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Large deviations principle for the inviscid limit of fluid
dynamic systems in 2D bounded domains
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Abstract

Using a weak convergence approach, we establish a Large Deviation Principle (LDP)
for the solutions of fluid dynamic systems in two-dimensional bounded domains
subjected to no-slip boundary conditions and perturbed by additive noise. Our analysis
considers the convergence of both viscosity and noise intensity to zero. Specifically,
we focus on three important scenarios: Navier-Stokes equations in a Kato-type regime,
Navier-Stokes equations for fluids with circularly symmetric flows and Second-Grade
Fluid equations. In all three cases, we demonstrate the validity of the LDP, taking into
account the critical topology Cpr0, T s;L2

q.
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1 Introduction

1.1 The problem of the inviscid limit

An important role in the understanding of the behavior of turbulent fluid is given by
the analysis of the so-called inviscid limit. In a naive way, given uNS,ε and ū solutions, in
a suitable sense, of the systems below

$

’

&

’

%

Btu
NS,ε ´ ε∆uNS,ε `∇pNS,ε ` uNS,ε ¨∇uNS,ε “ fε

div uNS,ε “ 0

uNS,εp0q “ uε0

(NS-E)

$

’

&

’

%

Btū`∇p̄` ū ¨∇ū “ f̄

div ū “ 0

ūp0q “ ū0,

(E-E)
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LDP for fluid dynamic systems in bounded domains

the problem of the inviscid limit consists in showing that uNS,ε, the solution of the Navier-
Stokes equations, converges to ū, the solution of the corresponding Euler equations, as
εÑ 0 in the topology L8p0, T ;L2pDqq, D being the domain where the equations evolve.

The difficulty of answering to this problem changes drastically considering different
boundary conditions. Some frameworks where the problem above has a positive answer
have been presented in [23], [44]. We sum up their results.

1. If previous equations evolve in a two-dimensional domain D without boundary,
assuming

fε “ f̄ ” 0, uε0, ū0 P H
k, divpuε0q “ divpū0q “ 0, ‖uε0 ´ ū0‖Hk

εÑ0
Ñ 0

implies the convergence

‖uNS,ε ´ ū‖Cpr0,T s;Hkq
εÑ0
Ñ 0.

2. If uNS,ε is a solution of the Navier-Stokes equations with Navier-Boundary condi-
tions, i.e. uNS,ε ¨ n|BD “ 0, B1u

NS,ε
2 ´ B2u

NS,ε
1 |BD “ 0,

uε0
L2
pDq
Ñ ū0, fε

L2
pp0,T qˆDq
Ñ f̄ ,

then each sequence, uεk , has a subsequence, uεhk , converging to a weak solution
of the Euler equations in Cpr0, T s;L2pDqq. Moreover, if the solution of the Euler
equation is unique, then uNS,ε Ñ ū.

In the case of no-slip boundary conditions, i.e. uNS,ε|BD “ 0, the convergence of uNS,ε to
ū in the topology L8p0, T ;L2pDqq is an open problem with few results available:

1. Unconditioned results. They are based on strong assumptions about the symmetry
of the domain and of the data [45], or real analytic data [57], [2].

2. Conditioned results. They are based on stating some criteria about the behavior
of the solutions of the Navier-Stokes equations in the boundary layer in order to
prove that the inviscid limit holds. This line of research started with the seminal
work by Kato [36], see also [18], [61], [63], [38] and the references therein for
other results in this direction.

Beside its mathematical interest, the analysis of the inviscid limit in the case of no-
slip boundary conditions is a relevant problem also from a physical prospective of
the understanding of turbulence. The no-slip condition uNS,ε|BD “ 0 provokes large
stress near the boundary, if uNS,ε is large nearby and this stress, when the viscosity
is small enough, may lead to instabilities and generate vortices. This is the so-called
phenomenon of the emergence of a boundary layer: close to the boundary the fluid
presents a turbulent behavior for εÑ 0. The thickness of the boundary layer and some
control on the behavior of the fluid in this region are very challenging and mostly open
questions, see [3] for a review on the topic and [20], [21], [31] for some attempts of
describing the generation of vorticity at the boundary.

Contrary to Navier-Stokes equations, the problem of the inviscid limit in bounded
domains and no-slip boundary conditions has been solved for the second grade fluid
equations, at least in a suitable regime of the parameters, see [46]. The second-grade
fluid equations are a model for viscoelastic fluids, with two parameters: ε ą 0, corre-
sponding to the elastic response, and ν ą 0, corresponding to viscosity. For such fluids,
assuming their density, ρ, being constant and equal to 1, the stress tensor is given by

T “ ´pSG,εI ` νA1 ` εA2 ´ εA
2
1,
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LDP for fluid dynamic systems in bounded domains

where

A1 “
∇uSG,ε `∇puSG,εqT

2
,

A2 “ BtA1 `A1∇uSG,ε ` p∇uSG,εqTA1,

being pSG,ε the pressure and uSG,ε the velocity field. Given this stress tensor, the
equations of motion for an incompressible homogeneous fluid of grade 2 are given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btv
SG,ε “ ν∆uSG,ε ´ curlpvSG,εq ˆ uSG,ε `∇pSG,ε ` fSG,ε

div uSG,ε “ 0

vSG,ε “ uSG,ε ´ ε∆uSG,ε

uSG,ε|BD “ 0

uSG,εp0q “ uSG,ε0 ,

(1.1)

where fSG,ε describes some external forces acting on the fluid, see [24], [56] for fur-
ther details on the physics behind this system. The analysis of the second-grade fluid
equations started with [16], where some results, not restricted to the two-dimensional
case, for global existence and uniqueness of solutions of the problem above have been
shown. Setting, formally, ε “ 0 the system above reduces to the Navier-Stokes system.
Thus it can be seen as a generalization of the Navier-Stokes equations. Moreover, the
convergence of the solution of the second-grade fluid equations to the solution of the
Navier-Stokes equations has been shown rigorously in [32].

1.2 The inviscid limit in the stochastic framework

In the last decades, stochastic forcing have been added to the fluid dynamic systems
of the previous section. We refer to [27, Chapter 5] for some justifications for the
introduction of stochastic forcing terms in fluid dynamic models. After establishing
the well-posedness of Navier-Stokes equations, Second-Grade fluid equations and Euler
equations with Gaussian additive noise, see for example [26], [55], [5] for some results
in this direction, a natural question is trying to understand the validity of the inviscid
limit in such stochastic models. According to [43, Chapter 10], the relevant scaling of
the parameters in order to study the inviscid limit is the following one

$

’

’

’

’

&

’

’

’

’

%

duNS,ε “ pε∆uNS,ε ´ uNS,ε ¨∇uNS,ε `∇pNS,εqdt`
?
εdWt

div uNS,ε “ 0

uNS,ε|BD “ 0

uNS,εp0q “ u0,

(1.2)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dvSG,ε “ pν∆uSG,ε ´ curlpvSG,εq ˆ uSG,ε `∇pSG,εqdt`
?
εdWt

div uSG,ε “ 0

vSG,ε “ uSG,ε ´ ε∆uSG,ε

uSG,ε|BD “ 0

uSG,εp0q “ u0.

(1.3)

Difficulties analogous to those described in subsection 1.1 appear also in the stochastic
framework, even considering different scaling of the parameters:

1. The validity of the inviscid limit in the case of Navier-Boundary conditions has been
shown in [17].

2. The validity of some conditioned results for the stochastic Navier-Stokes with
no-slip boundary conditions has been shown in [48], [64].
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LDP for fluid dynamic systems in bounded domains

3. The validity of the inviscid limit for the stochastic Second-Grade fluid equations
with no-slip boundary conditions under suitable assumptions between ν and ε has
been shown in [49].

These results can be seen as a sort of law of large numbers for the stochastic systems
above. It is natural then to investigate Large Deviations principles for the aforementioned
systems focusing, in case, on their relation with some form of Kato-type condition.

In this paper we will study the validity of a Large Deviation Principle for the invis-
cid limit of Navier-Stokes equations and Second-Grade Fluid Equations with additive
Gaussian noise in two-dimensional bounded domains and no-slip boundary conditions,
presenting, for the first system, a natural Kato-type condition that closely resembles
the ones from classical conditioned results [36], [48]. According to the discussion in
subsection 1.1 this is the critical case to analyze. Regarding the Large Deviation Princi-
ple for the inviscid limit of the Navier-Stokes equations, one technical issue that need
to be addressed is the interplay between Kato-type conditions, i.e. some controls on
the dissipation of the energy in the solutions of the stochastic Navier-Stokes equations
within the boundary layer, and the large fluctuations away from the zero-noise and
zero-viscosity limit.

Large Deviation for fluid dynamic models in 2D have been established in the case
of Navier-Stokes with additive noise, see [15], and multiplicative noise, see [59]. While
the first result is based on a technique developed by Freidlin and Wentzell, based on a
discretization of the equation and the application of the so-called contraction principle,
the second one resorts to the the Weak Convergence Approach developed in [11, 12].
While the Freidlin-Wentzell technique is best suited for equations with additive noise,
the Weak Convergence Approach has proved to be much more flexible in many other
situations. As an example, in [29], the authors proved a LDP for the convergence of the
Euler equation with transport noise on the 2D torus to a deterministic Navier-Stokes
system using the weak convergence approach. We adopt this approach as well, even if
our equations have additive noise, as the vanishing of the viscosity together with the
noise constitutes a technical issue that cannot be addressed via a classical contraction
argument.

The validity of a Large Deviation Principle for the inviscid limit of the Navier-Stokes
equations with periodic or free boundary conditions has been shown in [6] using the weak
convergence approach. Similarly to other results with these kind of boundary conditions,
the result of [6] is based on the validity of the enstrophy equality, which allows to obtain
stable estimates in the limit ε Ñ 0 stronger than the one guaranteed by the energy
equality. These relations are not available in the case of no-slip boundary conditions, due
to the generation of vorticity close the boundary. Therefore, the introduction of some
Kato-type hypothesis, see [36], is required in order to show the validity of the Large
Deviation Principle, similarly to the validity of the inviscid limit. On the contrary, as
described in subsection 1.1, there are fluid dynamic frameworks where the inviscid limit
holds in the bounded domain without any assumption on the behavior of the solution in
the boundary layer. This is the case of the second grade fluid equations with the scaling
of the parameters introduced in [46] and the case of the Navier-Stokes equations in the
open ball with forcing and initial conditions with radial symmetry.

1.3 Plan of the paper

The goal of this paper is to show the validity of the large deviations principle for
the inviscid limit of relevant fluid dynamical systems in 2D bounded domain via the
weak convergence approach introduced in [11, 12]. In section 2 we will introduce some
facts used repeatedly among the paper. In particular, in subsection 2.1, we will recall
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several notions about Large Deviations, presenting their classical formulation and some
equivalent ones. In subsection 2.2 we will present some well-known facts about the
systems under study that will play a role in the rest of the paper. In subsection 2.3 we
will state our main theorems. The analysis of the validity of a Large Deviation Princi-
ple for the inviscid limit of the Navier-Stokes equations is the object of section 3. In
particular we will start proving the validity of the Large Deviation Principle assuming
initial conditions and forcing terms with radial symmetry in subsection 3.1. Secondly,
we will prove Theorem 2.23 in subsection 3.2, namely the validity of the Large Devia-
tion Principle assuming a Kato condition for the Navier-Stokes equations, but without
imposing any symmetry in the flow of the fluid. In section 4 we will prove the validity of
the Large Deviation Principle for the Second-Grade fluid equations under the scaling of
the parameter introduced in [46] and provide a toy model where we can compute the
asymptotic behaviour of our rate function in terms of some parameters modeling the
oscillations of the flow of the fluid. Lastly we add some comments on the Kato condition
assumed in this paper in section 5.

2 Preliminaries and main results

2.1 Large deviations principle

We recall here the abstract framework of the weak convergence approach to Large
Deviations developed in [11, 12]. We begin with an usual filtered probability space
pΩ,F ,Ft,Pq, t P r0, T s. Let H be an Hilbert space and Q a trace-class operator on H. We
can endow the space H0 :“ Q1{2H with the metric induced by Q, that is

xg, hy0 “ xQ´1{2g,Q´1{2hy

which makes H0 a Hilbert space. The norm induced by this inner product will be denoted
‖¨‖H0 . When Q is the covariance operator of a Wiener process tWtutPr0,T s on H, we call
H0 the reproducing kernel Hilbert space of Wt, or simply RKHS. We also define the space

SN :“ SN pH0q :“
!

v P L2p0, T ;H0q :

ż T

0

‖vs‖2
H0
ds ď N

)

,

which makes a Polish space when endowed with the weak topology. We denote by
P2 :“ P2pH0q the space of H0-valued, Ft-predictable and P-a.s. square integrable
processes. Next we define

PN2 :“ tφ P P2 : φpωq P SN P´ a.s.u.

Let E and E0 be Polish spaces.

Definition 2.1. A function I : E Ñ r0,8s is called a rate function if for any M ă 8, the
level set tf P E : Ipfq ďMu is a compact subset of E . A family of rate functions Ix on E ,
parametrized by x P E0, is said to have compact level sets on compacts if for all compact
subsets K of E0 and each M ă 8, YxPKtf P E : Ixpfq ďMu is a compact subset of E .

Let us give now the definition of LDP in the original formulation by Varadhan (see
[62])

Definition 2.2. We say that a Large Deviation Principle holds for a family µε of prob-
ability measures on a metric space pE , dq with rate function I and speed ε if for every
Borel set Γ of E

Ip 8Γq ď lim inf
εÑ0

ε logpµεpΓqq ď lim sup
εÑ0

ε logpµεpΓqq ď IpΓ̄q (2.1)

where IpAq :“ ´ inffPA Ipfq.
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This condition has been proved equivalent by Bryc in [8] to the so called Laplace
principle. Here, we state a uniform version of this principle, that is, we let I and µε

depend also on some parameter x P E0.

Definition 2.3. (Uniform Laplace Principle) Let Ix be a family of rate functions on E
parameterized by x P E0 and assume that this family has compact level sets on compacts.
The family of random variables tXx,εu distributed according to µx,ε are said to satisfy the
Laplace principle on E with rate function Ix, uniformly on compacts, if for all compact
subsets K Ă E0 and all bounded continuous functions h mapping E into R,

lim
εÑ0

sup
xPK

ˇ

ˇ

ˇ
ε logEx

”

exp
`

´ ε´1hpXx,εq
˘

ı

` inf
fPE
thpfq ´ Ixpfqu

ˇ

ˇ

ˇ
“ 0 (2.2)

We are interested in the case when the family of measures µε is given by the laws
of some stochastic process Xx,ε solving some SPDE and driven by ε1{2Wt. In this
case, we can often represent Xx,ε “ Gεpx, ε1{2W q for some measurable map Gε : E0 ˆ

Cpr0, T s;Hq Ñ E . In this setting, in [12] the authors provided a handy criterion that
allows to deduce the uniform Laplace principle. This is known as the weak convergence
approach to Large deviations. The criterion goes as follows.

Hypothesis 2.4. There exists a measurable map G0 : E0 ˆ Cpr0, T s;Hq Ñ E such that:

1. For any N ă 8 and compact set K Ă E0, ΓK,N :“ tG0px,
ş¨

0
vsdsq : v P SN , x P Ku is

a compact subset of E .

2. Consider N ă 8 and families txεu Ă E0, tu
εu Ă PN2 such that, as εÑ 0, xε Ñ x and

uε converge in law to u as SN -valued random element, then Gε
`

xε, ε1{2W `
ş¨

0
uεsds

˘

converges in law to G0px,
ş¨

0
usdsq in the topology of E .

Theorem 2.5. Let Xε,x “ Gεpx, ε1{2W q and suppose Hypothesis 2.4 holds. Define, for
x P E0 and f P E

Ixpfq :“ inf
tvPL2

tH0: f“G0px,
ş

¨

0
vsdsqu

ż T

0

}vs}
2
H0
ds

with the convention that infH “ `8. Assume that for all f P E , x Ñ Ixpfq is a
lower semicontinuous map from E0 to r0,8s. Then for all x P E0, f Ñ Ixpfq is a rate
function on E and the family Ix, x P E0 of rate functions has compact level sets on
compacts. Furthermore, the family tXε,xu satisfies the Laplace principle on E , with the
rate functions tIxu, uniformly on compact subsets of E0.

2.2 Well-Known facts on fluid dynamic models

Let us start this section introducing some general assumptions which will be always
adopted under our analysis even if not recalled.

Hypothesis 2.6.

• 0 ă T ă `8.

• D is a bounded, smooth, simply connected domain.

• pΩ,F ,Ft,Pq is a filtered probability space such that pΩ,F ,Pq is a complete proba-
bility space, pFtqtPr0,T s is a right continuous filtration and F0 contains every P null
subset of Ω.

For square integrable semimartingales taking value in separable Hilbert spaces
U1, U2 we will denote by rM,N st the quadratic covariation process. If M,N take values
in the same separable Hilbert space U with orthonormal basis ui, we will denote by
xxM,Nyyt “

ř

iPNrxM,uiyU , xN, uiyU st. For each k P N, 1 ď p ď 8 we will denote by
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LppDq and W k,ppDq the well-known Lebesgue and Sobolev spaces. We will denote by
C8c pDq the space of smooth functions with compact support and by W k,p

0 pDq their closure
with respect to the W k,ppDq topology. If p “ 2, we will write HkpDq (resp. Hk

0 pDq) instead
of W k,2pDq (resp. W k,2

0 pDq). Let X be a separable Hilbert space, denote by LppFt0 , Xq
the space of p integrable random variables with values in X, measurable with respect
to Ft0 . We will denote by Lpp0, T ;Xq the space of measurable functions from r0, T s to X
such that

‖u‖Lpp0,T ;Xq :“

˜

ż T

0

‖ut‖pX dt

¸1{p

ă `8, 1 ď p ă 8

and obvious generalization for p “ 8. For any r, p ě 1, we will denote by

LppΩ,F ,P;Lrp0, T ;Xqq

the space of processes with values in X such that

1. up¨, tq is progressively measurable.

2. upω, tq P X for almost all pω, tq and

E
”

‖upω, ¨q‖pLrp0,T ;Xq

ı

ă `8.

Obvious generalizations for p “ 8 or r “ 8.

Lastly we will denote by CF pr0, T s;Xq the space of continuous adapted processes with
values in X such that

E
”

suptPr0,T s‖ut‖2
X

ı

ă `8.

Set

H “ tf P L2pD;R2q, div f “ 0, f ¨ n|BD “ 0u, V “ H1
0 pD;R2q XH,

DpAq “ H2pD;R2q X V.

Moreover we introduce the vector space

Wε “ tu P V : curlpu´ ε∆uq P L2pD;R2qu

with norm ‖u‖2
Wε
“ ‖u‖2 ` ε‖∇u‖2

L2pD;R2q
` ‖curlpu´ ε∆uq‖2

L2pDq. We simply write W in
place of W1. It is well-known, see for example [16], that we can identify Wε with the
space

Ŵ “ tu P H3pD;R2q X V u.

Moreover there exists a constant such that

‖u‖2
H3 ď C

´

‖u‖2 ` ‖∇u‖2
L2pD;R2q ` ‖curlpu´∆uq‖2

L2pDq

¯

. (2.3)

We denote by x¨, ¨y and ‖¨‖ the inner product and the norm in H respectively. With some
abuse of notation, sometimes, we will denote also the inner product and the norm in
L2 with the same symbols. Other norms and scalar products will be denoted with the
proper subscript. On V we introduce the family of norms ‖u‖2

Vε
“ ‖u‖2 ` ε‖∇u‖2

L2pD;R2q
.

Again, in case of ε “ 1 we continue to write V in place of V1. We will shortly denote by
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‖u‖ε,˚ “ ‖curlpu´ ε∆uq‖L2pDq. Obviously the following inequality holds for u P V , where
Cp is the Poincaré constant associated to D,

‖u‖2
Vε

ε` C2
p

ď ‖∇u‖2
L2pD;R2q ď

‖u‖2
Vε

ε
(2.4)

Denote by P the linear projector of L2
`

D;R2
˘

on H and define the unbounded linear
operator A : DpAq Ď H Ñ H by the identity

xAv,wy “ x∆v, wyL2pD;R2q (2.5)

for all v P DpAq, w P H. A will be called the Stokes operator. It is well-known (see for
example [60]) that A is self-adjoint, generates an analytic semigroup of negative type
on H and moreover V „ D

``

´Aq1{2
˘˘

. We will denote by eεAt the strongly continuous
semigroup on H generated by εA. Denote by L4 the space L4

`

D,R2
˘

XH, with the usual
topology of L4

`

D,R2
˘

. Define the trilinear, continuous form b : L4 ˆ V ˆ L4 Ñ R as

b pu, v, wq “ xu, P p∇vwqy. (2.6)

We will use also some properties of the projection operator P and the solution map of
the Stokes operator. We refer to [60] for the proof of the lemmas below.

Lemma 2.7. Let r ą 0, the restriction of the projection operator P : L2pD;R2q Ñ H

to HrpD;R2q is a continuous and linear map between HrpD;R2q and itself, i.e. if
u P HrpD;R2q than also Pu P HrpD;R2q and

}Pu}HrpD;R2q ď CpD, rq }u}HrpD;R2q .

Lemma 2.8. The injection of V in H is compact. Thus there exists a sequence ei of
elements of H which forms an orthonormal basis in H and an orthogonal basis in V . This
sequence verifies

´Aei “ λiei

where λi`1 ą λi ą 0, i “ 1, 2, . . . . Moreover λi Ñ `8. Lastly ei P C8pD;R2q under our
assumptions on D.

The tools introduced above are the standard ingredients in order to deal with the
Navier-Stokes equations. We need to recall some other facts in order to treat Second-
Grade fluid equations. We refer to [16], [54], [55], [28] for the proof of the various
statements.

Lemma 2.9. For any smooth, divergence free φ, v, w the following relation holds

xcurlφˆ v, wyL2 “ bpv, φ, wq ´ bpw, φ, vq. (2.7)

Moreover for u, v, w the following inequalities hold

|xcurlpu´ ε∆uq ˆ v, wyL2 | ď Cε‖u‖H3‖v‖Vε‖w‖Wε
, (2.8)

|xcurlpu´ ε∆uq ˆ u,wyL2 | ď Cε‖u‖2
Vε‖w‖Wε (2.9)

Therefore there exists a bilinear operator B̂ε : Wε ˆ Vε ÑW˚
ε such that

xB̂εpu, vq, wyW˚
ε ,Wε

“ xP pcurlpu´ ε∆uq ˆ vq, wy (2.10)

which satisfies for u P V, v PW

‖B̂εpv, uq‖W˚
ε
ď Cε‖u‖Vε‖v‖Wε

, (2.11)

‖B̂εpu, uq‖W˚
ε
ď Cε‖u‖2

Vε . (2.12)

Lastly, for u PW, v P V, w PW

xB̂εpu, vq, wyW˚
ε ,Wε

“ ´xB̂εpu,wq, vyW˚
ε ,Wε

. (2.13)
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Theorem 2.10. Each function f P H2pDq satisfies the following inequality:

‖f‖H1 ď C‖f‖1{2
L2 ‖f‖1{2

H2 . (2.14)

Now we are ready to introduce some assumptions on the stochastic part of sys-
tems (1.2), (1.3).

Hypothesis 2.11. Wt “
ř

kPK σkW
k
t where

• K is a (possibly countable) set of indexes, γ ě 2.

• σk P Dpp´Aq
γq satisfying

ÿ

kPK

‖σk‖2
Dpp´Aqγq ă `8.

• tW k
t ukPK is a sequence of real, independent Brownian motions adapted to Ft.

We denote by H0 the RKHS associated to Wt.

Remark 2.12. Previous assumptions on the noise implies in particular that H0 ãÑ

Dpp´Aqγq and that W is a process with continuous paths with values in Dpp´Aqγq.
Since λi „ Ci, see [33], a simple example of noise satisfying Hypothesis 2.11 is Wt “

p´Aq´γ´1{2´δWH
t , δ ą 0 and WH

t being the cylindrical Wiener process on H. With this
particular choice of the coefficients σk, H0 “ Dpp´Aqγ`1{2`δq.

Since we are going to prove the validity of the Large Deviation Principle via the
weak convergence approach, we will need to analyze the well-posedness of some partial
differential equations, slightly more general than (1.2), (1.3). Therefore, let β ě 0 and
f P PN2 , N ě 0 arbitrary we consider the stochastic partial differential equations below

$

’

’

’

’

&

’

’

’

’

%

duNS,ε “ pε∆uNS,ε ´ uNS,ε ¨∇uNS,ε `∇pNS,ε ` fqdt`
?
βdWt

div uNS,ε “ 0

uNS,ε|BD “ 0

uNS,εp0q “ u0,

(2.15)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dvSG,ε “ pν∆uSG,ε ´ curlpvSG,εq ˆ uSG,ε `∇pSG,ε ` fqdt`
?
βdWt

div uSG,ε “ 0

vSG,ε “ uSG,ε ´ ε∆uSG,ε

uSG,ε|BD “ 0

uSG,εp0q “ u0.

(2.16)

Definition 2.13. A stochastic process with continuous trajectories with values in H is a
weak solution of equation (2.15) if

uNS,ε P CF pr0, T s;Hq X L
2pΩ,F ,P;L2p0, T ;V qq

and P´ a.s. for every t P r0, T s and φ P DpAq we have

xuNS,εt ´ u0, φy `

ż t

0

εx∇uNS,εs ,∇φyL2pD;R2q “

ż t

0

bpuNS,εs , φ, uNS,εs qds`

ż t

0

xfs, φyds

`
a

βxWt, φy.

Definition 2.14. A stochastic process with weakly continuous trajectories with values
in W is a weak solution of equation (2.16) if

uSG,ε P L2pΩ,F ,P;L8p0, T ;W qq
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and P´ a.s. for every t P r0, T s and φ PW we have

xuSG,εt ´ u0, φyVε `

ż t

0

νx∇uSG,εs ,∇φy ` xcurlpuSG,εs ´ ε∆uSG,εs q ˆ uSG,εs , φyds

“

ż t

0

xfs, φyds`
a

βxWt, φy.

The well-posedness of (2.15) (resp. (2.16)) in the sense of Definition 2.13 (resp.
Definition 2.14) is guaranteed by Theorem 2.15 below, see [27] (resp. Theorem 2.16, see
[55], [49, Section 6]).

Theorem 2.15. For each u0 P H3pD;R2q X H there exists a unique weak solution
of (2.15) in the sense of Definition 2.13. Moreover the following relation holds true

‖uNS,εt ‖2 ` 2ε

ż t

0

‖∇uNS,εs ‖2
L2ds “ ‖u0‖2 ` tβ

ÿ

kPK

‖σk‖2 ` 2
a

β

ż t

0

xuNS,ε, dWsy

` 2

ż t

0

xfs, u
NS,εyds P´ a.s. (2.17)

Theorem 2.16. For each u0 P W there exists a unique weak solution of (2.16) in the
sense of Definition 2.14. Moreover uSG,ε has continuous paths with values in V and it
holds

‖uSG,εt ‖2
Vε ` 2ν

ż t

0

‖∇uSG,εs ‖2
L2ds “ ‖u0‖2

Vε ` tβ
ÿ

kPK

‖pI ´ εAq´1{2σk‖2

` 2
a

β

ż t

0

xuSG,ε, dWsy ` 2

ż t

0

xfs, u
SG,εyds P´ a.s.

(2.18)

Calling qSG,ε “ curlpuSG,ε ´ ε∆uSG,εq, sk “ curlσk it holds

‖qSG,εt ‖2
L2 “ ‖u0‖2

ε,˚ ´
2ν

ε

ż t

0

xqSG,εs ´ curluSG,εs , qSG,εs yds` tβ
ÿ

kPK

‖sk‖2

` 2
a

β
ÿ

kPK

ż t

0

xsk, qsydW
k
s ` 2

ż t

0

xcurl fs, qsyds P´ a.s. (2.19)

Lastly we need to recall some results about the well-posedness of Euler equations
with forcing term f P PN2 , namely solutions of

$

’

’

’

’

&

’

’

’

’

%

Btu` u ¨∇u “ ∇p` f
div u “ 0

u ¨ n|BD “ 0

up0q “ u0.

(2.20)

Definition 2.17. A stochastic process with continuous trajectories with values in H is
a weak solution of equation (2.20) if P´ a.s. for every t P r0, T s and φ P C8c pD;R2q we
have

xut ´ u0, φy “

ż t

0

bpus, φ, usqds´

ż t

0

xfs, φyds.

The well-posedness of (2.20) in regular spaces is a classical result, see for example
[5], [4], [30].
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Theorem 2.18. For each u0 P H3pD;R2q X H there exists a unique weak solution
of (2.20) with trajectories in Cpr0, T s;W 2,4pD;R2qq. Moreover

‖ut‖2 “ ‖u0‖2 ` 2

ż t

0

xfs, usyds P´ a.s. (2.21)

suptPr0,T s‖ut‖W 2,4 ď Cp‖u0‖W 2,4 , Nq P´ a.s. (2.22)

Remark 2.19. The well-posedness of equation (2.15), equation (2.16) holds under
weaker assumptions on the noise than Hypothesis 2.11. We need to assume a noise so
regular in order to guarantee that there exists a unique solution of (2.20) which belongs
to Cpr0, T s;W 2,4pD;R2qq X Cpr0, T s;Hq.

2.3 Main results

As stated in section 1, our goal is to prove a Large Deviation Principle via the weak
convergence approach introduced in subsection 2.1. Therefore we need to introduce
some maps GNS,ε, GSG,ε, G0. Following the notation of subsection 2.1, let

ENS0 :“ H3pD;R2q XH, ESG0 :“W, E :“ Cpr0, T s;Hq.

According to Theorem 2.18 we can introduce the measurable map

GNS,0 : ENS0 ˆ Cpr0, T s;Hq Ñ E
`

resp. GSG,0 : ESG0 ˆ Cpr0, T s;Hq Ñ E
˘

which associates to each u0 P ENS0 (resp. u0 P ESG0 ) and
ş¨

0
fsds, f P L

2p0, T ;H0q the
unique regular solution of (2.20) with initial condition u0 and forcing term f guaranteed
by Theorem 2.18, 0 otherwise. Analogously thanks to Theorem 2.15 (resp. Theorem 2.16)
we can introduce the measurable map

GNS,ε : ENS0 ˆ Cpr0, T s;Hq Ñ E
`

resp. GSG,ε : ESG0 ˆ Cpr0, T s;Hq Ñ E
˘

such that for each u0 P ENS0 (resp. u0 P ESG0 ), GNS,εpu0,
?
εW¨q (resp. GSG,εpu0,

?
εW¨q

is the unique weak solution of (2.15) (resp. (2.16)) with β “ ε, initial condition u0 and
null forcing term guaranteed by Theorem 2.15 (resp. Theorem 2.16). More generally,
it follows that, if f P PN2 , GNS,εpu0,

?
εW¨ `

ş¨

0
fsdsq (resp. GSG,εpu0,

?
εW¨ `

ş¨

0
fsdsq)

is the unique solution of (2.15) (resp. (2.16)) β “ ε, initial condition u0 and forcing
term f . When dealing with the inviscid limit for Navier-Stokes equations and no-slip
boundary conditions one can choose either to assume a Kato-type hypothesis or to
require strong assumptions on the regularity of the domain, initial conditions and forcing
term. We will follow both these lines. In the following, given c ą 0, we will denote
Γcε “ tx P D : dpx, BDq ď cεu.

Hypothesis 2.20 (Strong Kato Hypothesis). For each N P N, uε0, u0 P ENS0 and fε, f P

PN2 such that uε0 Ñ u0 in ENS0 and fε ÑL f in SN , if pΩ,F ,Ft,Pq is a filtered probability
space where all fε, f are defined together and fε Ñ f P ´ a.s. in SN , then, it exists
c ą 0 such that for every δ ą 0

P

˜

ε

ż T

0

∥∥∥∥∇GNS,ε
ˆ

uε0,
?
εW¨ `

ż ¨

0

fεs ds

˙
∥∥∥∥2

L2pΓcεq

ds ą δ

¸

Ñ 0.

Remark 2.21. In the previous condition, the set ENS0 need not to be the full space
H3pD;R2q X H, but it can be a closed subset of it, even consisting of a singleton. Of
course, the LDP that we will be able to prove will then only be uniform with respect to
initial conditions belonging to such subset (cf. Definition 2.3). In contrast, the space in
which the forcing f varies cannot be restricted as easily, without substantially weakening
the strength of the LDP (see the discussion in Section 5).
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Remark 2.22. By Skorokhod’s representation theorem, given fε, f P PN2 such that
fε ÑL f in SN there exists at least a filtered probability space pΩ,F ,Ft,Pq where all fε,
f are defined together and fε Ñ f P´ a.s. in SN .

Now we are ready to state our main result on the validity of a Large Deviation
Principle under Hypothesis 2.20.

Theorem 2.23. Assuming Hypothesis 2.20, the family tuNS,ε “ GNS,εpu0,
?
εW¨quu0PENS0

satisfies the uniform Laplace principle with the rate function

INSu0
pvq “ inftfPL2p0,T ;H0q: v“GNS,0pu0,

ş

¨

0
fsdsqu

1

2

ż T

0

}fs}
2
H0
ds

“
1

2

ż T

0

}Btvs ` P pvs ¨∇vsq}2H0
ds.

where u0 P ENS0 , v P Cpr0, T s;Hq, with the convention that INSu0
pvq “ `8 anytime v is

not in the range of GNS,0pu0, ¨q.

The last equality is guaranteed by the injectivity of the map GNS,0 in the second
component, which in turn is a consequence of the uniqueness for the Euler system in
our setting, see Theorem 2.18.

The validity of Hypothesis 2.20 is in contrast to the so-called Kolmogorov’s zeroth
law of turbulence, see [40], [41], [39]. The latter describing the physical evidence that
the anomalous dissipation of the kinetic energy holds for three dimensional fluids at
high Reynolds number. While, nowadays, the Kolmogorov’s zeroth law of turbulence
is a well-accepted assumption for three dimensional fluids where counterexamples to
Hypothesis 2.20 have been shown in the case of deterministic forcing and domains
without boundaries, see for example [7] for an explicit counterexample and [35], [53] for
some numerical discussions, the situation is less clear in the two dimensional case. This
is due the fact that either Navier-Stokes and Euler’s flows preserve smooth solutions.
We refer to [19] and the references therein for further discussions on this topic. Indeed,
even if Hypothesis 2.20 may look too restrictive, we will provide, thanks to Theorem 2.27,
an explicit example where it is satisfied, see also Remark 3.9 and Remark 3.10 below.
Moreover, we will come back on the meaning of Hypothesis 2.20 and its relation with a
more classical version of the Kato Hypothesis, i.e. non depending on fε, in section 5.

As pointed out in [46], [49] in order to obtain an unconditioned result for the Second-
Grade fluid equations, we cannot take any scaling of ν Ñ 0 but it is necessary to
assume:

Hypothesis 2.24. ν “ Opεq.

Now we can state our main result on the Second Grade Fluid equations.

Theorem 2.25. Assuming Hypothesis 2.24, the family tuSG,ε “ GSG,εpu0,
?
εW¨quu0PESG0

satisfies the uniform Laplace principle with the rate function

ISGu0
pvq “

1

2
inffPL2p0,T ;H0q: v“GSG,0pu0,

ş

¨

0
fsdsq

ż T

0

‖fs‖2
H0
ds

“
1

2

ż T

0

}Btvs ` P pvs ¨∇vsq}2H0
ds

where u0 P ESG0 , v P Cpr0, T s;Hq, with the convention that ISGu0
pvq “ `8 anytime v is not

in the range of GSG,0pu0, ¨q.

Lastly we want to consider the case of fluids with radial symmetry. In such case the
inviscid limit in general holds without any assumptions on the behavior of the fluid in the
boundary layer as observed in [45]. Therefore, calling B the open ball in R2, centered in
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0 with radius 1, we introduce

HRS “

"

xK

|x|
ūp|x|q, ū P C8c p0, 1q

*Dpp´Aqγq

endowed with the Dpp´Aqγq norm and

ERS0 “ ENS0 X

"

u “
xK

|x|
ūp|x|q, ū P L2p0, 1q

*

endowed with the H3 norm. As above we need to introduce a particular forced Navier-
Stokes systems:

$

’

’

’

’

&

’

’

’

’

%

duRS,ε “ pε∆uRS,ε ´ uRS,ε ¨∇uRS,ε `∇pRS,ε ` fqdt`
?
εdWRS

t

div uRS,ε “ 0

uRS,ε|BD “ 0

uRS,εp0q “ u0.

(2.23)

Now can introduce the assumptions in order to deal the case with radial symmetry and
study the Large Deviation Principle in this framework:

Hypothesis 2.26. D “ B, WRS
t “

ř

kPK σkW
k
t where

• K is a (possibly countable) set of indexes, γ ě 2.

• σk P HRS satisfying
ÿ

kPK

‖σk‖2
Dpp´Aqγq ă `8.

• tW k
t ukPK is a sequence of real, independent Brownian motions adapted to Ft.

We denote by HRS
0 the RKHS associated to WRS

t .
Since Theorem 2.15, Theorem 2.18 continue to hold considering

u0 P ERS0 , f P L2p0, T ;HRS
0 q

and assuming Hypothesis 2.26, we can define the measurable maps GRS,ε and GRS,0 as
above for GNS,ε and GNS,0 considering ERS0 instead of ENS0 .

Theorem 2.27. Assuming Hypothesis 2.26, the family tuRS,ε “ GRS,εpu0,
?
εWRS

¨ quu0PERS0

satisfies the uniform Laplace principle with the rate function

IRSu0
pvq “

1

2
inffPL2p0,T ;HRS0 q: v“GRS,0pu0,

ş

¨

0
fsdsq

ż T

0

‖fs‖2
HRS0

ds

“
1

2

ż T

0

‖Btvs ` P pvs ¨∇vsq‖2
HRS0

ds

where u0 P ERS0 , v P Cpr0, T s;Hq, with the convention that ISGu0
pvq “ `8 anytime v is not

in the range of GRS,0pu0, ¨q.

Let us observe that all of the three functionals have the same integral representation,
the only difference being the space where u0 and the noise take values. This phenomenon
roughly means that the LDPs we are able to establish are not strong enough to distinguish
between the two models at the level of the asymptotics of their fluctuations. In principle,
a sharper LDP could display such differences. This kind of results would be of utmost
interest also in the periodic framework, acting as selection principles for solutions coming
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from convex integration schemes. Secondly, let us discuss about possible consequences
of our main results. The problems of the exit from a domain in the state space and the
large deviations for the invariant measures are very common applications in literature of
Large Deviation Principles to the description of rare events. The first problem is related
to estimating the typical (exponential) timescale on which the solution of the system
starting from a domain in the state space O that contains one of its equilibrium point,
leave this set, and possibly identify also the escaping set (the subset of BO where the
escape is most likely to occur) and the most typical trajectory of this escape. The second
problem is related to the (exponential) rate of convergence of the invariant measure
of the system. In the context of stochastic Navier-Stokes, the exit time problem was
studied, in the small noise limit, by [9], then their results were used to study the LDP for
the invariant measure in [10]. Let us mention also the works [13] and [14] which proved
the same results but for a noise that becomes both small and white (in space) in the limit
εÑ 0. Concerning these problems in our framework, the study of the convergence of
the invariant measures in the small noise-small viscosity limit, is central in the study of
the statistical properties of a turbulent fluid, see for example [51], [42], [43, Chapter 10]
and the references therein. In the case of the zero-noise, zero viscosity limit, this kind of
results are, however, much harder to obtain from the large deviation principle due to the
conservative nature of the limit object and the presence of multiple stable configurations
of the deterministic system. Indeed, no results are available in this direction even in the
periodic setting and we think our results, as well as the ones of [6], as a first step in
order to address such questions.

Remark 2.28. Theorem 2.23, Theorem 2.25 and Theorem 2.27 continue to hold also if we
add a deterministic forcing term g in L2p0, T ;H0q or L2p0, T ;HRS

0 q in equations (1.2), (1.3),
up to re-defining the maps Gε and G0 accordingly. Indeed the computations below can
be easily adapted to this framework. Moreover, it is enough to assume the validity of
Hypothesis 2.20 for equation (1.2) without any forcing g in order to prove the validity of
Theorem 2.23 also if we add the forcing term g.

Remark 2.29. With particular choices of the noise coefficients, the Large deviations
functional can be made more explicit, as a relevant example, in the framework of
Remark 2.12, INSu0

pvq reduces to

INSu0
pvq “

1

2

ż T

0

‖p´Aqγ`1{2`δ pBsvs ` P pvs ¨∇vsqq‖2ds,

similarly for the second grade fluid equations.

We conclude this section with few notation that will be adopted: by C we will denote
several constant independent from ε, ν, perhaps changing value line by line. If we want
to keep track of the dependence of C from some parameter ρ we will use the symbol
Cpρq. Sometimes we will use the notation a À b, if it exists a constant independent from
ν and ε such that a ď Cb. In order to simplify the notation we will denote Sobolev spaces
by W s,p, Hs, forgetting domain and range and use Einstein summation convention.

3 Navier-Stokes

Let us start discussing Condition 1 in Hypothesis 2.4. Since ERS0 ãÑ ENS0 and HRS ãÑ

Dpp´Aqγq, by definition of the maps GNS,0,GRS,0 we have

GNS,0pu0,

ż ¨

0

fsdsq “ GRS,0pu0,

ż ¨

0

fsdsq

if D is the open ball centered in 0 with radius 1, u0 P ERS0 and fs P L2p0, T ;HRS
0 q.

Moreover, since ERS0 and ENS0 (resp. HRS and Dpp´Aqγq) are Banach spaces endowed
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with the same norm, it is enough to show the validity of Condition 1 in Hypothesis 2.4 for
GNS,0 in order to have that the same holds also for GRS,0. Therefore we limit ourselves
to show the validity of Condition 1 in Hypothesis 2.4 for GNS,0.

Let us fix N ą 0, K a compact subset of ENS0 , we want to show that the set

KN “ tGNS,0px0,

ż ¨

0

fsdsq v P SN , x0 P Ku
c

ãÑ E .

Therefore let us fix two sequences txn0 unPN Ă K, tfnunPN Ă SN . Since K is compact
subset of ENS0 , ‖fn‖2

L2p0,T ;H0q
ď N we can find a subsequence tnkukPN, x P K, f P SN

such that xnk0 Ñ x0 in ENS0 , fnk á f in L2p0, T ;H0q. Let unk :“ GNS,0pxnk0 ,
ş¨

0
fnks dsq

(resp. u :“ GNS,0px0,
ş¨

0
fsdsq). According to Theorem 2.18, unk (resp. u) is the unique

regular weak solution of (2.20) with initial condition xnk0 (resp. x0) and forcing term fnk

(resp. f ). Our goal is to show that unk Ñ u in E . We emphasize, once for all, that the weak
convergence of fnk to f is not directly sufficient in order to show the validity of Condition
1 in Hypothesis 2.4. Therefore, we will need to move to some integrated-in-time version
of fnk and f in order to gain strong convergence, uniform in time, in weaker Sobolev
spaces. We will adopt similar arguments also in the forthcoming sections in order to
establish the validity of Condition 2 in Hypothesis 2.4. Fix θ ą 0 arbitrarily small and
define Fnk “

ş¨

0
fnks ds, F “

ş¨

0
fsds. By Hypothesis 2.11, H0 ãÑ Dpp´Aq2q. This implies,

see for example [27, Proposition 2.10] that

Fnk Ñ F in Cpr0, T s;Dpp´Aq2´θqq. (3.1)

Obviously

supkě1‖Fnk‖Cpr0,T s;Dpp´Aq2qq ` ‖F‖Cpr0,T s;Dpp´Aq2qq ď CpNq. (3.2)

Lastly, since xnk0 Ñ x0 in ENS0 , from (2.22) we can find a constant C “ CpN, x0q only
depending on N and ‖x‖ENS0

such that

supkě1‖unk‖Cpr0,T s;W 2,4q ` ‖u‖Cpr0,T s;W 2,4q ď Cp‖x0‖W 2,4 , Nq. (3.3)

We introduce

vnkt “ unkt ´ Fnkt , vt “ ut ´ Ft.

By triangle inequality vnk , v satisfy relation (3.3), too. Since Fnk Ñ F in E , it is enough
to show that vnk Ñ v in E in order to prove the validity of Condition 1 in Hypothesis 2.4.
This is the aim of Lemma 3.1 below. We will follow the idea introduced in [65] to show
uniqueness of the solutions with bounded vorticity of the Euler equations. However, in
order to prove the continuous dependence from the data we exploit the higher regularity
and the uniform bounds guaranteed by relation (3.3).

Lemma 3.1. vnk Ñ v in Cpr0, T s;Hq.

Proof. Let

ζnk “ curlunkt , ζt “ curlut,

φnkt “ curlFnkt , φt “ curlFt,

hnkt “ curl vnkt “ ζnkt ´ φnkt , ht “ curl vt “ ζt ´ φt.

hnkt (resp. ht) is a weak solution of the vorticity equation
#

Bth
nk ` unk ¨∇phnk ` φnkq “ 0

hnk0 “ curlxnk0

˜

resp.

#

Bth` u ¨∇ph` φq “ 0

h0 “ curlx0

¸

. (3.4)
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Thanks to (3.1), (3.2), (3.3) hnk , h, φnk , φ satisfy

φnk Ñ φ in Cpr0, T s;H3´θq, (3.5)

supkě1‖φnk‖Cpr0,T s;H3q ` ‖φ‖Cpr0,T s;H3q ď CpNq, (3.6)

supkě1‖hnk‖Cpr0,T s;W 1,4q ` ‖h‖Cpr0,T s;W 1,4q ď Cp‖x0‖W 2,4 , Nq. (3.7)

We need to introduce the stream function ψnkt (resp. ψt) which is the weak solution of

#

´∆ψnkt “ hnkt

ψnkt |BD “ 0

˜

resp.

#

´∆ψt “ ht

ψt|BD “ 0

¸

. (3.8)

By standard elliptic regularity theory, see for example [1], and the uniform bound (3.7),
it holds

supkě1‖ψnk‖Cpr0,T s;W 3,4q ` ‖ψ‖Cpr0,T s;W 3,4q ď Cp‖x0‖W 2,4 , Nq. (3.9)

Lastly, introducing

αnkt “ ψnkt ´ ψt, gnkt “ φnkt ´ φt, Gnkt “ Fnkt ´ Ft,

It is well-known that vnk “ ´∇Kψnk , v “ ´∇Kψ, see for example [50]. With this notation
in mind, thanks to equations (3.4) and (3.8), ´∆αnk solves in a weak sense

Btp´∆αnkq`
”

p´∇Kψnk ` Fnkq ¨∇
ı´

´∆αnk ` gnk
¯

“

´

”

´∇Kαnk `Gnk ¨∇
ı

p´∆ψ ` φq. (3.10)

Therefore, arguing as in [65, Theorem 3.1], we use αnk itself as a test function in (3.10),
obtaining

1

2
‖∇αnkt ‖2 “

1

2
‖∇αnk0 ‖2 `

ż t

0

ż

D

´

p´∇Kψnks ¨∇αnks q
`

´∆αnks ` gnks
˘

` Fnks ¨∇αnks p´∆αnks ` gnks q `
`

´∆ψs ` φs
˘`

Gnks ¨∇αnks
˘

¯

dxds

“
1

2
‖∇αnk0 ‖2 ` I1ptq ` I2ptq ` I3ptq ` I4ptq ` I5ptq, (3.11)

where

I1ptq “

ż t

0

ż

D

∇Kψnks ¨∇αnks ∆αnks dxds,

I2ptq “ ´

ż t

0

ż

D

∇Kψnks ¨∇αnks gnks dxds,

I3ptq “ ´

ż t

0

ż

D

Fnks ¨∇αnks ∆αnks dxds,

I4ptq “

ż t

0

ż

D

Fnks ¨∇αnks gnks dxds,

I5ptq “

ż t

0

ż

D

p´∆ψs ` φs
˘`

Gnks ¨∇αnks
˘

dxds.

Therefore we need to understand the behavior of I1ptq, I2ptq, I3ptq, I4ptq, I5ptq in equa-
tion (3.11). I1ptq can be estimated easily integrating by parts, thanks to the uniform
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bound (3.3) and Hölder’s inequality. Indeed it holds:

´

ż

D

vnki Biα
nkBj,jα

nkdx “ ´

ż

D

Bjv
nk
i Biα

nkBjα
nkdx´

ż

D

vnki Bi,jα
nkBjα

nkdx

ď ‖vnk‖W 1,8‖∇αnk‖2 ´
1

2

ż

D

vnki Bi|Bjα
nk |2dx

ď Cp‖x0‖W 2,4 , Nq‖∇αnk‖2.

Therefore

I1ptq ď Cp‖x0‖W 2,4 , Nq

ż t

0

‖∇αnks ‖2ds. (3.12)

I3 can be estimated similarly integrating by parts, thanks to the uniform bound (3.2) and
Hölder’s inequality:

ż

D

Fnki Biα
nkBj,jα

nkdx “ ´

ż

D

BjF
nk
i Biα

nkBjα
nkdx´

ż

D

Fnki Bi,jα
nkBjα

nkdx

ď ‖Fnk‖W 1,8‖∇αnk‖2 ´
1

2

ż

D

Fnki Bi|Bjαnk |2dx

ď CpNq‖∇αnk‖2.

Therefore

I3ptq ď CpNq

ż t

0

‖∇αnks ‖2ds. (3.13)

I2ptq, I4ptq and I5ptq can be bounded easily by Hölder and Young inequalities and the
uniform bounds (3.2), (3.3), (3.6), (3.7), (3.9). Indeed it holds:

I2ptq ` I4ptq ` I5ptq ď

ż t

0

p‖vnks ‖L8 ` ‖Fnks ‖L8q ‖∇αnks ‖‖gnks ‖dsds

`

ż t

0

p‖φs‖L8‖hs‖L8q ‖∇αnks ‖‖Gnks ‖

ď

ż t

0

‖∇αnks ‖2ds

` C
`

‖vnk‖Cpr0,T s;W 1,4q ` ‖Fnk‖Cpr0,T s;W 1,4q

˘2 ‖gnk‖2
Cpr0,T s;L2q

` C
`

‖φ‖Cpr0,T s;W 1,4q ` ‖h‖Cpr0,T s;W 1,4q

˘2 ‖Gnk‖2
Cpr0,T s;L2q

ď

ż t

0

‖∇αnks ‖2ds

` Cp‖x0‖W 2,4 , Nq
´

‖gnk‖2
Cpr0,T s;L2q ` ‖Gnk‖2

Cpr0,T s;L2q

¯

. (3.14)

Combining relations (3.12), (3.13) and (3.14) we get

1

2
‖∇αnkt ‖2 ď

1

2
‖∇αnk0 ‖2 ` Cp‖x0‖W 2,4 , Nq

ż t

0

‖∇αnks ‖2ds

` Cp‖x0‖W 2,4 , Nq
´

‖gnk‖2
Cpr0,T s;L2q ` ‖Gnk‖2

Cpr0,T s;L2q

¯

,

which implies, by Grönwall’s Lemma,

‖vnk ´ v‖Cpr0,T s;Hq ď Cp‖x0‖W 2,4 , Nq
`

‖xnk0 ´ x0‖` ‖gnk‖Cpr0,T s;L2q

` ‖Gnk‖Cpr0,T s;L2q

˘

. (3.15)

Thanks to our assumptions the thesis follows.
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3.1 The Case of fluids with radial symmetry

The goal of this Section is to prove the validity of the Large Deviation Principle for
the zero noise-zero viscosity limit of the Navier-Stokes equations in presence of strong
assumptions on the domain and data, see Hypothesis 2.26. Therefore in this section we
assume that D is the open ball centered in 0 with radius 1.

The reason why this particular geometry can be treated lies in the fact the we
can show that the solution of the Navier Stokes equations given by Theorem 2.15
posses radial symmetry, and in turn show that the nonlinear term in the equation
vanishes. We will be able to represent the solution uεt pxq “ vεt pxq

xK

|x| where vε is a radial
function satisfying an appropriate auxiliary equation. Then we will exploit this particular
representation formula in order to prove the validity of Theorem 2.27.

By radial functions, we mean functions g such that gpRθxq “ gpxq for a.e. x P D, for
each θ P r0, 2πs, Rθ : D Ñ D being the counterclockwise rotation of the disk about its

center by the angle θ. Any function upxq that can be written as ūp|x|qx
K

|x| will be called
circularly symmetric and the radial function ū will be called its radial part.

We want to consider the following equation for the scalar function vε:

dvε “
”

εp∆vε ´
vε

|x|2
q ` f̄t

ı

dt`
?
ε
ÿ

kPK

σkp|x|qdW
k
t (3.16)

where the forcing f̄t and the initial datum χε are radial functions in L2pDq. In order to
study problem (3.16) we need to introduce some space of functions and operators, we
refer to [45, Section 3] and the references therein for the proof of this statement and
some discussions on this topic.

Let H1 :“ H1
0 pDq X L

2pD, dx
|x|2 q endowed with the following scalar product

xu, vyH1 “ x∇u,∇vy ` x u
|x|
,
v

|x|
y.

Define the operator ´Ã : DpÃq Ñ L2pDq as ´Ãu “ g whenever there exist g P L2pDq

such that

xu, vyH1 “ xg, vy.

Then the following statement holds.

Lemma 3.2. The operator Ã generates a self-adjoint analytic semigroup of negative
type eÃt over L2pDq, Dpp´Ãq1{2q “ H1. Moreover, if x0 has radial symmetry then the

same holds also for eÃtx0 @t ě 0.

Therefore, according to [22], problem (3.16) can be interpreted in mild form as

vεt :“ eεÃtχε `

ż t

0

eεÃpt´sqf̄sds`
?
ε
ÿ

kPK

ż t

0

eεÃpt´sqσkp| ¨ |qdW
k
s (3.17)

We introduce the notion of weak solution of problem (3.16).

Definition 3.3. We say that vε is a weak solution of (3.16) if

vε P CF
`

r0, T s;L2pDq
˘

X L2pΩ,F ,P;L2p0, T ;H1qq

and for every φ P DpÃq, we have

xvεt , φy “ xχ
ε, φy ` ε

ż t

0

A

vεs , Ãφ
E

ds`

ż t

0

xf̄s, φyds`
?
ε
ÿ

kPK

xsk, φyW
k
t

for every t P r0, T s,P´ a.s., where skpxq “ σkp|x|q.
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Thanks to [22, Theorem 5.4] the mild formula (3.17) gives the unique weak solution
of (3.16). Indeed the following hold

Lemma 3.4. vε P Cpr0, T s;L2pDqq XL2pr0, T s;H1q and has radial symmetry. Moreover, it
is a weak solution in the sense of Definition 3.3 of equation (3.16).

We introduced the problem (3.16), because of the representation formula for the
unique solution of (2.23) guaranteed by the following proposition.

Proposition 3.5. The unique weak solution uε of the Navier-Stokes system (2.23) for
ftpxq “ f̄tp|x|q

xK

|x| P HRS
0 , u0pxq “ ū0p|x|q

xK

|x| P ERS0 and with noise WRS is given by

ūεt p|x|q
xK

|x| where ūε solves equation (3.16) with forcing f̄ and initial datum ū0

Proof. We start showing that for every φ P C8c pD;R2q divergence free

b

ˆ

ūεspxq
xK

|x|
, φ, ūεspxq

xK

|x|

˙

“ 0.

Indeed

ż

D

|ūεsp|x|q|
2 x

K

|x|2
¨ pxK ¨∇φqdx “

ż

D

|ūεsp|x|q|
2 x

K

|x|2
¨ p∇pxK ¨ φq ` φKqdx

“

ż

D

|ūεsp|x|q|
2

|x|2
pxK ¨ p∇pxK ¨ φqq ` x ¨ φqdx “ I1 ` I2.

Now we have

I1 “

ż

D

|ūεsp|x|q|
2

|x|2
divpxKpxK ¨ φqqdx “ ´

ż

D

∇
”

|ūεsp|x|q|
2

|x|2

ı

¨ xKpxK ¨ φqdx “ 0

since the gradient of a radial function is always parallel to x. While, if we define

V pρq “
şρ

0
|ūεsprq|

2

r dr, we have

I2 “

ż

D

|ūεsp|x|q|
2

|x|2
x ¨ φdx “

ż

D

∇V p|x|q ¨ φdx “ ´
ż

D

V p|x|q div φdx “ 0.

Therefore we are left to show that for each φ P DpAq, neglecting the non-linear term
which is zero for divergence free test functions,

xuεt ´ u0, φy `

ż t

0

εx∇uεs,∇φyds “
ż t

0

xfs, φyds`
?
ε
ÿ

kPK

xσk
xK

|x|
, φyW k

t . (3.18)

We rewrite this as

ż

D

rūεt p|x|q ´ ū0p|x|qsφpxq ¨
xK

|x|
dx`

ż t

0

ż

D

ε∇rūεsp|x|q
xK

|x|
s ¨∇φpxqdxds

“

ż t

0

ż

D

f̄sp|x|qφpxq ¨
xK

|x|
dxds

`
?
ε
´

ÿ

kPK

ż

D

σkp|x|qφpxq ¨
xK

|x|
dx

¯

W k
t ,

which, comparing with the Definition 3.3, holds true if we prove that

ż t

0

ż

D

∇rūεsp|x|q
xK

|x|
s ¨∇φpxqdxds “

ż t

0

ż

D

p´Ãq1{2ūεsp|x|qp´Ãq
1{2pφpxq ¨

xK

|x|
qdxds (3.19)
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for each φ P DpAq. In order to prove the claim, we observe that if φ P C8c pD r t0u;R2q,

then φ ¨ x
K

|x| P DpÃq. Therefore (3.19) holds for each φ ¨ x
K

|x| P DpÃq, by simple calculuations
upon noticing that

∆pφpxq ¨
xK

|x|
q “ ∆pφpxqq ¨

xK

|x|
` φpxq ¨

xK

|x|3
´ 2 div

ˆ

x ¨ φ

|x|3
xK

˙

. (3.20)

In particular (3.18) is satisfied for each φ P C8c pDr t0u;R2q. Finally, we obtain that uε is
a weak solution of (2.23) by observing that the closure of C8c pD r t0u;R2q vectors field
in the H1 norm, is exactly H1

0 pD;R2q, which implies that (3.18) holds in particular for
every φ P DpAq.

In the same manner we can prove the analogous result for the Euler system, that is

Proposition 3.6. Given u0p|x|qx
K

|x| P E
RS
0 the unique solution of the system (2.20) in

Cpr0, T s;W 2,4pD;R2qq X Cpr0, T s;Hq

is given by ūtp|x|q
xK

|x| where the radial function ut is given by

ūtp|x|q :“ u0p|x|q `

ż t

0

fsp|x|qds.

3.1.1 Condition 2

In this section we prove that the second condition in the weak convergence approach
is easily fulfilled in the case of fluids with radial symmetries. Let uε0pxq :“ ūε0p|x|qx

K

|x| Ñ

u0pxq :“ ū0p|x|qx
K

|x| in ERS0 , which we recall being endowed with the H3 norm and

fεpt, xq :“ f̄εpt, |x|qx
K

|x| Ñ fpt, xq :“ f̄pt, |x|qx
K

|x| in law as SN -random variables. We

will show that for each sequence εn Ñ 0, Gεn,RS
`

uεn0 , εn
1{2W `

ş¨

0
fεns ds

˘

converges in
law to G0,RSpu0,

ş¨

0
fsdsq in the topology of E . This implies the validity of the second

condition in Hypothesis 2.4. In order to simplify the notation, we will consider ε ą 0 in
the following dropping the subscript εn, having in mind it is a countable family. Since SN

is a Polish space, by Skorokhod’s representation theorem, see [25, Chapter 3] and [34],
we can introduce a further filtered probability space pΩ̃, F̃ , F̃t, P̃q and random variables
f̃ε, W̃ ε, f̃ such that pf̃ε, W̃ εq has the same joint law of pfε,W q, f̃ has the same law of
f and f̃ε ÑP̃´a.s. f̃ in L2p0, T ;HRS

0 q ãÑ L2p0, T ;V q, see for example [27] for details. In
the following, with some abuse of notation, we will drop the tilde in our notation and
simply use P, E, fε, f,W ε instead of P̃, Ẽ, f̃ε, f̃ , W̃ ε. Thanks to Theorem 2.15 for each
ε we can define uε as the unique solution of (2.15) with forcing term fε, initial condition
uε0 and Brownian forcing term W ε, i.e. uε “ Gε,RSpuε0,

ş¨

0
fεs ds `

?
εW εq. Moreover, by

Theorem 2.18 we can define uE as the unique regular solution of (2.20) with forcing term
f and initial condition u0, i.e. uE “ G0,RSpu0,

ş¨

0
fsdsq. From the results in the previous

section, we have that both uε and u have circular symmetry, and their radial parts are
given by

ūεt :“ eεÃtūε0 `

ż t

0

eεÃpt´sqf̄εs ds`
?
ε
ÿ

kPK

ż t

0

eεÃpt´sqσkp| ¨ |qdW
ε,k
s ,

ūt :“ ū0 `

ż t

0

f̄sds.

Actually we will prove the stronger result:

E

«

sup
tPr0,T s

‖uεt ´ uEt ‖2

ff

Ñ 0 (3.21)
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in the probability space defined via Skorokhod’s representation theorem. From our
representation formula, it is sufficient to show

E

«

sup
tPr0,T s

||ūεt ´ ūt||
2

ff

Ñ 0.

To do so we write

ūεt ´ ūt “e
εÃtpūε0 ´ ū0q ` pe

εÃt ´ Iqū0 `

ż t

0

eεÃpt´sqpf̄εs ´ f̄sqds

`

ż t

0

peεÃpt´sq ´ Iqf̄s `
?
ε
ÿ

kPK

ż t

0

eεÃpt´sqσkp| ¨ |qdW
ε,k
s . (3.22)

Preliminarily we observe that in the proof of Proposition 3.5, we showed equality (3.19)
for every vector field φpxq P H1

0 . If we disregard the time integration and let ūεs in (3.19)
be any generic radial function in H1 we obtain that the map J : H1

R Ñ Dpp´Aq1{2q that

sends any radial function vp|x|q in H1 to the circular symmetric vector field vp|x|qx
K

|x| is an

isometry (where we indicated with H1
R the set of radial function of H1). We then obtain

‖fε‖Dpp´Aq1{2q “ }f̄εs p|x|q
xK

|x|
}Dpp´Aq1{2q “ }f̄

ε
s p|x|q}H1 ,

‖f‖Dpp´Aq1{2q “ }f̄sp|x|q
xK

|x|
}Dpp´Aq1{2q “ }f̄sp|x|q}H1 ,

which gives exactly

ż T

0

}f̄s}
2
H1 ` sup

εą0

ż T

0

}f̄εs }
2
H1 ď CpNq P´ a.s., (3.23)

since fε, f P SN . Moreover f̄ε á f̄ in L2p0, T ;H1q P´a.s. Now we can treat uε´u. The
first and second terms in (3.22) go to zero in L2 norm thanks to the strong convergence
of ūε0 to ū0 and the continuity of the semigroup. The convergence is uniform in time since,
for the first term suptďT }e

εÃtpūε0 ´ ū0q} ď }ū
ε
0 ´ ū0} while for the second, we choose for

every ε, tε for which }peεÃtε ´ Iqū0} achieves its maximum over r0, T s. Then by observing
that tε ď T , we get that as ε Ñ 0, εtε Ñ 0, and we conclude by the continuity of the
semigroup. The stochastic integral term in (3.22) can be easily controlled using the
Itô formula and Burkholder-Davis-Gundy inequality for Stochastic Convolutions, see for
example [58], obtaining

E

«

sup
tďT

}
?
ε
ÿ

kPK

ż t

0

eεÃpt´sqσkp| ¨ |qdW
ε,k
s }2

ff

ď 2T
?
εE

„

sup
tďT

}ūεs}
2



˜

ÿ

kPK

}σk}
2

¸

which converges to zero as all the quantities are bounded. In order to study the third
term in (3.22), call F̄ εt “

şt

0
f̄εs ds and F̄t “

şt

0
f̄sds. By [27, Proposition 2.10],

F̄ ε Ñ F̄ in Cpr0, T s;L2q P´ a.s. (3.24)

The third term in (3.22) can can be rewritten as

ż t

0

eεÃpt´sqpf̄εs ´ f̄sqds “ ε

ż t

0

ÃeεÃpt´sqpF̄ εs ´ F̄sqds` pF̄
ε
t ´ F̄tq.

The second term above converges to 0 P´a.s. and in L2pΩ,Pq thanks to (3.23) and (3.24).
Concerning the other we use standard properties of analytic semigroup, see for example
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[52, Chapter 2, Theorem 6.13], and (3.23) obtaining

E

«

sup
tPr0,T s

‖ε
ż t

0

ÃeεÃpt´sqpF̄ εs ´ F̄sqds‖2

ff

ď CεE

«

suptPr0,T s

ˆ
ż t

0

‖F̄ ε ´ F̄‖Cpr0,T s;H1q

pt´ sq1{2
ds

˙2
ff

ď CpN,T qεÑ 0.

Finally, for the fourth term in (3.22), since H1 “ Dpp´Ãq1{2q according to Lemma 3.2, by
standard properties of analytic semigroups, see for example [52, Chapter 2, Theorem
6.13], and our assumption on f , see (3.23), we obtain

sup
tPr0,T s

}

ż t

0

peεÃpt´sq ´ Iqf̄sds}
2 ď

˜

sup
tPr0,T s

ż t

0

}peεÃpt´sq ´ Iqf̄s}ds

¸2

ď Cε

˜

sup
tPr0,T s

ż t

0

pt´ sq1{2}f̄s}H1ds

¸2

ď CpN,T qε P´ a.s.

Therefore we get

E
”

sup
r0,T s

}

ż t

0

peεÃpt´sq ´ Iqf̄sds}
2
ı

Ñ 0.

This proves the validity of relation (3.21). Now we are ready to prove Theorem 2.27.

Proof of Theorem 2.27. Since we already checked the validity of Condition 1 and Condi-
tion 2 in Hypothesis 2.4, it remains to show that for each v P E the map u0 Ñ IRSu0

pvq is a
lower continuous map from ERS0 to r0,`8s in order to apply Theorem 2.5 and complete
the proof. The arguments goes in this way. Fix u0 P ERS0 and a family tun0 unPN Ď ERS0 con-
verging to u0. Without loss of generality we may assume liminfnÑ`8 I

RS
un0
pvq “M ă `8

otherwise we have nothing to prove. Therefore, thanks to the well-posedness of the
Euler equations guaranteed by Theorem 2.18, there exists a subsequence nk and family
tfnkunkPN Ď S2M such that GRS,0punk0 ,

ş¨

0
fnks dsq “ v. Moreover fnk P S2M for all k. Up

to passing to a further subsequence, which we continue to denote by fnk for simplicity
of notation, there exists f P S2M such that fnk á f in L2p0, T ;HRS

0 q. Thanks to (3.1)
and (3.15) it follows that GRS0 : ERS0 ˆL2pr0, T s;HRS

0 q Ñ E is a continuous map endowing
L2pr0, T s;HRS

0 q with the weak topology. Therefore GRS,0pu0, fq “ v and from the lower
semicontinuity of the norm with respect to the weak convergence the thesis follow
immediately:

IRSu0
pvq ď

1

2

ż T

0

‖fs‖2
HRS0

ds ď liminfkÑ`8
1

2

ż T

0

‖fnks ‖2
HRS0

ds ďM “ liminfnÑ`8 I
RS
un0
pvq.

3.2 Proof of Theorem 2.23

We already provided the validity of Condition 1 of Hypothesis 2.4 at the beginning of
Section 3. Moreover, the argument for showing the lower continuity of the map IRSu0

pvq

for v P E fixed repeats verbatim for INSu0
pvq. Therefore, it is enough to show the validity

of Condition 2 of Hypothesis 2.4 in order to prove Theorem 2.23. This is the aim of the
next subsection.
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3.2.1 Condition 2

Fix N ą 0, let f̃ε, f̃ P PN2 , uε0, u0 P ENS0 such that f̃ε ÑL f̃ weakly in L2p0, T ;H0q, u
ε
0 Ñ u0

in ENS0 . We will show that for each sequence εn Ñ 0, Gεn,NS
`

uεn0 , εn
1{2W `

ş¨

0
f̃εns ds

˘

converges in law to G0,NSpu0,
ş¨

0
f̃sdsq in the topology of E . This implies the validity of the

second condition in Hypothesis 2.4. In order to simplify the notation, we will consider
ε ą 0 in the following dropping the subscript εn, having in mind it is a countable family.
Since SN is a Polish space, by Skorokhod’s representation theorem, see [25, Chapter 3]
and [34], we can introduce a further filtered probability space pΩ̃, F̃ , F̃t, P̃q and random
variables fε,W ε, f such that pfε,W εq has the same joint law of pf̃ε,W q, f has the same
law of f̃ and fε ÑP̃´a.s. f in L2p0, T ;H0q, see for example [27] for details. Thanks to
Theorem 2.15 for each ε we can define uε as the unique solution of (2.15) with forcing
term fε, initial condition uε0 and Brownian forcing term W ε. The family tuεuεą0 satisfies
Hypothesis 2.20. Moreover, by Theorem 2.18 we can define uE as the unique regular
solution of (2.20) with forcing term f and initial condition u0. We will show that uε0
converges to uE in probability in Cpr0, T s;Hq. This implies the validity of Condition 2.

Before starting with the computation we recall some facts. In the following, with
some abuse of notation, we will simply use P, E instead of P̃, Ẽ. Fix θ ą 0 arbitrarily
small and define F εt “

şt

0
fεs ds, Ft “

şt

0
fsds. By Hypothesis 2.11, H0 ãÑ Dpp´Aqγq. This

implies, see for example [27, Proposition 2.10] that

F ε ÑP´a.s. F in Cpr0, T s;Dpp´Aqγ´θqq. (3.25)

Obviously

supεą0‖F ε‖Cpr0,T s;Dpp´Aqγqq ` ‖F‖Cpr0,T s;Dpp´Aqγqq ď CpNq P´ a.s. (3.26)

Starting from (2.17), Burkholder-Davis-Gundy inequality, Grönwall’s lemma and the
convergence of uε0 to u0 imply

supεą0

#

E
”

suptPr0,T s‖uεt‖2
ı

` εE

«

ż T

0

‖∇uεs‖2ds

ff+

ď CpN, ‖u0‖q. (3.27)

In order to show the convergence of uε to uE we will introduce zε “
şt

0
eεApt´sqfεs ds, v

ε “

uε ´ zε, vE “ uE ´ F and show separately the convergence of zε to F and of vε to vE .
While the convergence of zε to F will be established by exploiting the properties of the
Stokes semigroup, the convergence of vε to vE will be the more demanding part of the
argument relying on the Strong Kato Condition Hypothesis 2.20 and the introduction
of a corrector of the boundary layer for vE satisfying suitable estimates. This way to
proceed is typical in the case of the analysis of the inviscid limit for the Navier-Stokes
equations with no-slip boundary conditions, see also [36], [18], [61], [63].

We start with the convergence of zε to F .

Lemma 3.7. For each θ ą 0, zεt Ñ F in Cpr0, T s;Dpp´Aqγ´1{2´θqq P ´ a.s. and in
L2pΩ,Pq.

Proof. zε can be rewritten as

zεt “

ż t

0

fεs ds` ε

ż t

0

Aeεpt´sqAF εs ds “ I1 ` I2.

I1 Ñ F P Cpr0, T s;Dpp´Aqγ´1{2´θq P ´ a.s. thanks to (3.25). Moreover, since (3.26)
holds, previous convergence holds also in L2pΩ,Pq by Lebesgue theorem. It remains to
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show that I2 Ñ 0 properly. The P´ a.s. convergence can be obtained as follows

ε suptPr0,T s

∥∥∥∥ż t
0

Aeεpt´sqAF εs ds

∥∥∥∥
Dpp´Aqγ´1{2´θ

ď ε suptPr0,T s

ż t

0

∥∥∥p´Aq1{2`γ´θ eεpt´sqAF εs ∥∥∥ ds
ď ε1{2`θ suptPr0,T s

ż t

0

‖F εs ‖Dp´Aqγ
pt´ sq1{2´θ

ds

ď CpNqε1{2`θ Ñ 0 P´ a.s.

Since previous bound is uniform in ω P Ω the convergence holds also in L2pΩ,Pq and the
thesis follows.

In order to prove the convergence of vε to vE we observe that they solve in a sense
analogous to Definition 2.13, Definition 2.17

dvε`P ppvε ` zεq ¨∇ pvε ` zεqq dt` εAvεdt “
?
εdWt, (3.28)

Btv
E`P puE ¨∇uEq “ 0. (3.29)

By triangle inequality and the uniform bound guaranteed by Lemma 3.7, estimates
analogous to (3.27), (2.22) hold for vε and vE , too. We observe that, thanks to the
regularity of uE guaranteed by Theorem 2.18

‖BtvE‖Cpr0,T s;L8pDqqq À ‖BtvE‖Cpr0,T s;W 1,4pDqq À ‖P puE ¨∇uEq‖Cpr0,T s;W 1,4pDqq

À ‖uE‖2
Cpr0,T s;W 2,4pDqq ď CpN, u0q P´ a.s. (3.30)

Following the idea of [36], let v the corrector of the boundary layer of width δ “ δpεq,
i.e. a divergence free vector field with support in a strip of the boundary of width δ such
that vE ´ v P V and P´ a.s. uniformly in t P r0, T s, ω P Ω

‖vt‖L8pDq ď CpN, u0q, ‖vt‖ ď CpN, u0qδ
1
2 , ‖Btvt‖ ď CpN, u0qδ

1
2 ,

‖∇vt‖L8pDq ď CpN, u0qδ
´1, ‖∇vt‖ ď CpN, u0qδ

´1{2, ‖ρ∇vt‖L8pDq ď CpN, u0q,

‖ρ2∇vt‖L8pDq ď CpN, u0qδ, ‖ρ∇vt‖ ď CpN, u0qδ
1
2 , (3.31)

ρ being the distance function to BD. Now we are ready to show the convergence of vε to
vE .

Lemma 3.8. vε Ñ vE in Cpr0, T s;Hq in probability.

Proof. Arguing as in [49, Theorem 9] one can show that the following relations hold
true.

‖vεt ‖2 ` 2ε

ż t

0

‖∇vε‖2ds “ ‖uε0‖2 ´ 2

ż t

0

bpvε ` zε, zε, vεqds` 2ε1{2

ż t

0

xdW ε
s , v

εy

` εtTrpQq P´ a.s., (3.32)

‖vEt ‖2 “ ‖u0‖2 ´ 2

ż t

0

bpvE ` F, F, vEqds P´ a.s. (3.33)

Exploiting relations (3.32), (3.33) we can study ‖vεt ´ vEt ‖2. Indeed, it holds

‖vεt ´ vEt ‖2 “ ‖vεt ‖2 ` ‖vEt ‖2 ´ 2xvεt , v
E
t y

ď ‖uε0‖2 ´ 2

ż t

0

bpvεs ` z
ε
s , z

ε
s , v

ε
sqds` 2ε1{2

ż t

0

xdW ε
s , v

ε
sy ` εtTrpQq

` ‖u0‖2 ´ 2

ż t

0

bpvEs ` Fs, Fs, v
E
s qds´ 2xvεt , v

E
t ´ vty ´ 2xvεt , vty. (3.34)
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Thanks to the fact that vE ´ v P C1pr0, T s;V q we can rewrite xvεt , v
E
t ´ vty via Itô formula:

xvεt , v
E
t ´ vty “ xu

ε
0, u0 ´ v0y `

şt

0
xvεs , Bspv

E
s ´ vsqyds`

şt

0
xdvεs , v

E
s ´ vsy. Therefore

xvεt , v
E
t ´ vty “ xu

ε
0, u0 ´ v0y `

ż t

0

xvεs , Bspv
E
s ´ vsqyds´ ε

ż t

0

x∇vεs ,∇pvEs ´ vsqyds

`

ż t

0

bpvεs ` z
ε
s , v

E
s ´ vs, v

ε
s ` z

ε
sqds` ε

1{2xW ε
t , v

E
t ´ vty

´ ε1{2

ż t

0

xW ε
s , Bspv

E
s ´ vsqyds. (3.35)

Let us observe that by assumptions

‖uε0‖2 ` ‖u0‖2 ´ 2xuε0, u0y “ ‖uε0 ´ u0‖2 “ op1q, εtTrpQq ď εTTrpQq “ op1q.

Moreover, thanks to the properties of the boundary layer corrector (3.31), P ´ a.s. it
holds

xuε0, v0y ď Cpu0, Nqδ
1{2 “ op1q,

xvεt , vty ď CpN, u0qδ
1{2 suptPr0,T s‖vεt ‖,

ε1{2xW ε
t , v

E
t ´ vty ´ ε

1{2

ż t

0

xW ε
s , Bspv

E
s ´ vsqyds ď ε1{2CpN, u0q suptPr0,T s‖W ε

t ‖.

Exploiting these facts, inserting relation (3.35) in (3.34) we obtain

‖vεt ´ vEt ‖2 ď op1q ` δ1{2CpN, u0q suptPr0,T s‖vεt ‖

` ε1{2CpN, u0q suptPr0,T s‖W ε
t ‖´ 2

ż t

0

bpvεs ` z
ε
s , z

ε
s , v

ε
sqds

` 2ε1{2

ż t

0

xdW ε
s , v

ε
sy ´ 2

ż t

0

bpvEs ` Fs, Fs, v
E
s qds

´ 2

ż t

0

xvεs , Bspv
E
s ´ vsqyds` 2ε

ż t

0

x∇vεs ,∇pvEs ´ vsqyds

´ 2

ż t

0

bpvεs ` z
ε
s , v

E
s ´ vs, v

ε
s ` z

ε
sqds P´ a.s. (3.36)

In order to understand the behavior of
şt

0
xvεs , Bspv

E
s ´ vsqyds, we observe that, thanks

to (3.31),
ż t

0

xvεs , Bsvsyds ď δ1{2CpN, u0q suptPr0,T s‖vεt ‖ P´ a.s.

Moreover, since vE satisfies (3.29), we have
şt

0
xvεs , Bsv

E
s yds “ ´

şt

0
bpvEs `Fs, v

E
s `Fs, v

ε
sqds.

Let us rewrite the trilinear forms appearing (3.36):

bpvE ` F, vE ` F, vεq ´ bpvε ` zε, zε, vεq ´ bpvE ` F, F, vEq

´ bpvε ` zε, vE ´ v, vε ` zεq

“ bpvE , vE , vε ´ vEq ` bpvE ` F, F, vεq ` bpF, vE ` F, vεq

´ bpvε ` zε, zε, vεq ´ bpvE ` F, F, vEq ´ bpvε, vE , vε ´ vEq

´ bpzε, vE ´ v, vε ` zεq ´ bpvε, vE , zεq ` bpvε, v, vε ` zεq. (3.37)

By simple computations the terms in (3.37) can be rewritten as:

|bpvE , vE , vε ´ vEq ´ bpvε, vE , vε ´ vEq| ď ‖∇vE‖L8‖vε ´ vE‖2. (3.38)
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bpvε, v, vε ` zεq ´ bpzε, vE ´ v, vε ` zεq “ bpuε, v, uεq ´ bpzε, vE , uεq. (3.39)

´bpvε ` zε, zε, vεq ` bpvε, vE , zεq “ bpvε, zε, vE ´ vεq ´ bpzε, zε, vεq. (3.40)

bpF, vE ` F, vεq ` bpvE ` F, F, vεq ´ bpvE ` F, F, vEq

“ bpvE , F, vε ´ vEq ` bpF, F, vε ´ vEq ` bpF, vE , vεq. (3.41)

Preliminarily, let us rewrite the last terms in each of (3.39), (3.40) and (3.41) obtaining

´ bpzε, vE , uεq ´ bpzε, zε, vεq ` bpF, vE , vεq “ bpF ´ zε, vE , vεq ` bpzε, vε ´ vE , zεq. (3.42)

Let us leave out bpuε, v, uεq from our analysis for a moment. Indeed, it well be treated
differently. Then considering the other terms appearing in (3.39), (3.40) and (3.41) and
exploiting (3.42), we have

bpvε, zε, vE ´ vεq ` bpvE , F, vε ´ vEq ` bpF, F, vε ´ vEq

` bpF ´ zε, vE , vεq ´ bpzε, zε, vε ´ vEq ˘ bpzε, F, vε ´ vEq

˘ bpvE , zε, vE ´ vεq

“ bpvE ` zε, F ´ zε, vε ´ vEq ` bpvε ´ vE , zε, vE ´ vεq

` bpF ´ zε, vE , vεq ` bpF ´ zε, F, vε ´ vEq. (3.43)

Therefore we can simplify (3.36) and it holds

‖vεt ´ vEt ‖2 ď op1q ` δ1{2CpN, u0q suptPr0,T s‖vεt ‖` ε1{2CpN, u0q suptPr0,T s‖W ε
t ‖

` 2ε1{2

ż t

0

xdW ε
s , v

ε
sy ` 2ε

ż t

0

x∇vεs ,∇pvEs ´ vsqyds

` 2‖∇vE‖L8p0,T ;L8q

ż t

0

‖vεs ´ vEs ‖2ds` 2

ż t

0

bpuεs, vs, u
ε
sqds

` 2

ż t

0

‖vεs ´ vEs ‖‖∇Fs‖L4‖Fs ´ zεs‖L4ds

` 2

ż t

0

‖vεs ´ vEs ‖‖∇pFs ´ zεsq‖‖vEs ` zεs‖L8ds

` 2‖∇zε‖L8p0,T ;L8q

ż t

0

‖vεs ´ vEs ‖2ds` 2

ż t

0

‖∇vEs ‖‖vεs‖‖Fs ´ zεs‖L8ds. (3.44)

Now we can treat the term ε
şt

0
x∇vεs ,∇pvEs ´ vsqyds exploiting the properties of the

boundary layer corrector (3.31) and the convergence zε Ñ F in Cpr0, T s;Dpp´Aqγ´
1
2´θqq

P-a.s.

2ε

ż t

0

x∇vεs ,∇pvEs ´ vsqyds

“ 2ε

ż t

0

x∇uε,∇pvEs ´ vsqyds´ 2ε

ż t

0

x∇zεs ,∇pvEs ´ vsqyds

ď 2ε

ż t

0

‖∇uεs‖‖∇vEs ‖ds` 2ε

ż t

0

‖∇uεs‖L2pΓδq‖∇vs‖ds

` 2ε

ż t

0

‖p´Aq1{2zεs‖‖∇pvEs ´ vsq‖ds

ď 2ε

ż t

0

‖∇uεs‖‖∇vEs ‖ds` δ´1{2εCpN, u0q

ż t

0

‖∇uεs‖L2pΓδq

` δ´1{2εCpN, u0q

ż t

0

‖p´Aq1{2zεs‖ds. (3.45)
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The term
şt

0
bpuε, v, uεqds is the classical term in the analysis of the inviscid limit in

the Kato’s regime, it can be estimated by∣∣∣∣ż t
0

bpuεs, vs, u
ε
sqds

∣∣∣∣ ď δCpN, u0q

ż t

0

‖∇uεs‖2
L2pΓδq

ds (3.46)

see [36, Equation 5.8]. Combining estimates (3.44), (3.45) and (3.46), choosing δ “ cε,
where c is the constant appearing in Hypothesis 2.20, it holds

‖vεt ´ vEt ‖2 ď op1q ` ε1{2CpN, u0q suptPr0,T s‖vεt ‖` 2ε1{2

ż t

0

xdW ε
s , v

ε
sy

` εCpN, u0q

ż t

0

‖∇uεs‖ds` ε1{2CpN, u0q suptPr0,T s‖W ε
t ‖

` ε1{2CpN, u0q

ż t

0

‖∇uεs‖L2pΓcεqds` ε
1{2CpN, u0q

ż t

0

‖∇uεs‖L2pΓcεq

` 2‖∇vE‖L8p0,T ;L8q

ż t

0

‖vε ´ vE‖2ds` εCpN, u0q

ż t

0

‖∇uεs‖2
L2pΓcεq

ds

` 2p1` ‖∇zε‖L8p0,T ;L8qq

ż t

0

‖vεs ´ vEs ‖2ds` 2

ż t

0

‖vεs‖‖∇vEs ‖‖Fs ´ zεs‖L8ds.

(3.47)

Therefore, by Grönwall’s inequality, equation (3.47) implies

suptPr0,T s‖vεt ´ vEt ‖2 ď e2T p1`‖∇vE‖L8p0,T ;L8q`‖∇zε‖L8p0,T ;L8qqˆ
ˆ

op1q ` ε1{2CpN, u0q suptPr0,T s‖vεt ‖

` 2ε1{2 suptPr0,T s

∣∣∣∣ż t
0

xdW ε
s , v

ε
sy

∣∣∣∣
` ε1{2CpN, u0q suptPr0,T s‖W ε

t ‖

` εCpN, u0q

ż T

0

‖∇uεs‖ds

` ε1{2CpN, u0q

ż T

0

‖∇uεs‖L2pΓcεqds

` εCpN, u0q

ż T

0

‖∇uεs‖2
L2pΓcεq

ds

` 2

ż T

0

‖vεs‖‖∇vEs ‖‖Fs ´ zεs‖L8ds
˙

. (3.48)

Since γ ě 2 we can find θ ą 0 small enough such that Dpp´Aqγ´1{2´θq ãÑW 1,8. There-
fore, ‖∇zε‖L8p0,T ;L8q is P´ a.s. bounded by CpN, u0q from Lemma 3.7. Similarly, from
Theorem 2.18, ‖∇vE‖L8p0,T ;L8q ď CpN, u0q P´ a.s.

Therefore e
2T p1`‖∇vE‖L8t L8x `‖∇zε‖L8t L8x q ď CpN, u0q P ´ a.s. This means that, in

order to show that Lemma 3.8 holds, it is enough to prove that

ε1{2CpN, u0q

ˆ

suptPr0,T s‖W ε
t ‖` suptPr0,T s

∣∣∣∣ż t
0

xdW ε
s , v

ε
sy

∣∣∣∣˙` εCpN, u0q

ż T

0

‖∇uεs‖ds

` ε1{2CpN, u0q

ż T

0

‖∇uεs‖L2pΓcεq ` εCpN, u0q

ż T

0

‖∇uεs‖2
L2pΓcεq

ds

` 2

ż T

0

‖vεs‖‖∇vEs ‖‖Fs ´ zεs‖L8dsÑ 0 in Probability. (3.49)
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The terms

ε1{2CpN, u0q

ż T

0

‖∇uεs‖L2pΓcεq ` εCpN, u0q

ż T

0

‖∇uεs‖2
L2pΓcεq

dsÑ 0 in Probability

thanks to Hypothesis 2.20. The terms

ε1{2CpN, u0q

˜

sup
tPr0,T s

‖W ε
t ‖

¸

` ε1{2 suptPr0,T s

∣∣∣∣ż t
0

xdW ε
s , v

ε
sy

∣∣∣∣
` εCpN, u0q

ż T

0

‖∇uεs‖dsÑ 0 in Probability

since it holds by Burkholder-Davis-Gundy inequality, Hölder inequality and (3.27)

E

«

sup
tPr0,T s

‖W ε
t ‖

ff

` E

„

suptPr0,T s

∣∣∣∣ż t
0

xdW ε
s , v

ε
sy

∣∣∣∣` ε1{2E

«

ż T

0

‖∇uεs‖ds

ff

ď C ` CE
”

suptPr0,T s‖vεt ‖2
ı1{2

` CpT qE

«

ε

ż T

0

‖∇uεs‖2ds

ff

ď CpN, u0, T q.

Lastly

ż T

0

‖vεs‖‖∇vEs ‖‖Fs ´ zεs‖L8dsÑ 0 in Probability

thanks to Lemma 3.7, (3.27) and (2.22). Indeed it holds:

E

«

ż T

0

‖vεs‖‖∇vEs ‖‖Fs ´ zεs‖L8ds

ff

ď CpN, u0qE

«

ż T

0

‖vεs‖‖Fs ´ zεs‖L8ds

ff

ď CpN, u0qE

«

ż T

0

‖vεs‖2

ff1{2

E

«

ż T

0

‖Fs ´ zεs‖2
L8ds

ff1{2

Ñ 0.

Therefore (3.49) holds and the thesis follows.

Combining Lemma 3.7 and Lemma 3.8 the second condition in Hypothesis 2.4 holds.

Remark 3.9. As it is classical in the analysis of the inviscid limit in bounded domains,
Hypothesis 2.20 for the forcing terms fε, f is implied by the convergence in probability
of uε to uE in the probability space introduced by Skorokhod’s representation theorem.
Let us consider (2.17) for t “ T and take the limsup of this expression for εÑ 0. It holds

2 limsupεÑ0 ε

ż T

0

‖∇uεs‖2
L2ds ď lim supεÑ0‖uε0‖2 ` lim supεÑ0 εT

ÿ

kPK

‖σk‖2 (3.50)

` 2 lim supεÑ0

?
ε

ż T

0

xuεs, dW
ε
s y

` 2 lim supεÑ0

ż T

0

xfεs , u
ε
syds` lim sup

εÑ0
t´‖uεT ‖2u. (3.51)

Under our assumptions it follows immediately that

lim supεÑ0‖uε0‖2 ` lim supεÑ0 εT
ÿ

kPK

‖σk‖2 ` lim sup
εÑ0

t´‖uεT ‖2u “ ‖u0‖2 ´ ‖uET ‖2
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in Probability. Moreover

lim supεÑ0

?
ε

∣∣∣∣∣
ż T

0

xuε, dW ε
s y

∣∣∣∣∣ “ 0 in Probability

since by (3.27)

E

«
∣∣∣∣∣
ż T

0

xdW ε
s , u

ε
sy

∣∣∣∣∣
ff

ď CE
”

suptPr0,T s‖uεt‖2
ı1{2

ď CpN, u0, T q.

Lastly

limεÑ0

ż T

0

xfεs , u
ε
syds “

ż T

0

xfs, u
E
s yds in Probability.

Indeed ∣∣∣∣∣
ż T

0

xfεs , u
ε
sy ´ xfs, u

E
s yds

∣∣∣∣∣ ď
∣∣∣∣∣
ż T

0

xfεs , u
ε
s ´ u

E
s yds

∣∣∣∣∣`
∣∣∣∣∣
ż T

0

xfεs ´ fs, u
E
s yds

∣∣∣∣∣
“ I1 ` I2.

I1 Ñ 0 in Probability since we assumed that uε Ñ uE in Cpr0, T s;Hq in Probability. I1 Ñ 0

P´ a.s. since in the space introduced by Skorokhod’s representation theorem fε Ñ f

weakly in L2p0, T ;H0q P ´ a.s. and uE P
`

L2p0, T ;H0q
˘˚
P ´ a.s. Therefore we proved

that

limsupεÑ0 ε

ż T

0

‖∇uεs‖2
L2ds “ ‖u0‖2 ´ ‖uET ‖2 ´ 2

ż T

0

xfs, u
E
s yds in Probability

which implies Hypothesis 2.20 by (2.22).

Remark 3.10. Combining Remark 3.9 and the results of Subsection 3.1.1 we obtain that
Hypothesis 2.20 is satisfied in the case of fluids with radial symmetry.

4 Second-Grade fluids

Since ESG0 ãÑ ENS0 , by definition of the maps GNS,0,GSG,0 we have

GNS,0pu0,

ż ¨

0

fsdsq “ GSG,0pu0,

ż ¨

0

fsdsq

if u0 P ESG0 . Moreover, since ESG0 and ENS0 are Banach spaces endowed with the same
norm, the validity of Condition 1 in Hypothesis 2.4 for GNS,0 implies the validity of the
same condition for GSG,0. Moreover the argument for showing the lower continuity of
the map IRSu0

pvq for v P E fixed repeats verbatim for ISGu0
pvq. Therefore, in order to prove

Theorem 2.25, it is enough to show the validity of Condition 2 of Hypothesis 2.4. This is
the aim of the next subsection.

4.1 Condition 2

We argue similarly to the proof of the validity Condition 2 in the case of Navier-
Stokes equations. Fix N ą 0, let f̃ε, f̃ P PN2 , uε0, u0 P ESG0 such that f̃ε ÑL f̃ weakly in
L2p0, T ;H0q, u

ε
0 Ñ u0 in ESG0 . We will show that for each sequence εn Ñ 0, νn Ñ 0 s.t.

νn “ Opεnq, Gεn,SG
`

uεn0 , εn
1{2W `

ş¨

0
fεns ds

˘

converges in law to G0,SGpu0,
ş¨

0
usdsq in the

topology of E . This implies the validity of the second condition in Hypothesis 2.4. In
order to simplify the notation, we will consider ε ą 0, ν ą 0 in the following dropping the
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subscript εn, νn, having in mind they are countable families. Since SN is a Polish space,
by Skorokhod’s representation theorem, see [25, Chapter 3] and [34], we can introduce
a further filtered probability space pΩ̃, F̃ , F̃t, P̃q and random variables fε,W ε, f such that
pfε,W εq has the same joint law of pf̃ε,W q, f has the same law of f̃ and fε ÑP̃´a.s. f in
L2p0, T ;H0q, see for example [27] for details. Thanks to Theorem 2.16 for each ε we can
define uε as the unique solution of (2.16) with forcing term fε, initial condition uε0 and
Brownian forcing term W ε. Moreover, by Theorem 2.18 we can define uE as the unique
regular solution of (2.20) with forcing term f and initial condition u0. We will show that
uε0 converges to uE in probability in Cpr0, T s;Hq. This implies the validity of Condition 2.

Before starting with the computations we recall some facts. In the following, with
some abuse of notation, we will simply use P, E instead of P̃, Ẽ. Fix θ ą 0 arbitrarily
small and define F εptq “

şt

0
fεs ds, F ptq “

şt

0
fsds. By Hypothesis 2.11, H0 ãÑ Dpp´Aqγq.

This implies, see for example [27, Proposition 2.10] that

F ε ÑP´a.s. F in Cpr0, T s;Dpp´Aqγ´θqq. (4.1)

Obviously

supεą0‖F ε‖Cpr0,T s;Dpp´Aqγqq ` ‖F‖Cpr0,T s;Dpp´Aqγqq ď CpNq P´ a.s. (4.2)

Starting from (2.18) and (2.19), under Hypothesis 2.24, Burkholder-Davis-Gundy inequal-
ity, Grönwall’s lemma and the convergence of uε0 to u0 imply

E
”

suptPr0,T s‖uεt‖2
ı

` εE
”

suptPr0,T s‖∇uεt‖2
ı

` 2νE

«

ż T

0

‖∇uεs‖2ds

ff

ď CpN, u0q, (4.3)

ε3E
”

suptPr0,T s‖uεt‖2
H3

ı

ď CpN, u0q, (4.4)

see [49, Section 6] for the details. In order to show the convergence of uε to uE we will
introduce

zε “

ż t

0

eνpI´εAq
´1Apt´sqpI ´ εAq´1fεs ds

which is the mild solution of

dpI ´ εAqzε “ νAzε ` fε,

vε “ uε ´ zε, vE “ uE ´ F and show separately the convergence of zε to F and of vε

to vE . Once again, the convergence of zε to F will be the easiest part of the argument,
while the convergence of vε to vE will be more demanding and its proof will be based on
the introduction of a corrector of the boundary layer for vE satisfying suitable properties.
Before starting showing the convergence of zε to F , we recall that the the operators A
and pI ´ εAq´1 commute on Dpp´Aqαq for each α P R. Moreover

pI ´ εAq´1A : Dpp´Aqαq Ñ Dpp´Aqαq

is a linear, bounded operator for each α P R with operatorial norm equal to 1
ε .

Lemma 4.1. For each θ ą 0, zεptq Ñ F in Cpr0, T s;Dpp´Aqγ´2θqq P ´ a.s. and in
L2pΩ,Pq.

Proof. zε can be rewritten as

zεt “ ν

ż t

0

pI ´ εAq´2AeεpI´εAq
´1Apt´sqF εs ds` pI ´ εAq

´1F εt “ I1 ` I2
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Let us show that I2 Ñ F and I1 Ñ 0 properly. We start from I2:

I2 “ ppI ´ εAq
´1F εt ´ F

ε
t q ` F

ε
t “ I2,1 ` I2,2.

Now I2,2 Ñ Ft in Cpr0, T s;Dpp´Aqγ´θqq P´a.s. and L2pΩ,Pq by (4.1) and (4.2). For what
concerns I2,1 we have

suptPr0,T s‖p´Aqγ´2θI2,1‖ “ suptPr0,T s‖p´Aqγ´2θpF εt ´ pI ´ εAq
´1F εt q‖

“ suptPr0,T s‖p´Aqγ´2θ

ˆ

I

ε
´A

˙´1

AF εt ‖

“ suptPr0,T s‖p´Aq1´θ
ˆ

I

ε
´A

˙´1

‖‖p´Aqγ´θF εt ‖

ď εθ
`

1´θ
θ

˘1´θ

1` 1´θ
θ

CpN,T q Ñ 0 P´ a.s.

Since previous bound is uniform in ω P Ω, previous inequalities imply also the conver-
gence in L2pΩ,Pq. For what concerns I1 we have

suptPr0,T s‖p´Aqγ´θI1‖

ď ν suptPr0,T s

ż t

0

‖p´Aq1´θpI ´ εAq´2eεpI´εAq
´1Apt´sqp´AqγF εs ‖ds

ď εθ

´

1´θ
θ`1

¯

1´θ
2

1` 1´θ
θ`1

CpN,T q Ñ 0 P´ a.s.

Since previous bound is uniform in ω P Ω, previous inequalities imply also the conver-
gence in L2pΩ,Pq. Combining the convergence of I1, I2,1 and I2,2 the thesis follows.

Remark 4.2. Since H0 ãÑ Dpp´Aq3{2q ãÑW , zε satisfies relations (4.3), (4.4). We show
a stronger relation. Indeed it holds:

suptPr0,T s‖p´Aq3{2zεt ‖ ď suptPr0,T s

ż t

0

‖p´Aq3{2eνpI´εAq
´1Apt´sqpI ´ εAq´1fεs ‖ds

ď suptPr0,T s

ż t

0

‖p´Aq3{2fεs ‖ds

ď CpN,T q P´ a.s. (4.5)

Since previous bound is uniform in ω P Ω, we have also

E
”

suptPr0,T s‖p´Aq3{2zεt ‖2
ı

ď CpN,T q. (4.6)

In order to prove the convergence of vε to vE we observe that they solve in a sense
analogous to Definition 2.14, Definition 2.17

dpvε ´ ε∆vεq “ pν∆vε ´ curlpvε ` zε ´ ε∆pvε ` zεqq ˆ pvε ` zεq `∇qεqdt`
?
εdWt (4.7)

and (3.29). By triangle inequality and the uniform bound guaranteed by Remark 4.2,
estimates analogous to (4.3), (4.4), (2.22) hold for vε and vE , too. Moreover vE satis-
fies (3.30). Again, we introduce the corrector of the boundary layer v of width δ “ δpεq,
i.e. a divergence free vector field with support in a strip of the boundary of width δ such
that vE ´ v P V and P´ a.s. uniformly in t P r0, T s, ω P Ω

‖vt‖L8pDq ď CpN, u0q, ‖vt‖ ď CpN, u0qδ
1
2 , ‖Btvt‖ ď CpN, u0qδ

1
2 ,

‖∇vt‖L8pDq ď CpN, u0qδ
´1, ‖∇vt‖L2pDq ď CpN, u0qδ

´1{2, ‖Bt∇vt‖ ď CpN, u0qδ
´ 1

2 . (4.8)
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We choose δ such that

limεÑ0 δ “ 0, limεÑ0
ε

δ
“ 0. (4.9)

Now we are ready to show the convergence of vε to vE .

Lemma 4.3. vε Ñ vE in Cpr0, T s;Hq in probability.

Proof. Let wε “ vε ´ vE . Arguing as in [49, Theorem 9] one can show that the following
relations hold true:

d‖wε‖2 “ εTrpQqdt` ε3TrpA2pI ´ εAq´2Qqdt` ε2TrpApI ´ εAq´1Qqdt

` 2νxwε, Avεydt` 2
?
εxwε, dW ε

t y ` bpv
E ` F, vE ` F,wεqdt

´ 2bpvε ` zε, pI ´ ε∆qpvε ` zεq, wεqdt´ 2bpwε, pI ´ ε∆qpvε ` zεq, vε ` zεqdt

` 2εxwε, dAvεy (4.10)

where

xwε, dAvεy “ ´
d‖p´Aq1{2vε‖2

2
`
dxxp´Aq1{2vε, p´Aq1{2vεyy

2

` dxp´Aq1{2pvE ´ vq, p´Aq1{2vεy ´ xBtp´Aq
1{2pvE ´ vq, p´Aq1{2vεy

´ dxv,Avεy ` xBtv,Av
εy.

First we observe that

εTrpQq ` ε3TrpA2pI ´ εAq´2Qq ` ε2TrpApI ´ εAq´1Qq “ op1q. (4.11)

Secondly, we can rewrite the trilinear forms as

bpvE ` F, vE ` F,wεq ´ bpvε ` zε, vε ` zε, wεq ` εbpvε ` zε,∆pvε ` zεq, wεq

´ εbpwε,∆pvε ` zεq, vε ` zεq ˘ bpvε, vE , wεq “

bpF, vE ` F,wεq ` bpvE , F, wεq ´ bpzε, vε ` zε, wεq ´ bpvε, zε, wεq ´ bpwε, vE , wεq

` εbpuε,∆uε, wεq ´ εbpwε,∆uε, uεq. (4.12)

Integrating in time between 0 and t equation (4.10) and exploiting (4.11), (4.12), we get

‖wεt ‖2 ` ε‖∇vεt ‖2 “ op1q ` ‖uε0 ´ u0‖2 ` ε‖∇uε0‖2 ` 2εx∇pvEt ´ vtq,∇vεt y

´ 2εx∇pu0 ´ v0q,∇uε0y ´ 2ε

ż t

0

xBs∇pvEs ´ vsq,∇vεsyds

´ 2εxvt,∆v
ε
t y ` 2εxv0,∆u

ε
0y ` 2ε

ż t

0

xBsvs,∆v
ε
syds

` 2ν

ż t

0

xwεs, Av
ε
syds` 2

?
ε

ż t

0

xwεs, dW
ε
s y

` 2

ż t

0

bpFs, u
E
s , w

ε
sq ´ bpz

ε
s , u

ε
s, w

ε
sqds

` 2

ż t

0

bpvEs , Fs, w
ε
sq ´ bpv

ε
s , z

ε
s , w

ε
sq ´ bpw

ε
s, v

E
s , w

ε
sqds

` 2ε

ż t

0

bpuεs,∆u
ε
s, w

ε
sq ´ bpw

ε
s,∆u

ε
s, u

ε
sqds. (4.13)
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In order to reach our final expression for the evolution of ‖wεt ‖2 we rewrite better the
terms related to the forcing terms fε, f in equation (4.12)

bpF, uE , wεq ` bpvE , F, wεq ´ bpvε, zε, wεq ´ bpzε, uε, wεq

“ bpF, vE , vεq ` bpF, F,wεq ` bpvE , F, wεq ´ bpzε, zε, wεq

` bpzε, vε, vEq ´ bpvε, zε, wεq ˘ bpF, zε, wεq ˘ bpvE , zε, wεq

“ bpF ´ zε, vE , vεq ` bpF, F ´ zε, wεq

` bpvE , F ´ zε, wεq ` bpF ´ zε, zε, wεq ` bpwε, zε, wεq. (4.14)

Since uε0 Ñ u0 in ESG0 , our choice of δ, see (4.9), and the properties of the boundary layer
corrector (4.8) we have easily, see [49, Equation (99)] for details,

ε‖∇uε0‖2 ´ 2εx∇pu0 ´ v0q,∇uε0y ` εxv0,∆u
ε
0y “ op1q.

Inserting (4.14) in (4.13) we get

‖wεt ‖2 ` ε‖∇vεt ‖2 “ op1q ` 2εx∇pvEt ´ vtq,∇vεt y ´ 2ε

ż t

0

xBs∇pvEs ´ vsq,∇vεsyds

´ 2εxvt,∆v
ε
t y ` 2ε

ż t

0

xBsvs,∆v
ε
syds` 2ν

ż t

0

xwεs, Av
ε
syds

` 2

ż t

0

bpFs ` v
E
s , Fs ´ z

ε
s , w

ε
sq ´ bpFs ´ z

ε
s , v

E
s , v

ε
sqds

` 2

ż t

0

bpFs ´ z
ε
s , z

ε
s , w

ε
sqds

´ 2

ż t

0

bpwεs, z
ε
s , w

ε
sq ´ bpw

ε
s, v

E
s , w

ε
sqds

` 2ε

ż t

0

bpuεs,∆u
ε
s, w

ε
sq ´ bpw

ε
s,∆u

ε
s, u

εqds

` 2
?
ε

ż t

0

xwεs, dW
ε
s y

“ I1ptq ` I2ptq ` I3ptq ` I4ptq ` I5ptq ` I6ptq `Mptq, (4.15)

where

I1ptq “ 2εx∇pvEt ´ vtq,∇vεt y ´ 2εxvt,∆v
ε
t y,

I2ptq “ ´2ε

ż t

0

xBs∇pvEs ´ vsq,∇vεsyds` 2ε

ż t

0

xBsvs,∆v
ε
syds,

I3ptq “ 2ν

ż t

0

xwεs, Av
ε
syds,

I4ptq “ ´2

ż t

0

bpwεs, z
ε
s , w

ε
sq ´ bpw

ε
s, v

E
s , w

ε
sqds,

I5ptq “ 2

ż t

0

bpFs ` v
E
s , Fs ´ z

ε
s , w

ε
sq ´ bpFs ´ z

ε
s , v

E
s , v

ε
sqds` bpFs ´ z

ε
s , z

ε
s , w

ε
sqds,

I6ptq “ 2ε

ż t

0

bpuεs,∆u
ε
s, w

ε
sq ´ bpw

ε
s,∆u

ε
s, u

εqds,

Mptq “ 2
?
ε

ż t

0

xwεs, dW
ε
s y.

Equation (4.15) is the final expression that we will use in order to estimate the various
terms and apply Grönwall’s lemma. The analysis of I1ptq follows by the properties of
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the boundary layer corrector (4.8), our choice of δ (4.9) and the interpolation inequal-
ity (2.14). Therefore it holds:

I1ptq ď εCpN, u0qp1` δ
´1{2q‖∇vεt ‖` εδ1{2CpN, u0q‖vεt ‖H2

ď
ε

10
‖∇vεt ‖2 ` εCpN, u0qp1` δ

´1q ` εδ1{2CpN, u0q‖∇vε‖1{2‖vε‖1{2
H3

ď op1q `
ε

5
‖∇vεt ‖2 ` ε3δ‖vεt ‖2

H3 ` δ1{2CpN, u0q

“ op1q `
ε

5
‖∇vεt ‖2 ` ε3δ‖vεt ‖2

H3 . (4.16)

The analysis of I2ptq is analogous to the (4.16) and leads us to

I2ptq ď op1q ` ε

ż t

0

‖∇vεs‖2ds` ε3δ

ż T

0

‖vεs‖2
H3ds. (4.17)

In order to treat I3ptq, we split wε in vε, vE ´ v and v. Then the first two terms are
integrated by parts. Exploiting the properties of the boundary layer corrector (4.8), our
choice of δ (4.9), ν (2.24) and the interpolation inequality (2.14) it holds

I3ptq “ ´ν

ż t

0

‖∇vεs‖2ds´ ν

ż t

0

xvEs ´ vs, Av
ε
syds´ ν

ż t

0

xvs, Av
ε
syds

“ ´ν

ż t

0

‖∇vεs‖2ds` ν

ż t

0

‖∇pvEs ´ vsq‖‖∇vεs‖ds` ν
ż t

0

‖vs‖‖vεs‖H2ds

ď ´ν

ż t

0

‖∇vεs‖2ds` νp1` δ´1{2qCpN, u0q

ż t

0

‖∇vεs‖ds

` νδ1{2CpN, u0q

ż t

0

‖∇vεs‖1{2‖vεs‖
1{2
H3ds

ď ε

ż t

0

‖∇vεs‖2ds` ε3δ

ż T

0

‖vεs‖2
H3ds` εp1` δ´1qCpN, u0q ` δ

1{2CpN, u0q

“ op1q ` ε

ż t

0

‖∇vεs‖2ds` ε3δ

ż T

0

‖vεs‖2
H3ds. (4.18)

I4ptq can be bounded easily by Hölder’s inequality, obtaining

I4ptq ď
`

‖zε‖L8p0,T ;W 1,8q ` ‖vE‖L8p0,T ;W 1,8q

˘

ż t

0

‖wεs‖2ds. (4.19)

I5ptq can be handle via Hölder’s inequality, exploiting the bounds available on F and vE ,
see (3.26) and (2.22):

I5ptq ď

ż t

0

|bpFs ` vEs , Fs ´ zεs , wεsq|` |bpFs ´ zεs , vEs , vεsq|` |bpFs ´ zεs , zεs , wεsq|ds

ď

ż t

0

‖wεs‖‖Fs ´ zεs‖H1‖Fs ` vEs ‖L8ds`
ż t

0

‖vεs‖‖Fs ´ zεs‖‖vEs ‖W 1,8ds

`

ż t

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds

ď CpN, u0q‖F ´ zε‖Cpr0,T s;H1q

`

1` ‖F ´ zε‖Cpr0,T s;H1q

˘

`

ż t

0

‖wεs‖2ds

`

ż t

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds. (4.20)
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Now we can move to I6ptq which is the most difficult term. Preliminarily we observe that

εbpuε,∆uε, wεq ´ εbpwε,∆uε, uεq “ εbpvε,∆uε, vεq ` εbpzε,∆uε, wεq

´ εbpvε,∆uε, vEq ´ εbpvε,∆uε, vεq

´ εbpwε,∆uε, zεq ` εbpvE ,∆uε, vεq

“ εbpzε,∆uε, wεq ´ εbpvε,∆uε, vEq

´ εbpwε,∆uε, zεq ` εbpvE ,∆uε, vεq.

We start considering ´ε
şt

0
bpvεs ,∆u

ε
s, v

E
s qds` ε

şt

0
bpvEs ,∆u

ε
s, v

ε
sqds. It can treated similarly

to [47, Equations (4.18)-(4.19)]. ´ε
şt

0
bpvεs ,∆u

ε
s, v

E
s qds can be integrated by parts, then it

holds:

´εbpvε,∆uε, vEq “ ε

ż

D

vεi Biv
E
j Bkku

ε
j dx

“ ´ε

ż

D

Bkv
ε
i Biv

E
j Bkpv

ε
j ` z

ε
j qdx´ ε

ż

D

vεi Bi,kv
E
j Bku

ε
jdx

ď op1q ` 2ε‖vE‖W 2,4‖∇vε‖2. (4.21)

In the last step we use the fact that ε‖vE‖W 2,4‖∇zε‖2 “ op1q P ´ a.s. by Lemma 4.1.
For what concerns ε

şt

0
bpvEs ,∆u

ε
s, v

ε
sqds, we split it in three terms:

εbpvE ,∆uε, vεq “ ´ε

ż

D

vE ¨∇vε∆uεdx

“ ´ε

ż

D

`

pvE ´ vq ¨∇vε∆vε ` v ¨∇vε∆vε ` vE ¨∇vε∆zε
˘

dx

“ J1 ` J2 ` J3. (4.22)

J3 is the easiest term and can be bounded by the right hand side of (4.21) arguing as
above. Since vE ´ v|BD, vε|BD “ 0, we can integrate by part J1 repeatedly, obtaining via
Hölder’s inequality the following estimate:

´ε

ż

D

pvE ´ vq ¨∇vε∆vεdx “ ε

ż

D

Bkpv
E
i ´ viqBiv

ε
jBkv

ε
jdx`

ε

2

ż

D

pvEi ´ viqBi|Bkvεj |2dx

“ ε

ż

D

Bkv
E
i Biv

ε
jBkv

ε
jdx´ ε

ż

D

BkviBiv
ε
jBkv

ε
jdx

ď ε‖vE‖W 2,4‖∇vε‖2 ´ ε

ż

D

BkviBiv
ε
jBkv

ε
jdx

“ ε‖vE‖W 2,4‖∇vε‖2 ` ε

ż

D

Bkviv
ε
jBi,kv

ε
jdx

“ ε‖vE‖W 2,4‖∇vε‖2 ´
ε

2

ż

D

viBi|Bkvεj |2dx

´ ε

ż

D

viv
ε
jBi,k,kv

ε
jdx

“ ε‖vE‖W 2,4‖∇vε‖2 ` ε

ż

D

viBiv
ε
jBk,kv

ε
jdx

“ ε‖vE‖W 2,4‖∇vε‖2 ´ J2. (4.23)

Combining (4.21), (4.22), (4.23) we get

´ ε

ż t

0

bpvεs ,∆u
ε
s, v

E
s qds` ε

ż t

0

bpvEs ,∆u
ε
s, v

ε
sqds

ď op1q ` εCpN, u0q‖vE‖L8p0,T ;W 2,4q

ż t

0

‖∇vεs‖2ds. (4.24)
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We left to estimate ε
şt

0
bpzεs ,∆u

ε
s, w

ε
sqds´ ε

şt

0
bpwεs,∆u

ε
s, z

ε
sqds.

We start considering ε
şt

0
bpzεs ,∆u

ε
s, w

ε
sqds integrating by parts repeatedly since zε|BD “

0, we obtain by Hölder’s inequality and the P´ a.s. estimates on zε and vE guaranteed
by equation (4.1) and (2.22)

εbpzε,∆uε, wεq “ ´ε

ż

D

zεi Biw
ε
jBk,ku

ε
jdx

“ ε

ż

D

Bkz
ε
i Biw

ε
jBku

ε
jdx` ε

ż

D

zεi Bi,kw
ε
jBku

ε
jdx

ď ε‖zε‖W 2,4p‖∇vε‖` ‖∇zε‖qp‖∇vε‖` ‖∇vE‖q

` ε

ż

D

zεi Bi,kpu
ε
j ´ z

ε
j ´ v

E
j qBku

ε
jdx

ď op1q ` ε‖zε‖W 2,4‖∇vε‖2

`
ε

2

ż

D

zεi Bi|Bkuεk|2dx` ε‖zε‖L4p‖zε‖W 2,4 ` ‖vE‖W 2,4qp‖∇vε‖` ‖∇zε‖q

ď op1q ` ε
`

‖zε‖W 2,4 ` ‖vE‖W 2,4

˘

‖∇vε‖2. (4.25)

Lastly we consider ´ε
şt

0
bpwεs,∆u

ε
s, z

ε
sqds. Here we want again integrate by parts re-

peatedly, for this reason we add and subtract ε
şt

0
bpvs,∆u

ε
s, z

ε
sqds exploiting the fact that

wε ` v|BD “ 0. Therefore, thanks to the properties of the boundary layer corrector (4.8)
and computations already performed we obtain:

´εbpwε,∆uε, zεq “ ε

ż

D

pwεi ` viqBiz
ε
kBj,ju

ε
kdx´ ε

ż

D

viBiz
ε
kBj,ju

ε
kdx

“ ´ε

ż

D

Bjpw
ε
i ` viqBiz

ε
kBju

ε
kdx´ ε

ż

D

pwεi ` viqBi,jz
ε
kBju

ε
jdx

` ε‖v‖‖zε‖W 2,4p‖vε‖H2 ` ‖zε‖H2q

ď op1q ` εCpN, u0qδ
1{2‖zε‖W 2,4‖∇vε‖1{2‖vε‖1{2

H3

` 2ε‖zε‖W 2,4p‖∇vε‖` ‖∇vE‖` ‖∇v‖qp‖∇vε‖` ‖∇zε‖q

ď op1q ` εC‖zε‖W 2,4‖∇vε‖2 ` ε3δ‖vε‖2
H3 ` δ1{2CpN, u0q‖zε‖3{2

W 2,4

` CpN, u0qεδ
´1‖zε‖4

W 2,4 . (4.26)

In conclusion, combining (4.24), (4.25), (4.26) we obtain

I6ptq ď op1q ` εC
`

‖zε‖L8p0,T ;W 2,4q ` ‖vE‖L8p0,T ;W 2,4q

˘

ż t

0

‖∇vεs‖2ds

` ε3δ suptPr0,T s‖vεt ‖2
H3 ` δ1{2CpN, u0q‖zε‖3{2

L8p0,T ;W 2,4q

` CpN, u0qεδ
´1‖zε‖4

L8p0,T ;W 2,4q. (4.27)

Combining the various estimates on the Iiptq, i P t1, . . . , 6u we get

‖wεt ‖2 `
4

5
ε‖∇vεt ‖2 ď op1q ` Cεp1` ‖vE‖L8p0,T ;W 2,4q ` ‖zε‖L8p0,T ;W 2,4qq

ż t

0

‖∇vεs‖2ds

` CpT qε3δ suptPr0,T s‖vεt ‖2
H3 ` C

?
ε suptPr0,T s

∣∣∣∣ż t
0

xwεs, dWsy

∣∣∣∣
` Cp1` ‖zε‖L8p0,T ;W 1,8q ` ‖vE‖L8p0,T ;W 1,8qq

ż t

0

‖wεs‖2ds

` CpN, u0q‖F ´ zε‖Cpr0,T s;H1q

`

1` ‖F ´ zε‖Cpr0,T s;H1q

˘

`

ż t

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds. (4.28)
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Applying Grönwall’s Lemma to (4.28) we obtain

suptPr0,T s‖wεt ‖2 ` ε suptPr0,T s‖∇vεt ‖2 ď eCpT qp1`‖vE‖L8p0,T ;W2,4q`‖zε‖L8p0,T ;W2,4qqˆ
ˆ

op1q ` Tε3δ suptPr0,T s‖vεt ‖2
H3

` CpN, u0q‖F ´ zε‖Cpr0,T s;H1q

` CpN, u0q‖F ´ zε‖2
Cpr0,T s;H1q

`

ż T

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds

` C
?
ε suptPr0,T s

∣∣∣∣ż t
0

xwεs, dWsy

∣∣∣∣˙. (4.29)

Under our assumptions we have eCpT qp1`‖vE‖L8p0,T ;W2,4q`‖zε‖L8p0,T ;W2,4qq ď CpN, u0q P´

a.s., see (2.22), (4.5). This means that, in order to show that Lemma 4.3 holds, it is
enough to prove that

Tε3δ suptPr0,T s‖vεt ‖2
H3 ` CpN, u0q‖F ´ zε‖Cpr0,T s;H1q

`

1` ‖F ´ zε‖Cpr0,T s;H1q

˘

`

ż T

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds` C
?
ε suptPr0,T s

∣∣∣∣ż t
0

xwεs, dWsy

∣∣∣∣Ñ 0 in Probability.

Thanks to (4.4), we have Tε3δ suptPr0,T s‖vεt ‖2
H3 Ñ 0 in probability.

CpN, u0q‖F ´ zε‖2
CtH1

x
Ñ 0 in probability by Lemma 4.1. Lastly, by Lemma 4.1 we have

also

E

«

?
ε suptPr0,T s

∣∣∣∣ż t
0

xwεs, dWsy

∣∣∣∣` ż T

0

‖wεs‖‖Fs ´ zεs‖‖zεs‖W 1,8ds

ff

ď CE

«

ż T

0

‖wεs‖2

ff1{2
¨

˝

?
ε` E

«

ż T

0

‖Fs ´ zεs‖2ds

ff1{2
˛

‚Ñ 0.

Now the proof is complete.

Combining Lemma 4.1 and Lemma 4.3 the second condition in Hypothesis 2.4 holds.
Therefore we can apply Theorem 2.5 and complete the proof of Theorem 2.25.

Example 4.4. Let us consider as a domain D the unit disk centered in 0 and Wt “

p´Aq´3WH
t . According to [37, equation 26] our noise in not radially symmetric. Due to

the choice of the covariance of our noise we are in the framework of Remark 2.29 and

ISGu0
pvq “

1

2

ż T

0

‖p´Aq3 pBsvs ` P pvs ¨∇vsqq‖2ds.

According to [27, Chapter 5.5], we are interested to study ISGu0
pvq in case of fluid flows

which have faster and faster oscillations close to the boundary. Moreover, we would like
that these oscillations are developed in time. Therefore as a paradigmatic example, we
study the asymptotic behaviour ISGu0

pvρq as ρÑ `8, where

vρpx, tq “ p1´ |x|q7|x|6 cos

ˆ

ρt

1´ |x|

˙

xK, u0 “ p1´ |x|q7|x|6xK,

the powers on the monomials have been introduced to make everything smooth enough
for being in our framework. It is well known that for each θ ě 0 there exists cθ, Cθ such
that for each f P Dpp´Aqθqq

cθ }f}
2
H2θpD;R2q ď

›

›p´Aqθf
›

›

2
ď Cθ }f}

2
H2θpD;R2q .
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Therefore

ISGu0
pvρq „

ż T

0

‖Bsvρs ´ P pvρs ¨∇vρs q‖2
H6pD;R2qds.

Since for each t P r0, T s P pvρ ¨∇vρq ” 0 as discussed in the proof of Proposition 3.5, we
are left to study the asymptotic behaviour of

ρ2

ż T

0

›

›

›

›

p1´ |x|q6|x|6 sin

ˆ

ρt

1´ |x|

˙

xK
›

›

›

›

2

H6

dt “ Opρ14q.

In particular

ISGu0
pvρq “ Opρ14q.

5 Some remarks on the Kato condition

We end this work with a discussion on the Kato-type condition that we assumed
in order to prove one of our main results, Theorem 2.23. Recall that the condition
Hypothesis 2.20 was the following

Hypothesis 5.1 (Strong Kato Hypothesis). For each N P N, uε0, u0 P ENS0 and fε, f P PN2
such that uε0 Ñ u0 in ENS0 and fε ÑL f in SN , if pΩ,F ,Ft,Pq is a filtered probability
space where all fε, f are defined together and fε Ñ f P ´ a.s. in SN , then, it exists
c ą 0 such that for every δ ą 0

P

˜

ε

ż T

0

∥∥∥∥∇GNS,ε
ˆ

uε0,
?
εW¨ `

ż ¨

0

fεs ds

˙
∥∥∥∥2

L2pΓcεq

ds ą δ

¸

Ñ 0.

Loosely speaking, this condition requires a control on the behaviour in the boundary
layer of the solutions of the stochastic Navier-Stokes system with respect to all kind of
forcings and initial data. In the course of the proofs we have assumed this condition to
verify the Condition 2 in Hypothesis 2.4. As pointed out in Remark 2.21, the uniformity in
the initial data is crucial only for the set of initial condition for which we wish to establish
a (uniform) LDP, as we can restrict the definition of the set ENS0 without changing the
strength (topology) of the LDP. Thus we can weaken this assumption just by redefining
the objects on which we apply the weak convergence approach scheme. On the contrary,
if one wishes to use the weak convergence approach, condition 2 in Hypothesis 2.4
(and the definition of the space SN ) does not allow to restrict the space of forcings,
without increasing the regularity of the noise W , and thus severely limiting the strength
of our result. For this reason, the request on the uniformity with respect to all possible
forcing cannot be weakened a priori, as for the initial data. Observe that the Strong Kato
Hypotesis (SKH) is much stronger than what we ask to ensure the validity of the inviscid
limit, namely

E

˜

ε

ż T

0

∥∥∇GNS,ε
`

uε0,
?
εW¨

˘
∥∥2

L2pΓcεq

¸

Ñ 0, (5.1)

(see [48]). In the following, we will call the property described by equation (5.1) as Weak
Kato Condition (WKC). In particular, this condition does not involve any control of the
system for non-zero forcing. In order to weaken the SKH, one can ask if the WKC is
enough to ensure the validity of the LDP. Let us notice first that what we have proved,
under the SKH is not only a large deviation result for the Navier-Stokes system with
zero forcing, uε :“ GNS,ε pu0,

?
εW¨q, but actually we got, as a byproduct, a LDP result for
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solutions with any forcing in L2p0, T ;H0q, as pointed out in Remark 2.28. Indeed if we
want to include in the system a forcing gt P L2p0, T ;H0q we can just redefine the maps
G0
g :“ G0p¨,

ş¨

0
p¨ ` gsqdsq and Gεg :“ Gεp¨,

ş¨

0
p¨ ` gsqdsq and the result that we have proved

immediately imply a LDP for the solution with forcing, under the same Hypothesis 2.20.
In this sense our condition is optimal for our setting: we ask controls for every forcing
and we get a LDP for every forcing term.

Therefore, one way of improving our result could be to prove that the SKH can be
deduced from the WKC. In some sense this would requires to be able to pass information
between systems with different forcings. We shall notice that the forcing that we are
working with all live in the reproducing kernel of W , therefore we might switch from one
system to another just by a Girsanov transformation; however this correction explodes
exponentially fast in the limit ε Ñ 0. A posteriori, if one is able to prove that the LDP
holds for some forcing, one expects that the explosion of the Girsanov correction gets
compensated by the exponential decay of the law of the solutions. A different approach
would be to prove that one does not in fact need to ask the strong Kato condition in order
to prove only a LDP for equation (1.2) (that is, only for the system with zero forcing). We
formulate then the following:

Problem 5.2. (LDP under Weak Kato Hypotesys) Prove that the statement of Theo-
rem 2.23 holds true if we replace Hypothesis 2.20 with the Kato Condition (5.1).

If the answer to this problem was positive, then we would expect to retrieve also the
‘full’ LDP, that is, a family of LDP for the system with any forcing f P L2p0, T ;H0q. This
requires to be able to pass a LDP between systems with different forcings. To see why
this seems so natural, observe that every time one is able to write a family of solution
Xε
f to some S(P)DE depending by some forcing f as a continuous transformation of

a Brownian motion Jp
?
εW.q, then by an application of the contraction principle one

immediately obtains a LDP for every other forcing. In our setting however, we are not
able of proving such a property of the LDP without requiring the strong Kato Condition,
that is without having information about the convergence of the systems with different
forcings when εÑ 0. Note that, by the uniqueness of the solution to the Euler system in
our setting, this convergence is also a necessary condition for the ‘full’ LDP.

In the end, we believe that the following should be true:

Conjecture 5.3. The Large Deviations of our system hold independently of the choice
of the forcing f P L2p0, T ;H0q, that is, if a LDP holds for at least one such forcing, then it
holds for every other.
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[10] Zdzisław Brzeźniak and Sandra Cerrai, Large deviations principle for the invariant measures
of the 2D stochastic Navier–Stokes equations on a torus, Journal of Functional Analysis 273
(2017), no. 6, 1891–1930. MR3669026

[11] Amarjit Budhiraja and Paul Dupuis, A variational representation for positive functionals
of infinite dimensional Brownian motion, Probability and mathematical statistics-Wroclaw
University 20 (2000), no. 1, 39–61. MR1785237

[12] Amarjit Budhiraja, Paul Dupuis and Vasileios Maroulas, Large deviations for infinite dimen-
sional stochastic dynamical systems, The Annals of Probability 36 (2008), no. 4, 1390 – 1420.
MR2435853

[13] Sandra Cerrai and Arnaud Debussche, Large deviations for the two-dimensional stochastic
Navier–Stokes equation with vanishing noise correlation, Annales de l’Institut Henri Poincaré
Probabilités et Statistiques 55 (2019), no. 1, 211–236. MR3901646

[14] Sandra Cerrai and Nicholas Paskal, Large deviations principle for the invariant measures
of the 2D stochastic Navier–Stokes equations with vanishing noise correlation, Stochastics
and Partial Differential Equations: Analysis and Computations 10 (2022), no. 4, 1651–1681.
MR4503176

[15] Mou-Hsiung Chang, Large deviation for Navier-Stokes equations with small stochastic
perturbation, Applied Mathematics and Computation 76 (1996), no. 1, 65–93. MR1377394

[16] Doïna Cioranescu and El Hacène Ouazar, Existence and uniqueness for fluids of second grade,
Nonlinear Partial Differential Equations 109 (1984), 178–197. MR0772241

[17] Fernanda Cipriano and Ivan Torrecilla, Inviscid limit for 2D stochastic Navier–Stokes equa-
tions, Stochastic Processes and their Applications 125 (2015), no. 6, 2405–2426. MR3322869

[18] Peter Constantin, Igor Kukavica and Vlad Vicol, On the inviscid limit of the Navier-Stokes
equations, Proceedings of the American Mathematical Society 143 (2015), no. 7, 3075–3090.
MR3336632

[19] Peter Constantin, Andrei Tarfulea and Vlad Vicol, Absence of anomalous dissipation of energy
in forced two dimensional fluid equations, Archive for Rational Mechanics and Analysis 212
(2014), 875–903. MR3187680

[20] Georges-Henri Cottet, Boundary conditions and deterministic vortex methods for the Navier-
Stokes equations, Mathematical aspects of vortex dynamics (Leesburg, VA, 1988), SIAM,
Philadelphia, PA, 1989, pp. 128–143. MR1001796

[21] Georges-Henri Cottet, A vorticity creation algorithm for the Navier-Stokes equations in
arbitrary domain, Navier-Stokes equations and related nonlinear problems (Funchal, 1994),
Plenum, New York, 1995, pp. 335–349. MR1373226

[22] Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Cambridge
university press, 2014. MR3236753

[23] H Beirao da Veiga, On the sharp vanishing viscosity limit of viscous incompressible fluid flows,
New directions in mathematical fluid mechanics, Springer, 2009, pp. 113–122. MR2732007

[24] J Ernest Dunn and Roger L Fosdick, Thermodynamics, stability, and boundedness of fluids
of complexity 2 and fluids of second grade, Archive for Rational mechanics and Analysis 56
(1974), no. 3, 191–252. MR0351249

[25] Stewart N Ethier and Thomas G Kurtz, Markov processes, Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc.,
New York, 1986, Characterization and convergence. MR838085

EJP 29 (2024), paper 172.
Page 40/42

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4595604
https://mathscinet.ams.org/mathscinet-getitem?mr=1110177
https://mathscinet.ams.org/mathscinet-getitem?mr=3383342
https://mathscinet.ams.org/mathscinet-getitem?mr=3669026
https://mathscinet.ams.org/mathscinet-getitem?mr=1785237
https://mathscinet.ams.org/mathscinet-getitem?mr=2435853
https://mathscinet.ams.org/mathscinet-getitem?mr=3901646
https://mathscinet.ams.org/mathscinet-getitem?mr=4503176
https://mathscinet.ams.org/mathscinet-getitem?mr=1377394
https://mathscinet.ams.org/mathscinet-getitem?mr=0772241
https://mathscinet.ams.org/mathscinet-getitem?mr=3322869
https://mathscinet.ams.org/mathscinet-getitem?mr=3336632
https://mathscinet.ams.org/mathscinet-getitem?mr=3187680
https://mathscinet.ams.org/mathscinet-getitem?mr=1001796
https://mathscinet.ams.org/mathscinet-getitem?mr=1373226
https://mathscinet.ams.org/mathscinet-getitem?mr=3236753
https://mathscinet.ams.org/mathscinet-getitem?mr=2732007
https://mathscinet.ams.org/mathscinet-getitem?mr=0351249
https://mathscinet.ams.org/mathscinet-getitem?mr=838085
https://doi.org/10.1214/24-EJP1238
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDP for fluid dynamic systems in bounded domains

[26] Franco Flandoli and Dariusz Gatarek, Martingale and stationary solutions for stochas-
tic Navier-Stokes equations, Probability Theory and Related Fields 102 (1995), 367–391.
MR1339739

[27] Franco Flandoli and Eliseo Luongo, Stochastic partial differential equations in fluid me-
chanics, Lecture Notes in Mathematics, vol. 2330, Springer, Singapore, copyright 2023.
MR4628185

[28] Giovanni Galdi, An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems, Springer Science & Business Media, 2011. MR2808162

[29] Lucio Galeati and Dejun Luo, LDP and CLT for SPDEs with transport noise, Stochastics and
Partial Differential Equations: Analysis and Computations (2023), 1–58. MR4709553

[30] Nathan E Glatt-Holtz and Vlad Vicol, Local and global existence of smooth solutions for the
stochastic Euler equations with multiplicative noise, The Annals of Probability 42 (2014),
no. 1, 80 – 145. MR3161482

[31] Francesco Grotto, Eliseo Luongo and Mario Maurelli, Uniform approximation of 2D Navier-
Stokes equations with vorticity creation by stochastic interacting particle systems, Nonlin-
earity 36 (2023), no. 12, 7149. MR4670698

[32] Dragos Iftimie, Remarques sur la limite α Ñ 0 pour les fluides de grade 2, Studies in
Mathematics and its Applications, vol. 31, Elsevier, 2002, pp. 457–468. MR1936005

[33] Alexei A Il’in, On the spectrum of the Stokes operator, Funktsional. Anal. i Prilozhen. 43
(2009), no. 4, 14–25. MR2596652

[34] Adam Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric
spaces, Theory of Probability & Its Applications 42 (1998), no. 1, 167–174. MR1453342

[35] Yukio Kaneda, Takashi Ishihara, Mitsuo Yokokawa, Ken’ichi Itakura and Atsuya Uno, Energy
dissipation rate and energy spectrum in high resolution direct numerical simulations of
turbulence in a periodic box, Physics of Fluids 15 (2003), no. 2, L21–L24.

[36] Tosio Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with
boundary, Seminar on nonlinear partial differential equations, Springer, 1984, pp. 85–98.
MR0765230

[37] James P Kelliher, On the vanishing viscosity limit in a disk, Mathematische Annalen 343
(2009), no. 3, 701–726. MR2480708

[38] James P Kelliher, The strong vanishing viscosity limit with Dirichlet boundary conditions,
Nonlinearity 36 (2023), no. 5, 2708.

[39] Andrei Nikolaevich Kolmogorov, On degeneration (decay) of isotropic turbulence in an in-
compressible viscous liquid, Dokl. Akad. Nauk SSSR, vol. 31, 1941, pp. 538–540. MR0004568

[40] Andrei Nikolaevich Kolmogorov, Local structure of turbulence in an incompressible viscous
fluid at very high reynolds numbers, Soviet Physics Uspekhi 10 (1968), no. 6, 734.

[41] Andrei Nikolaevich Kolmogorov, Dissipation of energy in the locally isotropic turbulence,
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
434 (1991), no. 1890, 15–17. MR1124930

[42] Robert H Kraichnan and David Montgomery, Two-dimensional turbulence, Reports on
Progress in Physics 43 (1980), no. 5, 547. MR0587291

[43] Sergej B Kuksin, Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space
dimensions, vol. 3, European Mathematical Society, 2006. MR2225710

[44] Pierre-Louis Lions, Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible
Models, vol. 1, Oxford University Press on Demand, 1996. MR1422251

[45] Milton C Lopes Filho, Anna L Mazzucato and Helena J Nussenzveig Lopes, Vanishing viscosity
limit for incompressible flow inside a rotating circle, Physica D: Nonlinear Phenomena 237
(2008), no. 10-12, 1324–1333. MR2454590

[46] Milton C Lopes Filho, Helena J Nussenzveig Lopes, Edriss S Titi and Aibin Zang, Approxi-
mation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary
conditions, Journal of Mathematical Fluid Mechanics 17 (2015), no. 2, 327–340. MR3345360

EJP 29 (2024), paper 172.
Page 41/42

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1339739
https://mathscinet.ams.org/mathscinet-getitem?mr=4628185
https://mathscinet.ams.org/mathscinet-getitem?mr=2808162
https://mathscinet.ams.org/mathscinet-getitem?mr=4709553
https://mathscinet.ams.org/mathscinet-getitem?mr=3161482
https://mathscinet.ams.org/mathscinet-getitem?mr=4670698
https://mathscinet.ams.org/mathscinet-getitem?mr=1936005
https://mathscinet.ams.org/mathscinet-getitem?mr=2596652
https://mathscinet.ams.org/mathscinet-getitem?mr=1453342
https://mathscinet.ams.org/mathscinet-getitem?mr=0765230
https://mathscinet.ams.org/mathscinet-getitem?mr=2480708
https://mathscinet.ams.org/mathscinet-getitem?mr=0004568
https://mathscinet.ams.org/mathscinet-getitem?mr=1124930
https://mathscinet.ams.org/mathscinet-getitem?mr=0587291
https://mathscinet.ams.org/mathscinet-getitem?mr=2225710
https://mathscinet.ams.org/mathscinet-getitem?mr=1422251
https://mathscinet.ams.org/mathscinet-getitem?mr=2454590
https://mathscinet.ams.org/mathscinet-getitem?mr=3345360
https://doi.org/10.1214/24-EJP1238
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDP for fluid dynamic systems in bounded domains

[47] Milton C Lopes Filho, Helena J Nussenzveig Lopes, Edriss S Titi and Aibin Zang, Convergence
of the 2D Euler-α to Euler equations in the Dirichlet case: indifference to boundary layers,
Physica D: Nonlinear Phenomena 292 (2015), 51–61.

[48] Eliseo Luongo, Inviscid limit for stochastic Navier-Stokes equations under general initial
conditions, Journal of Differential Equations 389 (2024), 114–149. MR4693223

[49] Eliseo Luongo, Inviscid limit for stochastic second-grade fluid equations, Stochastics and
Partial Differential Equations: Analysis and Computations 12 (2024), no. 2, 1046–1099.
MR4709542

[50] Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous
fluids, vol. 96, Springer Science & Business Media, 1994. MR1245492

[51] Lars Onsager, Statistical hydrodynamics, Il Nuovo Cimento (1943-1954) 6 (1949), no. Suppl
2, 279–287. MR0036116

[52] Amnon Pazy, Semigroups of linear operators and applications to partial differential equations,
vol. 44, Springer Science & Business Media, 1983. MR0710486

[53] Bruce R Pearson, P-Å Krogstad and Willem van de Water, Measurements of the turbulent
energy dissipation rate, Physics of fluids 14 (2002), no. 3, 1288–1290.

[54] Paul Andre Razafimandimby and Mamadou Sango, Weak solutions of a stochastic model
for two-dimensional second grade fluids, Boundary Value Problems 2010 (2010), 1–47.
MR2606485

[55] Paul Andre Razafimandimby and Mamadou Sango, Strong solution for a stochastic model of
two-dimensional second grade fluids: existence, uniqueness and asymptotic behavior, Nonlin-
ear Analysis: Theory, Methods & Applications 75 (2012), no. 11, 4251–4270. MR2921987

[56] Ronald Samuel Rivlin and Jerald LaVerne Ericksen, Stress-deformation relations for isotropic
materials, Collected Papers of RS Rivlin (1997), 911–1013.

[57] Marco Sammartino and Russel E Caflisch, Zero Viscosity Limit for Analytic Solutions of the
Navier-Stokes Equation on a Half-Space.P II. Construction of the Navier-Stokes Solution,
Communications in mathematical physics 192 (1998), no. 2, 463–491. MR1617538

[58] Jan Seidler, Exponential estimates for stochastic convolutions in 2-smooth Banach spaces,
Electronic Journal of Probability 15 (2010), no. 50, 1556–1573. MR2735374

[59] Sivaguru S Sritharan and Padmanabhan Sundar, Large deviations for the two-dimensional
Navier–Stokes equations with multiplicative noise, Stochastic Processes and their Applica-
tions 116 (2006), no. 11, 1636–1659. MR2269220

[60] Roger Temam, Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343, American
Mathematical Society, 2001. MR1846644

[61] Roger Temam and Xiaoming Wang, On the behavior of the solutions of the Navier-Stokes
equations at vanishing viscosity, Annali della Scuola Normale Superiore di Pisa-Classe di
Scienze 25 (1997), no. 3-4, 807–828. MR1655543

[62] Srinivasa R S Varadhan, Asymptotic probabilities and differential equations, Communications
on Pure and Applied Mathematics 19 (1966), no. 3, 261–286. MR0203230

[63] Xiaoming Wang, A Kato type theorem on zero viscosity limit of Navier-Stokes flows, Indiana
University Mathematics Journal (2001), 223–241. MR1855670

[64] Ya-Guang Wang and Meng Zhao, On Kato’s conditions for the inviscid limit of the two-
dimensional stochastic Navier-Stokes equation, Journal of Mathematical Physics 65 (2024),
no. 8. MR4785172

[65] Viktor Iosifovich Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Com-
putational Mathematics and Mathematical Physics 3 (1963), no. 6, 1407–1456. MR0158189

Acknowledgments. The authors thank Professor Franco Flandoli for useful discussions
and valuable insight into the subject. Finally, the authors thank the anonymous referee
for helpful comments which improved the paper from its initial version.

EJP 29 (2024), paper 172.
Page 42/42

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4693223
https://mathscinet.ams.org/mathscinet-getitem?mr=4709542
https://mathscinet.ams.org/mathscinet-getitem?mr=1245492
https://mathscinet.ams.org/mathscinet-getitem?mr=0036116
https://mathscinet.ams.org/mathscinet-getitem?mr=0710486
https://mathscinet.ams.org/mathscinet-getitem?mr=2606485
https://mathscinet.ams.org/mathscinet-getitem?mr=2921987
https://mathscinet.ams.org/mathscinet-getitem?mr=1617538
https://mathscinet.ams.org/mathscinet-getitem?mr=2735374
https://mathscinet.ams.org/mathscinet-getitem?mr=2269220
https://mathscinet.ams.org/mathscinet-getitem?mr=1846644
https://mathscinet.ams.org/mathscinet-getitem?mr=1655543
https://mathscinet.ams.org/mathscinet-getitem?mr=0203230
https://mathscinet.ams.org/mathscinet-getitem?mr=1855670
https://mathscinet.ams.org/mathscinet-getitem?mr=4785172
https://mathscinet.ams.org/mathscinet-getitem?mr=0158189
https://doi.org/10.1214/24-EJP1238
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	The problem of the inviscid limit
	The inviscid limit in the stochastic framework
	Plan of the paper

	Preliminaries and main results
	Large deviations principle
	Well-Known facts on fluid dynamic models
	Main results

	Navier-Stokes
	The Case of fluids with radial symmetry
	Condition 2

	Proof of Theorem 2.23
	Condition 2


	Second-Grade fluids
	Condition 2

	Some remarks on the Kato condition
	References

