@Y/4|en| +1we have {__ = >m —4en(®+1/2 > [Ng/4]. This

m,ir

implies that if (B;"" )¢ is satisfied, for all i —n(®~V/4|en| — 1 < j <i+nle~V/|en] + 1,
Ap- ;=Ap- ,, thus Bj""" contains the required event.

m,i,—

To see that B;""~ has the required dependencies, we notice that B;3"~ depends on
Fp- . Furthermore, if (B)'3" "~ )° is satisfied and n is large enough, for all i—n(*~1)/4|en | —

m,i

1<j<i-1wehave/;  >[N@/4]andforalli<j< i +nl@=Y/4en] + 1 we have

m,i

o ; > [N6@/4], so the events {n;([N6/4]) # r;} depend only on F- and on the
random variables used to construct the T '

We now bound the probability of B;""~. By the definition of the 7;, when 7 is large
enough, P(By'{"") < 3en(@F3)/4Ce=¢N/4, Furthermore, when n is large enough, if Bj'"~
is satisfied by some i — n(®~1/4|en| < j <i—1 (the case i < j < i+ nl®"V/4|en] is

similar), and if we consider the largest such j, then \6;, —m| < 4en(@t1)/2 g0 there

exists an integer m’ € [m — 4en(@TV/2 m 4 4enlet1)/2] such that Inj(m’)| > n(@=1/4 This
implies

P(Bys7) < > P([n;(m)| > nle=1/%)

[j—i|<n(a=1)/4|en], |m’/—m|<4enla+1)/2
iefén“‘*”/“

< 32e%pBat5)/4 _
- 1—e¢

)

the latter inequality coming from Lemma 4.4. This ends the proof. O

Proposition 4.7 gives us a good control on the A, ; when m is some T, , ;, with
m’ > N6/2. However, we will need to understand the A,, ; when m is T, k € IN. In
order to do that, we establish the following proposition, which states that outside of
an event of very small probability, each T} will be one of the T}, ;, for some random
m' > NO/2,i' € Z,. € {+,-}.

Proposition 4.8. We can define an event B such that for any k € IN*, if B occurs
and n is large enough, T, = T} ; or T, , for some integers |[N§| — 2n(**9/> < m <
|ING| + 2n(@+t4/5 and | Nz | — n(@t9/> < i < |Nz| + nle+9/5, In addition, there exists a

constant ¢ = ¢/(w) > 0 such that P(B) < e=¢/n( TV hen n is large enough.

Proof. By the definition of the T}, if n is large enough, there exist m € N, |Nz]| —
n(et9/5 < i < |Nz| +nlet9/5 and « € {+, -} so that T}, = T!, ,, hence we only have
to obtain the property on m. Roughly, the idea of the proof is that at Ty = Tﬁve I[Nz’
Proposition 4.7 allows us to control the A, ;, which are tightly linked to the Zi) ;j» which
allows to show that the Ei ; cannot be too small, thus since T}, > Tp, the Ei j cannot be
too small which yields a lower bound on m. Moreover, this control on the éi, j also implies

that they cannot be too large, therefore KLTO [(N-na+9)/10)) < [(N4n@+9/10)9 | thus T, <
TL

(N (2 49)/10)9] [ (N Ln(eto)/10),| - Since the random walk cannot reach |(N + n(@t9)/10) 4]

from | Nz | between times Ty and T}, this implies T}, < TL[(N+n(‘*+9>/1O)0j,L(N+n(0‘+9)/10)xj'

EJP 29 (2024), paper 98. https://www.imstat.org/ejp
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We can exert the same control on the (* at time T (Ngntat9/10)9) | (N-4nla+o/10),| @S at
time Ty, which allows us to prove that m is not too large.

We now construct the event B, which will roughly mean “the ¢* don’t behave well”.
We suppose without loss of generality that we work with 7, =T and x > 0. For

i € {+,—}, we define

+
[NO],|Nxz|

B; = {3i € Z with |i — [Nz|| < 2n**/5> and |05, ; — ¢5, , + (i — [ Nz])/2| > nloT)/10}

with y = |Nz| if i = + and y = [ Nz] 4+ 1 if f = —. To shorten the notation, we will write
in this proof

T = TLL(N+n(“+9)/1O)9J,L(N+n("‘+9)/10)xj . (4.11)
We define

B = {3i € Z with |i — |(N +n(@+9)/10)z ]| < 2platd)/s
and |¢; i T EZTZ,L(N+n<a+9)/1°)xJ + (i = (N 4+ n @10z ]) 2] > plato)/10},

If z < 0, we would replace (i — |[Nx])/2 by —(¢ — |[Nz])/2 in B;, and similarly in 5.
If we had = = 0, we would replace |(N + n(@+9/10)z| by |n(@+9/19| in B; we would
replace (i — | Nxz])/2 by |i/2|, and in B. we would replace (i — [ (N + n(@t9/19)2])/2 by
(|i| — [n(@F9/10]) /2. Finally, we define B= B, UB_UB, UB".

We now prove that if B¢ occurs, T} has the desired property. We notice that since
Ty, =T, ;, we have m = {4, ;. We first prove the lower bound on m. We have m = {4, ; >

Ury i Moreover, | Nz || < 2n(e*+4)/5 and B¢ occurs, hence s, =, y +(i—|Nz])/2| §
(/10 withy = [Nz if 1 = +and y = [Na]+1if s = —. Since To = Ty ypyr if e =
we have (1 ey = = |N0J, hence & ; > [N6| — n(@F)/10 — p(oFt4/5 1f , = —, we have
142, Ive 41 eTO (na)| < 1and o e = LINOJ, thus ¢4, > | N0 7n<a+°>/10717n<a+4>/°.

In both cases we get (4, ; > |[N6] — 2n(e+4/5 when n is large enough, hence m >
NG| — 2n(atd/5,

We now prove the upper bound on m. In order to do that, we notice that || (N +
n(@t9N/10) 5| — | Nz]| < 2n(@+4)/5> when n is large enough, thus since B¢ occurs,

U (v amtosmiong) — Uy + ([N +n@9/10)g] [ N]) /2] < n(+5)/10

with |04 . — | N@]| < 1. This implies

To,y

U L amtosmors) — [NO] <010 _([(N 4 n(+9/0)2]  [Na])/2 4+ 1 < nloFD/10

when n is large enough, hence £ | v . at9)/10),) < | (N 4n(e+9/19)9 | which yields Ty <

L(NJM(MQ)/IO)QJVL(NHL(MQ)/IO) |- Furthermore between times T, and T} the random walk
stays at distance at most ken+1 of | Nz|, hence when n is large enough it does not reach
|(N 4 n(@t9/10)2 |, therefore T}, < T} (N ynet9)/10)) | (Npnlatoioy, = 1° (see (4.11)),
which yields m = ¢4, ; < £4, ;. Now, [i — [Nx|| < nl*T/5, thus |i — [(N +nleT9)/10)z || <
2n(@+4)/5 when n is large enough thus since B! occurs,
L(NV +nlet 002 ]) j2] < n(@HD/O, 50 b Ui, | vy ierinrsoyg) T
addition, by the definition of T* we have Cre |(Npntat9/10y,] = = [(N + n@t9/19)g|, thus
m < e%“'«i < L(N + n(a+9)/10)0J + nlat+5)/10 + n(a+4)/5 < LNQJ + Qn(a+4)/5.

We now prove the bound on P(B) with the help of Proposition 4.7. It is enough
to find ¢/ = ¢/(w) > 0 so that P(B_) < =2l TVWAIY Ghen n is large enough, as
the probabilities P(B),P(B/,),P(B.) can be dealt with in the same way. Moreover, by

Tei = Upe | (Npntaror 10yg) T (1=
n(a+5)/10+n(o¢+4)/5‘ In

Proposition 4.7 we have IP(B%NGJ’LN“"J’U < Coe_c(’"(%l)/4 when n is large enough, so it
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is enough to prove P(B_ N (BYVW:N#lH)ey < e=an'™ for some constant & = &(w) > 0
when n is large enough.

In order to do that, we set i € Z so that |i — | Nz]| < 2n(@*9/5 We will write
bryi = ry ey T (i — |[Nz|)/2 as a sum of i.i.d. random variables as follows. We suppose

i < |Nz|, then
itl
Ui = Uy ey = IN2]) /2= (g oy — L, = 1/2).

j=|N=z]

Now, we recall that x > 0 and n® < N, so when n is large enough ¢ > 0, which yields that
forany j e {i+1,...,|Nz|}, £, ;=5 . — 1, hence

it1 itl
e;o,i - €;07\_ij + (i~ [Nz|)/2 = Z (E;o,j—l - eJTro,j—1 +1/2) = Z (ATo,j—l +1/2).
j=|Nz] j=|Nz]

Moreover, {7, |y, 41 = £¥0,LNxJ' thus £ no ) =7y (N2 +1 = 1y, | N2 _Z;O,LN@ = Aqy, | Na)-
We deduce
i+1
Cryi =gy Naj 1 T (0= [N2])/2 = Aqy | na) + > (Apo1+1/2).
Jj=|Nz]

Now, if (B} ) oecurs and n is large enough, Ag, ; = Ag,  forany j € {i,..., | Nz|},

thus
1+1

Ui =y vajer T 6= [N2)) /2= A \naj+ Y (Agy 51+ 1/2).
Jj=|Nz]

Therefore it is enough to show P(|Ag, |n.| + ZT:LN»LJ (Agy j—1+ 1/2)] > nlat5)/10) <
e=2¢0n'"" for some constant ¢o = ¢(w) > 0 when n is large enough. Now, by Propo-
sition 4.7 ATM Nz) has law p_ which has exponential tails, so there exists a constant
Go = Go(w) > 050 that P(|Ag, | va| > n(@F9)/10/2) < g=on =/
Therefore it suffices to prove P(| Y11\ v, (Ax, ;-1 + 1/2)] > n(eF9)/10/2) < e~n'1/3
when n is large enough. Furthermore, by Proposition 4.7 the Az, ;_; are i.i.d. with law
p—, thus the Ag, ;1 +1/2 are i.i.d. with law py.

Consequently, we only have to prove that P(| Z]Lf'l”_i (| > n(@+5)/10 /9) < ¢=n'/"/3
when n is large enough, where ((;);en are i.i.d. with law py. Moreover, p, has exponential
tails, so E(e*¢*) < 400 when s > 0 is small enough. Since p, is symmetric, when n is
large enough,

when n is large enough.

| Na]—i (a+5)/10 (Ne]—i (a+5)/10
n n
P Zgj>T = 2P ZCVT =
j=1 j=1
|Na|—i o |Ne|—i
2P [exp [n~(at4/10 Z Gl > exp(n1/10/2) =2""’E (exp (n*<a+4>/1ogl)) .
j=1
4.12)
We now study E(exp(n~(*+4)/10¢,)). We have
exp(n=(+/10¢)) — 1 4 p-(a+a)/10¢, 4 %nf(oﬁrél)/SClQeC{
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with |¢]| < |n~(@+4/10¢,|, hence

1 / 1 I
E(exp(n@t9/19¢)) = 1 + B <2n‘(@+4)/5cfe“> S L - (S}

Now, since po has exponential tails, there exists ¢ = ¢(w) > 0 and Cy = Cy(w) < +00
so that E(¢Ze®l¢1l) < €. When n is large enough, E(¢2eln™ "Gl < B(¢2efolil) < ¢y,
thus E(exp(n=(@+/10¢))) < 1+ n_(“+4)/56~'0/2 < en” “tY/°Co/2 Erom that and (4.12) we
obtain

[Nz |—1
P Z Gl > n(a+5)/10/2 — 9= /1/2,(INe]—iyn=(*FD/5G, /2
j=1
< 2e_n1/10/262n(a+4)/5n7(a+4)/560/2 _ 2€_n1/10/2€éo < e_n1/10/3

when 7 is large enough, which ends the proof. O

Remark 4.9. It is possible to use the main result of [23] to craft an event B for which
the proof is much simpler, but such that B° only ensures N6/2 < m < 5N@/2. This is not
enough for our purposes, since we will later use union bounds on events indexed by m,
the probability of each event of order e—¢(" n)?,

We will need some other auxiliary variables. We recall that the L;" £ ¢ +B ¢ +E

are defined in Definition 4.1, the T , in (1.5) and the ATL L in Proposition 4.7. We
begln by constructlng, for m > N0/2 i€Z,1€{+,—}, an equlvalent of the processes
(L ™) ez and (L ™ “+)76Z ‘when the environment at time T%, ; is (At. _;)jcz instead
of (AT;J,, )jez”. We denote m = T, ; and i = Xt for short. 1

We define (Em’_)jez as follows. For j < i — |en] + 1, E;ﬁ’_ = 0. By Fact 4.2,
for any j > i — |en| + 1 we have LJ+1 = LT=— + er_?z,—,E _ C;_ﬁ,—,B' and by (4.7), if
i—len]+1<j <4 "% =L + 1) + 1/2 with (0) = —Ap, ;, while if j > i,

C}ﬂ’*’E = n(Lfb’*) +1/2 with 1(0) = —A;;, ;. We can define 7] so that 7(0) = —A;, ;, the
transitions of 7 are independent from (A, j);.ez, and 7 = n if (By" e is satisfied, n

large enough and |j — i| < n(*=1/4|en|. We define Lm’ by induction by setting LJJrl =

L™ +q(Ly~ +1)+Am]+11fsz€nJ+l<j<ZandL =L (LT ) + Ay

if j > .

We define (L7"");cz in the same way. L7"" = 0 for j > i+ [en], L:’if;nj = 1.
For any j < i + |en], Cm B n(L;'fJ) 1/2 with n(0) = A, ;, and we may define 7

so that 7(0) = Ag ;, the transitions of 7 are independent from (A, ;)jez, and 7 = n
if (By""")¢ is satisfied, n large enough and [j — i| < n(*~1/4 Lanj We then define
Lt = LT+ 0L ) = Ay +1if i < j <i+ [en] and LT = LT +0(L7y) — Am
1f] < i. When n is large enough, if (By""")¢ is satisfied, L m + L;” % for any j € Z with
|5 =il < (=D en].

Now, for any m € IN, we are going to construct random variables Cm 1

,JEZ,
independent from F,, such that “when L (more precisely, L"" j "~ or LT 41 *) is not too small,
¢t = ¢ and the (", j € Z are iid. withlaw py”, where pq is defined in (4.10).
Form > N0/2,i € Z, v € {+,—}, we will also define random variables (;" =1 ez,
independent from (Ar. _ ;)jez and equal to the (™ *1 when (B]“*)¢ is satisfied. The
superscript I stands for ‘independent”.

m,—,[

We begin by constructing the ((j )jez. where m € IN. If m = T, , for some

m' > N0/2,i € Z, . € {+,—}, we construct the (éf’_’l)jez at the same time. Let j € Z.

EJP 29 (2024), paper 98. https://www.imstat.org/ejp
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Ifj < X, — |en], C;”’f’l = C_;-”’*’I will be a random variable of law py independent from
everything else. If X,,, — |en| < j < X,,,, by (4.7) we know that C;”’_’ =n(Li"" +1)+1/2
with n(0) = —A,, j, and (if m = T}, ;) we remember the definitions of 77 and L;”’_ given
above. We denote 7' = inf{¢ > 0|n(¢) = 0} and T = inf{¢ > 0|7(¢) = 0}. Let U be a
random variable uniform on [0, 1] independent from everything else. We can apply the
construction of Lemma 4.5 with n(T + [(Inn)?/2]) and U to construct a random variable
A of law p_ and so that P(n(T + [(Inn)?/2]) # A) is minimal, and with (T + | (Inn)?/2))
and U to construct a random variable A of law p_ and so that P(7(T + |(Inn)?/2]) # A)
is minimal. If (B)""")¢ is satisfied and 7 is large enough, we then have A = A. Then,
if L'"" +1—T > (Inn)?/2, we define ;" T =y (LI +1 =T - [(Inn)?/2]) + 1/2,
where 7/(0) = A and 7/(.) = (T + [(Inn)?/2] + -) when (T + L(lnn)z/QJ) = A. If
L{"" +1-T < (Inn)*/2, we set ;" 1 — (, where ( is a random variable of law
po independent of everything else. Similarly, if L]~ + 1 — T > (Inn)?/2, we define

T = (L 1= T [(Inn)?/2])+1/2, where 7/(0) = A, 7/(.) = 7(T+ [ (lnn)?/2] +-)
when 7(T + [(Inn)?/2|) = A, and 77 = 1/ when (Bj""") is satisfied and n large enough.

IfLT" +1-T < (Inn)?/2, we set (;~ ' = (. 1f j > X,,,, we use the same construction
W1thL " replacing L7 + 1.

We use a similar construction for the ;™ I e 7. Foranyj € Z, G +E n(L;Tjr’]L) +
1/2 with n(0) = A,, ;. We take similar 7" and A, as well as T and A when il — |en] <
j <itl+ [en]. LT — T > (Inn)?/2, we define (""" = /(L}y — T — [(Inn)?/2]) +
1/2, where 7'(0) = A and 7/(.) = n(T+ [(Inn)? /QJ + ) when 7(T + [(Inn)?/2]) =

If L;T{ T < (Inn)*/2, we set ¢;" 1 — ¢, where ( is a random variable of law p
1_ndependent of eve1:yth1ng else. In the same way, if L;’fﬁr T > (h} n)?/2, we define
G = /(L7 — T — [(lun)*/2]) +1/2, where 7'(0) = A, 77/(.) = i(T + [(lun)*/2] + -)

when (T + | (Inn)? /2j) =A,and 7’ = when A, j = Ay, ;. IELTyT — T < (Inn)?/2, we
set f;”’J“I =¢.

Some properties of the random variables defined thus are stated in the following
proposition (the definition of F,,, was given in (4.1)).

Proposition 4.10. Foranym € IN, 1 € {+,—}, ((""");cz are i.i.d. with law po, indepen-

dent from F,,, and depend only on Fz. and on a set of random variables independent
m,—,I

from everything else. Moreover, for any i € Z, (] is independent from CT”’_’B, (jm’_’E

for j < i, and (""" is independent from G + B7 (m ™ for j > i. Furthermore, for any

m > N0/2,i€Z,.€{+,-}, for/ € {+,-}, (C - ) areiid with law p,, indepen-

m,i’ 7I

dent from (ATL ..i)jez, for any wl—|en] <j<ial+ |en], ( )j'>; is independent

N T T
from (LTm"“ ’ ) i’<; and (C mot )jr<j is mdependent from (Lj,"“’+’ )j’>;. In addition, if

) =1 T:n i’_’I 7T»Lm i I T»Lm i o
(By""")¢ is satisfied and n is large enough, C =™ and ¢; ™ o G *
for anyitl — |en| < j < il + |en].

Proof. We only prove the 1ndependence and distribution properties for ("™ ™*, as the
proof is the same for ¢!, (Tm.i>=1 and (Tm.» ™! and the other claims are clear from

the construction. If j < X,,, — |en], the result is clear. If X,,, — |en| < j < X,,,, we notice
that (7 + |(Inn)?/2|) is independent from T, F,,,, C]T’*’B, C}”’f’E, CJT’*’I for j/ < j, so A
also is, as well as the transitions of 7). Consequently, 7'(L}"" +1—T — |(In n)?/2]) is
independent from T, F,,, CJT’*’B, (;7*7’}5, C;’,l’f’l for 7/ < j and has law p_. We deduce
that C;"’f’I is independent from F,,, C;f”’f’B, (]’.7’7’E,§;’7’7’I for j/ < j and has law pg. If
j > X, the proof is the same as for j < X,,, — |en|. O
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5 Bad events

In this section, we are going to prove that outside of “bad events” of small probability,
the random variables defined in Section 4 behave well. We remind the reader that € > 0,
that the L™, (%5, (™%¥ are defined in Definition 4.1, and the ¢ just before
Proposition 4.10. For any m € IN, we define two sequences (1™~ (¢))sen and (I"™ " (£))ren
by I~ (0) = X,,, — len], I™ (£ +1) = inf{I"™ (¢) <i < X, | L"" < (Inn)®} for £ € N
and 1" (0) = X, + |en], I™ (0 + 1) = sup{X,, < i < I"™F({) |Lﬁfr (Inn)® + 1}
for £ € IN. We also denote /iy = max{/ > 0|I™~(f) < +oo} and lps = max{/ >
0|I™*(¢) > —co}. We define the following events (we stress that they are different from
the events defined in Proposition 4.7 and its proof).

={3i € {Xpm—|ne)+1,..., Xpu—[(Inn)®|},Vj € {i,...,i+[(Inn)*|}, LT~ < (Inn)’}},

m 1 -
B ={3ie{Xn+(Inn)®|+1,..., Xpnt+|ne]}, Vi {i—[(Inn)®],... i}, LT <(Inn)®+1}},
By = {{Xm <i< Xp+nV/4en||0< L < (Inn)*}| > (Inn)5},

B o ={{Xm —n* D/ *en] <i< X0 |0 <L < (Inn)®} > (Inn)®},
= {Jie{X,,—|ne|+1,..., X+ |ne|} such that L7~ >(Inn)? and ¢ F £},

B, 3=
B 3 ={3i€{X,n—|ne],..., Xp+]|ne|—1} such that L} > (Inn)? and ¢t B emtiy
3%4 = {{Xm = [en] <i < X, |0 < L < ()} > (lnm)* v/},
4 = {{Xm <i<Xpm+ |en] |0 < Lz+1 < (Inn)® 41} > (Inn)%/n},
ms =131 € {X,, — |ne| +1,..., X, + |ne]} such that
¢ > (Inn)?, [ F > (Inn)? or (¢ 7] > (Inn)?},
B}, s ={3i € {Xmn — [ne] — 1,..., X, + [ne] — 1} such that

7”

G > (mn)?, |G > (nn)? or ¢ > (nn)?Y,

B, = max E Crm” ,(z) > (In n)7n1/4 or max E Crmo- ,’ 0> > (In n)7n1/4 ,
’ 1<4, <4 <[171717;1x7 0=t 1<y §62<émax 0=01
Bl o= max E (it I/) >(Inn)"™n**or  max E C}nmtg > (Inn)nt/4.
1<t <b<tma” | )= 1<t<b<mat | )27
— — + on i
Moreover, for any r € {1,...,6}, we set B, = U(BTL »UBr. ), where the union is

n |[NO| — 2n(etD/5 <m < LNHJ + 2n(etD/5 | Nz | — n("‘+4)/5 < i < |Nz| 4 nlotd/s,
v € {+,—}. Finally, we set By = |JBj"" “* (see Proposition 4.7 for the definition of the
By ), where the union is on the same indexes as before. The goal of this section is to
prove that P({JS_, B;) is small (Proposition 5.8). To achieve it, we will deal with each
“bad event” separately.
Proposition 5.1. There exists a constant ¢; = c¢;(w) > 0 such that when n is large
enough, P(B5 N B;) < e—c1(lnn)® ang P(BS N By) < ecrlin n)?,

Proof. Let |[N6O| — 2n(@+t9/5 < m < |NO| + 2n@+D/5 |Nx| — nletD/5 < < | Nz —
n(®+4/5 and ¢+ € {+,—}. We are going to bound the probability of (B""*)° N By, , and

(By")en By. ., (the B - can be dealt with in the same way). We write i = i.1 =
Xp. andm =T, ’
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By Fact 4.2, for any i — |en] < j1 < jo, L?Z’f - Lm’f = ij Jll( —E _ (m’f’B).
Instead of tackling this sum, we will consider a more amenable Z” 11 A;, where the
random variables A;, j > i — |en], are defined as follows. We fixj >i— LanJ and we
recall the Ay, ; defined in Proposition 4.7 as well as the ]3;“’7 and 7 introduced before
Proposition 4.10. If i — [en| < j < i, by Lemma 4.6 we can couple 7 with a chain 7 such
that7(0) = —Ay, j—1and forall £ > 0, 7(¢) < 7(¢). We thenset A; = (L™ +1)+Ap j+1,
which is at most Cm’ B _ CJ”_@’*’B when (B{""*)¢ is satisfied and n is large enough. If
j>i, weset A = n(Lm’ V1) + Ay, ;. For any zo G {z L g| + ;i — [(Inn)}, we
denote K;, = {3j € {io +1,...,i0 + | (Inn)8]}, ] —m ;> (lnn) } for ip > i+ 1, we
denE)te Ki, ={37 € {io+1,...,00 + L({nn) 1}, Zj i Ajr < 7(1117}) }. Finally, for any
j>i—|ne|l+1, wedenote G; =o(Aj,i— [ne] +1< 7 <];Lj,’_,i —|ne] +1 <5 <j).

We are going to prove the following.

Lemma 5.2. There exists a constant ¢; = ¢;(w) > 0 such that when n is large enough,
for any i € {i— [ne] +1,...,i—|(Inn)®]} orip > i+1, we have P(K¥, |G;,) < e almost
surely.

Let us show that Lemma 5.2 implies sufficient bounds on P((B5""*)¢ N Br. ,) and

P((Bg"") N By ).

m,i’

We begin with P((By""")° N Bx. ). IE (B "4)e s satisfied, n is large enough and

there exists ig € {i — [ne] +1,...,i— [ (Inn)®]} such that for all j € {i,...,io+ [(Inn)®]},
L™ < (Inn)? then forall £ € {0,..., [(Inn)*| =1}, forall j € {ip+£[(Inn)®| +1,... 40+

(£+1)|(Inn)5]} we have L7~ LZ:#ZL(ln ey T (Inn)?, thus forall £ € {0,..., [(Inn)?] -1},
K¢ is satisfied. We deduce that when n is large enough,

i0+£4 | (Inn)S |

i~[(nn)® L(nn)*] -1

M, i,L — c —C nn)?
BBy nBr, )< > Pl (] Kijuaune | < nee @t
io=i—|ne|+1 £=0

which is enough.
We now deal with P((B5""*)° N By. ). We define the following random variables

when possible: 71 = inf{j > i|0 < L7~ < (Inn)*}, and for £ > 1, 1,4y = inf{j >
7o+ [(Inn)®] [0 < LI~ < (Inn)3}. If (Bg-™")e N Br. s satisfied and n is large enough,
T|(Inn)2| €XIStS, T|(Inn)2] < E—i—n(a_l)/ﬂ n|—|(In n)6j —|—1 and for any ¢ € {1 .y [(In ’I’L)QJ
1}, LT~ > 0forj € {r,..., 7+ [(Inn)®|}, since if j > 7 is such that L7"~ =0, L}~ =0
forall j* > 4. In addition, if (Bgl’i “)eis satlsﬁed n is large enough and j < i+nle 1)/4 len],
when L7~ = L™~ > O we have 4; = (J"" ™ —C;-” ~P. We deduce that if (Bj"" L)Cﬁli;,;w_,2
is satisfied, T|(1nn)2| €Xists, T\qnn)2) < @ +n@ /4 en| — |(Inn)®] + 1, and for any ¢ €
{1,...,[(Inn)?| -1}, K¢, occurs. This yields P((B;""*)*NBx. 2 < e=e1(Lnm)*]=1) which
is enough. o

We now prove Lemma 5.2. To proceed, we will need the following claim:
Claim 5.3. Letig € {i — |ne| +1,...,i— [(Inn)®|} oriy > i+ 1. For any j € {iog,...,io +
[(Inn)®| — 1}, p > 1, A; € LP and ]E(A |G;) = 0. Furthermore, there exist constants
e = c(w) >0, 0 = Cl( ) < oo such that for any j € {ig,...,io + [(Inn)8| — 1},
E(A3|G;) > e and E(|4;/°|G;) < Ch.

Proof of Claim 5.3. We suppose iy € {i—|[ne]+1,...,i—[(Inn)®]}; the case iy > i+1 can
be dealt with in the same way. Let j € {io,...,io+ [(Inn)®] —1}. Then 4; = ﬁ(i?’f +1)+
Ay, ; + 1 with 77(0) = —Ay, ; — 1. By Proposition 4.7, Ay, ; has the law p_ defined in (4.8)
and is independent of G;, so the chain 7] is stationary and independent of G;. Moreover,
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L™ is G;-measurable, so conditionally to G;, 7j(L}"~ + 1) has law p_. Therefore Ay, ;
and ﬁ(f,;"’_ + 1) have exponential tails, so A; € L? for any p > 1. In addition, if we write
Aj1=An;+3and Aj, = ﬁ(f/;"’* +1) + 1 for short, conditionally to G; both A, and
A, 5 have the law p, defined in (4.10). This implies E(A;|G;) = E(A;1 + A;2/G;) = 0.
Furthermore,

E(|A;°|G;) < E(1A;11°(G;) + 3E(|A;11%[4;,2]1G;) + 3E(|A;11|14,21%1G;) + E(|A;21°|G;)
< E(14;11°1G)) + 3E(|4;.1141G;) P E(|4;21°(G;)"/?
+ 3E(14;11%1G,) P E(|4;21*1G,)"? + E(|4;.2%(G;)

by the Cauchy-Schwarz inequality. Since py has exponential tails, each of these expecta-
tions is bounded, thus (| 4,%|G;) is at most a constant depending on w.
We now deal with the lower bound of E(A3|G;). Since A; is integer-valued,

E(A31G;) = P(4; #01G;) = P((L]"" +1) # 01G;, Amj = ~1)P(Anm; = —1]G;).

Furthermore, P(A; ; = —1|G;) = p_(—1). In addition, if Ay ; = —1, 7(0) = 0, so
by Lemma 4.4 there exists ¢, € IN* such that for any ¢ > ¢y, P(7(¢) # 0|gj,Am,j =
—1) > 1p_(Z*). Now, for any 1 < ¢ < {, there exists a constant ¢;, > 0 such that
P(7j(¢) # 0|G;, A ; = —1) > &1 4. We deduce

1

BA21G,) > p- (- Dmin (5o (Z°), min i) > 0.

which ends the proof of the claim. O

Proof of Lemma 5.2. Let ig € {i — |ne] +1,...,i— [(Inn)®]} or iy > i + 1. We denote
it, = io + | (Inn)®] — 1 for short. Claim 5.3 1mphes > 7,110 Aj)ig<j<is+1 is @ martingale

with respect to the filtration (G;),~i—ne I We would 11ke to use a central limit theorem

for martingales to control the law of Z Aj/, but in order to do that we would need

i’=ig
ZJ,,Z A2 to be close to a constant when n is large enough, and we do not control it well
enough. We will therefore define another martingale.

Thanks to Claim 5.3, for any j € {io,...,i(}, we can define o; > 0 by 07 = E(A}|G;).

We set jo = inf{j € {io,...,i(} | ZJ,,% > M} which exists since 26: i O >
¢1|(Inn)®] by Claim 5.3. We define x € [0,1] by Zio mla + ko5 = w For any

j € {io,...,iy}, we also define A; = A; ]1{J0>j} + VrAjlj—;y and 6; > 0 by 77 =
E(A3|G;) = 031>y + Ko ]l{]0 ]}, so that Z; 0 Ay = ZJ-O,-I A; + \/kA;,. This implies

J=0

that for ig € {i — L el +1,. — [(Inn)8|}, if Z] ", Aj > (Inn)? then K;, occurs, so
P (K¢ \gZO ) < ]P(ZJ C Ay < lnn) |Gi,)- Similarly, for ig > i 4+ 1 we have P(K¢ |G;,) <

]P(Z] " ., A > —(Inn)3|G,). Consequently, to prove Lemma 5.2 we only have to find
a constant ¢; = ¢;(w) > 0 such that when n is large enough, for any iy € {i — [ne| +
L...,i— [(Inn)°]} we have IP(Z7 ", Aj < (Inn)3|G;,) < e~ almost surely (the case
ip > © + 1 can be dealt with in the same way).

Suppose by contradiction that it is not true. This implies that there exists a sequence
(N (k))ren tending to +oo so that for each k € IN there exists the following (the quantities
will depend on £, but we will not include this dependence in the notation as that would
make it too heavy) | N(k)0| — 2n(e+9/5 <m < | N(k)0] + 2n(tD/5, | N(k)x| — nlotD)/5 <
i < |N(k)z] —net/5, ¢ {+ -y and iy € {i — |ne] +1,...,7 — [(Inn)|} so that
]P(ZJ/ oA < (Inn)?Gy,) > H% with positive probability, where ¢} € (0,1) is the
probability that a random variable with law A/(0, 1) is at most \/—\/%
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For any j > i — [ne] + 1, we denote G, = ((4 -/)g,LmHK]—,q, (Em )ie[ne|+1<j7<j)-

Since Gi, = 0((A;)ine|+1<j<ios (I_’;‘hﬁ)ianEJ+1§j§io) since P(> .2, A < (Inn)®|G;,) >
4 with positive probability, there exists w € Z2(o~itlne))~1 guch that P(G;, = w) > 0

and ]P(Z] i

for martingales to the process (Z],_lo \ﬁ‘{;n Ay 1)io<j<iy+1 under the law P(:|G;, = w).
We denote this law P’(.) for short, and write /() for the expectation operator. We
consider the probability space ([[cn Q& @pew Fr ren Pr), where for any k € IN the
space (§2, F},, Py) is a copy of the probability space where the A;, j > i— [ne| +1, ET’f,
j > 11— |ne| + 1 corresponding to k live, with the probability measure P’ corresponding
to k. We denote P = @,y Pr and £ the corresponding expectation. For any k& € IN,
we may consider the (G;(k))i,x)<j<i (k) @and (A;(k))ix)<j<is () defined as previously,
but on the space (Q, F;,Pr). Possibly through extracting a subsequence, we can
assume n(k) is non-decreasing in k. Forany k € N, £ € {1,..., [(Inn(k))%]}, we define
Grw= (®k, 0 Gio(k)+e-1(K) @ ({0, 2% }). We then have G; , C G, ,. We will use

a central limit theorem for martingales with (Z;O(:}‘;)(E)fl m@w (k))o<j<|(nn(k))s)-

To do that, let us prove its assumptions. We first notice that for any k£ € NN, for
any random variable V' and any j > i, we have E'(V|G;) = E(V|G;). Indeed, for any
w' € 72U~0) so that P'(G; = (w,w’)) > 0 we have

A; < (Inn)?|Gyy = w) > 1+C1 . We want to apply a central limit theorem

E (Vi o) BVIg (. )
B (VIG; = (w,) = V16 =@wy) _ BV —@w)) P(Gi =w)

P'(Gj=(w,w)) PGy =w) PG;=(ww))
(V]l{G =(w,w’ )}) - (W, o

In addition, by Claim 5.3, for any j € {io,...,i} we have IE(4;|G;) = 0, which im-
plies ]E(flv|gj) = 0, therefore E'(4;|G;) = 0 This implies &(A;(k)|G ;s 11) =

Ve (lnn(k))
By Claim 5.3, for any £ € N, ig < j < ¢, A, is square-integrable with respect
to P, thus to P/, hence A; also, therefore A;(k) is square-integrable Furthermore,

L(lnn(k))GJ 1A210.\ — 2
A g th m IE A g;) = A g
Z (( io(k)+L— 1( )) | k[) is € same as Z’L 10 ‘ J) Zz %0 ( ‘ J)

7“1(1”) by definition of j, and &, so ZL (tan(®)°") 5((@\@@3 Aigy+-1(K))?|G) ) = 1. We

now prove the conditional Lindeberg condltlon. Let § > 0, for any k£ € IN Claim 5.3 yields
E(|4;]2|G,) < C for all j € {iy, ..., i)}, therefore

i 2
0 \/§ B
(=24 1
2 <\/a(1nn)3 o R RN L

) 2
0 5 ~
e (s 1) R NI 19
, Ve (lnn) Il Zmtmmz Ad1>6}

A, o) +0—1(K), Gr.0)ken, 1<4<L(1m(k))sj is a martingale difference array.

Z=’i0
if 3 i
0 1 V2o 1 23/2 0
<N E| - |— _A| |G = E(|4;1°165)
S\ o valnn)> T T8 62 ) ; ’
1 232 _ 1 2320,
< = (i —io +1)Cy =
g Ezl)’/Q(lnn)9 0 g 63/2(11111)3

[(nn(k))®] V2 ) 1 2%/2¢
Thus Zg:1 g((mAio(k)'M—l(k)) {\rg;ﬂ)g Aig () +e—1(K) |>5}|gk Z) < EW'

hence it converges to 0 in probability, which is the conditional Lindeberg condition.
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Consequently, by the central limit theorem for martingales found as Corollary 3.1 of
[6], Z}Q‘;"(’“” J_v2 5 Aiy(k)+0—1(k) converges in distribution to A/(0,1). This implies

vei(Inn)3
that when k is large enough, P(ZESI{"(M) ! rg;n)sAm kte—1(k) < \/*/C%) < %% hence

p 14¢ : _
]P’(Z] * ., Aj < (Inn)*) < =5, However, that contradicts the fact that IP(Z;OZZ-O A; <

(Inn)3|Gyy = w) > 1261 , hence our assumption was wrong, which ends the proof of the
lemma. O

O

Lemma 5.4. There exists a constant c3 = c3(w) > 0 such that when n is large enough,
P(B5 N Bs) < e-anm)?,

Proof. Let |N6§| — 2n(e+8/5 < m < [NO| + 2n(@FD/5 |Nz| — nloetd/5 < § < |Nz| +
ne*t4/5, e {+,~}. We denote m = T, , and i = XT:””. It is enough to find constants
C3 = Cs3(w) < 400 and & = é&(w) > 0 such that when n is large enough, for any j €
{i—len) +1,... i+ en]}, PUB™) ML = (nn)?, (7778 # (71 < Cye®lnn)®
and for any j € {i — |en],...,i + [en] — 1}, P((BJ""*)° N {L?ﬂr > (lnn)Q,C;ﬁ’J“E £
C;ﬁml}) < C3e=%(n")” We will write the proof for the (;ﬁ’*’E with j € {i—|en]+1,...,i};
the other cases can be dealt with in the same way.

We use the notatlon of the construction of the Cm’ T With this notation, Cjﬁ“_’E can be
different from Cj Tonly if n(T+ | (Inn)2/2]) # A or me + 1-T < (Inn)?/2. This yields
that if L?’f > (Inn)?, C;”’ £ can be different from ( Tonly if (T + | (Inn)?/2]) # A
or T > (Inn)?/2 + 1. Therefore it is enough to bound P(n(T + [(Inn)?/2]) # A) and
P((B]""*)* N {T > (Inn)?/2 + 1}). A was chosen so to have P(;(T + L(lnn)2/2j) #
A) minimal, so by Lemma 4.4, P(n(T + [(Inn)?/2]) # A) < Ce~clnn)"/2] which is
enough. It remains to bound P((By"" L) N{T > (Inn)?/2 + 1}). In order to bound
P((BJ""*)* N {T > (Inn)%/2 + 1}), we consider the chain ¢ so that 5 corresponds to
the n_ of £ (see (4.4), (4.5), (4.6)). We notice £(0) = n(0) = —A;, ;. We denote 77 =
inf{¢ > 0[&(¢ —1) =1,£(¢) = 0}; we then have T' < T, so it is enough to find constants
C3 = Cs(w) < 400 and ¢35 = 3(w ),> 0 such that when n is large enough, P((BJ"" )N
{T" > (Inn)2/2 + 1}) < Cgeca(nn)’,

In order to do that, we will notlce that if we denote i,, = min{i’ € IN* |w(i') #
w(—i')} — 1, then on {—iy,...,%,} the chain £ behaves like a simple random walk, while
outside {—i,...,%, the chain ¢ is biased towards 0. We consider the successive times
at which ¢ is at —i,, or i,: Ey = inf{¢ > 0|&(¢) = iy or —iy}, and for any ¢ > 1,
Ey={l>E;_1 &) =iy or —iy }. After each of these times, £ may try to go to 1 and
then to 0. Therefore, if 7" is large, one of the following happens: ¢ did not reach {—i.,, . }
quickly enough at the beginning to have spare time to make a lot of tries, or it did not
come back to {—i,, i, } many times afterwards to make other tries, or there were many
tries but they all failed. Let us formalize this. We denote p,, = w(iwﬂ)_ sz(_fzwfl) € (0,1/2).
We will also need a constant ¢3 = ¢3(w) > 0 that we will define later. We set A; =
(€] > =22 [ (mn)?/4}, As = {Eo > (nn)2/4}, A = {Ejynnys) — Bo > (nn)?/4}
and Ay = {T" > E|z,(nn)2) }- We have {T” > (Inn)?/2+1} C Ay UA3U Ay, hence we have

P((By")en{T" > (Inn)?/2+1}) < P((BJ")°NA) +P(ASNA) +P(A3) +P(Ay). (5.1)

Each of these four terms admits an exponential bound which is rather easy to prove, so
we do not give the proof here, but it can be found in the appendix of the arXiv version of
this paper [12]. O
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Proposition 5.5. There exists a constant ¢, = c4(w,e) > 0 such that when n is large
enough, P(BS N BS N B N By) < e~calnm)?,

The proof of Proposition 5.5 uses rather classical techniques, therefore we include
only a sketch here (the full proof can be found in the appendix of the arXiv version of the
paper [12]).

Proof sketch of Proposition 5.5. Let | NO| — 2n(®t9/5> <m < |N@| 4 2n(@+0/5 | Nz| —
n(e /5 < < |Na| +nlet/5, € {+,~}. We denote m = T, ;. We give the sketch
only for the — case, as the argument for the + case is the same. Since (3, ;)¢ occurs,
each “excursion of L™~ below (Inn)3” has length at most (Inn)%, hence to have B

m,4

we need at least (Inn)2,/n “excursions of L™~ below (Inn)3”, hence (Inn)%y/n — 1
“excursions of L™~ above (Inn)?”. On (B, )¢, when LT’f > (Inn)3 we have by Fact 4.2
that Ljﬁﬁr’f — L;ﬁ’* = ij’f’E — C;ﬁ"*’B = Cjﬁl’f"j — ij’f’B, hence L;ﬁ"* is roughly an i.i.d.
random walk. Therefore each “excursion of L™~ above (Inn)3” has probability roughly

1n to have length at least n conditional on the past “excursions”, thus to be the last
“excursion” we see as we only consider an interval of size en. Therefore the probability

of seeing (Inn)?y/n — 1 “excursions” has the appropriate bound. O

Lemma 5.6. There exists a constant ¢5 = c¢s(w) > 0 such that when n is large enough,
P(B§ N Bs) < e~s(nm?,

Proof. Let |N6§| — 2n(e+8/5 < m < [NO| + 2n(@FD/5, | Nz| — nloetd/5 < § < |Nz| +
n(@t/5, € {+,~}. We denote m = T, ; and i = Xq. . It is enough to find constants
Cs = Cs(w) < +oo and & = & (w) > 0 such that when 7 is large enough, P((B5""*)° N
{I¢] > (Inn)?}) < Cse=eMm” for ¢ € (P, P 7 j e fi—len) +1,...,0 +
len]}} U {Cf’+’B,Cf’+’E7§;ﬁ’+’I |j € {i—|en],...,i+ |en] — 1}}. The C;h’i’l are easy
to handle, since by Proposition 4.10 they have the law py defined in (4.10), which has
exponential tails. The CF’LB also are easy to deal with. Indeed, by Proposition 4.7 and
Definition 4.1, if (BST”"L)C occurs, (;ﬁ’i’B or jm’i’B
po, and py has exponential tails. We now consider Cf”f’E with j € {i—|en|+1,...,i+|en]}
(the (;ﬁ’J“E can be dealt with in the same way). Thanks to (4.7), CJ@’*’E = n(L;h’7+1)+1/2

or n(LT"_) + 1/2 (depending on j) with n(0) = —Ay, ;. Recalling the definitions before

F1 is equal to a random variable of law

Proposition 4.10, if (B]""*)¢ occurs and 7 is large enough, we have C;ﬂ’_’E = ﬁ(i?’_ +
1)+ 1/2 or ﬁ(f/;ﬁ’*) + 1/2 depending on j. Remembering Proposition 4.7, if j is such
that Ay, ; has law py, —Ay, ; has law p_, so 7j(L]"~ + 1) +1/2 and 7j(L]"") + 1/2 have
law pg, which is enough. Now, if j is such that Ay ; has law p_, —Ay ; — 1 has law
p—. By Lemma 4.6, we can couple 7] with a process 7’ so that 7/(0) = —A, ; — 1 and
7(0) —1 <7/ (£) < 7(¢) for any £ € IN. Then ﬁ’(i?ﬁ"f) and ﬁ’(i?’f + 1) have law p_, which
has exponential tails, hence the result. O

Lemma 5.7. There exists a constant cg > 0 such that when n is large enough, P(B§ N
B§ N Bg) < e—collnm’,

Proof. Let [NO| — 2n(®T9/5 < m < |N6| + 2n(>*/5, |[Nz| — nlet/5 < < [Nz| +

n(et9/5, ¢ {4+ —}. It is enough to find constants Cs = C’G(w) < 4ooand ég > 0
- ~ ~ 2
such that when n is large enough P((By""")°N (Bp. )N By, ¢) < Coe—%nn)* and
P((Bé’L’i")cﬂ(B$L ‘)4)CHB$L ‘,6) < @66—66(1nn)2_ Letus doit for By, ; the case B% 6l
similar. We denote m = T%, ; and i = X1. . We introduce a sequence (I~ (¢))¢en “like

(I"™~ (€))¢en, but for L™~ (the L™~ were defined before Proposition 4.10): 1™~ (0) =
i—|en), and forany £ € IN, I"™ = ((+1) = inf{I™ (¢) < j <i|L7"" < (lnn)®}. If (Bg""")°
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occurs and n is large enough, ™~ (6) = ™" (E) for any ¢ € IN, hence for ¢ < /iy,

(e *7(4) =—A, - —1/2 and e ; 0= }7; _’ (1) (the (m’_ T were also defined before
Proposition 4.10). By abuse of notation, the —Am)m,_(@ 1/2 and (Im (I) for ¢ > (0
will be i.i.d. random variables with law Po (defined in (4.10)) independent from everything
else. We notice that if (B, ;)¢ occurs, fma; < (Inn)'%\/n. Consequently, when n is large

enough,

P((B;)° 1 (Br, )" NBr, o)
= <{ < {in Z (i (y| > (mn)"n/* or
Lo
<t <022 ()10 U g;l(—ﬁmjmﬁ(@ -1/2)| > (lnn)7n1/4}>,
m’—’[

Moreover, thanks to Proposition 4.10, for any ¢ > 1, (* has law pg and is inde-

™= ()
pendent from ( ;’:n ~ e,))1§51<g. In addition, thanks to Proposition 4.7, for any ¢ > 1,
—Ap, - — 1/2 has law pg and is independent from (A, - () — 1/2)1<¢<¢. Con-
sequently, it is enough to find constants C§ = C§(w) < +oo and é& > 0 such that
when n is large enough, if ({/)scn is a sequence of i.i.d. random variables with law py,

V2 N1 —ég(lnn)?
P(max; <p, <¢,<(1nn)10ym | 2org, Cel > (Inn)n!/*) < Cgemfolinm,
Let 1 < ¢ < 4y < (Inn)'%/n, we will study P(| Zﬁigl C| > (Inn)™n'/*). Since py is
symmetric with respect to 0 and by the Markov inequality,

Lo
( Z(g > (Inn)"n 1/4> < 2P <Z ¢ > (Inn)™n 1/4>
=4y =L
Lo
= 2P <exp (W 2 Ce) > exp ((1nn)2)>
=t

62 €2
~(nn)? o — ge—(mn)? B
< 2e E <exp ((1nn)5n1/4 Z_Ze (g)) =2¢ Zl;l E (exp ((lnn)5n1/4 Cz)) )
=0 =L

(5.2)

so we have to study E(exp(mg)) where ¢ has law p;. Now, we can write that

1 — q ¢? ! <
exp((lnn)5n1/4 C) =1+ (Inm)5nt/4 + 2(lnn)10\/ﬁ€< , where |C/| < |(1nn)5n ’

(o (Gramm©)) =1 & (s

; )

= Snoym (CQ P (’ ()7

Furthermore, py has exponential tails, so there exist constants ¢z = 66( ) > 0 and
Cs = Cg(w) < 400 such that E(g2 %lcly < C.
so E(exp(mg)) <1+ m < exp( (1nn)10f) By (25.2), we deduce that when
n is large enough, P(| Y42 2, Gl > (Inn)"nt/1) < 2¢/2¢~ (27" which suffices. 0

1/4| < Cg

The results of this section can be summed up by the following proposition.

Proposition 5.8. There exists a constant ¢ = ¢(w,e) > 0 such that when n is large
2
enough, P(J°_, B,) < e~c(nn)”,
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Proof. We can write

(UB) < P(By) +P(B5N B1) +P(B5N Be) +P(B5 N Bs)

P(BS N BN BS N By) + P(BS N Bs) + P(BE N BS N Bo).

Proposition 4.7 implies that when n is large enough, P(B;) < e—con V)2 By Propo-

sition 5.1, P(BS N By), P(BS N By) < e=1(nm)” when n is large enough. By Lemma 5.4,
P(B§NBs) < e~eslin ™" when n is large enough. By Proposition 5.5, P(BSNBSNBSNBy) <
e=es(mn)® when n is large enough. By Lemma 5.6, P(BS N Bs) < e~<(m™)° when n is
large enough. By Lemma 5.7, P(B5 N BS N Bg) < e=(2m)” when n is large enough. We
deduce that if ¢ = 1 min(er, 3, eq, ¢5,¢6), then P(U°_y B,) < e=“™° when n is large
enough. O

6 A discrete reflected random walk

We recall that ¢ > 0, that the (;" o+, B ij’i’E were defined in Definition 4.1 and the

before Proposition 4.10. Our goal in this section is to prove that _ ("~ £ (with
m,+,E

m,+,1
G

a corresponding statement for > ¢ ) behaves roughly as a “random walk reflected
on Y. C;"’ "B» In order to do that, we will introduce a discrete process S~ that is
roughly “the random walk ) (;”’7’1 reflected on C}"’f’B ” (Definition 6.3), and prove
that if the bad events 5, ,,...,B,, ; defined at the beginning of Section 5 do not occur,
then SW I is very close to Z(m’ B (Proposition 6.5). When Zg;“**fE is far above
ST Y , it will evolve similarly to S™ ~, thus the hard part will be to deal with what
happens near ) C;-”’_’B . We begin by recalling the definition of the reflected Brownian
motion (the definition of a discrete-time reflected random walk is similar).

Definition 6.1. Let a < b be real numbers, f : [a,b] — R a continuous function, and
(W) te[a,p) @ Brownian motion so that W, > f(a). The reflection of W on f is the process
W' defined as follows. If W, = f(a), for allt € [a,b] we set W] = Wi+sup, < <, (f(s)—Ws).
If W, > f(a), ifty denotes b Ainf{t € [a,b] | W; = f(t)}, fort € [a,to] we set W] = W}, and
fort € [to, b] we set W/ = W; + sup, <,<;(f(s) — Ws). If f is random, a Brownian motion
reflected on f without further precision will be the reflection on f of a Brownian motion
independent of f.

We now introduce the following notation.

Definition 6.2. For any m € IN, we will define processes denoted by (S;”’*’B)DXM_LMJ,
(ST F)isx—en)s (ST )icx 4 1ents (ST )icx, 1 |en) SO that for == B or E,

S oy = 0and Vi > X, — [en] +1,87075 = 577 4 (7 F
St =0and Vi < X, + [en] — 1,870 = SphS 4 (=,

We then have L[~ = 87" % — 57 fori > X,, — |en] and L™ = 87T F g7 5 1
fori < X,, + |en].

Definition 6.3. For any m € IN, we define the processes (S;”’_’I)XM,LEMQSXM and
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(S ) x, <i< Xt (en) DY

=1 .
S;?m—LanH =0andVie{X,, — en] +1,..., X, — 1},
! =1 1 1 B
P L e A
il S:Il ' otherwise,
S;?W:;II.E"J =0andVic {X’n+17aXm+ I_@nJ - 1}7
;1 I I I +.B
gl syttt arsiy et > St
' syt otherwise.

The following lemma shows that “S™*? is the random walk " /"' reflected on

m,+t,B,
226 :
Lemma 6.4. For any m € IN, we have that for alli € {X,, — |en| +1,..., X},

i—1 j—1

-1 2 : -1 —.,B 2 : -1
SZ”’ S Cj’{'h 5 + max Sj"% b CT?; 5 ,
. Xm—|en|+1<5<i _ J
J=Xm—len]+1 J'=Xm—len|+1

and foralli € {X,, +1,..., X, + len]},

Xm+len|—1 Xm+len|—1
Sim,JrJ _ E : C;%,+,I+ max S;n,Jr,B _ E : CT’+’I
i <G <Xt en) —
Jj=t =7

Proof. Let m € IN. We will write the proof for S™~/; the same argument also applies
to S™ 1. To shorten the notation, we will drop the exponents m, —, and write i; =
Xm — len]| + 1, i2 = X,,,. We thus want to prove that for each i € {i1,...,i2} we have

i—1 j-1
= g §JI + max | SP — E ¢t
in<j<i \ 7 /

i=i1 §'=ia

We will prove it by induction on ¢. For ¢ = iy, this comes from the definition of the
processes. Now let i € {i1,...,io— 1} so that S = ZJ i, O A maxy, <j<i (ST Zj/,“ L.
There are two possibilities.

The first possibility is S/ + ¢/ > S2,. In this case, S/, = S/ + (/. Moreover, we have

ZJ =i1 C.I + max11<7<l( Z]’—u CI) + CI > SH»l' hence maXi1<J<z(SB Zjl_zl )
Sz+1 — E] —iy CI, thus maxt1<J<H_1( Z],_“ J ) = maxh<]<t( ZJI_ZIC ),

E]:ll C]I + maxllSJS’H’l(SB j =11 CI) Z] =11 CI + ma‘Xll<J<l(SjB - J =17 CI ) + CI
ST+ ¢! = S!.,, which is what we want.

The other possibility is S} + CI < Sz % .. In this case, S, = S5 ,. Furthermore we
have EJ e +male<j<z(S]B — > (I ) —i—CI < SE,. so male<j<l ZJ,,“ ¢l <
SZ+1 - Z; _;, ¢/, hence max“<J<l+1(SB 2 CI) =S5, - Z; i CI We deduce
EJ =iy CI + maXz1<J<z+1( ZJ'—“ ) ZJ =iy CI + Sz+1 - Z] =iy Cl = Sz+1 = SiI+1'
which is the desired result O

The following proposition is the main result of the section: if the bad events do not
occur, S™* 7 is close to S™*F,
Proposition 6.5. When n is large enough for any m € NN, 1fﬂr (Brn)e occurs then
foralli € {X,, — |en] +1,..., X}, ™ — (Inn)dnt/* < §™F < S;”’ + [(Inn)3],
and if \°_,(B;, )¢ occurs then for alli € {X,, +1,..., X, + en]}, S/ —(In n)8n1/4 <
SPHE < 5l 4 [(Inn)®].
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Proof. Let m € IN. We will write the proof for S™~¥; the same argument also applies
to 8™ F_ In order to lighten the notation, we will drop the exponents m, —, and write
i1=Xm — len| + 1, 40 = Xpn.

The idea of the proof is that when S¥ > SB+(Inn)3, then L; > (Inn)? by Definition 6.2,
thus since B,, ; holds we have (¥ = (I therefore S5, = SE +¢F = SF + ¢ Now, if
S! is not too close to SP we also have S/, = S/ + CZI, so S¥ and S? evolve in the same
way. Consequently, the difference between S¥ and S’ comes only from the i such that
L; < (Inn)3, and the fact the bad events do not occur will imply the difference thus
accrued is small. In order to make this argument work, we need to show that when
L; > (Inn)3, S is not too close to SZ. However, it may not actually be the case for all
1. To solve this problem, we will actually use the aforementioned argument with some
processes S’ and S”, which will respectively be close to S¥ and S”.

We begin by proving that S¥ is close to the auxiliary process S’ defined for i €
{i1,...,i2} by S! = max(SE, S + [(Inn)3]). For the i such that S/ = S¥, it is obvious.
If i is such that S, = SP + [(Inn)3], then we have S¥ < SP + [(Inn)3]. Moreover,
by Definition 6.2 S¥ — SP = L; > 0, so S < SF < SB + [(Inn)3], which means
S!— [(Inn)?] < SE < S!. We deduce

Vi€ {i1,... iz}, Si—[(Inn)*] <SF < S (6.1)

We now prove that S’ is close to an auxiliary process S” which will be “the random
walk 3" ¢/ reflected on SZ + [(Inn)3]”. More precisely, S/ is defined for i € {i1,...,i2}
as follows: S} = [(Inn)?], and for any i € {iy,...,ip — 1},

w8+l if S + ¢ > SEy + [(Inn)*],
H1TSE, + [(Inn)®]  otherwise.

Since ST is “the random walk > ¢/ reflected on S5” and S” is “the random walk " ¢/
reflected on SP + [(Inn)%]”, we can expect ST and S” to be close. We are going to
prove by induction on i € {i,...,i2} that S} < S/ < SI 4 [(Inn)*]. It is true for
1= 11 by the definition of the processes. We now suppose it is true for some i €
{i1,...,i2 — 1} and prove it for i + 1. IfSI+§I > SE and SY+ (¢! > SE |+ [(Inn)® } then
sty S;;l = (ST +¢f) — (87 +¢f) = S — S, which is enough. If S} + ¢/ > S B | and
SV 4 ¢! < 8B+ [(Inn)?], then S, | = s’ <S4l < S+ [(nn)*] = S7, ,, thus
SZI+1 <S8/, and S}, = SZJrl + [(Inn)3] < Sf + CI + [(Inn)3] = SL; + [(Inn)3], which
is enough. If ST + ¢/ < SE, and S/ + ¢/ > SEH [(Inn)3], then S — S > [(Inn)?3], so
this case is impossible. Finally, if ST + ¢/ < SZ, and S/ + ¢/ < SE, + [(Inn)?], then
S, =5SE  and S/, =SB, + [(Inn)?], which is enough. We deduce that

Vie {ir,... 02}, ST <S/<SI+[(Inn)]. (6.2)

We are now able to show that the only difference between S’ and S” comes from
the i such that L; < (Inn)3. We denote £(i;) = 0, and for any i € {i; + 1,...,i2},
i) = |{j € {i1,...,i —1}|L; < (Inn)®}|. We are going to prove the following by
induction on i € {iy,...,i2}:

£(1)
/ " 4 I B
SisSi =S+ 10, <0(i) Z; (C“‘fz) B CWz)) ’ (6.3)

+

where the maximum is 0 if £(i) = 0. For i = i;, we have S/ = S/ = [(Inn)*], so (6.3)
holds. Now, let i € {i1,...,i2 — 1} and suppose (6.3) holds for i. We will prove that it
holds also for i + 1.
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We first consider the case L; > (Inn)3.
In this case, /(i + 1) = (i), so it is enough to prove 0 < S/ | — S;. ;| < S’ — S]. We notice
first that since L; > (Inn)?, S¥ —SB = L, > [(Inn)3], so SF > SB 4+ [(Inn)3], so S, = SE.
We also notice that since L; > (Inn)? and (B, 3)° occurs, ¢ = (/.
We begin by assuming L;;1 > (Inn)®. Then S5, — S5, > [(Inn)3], so Si,, = SE .
This implies S’+1 = SE +¢F =8+ ¢l Moreover Sy + G>8+¢ =5,.,=5E >
SE .+ [(Inn)3], so S\ =S/ + CI This yields S}/, — ’H‘l =8-S, which is enough.
We now assume L; 1 < (Inn)3. Then Sﬁrl SZJrl < [(Inn)3], s0 S, = SE | + [(Inn)®]. If
S+ ¢l < SEH +[(Inn)?], S{’H =SB, +[(Inn)?], so S, — S.,, = 0, which is enough. If
SY+¢! > SE L+ [(Inn)3], S,y = S/ +(/. Furthermore, S/, > SE, = SF+¢F =S/ +¢/.
We deduce S/, — Sl < S+ ¢ — (S/+¢l) =S/ —S.. Inaddition, S/, = S/’ + (] >
SE .+ [(nn)3] = S§+1, so Sj,, — Si,, > 0, which is enough. Consequently, (6.3) holds
for i + 1 in the case L; > (Inn)3.

We now consider the case L; < (Inn)3.
We first show that S/, > S/ ;. If Liy1 < (Inn)3, SE, < SE, + [(Inn)?] so Si,, =
SE,+ [(Inn)3] < S8, ,. If L1 > (Inn)?, we notice that L;y1 = L; + (¥ — (P by Fact 4.2.
Moreover, since (B;, ;)¢ occurs, we have |¢F],[¢P| < (Inn)?, so L; > (Inn)® — 2(Inn)? >
(Inn)? when n is large enough. Thus, since (B,3)¢ occurs ¢F = ¢!. We deduce
SE 4+ [(nn)3 < SE, =SF+¢/ <S] + ¢} <8/ +¢l soS! =5+ Furthermore,
since S5, > S5, + [(Inn)3], Si,, = SE, < S7.,. Therefore S/, < S/, in all cases.
We now show that we have

£(i+1) 0(i)+1
1" ’ _ B
i1 941 = 1<z?2xz+1) Z (CI(zQ) CI(@)) = [ w, Z (Cl(e2 Cz(eg))
+ +

since ((i+ 1) = £(i) + 1. If SY + ¢} < SE, + [(Inn)?], Sy =SB, + [(Inn)®] < S/, ., so
S¥.  —Si,; <0, which is enough. Hence we consider the case S/’ + ¢/ > Serl [(Inn)3].
We have S, > Sf; + [(Inn)], so S7y; — S, < S +¢f - st-l [(Inn)*] = 57 +¢f -
SB [(Inn)®] — ¢P. Furthermore, since L; < (Inn)?, S! = SP + [(Inn)3], so we get
V=Sl <8 — S+ ¢! —(¢P. Inaddition, I(¢(i + 1)) = I(£(i) + 1) = i, thus we have

1~ Siy1 <87 = Si+ Cll(z(z‘)+1) - C}B(z(i)+1)~ (6.4)
We first assume maxi <, <¢(;) Zﬁigzl (({(Zz) — (ﬁéz)) > 0. Then

()41
I _ B > I ) _ B )
| Jpax egl (CI(ZZ) 51(52)) 2 Cree(iy+1) — SI(e(i)+1)

so we have
£(3)+1 0(i)+1
1<5?2X)+1 egl (CI £3) CI (£2 ) = 1§I£a§>§(l 22[1 (CI(Zz) <I(€z))

Therefore, by (6.3) and (6.4), we obtain S}, ; =S}, ;| < max;<¢, <¢(s)+1 Ze;) 1(41(62) CI(EQ))'
which is enough. _

We now assume that max; <4, <¢(;) Zgl:)zl (({(52) - <ﬁez)) < 0. Then (6.3) yields S} — S} <0,
so by (6.4) S7\ 1 — Siy1 < CFipiyrny — CHagiyrn)- In addition,

£(i)+1
I B
e E: (¢Few = Feny) < ratiran = Flecrsny
2
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S0
£(i)+1

I B Al B
L Z;ﬁ (Cl(fz) - CI(@)) = Crgeciy+1) — Siec+1)-
We deduce S}, — S}, < maxj<p, <(i)+1 Zgizl(q(m - Cﬁez))' which is enough.
Consequently, (6.3) holds for i + 1 in the case L; < (Inn)3.

We deduce that (6.3) holds for any i € {i1,...,i2}. Moreover, for any i € {i1,...,i2},
since (B,, 5)¢ occurs, we have

0(i) £(4)
I B < I B
1;235(” e; (C[(z2) Cz(e2)) > 13%2}%)@;1(41([2) 41(52))

=0 N
£(7)

=, 5% z; Cen |+ 1<, <4() z_; Citen

<  max < 2(Inn)"nt/4,

- 1S‘€1 §‘€2 Semax 1<€1 <é2<é

L2
Y S|+
=4

therefore S; < S < S/ +2(Inn)"n'/4. From this, (6.1) and (6.2), we deduce that for any
i € {i1,... iz}, S —2(Inn)™n/* — [(Inn)*] < SF < S! + [(Inn)?], so when n is large
enough, S/ — (Inn)®n'/* < SF < S! + [(Inn)?], which ends the proof. 0

7 Lower bounds on the T — 1j

We recall the stopping times 7} defined in (4.2), as well as the “bad events” B
defined in Proposition 4.8 and By, ..., Bs defined at the beginning of Section 5. The
goal of the current section is to prove that if the bad events do not happen, then for
any K € N, Tx — Ty is at least of order Kn3/2. there exists a constant § > 0 so that
P(Tx — Ty < 6Kn?/?,B°N ﬂfzo B¢) < 3k (Proposition 7.7). We stress that we will not
try to prove that each Ty — Ty, k € {0,..., K — 1} is large, since it is very possible
that for some k the configuration at time T}, is bad enough to prevent it. However, a
combinatorial argument will allow us to prove that a constant proportion of the k satisfy
that T} — T} is large, which will be enough. This is one of the hardest parts of the
work, and the most novel one. Let us give some ideas of the proof.

Remember that € > 0, that the ﬂk were defined in (4.3) and the ,L;”’i
in Definition 4.1. For any & € {0, .. —1}, if (say) X7, = X1, — |en], then Ty — T} =
Br, =Tk > 31, Lity forany {11,...71'2} C{Xrp, +1,..., X7, }. Now, if i € {iy,..., 4},
Fact 4.2 yields LT"’ = LT’“’7 + Z; i (G P - CJT’“*’B) and L;T:’“’f > 0, thus LiTj;’f >

; Ty,— . E b _.B ; Ty, — E T),—,B
Zi LI(CJ " CJ *77), so we obtain Ty — T}, > Zz =iy Z;:il(cj‘k - Cjk ) =

,+,B ,+,E
m ,Cm

T —E (TemoB
S i“ ZJ i, G Zl i“ ZJ i, G" - Therefore, if for some constant 0 > 0 we have
that > %, Zj G > n?? and Y2, Y0, (19 7P < —n®/2, then it guarantees

Tiy1 — T > 25n3/2. If this is true for a positive fraction of the k € {0,..., K — 1}, then
Ty — Ty will be of order Kn3/ 2

The Y72 i 2imiy G jT’“ 7 will be rather easy to control if we remember the (]

constructed just before Proposition 4.10 and the §™ 5, §™—F, gm=I defined in
Definitions 6.2 and 6.3. Indeed, Proposition 6.5 1ndlcates that Zz i Z;zil ng‘“'”’E =

S (SR TF — gl TPy will be close to Y0i2 L (ST L gDy Now, ST is

=11 7 7 71—1

“the random walk ZCJ-T’“ ! reflected on ST+ ~B”, hence ZE;I(ST’“_*I — she sty >

7 111

S Z;:il ¢/, so it is enough to prove that we have Y1 Z;:il Gt > on2,

m,— 7
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Since by Proposition 4.10 the (]-T’“’f’l are i.i.d. with the law py defined in (4.10),

Ziil Z;:il CJT’“_’I is basically the integral of the i.i.d. random walk Z;:il ;TF’“_’I on
the interval {1,...,42}, so if iy — i; is of order n, there is a positive probability to have
D iy Cf"'"’l of order \/n, hence to have 2, 7" Cf’“"f > 6n3/2,

However, we also have to control the ZZ;I Z;Zil CJ-T’“_’B , which depend on the
AT, ; (defined in (1.2)), and this is harder. If X7, _, = X7, — |en] = X, (i.e. the
mesoscopic process (X7, )wen is doing a U-turn), then for j € { X7, +1,..., X7} we
have QJ.T""_’B = CJ.T’“*“J“E, which we can then deal with in the same way as the CJ-T""_’E.
However, if the mesoscopic process is not doing a U-turn, the state of the Ap, ; will
depend on the previous history of the process. To keep track of it, we will use an
algorithm to associate to each time k € {0,..., K'} a configurations of states of the edges

of Z. The edges (z,z + 1) will be in any of the four following states:

* Clean. This is the case in which (X,,)men did not visit any j € {Xr, + |en]z +
1,..., X1, + |en|(z + 1) — 1} since time Ty, so the corresponding A; are still the
Ar, ;, which we can control by Proposition 4.7.

e Usable. This is the case in which there was some £’ so that Xr,_, = X1, +
len)(z +1), X1, = X7, + |en]z and X7,,,, = X7, + [en](z — 1) (or symmetrically
Xr,_, = X1, + |en]z, X1, = X7, + |en)(z + 1), X1,,,, = X7, + [en](z + 2)), and
(Xm)men did not visit { X7, + |en]z,..., X1, + [en](z + 1)} since. At time T}, the
Aj for j € {Xr, + [en]z,..., X7, + [en](2 + 1)} correspond to the (; w0 =P and
between times T}, and T}/41 the process (X,,)men visited some such j, but not all,
so at time T}, 4, the A; of the sites such visited correspond to the CJ-T’“”_’E, while

CTk’—u—,

J
‘- Ty_1,—E . .
A may correspond to the (;TF’“ " or the ¢ A , which we will be able to control

since there are only two possibilities.

the A; of the sites not visited still correspond to the B Consequently, the

* Usable-clean. This is the case in which “the mesoscopic process made a U-turn
just at the left of z or at the right of z + 1, but never approached z or z + 1
otherwise”: there was some k' so that Xr,,,, = X7, , = X7, + [en](z — 1) and
X1, = X1, + |en]z (or symmetrically Xt = Xr,_, = X1, + len)(z+2), X1, =
X1, + len)(z + 1)), but none of the other X1, was Xp, + |en]z or Xp, + |en] (2 +
1). In this case, since time Ty, the process (X,;)men could only visit {Xr, +
len]z,..., X1, + len|(z + 1)} between times T}, and T}11, and did not visit all the
sites. The A; of the sites that were visited correspond to the QJ-T’“”_’E, and the
A; of the sites that were not visited are still the Ap, ;. There are still only two
possibilities that we can control.

» Dirty. This covers all the other cases, in which we will not be able to control
the Aj.

Consequently, if the edge (z,z + 1) is clean, usable or usable-clean at the step corre-
sponding to Tj, the Ap ; on {Xg, + |en]z,..., Xp, + |en](z + 1)} can be controlled,
hence the CjT’“’*’B can. We will show that whatever the path of the mesoscopic process
(XTk, Jo<k’<K, @ positive fraction of the edges it crosses will be clean, usable or usable-
clean at the time of crossing, so a positive fraction of the steps will give us a lower bound

T — Tiw—1 > 26n°/2, which is enough to prove Tx — T, is of order Kn?/2.

In order to write the rigorous proof, we will need some notation for the “trajectory”
of the mesoscopic process (X1, )ren. Let K € IN*. A path of length K is a sequence
v =1(z0,21,.-.,2K) With 20 = 0, 2z € Z and |z, — zx—1| = 1 forany k € {1,..., K}. We say
that X follows v when Xp, = Xr, + |en]z, forall k € {0,...,K}.
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Some of the (T‘ *+5 we need to control will depend on the Ag, ;, but their exact
definition depends on if we want to work with (,‘Z-T =B or ¢; TitB which depends on the
path of the mesoscopic process. Moreover, it is more practical to work with the ATD,Z‘
defined in Proposition 4.7, as this proposition gives us their law. Consequently, for any
ke{0,...,K —1} we define (()"*);cz thus:

o if Zk+1 — 2k — 1,

677]6 _ _§T07i —-1/2 ifi < Xg, + |en]zg,
_ATo,i + 1/2 if i > XTo + I_ETLJZk,

o if Zk+1 = 2k T 1, B
C’y k_ ATO i 1/2 ifi < XTO + Lé‘ngk,
t Ar, i —1/2 ifi> Xr, + [en] 2.

CTk £.B CT;C,:I: I

Since we may use the C”’ instead of the , we will need to replace the
by random variables that are independent from the C”’ hence from the ATO i- We had
a construction in Proposition 4.10 that gave appropriate replacements for the (; To,+, r
but not for the CT’“ 1 with k > 0. Finding good replacements for the CT’” S
k € N is the goal of the following proposition (we recall that BLN@J [Nl £
Proposition 4.7).

for all
was defined in

Proposition 7.1. For any k € {0,..., K — 1}, we can define random variables (C]’k)iez
with the following properties. The C]’k, i € Z are i.i.d. with law py and (C]’k)iez is
independent from (Ar, ;)icz and (Q’k/)iez, k' < k. In addition, if n is large enough,
X follows v and (B,%NGJ’LNmJ’i)C occurs, then for any k € {0,...,K — 1}, ((")icz =

(CiT’“’L’I)iGZ, where .=+ ifzp41 =2z +1and v = — if zp41 = 2 — 1.

Proof. We can define a process ()N(m)m>To which is “like ( X7n)7n>T0, but such that the
environment at time Tj is (Ag, ;)icz”. It is defined so that X7, = X7, (Ar, i)icz =
(At,,)icz, for all m > T,

X Y % % w(Am,f(m)
P(Xii1=Xm+1) =1-P(Xp1 = Xp = 1) = —= - :

w(Am,X’m) + w(_Am,Xm)

. A,z —1 if X=X, +1 . - .
1 % = { m,Xm, I +1 + and Am-i-l,i = Am,i for all i # X,,,

Am,f(m +1 if X'm—&-l = Xm -1

the transitions of ()N(m)szo are independent from (A7, ;)icz, and for any k € IN, if n is
large enough and (ZS’(E]WJ’U\“EHE)C occurs then (X,,)7,<m<7, = (Xm)7y<m<7,. Moreover,
we define the following stopping times: Tj) = Ty and for k € {1,..., K}, T,) = inf{m >
T) | Xon = X1, + |en]zi}. If X follows 1, (B(ENGJ’LN“’i)C occurs and n is large enough,
then T} = T, for all k € {0,...,K}. The (g‘;”k)iez will then be defined for the process

(X,,L),,L>T(J as the (CT' " I)Zez are defined for the process (X,;;,)m>7,, where ¢ = + if 241 =
zi+1and ¢ = — if 241 = 2z, — 1, with the construction given before Proposition 4.10. O

In order to lower bound the "2 s ZJ —i, € ,»T’“ ~F and the ZZ i Z;zh CJT"’*’B (as well

as the symmetric quantities when X, = XTk + Lan]) we will need to lower bound
the 312, S0, ¢7F, the Y2, 370, (" and the Y12, S0, —C" (as well as the
symmetric quantities). We introduce the necessary notation to do that. We denote
ro = E(¢?) where ( has law pg. We set

1 _ _9-10
0<§<min(6 1 L) In(1 —2 )5).

7.1
8 261n2" 2961In2 '  240In2 (7.1)
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For any path « of length K, for any k € {0,..., K — 1}, for any interval I = {iy,...,i2} of
Z with is — i1 = [én] — 1, we define the following events:

Z2 ’LQ

Tt = ZZC”’“ HCORCNIATERS B PITLESICOLENS

=11 j=11 1=11 j=i

Wi = ZZU’“_% 7y Wi = {30 S s e

1=11 J=11 1=1%1 j=11

iz i2 iz 2

;FHI ZZC'Y]C 7”2 3/2 ,W;};: ZZ ka 7‘2 )3/2

1=11 j=1 =11 j=1

Lemma 7.2. When n is large enough, for any K € IN*, for any path v of length K, for any
k €{0,...,K -1}, for any interval I = {iy,..., iz} of Z withiz —iy = [én] -1, P(W5; ;) >
& and IP( k) 2 35. Moreover, if zj, <0 andl C (—o0, Xq,+|en |z, —1], orif z;, > 0 and

1 C [X1, + [en] 2k +1,+00), then we have P(W. ), POW, ;7)) POV 1), POV, )) > 55

Proof. The ¢]**, i € I are i.i.d. with law p,. Furthermore, if z; < 0 and I C (—oo, X7, +
len)z, — 1], or if z, > 0 and I C [Xg, + |en]z + 1, +00), by Proposition 4.7 the ¥,
1 € I are i.i.d. with law pg. Therefore it is enough to show that when n is large enough,
if ¢, i€ {1,..., fén]} are i.i.d. with law py and we denote § = > /" Z(E"] ¢;, then

P(S > 2 (én)3/2) . S is symmetric, so P(S > 2 (5n)3/2) = 1P(|5| > ’2(571)3/2) =
$P(S? > 22(en)3), thus it is enough to show P(5? > 2(én)®) > 1. In order to do that,

we notice that S = Zr“ﬂ i¢; and po has expectatlon 0, hence E(SQ) = ZIET i’ry =
fénw(tgﬂ]-tﬁl)@fg"]-tl) 9 Z 732( )3/2 and

[En] [én] [én]

E(S%) —SZZZQJQTQ—FZ —3r3)

=1 j=1
n]([& 1)(2[& 1 6[en]® + 15[& 10[én]3 — [&
_y ([enlfen] + D(@fen] + 1)) o 6lan)° + 15[+ 1000l o] ay e
6 30
is smaller than 4I5(52)? when n is large enough. We deduce P(5? > %2(én)?) > P(S? >
E(2S2)), hence by the Paley-Zygmund inequality, P(S? > %2 (én)?) > § (( 2); > 1= O

We are now in position to write down the algorithm mentioned at the beginning of
the section, which for each time & € {0, ..., K} yields a configuration of states of the
edges of Z in which the edges can be clean, usable, usable-clean or dirty depending on
the control we have on them. Let K € IN*. For any path v = (29, 21, . .., 2k ) of length K,
at the same time as the configurations of states of the edges we will define a sequence
of random variables (0} )o<k<x—1 so that for any k € {0, .. —1}, 8] € {0,1,%}. As we
will show later in Proposition 7.3, they will be defined so that that if X follows 'y, 0, =1
(as well as an additional condition) and BN (ﬂr 1 B§) occurs, then Ty, — Tj,—1 > "2 (en)®/2.

For any edge (z,z + 1) of Z, we denote I(z, z + 1) the collection of intervals composed
of the { X7, + |en]z + [én](m — 1) + 1,..., X7, + |en]z + [én]m} form € {1,...,2[ ]}
We also denote respectively [;(z,z + 1) and I.(z,z + 1) the collections of the {Xr, +
len]z + [én](m — 1) + 1,..., X7, + |en]z + [én]m} respectively for m € {1,...,[ ]}
and m € {| =] +1,...,2|5=]}. When n is large enough, the intervals of I(z,z + 1) are
contained in { X7, + |en]z +1,..., X5, + |en|(z+ 1) — 1}.

We now define the (0} )o<r<x—_1 as follows. For any k € {0,..., K — 1}, we say the
k-th step of v is the passage from z;, to z;4;. We will decompose the path in stages of
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one or two steps at the end of which we update the states of the edges of Z. At time
k =0, all the edges of Z are clean. Let k =0 orlet k € {1,..., K — 2} and suppose the
last step of a stage of «y is the step £k — 1. We suppose 2,1 = 2z + 1 (if 2541 = 2, — 1, the
definition is similar, with all the arrows reversed in the events and r,! exchanged). We
define the next stage as follows, depending on the state of the edges at time k.

Case (zy, zi+1) clean.
In this case, the stage will encompass only step k. We then define O] as the indicator of
Urerer,znen) Waler N W;;I) we say O] is of type C, and the edges (zx, zk41), (2k, 2k — 1)
become dirty at time £ + 1.

Case (zg, zi+1) dirty.
In this case, the stage will encompass steps k and k£ + 1, and there will be different cases.
If 242 = zi,, we set ©] = x and O}, as the indicator of U;c (., oo,y Vs r DWW i1 1)-
We also say @ZH is of type D. After the stage, at time k + 2, (2x, zx+1) and 1ts two
neighboring edges become dirty.
We now assume zyio # 2k, i.€. zxy2 = 2k+1 + 1. Then there will be different cases
depending on the state of (zx41, zk+2) at time k.
Case (zi1,2r42) dirty. Then we set ©] = x, and O], as the indicator of {|{I €
Izt 20) W Y] = g} DT € Loz 2is) Wy 3] = 552} We then say that O],
is of type A’. At time k + 2, the edges (z;, — 1, z;) and (zg4y1, zk+2) become dirty. Moreover,
if ©] 41 = 1, we say the stage is a stage with wait and the edge (zj, z;+1) becomes usable
at t1me k + 2. If, in addition to having ©] ,, = 1, we also have that (2, z;, — 1) was dirty
at time k, we say the stage is dirty.
Case (241, 2k+2) clean. Then we set ©, as the indicator of Urc;(., ., 20 r0)(Waig1,r 0

k+1

W, i11.;) and we say ©],, is of type C. (241, 2k+2) then becomes dirty at time k + 2.
If (2, — 1, 2;) is not clean at time k, it becomes dirty at time & + 2 and we set ©] =
If (2 — 1,2) is clean at time k, then we set ©) as the indicator of {|{I € I;(z —
1, zk)|W k‘_I}| > gozy V{{T € L (2 — 1, 25) W3, 1} > 55z} and we say ©; is of type B’. If
0, =1 then (2 — 1, z;,) becomes usable-clean at time k + 2, otherwise it becomes dirty.
Case (zg+1, 2k+2) usable (respectively usable-clean). In this case, there exists k' < k so
that (zx+1, 2k+2) became usable (respectively usable-clean) at time £/, and we consider
the largest such k. We then have ©], ;, = 1 (respectively ©/, , = 1), so the sets
E =A{I € L (241, 2u+2)| WV k,, ot and & = {I € Li(zk+1, 2e+2)W, 1 } (respectively
E ={I € I (241, Zky2) | W k, 0.7} and & = {I € (241, 2k+2) W _o 1 }) have at least
55z elements. We then deﬁne ©}.;, as the indicator of (g, W’y,k—i—l,[) (Uree, Wiksrr)
and say @Z+1 is of type A (respectively of type B). Both (zi, zx+1) and (zx+1, zx+2) become
dirty at time k + 2. Moreover, if (z; — 1, 2;) is not clean at time %, it becomes dirty and
we set ©) = . If (z; — 1,2;) is clean at time k, then we set ©] as the indicator of
(4T € Lz — 1, 20)WHTH > 552} LT € Lz — 1, 2) W5, 1} > 5=} and we say O]
is of type B’. If @Z = 1 then (z; — 1, 2;) becomes usable-clean at time k + 2, otherwise it
becomes dirty.
Case (zi, zx+1) usable (respectively usable-clean).

In this case, the stage will encompass only step k. Moreover, there exists k¥’ < k such
that (zx, zx+1) became usable (respectively usable-clean) at time %', and we consider
the largest such k’. We then have ©], , = 1 (respectively ©/, , = 1), so the sets

E = {1 € I (2, 2p+1)| WV Hk, ot and & = {I € Li(zk, 2141)|W, ) _1 1} (respectively
Er =A{I € L (2, 2641) W k, s oryand & ={I € Il(zk,zk+1)\W % _2 1)) have at least 552
elements. We then deﬁne ©,, as the indicator of (J;cg, Wi I) (UI€£ k1) and say
O] is of type A (respectively of type B). Both (z, z;41) and (zk, 2z — 1) become dirty at
time k + 1.

If this algorithm does not yield a value for ©), ,, we set ©), | = x.
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Proposition 7.3. For any K € IN*, for any path v of length K, if X follows v, B° N
(ﬂf:o B¢) occurs and n is large enough, then for any k € {0,..., K — 1}, if ©] is of type
A B, CorD and©] =1 then Ty, — T, > "2(én)*/2.

Proof. Let us assume that X follows v, BN (ﬂfzo B¢) occurs and n is large enough. We
notice that since ﬂ?:o B¢ occurs, (B(%NGJ LNe) ’i)c occurs. In particular, by Proposition 4.7,
for any |[Nz| — nl@D/4|en| —1 < i < [Nz| +nl®"D/4en] + 1, hence for any k €
{0, o, K= 1} and i € {XTo + I_EnJ (Zk — 1), ce 7XT0 + |_E’I’LJ (Zk + 1)}, we have ATo,i = AT07i-

Furthermore, by Proposition 4.8, since B¢ occurs, for any k € {0,..., K — 1} we have
Tk = T}, or T, ; for some integers |[N¢| — 2n(*FtV/> < m < |N6| + 2n(**/5 and

€ [[Nz] —nl@t9/5 | Nz | +n(@t9/5]. Therefore, since (°_, B occurs, ﬂle(B;kyr)C and
ﬂgzl(B;M)c occur. Set k € {0,...,K — 1} and suppose ©] = 1. We will deal with the
possible types of ©] separately.

Case ©] of type A.

We suppose zx+1 = 2 + 1, the other case can be dealt with in the same way. In
this case, the edge (zk, z;x+1) was usable at time k. We denote k' the biggest integer
below k such that (zj, z; + 1) became usable at time &’. Then the path ~ did not cross
(zk, 2z + 1) between times k¥’ — 1 and k, and was always strictly below z; between these
times. Moreover, for any k" € N, m € {Ty»~,...,Tx++1}, by definition of T}, we have
Xm € {Xr1, — len),..., X1, + |en]}. Since X follows ~, this implies that for any
m € {Ty,...,Tp — 1}, Xy < X7, + [en]z, so for any i > Xp, + [en]zi, Ari = AT, .
There will be two different cases (we recall the notation &, &, introduced when defining
the ©] of type A).

We first assume LX +Lanjzk+L4iJ+1 =0.

We notice that since @Z = 1, there exists I = {i,...,i2} € & such that W7} ; oc-
curs. Since I € &, W%, _, ; also occurs. This yields e Z” ¢ K> g )3/2 and
Sz i Z’z G k=25 1 2 (¢n)3/2. Now, since (BN N=L-Eye oocurs, n is large enough and
X follows ~, by the definition of the C]’k we get that for any j € I, (;-*’k = CjT’“’J“I and

¢ =2 CT"/ >~ We deduce

i2 i2 2 i2

ZZCT’“’JrI T2 3/2 and ZZCTk/ 2 2 32( )3/2

i=11 j=1 =11 j=1

Ty, +,1 Ty 4,1
S’Lngl
Ty, +,E

In addition, by the definition of S; , for any i € {i1,...,i2}, S-T’“’J“I —
E;f;i (]Tk’+’ . Moreover, since (°_ 1 (B, ,)¢ occurs, Proposition 6.5 yields S;

STt (Inn)nl/4 and ST TF < §Tk T4 14 [(Inn)?), so

AV,

S TE = ST 2 ST = ST = (n) Y — [(nn)’]

> ZCT" I lnn)8n1/4 — [(Inn)?],

which implies "2 i, (S SfetF gl By > 2 (2n)3/2, thatis 3072 2 Z T’“’+ B>12(zn)3/2,

By the same arguments, we have Y.'2 “(S’z}frlz’ — gl E) 2 ﬁ(511)3/2, that is
T g E
Y S G 2 (En)d
Now, forany j € I, (Tk' 2B —Ap, j+1/2 where m = B;k/ = Ty _1 since X follows 7,
S0 CT’“/ 2B _ —Ar,,_,j +1/2. Furthermore, since LX’“ 7‘:’7L5njzk+L - 4 =0, forany m €
4€

{Tw_1,..., T} wehave X, < X+ |en]zp+ | =] soif j € T wehave Ar,, | ;= Ar, ;=
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Ar, ;. We deduce that for any j € I, we have CT’“/’Z’_’E = —ATM- +1/2 = —CjT’“’J“B.

Therefore > i Z T’“' S 2 (én)3/? becomes Zz i Z ~ T’“+ B> ra(en)3/2,

Since 3,2, 7 T’“+ 5 > I2(en)%/%, we get 312, S (¢ 2 CT’“’+’B) > " (En)*2.

By Fact 4.2, th1s ylelds ZZ i) (L Lt — L;TFQ’Z’:{) > Z2(én )3/2. Now, LZ’Z’rl > 0, hence

Sz, LI > r2(&n)3/2. This implies B, — T > 22(én)%/2, thus Tj.yy — Ty > 22 (én)*/2,
We now assume LXFT’}F’LE”J bl )41 # 0.

Since ©] = 1, there exists I = {iy,...,i2} € & such that W‘* 7 occurs. Since I € &,

Wv 41,7 also occurs. This yields S i Z e > (z€n)3’/2 and 31 i Z;?:i C;*’k,_l >
2 (2n)3/2. Since (BN V¥ E)e occurs, n is large enough and X follows ~, for any j € I
6 0

we have C"-”k = §]T"’+’I and C-%k CT"' 7 hence S i Z T" 1> 12 (2)3/2 and
S Z T"/ ol 2 (én)*/2. From Y12, Z T’“’+I > T62( n)%/? we can deduce
El i E Tk’+’ > ﬁ(an)‘?/ 2 by the same arguments as before. However, we cannot
do the same w1th S DY T’“’ ! as that would require Proposition 6.5, that relies
onje {Xr,  —len]+1,... ’XTk’—l} which is not the case for i € I. However, (B, )°
;77 > (lnn)?, we have ¢,V = ng’ S
Furthermore, L X’“T‘jr’kn Jentl 41 # 0, hence the random walk X went from Xz, + |en]z;
to X7, + [en]zx + [ =] + 1 between times T}/ and T}, which 1rnp11es L; TH=17 5 0 for
each j € I. In addition, (B,  ,)° occurs, thus |[{j € /|0 < Lj’“' v (lnn) H < (Inn)8,
so |{j € I|LT"' v
Typr—1,—E

occurs, so for each j € I such that L,

< (Inn)? }| < (Inn)®. Finally, (Br,,_,5) occurs, hence for any j € I

we have |(; Te—v=1) < (Inn)2. We deduce

15165

12 i2 12 i2

ST Y S G e () 2 22 e -2 en] ()1 > 2 (20)

i=iy j=i i=iy j=i 12

when n is large enough. Now, for any j € I, CT’”' L —Ap; +1/2 with m =
5ka = = T}, hence (; Tor—p= b =—-Ar,;+1/2=-Agp ;+1/2= T’“’+ B This yields
S Z ¢t P > r2(en)?/2. Since we also proved Y ;2 Z T’“+ B> ra(en)3/?,

we can end the proof as in the previous case.

Case ©)] of type B.

We suppose zx4+1 = 2; + 1, the other case can be dealt with in the same way. In
this case, (zx, zx+1) was usable-clean at time k. We denote £’ the (only) integer below
k such that (zy, zx+1) became usable-clean at time k’. Then the path « remained below
zi up to time k, and the only time before k at which the path reached z is time k' — 2.
Since X follows ~, this implies that for any i € { X7, + |en]zk, ..., X1, + |en](zr + 1)},
ATk/,z,i = ATo,iI and ATk,i = AT’C,7171'. If Li’tll‘oi’\_f"LJZk"l‘\_
using the same method as in the similar case when G)V of type A, replacing Ty—1 by

< 11 # 0, we can prove our result

k -2
XT +\_Enjzk+\_fgj+1

I ={i1,... iz} € & such that W7, | occurs. Since I € ET, W+k, o.7 also occurs. This
yields Y12, S (0F > = (571)3/2 and El DYl =2 > r2(2n)3/2, From the first
inequality we can deduce Zl 2 Z T’“Jr B> 2(én)3/? as in the case O] of type A.
Now, by the definition of the CV K2 for any j € I we have CAV’kLQ =—-Agpj+1/2=
—Ar, ; +1/2, thus f}’kiﬂ = —Ar, ,; +1/2. Now, since L Th =20 =0 X

Xty +len|ze+l=]+1
did not visit j between times T}, o and T}/ 1, hence Ar,, ,; = Ar,, | = Ar, 4, SO

Ty 2. We now deal with the case L = 0. Since @z = 1, there exists
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OF =2 = —ATW +1/2 = —¢/*"P. Therefore Y1, S22, ErF =2 > m2(2n)¥/2 yields
S i Z T’“ B> 2 (n)®/2. We can now conclude as in the case ©] of type A.

Case @7 of type C.

We suppose zx4+1 = zr + 1, the other case can be dealt with in the same way.
Since ©] = 1, there exists I € I(z,z,+1) such that W el W;;;}, which yields
S, X G 2 Em?? and S SR -G 2 ()Y, Since X follows 7,
(B[NeJ LNIJ i)- _ CTk,-i-J

’

occurs and n is large enough, for any ;7 € I we have Cj”’k
SO ZL i Z T’“ s Z(én )3/2 We can now use the same arguments as in the case
O] of type A to deduce P i D T’“+ E> *2(én)3/2. Moreover, for any j € I we have
C;f - =Aq,;—1/2=Agq;—1/2. In addition, since O] is of type C, (zk, zk+1) wWas clean
at time k, hence the path v stayed strictly below z; until time k, thus A, ; = Ar, ;,
hence C“”k = ATk J—12=get P Consequently, ;2 Z;?:i —é}’k > 22(¢n)3/? implies
ZZ i Z T’“’* B> G )3/2. We can now end the proof as in the case O] of type A.

Case @7 of type D.

We suppose z;t+1 = zx + 1, the other case can be dealt with in the same way. Then
since ©] = 1, there exists I € I(z,z2,+1) such that W3, ; N W% ; occurs. This
yields 32 i Z” ¢ M1 > 2 (2n)3/? and Y002 i Z” ¢ > 2(2n)3/2. Since X follows

(B(%NHJ LN:EJ :t) C’Y,k)*l — CTk717_7I

occurs and n is large enough, for any j € I we have

Jo_ T I (T T I
and ¢ =g, so we get P i Z BTl > 12(2n)3/2 and P 2 Z Bl >

2 (¢n)*/2. From the second inequality we can deduce that 1%, Z et & 2 12( én)3/2

by the same arguments as in the case ©] of type A; we can also apply them to the first

inequality to obtain ZZ i Z T’“ Lok > ;;(* )3/2 Now, for any j € I, (T" LB

A j+1/2w1thm ﬁTk ) —Tk, hence CT’“ no —Aq, j+1/2 = - ¢ Therefore
we have Zz i Z Tk B> *2(én)®/2. We can now conclude as in the case ©} of
type A. O

In light of Proposition 7.3, we want to prove that for any K € IN*, for any path ~ of
length K, the probability that there are not enough k € {0,..., K — 1} so that ©] is of
type A, B, C or D and O] = 1 is very weak. A sequence of {0,1,«}® that is a possible
value of (0} )o<k<k -1 w111 be called an admissible sequence for . Since the states of
the edges of Z at time k depend only on the path and of the ©},, £’ < k, and since the
states of the edges at time k determine whether ©) = %, we have the following lemma.

Lemma 7.4. For any K € IN*, there are at most 2% admissible sequences for any given
path of length K.

For any K € IN*, for any path v of length K, we call A(y) the set of admissible
sequences for v. We also call A’(y) the set of bad admissible sequences, that is the
(tk)o<k<k—1 € A(7) such that [{k € {0,...,K — 1}|tx, = 0}| > K/20. All admissible
sequences that are not bad will contain enough & € {0,..., K — 1} so that ©] is of type
A, B, CorD and ©] =1, as established by the following lemma.

Lemma 7.5. For anyK € IN*, for any path v of length K, if (©])o<k<k—1 is not bad, we
have |{k € {0, .. —1}|©] is of type A, B, C or D and ©] = 1}| > K/20.

Proof. We notice that at each stage of the path without wait (the notion of a stage with
wait was defined in the algorithm), we get either a ©] which is 0 or a ©] of type A, B,
C or D. Since (0} )o<k<k—1 is not bad, |[{k € {0,..., K —1}|0]) = 0}| < K/20, so if there
K —1}|0©] is of type A, B, C or D and
O] = 1}| > K/20. Therefore it is enough to prove that there are at least K/10 stages
without wait.
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If there are at least K /10 stages with wait that are not dirty, we notice that each of
these stages has to follow a stage without wait, so there are at least K/10 stages without
wait.

If there are less than K/10 stages with wait that are not dirty, we call K; the number
of dirty stages with wait, K,,4 the number of stages with wait that are not dirty, and K,
the number of stages without wait. There are at least K/2 stages in the path (since all the
edges are initially clean, the first stage is one-step long), hence Ky + K4 + Kuyw > K/2.
By assumption, K4 < K/10, hence K4+ Ky > K/2— K,q > K/2— K/10 = 2K/5. Now,
for each stage without wait, the number of dirty edges of Z increases by at most 3, for
each dirty stage with wait, the number of dirty edges of Z decreases by 1, and for each
stage with wait that is not dirty, the number of dirty edges of Z does not change. We
deduce that K; < 3K, S0 Kgq + Ky > 2K/5 implies 4K, > 2K/5, thus K, > K/10,
which means there are at least K /10 stages without wait, which ends the proof. O

It now remains to prove that the probability of a bad admissible sequence to occur is
very small, which is the following proposition.

Proposition 7.6. When n is large enough, for any K € IN*, for any path v of length K,
for any (t)o<k<rk—1 € A'(7), we have P(Vk € {0,..., K —1},0] =t;) < 1/8K,

Proof. If we know that ©] = ¢;, for 0 < k < K — 1, it determines the type of the 6},
k € {0,..., K —1}; if under these conditions O] is of a given type, we will say that ¢; is of
this type. Forany k € {0,..., K —1}, we denote P, the event {Vk' € {0,...,k}, O], =ty }.
Since (tr)o<k<ix-1 € A'(7), there are at least K/20 integers k € {0,...,K — 1} such
that ¢, = 0. Consequently, it is enough to prove that for any k € {0,..., K — 1}, if ¢
is of type A, B, B’ or C then P(©] = 0|P; ;) < 2790 and if ¢; is of type A’ or D then
P(©] =0[P]_,) < 27% (where P?, denotes the whole universe). Let k € {0,..., K — 1}.

Case ty, of type A’.

We suppose zp4+1 = 2 + 1; the other case can be dealt with in the same way. In
this case, knowing v and ©}, = ti/, ¥’ < k — 2 is enough to know O] is of type A, so
P(O] = 01P]_,) = P({[{I € Li(z11, 2) Wy 1} < gz} ULHT € Loz, ) WS, )] <
55z }|P_,). Moreover, P/_, depends only on the ¢r¥, &K with & < k — 2, i € Z, hence
on the C?’k/, Ar, i with & < k — 2, i € Z. In addition, the WS k—1.1- Wi r depend only
on the ¢J**,¢7**~1, i € Z, which are by construction independent from the ¢J**, Ay, ;
with ¥’ < k — 2, i € Z, hence from P, ,. We deduce that P(©] = 0|P}_,) = P({|{I €
Di(zi—1, 26) W5 o1 1 H < 252 PU{{T € L (2k—1, 21) WS 1} < 552 })- Therefore it is enough
to prove P(|{I € I, (z—1,21) W3 1} < 552) <27 (as P({I € Li(zr—1,21) W3, 111 <
55z) can be dealt with in the same way). Moreover, we can write

3 g
p (\{I € L(z1, 2) W r 3 < 278) —P > twe, <z
Iel (zk—1,2k)

the fact that the I € I,.(z;_1, i) are disjoint implies the ]IW:/_k , are independent, and we
have ]E(]lW:M) > é by Lemma 7.2, therefore by the Hoeffding inequality,

13
P ({1 € L(arr, )W} < 52

€ 1 ¢
<P Z ]leyi,k‘l —E Z ]lw'(;k,l <50z " 3o {iJ
29¢ 32 L4g
Iel (zp—1,2K) Iel (zk—1,2k)
25 15] - )
32L4 29
< exp ( Eij €
4
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: =~ 5 € 5 1 5 £ 1 ¢ e _ € ‘o i :
Since £ < ¢, [2] > 52,50 551 52) — 552 = 5552 — 592 = 30z This implies

my

€ 2(55.)2
P (\{I € Ir(zk—lvzk)\we,k,zﬂ < 275) <exp (‘ (236) )

€ \24¢ €
< exp (2 (352) g> = (gmz) <27
since € < ma. This ends the proof for this case.

Case t;, of type B’.

We suppose 21 = 2z + 1; the other case can be dealt with in the same way. In this
case, knowing v and ©), = ¢, k' < k — 1 is enough to know O] is of type B’, hence
P(O] = 01P]_,) = P({{I € Li(zx — 1. 2) W5} < i} UL € Lol — L) Wi ) <
55z }|/P._1). Furthermore, since t; is of type B’, (2, — 1, 2;) is clean at time k, which means
the path v “never used edge (zx — 1, zx) before time £”, hence when n is large enough,
P, _, depends only on C?’k/, Ar,; with &' < k—1,4 & {Xq, + len](zx — 1),..., X1, +
len |z}, while the ijﬁ, W5, ; considered here depend only on the ¢%, Ar, . with
i€ {Xr, + |en|(zx — 1),..., X1, + |en] 2z}, which are independent from the former, thus
from P/ _,. This yields P(©] =0|P,_,) = P{|{I € I;(z — 1,zk)\W;i}€<}}| <szfU{{I €
I (zx =1, 21) W5 1} < 55z }), so it is enough to prove that P(|{/ € [;(z,—1, zk)|Wj,§}| <
5z) < 27% and P({I € I.(2x — 1,2,)|W5, 1} < 55z) < 27°'. This can be done in the

£
szaame way as for the case t; of type A, noticing that since (z; — 1, z) is clean at time &,
the path v did not cross the edge (2 — 1, zx) before time k&, thus z; < 0 and the intervals
I we consider are contained in (—oco, X7, + |en|z; — 1], so we can use Lemma 7.2.

Case ty, of type A.

We suppose zi+1 = 2 + 1; the other case can be dealt with in the same way. We will
use the notation #/, £, and &; introduced when describing the ©) of type A. Knowing ~y
and ©], =ty k” < k — 1 is enough to know O] is of type A and to determine %', hence
P(©) =0P_1) = P((Nree, W37, 1)) (Nyee, W7k 1)) P _1)- Therefore it is enough to
prove P((;ce, W37 DIPI_1) <275, as P(N;ce, Wik 1)IPI_1) < 27% can be proven

Y v
in the same way. If P]_, occurs, |&] > 55z, so

e(Novfr)- S e(nowa-s

Ie& ECI (zk,2k41): B> 557 Ie&

73,31> . (7.2)

Now, for any E C [j(zk, z+1) With [E| > 55z, we have P((;c, (W, )% & = E|P]_,) =
P(;cp( 7’,“)0,51 = E|P}_;). Moreover, P} ; and {& = E} depend only on the
¢, Agq with ¥ < k— 1, i € Z, while the W, ; depend on the ()", i € Z,
which are independent from the former. This implies P((;c; (W, ;)% & = E|P]_,) =
P(N;exW;7.1)°)P(& = EIP]_,), hence equation (7.2) becomes

(o) 5 e(go)re-rm

I€g&, ECi(zk,2k+1),| B2 552 IeE

so it is enough to prove that for any £ C (2, 2k+1) with |E| > 55z, P((;c gWV7 1)) <
2761, Now let F be such a set, then the I € F are disjoint hence the W are
independent, thus P((;c 5 (W7 1)) = [1;ep P(OWV; % 1)°) < (81)2% by Lemma 7.2 and

31
|E| > 55z. Since & < —%E, we indeed obtain P((;c x(W; 7, ;)°) < 27°0
Case t;, of type B.
This case can be dealt with using the same arguments as for the case t; of type A.

Case t;, of type C.

EJP 29 (2024), paper 98. https://www.imstat.org/ejp
Page 42/60


https://doi.org/10.1214/24-EJP1156
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorems for trajectory of self-repelling random walk with directed edges

We suppose 211 = 2z + 1; the other case can be dealt with in the same way. In this
case, knowing v and ©], = #;r, k' < k — 1 is enough to know O] is of type C, hence
PO =0/P)_,) = P(Vrer(apopsn) (Wali ) U (W'ykl) )IP7_,). Furthermore, since t;
is of type C, (zk, zk+1) is clean at time k, which means the path v “never used edge
(2k, zK+1) before time k”, hence when n is large enough, P/} _, depends only on (7”“/,
Ar,; with ¥ < k-1, ¢ {Xr, + |en]2k, ..., X1, + |en]2k41}, while the W I,W;k ;
we consider depend only on {;”k, Ar,; with i € {X7, + |len]zk, ..., X1, + |en]zri1},
which are independent from the former thus from P;_,. This implies P(©] = 0|P]_,) =

(ﬂ,eI(Zk ey (W 1)U (W5 7)))- In addition, the I € I(zy, 2).+1) are disjoint hence
the (W, 7, ;)°U(W, ;)¢ are independent, so P(6] = 0|P;_,) = [1;c/(sy 20 s 0y POV 31U

(W;;”) ). Now, let I € I(zg,zk41), we have P(W 7, )°U (W, ;7)) =1 -PW N
W) = 1=PW2 )PV, E ,,r is independent from W_ 7 (they depend
respectively on (Z’k and ATM-). Furthermore, (zk, zk+1) is clean at tlme k, thus the
path v never crossed edge (zi, zx+1) before time k, hence z; > 0, and we have I C
[X1, + |en]zr +1,400), so we can apply Lemma 7.2 to W_k 1' as well as to W% ;, which
yields P(WV 7, 1)U OV, 1)) = 1 =P )PV ) < 1 - (5)° =127 We

Y
deduce P(0] = 0[P ) < (1—2710)2Ld) < (1 - 2710) < 2—60 since & < —1al-2 )

Case t;, of type D.

We assume zj11 = zi + 1; the other case can be dealt with in the same way (beware:
the definition of type D was detailed for z;+; = 2z — 1). In this case, knowing v and
©), = tw, ¥ < k — 2 is enough to know ©) is of type D, hence P(0] = 0|P] ,) =
IE’(ﬂlel(Zk“’Zk)(( e—1,) U W )9)|PL_y). Moreover, P/, depends only on the CZ”“ ,
Ar,; with k' <k — 2, i € Z, while the W7, _, ;, W.*; ; depend only on the CrRt ok

7,
with ¢ € Z, which are independent from the former, hence from P,_,. We deduce

P(O) = 0[P_,) = P(reriep o) (W1, U (W 1)9)), which can be bounded by
the same arguments as in the case t; of type C. O

€.

We are now able to conclude. Proposition 7.3 and Lemma 7.5 allow to deduce that for
any K € IN*, when n is large enough, if T — T < £72(¢n)/2 and B N (N°_, B) occurs,
there exists a path v of length K so that (@k)ogkgK 1 € A'(7). In addition, there are 2%
possible paths of length K, therefore Lemma 7.4 and Proposition 7.6 yield the following.

Proposition 7.7. For any K € IN*, for n large enough,

3/2 c c 1
IP(TK T0<K120( n)3/?, Bmﬂ8>§2

r=0

8 The limit process of the environments

In Section 9, we will need to prove the joint convergence in distribution of the position
of our random walk at times 7T, ..., Tk and of “environment” processes depending on
the Ar, ;, k € {0,..., K} (see Definition 9.3). In order to show this convergence, we
will need some results on the limit process, the “limit process of the environments”. We
believe said limit process to be of independent interest. In Section 8.1, we will prove
some results on Brownian motions reflected on and absorbed by general barriers (we
recall the Definition 6.1 of the reflected Brownian motion), which are interesting in their
own right and which we will need to apply to the limit process of the environments. In
Section 8.2, we give the definition of the limit process of the environnements and prove
that the results of Section 8.1 can actually be applied to it.
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8.1 Brownian motion results

Let us set some notation. The Brownian motions in the subsection will all have
the same variance, which can be any positive real. Our barrier will be a continuous
function f : [-1,1] — RR. We suppose for notational convenience (and with no loss of
generality) that f(0) = 0. We consider a process (Wt_)te[q,u which is a Brownian motion
(W{ )te[—1,1) reflected on f above f on [—1,0], starting with W-, = f(—1), and absorbed
by the barrier f on [0,1]. We denote o_ = inf{t > 0| W, = f(t)} the absorption time,
and p_ = P(o_ < 1) the probability of absorption. Similarly, we consider a process
(W, )te[~1,1] Which is a Brownian motion starting with Wi = f(1), reflected on f above
f on [0,1], and absorbed by f on [~1,0]. We denote o = sup{t < 0|W," = f(t)} the
absorption time, and p; = P(o; > —1) the probability of absorption. We want to
understand when we have p_ + p, = 1.

Proposition 8.1. We always have p_ + p; > 1. Moreover, we define a random variable
Z as follows: let W~ and W™ be two independent Brownian motions on [0, 1] with
Wy =Wy =0, we set Z = supg, <, (W, + f(—t)) + infocs<1 (W;" — f(t)). Then we have
p— +py =1ifand only if P(Z = 0) = 0.

Proof. By definition, for any ¢ € [~1,0] we have W,” = W,” + sup_ 1<s<t(f(s) = W) =
sup_q<s<,(f(s) + Wy — W), and for t € [0,0 A 1] we have W, =Wy + (W, —Wy).
Therefore we have P(o_ = 1) < P(W; + (W, — Wy ) = f(1)), while (W, — W, )tel0.1]

is a Brownian motion independent from W, , hence P(s_ = 1) = 0. This implies
p_ = P(o_ < 1). In addition, o < 1 when infoci<i (W,” — f(t)) < 0, thus when
infocrct (Wy 4+ (W, =Wy )= f(t)) <0, that is W~ +1nf0<t<1((W W0 )—f(t)) < 0which
can be written as sup_; << (f(t) + Wy — W, ) + 1nfo<t<1(( Wy ) — f(t)) <0. This
implies p = P(sup_y <y (1) Wy Wy ) Hinfozecs (1, Wy )~ (t)) <0 =P(Z <)
Now, p; corresponds to the p_ associated to the function f [-1,1] — R defined by
f(t) = f(—t) for any s € [—1,1]. This yields

o

pe = sup (% 4 F(-0) + int (% f(0) <0)

0<t<1 0<t<1

P ( sup (W™ + f(6) + ink (W — f(-1)) < o)

0<t<1 <t<1

=P (int (T = F(0)+ sup (<7 + (=) 2 0).
0<t<1 0<t<1
but infoci<1 (=W, — f()) + supg<,<1 (—=W;" + f(—t)) > 0 has the same law as Z, so
py+ = P(Z > 0). Since we also have p_ = P(Z < 0), we always have p_ + p, > 1, and we
have p_ 4+ p; =1 ifand only if P(Z = 0) = 0. O

In order to get both a more practical condition for having p_ 4+ p; = 1 than the one in
Proposition 8.1 and auxiliary results that will be useful in Section 9, we need to introduce
some stopping times. Let (1;)c[o,1) @ Brownian motion, and g : [0, 1] — R a continuous
function. For any § € R, we define o(§) = inf{t € [0,1] | W; < g(t) + ¢}, the inf being
infinite when the set is empty.

Lemma 8.2. For any continuous function g : [0,1] — R (possibly random) so that

9(0) < Wy almost surely, we have that o(§) converges in probability to ¢(0) as 0 tends
to 0.

Proof. We first suppose g and W, are deterministic and ¢g(0) < Wy. It is enough to prove
that for any a > 0, P(|o(§) — o(0)| > a) tends to 0 when § tends to 0. We will treat § > 0,
the negative case is handled similarly. For any a > 0, for any § > 0, we notice that
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o(0) > o(8), so if [o(d) — o(0)| > a then o(0) — () > a, so there exists a non-negative
integer i < |1/a] + 1 so that ¢(6) < ia and ¢(0) > ia. We deduce

P(lo(6) —o(0)] > a) < <{iJ + 2) tren[émli]IP(o(é) <t,o(0)>1t). (8.1)
We thus need to study the P(c(d) < ¢,0(0) > t). For any § > 0, we consider a Brownian
motion (W} ),c(0,1) starting from Wy + 4, independent from (W;);c(o,1; until they meet,
and then coalescing with (W;);c(0,1]. We also denote ¢’(8) = inf{t € [0,1]| W} < g(t) + 6}.
Since § > 0, we have W} > W, for any ¢ € [0, 1], thus we have o(§) < o/(§). Moreover,
o’(8) has the same law as o(0). We deduce that for ¢ € [0, 1], denoting 7° the time of
coalescence of (Wy)iejo,1] and (W));e(0,1).

P(0(8) < t,0(0) > t) = P(0(8) < t) — P(c(0) < t)
=P(c(5) < t) — P('(8) < t) = P(c(8) < t,0'(6) > t) < P(T° > o()).

From this and (8.1) we deduce P(|o(5) — o(0)] > a) < ([1] +2)P(T° > 0(d)), so it
is enough to prove P(T° > ¢(J)) tends to 0 when § tends to 0. To do that, we denote
8y = Wo—90 ~ 0. When § < &, we have o(6) > o(dy) hence P(T? > o(8)) < P(T° > a(8)).
Now, o(6) > 0 and 7° converges in probability to 0 when J tends to 0, therefore
lims_,o P(T° > o(8y)) = 0, which ends the proof when g and W, are deterministic. If g
and W, are random, we notice that for any a > 0, P(|o(6) — o(0)| > a) = E(P(|o(d) —
o(0)] > al|g,Wy)), and that for any value of ¢ and W, so that g(0) < Wy, we have
lims_,o P(|o(d) — o(0)] > a|g,Wy) = 0, hence P(|o(§) — o(0)] > alg, W) converges
almost surely to 0 when § tends to 0, therefore lims_,o P(|o(§) — o(0)| > a) = 0. O

Lemma 8.2 allows us to prove the following condition, more practical than the one in
Proposition 8.1.

Proposition 8.3. IfP(W, > f(0)) =1, thenp_ + p, = 1.

Proof. Let us assume P(W, > f(0)) = 1. We recall that by Proposition 8.1, prov-
ing P(Z = 0) = 0 is enough to prove p_ + p; = 1. Now, by definition WJ =
Wy +sup_j<;<o(f(t) = W) =sup_1<,<o(f(t) = W, + W;) which has the same law as
SuPogtgl(Wt_ + f(=t)), so

P(Z=0)=P (WO— + Ogtlgl(wr —ft) = 0) =P (oi?il(wo_ + W= f(t) = 0) .
We use the notation of Lemma 8.2 with the process (WJ + Wﬁ)te[o‘” replacing (W)eo,1)
and the restriction of f to [0, 1] replacing g. We then have P(Z = 0) < P(c(0) < 400,V ¢ <
0,0(8) = +00). Now, since W, + W;" = W, and P(W, > f(0)) = 1, Lemma 8.2 implies
o(d) converges in probability to ¢(0) when § tends to 0, hence P(c(0) < 400,V <
0,0(8) = 4+o00) = 0, therefore P(Z = 0) = 0, which ends the proof. O

We are going to establish another criterion for having p_ + p;y = 1, which will
not be used in this paper but has independent interest. Proposition 8.1 stated that
p— + p+ = 1if and only if P(Z = 0) = 0, and we saw in the proof of Proposition 8.3 that
P(Z = 0) = P(info<;<1(Wy + W," — f(t)) = 0), and that this was 0 if P(W, > f(0)) = 1.
Therefore p_ + p, > 1 if and only if P(W;, = f(0)) > 0 and with strictly positive
probability a Brownian motion (W;)c(o,1) starting at 0 satisfies W; > f(t) for 0 <t < 1.
Now, recall that a function f : [0,1] — R with f(0) = 0 is called a lower function if
PVO <t < 1,W; > f(t)) > 0. So for example, if 0 < ¢ < 2 and W is a standard

Brownian motion, a continuous function equivalent to —\/ (24 €)tIn(In(})) around 0
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is a lower function (indeed, the Law of the Iterated Logarithm implies there exists
0 >0sothat P(V0 <t <4, W, > 1/1—}ref(t)) > 0, and the Forgery Theorem (Theorem

38 of [5]) implies P (va <t<1, W, — W > f(t) — f(5) — ( - 1) f(d)) > 0), but a

function equivalent to —\/ (2 — e)tIn(In(3)) is not (for refinement see [3]). Furthermore,
P(W, = £(0)) > 0 if and only if P(sup_,,<,(f(t) — W; + W, ) = 0) > 0, which is the
case if and only if the function : ¢t — — f(—t) is a lower function. We deduce the following
criterion.

Proposition 8.4. p_ + p, > 1 if and only if the functions f, f> : [0,1] — R defined by
fi(t) = f(t) and f2(t) = —f(—t) fort € [0,1] are both lower functions.

8.2 The limit process of the environments

In this section, the variance of all Brownian motions will be the variance of the
law pg defined in (4.10). Moreover, we have as usual € > 0. The limit process of the
environments will be the following.

Definition 8.5. W° will be a two-sided Brownian motion with W = 0. We denote Z, = 0.
Let k € IN, and suppose that W*, Z,, are defined for any k' € {0,...,k}, we construct
W+ as follows.

We consider a continuous process (Vtk’_)te[,g,s] defined as follows: V,k’g_ = Wk,
(V;k)i)te[—s,o] is a Brownian motion above W* reflected on W*, and (V;k}i)te[o,s] is a
Brownian motion absorbed by W*. Let o, _ = inf{t > 0| Vtk’* = W/} be the absorption
time, and p, _ = P(oy,_ < €|W*) the probability of absorption. Similarly, let (Vtk’Jr)te[_&E]
so that V¥ = WF, (V1).c0. is @ Brownian motion reflected on (WY_,),c(0 ] above
(WE_)iepo,) and (V_kf)te[o,e] is a Brownian motion absorbed by (W*,),c(0.), let o+ =
sup{t < 0| V" = W/} be the absorption time, and set py y = P (o) > —e|W*).

Then, independently from the Wk, Kk e {0,...,k}, we set Zk-i—l = 7. — 1 with
probability pj, — and Zk+1 = Zk + 1 with probability 1 — py, .

« If Zypy1 = Zp — 1, Wt is defined as follows. Fort € (—oo,0] U [2¢,400), we
set Wit = Wl _ — Wk_. Moreover, we define a process (W, )ic|_.. thus:
Wk = W*_, (W) )ie|_c.0) is a Brownian motion above W* reflected on W*, and
(Wtk’f)te[oﬁs] is a Brownian motion absorbed by W*, but (Wtk’f)te[_&s] is conditioned
to coalesce with W), before time . Then for any t € [0,2¢], we set WFT! =
Wtk_’; — W*_. In addition, we set Trir = QfEE(Wtk’f — Wk)dt.

o If Zkﬂ = Zj, + 1, the definition is similar. Ift € (=00, —2¢] U [0,4+00), we set
WEH = Wk _ — WE. We also define a process (W}"");c[_. 4 so that Wk+ = WF,

(WET)iep0,4 is a Brownian motion above (WE_,)cp. reflected on (W ,)cp0.,
and (Wff)te[o,s] is a Brownian motion absorbed by (Wft)te[o,s]/ conditioned to
coalesce. Then fort € [~2¢,0], we set W = W — Wk, In addition, we set

Typr =2 [S (WS — W)t

¥, and W* to the limit
of ﬁ S ¢ 7P (see Definition 4.1). (Zi)xen is the “mesoscopic walk embedded in the

Remark 8.6. /¥~ corresponds roughly to the limit of ﬁ S
limit process of YN” (see (1.6) and below).

The limit process of the environments satisfies the following property, which is not
hard to obtain so we omit the proof here, but it can be found in the appendix of the arXiv
version of this paper [12].

Lemma 8.7. For any k € IN*, the random variables Tj, and ZZ,:l T} have no atoms.
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We want to apply the results of Section 8.1 to the limit process of the environments.
However, to use them, we need the Brownian motion (W~ in Proposition 8.3 or W in
Lemma 8.2) to be strictly above the barrier (f in Proposition 8.3 or g in Lemma 8.2) at 0.
Hence we have to prove such a result for the processes defined in Definition 8.5, which
is the following.

Proposition 8.8. For any k € N, we have P(Vy"~ > W§) =1 and P(V;"" > W§) = 1.

The rest of this section is devoted to the proof of Proposition 8.8. The idea is to prove
that the law of W* in some small interval [—£, ] around 0 is “close” to that of a Brownian
motion, or of a Brownian motion reflected on a Brownian motion. Indeed, we can prove
that a Brownian motion like VV** reflected on such a process is almost surely strictly
above it at time 0 (Lemma 8.11).

We need to define some notation. For any & > 0, let (W});c[—z 4 a two-sided Brow-
nian motion with Wy, = 0. We denote its law p-. We will also denote ;1 . the law of
(W{)te|-z, so that “at the left of 0, W’ is a Brownian motion, and at the right of 0, W’
is a Brownian motion reflected on W”; more rigorously, (W})c(—z,0 = (Wi)te[—z,0) and
(W{)tejo,4 is @ Brownian motion reflected on (W;),c[0,s] above (W;)c(0,4 S0 that W = 0.
Similarly, we will denote ., - the law of (W}).c[—z so that “at the right of 0, W’ is a
Brownian motion, and at the left of 0, W’ is a Brownian motion reflected on W”, that
is (W{)iep0, = (Wt)eepo,q @and (W, )icp0,4 is a Brownian motion reflected on (W_;);co 4
above (W_¢)c(0,¢ SO that W{§ = 0. Finally, for any k € IN, we denote by u’j’é “the law of
W* in a window of size 2¢ around z¢”, that is the law of (WE ,, — WE),c_z 5.

Now, for any € > 0, we denote F: the set of real non-negative bounded functions
defined on the space of continuous functions : [—£, ] — R. If u is the law of a continuous
stochastic process (W;);c[—z 4 and f € Fe, we denote by u(f) or u(f((Wi)iecj—z,7)) the ex-
pectation of f((W});c[—z7) under the law n. For any f € F¢, for any process (W;).c[—z,4,
we denote f((Wi)igj—z,q) = f((Wt)te[,E—,o], (Wt)tefo,s)- We then have the following propo-
sition, which indicates that for any k£ € IN, the law of W* is “close” to an appropriate
law.

Proposition 8.9. For any z € 7, ¢ > 0 we have ;ﬁ;; = us, and for all k € IN*, for

€
all 6 > 0, there exists € > 0 so that, for any f € Fs, for any z € Z \ {0} we have
1h (f) < 28u(f) + 61 flloor and pf (F) < 2571 (ue 2(f) 4 pt 2 () + 0| flloo-

The following lemma indicates that if the law of W* around time 0 is close to an

appropriate law, we have the desired property IP(VOk’i > Wé“ ) = 1. Lemma 8.10 together
with Proposition 8.9 prove Proposition 8.8, and Lemma 8.10 is also used in the proof of
Proposition 8.9.
Lemma 8.10. If for any ¢ > 0 we have ) . = yie, then P(Vy"~ > W{) =1 and P(Vy"" >
W¢) = 1. Moreover, for any k € IN*, if for any § > 0 there exists £ > 0 so that for any
J € Pz we have ul () < 2 (s (f) + ps-c(f)) + 6. f e, then P(V~ > W) = 1 and
PVt > W) =1.

In order to prove Lemma 8.10, we need to show that a Brownian motion reflected on
a process with law pg, i - or p - will almost surely be strictly above it at time 0, which
is the following lemma.

Lemma 8.11. Forany ¢ > 0, we denote by (W;)c|_z 7 a process with law pz, iz or iy ¢,
and by (W/);c[-z 7 a Brownian motion reflected on (W;);c|_zz such that W' . > W_.
Then for any § > 0, there exists 0 < & < & so that P(Vt € [—&,&'], W > W;) > 1 — 4.

Proof. We begin by introducing some notation. We denote by (W/');c|_z s the Brownian
motion so that (W{);c[_z 4 is the reflection of (W/’),c[—z 4 on (W;):e[—z. We notice that
if (Wt)te[o,l] is a Brownian motion with 1, = 0, there exists some finite M > 0 so that
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P(maxo<i<1 |Wi| < M/3) > 0. We denote ig = f_llrr‘l(?] (then 27 2% < &), It will be enough
to prove that

P(3i > ig so that Vit € [-27% 0], |[W;| < 27°M and W}/ — W", o, > (2M +1)27%) = 1.
(8.2)
Indeed, then there almost surely exists i > i so that V¢ € [-27% 0], |[W,| < 27'M
and Wy — W”,_,, > (2M +1)27%. Then (W/),c[—a-2i ] is above the Brownian motion
(WY =W, s + W_g-2i)sc|_o-2i o) Teflected on (W;),c[—2-2i g], itself above the Brownian
motion (W' — W, s, + W_s-2i),c[_a-2i o). Therefore W§ > W' — W, 5, + W_g-2i >
(2M +1)27" = M27 = (M +1)27" > Wy + 27" > W,. We deduce P(W/} > Wy) = 1. Now
let 6 > 0. Since P(W} = Wy) = 0, there exists §; > 0 so that P(W] — Wy < 1) < §/2.
Furthermore, the processes (W;);c—z, and (W}).c[-z,7 are continuous, hence there
exists 0 < & < &sothat P(V¢ € [—&, &, |(W] — W) — (W5 —Wo)| < 81/2) >1—46/2. We
then have P(Vt¢ € [—&,&'], W] > W) > 1 — ¢, which is Lemma 8.11.
Consequently, we only have to prove (8.2). We will prove

P(|{i € N|i>ig,Vt € [-2720],|[Wi| <27 M, W} —W", 2; > (2M +1)27"}| = +o0) = 1.

By Blumenthal 0-1 law, this event has probability 0 or 1, so it is enough to prove that it
has positive probability. Now,

P(|{i € N|i>ig,Vt € [-2720],|[Wy| <27 M, W} — W, 2i > (2M +1)27%}| = 4+0)

=P | () UVt e [-27%,0], [Wy| <277 M, W) = Wy, > (2M +1)277}

i>ig j>i

= lim P Ufvt e (275,00, [Wi| < 277 M, W = W,y > (2M +1)277}
J>i
> 1igl+ian(Vt € [-272,0], Wy <27 M, WY — Wy a0 > (2M +1)27°).

Consequently, it is enough to find a positive lower bound for the latter term. In addition,
W and W are independent, hence

P(Vt e [-272,0], W, < 27"M, W — W5 > (2M +1)277)
=PVt € [-27%,0],|W;| <27 MYP(WY — Wy ni > (2M +1)27%).

Moreover, by scaling invariance of the Brownian motion, P(Wy — W”,_,, > (2M +
1)27%) = P(W} — W”, > 2M + 1), which is positive and independent on i. Therefore
we only have to find a positive lower bound for the P(Vt € [-27% 0], |[W;| < 27 M). If
(Wt)te[z,2 has law pz or i ¢, (W_¢)c(0,4 is @ Brownian motion, so by scaling invariance,
P(Vt € [-272,0],|W;| < 27'M) = P(maxo<i<1 |W;| < M) > 0, which is enough. If
(Wi)te[-z,z) has law py -, we may say (W_;).c[o,s] is @ Brownian motion (Wit)te[o,é] with
Wy = 0 reflected on an independent Brownian motion (W?2,)cj0,s) with W5 = 0. As
before, P(Vt € [-27%,0],|W}| < 27'M/3) = P(Vt € [-2720],|W?| < 27M/3) =
P(maxg<i<1 |[Wi| < M/3) > 0, thus P(Vt € [-27%,0], [W}|,|[W2| < 27?M/3) is constant
and positive. Now, if for all ¢t € [-27%0] we have |W}|,|W?| < 27¢M/3, then for all
t € [-2721,0] we have W; = W} + sup,«,o(W2 — W}), hence |W,;| < 27?M. This implies
that P(Vt € [-27%,0],|W;| < 27*M) is bounded from below by a positive constant, which
ends the proof of Lemma 8.11. O

We are now in position to prove Proposition 8.9 and Lemma 8.10.
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Proof of Lemma 8.10. We only spell out the proof for £ € IN* and ]P(V’C +s WE) =1, as
the other cases can be dealt with in the same way. We are going to prove that for any > 0
we have P(V*" = W) < §, which is enough. Let § > 0. We recall that (fo)te[,s,s] isa
Brownian motion reflected and absorbed by (Wft)te[—a,e] (see Definition 8.5). We may
consider that it was constructed as the reflection and absorption of the Brownian motion
(for)te[,eys]. Let £ € (0,¢), and let us denote by (V;k*’é)te[,as—] the process defined
so that (fo’g)te[,g,g} is the Brownian motion (V" — VT 4 WE),e1_c 4 reflected on
(W*,)ie[-z,5 and above it. It is “the same Brownian motion as (l/;k’Jr)te[,g’E—}, but starting
from a lower point (and without absorption)”, so if Vok’J“é > W¥ then VOk’Jr > Wk. We
deduce ]P(V[)k’Jr =W < ]P(X/()k’+’é = W¥). We now introduce some temporary notation:
for any measure . defined on the space of continuous processes on [—£, ], (W} )iz 4 Will
be a process of law y, and (W/),c|_z2 will be defined so that W/ = Wz and (W’ ,)ic[—z .4
is a Brownian motion reflected on (W_;),c|_z s above it. We then have

P(Vy" = W) S BPVy ™" = WEI(WE)ieloe,q)) = ub (P(W, = Wo|W)).

We now choose & so that for any f € Fz we have ug (f) < 28N (u_ o(f) + py 2(f)) +
(6/2)]|flleo (we can choose ¢ < ¢ since it is easy to see that if the property holds for ¢ it
also holds for all smaller £). We then have

P(Vy ™ = Wg) < 27 (ue e (P(WG = Wo W) + py o (B(Wg = WolW))) + 6/2.
This implies that for any & € (0, ), we have that P(Vy"" = W{) is smaller than
27 (- (Pt € [, €], W] = Wi W) + uy e (P(3t € [, €], W] = W[W))) + 6/2.

Now, by Lemma 8.11, noticing that if (W});c[_z 5 has law ps - then (W_;),c[_z o has law

pig = there exists 0 < & < £ so that u_ (P(3t € [-&,¢, Wt < Wi Ww)) < /2chrl and
pi z(P(3t € [, &, W, < Wy W) < (5/2’“rl This implies P(V" " = Wk) < 26-1(5/2++1 4
§/2) +6/2 = 6, which ends the proof. O

Proof of Proposition 8.9. In order to shorten the notation in this proof, for any k£ € N,
any z E 7 and any real numbers a < a/, we will denote the process (WE , — WE)ic(qa1
by W ,] We will prove Proposition 8.9 by induction on k. Here is a rough sketch of the

proof. The idea is that if the statement of the proposition is true for k£ and if, say, Zk+1 =
Zy + 1, then for any z ¢ {0,1,2}, W’“Jrl f i W[k Zfi]l which we control by the induction
hypothesis. Moreover, for z = —2, we notlce that W** is conditioned to coalesce with
W before time —e¢, so if we choose & small enough, w1th high probability W** coalesces

with W* before time —¢ + &, thus W[ktls]_ 2 W[k e which we control by the induction
hypothesis. Furthermore, for z = —1, W[H,l,] is (Wtk + W(f +)te[,5—75—]. Now, by the
induction hypothesis, W{ig g has a “good” law, hence Lemma 8.10 implies that W+

is strictly above W* at 0 thus around 0, hence W** behaves like an unconstrained

Brownian motion around O, so W[kJilif ! has the right law. Finally, for z = 0, we notice
that W10 is WhL at the right of 0 and a Brownian motion reflected on W[k at the

[—&.e] [0.¢] £,0]
right of 0, and by the induction hypothesis W[0 B has a law close to that of a Brownian

motion, so the law of W[kﬁl,? is close to fiy .

We now begin the induction. For k = 0, Definition 8.5 yields that W' is a two-sided
Brownian motion, which implies that for any z € Z, £ > 0 we have ,ug’g = pe. Now let
k € IN and suppose the statement of Proposition 8.9 for k£ holds. Let 6 > 0 and z € Z. We
first notice that by the induction hypothesis and Lemma 8.10 we have IP(VOk > Wé") =1
S0 ]P(Vok’_ > Wk|W*) = 1 almost surely, hence by Proposition 8.3 we have py _ +pi = 1
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almost surely. As explained above, we will use different arguments depending on the
value of z.

Case z ¢ {—2,—1,0,1,2}.

By Definition 8.5, given W*, with probability pj, — we have (Wit} — WEH), (. =
(W(’“z_l)EH—W(kZ 1)< )ie[< <] and with probability 1—py, — we have (WERL—WEHY) e =

zZE
(W 1yere=Wiy1))ie[-<)- Henceforany 0 < & <e¢, f € F, we have IE(f(I/V]€+1 W) =

£,E]
e~ FOVEL) + (1= pe ) fVEEL), so B(FWELD) < BFWEE)) + (f(W{iztf)),
that is uk“(f) < pk ) (f)+pk (f). Now, we notice z—1, z+1 # 0, so by the induction
hypothesis, there exists some £; > 0 (which does not depend on z) so that for any g € Fg,
we have uf_; ;, (9) < 2°pe,(9) + (6/2)|gllc and pf i, £, (9) < 2%z, (9) + (6/2)[l9lloc. We

deduce that if £ < &, we have p5 ' (f) < 257 p=(f) + 6| | -

Case z = £2.

We only treat the case z = —2, as the case z = 2 is similar. Given W*, with probability
Di,— we have W[ktlgf 2 I/V[]C R i] and with probability 1 — p;, _ we have W[ktlof 2 W[k ;(1)]
and W[]St]l -2 (Wtk i — Wlfg)te[o,e]- Consequently, if 0 < £ < € and f € Fg, we have

E(f (WL 2)WH) = pe, FOVEZE) + (1= pie OB W5, (W = WE ) epo.2)[WF).

(8.3)

Now, given W¥, by definition W** has the law of V** conditioned to coalesce with W*

before time —¢, an event denoted by {0} + > —¢} and satisfying P(oy + > —|WF) =
Dk,+ = 1 — pi,—. This implies

Foork—1 ik,
(f(W g o]a (Wt,i - ng)te[o,émwk)
1 ; k,
(f( [ g, 0 (V : WEE)tG[O,?})]l{O'k1+>*€}|Wk)7

o 1 7pk7_

therefore (8.3) implies

E(f (WL )W) < FOVECD) + BEWEZ G, (VED = WE i a) Lo > W),

hence E(f(WE52) < BUAWEZINFEFWEZ g, (VED = WE o) lio,  >-2))- We
now choose &, > 0 so that P(ox 4 € (—¢&,—¢ +&5]) < ¢/3, and assume & < &,. We then

have

E(f (W) S B WEZ) A EFWE L5 ET W e a) Loy 4 5 —eregy)+(6/3) [l
= B(FWEZ2) + BGOVECY (WE = WD) Loy 5 —cregy) + (/)1

since for ¢t < o}, we have V"t = W}. We deduce E(f(W/1'?)) < B(f(W"_2)) +

[—&,8] [—&,8]

]E(f(I/Vk’*1 ) + (6/3)||f|lco- Now, by the induction hypothesis, there exists &5 > 0 so that

[—£&,&]

for any g € Fzy we have p* 5.2(9) < 2%z (9) + (0/3)]19lloo and p* 1,e2(9) < 2%z (g) +

(6/3)]|g]|co- Thus, setting &; = min(&}, &) > 0, if we have ¢ < &, then E(f( [k_tle_Q)) <
251 (f) + (8/3)1 Flloe + 20=(F) + (3/3)1 fllow + (5/3)1 loc, that is uE5L(F) < 2 Lpe(f) +
51 f oo

Case z = £1.

We only treat the case z = —1 as the case z = 1 is similar. Given W¥*, with
probability p; — we have VVk+1 = W{i;i] and with probability 1 — p;,_ we have
W[}HEIE] = (Wpt W0 )te[_w]. Therefore, if 0 < £ < ¢ and f € F5, we have

B(f WL DIWE) = pr fVEZ2) + (1= pe OB (VS =Wt ierea)WF). (8.4)

[—£&,&]
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Now, given W¥, by definition W** has the law of V** conditioned to coalesce with W*
before time —¢, an event denoted by {0} + > —¢} and satisfying P(oy, + > —|WF) =
Dk,+ = 1 — pi,—. This yields
- 1
E(f((VVtk’+ - W§’+)te[—5,é])|wk) = WE(JC((V;CHF - Vok’Jr)te[—é,é])]l{ak,+>—e}|Wk)
1 k, k,

< WEU((V} TV e ) W),
Hence (8.4) implies E(f(W/"L )W) < fWE2) + BV = Vi ier-eq)WH),
thus we have E(f (W L5 ) < B(F(WE ) +E(S (VT =V )i -2.4)). Now, we recall
(V_’“;+)te[_s7€] is a Brownian motion reflected and absorbed by (W’ft)te[_a)s]; let us say it
was constructed as the reflection and absorption of the Brownian motion (V_kf)te[,a)s].
For any 0 < & < ¢, we denote Sz = {Vt € [-&, ], VT > Wk If € < &, we then have
E(fW) SBGWEZD) +BUVET =V e a)ls,) + [ flleP((S)°), hence

[—£&,&] [—¢&,

[—¢&,&] [—&,&

E( (WD) < BUEWEZ2)) + BV = Vo erea) + 1 1<P((S2)). (8.5)

We now need to deal with P((S#)¢). Let&” € (¢, ¢), and let us denote (I/'tk’+’é” Jte[—& ]
the process defined so that (fo’éﬁ)te[,gu,gu] is the Brownian motion (V" — V5T +
WE))ie|—z e reflected on (W*,),c[_z» = and above it. It is “the same Brownian mo-
tion as (V'tk*)te[_gnfn], but starting from a lower point (and without absorption)”, so
if {vt € [-&,&), V""" > WF} occurs, then {Vt € [-&,&],V}*" > W}} occurs. This
implies P((S#)°) < P(3t € [-&,¢&], Vtk"+’5u < W}). We now introduce a temporary no-
tation. For any measure p on continuous processes defined on [-&",&"], (W})ic|—z 2

will be a process with law x, and (W’ ;);c[—=»,z] Will be a Brownian motion reflected on
(W_t)te[-&,z and above it with W, = Wz». We then have

€

P((S2)°) < B(P(3t € [, 2], V] H < wiwre, L))

[75—//’5—//]

= ﬂg,é” (P(Ht € [*5/75/}7 Wt/ < Wt|(Wt)te[—€“,é"]))~

Now, by the induction hypothesis, there exists &, € (0,¢) so that for any g € Fg,, for
any z € 7\ {0} we have uf , (9) < 2"z (9) + (3/3)llgllc @nd 5, (9) < 2" H(n- 5, (9) +
tt,2,(9)) + (6/3)llgll (if k = 0, we instead have 1 ., (9) = pz; (9), but the argument will
work in the same way). We then choose ¢’ = &} and assume &’ < &5. Then we have

P((S2)°) < 2" (i oy (P33t € [-€, &), W] < Wil (Wa)re[-e4,4))
+ pig g, (Pt € [, &, WY < Wi |(Wa)ie—ey,2,1))) +0/3-

Now, by Lemma 8.11, noticing that if (W});c[_¢, ) has law py o then (W_;);e(_¢, ) has
law piz o, there exists 0 < &3 < &% so that

poz (Pt € [—3, 8], W] < Wi (Wi)ie[-z,.2)) < 6/(3-2),
piy,z, (P(3t € [—&3, 8], W] < Wi|(Wh)ie-z,.2,))) <6/(3- 2h).

This implies P((Sz,)¢) < 2*71(5/(3-2%) +6/(3-2%)) +6/3 = 25/3.
This and (8.5) imply that if £ < £5 we have

E(FWELS ) < EGWEZE) + BV = Vo ier-z2)) + (25/3) 1 fllo,

[—£&,&] [—&,&
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which means ukH (f) < pFq(f)+pe(f)+(20/3)||flloo- Now, since & < &3 we have & < &
hence 1%, -(f) < 2%u=(f) + (6/3)||fllc. We deduce that if £ < &3, we have p*T(f) <
2412 (F) + (8/3)1 oo + 16(f) + (20/3) |l hence LS < 25 (f) + 0 fl1.

Case z = 0.

Let 0 < £ < ¢, f € F-. Definition 6.2 indicates that given W*, with probability pj.
we have W10 Z b1 ang WL = (WD — Wk )[O -, and with probability 1 — py

[—e,0] = "T[=€,0] [0,¢]
we have W[ktlo? (thﬂr;f — Wk )[—<,0) and W[’St]l 0= W[0 o Consequently,

E(f(WELDIW?) =pi - E(FW] g, (WET = WE)j0.) W)
+ (1= e E(F(WED = WE) a0, W) IWF).

Now, given W¥, by definition W%~ has the law of V¥~ conditioned to coalesce with W*
before time ¢, an event denoted by {0y _ < ¢} and satisfying P(o; _ < £[W*) = pj, _, so
we have

E(fWE o WET = WE ). 2) W) = . E(FWE g (V22 = WE ) ) Lo, <) WF).

(8.6)

Similarly,

- 1 -
B = W e WEIIWE) = BV = WE) oo W) Lo 5oy W),
Furthermore, py — + pr,+ = 1, so (8.6) implies

E(f WL Wil OIWr) =E(FWEZ5, (VR = WE ) o)l o, _<c)|WF)

+ E(f((‘/;]i:_ - Wsk)[fé,o] W[]f) E])]l{ak,+>fs}|Wk)

SO
(f(W[k_tlo? W[’(f)t]l 0)) (f(W[k ;é]a (Vk c = WES)[O,E])) +E(f((vt]ij - Wf)[fé 0]» W[IS i]))
(8.7)

Let us deal with E(f(W[_ o)’ (VT — W¥ )io,z)). In order to do that, we introduce
temporary notation. For any measure p on continuous processes defined on [—£,£],
(W) te[z,2) Will be a process with law ., and (W)c[o,s) will be defined thus: W = W,
and (W/)c0,4 is @ Brownian motion reflected on (W}),c[o,s and above it. We then have

E(f(W[k ;é] (Vk c W]jg)[o,é])) = IE)(IE)(J[(VV[]C ;é] (Vk e~ W )[0 g] )|Wk . ))

= /’Llil,é(E(f(W[fs_,Ob (Wt - WO)[0,51)|W))~
Now, by the induction hypothesis there exists some &, > 0 so that for any g € F5, we
have 1%, _ (9) < 2%uz, (9) + (6/2)]l9]lo, therefore if £ < &4, we have
k,— k,— z -
E(f(WEZ o (VEZ = WED)0.2) < 25ue(B(F(Wi—e.0), (W] = W) po,0) W) + (6/2)l1 flloo
= 2 o) + (6/2)1f -

Similarly, if £ , we have

E(f((VtJre WE 20 Wigi)) < 2501 (f) + (6/2) ] flloo-

Consequently, (8.7) implies that if € < &4, we have
E(f (WL Wie ) < 250 2(F) + (6/2)1f oo + 2511.2(F) + (8/2)1| flloos

that is ugt! (f) < 2%p (f) + 250y 2(f) + 6| flloo-
To conclude, if we set € = min (&1, &3,83,84,£/2) > 0, forany f € F¢, for any z € Z\ {0}

we have it (f) < 287 ue(f) + 6| flloo, and pg 2 (F) < 250 2(F) + 25y 2(f) + 0 flloos
which ends the proof of Proposition 8.9. O
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9 Convergence of the mesoscopic quantities

In order to prove the main results of this work, Theorem 1.2 and Proposition 1.1, we
need to prove the convergence of the “mesoscopic” quantities, that is the + (X1, —X1,)
and n3/2 (Tx+1 — Tk) (we remind the reader that the T} are defined in (4 2)). Fore > 0,
for any £ € N, we recall the following definition already given at the beginning of

Section 3:
1
zZyN = X, — X1,). 9.1
k I_ETLJ ( Tk To) ( )
Then (Z, ,iV Jken is a nearest-neighbor random walk on Z. The result we will need to prove
Theorem 1.2 is the following.

Proposition 9.1. For anys > 0, K € N*, the random variable (Z{,..., Z}{, = (Ty —

To), n3/2 (To—T1),. .., n3/2 (Tx—Tk—1)) converges in distribution to (Zl, Ik, T, ,TK)
(defined as in Definition 8.5) when N tends to +o0o. Moreover, the Tk and Eﬁ,zl Tk/,
ke {1,...,K}, have no atoms.

To prove Proposition 1.1, we need a weaker but analogous result IfyY: N— Nis
so that (V) tends to +co when N tends to +oo, if § > f T = W( )01,0 (defined
in (1.5)), and 7] = inf{m > T} [ | X,, — Xqy| = [09(N)/2]}, we have the following, which

will be proven at the end of the section.

Lemma 9.2. (X, — X7y) converges in distribution when N tends to +oo.

1
BT

In order to prove Proposition 9.1, we notice that for £ € {0,..., K — 1}, we have
AR Zk — 1 if and only if (X7, ym)men reaches Xp, — |en] before Xp, + |en], which

means LX’“ tlen] = = 0 (see Definition 4.1). In addition, in this case one can check that

Try1 =Tk = [en] +2>,c0 LZT" . We thus wish to study Lle Moreover, remembering
Definition 6 2, fori > Xp, — |en], we have LTA ST’c B S,L-T’“’f’B, and it so happens
that (ST’“’ ). is close to a random walk reflected on (STk B); when i € {Xy, — |en] +
., X7} and absorbed by (S/* "), when i > Xy,. Therefore, we are going to
study the limit of the processes (SzT B B)Z-, which can be considered as “environments”
in which the (SiT =B ); evolve. In order to have more practical notation, the precise
environment process we will study is the following (we recall the definition of the A, ;
in (1.2)).
Definition 9.3. For any k € N, the environment process at time T, (Ezjc\,[i)ier is defined

by BY, = ¥, 7%, (A +1/2) fori <0 and BY, = Y77 (< Agy 5 +1/2) fori > 1.

For any family of real-valued discrete processes (HZ-N )icz, any real numbers a < b, we
will write "(Hﬁ)te[a p” as a shorthand for “the linear interpolation of (H f\fl ¢ )tela,p)”- For
any k € N, — (Tj11 —Tx) can be written as as a function of Z}Y, Z}Y, |, (\}HE,i\fm)te[,ge)ge]
and (L E,c " 1.mt)te[—2¢,2¢]- Consequently, it will be enough to prove that the quantity
(ZN,....ZN, (ﬁEO’m)te[_a,a], . (ﬁEﬁm)tE[_a’a]) converges in distribution when N
tends to +oo to prove Proposition 9.1. This is the following proposition.

Proposition 9.4. For any £k € N, for any a > 0, we have that the random vari-
able (Z{V,...,Z,iv,(%EéVm)te[,a,a],...,(\%Eﬁnt)te[,a,a]) converges in distribution to
the quantity (Zl, s D, (WP )te[—a,a]s - (Wt’“)te[,aya]) when N tends to +oo.

We first prove Proposition 9.1 given Proposition 9.4.

Proof of Proposition 9.1. Let e > 0, K € IN*. For any k € {0,..., K — 1}, we will write
—375 (Trs1 — Tx) as a function of Z¥, Z}Y, |, (ﬁEﬁnt)te[_Qage} and (ﬁEé\;Lnt)te[_ge,gs].
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Indeed, if Z}Y, = Z}¥ — 1, we have

X1, +en] len]
Tk—!—l*Tk =2 Z LiTk,7+L€nJ =2 Z (El]ﬁ\g-l,i—o—[snj +Ek]‘\j— LenJ+17ElJc\{i)+L€nJ7
i=Xr, —|en]+1 i=—|en]+1

while if ZY , = Z}Y + 1, we have

X, +en]
Trsr — T =2 Z Lot — |en]
=X, —|en]+1
Len]
=2 Z (Eljg\zf—l,i—\_anj — B0+ 1— (B - Elzc\f[anj)) — len]
i=—|en]+1
len]
=2 > (Bl en) — BNiro — B + BRjen)) +3len).
i=—en)+1

Therefore, if for any z,z’ € Z, f,g continuous real functions on [—2¢,2¢] we define
FN(Z7 Z/7f7g) as

e (1 E (52 (55 5 ()

i=—|en]+1
" 2050 (Lol gy g (E) g (L)) gglend
{zr=2t1b | g n g n n n3/2 |’
i=—|en]+1
then
%(T]Prl - Tk) = FN ZIiV?ZIéVJrD (1El]€\{nt> ) (1Eljcv+1,nt> .
n vn te[—2e,2e] \VN te[—2¢,2¢]
Now, thanks to Proposition 9.4, (Z{",..., Z¥, (= EQln)ie(-2¢,2¢): - - - » (75 ER nt el —2¢ 2¢])
converges in distribution to (Z1, ..., Zk, (W)iei—2e,2¢]s - - - » (W) e[2¢,2:]) when N tends

to +o0o. The convergence in distribution of Proposition 9.1 follows easily. Furthermore,
Lemma 8.7 yields that the 7}, and the Z:,:l T, k € {1,..., K} have no atoms, which
ends the proof of Proposition 9.1. O

It now remains only to prove Proposition 9.4.

Proof of Proposition 9.4. We recall the convention already used in Section 8.2: all the
Brownian motions have variance equal to the variance of the law py defined in (4.10).
Let us prove the proposition by induction on k. For k = 0, for any a > 0, we notice that
Proposition 4.7 implies that if (l’)’%N(’J Ne) ’jt)C occurs and n is large enough, for any X1, —
[an] <i < X7, +[an] we have A7, ; = Ar, ;. Moreover, limy_, o ]P((B(ENHHN”’i)C) =1.
Furthermore, for any i < X, Az, ;+1/2 haslaw p, forany i > Xr,, —Ag, ;+1/2 has law
po, Ay, X, T1 /2 has law pg or py translated by +1, and these variables are independent.
Therefore (ﬁEé\,’m)te[_M] converges to (Wto)te[_a,a] by Donsker’s invariance principle.

We now set £ € IN and suppose the proposition is true for k. We will prove it for
k+ 1. Let a > 0. We will study processes corresponding to “the environment at the
first time after T}, at which the process reaches X1, — |en|” and “the environment at

the first time after T} at which the process reaches X, + |en|”, and prove they have
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suitable convergences in distribution. From the convergence in distribution of these two
processes we will deduce the convergence in distribution of Z}, , and (\FE,C+1 nt)te[—a,al-
The “environment at the first time after 7}, at which the process reaches X7, — |en|”
is defined as follows. Remembering Definition 4.1, we define the process (Efx T iez

N,— X, +i—1 Ty, —,E ; N,— _

by Eki = EN*LEnJJrl + Z] T§(T —len]+1 C'k for i > —[en] (so Ek’i B E’JX*\_EHJ+1 +
S)T(’; 7 if we recall Definition 6.2) and Ek ;= EY .. 4 fori < —[en]. We also define
o = inf{i > 0] L?T’,cﬂ = 0}, noticing that Z}Y,, = Z}’ — 1 if and only if X7, — |en] is

reached before X7, + |en], that is if and only if o} _ < |en].

We want to prove the convergence in distribution of ( O']JCV (L NG Ey nt)te[ ce) toa

target process (o _, (Vt " )te[-e,c]) Where V%~ is a Brownian motion reflected on W*
on [—¢,0] and absorbed by W* on [0,¢], while o} _ is the absorption time. In order
to do that, we will define another auxiliary process (E,iv ;" )icz. We will first prove

that ( fEk 7t Jte[—e,e] converges in distribution to a Brownian motion reflected on wk

on [—&,0] and free on [0,]. After that, we will write (Lo _, (T knt)tG[ ) as a

function of EN te[—e,e] to deduce the convergence of the former. The process
f knt €[ ]

m,— ,

(Eév " )iez is defined as follows: remembering that the §; were constructed just

before Proposition 4.10, for i > —|en|, we set

X1, +(i—1) Aok _ X, +i—1
EN— _ N Ty, —,E T, —,1
NS S D DR > G
j=Xr, —|en]+1 J=Xr, +(i=1)Aoy _+1
and when i < —[en] we set E,iv = E,JC\C |enj41- 0 order to have shorter notation, we
will also write =V = (ZN,..., Z}, (ﬁEO)m)te[,a,E’HE], . (ﬁE,{,\fm)te[,a,E’aﬁ]) and

E= (Zh sy Zk7 (Wto)te[fafe,a+5}7 ceey (Wtk)te[fafa,a+6])-
Claim 9.5. (ZV, (ﬁE,i\f;;)te[,g’g]) converges in distribution to (Z, (W}F).c|_c.]) when N
tends to +oo, where the process (W[),c(_. . is a Brownian motion with W*_ = W¥_
reflected above W* on W* on [—¢,0] and free on [0, ¢].

Proof of claim 9.5. We will introduce two auxiliary processes, (Eévl )iez, and (B} ; ez

The process (E,C " )iez will represent “the random walk (EN —1),cz reflected on the
environment (E}Y '1)icz until time 0 and free after time 0”, and so will have the right
convergence in distribution towards our target. The process (E,iv ;" )icz will be close to
(E,iv ez which will allow us to prove it satisfies the same convergence in distribution.

We define (E. ket ~1)iez as follows: for any i < —|en| we set ENT = EN _|en+1- and for
any i > —|en]| we set E,];’;_’I = ENﬂmHl + ZXT’“il_leHl CT'“ - We define (Ek i iez
as follows: for any i < —|en| we set Ek,z. = EN—LanJ+1' forany i € {—|en| +1,...,0}

we set Eff;_ = EN’_’I + max_ Lsnj+1§j§i(Ek,j - E,ivf’l), and for any 7 > 0 we set Eu,i\_]l’._ =
N — X, +i— 1 — [
k 0 + Z] §<T k

We begin by studying the convergence of (ENf)zeZ We notice that ZV is Fr, -

mesurable (see (4.1) for the definition of F,,,), and that by Pr0p031t10n 4.10 the (C ko 1)1€Z
are independent from Fr, and i.i.d. with law pg, hence the (C):';’“T’ J;Z)zez are independent
from Fr, and i.i.d. with law py. Therefore, Donsker’s invariance principle yields that

(EN, (ﬁEé\’;;’I)te[_s,s]) converges in distribution to (=, (Wtk’l)te[_w]) when N tends to

-+00, where WE’EI = WF_and W*! — Wk_ is a Brownian motion independent from =.

g
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We can define (W/});e(_c by W} = W' + max_.<,<,(WF — WFT) when t € [—,0]
and W} = W} + W' — W' when t € [0,¢]. Then (W/);c[_.. is a Brownian mo-
tion with W*_ = W*_ reflected above W* on W* on [~¢,0] and free on [0,¢], and

(2N, (ﬁEvg;;)tE[_m]) converges in distribution to (=, (Wf);e—. ) when N tends to
+00.

We now prove that (E;i\{f)iez is close to (Eu,i\;’f)iez. For any ¢ < —|en| we have
E,]:f = Ev,i\ff by definition of the processes. We now deal with ¢ € {—|en] + 1,...,0}.
Firstly, we notice that for any j > —|en], recalling Definition 6.2, we have

X7, +5—1 X1, +j—1
N,—,I N _ Ty,—,1 Tk,— By _ Ty,— I _ qTk,—,B
Epy w — Bk = Y. (G =g = . G SX 1 -
j'=Xr, —|en]+1 J'=Xr, —|en]+1

Recalling Definition 6.3, the definition of (E,iv ;" )icz and Lemma 6.4 then imply

X1, +i—1 X, +5—1
oN,— _ N E Ty, —,1 Ty,—B _ E Ty, —,1
Eyi =Epjenj1 + S + —Lgnrjnflx<j<i SXTk“ G
j=Xr,—len]+1 - j'=Xr, —|en]+1

_ N Tr,—,1
- Ek,—l_sn]—&-l + SXTk+i'

Consequently, we have

XTk +i—1
“N,—  AN,— _ T, Th,—E _ oTh,—I Ty, —,E
Epi —Epi = le;k i~ Z G" = SX};"k-'ri - SXka+i :
j=Xr, —len|+1

We recall that the “bad events” B, Bo, B, ;,...,B,, 4, Bi1,...,Bs were defined in Propo-
sitions 4.8, 4.7 and at the beginning of Section 5. Now, by Proposition 6.5, if n is
large enough (not depending on T}, or i), if ﬂff:l(Biﬂ’T)c occurs then \S)T(’CT]:J - S)T(‘CT;Jrﬂ <
(Inn)®n!/4. Furthermore, by Proposition 4.8, if B¢ occurs and n is large enough, T}, = T,
or T, ; (see (1.5) for the definition of Tfm) for some integers | N6 | — 2n(@+4)/5 < m <
NG| +2n(@+9/5 and | Na| —n(@+9/5 < < | Nz|+n(@+9/5, hence if B°N°_, BS occurs
and n is large enough, ﬂle(B;w)C occurs. Therefore, if BN ﬂ?.:o B¢ occurs and n is

large enough, Ev,i,\,’f - E,ivf| < (Inn)Sn!/* foralli € {—|en| +1,...,0}.

We now deal with the case ¢ € {1,..., |en| + 1}. We can then write
N, — pN,— _
Eii — B =
X, +i-1 X1y, +(i—1) Aok _ X, +i-1
N, — Ty, —>1 N, — Ty,—E T, —,1
Bgo + 2 GV B > e > G
J=Xm, J=Xr, Jj=X1 +(i—1)Aa) _+1

X1, +(i—1) Aoy _

_ pN,— N, — Ty, —,1 Ty,—E
=Epo —Epo + > (Cj — G ) :
J=Xr,

(9.2)

6 . e 6 _
We assume B° N (), _, By occurs and n is large enough so it implies (,_, (B, ,.)¢ occurs.

Since (B, ;)¢ occurs, for any j € {Xr,,..., X7, + |en]} such that L]T""f > (Inn)?, we
have C]T’“’_’I = C;TF’“_’E, and since (B, ;)¢ occurs, for any j € {Xr,,..., X7, + |en]} we
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have \(]-T""f’l|, |(]T’“7E| < (Inn)%. We deduce

X1, +(i—1) Aoy _

oGt =gt

J=X,
2(lnn)2‘{j€{XTk"' s X, + (i — 1)/\ok L Tk— (lnn)2}‘

< 2(Inn)? (|{j € {Xppoe. o, Xy + len]} [0 < L7 < (lnn)?}| + 1) .

Now, since (B, ,)°

L Xg 4 |en)} 0 < LT
i— O'N — —
(Inn)?}| < (Inn)®, hence |ZfT§(T R ’“’*(CJT’“ T (]T"’ )| < 3(Inn)'°. Moreover, we
k
already proved that if B° N ﬂT _o By occurs and n is large enough ]ivof - E )] <
(Inn)®n'/4. Thus (9.2) yields that if B° N (°_, BS D
EY;| < (Inn)*n'/* 4+ 3(Inn)' forany i € {1,..., [en] + 1}.
We deduce that if BN ﬂfzo B¢ occurs and n is large enough, for any ¢ < |en] + 1
we have |E]7™ — E,i\ff| < (Inn)®n'/* + 3(Inn)'°. In addition, Propositions 4.8 and 5.8
imply limy_ 400 P(BU UE:O B,) = 0. Furthermore, we proved that (Z%, (ﬁﬁff;;)te[_m])

converges in distribution to (=, (Wtk)te[—s,s]) when N tends to +oo. This allows us to
conclude that (2%, (ﬁﬁé\f;;)te[,g,s]) converges in distribution to (Z, (W/})c(_c ) when
N tends to 400, which ends the proof of the claim. O

We are now going to write ( U,JCV (= NG Ey nt)te[ c.]) as a function of the quantity

((ﬁEé\fm)te[_w], (ﬁEk,m)te[—s,s])- We define a function F so that for fi, fo : [—¢,¢] = R
continuous functions, F(f1, f2) = (s, f3) with s = inf{t € [0,¢]| f1(t) = f2(t)} (defined
to be +oo if there is no such t) and f3 is defined by f5(t) = fi(¢) if t < s and f3(t) =
f2(t) if t > s. For n large enough, we also define functions Fx so that for fi, fo :

[—¢, €] — R continuous functions, Fy(f1, f2) = (s, f3) with s = inf{t € [L,¢]| f1() = f2(t)}
and f3 is defined by f3(t) = fi(¢) if t < s and f3(t) = fo(t) if t > s. We then have
(Lol (BN iei-ea)) = NS B vercas (S B diei—e))-

We now deduce the convergence of (EV, Loy, (ﬁE,ﬁY;;)te[_m]). By Claim 9.5,
(BN, (ﬁEljc\jnt)te[*E’E]) converges in distribution to (Z, (W});c[_c) when N tends to

400, so by the Skorohod Representation Theorem (Theorem 1.8 of Chapter 3 of [4]),

there exists a probability space containing random variables (=, (ﬁE’fj i )te[—e,e)) for

any N € N* and (Z, (Wf);c[_. ) having the respective laws of (V, (ﬁﬁg;;)te[,m])

and (=, (W})ic; ), and so that (EV, (%E,iv;;)te[,s <) converges almost surely to

(é, (Wtk)te[%)g]) when N tends to +co. We denote by (fE]iVnt)te[ a—e,ate] the last

coordinate of =V and by (Wt )te[,a,wﬁ] the last coordinate of =. We then have the
following.

Claim 9.6. FN((\F]_A@,C i )te[—e.e]s (ﬁEAé\fm)te[_m]) converges in probability to the quan-
tity F((W’“)te[ ce]y (W)ie[—c.c]) when N tends to +oc.

The proof of Claim 9.6 basically comes down to showing that F' is almost surely

continuous at the limit point ((Wt’“)te[_w], (Wtk)te[_w]). This can be proven with the
help of Lemma 8.2, which we are able to use thanks to Proposition 8.8. Since the proof
is not very interesting, we do not give the details here, but they can be found in the
appendix of the arXiv version of this paper [12].
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N,—
%O—]ngfa (\/lﬁEk,nt )te[—e,e])'

Indeed, if @ is a continous real bounded function accepting (EV, Lol _, (ﬁEév;;)te[,s,E])

as argument, then
(o (2ot (o)., )
- (q) (EN’FN <<\}5Eé\’[&)te[—a,s] , <\}5Elym)te[—&€]>>>
- (‘I) <éN7FN <(\}ﬁé£{£>te[e,e] ’ (\/IﬁEalt) te[sﬁ]))) 7

which by Claim 9.6 converges to the quantity E(@(é,F((ﬁ/tk)te[,s7e], (Wt’“)te[,g7e]))) =
E(®(Z, F(W})te|—c.e, (WF)te|—ce))) when N tends to +oo. Hence we obtain that

(BN, %‘71]@\{4 (ﬁEé\,{};)te[—e,a]) converges in distribution to (Z, F((Wtk)te[_m], (WE)iej=e.e)))

We can now prove the convergence in distribution of (EV¥

when N tends to +oo. This random variable is (E, o, _, (Vtk’*)te[_m]) where V%~ is a
Brownian motion with V"~ = W*_ reflected above W* on W* on [—¢, 0] and absorbed
by W* on [0,¢], while o, _ is the absorption time.

This ends the study of the “environment at the first time after 7}, at which the process
reaches X1, — |en]”. We can define a similar process for the “environment at the
first time after 7} at which the process reaches X, + |en]”: (E,ivf)iez is defined by

By =EY .., +1+sz§jT‘Lj"z’J‘1g]Tk*+vE fori < |en] and B = EY _, +1fori > [en].
We also define ak 4+ =sup{i <0 LT’“’ = 0}. By the same arguments as before, we can

prove that (ZV, }la{cv (== NG k,n—;)tE[*&E]) converges in distribution to a random variable

(2, 0, (V/ )te[—a,e]) when N tends to +oco, where V¥ is a Brownian motion with
VE+ = Wk above W* reflected on W* on [0, ¢] and absorbed by W* on [, 0], while oy,
is the absorption time.

By putting the results about ( y ' )icz and (E, .7 );cz together, we will now be
able to complete the proof of Prop051t10n 9.4. :N and = will denote the same ob-
jects as ZV and =, but with [—a,a] replacing [~a — ¢,a + ¢]. Let ¥ be a continuous

bounded function of (= Zk+1,(\/15E,]€V+Lm)[_a7,,,]). If o)) < |en], we have Z},, =

oi )

A

ZN —1 and (ﬁEkH,nt)[*a,a] can be obtained as a continuous function of a deter-
ministic modification of =%, (ﬁE,ﬁ\%)te[_a,s] and some —=EyY;, \%Eé\’;_ whose con-
vergence in distribution is implied by that of Z¥ and ( fE,ivn;)te[_E ¢, SO in this
case by an abuse of notation we write that we have U(ZV, Z]V ,, (ﬁEkH’m)[ﬂya]) =
v_ (2N, (ﬁEk,nt)tE[—e,E]) with ¥_ continuous and bounded. Similarly, if a,i\,’Jr > —len],

we write U(EN, Z]V (ﬁE,iV+17nt)[,a7a]) =0, (2N, (IE,ian)te[ <)) with ¥ continuous

and bounded. We then have

- _ 1
E(\I/( N Z,ﬁl,(fE,ivﬂnt)[ ]>) =E (\If (zN (f knt) )ﬂ{aﬁqEnJ})
a,a [—e.e]
+E (¥, =N ( 1 N+> T~
itk ) et e

(9.3)

We can use again the Skorohod Representation Theorem to assume the convergence

in distribution of the variables (EV, Lo}, (ﬁEﬁ;f;)te[_w]) to (2,004, (V) ieleq) is
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almost sure. Furthermore, by the definition of o, _, the probability that o, — = ¢ is
smaller than the probability that a Brownian motion starting at Vok ' at time 0 is exactly
at W at time ¢, which is 0, hence P(oy,_ = ¢) = 0. Similarly, P(os = —¢) = 0. Con-
sequently, the right-hand side of (9.3) converges to E(¥_(E, (Vtk’*)te[_g,a])]l{%f@}) +
E(P. (5, (Vtk”L)te[_E,a])]l{gk.+>_g}). Now, we remember the quantity py, - = P(o%,— <
¢|W*) introduced in Definition 8.5. We then have p;,_ = P(0} _ < ¢|Z), therefore

%))

E (‘I’— (E, (Vtk’_)te[fa,s}) ﬂ{ak,_<e}) =E (]E (‘1’— (57 (V;th_)te[fs,e]) Ty <}

)

In the same way, E(\II-F(E’ (V;Ekﬁ_)te[fe}s])Il{(fk,+>fa}) = E(pk,+E(\II+(E, (Wtk7+)t€[75,5])‘5)),
where p; . = P(0y . > —¢|WF¥) was also introduced in Definition 8.5. In addition, by
Proposition 8.8 we have P(Vy"~ > W{) = 1, so P(V)"~ > W¥|W*) = 1 almost surely,
therefore by Proposition 8.3 pi, _ + pi,+ = 1 almost surely. We deduce that when N tends
to +oo, B(U(EN, Z], |, (ﬁElﬁl,nt)[w,a])) converges to

- - 1, <
=E (pk,_IE (lll_ (:, (Vtk )te[—a,a]) ﬁ

=B (pe-B (V- (2,07 )ier-a)| 2)) -

(1]

E(pr,—E(T_(Z, (W )ie—e.e)|E)) + B+ E(T4 (E, (W )ielee)|E))
= E(\P(Ev Z}i\g_p (Wtk-i_l)[fa,a]))

when N tends to +o0o. Consequently, (EV, Z],,, (ﬁEé\ﬂer)[_a,a]) converges in distri-

bution to (=, ZY,;, (Wf™)[_4..) when N tends to +co. Proposition 9.4 is thus true for
k + 1, therefore by induction it is true for all £ € IN. O

Proof of Lemma 9.2. The proof is the same as in Proposition 9.1, except for a difference
in the equivalent of Proposition 4.7. The definition of B(%w(N)gJ’O’_ must be modified by
. N)6|,0,— P —
replacing 855"~ by {sup,cp | oy g, Loy — (0 = by | > 0/4} (and n(e=D/4|en]
by [9¢(N)/2] in BgH™? 7). With such a definition, B5*""*)*~ will contain {there
exists —|0y(N)/2] =1 <i < [09(N)/2] +1,Ar;; # Ary ). Moreover, Theorem 1 of
[23] yields that sup,cg |ﬁ€;, lo(N)y] 0 — |i2|)+| converges in probability to 0 when
0
N tends to +o0, so P(Béjé(N)ej’o’f) tends to 0 when N tends to +oo, so IP(B%MN)GJ’O*)
tends to 0 when N tends to +oo. O
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