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Abstract

We establish a large-deviations principle for the largest eigenvalue of a generalized
sample covariance matrix, meaning a matrix proportional to ZTΓZ, where Z has
i.i.d. real or complex entries and Γ is not necessarily the identity. We treat the
classical case when Z is Gaussian and Γ is positive definite, but we also cover two
orthogonal extensions: Either the entries of Z can instead be sharp sub-Gaussian, a
class including Rademacher and uniform distributions, where we find the same rate
function as for the Gaussian model; or Γ can have negative eigenvalues if Z remains
Gaussian. The latter case confirms formulas of Maillard in the physics literature.

We also apply our techniques to the largest eigenvalue of a deformed Wigner
matrix, real or complex, where we upgrade previous large-deviations estimates to
a full large-deviations principle. Finally, we remove several technical assumptions
present in previous related works.
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1 Introduction

1.1 Our results

In this paper, we give a large-deviations principle at speed N for the largest eigen-
value λmax of a generalized sample covariance matrix, meaning a random matrix of the
form

HN =
1

M
ZTΓZ =

1

M

M∑
i=1

diziz
T
i , (1.1)
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LDP for λmax of generalized sample covariance matrices

where all the notation is defined below. Informally, this means that we find a function I
such that

P(λmax(HN ) ≈ x) ≈ exp(−NI(x)). (1.2)

Here Z ∈ RM×N has i.i.d. entries distributed according to some centered probability
measure µ with unit variance; its rows, which are independent vectors of length N , are
written in column form (in order to match the literature) as {zi}Mi=1; generalized means

that the deterministic matrix Γ = diag(d1, . . . , dM ) = diag(d
(M)
1 , . . . , d

(M)
M ) may not be the

identity; and M and N are parameters both tending to infinity in such a way that their
ratio is order one.

Our results also hold for the complex case HN = M−1Z∗ΓZ, but for the sake of
simplicity we limit our notation to the real case for most of the paper.

When all di’s are positive, the matrix HN is sometimes called an inhomogeneous
sample covariance matrix (or an inhomogeneous Wishart matrix). In this paper, we can
allow for negative di’s, in the special case when µ is Gaussian. This part of our result
matches a recent result of Maillard in the physics literature, which inspired our work
[27]. We also allow non-Gaussian µ’s, but we require them to lie in a special class of
measures called sharp sub-Gaussian, which includes as important special cases the
Rademacher and uniform distributions, and here we require all the di’s to be positive; in
this case we show that the rate function is the same as in the corresponding Gaussian
case. (The rate function probably should not match the Gaussian one when some di’s
are negative; see Remark 2.19.)

The case where Γ is positive definite is better known. In that case, HN has the
same distribution as 1

M

∑M
i=1 xix

T
i , where the vectors of xi are independent, but the

components of each xi have possibly nontrivial covariance matrix Γ. In this case, HN

of course also has the same nonzero eigenvalues as the variant 1
M Γ1/2ZZTΓ1/2, and

the literature is sometimes phrased in this way. Our results are stated and proved for
diagonal Γ, but in the Gaussian case, they apply automatically to non-diagonal Γ just by
rotational invariance of Gaussian measure. This means that, in the Gaussian case, when
Γ is positive definite, HN is a sample covariance matrix of independent observations of
possibly correlated data. (The case of non-diagonal Γ and non-Gaussian Z is interesting,
but we do not consider it in this paper.) But we emphasize that the case where Γ has
positive and negative eigenvalues also has genuine statistical interest: it appears, for
example, in MANOVA estimation of the above scenario when the observations xi are no
longer independent of one another. For a discussion of this case, we direct the readers
to [14].

1.2 Previous results on large deviations for random matrices

Our work fits into a recent lineage of papers, starting with [16] and [18], which
establish large-deviations principles for random matrices using the method of tilting by
spherical integrals (see Section 2.2 for a brief introduction to spherical integrals). Papers
in this line include [6, 1, 31, 17, 22, 4] in the math literature, and [27, 32] in the physics
literature. Compared to these previous works, the main technical novelty in our work is
the establishment of rigorous non-Gaussian results beyond the so-called xc threshold.
That is, in the model (1.1), it turns out that there exists some xc = xc(Γ), which may be
finite or infinite depending on Γ, such that if xc <∞ then the function I from (1.2) is non-
analytic at xc. A similar phenomenon was partially shown for additively deformed Wigner
matrices in [31]; we will define this model properly below, but informally speaking, it
comes in both a Gaussian variety and a sharp sub-Gaussian variety (and other varieties
not considered). In [31], one of the present authors showed the analogue of (1.2) for all
x in the Gaussian case, but only for x < xc in the sharp sub-Gaussian case. Dealing with
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the regime x ≥ xc in the sharp sub-Gaussian case remained a challenge.

Following these works, Maillard considered the present model (1.1), in the Gaussian
case and at the physics level of rigor. He also found an xc threshold, and proposed
an interesting new tilting for establishing (1.2) in the regime x ≥ xc, which motivated
our work. We are able to verify his results, plus add new ones of our own, but without
using his techniques. Instead, when considering a model with xc < +∞, we find an
approximating sequence of models which all have xc = +∞. In the context of recent
results on large deviations for random matrices, a similar argument first appeared in [22],
but to handle a problem other than the xc threshold. Here we show it can also be useful
for xc thresholds, in a variety of models. Indeed, although the bulk of the paper treats
the sample-covariance model (1.1), in Appendix D we consider the deformed-Wigner
case and complete the analysis started by [31].

We now remark on the interpretation of the xc threshold. Typically, points of non-
analyticity in rate functions appear from a change in the underlying mechanism of
deviation (here, meaning that the cheapest strategy to make {λmax(HN ) ≈ x} would
be qualitatively different if x < xc or x > xc). For these models, one wonders if this
phase transition appears in the eigenvector corresponding to the largest eigenvalue:
one might imagine that, conditioned on the event {λmax(HN ) ≈ x}, this eigenvector is
localized for x > xc (reflecting a localized strategy, such as making one matrix entry
very large) and delocalized for x < xc (reflecting a delocalized strategy, such as making
every matrix entry a little larger than normal). In the sharp sub-Gaussian case, this
would be coherent with our proof strategy, which involves integrating quadratic forms
〈e,HNe〉 over e in the unit sphere; we show that this integral is dominated by delocalized
e for x < xc, but this argument breaks as x ↑ xc (see the proof of Lemma 3.11 below).
Understanding this better is a major motivation for us to consider this model; we also
direct readers to related recent work of Cook, Ducatez, and Guionnet [10], which shows
for a different model that the conditional top eigenvector is localized for x large enough.
However, in our model, the xc threshold is sometimes finite and sometimes infinite,
depending roughly on whether the limiting measure of Γ has a continuous density at its
right edge, and we do not have a heuristic explanation for why this edge behavior of Γ

would allow/forbid this sort of (de)localization transition in the top eigenvector of HN .

As special cases of our main theorem, we recover earlier results in the homogeneous
case Γ = Id, i.e., for usual Wishart matrices. Majumdar and Vergassola computed the
rate function in the Gaussian case [28]; later, recent work by Guionnet and the first
author extended this sharp sub-Gaussian Wishart matrices [16]. The computation that
our rate function matches theirs was carried out by Maillard [27].

We also develop techniques to remove a technical assumption present in the works
cited above. Typically, the results of these works can be written informally as “Suppose
X is a random matrix built from samples of µ, a sharp-sub-Gaussian measure, which is
also either compactly supported or satisfies the log-Sobolev inequality. Then λmax(X)

satisfies an LDP.” We show how to remove the “compact-or-log-Sobolev” assumption,
ending with theorems of the form “Suppose X is a random matrix built from samples of
µ, a sharp sub-Gaussian measure. Then λmax(X) satisfies an LDP.” For example, our main
result is written in this latter way, as is our deformed-Wigner result just mentioned. In
Appendix C, we give one more example, refining a result of Guionnet and the first author
[16]. We show that this extension is nontrivial, in Remark C.2, by giving an example of a
sharp sub-Gaussian law that is neither compactly supported nor satisfies the log-Sobolev
inequality. As we explain there, our proof also allows one to bypass the use of local laws.

Finally, we make a historical remark on the sharp-sub-Gaussian condition. Of course
the notion of “sub-Gaussian random variable” is quite classical, but the works in the
lineage discussed above are all based on the additional ideas that (a) a particular subclass
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of this family, called “sharp-sub-Gaussian” in Definition 2.1 below, is special, and (b)
what makes this subclass special, is that random matrices constructed from its members
satisfy bounds with the same constants as for Gaussian measure itself. To the best of
our knowledge, these LDP works were interested in finding, but not aware of, any other
place in the probability literature where these ideas appeared. We recently learned of
such a place, namely a remark in recent work of Zhivotovskiy on the operator norm of a
sum of independent random matrices [40, Remark 2.9]. Zhivotovskiy remarks that these
same ideas previously appeared implicitly in works of Catoni and collaborators.

1.3 Previous results on generalized sample covariance matrices

The model HN and its variants are quite classical. Their first appearance, to the
best of our knowledge, is in a 1967 paper of Marčenko and Pastur, which proved a
global law for the variant A+ 1

MZTΓZ, where A is a sequence of deterministic matrices
whose empirical measures have some limit, and where Γ is random and diagonal with
i.i.d. entries. The global law for our precise model appears in (more general) work of
Silverstein and Bai [36], which also gives a good summary of the literature on global
laws for variants of HN .

In our work we assume that Γ has no outlier eigenvalues; for example we do not
allow Γ to be a finite-rank perturbation of the identity. This restriction is generally
believed, and under very mild restrictions proved, to prevent HN from typically having
outlier eigenvalues. That is, we are not in the regime of the Baik-Ben Arous-Péché (BBP)
transition.

Thus the largest eigenvalue tends to the right endpoint of the asymptotic support of
HN . For some variants of HN , it is known to have Tracy-Widom fluctuations around this
point. For example, in the complex Gaussian case, which is determinantal, El Karoui [12]
introduced an edge regularity condition and treated all Γ’s satisfying this condition, in
the regime M

N ≥ 1; Onatski [33] extended this to M
N < 1. In the direction of universality,

Bao, Pan, and Zhou [3] allowed Z to have complex non-Gaussian entries; Lee and Schnelli
[26] allowed Z to have real non-Gaussian entries, as long as Γ is diagonal; Knowles
and Yin [25] gave the (non-trivial) extension of this to non-diagonal Γ. Although we
only treat the largest eigenvalue, it is also of statistical interest to consider the case
when Γ is such that HN has asymptotically disconnected support, and show that the
rightmost eigenvalues for each connected component of the support each have Tracy-
Widom fluctuations, which are independent of each other. Hachem, Hardy, and Najim
[21] obtained such a result in the complex Gaussian case, followed by recent work of Fan
and Johnstone [14] in the real Gaussian case. Finally, Wang [39] recently obtained the
first non-trivial speed of convergence to the Tracy-Widom distribution, of order N−1/57

(in the case Γ = Id, Wang found a much better speed of N−2/9, which Schnelli and Xu
[35] recently improved to almost N−1/3).1

1.4 Numerical examples

Although all the objects will be formally introduced later, we take a moment to give
some numerical examples of our result. Later, we will assume that the empirical spectral
measures of Γ tend to some probability measure ρ, and recall that the empirical spectral
measures of HN then tend to some probability measure σ (see Theorem 2.4). We need
two “branches” of the Stieltjes transform of this measure, both the ordinary one Gσ and
a less-common “second branch” G̃σ (see Lemma 2.8). Ultimately our rate function is
given as one half of the integral of the difference of these functions starting from the

1Many of the cited works are written for the model 1
M

Γ1/2ZTZΓ1/2, which of course has the same non-zero
eigenvalues as our model, but requires Γ ≥ 0.
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right endpoint r(σ), that is Iσ(x) = 1
2

∫ x
r(σ)

[G̃σ(u)−Gσ(u)] du (see Definition 2.14), which

can fail to be analytic at the previously-mentioned xc threshold according to whether G̃σ
attains some value (in which case xc is this point) or is only asymptotic to it (in which
case xc = +∞). For various choices of M , N , and Γ, Figures 1, 2, and 3 each show (i) a
histogram of the eigenvalues of a single numerical sample of HN with Gaussian data; (ii)
plots of Gσ and G̃σ; and (iii) xc and θmax if present.

We direct the reader interested in more figures to the work of Maillard [27]; his
Figure 1 is a roughly similar schematic to our figures, but where Γ is a discretization of
the Marčenko–Pastur law, and his Figure 2 contains various plots of rate functions.

xc = 3

G
˜
σ (x)

Gσ (x)

θmax = 1

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 1: A plot when N = 1000, M = 2000, and Γ is a discretization of the semicircle
distribution supported on [−2, 2]. The histogram is the eigenvalues of one sample of HN ;
the red curve is the Stieltjes transform Gσ; the cyan curve is the “second branch” G̃σ;
the dot-dashed green line is the xc value, where G̃σ attains its asymptote θmax = 1 (dotted
purple line). The rate function in our theorem is (one half) the integral of G̃σ −Gσ from
the right endpoint of the measure (here approximately 1.8) up to x, i.e., at the sample
value x = 6 (dashed blue line), the rate function is (one half) the area of the grey region.
From this geometric description one can easily read off basic properties of the rate
function, including that it is convex, increasing, and grows linearly at infinity. Made with
Mathematica.

1.5 Organization

The paper is organized as follows: In Section 2, we define our model and the
associated xc threshold, and state our main results. The proof is given in two stages:
First for models with xc = +∞ (in Section 3), then for models with xc < +∞ (in Section 4)
by approximation using xc = +∞ models. In Section 5 we outline the minor adjustments
necessary if HN is complex Hermitian instead of real symmetric.

In Appendix A, we provide for completeness an extension of classical random-matrix-
concentration results of Guionnet and Zeitouni to the setting of generalized sample
covariance matrices. In Appendix B, we give a straightforward extension of Talagrand’s
classic results on concentration for product measures, but one that we were unable to
find in the literature: His results are written for independent random variables valued
in [−1, 1], and we extend his results to independent random variables valued in the
d-dimensional unit ball for any d. The quality of the estimate does not depend on d

(essentially because the radius of this ball does not depend on d), which may be of
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G
˜
σ (x)

Gσ (x)

θmax = 1

-10 -5 0 5 10 15

0.05

0.10

0.15

0.20

Figure 2: A plot when N = 5000, M = 1000, and Γ is a discretization of 1
2 (δ−1 + δ+1). This

gives an example of the case when the limiting distribution is multicut (it is supported
on two intervals), and when xc = +∞ (here, G̃σ is asymptotic to θmax but does not
reach it, unlike in Figure 1). Since the matrix is rank-deficient, there are quite a lot
of eigenvalues at zero; for this visualization, we truncate the full height of that bar,
which would otherwise extend well beyond the top of the figure. We also rescale the
height of the histogram so that it is comparable to the values of Gσ and G̃σ. Made with
Mathematica.

G
˜
σ (x)

Gσ (x)

-14 -12 -10 -8 -6 -4 -2

1

2

3

4

Figure 3: A plot when N = 1000, M = 10000, and Γ is a discretization of 1
2 (δ−10 + δ−5).

This gives an example of the case when r(σ) < 0, where the rate function is finite only
on [r(σ), 0), and tends to infinity at zero. We also rescale the height of the histogram so
that it is comparable to the values of Gσ and G̃σ. Made with Mathematica.

independent interest. The particular case d = 2 allows us to consider complex random
matrices, whose upper-triangular entries are independent of one another, but whose
real and imaginary parts are simply uncorrelated, rather than independent as required
in previous results. Finally, in Appendix C we show by example how to remove the
“compact-or-log-Sobolev” assumption from works in the literature, and in Appendix D we
state and prove our results on deformed Wigner matrices.
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1.6 Notation

We write the Lipschitz and bounded-Lipschitz norms of a function f : R → R,
respectively, as

‖f‖Lip = sup
x 6=y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ,
‖f‖L = ‖f‖Lip + ‖f‖∞.

We will need the function classes

FLip = {f : R→ R : ‖f‖L ≤ 1}

and, for a given compact set K ⊂ R,

FLip,K = {f ∈ FLip : supp(f) ⊂ K}.

We will also need the bounded-Lipschitz, Wasserstein-1, and Kolmogorov-Smirnov dis-
tances between probability measures on R, defined respectively by

dBL(µ, ν) = sup
f∈FLip

∣∣∣∣∫
R

f(x)(µ− ν)(dx)

∣∣∣∣ ,
W1(µ, ν) = sup

f :‖f‖Lip≤1

∣∣∣∣∫
R

f(x)(µ− ν)(dx)

∣∣∣∣ ,
dKS(µ, ν) = sup{|µ((−∞, x])− ν((−∞, x])| : x ∈ R},

(1.3)

the first of which metrizes weak convergence. If the probability measure µ is compactly
supported, we write Gµ for its Stieltjes transform with the sign convention

Gµ(z) =

∫
µ(dλ)

z − λ
,

and write `(µ) and r(µ) for its left and right endpoints, respectively.

We introduce the Dyson index β as a shorthand for the symmetry class under consid-
eration, either real-symmetric (β = 1) or complex-Hermitian (β = 2).

If T is a matrix, we write its operator norm (with respect to Euclidean distance) as
‖T‖, its Frobenius norm as ‖T‖2F =

∑
i,j |Tij |2, and its trace norm as ‖T‖∗ =

∑
i σi(T ). If

T is square and N ×N , we number its eigenvalues as

λmin(T ) = λ1(T ) ≤ λ2(T ) ≤ · · ·λN (T ) = λmax(T ),

sometimes dropping the dependence on T from the notation, and write its empirical
spectral measure as

µ̂T =
1

N

N∑
i=1

δλi(T ). (1.4)

We write Leb(·) for the Lebesgue measure, and in the appendices we will need the
semicircle law normalized as

ρsc(dx) =

√
(4− x2)+

2π
dx.
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2 Results

2.1 Set-up

Theorem 2.15, our main result in the real case, is stated in Section 2.5; the complex
analogue, Theorem 2.21, is given in Section 2.6. In order to state them properly, we
need to precisely define both our model, in the present Section 2.1, as well as the limit σ
of its empirical measure and a particular function G̃σ, which is a sort of “second branch”
of the Stieltjes transform needed to define the rate function for our LDP, in Section 2.3.
In Section 2.4 we discuss certain degenerate cases.

We recall from (1.1) our fundamental random matrix

HN =
1

M
ZTΓZ =

1

M

M∑
i=1

diziz
T
i ,

which we now define precisely. Fix α > 0, and choose a sequence M = (MN )∞N=1 such
that

lim
N→∞

MN

N
= α.

For each M , we consider a deterministic real M ×M matrix

Γ = ΓM = diag(d1, . . . , dM ),

where (d1, . . . , dM ) = (d
(M)
1 , . . . , d

(M)
M ) are ordered without loss of generality as λmin(Γ) =

d1 ≤ · · · ≤ dM = λmax(Γ). We suppose there exists a compactly supported probability
measure ρ such that

µ̂ΓM → ρ weakly. (2.1)

We need the following definition.

Definition 2.1. A centered probability measure µ on R is called sharp sub-Gaussian if
it has unit variance and ∫

R

etxµ(dx) ≤ e t
2

2 for all t ∈ R.

Standard Gaussian measure is sharp sub-Gaussian, but so are the Rademacher law
1
2 (δ−1 + δ+1) and the uniform law on [−

√
3,
√

3]. We fix some sharp sub-Gaussian measure
µ, and let Z ∈ RM×N be a matrix with i.i.d. entries distributed according to µ. To match
the notation in the literature, we take the rows of Z, which are independent vectors of
length N , and write them in column form as {zi}Mi=1.

The following assumption will be made throughout the paper, although we will only
state it explicitly in the main theorem.

Assumption 2.2. We assume that Γ has asymptotically no (external) outliers, in the
sense that

λmin(Γ)→ `(ρ),

λmax(Γ)→ r(ρ).

We allow internal outliers, in the sense that, if ρ has disconnected support, Γ can
have eigenvalues in the gaps between the components.

2.2 Spherical integrals

One fundamental object in this paper is a (rank-one) spherical integral, defined for
(deterministic) real-symmetric N ×N matrices A and parameters θ ≥ 0 by

Ee[e
Nθ〈e,Ae〉],
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where Ee means that e should be taken uniform on the unit sphere in RN . Often we will
take A random, in which case we will always take e to be independent of A. There is
also a complex analogue, where e is uniform on the unit sphere in CN ; we will mostly
abuse notation by writing Ee for both the real and complex case, but the underlying field
will always match that of the matrix argument (i.e., e is real/complex exactly when A is
real/complex); in particular, we will mostly discuss the real case until Section 5.

A rank-one spherical integral is a special case of the Harish-Chandra/Itzykson/Zuber
(HCIZ) integral, defined for real-symmetric N ×N matrices A and B by∫

ON
eN tr(AOBOT ) dO,

where dO is the Haar measure on the group ON of N ×N orthogonal matrices, when
one takes B = diag(θ, 0, . . . , 0). The HCIZ integral is so named because Harish-Chandra,
and independently Itzykson and Zuber, gave exact formulas to evaluate it at finite N .
However, these beautiful formulas are not particularly suitable for large-N asymptotics
when A = AN and B = BN . When AN and BN have full rank, these asymptotics
were first predicted by Matytsin in the physics literature [30], then established in the
mathematical literature by Guionnet and Zeitouni [20]. The full-rank asymptotics are
quite complicated, but it turns out that the rank-one special case has much simpler
asymptotics: Informally Ee[eNθ〈e,ANe〉] � eNJ(µ̂AN ,θ,λmax(AN )), where J is a simple special
function given in Definition 3.1 below. This result is originally due to Guionnet and Maïda
[15], but for the proof it will be more convenient to use a technical strengthening of
their result (roughly, with better uniformity properties in the arguments) given recently
by Guionnet and the first author [17].

2.3 The Dyson equation and the limit of the empirical measure

The following two thresholds will be important:

Definition 2.3. Let

θmax :=

{
α
r(ρ) if r(ρ) > 0,

+∞ otherwise.
(2.2)

xc(ρ) :=

{
r(ρ)2Gρ(r(ρ)) +

(
1
α − 1

)
r(ρ) if r(ρ) > 0 and Gρ(r(ρ)) <∞,

+∞ otherwise
(2.3)

With such a setup, the following convergence theorem for the empirical measure
µ̂HN is essentially classical:

Theorem 2.4. With HN as above, the sequence of empirical measures (µ̂HN )∞N=1 con-
verges weakly in probability toward a compactly supported measure σ. Furthermore,
the Stieltjes transform of σ on (r(σ),+∞) satisfies

Hρ(Gσ(x)) = x, (2.4)

where Hρ is defined on (0, θmax) by

Hρ(y) :=
1

y
+

∫
R

αu

α− yu
ρ(du). (2.5)

If r(ρ) ≤ 0, then r(σ) ≤ 0. (However, it is possible to have r(σ) < 0 when r(ρ) > 0; see
Remark 2.7 for an example.)

Remark 2.5. Although we will not need it, we remark that the restriction of Gσ to
(r(σ),+∞) has range exactly (0, θc), where θc defined in Section 3.7 below satisfies
θc ≤ θmax.
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Proof. Theorem 1.1 in [36] gives every claim, other than that the measure σ is compactly
supported, and that r(σ) ≤ 0 when r(ρ) ≤ 0. To show the former, note that, since ρ is
compactly supported, then Hρ is meromorphic in a neighborhood of zero, with a simple
pole at zero. From the inverse function theorem, z 7→ 1

Hρ(z) is therefore holomorphic in
a neighborhood of zero, so (via (2.5)) Gσ is holomorphic in a neighborhood of infinity,
meaning σ is indeed compactly supported. To show the latter, note that we can always
choose Γ without outliers, meaning in such a way that `(µ̂Γ) = `(ρ) and r(µ̂Γ) = r(ρ)

at finite N , and that for HN defined with such Γ we have HN ≤ r(ρ) ≤ 0, so that
r(σ) ≤ 0.

Remark 2.6. We will not need it, but the measure σ can be interpreted in the language
of free probability. Indeed, when ρ is supported on R+ or R−, then σ is just the free
multiplicative convolution of ρ and the corresponding Marčenko-Pastur law. The free
multiplicative convolution is usually defined only for measures supported on a half-line,
but when ρ has two nontrivial components ρ±(A) = ρ(A∩R±), we can write σ as the free
additive convolution of the measures σ±, which are respectively the free multiplicative
convolutions of ρ± with the Marčenko-Pastur law.

Indeed, writing ρ = ρ+ + ρ− induces a decomposition Γ = Γ+ + Γ− into positive
and negative di’s, and thus a decomposition HN = H+

N + H−N with H±N = 1
MZTΓ±Z.

The matrices H+
N and H−N are independent, and their empirical measures tend to σ±,

respectively. This is true regardless of the underlying law of Z, which we will choose
to be Gaussian; then, due to rotation invariance of the Gaussian law, they have the
same joint distribution as H+

N and OH−NO
T , where O is a Haar orthogonal/unitary matrix

independent of everything else; and since asymptotically these matrices are freely
independent, the empirical measure of their sum tends to the free additive convolution
of the empirical measures.

Remark 2.7. Note that we can have r(ρ) > 0 but r(σ) < 0. For instance, let us choose
MN = 4N and let us take

ΓN = diag(2, . . . , 2︸ ︷︷ ︸
2N times

,−2K, . . . ,−2K︸ ︷︷ ︸
2N times

)

where K is a constant we will fix later. Then we have for this model ρ = 1
2 (δ−2K + δ2).

Remark 2.6 explains that, in this case, σ is the free additive convolution of two measures,
namely the free multiplicative convolutions of delta masses at 2 and −2K, respectively,
with Marčenko-Pastur. Since the free multiplicative convolution in this case just rescales
the measures, σ is the free additive convolution of two stretched Marčenko-Pasturs, one
near 2 and one near −2K. The factors of two here are so that the Marčenko-Pastur
laws are gapped away from zero; since r(µ � ν) ≤ r(µ) + r(ν) in general, by taking K

sufficiently large, we can thus force r(σ) < 0.

The equation (2.4) is called a Dyson equation. The following lemma defines a certain
function G̃σ, which should be thought of as a second branch of the Stieltjes transform.
Its proof will be given in Section 3.7.

Lemma 2.8. First, if xc(ρ) is finite then xc(ρ) = Hρ(θmax) := limy↑θmax Hρ(y), and xc(ρ) ≥
r(σ). Second, except in the case when r(ρ) ≤ 0 and r(σ) = 0 (this degenerate case is
handled in Section 2.4), there exists a real-valued, continuous function G̃σ, defined on
the domain

D :=

{
[r(σ),+∞) if r(ρ) > 0,

[r(σ), 0) if r(ρ) ≤ 0,
(2.6)

with the following properties:

EJP 29 (2024), paper 187.
Page 10/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1228
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDP for λmax of generalized sample covariance matrices

1. If x ∈ D and x ≤ xc(ρ), then {w : Hρ(w) = x} = {Gσ(x), G̃σ(x)} (in particular,

Hρ(G̃σ(x)) = x).

2. We have G̃σ(x) > Gσ(x) for x > r(σ), and G̃σ(r(σ)) = Gσ(r(σ)).

3. G̃σ is real analytic on D \ {xc(ρ)}.

4. G̃σ is nondecreasing on D, and more specifically

• If r(ρ) > 0 and xc(ρ) = +∞, then G̃σ is strictly increasing on D, with
limx→+∞ G̃σ(x) = θmax.

• If r(ρ) > 0 and xc(ρ) < +∞, then G̃σ is strictly increasing on (r(σ), xc(ρ)), with
limx↑xc(ρ) G̃σ(x) = θmax, and G̃σ(x) = θmax for x ≥ xc(ρ).

• If r(ρ) < 0, then G̃σ is strictly increasing on D, with limx↑0 G̃σ(x) = +∞.

2.4 Degenerate cases

For our purposes, there are two possibilities for degenerate behavior. We first explain
them informally:

1. If ρ({0}) > 0, this means that one is writing

HN =
1

M

M∑
i=1

diziz
T
i

where a macroscopic fraction of the di’s are (asymptotically) zero. Our results do
apply to this case as written, but as a coherence check, we confirm in Remark 2.10
below that the rate function remains the same if one instead discards these zero
di’s, which amounts to removing the zero atom from ρ, renormalizing to keep it a
probability measure, and adjusting α correspondingly.

2. The case r(ρ) ≤ 0 and r(σ) = 0 is degenerate, since then λmax(HN ) is essentially
trapped at zero: On the one hand, λmax(HN ) cannot push into the bulk at this scale,
so it must be asymptotically nonnegative. On the other hand HN is (asymptotically
almost) negative semidefinite, so λmax(HN ) must be asymptotically nonpositive.
This is expressed precisely in a degenerate LDP.

We now formalize the results just explained. All the claims here are proved in Section
3.6.

Lemma 2.9. If ρ is a measure on R such that r(ρ) ≤ 0 and ρ({0}) = 0, then the following
are equivalent:

• r(σ) = 0,

• α ≤ 1.

Remark 2.10. If ρ({0}) > 0, then we claim that the following two procedures give the
same result (meaning the same σ and the same rate function): (a) applying our results
to ρ as written, or (b) creating a new measure τ that removes the spike at zero, changes
α to some α′, and considers a corresponding H ′N .

Indeed, if ρ({0}) = β > 0, we can write ρ = (1− β)ρ′+ βδ0 where ρ′ is a measure with
ρ′({0}) = 0 (and, if r(ρ) ≤ 0, then r(ρ′) ≤ 0). Then it is easy to see that HN = H ′N +H ′′N ,
where H ′N = Z ′TΓ′NZ

′ and H ′′N = Z ′′TΓ′′NZ
′′, where Γ′N is a M ′N × M ′N matrix with

limN
M ′N
N = α(1− β), and where the empirical measure of Γ′N converges toward ρ′ and

||Γ′′N || converges to 0. So for ε > 0, lim 1
N logP[||H ′′N || ≥ ε] = −∞. This reduces the

problem to stating a large deviation principle for H ′N , and furthermore, if r(ρ) ≤ 0, we
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proved that r(σ) = 0 if and only if α(1 − β) ≤ 1 (we state this result in the following

corollary). With ∆N :=
M ′N
MN

Γ′N , we can rewrite H ′N as H ′N = 1
M ′N

Z ′T∆NZ
′. Since

the empirical measure of ∆N converges toward τ := m1−β]ρ
′, where m1−β]ρ

′ is the
pushforward of ρ′ by multiplication by 1− β (i.e., m1−β(x) = (1− β)x), we can apply our
main result, Theorem 2.15, to H ′N with τ instead of ρ and α′ := α(1− β) instead of α. It
remains to show then that the statement of Theorem 2.15 remains unchanged when we
change ρ into ρ′ and α into α′. For this we need only to show that the functions Hρ and
Hτ are the same, since we will see that the rate function of the large deviation principle
only depends on ρ through Hρ. Indeed,

Hρ(y) =
1

y
+

∫
αu

α− yu
ρ(du) =

1

y
+ (1− β)

∫
αu

α− yu
ρ′(du)

=
1

y
+ (1− β)

∫
α(1− β)−1u

α− (1− β)−1yu
τ(du) =

1

y
+

∫
(1− β)αu

(1− β)α− yu
τ(du) = Hτ (y).

Therefore the rate function we obtain by applying Theorem 2.15 to H ′N is the same as
what we obtain by applying Theorem 2.15 to HN .

Corollary 2.11. If ρ is a measure on R such that r(ρ) ≤ 0, then the following are
equivalent:

• r(σ) = 0,

• α(1− ρ({0})) ≤ 1.

Definition 2.12. We will summarize the (equivalent) conditions of Corollary 2.11 by
saying that the pair (ρ, α) is degenerate.

This definition is justified by the following (straightforward) result.

Proposition 2.13. Define Idegen : R→ [0,+∞] by

Idegen(x) =

{
0 if x = 0,

+∞ otherwise.

If ρ({0}) = 0, and the pair (ρ, α) is degenerate, then λmax(HN ) satisfies a large deviation
principle at speed N with the good rate function Idegen.

In the following, we will always assume that the pair (ρ, α) is nondegenerate.

2.5 Main result in the real setting

Definition 2.14. Suppose the pair (ρ, α) is nondegenerate. With D as in (2.6), Gσ the
Stieltjes transform as usual, and G̃σ the “second branch” of the Stieltjes transform from
Lemma 2.8, define Iσ : D → [0,+∞] by

Iσ(x) =

{
β
2

∫ x
r(σ)

[G̃σ(u)−Gσ(u)] du if x ∈ D,
+∞ otherwise.

Our main theorem holds under either of the following two assumptions, recalling that
µ is the common distribution of the entries of Z.

Assumption A. The measure µ is sharp sub-Gaussian, and the support of ρ is in [0,∞).

Assumption B. The measure µ is Gaussian.

Theorem 2.15 (Main theorem, real version). If Assumption 2.2 holds, the pair (ρ, α)

is nondegenerate (in the sense of Definition 2.12), and also either Assumption A or
Assumption B holds, then λmax(HN ) satisfies a large deviation principle at speed N
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with the good rate function Iσ. This function is convex and strictly increasing on D (in
particular, it vanishes uniquely at r(σ)). If additionally r(ρ) > 0, then

lim
x→+∞

Iσ(x)

x
=
θmax

2
.

If µ is actually Gaussian (Assumption B), then by rotational invariance we do not need to
assume that Γ is diagonal; we can just assume it is real symmetric and satisfies eq. (2.1)
and Assumption 2.2.

We remark that the claimed properties of Iσ follow immediately from its definition
and Lemma 2.8, which write the rate function in the form Iσ(x) = 1

2

∫ x
r(σ)

g(y) dy, where

g is strictly increasing, positive for arbitrarily small arguments, and limx→+∞
g(x)
θmax

= 1.
Theorem 2.15 will follow from the following two results.

Proposition 2.16. If Assumption 2.2 holds, the pair (ρ, α) is nondegenerate, and also
either Assumption A or Assumption B holds, and

xc(ρ) = +∞,

then λmax(HN ) satisfies a large deviation principle at speed N with the good rate function
Iσ.

Proposition 2.17. Proposition 2.16 implies Theorem 2.15.

Remark 2.18. Propositions 2.16 and 2.17 have fairly different proofs from one another.
Proposition 2.16 is proved by tilting with spherical integrals; for every x < xc(ρ),
we are able to find appropriate tilt that makes the deviations {λmax ≈ x} likely. But
Proposition 2.17 uses neither explicit tilting, nor almost anything else in the proof details
of Proposition 2.16; instead it goes by approximating models with xc(ρ) < +∞ using
models with xc(ρ) = +∞, and textbook results on obtaining LDPs by taking limits in a
sequence of approximating LDPs.

Remark 2.19. In the non-Gaussian case, the requirement that ρ be supported in (0,∞)

is not just technical. When some di’s are negative, the rate function should likely be
different from the Gaussian case. Indeed, suppose all the di’s are equal to −d for some
d > 0. Then of course λmax(− d

MZTZ) = −λmin( dMZTZ), but (except in degenerate cases)
the left-hand deviations of the smallest eigenvalue of a Rademacher covariance matrix
are not the same as the Gaussian analogue: On the one hand, in the Gaussian case, the
limiting empirical measure of d

MZTZ is a stretched version of the Marčenko–Pastur law,

σ(dx) =

√
((x−`d,α)(rd,α−x))+

2π dαx
, where `d,α = d(1− 1√

α
)2 and rd,α = d(1 + 1√

α
)2, and the rate

function for the left tail of the smallest eigenvalue in this Gaussian case is given by

Iσ(x) =
1

2

∫ `d,α

x

√
(`d,α − y)(rd,α − y)

d
αy

dy,

which tends to infinity as x ↓ 0. (One can obtain this as a special case of our main
result, or by Coulomb-gas arguments, see e.g. [24].) On the other hand, the Rademacher
rate function must be finite at zero since P(two columns of Z agree) ≥ 2−M . (The rank-
deficient case α ≤ 1 is degenerate in the sense of Definition 2.12; in this case, for both
the Gaussian and Rademacher versions of d

MZTZ, the smallest eigenvalue satisfies an
LDP at speed N with the degenerate rate function Idegen from Proposition 2.13, so the
rate functions match but for a trivial reason.)

2.6 Main result in the complex setting

Our main result also translates to the complex setting. In this, though, we need to take
the entries of Z to be i.i.d. distributed according the some centered probability measure
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µ on the complex plane such that
∫

(=z)2µ(dz) =
∫

(<z)2µ(dz) = 1/2 and
∫
=z<zµ(dz) = 0.

Our model then becomes

HN =
1

M
Z∗ΓZ

where Z∗ denotes the Hermitian conjugate of Z. All the other assumptions on M = MN

and Γ remain the same.
We can extend Definition 2.1 to complex random variables:

Definition 2.20. A centered probability measure µ on C is called sharp sub-Gaussian in
C if for X µ-distributed, the random vector (<X,=X) has covariance matrix 1

2 ( 1 0
0 1 ) (the

real and imaginary parts must be uncorrelated, but do not have to be independent) and∫
R

e<(wz)µ(dw) ≤ e
|z|2

4 for all z ∈ C.

We need then to slightly update Assumption A to our complex setting:

Assumption C. The measure µ is sharp sub-Gaussian in C, and the support of ρ is in
[0,∞).

Then we have for this model an LDP exactly identical to the one we obtain in the real
case, except the rate function we have here is twice the rate function of the real case.

Theorem 2.21 (Main theorem, complex version). If Assumption 2.2 holds, the pair (ρ, α)

is nondegenerate, and also either Assumption B or Assumption C holds, then λmax(HN )

satisfies a large deviation principle at speed N with the good rate function 2Iσ.
If µ is actually Gaussian (Assumption B), then by rotational invariance we do not need

to assume that Γ is diagonal; we can just assume it is complex Hermitian and satisfies
eq. (2.1) and Assumption 2.2.

The proof remains mostly the same as in the real case, up to some tweaks in the
computations of our spherical integrals; we describe the needed adjustments precisely
in Section 5.

3 Proof for infinite xc

3.1 Outline of the proof

In this section, we outline the proof of Proposition 2.16. The proof goes by introducing
a variational formulation of the rate function, which is more opaque but technically more
convenient, and then proving the LDP with this variational formulation via tilting by
spherical integrals. The broad sketch of the proof in this section resembles previous
works, but as explained in the introduction, new arguments allow us to bypass several
technical assumptions present in previous works. The assumption xc = ∞ is crucial
for the large deviation lower bound (Proposition 3.9). Indeed, it allows one to choose,
for each x ≥ r(σ), a parameter θx such that under the tilted measure Pθx defined in
Definition 3.7, λmax(HN ) converges to x. Without this assumption, we would have to
choose θx = θmax for every x ≥ xc, and our proof strategy then breaks down.

Definition 3.1. For µ a compactly supported probability measure on R, θ ≥ 0, and
λ ≥ r(µ), let

v(µ, θ, λ) :=

{
λ− 1

2θ if Gµ(λ) ≤ 2θ,

G−1
µ (2θ)− 1

2θ if Gµ(λ) ≥ 2θ ≥ 0,

J(µ, θ, λ) := θv(µ, θ, λ)− 1

2

∫
R

log(1 + 2θv(µ, θ, λ)− 2θy)µ(dy),
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Definition 3.2. For 0 ≤ θ < θmax, let

F (ρ, θ) := −α
2

∫
R

log

(
1− θt

α

)
ρ(dt),

Iσ(x, θ) := J

(
σ,
θ

2
, x

)
− F (ρ, θ).

Using these, define Ĩσ : R→ [0,+∞] by

Ĩσ(x) :=

{
sup0≤θ<θmax

Iσ(x, θ) if x ∈ D,
+∞ otherwise.

Lemma 3.3. (Simplification of the rate function) Assume (ρ, α) is nondegenerate.
If xc(ρ) = +∞, we have

Iσ(x) = Ĩσ(x),

and this function is convex on the set D defined in (2.6) and vanishes uniquely at
x = r(σ). Furthermore, for every x ∈ D◦ (the interior of D) there exists a unique θx with
0 ≤ θx < θmax such that

Ĩσ(x) = sup
0≤θ<θmax

Iσ(x, θ) = Iσ(x, θx).

In fact one can take
θx = G̃σ(x),

and the map x 7→ θx is injective.

Proof. We compute

∂

∂θ
J

(
σ,
θ

2
, x

)
=

{
G−1
σ (θ)

2 − 1
2θ if θ ≤ Gσ(x),

x
2 −

1
2θ if θ ≥ Gσ(x).

We also compute
∂

∂θ
F (ρ, θ) =

1

2

∫
R

αu

α− θu
dρ(u) =

Hρ(θ)

2
− 1

2θ
.

Using the Dyson equation (2.4), we have

∂

∂θ
Iσ(x, θ) =

{
0 if θ ≤ Gσ(x),
x
2 −

Hρ(θ)
2 if θ ≥ Gσ(x).

Thus the function Iσ(x, ·) is increasing on [Gσ(x), G̃σ(x)] and decreasing on [G̃σ(x),+∞).
Therefore θx := G̃σ(x) is the optimizing θ value, i.e., Ĩσ(x) = Iσ(x, θx). (When x = r(σ),
we define θr(σ) := θc by convention, and note that this argument shows Ĩσ(r(σ)) = 0.)
Thus ∂θIσ(x, θ)|θ=θx = 0, which lets us compute the total derivative as

d

dx
Ĩσ(x) =

∂

∂x
Iσ(x, θ)

∣∣∣∣
θ=θx

=
1

2
(θx −Gσ(x)) =

1

2
(G̃σ(x)−Gσ(x)).

(This is a general strategy to show that functions of the form f(x) = supy∈R g(x, y) =

g(x, yx) have derivative f ′(x) = ∂xg(x, y)|y=yx .) Since Iσ and Ĩσ have the same derivative
and agree at x = r(σ), they match as functions. As explained before, convexity follows
since the derivative is strictly increasing, and injectivity follows from point 4 of Lemma
2.8.
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Remark 3.4. This is not necessary for our proof, but we note that when xc(ρ) < +∞, i.e.
r(ρ) > 0 and Gρ(r(ρ)) <∞, one can check that

∫
R

log(r(ρ)− t)ρ(dt) > −∞, hence one can
make sense of F (ρ, θmax) and Iσ(x, θmax). In this case, one can define I†σ : R→ [0,+∞] by

I†σ(x) :=

{
Iσ(x, G̃σ(x)) if x ≥ r(σ)

+∞ otherwise
=


sup0≤θ<θmax

Iσ(x, θ) if r(σ) ≤ x < xc(ρ),

Iσ(x, θmax) if x ≥ xc(ρ),

+∞ otherwise.

The point of this remark is that one can check

Iσ(x) = I†σ(x).

Indeed, the proof of Lemma 3.3 already checked this for x < xc(ρ). For x ≥ xc(ρ), one
can compute

∂xIσ(x, θmax) = ∂xJ(σ, θmax/2, x) =
1

2
(θmax −Gσ(x)) =

1

2
(G̃σ(x)−Gσ(x)),

meaning that Iσ and I†σ have the same derivative. However, the formulation of Iσ in
Definition 2.14 is technically more convenient, so in the proof we use Iσ rather than I†σ.

Assumptions 2.2 and A require supp(ρ) ⊂ [0,∞) but permit a handful of negative
di’s at finite N , which must tend to zero in the limit of large dimension. However, it is
technically more convenient to work with the case when all di’s are nonnegative at finite
N . The following result allows us to restrict to this case; we omit its proof, since it is
essentially the same as that of Proposition 2.13.

Lemma 3.5. Under Assumptions 2.2 and A, define

Γ+ = diag(max(d1, 0), . . . ,max(dM , 0)),

and H+
N = M−1ZTΓ+Z. Then λmax(HN ) and λmax(H+

N ) are exponentially equivalent. In
particular, LDPs for one automatically hold for the other.

In the remainder, we tacitly replace HN with H+
N when necessary.

Lemma 3.6. (Exponential tightness) Under either Assumption A or Assumption B,
we have

lim
K→∞

lim sup
N→∞

1

N
logP(|λmax(HN )| > K) = −∞.

Proof. If M is large enough that di ∈ (`(ρ) − 1, r(ρ) + 1) for all i, then it is elementary
that

|λmax(HN )| ≤ max(|`(ρ)− 1| , |r(ρ) + 1|)λmax(M−1ZTZ).

Exponential tightness of λmax (M−1ZTZ) was proved in [16, Lemma 1.9].

Definition 3.7. (Tilted measures) For θ ≥ 0, consider the tilted measure Pθ(Z) on
M ×N matrices with density

dPθ

dP
(Z) =

Ee[e
N θ

2 〈e, 1
M ZTΓZe〉]

Ee,HN [eN
θ
2 〈e,HNe〉]

.

Proposition 3.8. (Weak LDP upper bound for tilted measures) For 0 ≤ θ < θmax,

lim sup
δ↓0

lim sup
N→∞

1

N
logPθ(|λmax(HN )− x| ≤ δ)

{
≤ −(Ĩσ(x)− Iσ(x, θ)) if x ∈ D,
= −∞ otherwise.

Notice that P0 = P, and Iσ(x, 0) = 0, so in particular we have the weak LDP upper bound
for the measure we care about.
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Proposition 3.9. (Weak LDP lower bound)

lim inf
δ↓0

lim inf
N→∞

1

N
logP(|λmax(HN )− x| < δ) ≥ −Ĩσ(x).

Proposition 2.16 follows in the classical way2 from Lemma 3.3, Lemma 3.6, Proposi-
tion 3.8, and Proposition 3.9.

Remark 3.10. Actually, the proofs of Propositions 3.8 and 3.9 are slightly more general
than just stated: They work “up to xc(ρ)” in the sense that they show

−Iσ(x) ≤ lim inf
δ↓0

lim inf
N→+∞

1

N
logP(|λmax(HN )− x| ≤ δ)

≤ lim sup
δ↓0

lim sup
N→+∞

1

N
logP(|λmax(HN )− x| ≤ δ) ≤ −Iσ(x)

whenever x < xc(ρ) (and actually the upper bound works even for x > xc(ρ)), not just
whenever xc(ρ) = +∞ and x ∈ R as stated. But since our final result holds regardless of
xc(ρ), we will not need this level of generality here.

3.2 Annealed spherical integral

The goal of this subsection is to prove the following lemma.

Lemma 3.11. Under either Assumption A or Assumption B, for every 0 ≤ θ < θmax, we
have

lim
N→∞

1

N
logEe,HN [eN

θ
2 〈e,HNe〉] = F (ρ, θ). (3.1)

Proof. For every unit vector e, we have

EHN [eN
θ
2 〈e,HNe〉] = EHN [eN

θ
2 〈e,( 1

M

∑M
k=1 dkzkz

T
k )e〉]

= EHN

[
M∏
k=1

e
N
M

θ
2 dk〈zk,e〉

2

]
=

M∏
k=1

EHN [e
N
M

θ
2 dk〈zk,e〉

2

]

since the zk’s are independent (throughout, we use EHN for the expectation over the
randomness in the zk’s). Applying a Hubbard-Stratonovich transformation, we find

EHN [eN
θ
2 〈e,HNe〉] =

M∏
k=1

1√
π

∫ ∞
−∞

EHN

[
e2x〈zk,e〉

√
N
M

θ
2 dk
]
e−x

2

dx,

where we interpret
√
dk = i

√
−dk for those dk which are negative.

In the Gaussian case (i.e., under Assumption B), the remainder of the proof is easy:

We can exactly compute
∏N
j=1E[ex

√
2 NM θdk(zk)jej ] = ex

2 N
M θdk , giving

1

N
logEe,HN [eN

θ
2 〈e,HNe〉] = −M

2N

∫
R

log

(
1− N

M
θt

)
µ̂Γ(dt).

The limiting replacement of µ̂Γ with ρ, and of M
N with α, is routine, but it requires

θ < θmax.

2The argument is that exponential tightness automatically upgrades what is called a “weak LDP” to a full
LDP (see, e.g., [11, Section 1.2]), and that a weak LDP can be witnessed just by small-ball probabilities (as in
Propositions 3.8 and 3.9). The latter follows essentially immediately from the definition of a weak LDP on pp.
6-7 of [11].
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In the sharp sub-Gaussian case (i.e., under Assumption A), the upper bound is similar:
For every real c and every unit e we have

EHN [exp(c 〈zk, e〉)] =

N∏
j=1

EHN [exp(c(zk)jej)] ≤
N∏
j=1

exp

(
c2e2

j

2

)
= exp

(
c2

2

)
.

Since each dk is positive, we can apply this with real c = 2
√

N
M

θ
2dk to find

1

N
logEe,HN [eN

θ
2 〈e,HNe〉] ≤ −M

2N

∫
R

log

(
1− N

M
θt

)
µ̂Γ(dt),

which finishes the proof of the upper bound. For the lower bound, fix 0 < ε < 1
4 and

define
V εN = {e : ‖e‖∞ ≤ N−

1
4−ε} ⊂ SN−1.

Since µ is standardized and has finite moment generating function (everywhere, in
particular near zero), we know that for every δ > 0 there exists η > 0 such that, for any
|t| ≤ η, ∫

etxµ(dx) ≥ e
(1−δ)

2 t2 .

In particular, if we fix δ so small that f(t) = 1− (1−δ)θt
α is bounded below by something

strictly positive on the support of ρ (this is possible since θ < θmax) and write

η′ =
η√

2(α+ 1)θ(r(ρ) + 1)
,

then whenever e ∈ V εN and |x| ≤ η′N 1
4 +ε, for each k we have

EHN

[
exp

(
2x 〈zk, e〉

√
N

M

θ

2
dk

)]
≥ exp

(
(1− δ)x2 N

M
θdk

)
.

Thus for such e we have

EHN [e
N
M

θ
2 dk〈zk,e〉

2

] ≥ 1√
π

∫ η′N
1
4

+ε

−η′N
1
4

+ε
exp

(
−
(

1− (1− δ)N
M
θdk

)
x2

)
dx.

From standard Gaussian tail bounds, if c, d > 0 are independent of N then

1√
π

∫ ∞
dN

1
4

+ε
exp(−cx2) dx ≤

√
c exp(−2cd2N

1
2 +2ε)

so that

EHN [e
N
M

θ
2 dk〈zk,e〉

2

]

≥
(

1− (1− δ)N
M
θdk

)− 1
2

− 2

√
1− N

M
θdk exp

(
−2

(
1− N

M
θdk

)
(η′)2N

1
2 +2ε

)
≥
(

1− (1− δ)θdk
α

)− 1
2
(

1− C
∣∣∣∣NM − 1

α

∣∣∣∣)− C ′ exp(−C ′′N 1
2 +2ε)

for some constants C,C ′, C ′′ depending on δ through η, but not depending on k. Therefore

1

N
logEe,HN [eN

θ
2 〈e,HNe〉]

≥ M

N

∫
R

log

[(
1− (1− δ)θt

α

)− 1
2
(

1− C
∣∣∣∣NM − 1

α

∣∣∣∣)− C ′ exp(−C ′′N 1
2 +2ε)

]
︸ ︷︷ ︸

=:fN (t)

ρ(dt)

+
1

N
logP(e ∈ V εN )
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From [16, Lemma 3.3], we have P(e ∈ V εN )→ 1. Furthermore, fN (t)→ − 1
2 log(1− (1−δ)θt

α )

pointwise as N →∞, and is bounded above on the support of ρ from our choice of δ, so
dominated convergence gives

lim inf
N→∞

1

N
logEe,HN [eN

θ
2 〈e,HNe〉] ≥ −α

2

∫
R

log

(
1− (1− δ)θt

α

)
ρ(dt).

Letting δ ↓ 0 with dominated convergence (possible since θ < θmax) again finishes the
proof.

3.3 Concentration of measure

The goal of this subsection is to prove the following proposition.

Proposition 3.12. If either Assumption A or Assumption B holds, then for every ε > 0

we have

lim
N→∞

1

N
logP(dBL(µ̂HN , σ) > ε) = −∞. (3.2)

Remark 3.13. By definition, control of dBL is control of integrals with respect to bounded-
Lipschitz test functions. Strictly speaking we do not need to control all such test
functions; as we will see below, Proposition 3.12 is needed to apply Theorem 6.1 of [17],
which is a continuity result for the function J(µ, θ, λ) in each of its variables. Inside
the proof of that result, we find that weak convergence of some sequence (µN )∞N=1

to some µ (as witnessed by dBL(µN , µ) → 0) is needed only for convergence of certain
derivatives of the special function J , as well as for certain integrals of translations of the
logarithm (away from its singularity). Perhaps simpler arguments would apply for these
specific test functions, but we think that the uniform control of test functions provided
by Proposition 3.12 is of independent interest.

Proof. The structure of the proof is common between the different cases of Assumption
A and Assumption B. However, one technical estimate is proved quite differently for the
different cases; we will mention this at the appropriate moment below, and otherwise
tacitly treat both cases simultaneously.

Consider the decomposition
Z = A+B,

where
Aij = Zij1|Zij |≤Nγ (3.3)

for some γ = γ(ε) > 0 to be chosen. (Recall the Zij ’s are order one, so B is typically
sparse.) Define the matrix

HA
N =

1

M
ATΓA

and, for large positive L, the event

EL = {supp(µ̂HN ) ⊂ (−L,L)} ∩ {supp(µ̂HAN ) ⊂ (−L,L)}.

To prove (3.2), it suffices to check

lim
N→∞

1

N
logP(dBL(µ̂HN , µ̂HAN ) > ε, EL) = −∞ for every L > 100r(σ), (3.4)

lim
L→∞

lim sup
N→∞

1

N
logP(EcL) = −∞, (3.5)

lim
N→∞

1

N
logP(dBL(µ̂HAN ,E[µ̂HAN ]) > ε) = −∞, (3.6)

lim
N→∞

dBL(E[µ̂HAN ], σ) = 0. (3.7)
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We start with (3.4), which we prove by adapting arguments of Bordenave, Caputo, and
Chafaï (namely [8, Lemma C.2] and [7, Lemma 2.2]). Whenever f is a C1 test function
with ‖f‖Lip + ‖f‖∞ ≤ 1, integration by parts gives∣∣∣∣∫ f(λ)(µ̂HN − µ̂HAN )(dλ)

∣∣∣∣1EL =

∣∣∣∣∫ f ′(λ)(Fµ̂HN − Fµ̂HA
N

)(dλ)

∣∣∣∣1EL
≤ ‖f ′‖∞‖Fµ̂HN − Fµ̂HA

N

‖11EL ≤ 2L‖f‖Lip‖Fµ̂HN − Fµ̂HA
N

‖∞

≤ 2LdKS(µ̂HN , µ̂HAN ).

If f just has ‖f‖Lip + ‖f‖∞ ≤ 1 but is not necessarily C1, there is a C1 function g with
‖g‖Lip + ‖g‖∞ ≤ 1 and ‖f − g‖L∞([−L,L]) ≤ 2LdKS(µ̂HN , µ̂HAN ); thus

P(dBL(µ̂HN , µ̂HAN ) > ε, EL) ≤ P
(
dKS(µ̂HN , µ̂HAN ) >

ε

4L

)
.

It is classical (a consequence of interlacing of singular values, see e.g. [2, Theorem
A.44]) that

dKS(µ̂HN , µ̂HAN ) ≤ 1

N
rank(Z −A) =

1

N
rank(B) ≤ 1

N

∑
i,j

1|Zij |>Nγ

for any Γ. Now (1|Zij |>Nγ )1≤i≤M,1≤j≤N is a collection of NM i.i.d. Bernoulli variables
with mean

pN := P(|Zij | > Nγ) ≤ exp(−cN2γ)

for some c depending on the sub-Gaussian norm of µ. Writing

σ2 = NMpN (1− pN ) ≤ exp
(
− c

2
N2γ

)
and h(x) = (x+ 1) log(x+ 1)− x, Bennett’s inequality [5] gives

P

∑
i≤j

1|Zij |>Nγ −NMpN ≥ t

 ≤ exp

(
−σ2h

(
t

σ2

))

for any t > 0. We will choose t = N ε
4L − NMpN ≥ N ε

8L , which has t
σ2 → +∞; since

h(x) ≥ x log x for sufficiently large arguments, we have

P(dBL(µ̂HN , µ̂HAN ) > ε, EL) ≤ exp

(
−t log

(
t

σ2

))
.

Since γ > 0, this suffices for (3.4).
The estimate (3.5) is essentially a consequence of exponential tightness, Lemma 3.6,

which controls |λmax(HN )|; the same proof controls |λmin(HN )|, as well as the extreme
eigenvalues of HA

N (the proof of Lemma 3.6 references [16, Lemma 1.9], which goes
through for A).

The verification of (3.6) is fairly different in the sharp sub-Gaussian case (Assumption
A) vs. the Gaussian case (Assumption B). The latter case is Lemma 3.14 below, while the
former case is Lemma 3.15 below (this is also where we select γ as a function of ε).

For (3.7), we first claim

lim
N→∞

dBL(E[µ̂HAN ],E[µ̂HN ]) = 0. (3.8)

It suffices to show E[XN ]→ 0, where XN = dBL(µ̂HAN , µ̂HN ). But XN is a random variable
between zero and two, and (3.4) and (3.5) show that for every ε > 0 and N ≥ N0(ε) we
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have P(XN > ε) ≤ exp(−100N), which shows E[XN ] → 0 and hence (3.8). It remains
only to show

lim
N→∞

dBL(E[µ̂HN ], σ) = 0.

This is equivalent to the claim E[µ̂HN ] → σ. The original result of this type is due to
Marčenko and Pastur [29], but for the model where the di’s are i.i.d. draws from ρ,
instead of being deterministic with the property 1

M

∑
δdi → ρ; the result for our, latter

variant of this model is due to Silverstein and Bai [36] (actually, their result holds in
greater generality).

Lemma 3.14. Under Assumption B, for each ε > 0, there exists γ = γ(ε) > 0 such that,
if HA

N is defined in terms of γ using (3.3), then

lim
N→∞

1

N
logP(dBL(µ̂HAN ,E[µ̂HAN ]) > ε) = −∞. (3.9)

Proof. In this case, it is technically inconvenient that the truncation of A is discontinuous;
thus we further decompose

A = C +D,

where

Cij =

{
Zij if |Zij | ≤ Nγ ,

Nγsign(Zij) if |Zij | > Nγ
, Dij =

{
0 if |Zij | ≤ Nγ ,

−Nγsign(Zij) if |Zij | > Nγ
,

and define the matrix

HC
N =

1

M
CTΓC.

To prove (3.9), it suffices to check

lim
N→∞

1

N
logP(dBL(µ̂HAN , µ̂HCN ) > ε, EL) = −∞ for every L > 100r(σ), (3.10)

lim
N→∞

1

N
logP(dBL(µ̂HCN ,E[µ̂HCN ]) > ε) = −∞, (3.11)

lim
N→∞

dBL(E[µ̂HCN ],E[µ̂HAN ]) = 0. (3.12)

The proof of (3.10) is a close copy of the proof of (3.4). Namely, one shows in the same
way as before that

P(dBL(µ̂HAN , µ̂HCN ) > ε, EL) ≤ P
(
dKS(µ̂HAN , µ̂HCN ) >

ε

4L

)
≤ P

(
1

N
rank(D) >

ε

4L

)
.

Earlier, we bounded the rank of B by its number of nonzero entries. Here we do the
same for D, but by construction B and D have the same number of nonzero entries, so
the rest of the estimate is exactly the same. Similarly, the proof of (3.12) is analogous to
the proof of (3.8).

So it remains only to show (3.11), and we start by showing

sup
f∈FLip

P

(∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ) ≤ exp
(
−cδ2N2−2γ

)
, (3.13)

where c is some constant depending on

dmax = sup
M

N
max
i=1

∣∣∣d(M)
i

∣∣∣ ,
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which is finite by assumption, and the aspect ratio α (and which can later change from
line to line, but is always a function only of dmax and α). Indeed, we shift perspective
slightly by defining C : RM×N → RM×N as

C(Z)ij =

{
Zij if |Zij | ≤ Nγ ,

Nγsign(Zij) if |Zij | > Nγ ,

and H
C(Z)
N as HC(Z)

N = M−1C(Z)TΓC(Z). Fix some f ∈ FLip, and consider the map
h = hf : RM×N → R defined by

h(Z) =

∫
R

f(λ)µ̂
H
C(Z)
N

(dλ).

We want to show that h is Lipschitz. Using an Lp version of the Hoffman-Wielandt
inequality with p = 1 (see e.g. [23, Theorem II]), and writing π ∈ SN for a permutation
in the permutation group on N letters, we have

|h(Z1)− h(Z2)| ≤ min
π∈SN

1

N

N∑
i=1

∣∣∣f(λi(H
C(Z1)
N ))− f(λπ(i)(H

C(Z2)
N ))

∣∣∣
≤ min
π∈SN

1

N

N∑
i=1

∣∣∣λi(HC(Z1)
N )− λπ(i)(H

C(Z1)
N )

∣∣∣
≤ 1

N

N∑
i=1

∣∣∣λi(HC(Z1)
N −HC(Z2)

N )
∣∣∣ =

1

N
‖HC(Z1)

N −HC(Z2)
N ‖∗

≤ 1

NM
(‖C(Z1)TΓ(C(Z1)− C(Z2))‖∗ + ‖(C(Z1)− C(Z2))TΓC(Z2)‖∗)

Recalling that, for a matrix M , ‖M‖F =
√∑

i,j |Mij |2 denotes its Frobenius norm, we

will now use that ‖T1T2‖∗ ≤ ‖T1‖F ‖T2‖F ; that ‖C(Z1)TΓ‖F ≤
√
NMdmaxN

γ , since the
entries have magnitude at most dmaxN

γ ; and that

‖C(Z1)− C(Z2)‖F ≤ ‖Z1 − Z2‖F

(this estimate is why we needed to define C; the analogue for A is not true). These give

|h(Z1)− h(Z2)| ≤ 2dmax
Nγ

√
NM

‖Z1 − Z2‖F ≤
4dmax√
α

Nγ

N
‖Z1 − Z2‖F .

By Gaussian concentration for Lipschitz functions (see, e.g., [9, Theorem 5.6]), we have

P

(∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ) = P(|h(Z)− E[h(Z)]| ≥ δ) ≤ exp
(
−cδ2N2−2γ

)
which proves (3.13).

Now we want to upgrade by taking a supremum over f inside the probability – at
first just over FLip,K, which we recall denotes the set of functions in FLip supported
in some compact set K with diameter diam(K). Guionnet and Zeitouni give a very
useful construction for this purpose (which we will also mimic in the proof of the sub-
Gaussian case below): For any ∆ > 0, they construct a set of 2(ddiam(K)

∆ e+ 1) functions

(hk)
2(d diam(K)

∆ e+1)

k=1 in FLip with the property that, for any given f ∈ FLip,K, one can choose

ddiam(K)
∆ e + 1 of the hk’s whose sum, called f∆, satisfies ‖f − f∆‖∞ ≤ ∆. Since f∆ is
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actually a sum of this finite count of functions, not a linear combination of them, we have

P

(
sup

f∈FLip,K

∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ
)

≤ 2

(⌈
diam(K)

∆

⌉
+ 1

)
×

2(d diam(K)
∆ e+1)

max
k=1

P

(∣∣∣∣∫
R

hk(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ − 2∆

2(ddiam(K)/∆e+ 1)

)
≤ 2

(⌈
diam(K)

∆

⌉
+ 1

)
exp

(
−cN2−2γ

(
δ − 2∆

2 (ddiam(K)/∆e+ 1)

)2
)

Like Guionnet and Zeitouni, we choose ∆ = δ/4; then whenever δ < 1 and diam(K) > 1,
we have

P

(
sup

f∈FLip,K

∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ
)
≤ 16δ

diam(K)
exp

(
−c N

2−2γδ4

diam(K)2

)
. (3.14)

Now we define, for L > 0, the event

EC,L = {supp(µ̂HCN ) ⊂ (−L,L)},

mimicking the event EL from above. In the same way that we proved the EL was likely in
(3.5), one can prove

lim
L→∞

lim sup
N→∞

1

N
logP(EcC,L) = −∞. (3.15)

On the other hand, fix large L. For any f ∈ FLip, there exists f̃ ∈ FLip that agrees with
f on (−L,L) and vanishes outside (−2L, 2L), say. Furthermore, on the event EC,L, the
empirical measure µ̂HCN is supported on (−L,L), although its expectation is not; thus
with K := (−2L, 2L) we have

P
(
dBL(µ̂HCN ,E[µ̂HCN ]) ≥ δ, EC,L

)
= P

(
sup
f∈FLip

∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ, EC,L
)

≤ P

(
sup

f̃∈FLip,K

∣∣∣∣∫
R

f̃(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ

2
, EC,L

)

+ P

(
sup
f∈FLip

∣∣∣∣∫
R

(f(λ)− f̃(λ))E[µ̂HCN ](dλ)

∣∣∣∣ ≥ δ

2

)

≤ P

(
sup

f̃∈FLip,K

∣∣∣∣∫
R

f̃(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ

2

)
+ 1

{∫
R

1|λ|≥LE[µ̂HCN ](dλ) ≥ δ

4

}
≤ 4δ

L
exp

(
−cN

2−2γδ4

L2

)
+ 1

{∫
R

1|λ|≥LE[µ̂HCN ](dλ) ≥ δ

4

}
where we used (3.14) in the last line. To handle the indicator, we note∫ ∞

L

E[µ̂HCN ](dλ) ≤ P(λmax(HC
N ) ≥ L) ≤ P(EcC,N )

and similarly for the left tail, (3.15) gives that the indicator vanishes for L large enough
depending on δ; thus

P

(
sup
f∈FLip

∣∣∣∣∫
R

f(λ)(µ̂HCN − E[µ̂HCN ])(dλ)

∣∣∣∣ ≥ δ, EC,L
)
≤ 4δ

L
exp

(
−cN

2−2γδ4

L2

)
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for all L > L0(δ). Combined with (3.15), this finishes the proof of (3.11), and thus finishes
the proof of Lemma 3.14.

Lemma 3.15. Fix γ < 1/19. Under Assumption A, for every ε > 0, if HA
N is defined in

terms of γ using (3.3), then

lim
N→∞

1

N
logP(dBL(µ̂HAN ,E[µ̂HAN ]) > ε) = −∞.

The proof of this lemma is given in Appendix A.

3.4 Proof of the weak LDP upper bound

Definition 3.16. Consider the following deterministic set of M ×N real matrices:

ALx,δ,ε =

{
Z : with HN = HN (Z) =

1

M
ZTΓZ, |λmax(HN )− x| < δ,

dBL(µ̂HN , σ) < ε, and ‖HN‖ ≤ L
}
.

Lemma 3.17. For every x ≥ r(σ) and 0 ≤ θ < θmax, and every large enough L, we have

lim
ε↓0

lim sup
δ↓0

lim sup
N→∞

sup
Z∈ALx,δ,ε

∣∣∣∣ 1

N
logEe[e

N θ
2 〈e,HNe〉]− J

(
σ,
θ

2
, x

)∣∣∣∣
= lim

δ↓0
lim sup
ε↓0

lim sup
N→∞

sup
Z∈ALx,δ,ε

∣∣∣∣ 1

N
logEe[e

N θ
2 〈e,HNe〉]− J

(
σ,
θ

2
, x

)∣∣∣∣ = 0.

Proof. This is an easy consequence of (stronger results from) [17]. Fix (small) t > 0

and (large) L > 0; their Theorem 6.2 shows that there exists N0(t, L) such that for
N ≥ N0(t, L) we have

sup
Z∈ALx,δ,ε

∣∣∣∣ 1

N
logE[eN

θ
2 〈e,HNe〉]− J

(
µ̂HN ,

θ

2
, λmax(HN )

)∣∣∣∣ ≤ t.
On the other hand, their Theorem 6.1 shows that J(µ, θ2 , x) is a jointly continuous function
of µ (in the set of probability measures compactly supported on [−L,L]) and x (in the set
[−L,L]); thus for max(δ, ε) below some threshold depending on t we have

sup
Z∈ALx,δ,ε

∣∣∣∣J (µ̂HN , θ2 , λmax(HN )

)
− J

(
σ,
θ

2
, x

)∣∣∣∣ ≤ t.
We combine these two estimates with the quantifiers in the right order, then take t ↓ 0.

Lemma 3.18. For each x ≥ r(σ), 0 ≤ θ < θmax, and L large enough, we have

lim sup
δ↓0

lim sup
ε↓0

lim sup
N→∞

1

N
logPθ(ALx,δ,ε) ≤ −(Ĩσ(x)− Iσ(x, θ)).

Proof. For any 0 ≤ θ′ < θmax,

Pθ(ALx,δ,ε) =
1

Ee,HN [eN
θ
2 〈e,HNe〉]

EHN

[
1HN∈ALx,δ,ε

Ee[e
N θ

2 〈e,HNe〉]
Ee[e

N θ′
2 〈e,HNe〉]

Ee[eN
θ′
2 〈e,HNe〉]

]

≤ Ee,HN [eN
θ′
2 〈e,HNe〉]

Ee,HN [eN
θ
2 〈e,HNe〉]

(
sup

Z∈ALx,δ,ε
Ee[e

N θ
2 〈e,HNe〉]

)(
sup

Z∈ALx,δ,ε

1

Ee[eN
θ′
2 〈e,HNe〉]

)
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By Lemmas 3.11 and 3.17, this shows

lim sup
δ↓0

lim sup
ε↓0

lim sup
N→∞

1

N
logPθ(ALx,δ,ε) ≤ Iσ(x, θ)− Iσ(x, θ′).

Taking the infimum over 0 ≤ θ′ < θmax on the right-hand side completes the proof.

Lemma 3.19. Suppose AN,M is a doubly-indexed sequence of events with

lim
M→∞

lim
N→∞

1

N
logP(AN,M ) = −∞.

Then for every θ < θmax we have

lim
M→∞

lim
N→∞

1

N
logPθ(AN,M ) = −∞.

In particular (by taking AN,M independent of M ), if limN→∞
1
N logP(AN ) = −∞, then

limN→∞
1
N logPθ(AN ) = −∞.

Proof of Proposition 3.8. If x < r(σ), then for small enough δ we have {|λmax (HN )− x| ≤
δ} ⊂ {dBL(µ̂HN , σ) > ε} for some ε = ε(δ); this suffices by Lemma 3.19 and Proposition
3.12. In the remainder we assume x ≥ r(σ).

For large L and arbitrary fixed δ, ε > 0, we have

Pθ(|λmax(HN )− x| ≤ δ) ≤ Pθ(ALx,δ,ε) + Pθ(dBL(µ̂HN , σ) > ε) + Pθ(‖HN‖ > L).

Then we take the normalized log of both sides; by taking N → +∞, and applying again
Lemma 3.19 and Proposition 3.12, we find

lim sup
N→∞

1

N
logPθ(|λmax(HN )− x| ≤ δ)

≤ max

{
lim sup
N→∞

1

N
logPθ(ALx,δ,ε), lim sup

N→∞

1

N
logPθ(‖HN‖ > L)

}
.

Then we take ε ↓ 0, then δ ↓ 0, and apply Lemma 3.18 to get

lim sup
δ↓0

lim sup
N→∞

1

N
logPθ(|λmax(HN )− x| ≤ δ)

≤ max

{
−(Ĩσ(x)− Iσ(x, θ)), lim sup

N→∞

1

N
logPθ(‖HN‖ > L)

}
.

By taking L→∞ and applying Lemmas 3.19 and 3.6, we finish the proof.

Proof of Lemma 3.19. We claim that there exists N0 (which depends on the sequence
(ΓM )∞M=1, the speed of convergence in the limit MN

N → α, the measure ρ, and on θ) such
that, for every unit vector e and for N ≥ N0, we have

EHN [eN
θ
2 〈e,HNe〉] ≥ e−2N |F (ρ,θ)|.

Indeed, in the Gaussian case, the proof of Lemma 3.11 shows that EHN [eN
θ
2 〈e,HNe〉] =

eNf(M,N,Γ,θ) for some function f with the property that limN→∞ f(MN , N,ΓMN
, θ) =

F (ρ, θ), uniformly in the unit vector e. Thus for N large enough we have f(M,N,Γ, θ) ≥
−2 |F (ρ, θ)|, say. In the sub-Gaussian case, we even have a sharper estimate: Since each
dk is nonnegative, the function x 7→ e

N
M

θ
2 dkx

2

is convex, so Jensen’s inequality gives

EHN [eN
θ
2 〈e,HNe〉] =

M∏
k=1

EHN [e
N
M

θ
2 〈zk,e〉

2

] ≥
M∏
k=1

e
N
M

θ
2E[〈zk,e〉]2 = 1,
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since the underlying measure µ is centered. This means that, if A is an event and ε > 0,
we have

Pθ(A) ≤ e2N |F (ρ,θ)|EHN [1AEe[e
N θ

2 〈e,HNe〉]] ≤ e2N |F (ρ,θ)|P(A)
ε

1+εEe,HN [eN
(1+ε)θ

2 〈e,HNe〉]
1

1+ε

If ε is so small that (1 + ε)θ < θmax, we apply Lemma 3.11 to finish the proof.

3.5 Proof of the weak LDP lower bound

Lemma 3.20. Let x ≥ r(σ), and let θx be as defined in Lemma 3.3. Then for all L
sufficiently large and δ, ε sufficiently small (depending on x), we have

lim
N→∞

1

N
logPθx(ALx,δ,ε) = 0.

Proof. We claim that actually Pθx(ALx,δ,ε) tends to one. As shown in the proof of Proposi-

tion 3.8, for all 0 ≤ θ < θmax, the quantities Pθ(dBL(µ̂HN , σ) ≥ ε) and Pθ(‖HN‖ ≥ L) tend
to zero (actually exponentially quickly), for L large enough and all ε > 0. Thus it suffices
to show

Pθx(|λmax(HN )− x| ≥ δ) = o(1). (3.16)

But Proposition 3.8 gives a weak LDP upper bound for the variable λmax(HN ) under the
measures Pθx , which are exponentially tight, with rate function Jx(y) that is infinite
for y < r(σ) and otherwise equal to Jx(y) = Ĩσ(y) − Iσ(y, θx). Lemma 3.3 shows that
Jx is nonnegative and vanishes uniquely at x; indeed, if r(σ) ≤ y 6= x, then Jx(y) =

sup0≤θ<θmax
Iσ(y, θ) − Iσ(x, θx), and the supremum is achieved uniquely at θy, which is

different from θx since y 6= x. Combined with exponential tightness of Pθx (see Lemmas
3.6 and 3.19), this gives (3.16). (We remark that the condition x < xc is crucial for this
part of the proof.)

Proof of Proposition 3.9. We have

P(|λmax(HN )− x| ≤ δ)
≥ P(ALx,δ,ε)

≥
E[1ALx,δ,εEe[e

N θx
2 〈e,HNe〉]

E[eN
θx
2 〈e,HNe〉]

E[eN
θx
2 〈e,HNe〉]

(
inf

Z∈ALx,δ,ε

1

Ee[eN
θx
2 〈e,HNe〉]

)
.

= Pθx(ALx,δ,ε)E[eN
θx
2 〈e,HNe〉]

(
inf

Z∈ALx,δ,ε

1

Ee[eN
θx
2 〈e,HNe〉]

)
.

From Lemmas 3.11, 3.17, and 3.20, we have

lim inf
δ↓0

lim inf
N→∞

1

N
logP(|λmax(HN )− x| ≤ δ) ≥ F (ρ, θx)− J

(
σ,
θx
2
, x

)
= −Iσ(x, θx) ≥ −Ĩσ(x).

3.6 Degenerate cases

Proof of Lemma 2.9. Let ρ be a compactly supported measure on R such that r(ρ) ≤ 0.
Theorem 2.4 already shows that r(σ) ≤ 0; as in the proof of that theorem, we consider a
sequence (ΓM )∞M=1 chosen without outliers, and the matrices HN defined using these
ΓM ’s. There are two cases:

1. If α ≤ 1, note that HN ≥ −KZTZ where K = maxM (−λmin(ΓM )). The empirical
measure of ZTZ converges toward the Marčenko-Pastur distribution MPα and
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therefore the cumulative distribution function of σ is everywhere smaller than the
distribution function of m−K]MPα, where m−K]MPα is the push-forward of MPα by
multiplication by −K (i.e., m−K(x) = −Kx). Since r(m−K]MPα) = −K`(MPα) = 0,
we have that r(σ) ≥ 0.

2. If α > 1, we can find a δ > 0 such that α − δ > 1. If we call δM = bδMc, we let
Γ′M be the submatrix of ΓM with the first M − δM rows and columns, and Γ′′M be
the submatrix of ΓM with the last δM rows and columns. We also let Z ′ be the
submatrix of Z with the first M − δM rows, and Z ′′ be the submatrix of Z with the
last δM rows. We have HN = H ′N +H ′′N with H ′N = Z ′TΓ′MZ

′ and H ′′N = Z ′′TΓ′′MZ
′′.

Since ρ({0}) = 0, we have that lim supN λmax(Γ′M ) = c < 0 (we must have c ≤ 0

since all entries of ΓM are nonpositive at finite M ; since Γ′M contains the most
negative entries of Γ by our ordering, if we had c = 0, then all the entries of Γ′′M
would be asymptotically zero, meaning that ρ would have an atom at zero of mass
at least δ, which we ruled out by assumption), and since H ′′N ≤ 0, we have for N
large enough HN ≤ H ′N ≤ cZ ′TZ ′. So r(σ) ≤ c`(MPα−δ) < 0.

Proof of Proposition 2.13. The same proof as in the nondegenerate case shows that
λmax cannot push into the bulk at this speed, which handles small-ball probabilities
P(λmax ≈ x) for x < 0.

If Γ is negative semidefinite, then the rest of the argument is trivial, since HN ≤ 0

and thus λmax(HN ) ≤ 0 deterministically.
So suppose that Γ has a handful of positive eigenvalues at finite N , meaning that

HN is not necessarily negative semidefinite. Define Γnsd := diag(d
(nsd)
1 , . . . , d

(nsd)
M ), where

d
(nsd)
i = min(di, 0), set εN = ‖Γ− Γ(nsd)‖ which tends to zero by Assumption 2.2, and set

H
(nsd)
N := 1

MZTΓ(nsd)Z, which we couple with HN by using the same noise Z to define

both. We note that ‖HN −H(nsd)
N ‖ ≤ εN

M ‖Z‖
2 and thus, for every δ > 0,

lim
N→∞

1

N
logP(|λmax(H

(nsd)
N )− λmax(HN )| > δ) ≤ lim

N→∞

1

N
logP(

√
M
−1
‖Z‖ > δ/εN ) = −∞

(the details of this are given in the proof of Lemma 4.3 below). This means that the
sequences (λmax(HN ))∞N=1 and (λmax(H

(nsd)
N ))∞N=1 are exponentially equivalent ; since the

latter sequence satisfies the desired LDP by the above argument, it is classical (see, e.g.,
[11, Theorem 4.2.13]) that the former does, as well.

3.7 Second branch of the Stieltjes transform

Proof of Lemma 2.8. If xc(ρ) is finite, then

xc(ρ) = r(ρ)2Gρ(r(ρ)) +

(
1

α
− 1

)
r(ρ) =

1

θmax
+ r(ρ)

(∫
R

r(ρ)− (r(ρ)− u)

r(ρ)− u
ρ(du)

)
=

1

θmax
+

∫
R

αu

α− α
r(ρ)u

ρ(du) = Hρ(θmax).

The claim xc(ρ) ≥ r(σ) will be shown along the course of the proof. We will eventually
need three cases. Common to them is the computation of

fρ(θ) := θ2H ′ρ(θ) = −1 + α

∫
R

u2θ2

(α− uθ)2 ρ(du).

Notice that limθ↓0 fρ(θ) = −1. We claim fρ is strictly increasing for θ ∈ (0, θmax). Indeed,

it is (a constant plus) an average over u of the functions fu,ρ(θ) := u2θ2

(α−uθ)2 ; the function
f0,ρ is constant, and the functions fu,ρ are strictly increasing for each u 6= 0, since
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their derivatives
2(αu )θ(αu−θ)

(αu−θ)4 have the same sign as α
u (αu − θ), and the sign of the latter

can be checked by hand depending on the sign of u (in the case u > 0, this relies on
θ < θmax = α

r(ρ) ).
The three cases are:

Figure 4: The graph of the functionHρ when ρ = δ1 and α = 8, along with representations

of r(σ), θc, Gσ(x), and G̃σ(x). This serves as an example of the case when r(ρ) > 0 and
Gρ(r(ρ)) = +∞.

1. Case 1 (r(ρ) > 0 and Gρ(r(ρ)) = +∞), shown in Figure 4: It is easy to see that
Hρ(θmax) = +∞. Thus fρ(θ) is positive for some θ; since it is also strictly increasing
and tends to −1 at zero, there exists a unique θc ∈ (0, θmax) where it vanishes,
i.e., there exists a unique θc ∈ (0, θmax) such that Hρ is decreasing on (0, θc) and
increasing on (θc, θmax). Using the uniqueness of the analytic continuation, one
can argue that Hρ(θc) = r(σ) and Gσ(r(σ)) = θc. Furthermore, one sees that the
equation Hρ(y) = x, considered as a function of y ∈ (0, θmax) parametrized by
x ∈ R,

(a) has no solution if x < r(σ).

(b) has one solution if x = r(σ). That solution is θc, and we set G̃σ(r(σ)) := θc.

(c) has two solutions y1 and y2 such that 0 < y1 < θc < y2 < θmax if x > r(σ).
Furthermore, due to the Dyson equation (2.4), we clearly have y1 = Gσ(x). We
write G̃σ(x) for the second solution y2. In particular, G̃σ defined this way on
[r(σ),+∞) is analytic increasing and limx→∞ G̃σ(x) = θmax.

2. Case 2 (r(ρ) > 0 and Gρ(r(ρ)) < +∞), shown in Figure 5: Once again, Hρ is
decreasing on (0, θc) and increasing (θc, θmax), but θc = θmax if and only if xc = r(σ).
As before, the equation Hρ(y) = x, considered as a function of y ∈ (0, θmax)

parametrized by x ∈ R,

(a) has no solution if x < r(σ).

(b) has one solution if x = r(σ). That solution is θc, and we set G̃σ(r(σ)) := θc.

(c) has two solutions y1 and y2 such that 0 < y1 < θc < y2 < θmax if r(σ) < x ≤ xc.
Once again, we have y1 = Gσ(x) and we will set G̃σ := y2.
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Figure 5: The graph of the function Hρ when ρ is the semi-circular measure supported

in [−8, 8] and α = 1, along with representations of r(σ), θc, Gσ(x), and G̃σ(x) for some
x1 > xc and x2 < xc. This serves as an example of the case r(ρ) > 0 and Gρ(r(ρ)) < +∞.

(d) has one solution y such that 0 < y < θc if x > xc(ρ). However, in this case we
will define G̃σ(x) := θmax.

Figure 6: The graph of the function Hρ when ρ = δ−10 and α = 5, along with representa-

tions of r(σ), θc, Gσ(x), and G̃σ(x) (with a 1:2 rescaling ratio between the x-axis and the
y-axis for readability). It serves as an example of the case when r(ρ) < 0 and α > 1.

3. Case 3 (r(ρ) ≤ 0): Using Remark 2.10 and Lemma 2.9, we need only consider the
case where ρ({0}) = 0 and α > 1 (see Figure 6). Since fρ is strictly increasing,
either H ′ρ(θ) is negative for all θ, or there exists θc ∈ (0, θmax) such that H ′ρ(θ) is
negative for θ ∈ (0, θc) and positive for θ ∈ (θc, θmax). But since

Hρ(θ) = (1− α)θ−1 + oθ→+∞(θ−1) (3.17)
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and α > 1, we must be in the latter case, and indeed must have Hρ(θc) < 0 and
Hρ < 0 on (θc,+∞). Then the equation Hρ(y) = x, considered as a function of
y ∈ (0,+∞) parametrized by x ∈ R,

(a) has one solution for x ≥ 0. This solution is equal to Gσ(x).

(b) has two solutions y1, y2 for 0 > x > r(σ), with 0 < y1 < θc < y2. We have that
y1 = Gσ(x) and we denote the second solution y2 by G̃σ(x). Once again G̃σ is
analytic increasing between r(σ) and 0, and limx↑0 G̃σ = +∞.

(c) has one solution for x = r(σ), namely y = θc.

(d) has no solutions for x < r(σ).

4 Proof for finite xc

In this section, we prove Proposition 2.17. We remark that, from the definition (2.3),
we can only have xc(ρ) < +∞ if r(ρ) > 0.

We fix once and for all some ρ with xc(ρ) < +∞, and try to prove the associated
LDP, assuming that we know the LDP for every model with xc = +∞. The proof goes by
approximation. Precisely, we are going to discretize the right edge of ρ by replacing the
di’s greater than r(ρ)− ε by r(ρ).

Definition 4.1. For ε > 0, we define Γ(ε) := diag(d
(ε)
1 , ..., d

(ε)
M ) where d

(ε)
i = di if di ≤

r(ρ)− ε and d(ε)
i = r(ρ) for di > r(ρ)− ε. The same way, we define H(ε)

N as:

H
(ε)
N :=

1

M
ZTΓ(ε)Z.

It will be important later that we couple H(ε)
N with HN , by using the same noise Z to

define both. We define also ρ(ε) to be the probability measure on R given by

ρ(ε)(A) := ρ(A∩]−∞, r(ρ)− ε]) + ρ(]r(ρ)− ε, r(ρ)])δr(ρ) (4.1)

for Borel A.

Let us remark that

lim
M→∞

1

M

M∑
i=1

δ
d

(ε)
i

= ρ(ε)

as long as ρ does not have an atom at r(ρ) − ε. Since a probability measure can have
at most countably many atoms, we can take ε → 0 along some ρ-dependent sequence
avoiding such atoms, which we will do implicitly in the rest of the proof.

Then, if we assume we have avoided such atoms, the empirical measure of H(ε)
N

converges toward a measure σ(ε) characterized by the fact that its Stieltjes transform is
the inverse function of Hρ(ε) .

Since ρ(ε) has an atom at its right endpoint, we haveGρ(ε)(r(ρ(ε))) = +∞ and therefore

we have that λmax(H
(ε)
N ) satisfies a large deviations principle with rate function I(ε)

defined as

I(ε)(x) =

{
1
2

∫ x
r(σ(ε))

(
G̃σ(ε)(t)−Gσ(ε)(t)

)
dt if x ≥ r(σ(ε)),

+∞ otherwise.

To prove our result we will need the following three lemmas.

Lemma 4.2. The function ε 7→ r(σ(ε)) is non-decreasing, and

lim
ε→0

r(σ(ε)) = r(σ). (4.2)

Furthermore, the functions I(ε) converge uniformly on all compact subsets of (r(σ),+∞)

toward I as ε→ 0.
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Lemma 4.3. For every K > 0, if the ratio η
ε is large enough depending on K, then

lim sup
N→∞

1

N
logP[‖HN −H(ε)

N ‖ ≥ η] ≤ −K

where we recall ‖ · ‖ is the operator norm (or spectral radius in this case).

Lemma 4.4. Define J : R→ R by

J(x) = sup
δ>0

lim inf
ε↓0

inf
y∈(x−δ,x+δ)

I(ε)(y). (4.3)

Then I = J . Furthermore, I is a good rate function, and for every closed set F ⊂ R, we
have

inf
y∈F

I(y) ≤ lim sup
ε↓0

inf
y∈F

I(ε)(y). (4.4)

Let us assume these three lemmas momentarily, and prove that they imply the large
deviation principle.

Proof of Proposition 2.17. This will be an immediate consequence of Theorem 4.2.16
of [11], which explains how to recover an LDP for λmax(HN ) from LDPs for λmax(H

(ε)
N )

in the ε ↓ 0 limit.3 The condition they define as “exponentially good approximations,”
translated into our notation, reads

lim
ε↓0

lim sup
N→∞

1

N
logP

(∣∣∣λmax(H
(ε)
N )− λmax(HN )

∣∣∣ > δ
)

= −∞,

which follows from Lemma 4.3. We checked the remaining conditions of their result in
Lemma 4.4 above.

Proof of Lemma 4.2. By construction, r(ρ(ε)) = r(ρ), so that θmax is independent of ε.
Thus

r(σ(ε)) = min
0<θ<θmax

Hρ(ε)(θ).

Since ρ(ε) converges toward ρ, and thus Hρ(ε) converges to Hρ uniformly on all compact
subsets of (0, θmax), this implies

lim sup
ε→0

r(σ(ε)) ≤ r(σ).

On the other hand, we know more about this convergence: We claim that, for each
θ ∈ (0, θmax),

Hρ(θ) ≤ Hρ(ε)(θ) (4.5)

and that the function ε 7→ Hρ(ε)(θ) is actually non-decreasing for ε ∈ (0, r(ρ)). (Notice
this implies that ε 7→ r(σ(ε)) is non-decreasing.) Indeed, we can write

Hρ(ε)(θ) =
1

θ
+

∫ r(ρ)−ε

−∞

αu

α− θu
ρ(du) +

αr(ρ)

α− θr(ρ)
ρ((r(ρ)− ε, r(ρ)]) =

1

θ
+

∫
R

f
(ε)
α,θ(u)ρ(du)

where f (ε)
α,θ : supp(ρ)→ R is defined by

f (ε)
α,x(u) =

{
αu
α−θu if u < r(ρ)− ε,
αr(ρ)
α−θr(ρ) if u ≥ r(ρ)− ε.

3Translating the notation: Their m is our ε−1, and their ε is our N−1. Thus their µ̃ε is the law of λmax(Hε−1 ),

and their µε,m is the law of λmax(H
(m−1)

ε−1 ).
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Since u 7→ αu
α−θu is strictly increasing on the support of ρ and positive for u > 0, the map

ε 7→ f
(ε)
α,θ(u) is, for each u ∈ supp(ρ), non-decreasing on the set ε ∈ (0, r(ρ)). This shows

that ε 7→ Hρ(ε)(θ) is non-decreasing for small enough ε (uniformly in θ), and thus that

lim inf
ε↓0

r(σ(ε)) ≥ r(σ),

finishing the proof of (4.2).

Now we prove uniform convergence of I(ε) to I on compact sets of (r(σ),+∞). Recall
that θmax does not depend on ε. If x > r(σ), then for ε sufficiently small we have x > r(σ(ε))

and thus

I(ε)(x) =
1

2

∫ x

r(σ(ε))

(
G̃σ(ε)(t)−Gσ(ε)(t)

)
dt =

1

2

∫ x

r(σ(ε))

∫ θmax

0

1G
σ(ε) (t)≤u≤G̃

σ(ε) (t) dudt

=
1

2

∫ x

0

∫ θmax

0

1H
ρ(ε)

(u)≤t dudt.

Similarly,

I(x) =
1

2

∫ x

0

∫ θmax

0

1Hρ(u)≤t dudt.

Define

D(ε) := {(t, u) ∈ (0,+∞)× (0, θmax) : Hρ(ε)(u) ≥ t > Hρ(u)},
Rx := (0, x)× (0, θmax),

D(ε)
x := D(ε) ∩Rx.

From (4.5), we actually have I(ε)(x) ≤ I(x) and

I(x)− I(ε)(x) =
1

2

∫ x

0

∫ θmax

0

1Hρ(u)<t≤H
ρ(ε)

(u) dudt =
1

2
Leb(D(ε)

x ).

Therefore, if [a, b] ⊂ (r(σ),+∞) then for all x ∈ [a, b] and all ε < ε0(a) we have

|I(ε)(x)− I(x)| ≤ Leb(D
(ε)
b ).

Since Hρ(ε) decreases to Hρ, the sets D(ε)
b are nested, and their intersection over all ε > 0

is empty. Since their Lebesgue measures are bounded above by Leb(Rb) <∞, we have

limε↓0 Leb(D
(ε)
b ) = 0, proving the uniform convergence of I(ε) towards I on compact sets

of (r(σ),+∞).

Proof of Lemma 4.3. Deterministically, we have

‖HN −H(ε)
N ‖ =

1

M
‖ZT (Γ− Γ(ε))Z‖ ≤ 1

M
‖Z‖2‖Γ− Γ(ε)‖ ≤ ε‖Z‖2

M
.

Therefore it is sufficient to prove that for every K > 0 there exists tK > 0 such that, for
all t > tK ,

lim sup
N→∞

1

N
logP[

√
M
−1
‖Z‖ ≥ t] ≤ −K.

This can be deduced from the sub-Gaussian character of the entries of Z and limN
M
N = α

using for instance the arguments of [16, Section 2].
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Proof of Lemma 4.4. Define

Jδ(x) = lim inf
ε↓0

inf
y∈(x−δ,x+δ)

I(ε)(y),

which is non-increasing in δ. If x < r(σ), then by Lemma 4.2 there exists δ > 0 such
that x + δ < r(σ(ε)) for all sufficiently small ε, so Jδ(x) = +∞, and thus J(x) = +∞. If
x > r(σ), then there exists δ > 0 with x − δ > r(σ(ε)) for all sufficiently small ε. Since
each I(ε) is non-decreasing, this gives Jδ(x) = lim infε↓0 I

(ε)(x− δ) = I(x− δ), again by
Lemma 4.2, and thus J(x) = I(x). Finally, we let x = r(σ). Then for every δ > 0 and all
ε < ε0(δ), we have r(σ(ε)) ∈ (x − δ, x + δ), so that Jδ(x) = 0 = J(x). This completes the
proof that I = J , and I is clearly a good rate function, since it is infinite on (−∞, r(σ)),
vanishes uniquely at r(σ), and is strictly increasing.

Now we check (4.4), splitting into cases according to whether α(F ) = infy∈F I(y) is
infinite or finite. If α(F ) = +∞, then necessarily F ⊂ (−∞, r(σ)), with sup{y : y ∈ F} <
r(σ). Then Lemma 4.2 gives infy∈F I

(ε)(y) = +∞ for all ε sufficiently small. If α(F ) = 0,
there is nothing to prove. If 0 < α(F ) < ∞, then F ⊂ (r(σ) + δ,+∞) for some δ > 0,
and with yF = min{y : y ∈ F} we have α(F ) = I(yF ). Whenever ε is small enough that
yF > r(σ(ε)), we have infy∈F I

(ε)(y) = I(ε)(yF ); as ε ↓ 0 this tends to I(yF ), by Lemma
4.2.

Remark 4.5. In the case where xc is finite, one can wonder about what happens about
the previous tilting strategy. In fact, if we try to adapt this strategy, a natural candidate
for the tilt for x > xc is Pθ

N
x , where θNx = G̃σN (x), with σN = µ̂ΓM = 1

M

∑M
i=1 δdi . However,

here our strategy collapses, since for every such x > xc, we then have that limN→∞ θNx =

θmax. In particular, the argument we have for the lower bound argument does not enable
us to state Lemma 3.20, since we cannot prove that Pθ

N
x [|λmax(HN )− x| ≤ ε] = o(1) for

x > xc.
In fact, another clue that something qualitatively different happens for x > xc lies in a

closer examination of the tilts Pθ
N
x . Indeed, considering for simplicity’s sake the Gaussian

case with λmin(Γ) ≥ ε for some fixed ε > 0, the largest eigenvalue is not exponentially
tight under those tilts. Indeed, since the distribution of Z is invariant by the action by
right multiplication of the orthogonal group, one can then write for any θ:

Pθ =
1

v(SN−1)

∫
e∈SN−1

Pθ,e de

where
dPθ,e

dP
(Z) =

eN
θ
2 〈e, 1

M Z∗ΓZe〉

EHN [eN
θ
2 〈e,HNe〉]

with v(SN−1) the volume of the sphere.
In other words, the Pθ are a mixture of the Pθ,e for unit vectors e. In fact, we claim

that, while the law of Pθ,e over Z ∈ RM×N depends very much on e, the law that Pθ,e

induces on λmax(M−1Z∗ΓZ) does not depend on e (and therefore that this common
induced law matches the law of λmax(M−1Z∗ΓZ) under Pθ). Indeed, for any unit vector

e ∈ SN−1 and any N -dimensional orthogonal matrix O, since ZO
d
= Z under the original

Gaussian measure, for any A ⊂ RM×N we have

Pθ,e(A) =
EHN [1{Z ∈ A}eN

θ
2 〈e, 1

M Z∗ΓZe〉]
EHN [eN

θ
2 〈e, 1

M Z∗ΓZe〉]

=
EHN [1{ZO ∈ A}eN

θ
2 〈Oe, 1

M Z∗ΓZ(Oe)〉]
EHN [eN

θ
2 〈Oe, 1

M Z∗ΓZ(Oe)〉]
= Pθ,Oe(AO−1)
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where AO−1 = {Z ∈ RM×N : ZO ∈ A}. Of course A 6= AO−1 in general. But if A depends
on Z only through λmax(M−1Z∗ΓZ) = λmax(M−1(ZO)∗Γ(ZO)), then A = AO−1, proving
that this induced law is independent of e. In particular, to show that λmax(M−1Z∗ΓZ) is
not exponentially tight under Pθ

N
x , we can show that it is not exponentially tight under

Pθ
N
x ,e for our favorite e, which we will choose as the first vector e1 of the canonical basis.
By writing down the scalar product at the exponent, one can easily see that, under

Pθ
N
x ,e1 , the entries of Z remain Gaussian, centered, and independent, with variances

that change only in the first row, namely to

Var(Zi,1) =
1

1− NθNx di
M

.

If we now assume that d1 is the largest di so that limN→∞ d1 = r(ρ), then limN→∞ 1 −
NθNx d1

M = 0, so
lim
N→∞

Var(Z1,1) = +∞.

This means that 1√
M
|Z1,1| (hence the largest singular value of 1√

M
Z, hence the largest

eigenvalue of 1
MZ∗Z) is not exponentially tight under Pθ

N
x ,e1 . Since we assumed

λmin(Γ) ≥ ε > 0, we have λmax(M−1Z∗ΓZ) ≥ ελmax(M−1Z∗Z) deterministically, and
thus λmax(M−1Z∗ΓZ) is not exponentially tight under Pθ

x
N ,e1 (therefore, by our discus-

sion above, not exponentially tight under Pθ
x
N ). This is a strong clue that this strategy

then falls outside the purview of the asymptotic method we use in this article.

5 The complex case

In this section, we will review the changes needed to adapt the proof of Theorem
2.15 to Theorem 2.21.

• We keep Definition 3.1 and Definition 3.2. However we need to modify Definition
3.7 by replacing θ/2 by θ:

dPθ

dP
(Z) =

Ee[e
Nθ〈e, 1

M Z∗ΓZe〉]
Ee,HN [eNθ〈e,HNe〉]

.

• In Propositions 3.8 and 3.9 we multiply by 2 both right-hand sides:

lim sup
δ↓0

lim sup
N→∞

1

N
logPθN (|λmax(HN )− x| ≤ δ)

{
≤ −2(Ĩσ(x)− Iσ(x, θ)) if x ∈ D,
= −∞ otherwise,

and

lim inf
δ↓0

lim inf
N→∞

1

N
logPN (|λmax(HN )− x| < δ) ≥ −2Ĩσ(x).

• In Lemma 3.11 the equation (3.1) is replaced by

lim
N→∞

1

N
logEe,HN [eNθ〈e,HNe〉] = 2F (ρ, θ).

In the proof of this Lemma, the Hubbard-Stratonovich transformation becomes

EHN [eNθ〈e,HNe〉] =

M∏
k=1

1

π

∫
w∈C

E
[
e2<(w〈zk,e〉)

√
N
M θdk

]
e−|w|

2

dw.

In the Gaussian case we have:

N∏
j=1

E[e2<(w(zk)jej)
√

N
M θdk)] = e|w|

2 N
M θdk
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and then:

1

N
logEe,HN [eNθ〈e,HNe〉] = −M

N

∫
R

log

(
1− N

M
θt

)
µ̂Γ(dt).

In the sharp sub-Gaussian case we get for any w ∈ C and c ∈ R:

E[exp(c<(w 〈zk, e〉))] =

N∏
j=1

E[exp(c<(w(zk)jej))]

≤
N∏
j=1

exp

(
c2|w|2|ej |2

4

)
= exp

(
c2|w|2

4

)
,

leading to:

1

N
logEe,HN [eNθ〈e,HNe〉] ≤ −M

N

∫
R

log

(
1− N

M
θt

)
µ̂Γ(dt).

Similar modifications happen for the lower bound.

• In Lemma 3.17, we modify the equations to

lim
ε↓0

lim sup
δ↓0

lim sup
N→∞

sup
Z∈ALx,δ,ε

∣∣∣∣ 1

N
logEe[e

Nθ〈e,HNe〉]− 2J

(
σ,
θ

2
, x

)∣∣∣∣
= lim

δ↓0
lim sup
ε↓0

lim sup
N→∞

sup
Z∈ALx,δ,ε

∣∣∣∣ 1

N
logEe[e

Nθ〈e,HNe〉]− 2J

(
σ,
θ

2
, x

)∣∣∣∣ = 0.

The proof is actually identical, we merely use the complex version (that is, β = 2 of
Theorem 6.2 in [17]). One has to careful that the conventions for the function J

differ between this paper and [17]. If we denote JGH the function J used in [17],

JGH(µ, θ, x) = 2J
(
µ,
θ

2
, x
)
.

• In Lemma 3.18 we once again have to multiply by 2 the right hand side:

lim sup
δ↓0

lim sup
ε↓0

lim sup
N→∞

1

N
logPθ(ALx,δ,ε) ≤ −2(Ĩσ(x)− Iσ(x, θ)).

The modifications made to Lemmas 3.11 and 3.17 carry over to the proof which
otherwise remains identical.

• In Lemma 3.3, the expression of θx stays the same.

• In the proof of Proposition 3.9, once again the modifications made to Lemmas 3.11,
3.17 carry over and we get

lim inf
δ↓0

lim inf
N→∞

1

N
logP(|λmax(HN )− x| ≤ δ) ≥ 2F (ρ, θx)− 2J

(
σ,
θx
2
, x

)
= −2Iσ(x, θx) ≥ −2Ĩσ(x).

A Concentration for empirical measures of generalized sample
covariance matrices

The proof of Lemma 3.15 will follow from the following general result for concen-
tration of the empirical spectral measure of generalized sample covariance matrices,
when the underlying randomness is compactly supported. Such a result was anticipated

EJP 29 (2024), paper 187.
Page 35/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1228
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDP for λmax of generalized sample covariance matrices

by [19] (and our proof uses their results as input), but Remark 3 on p. 127 of that
paper does not provide details, and what is written there is not quite straightforward to
implement because the natural class of approximating functions does not preserve the
bounded-Lipschitz property. So for completeness we provide the full details below. In
our case, the size of the compact support will depend on N , so we do need to track the
dependence on the size of the support to ensure that all our factors of N work out.

We note that the proof relies fundamentally on the linearization of a generalized
sample covariance matrix (see Lemma A.2), which is only possible when Γ is positive
semidefinite. This is one of the main reasons for this restriction on Γ in the sharp
sub-Gaussian case.

The first version of this paper gave a different argument for Lemma 3.15, based on
adjusting the class of approximating functions mentioned above. We thank Ofer Zeitouni
for suggesting the following argument, which is based on the conceptually simpler
observations that the empirical measures of generalized sample covariance matrices are
related to pushforwards of the empirical measures of their linearizations under the map
x 7→ x2 (see Lemma A.4), and that this pushforward has nice properties with respect
to dBL (see Lemma A.3). For readers comparing to [19], we note that their |K| is the
diameter of the set K, which we write as diam(K).

Proposition A.1. Let A ∈ RM×N have i.i.d. entries whose laws are supported in some
compact set K; let Γ ∈ RM×M be deterministic, diagonal, positive semi-definite, and
have all entries bounded above by dmax; and consider the matrix H ∈ RN×N given by

H =
1

M
ATΓA.

Let δ1(N,M) = 8 diam(K)
√
π
√
dmax√

M(N+M)
, S = maxz∈K |z|2, and P =

√
8Sdmax

N+M
M . Then when-

ever δ satisfies both of the implicit conditions

δ

2
> (128(P +

√
δ/2)δ1(N,M))2/5, (A.1)(

δ

4(1 + N
N+M dmaxS)

)3/2

>

128

P +

(
δ

4(1 + N
N+M dmaxS)

)3/2
 δ1(N,M)

2/5

, (A.2)

we have

P

(
dBL(µ̂H ,E[µ̂H ]) ≥ N +M

2N
δ

)

≤
128(P +

√
δ/2)

(δ/2)3/2
exp

−M(N +M)
1

16 diam(K)2dmax

[
(δ/2)5/2

128(P +
√
δ/2)

− δ1(N,M)

]2


+

128

(
P +

(
δ

4(1+ N
N+M dmaxS)

)3/4
)

(
δ

4(1+ N
N+M dmaxS)

)9/4
exp

(
−M(N +M)

1

16 diam(K)2dmax


(

δ
4(1+ N

N+M dmaxS)

)15/4

128

(
P +

(
δ

4(1+ N
N+M dmaxS)

)3/4
) − δ1(N,M)


2

(A.3)

Before proving Proposition A.1, we show that it implies Lemma 3.15.
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Proof of Lemma 3.15. In our case, dmax is order-one, but diam(K) is order Nγ . Thus
δ1(N,M) is order Nγ−1, the quantity S is order N2γ , and P is order Nγ . This means that,
if δ is order-one, then (A.1) and (A.2) are both satisfied as long as γ < 2/19. For such γ,
the right-hand side of (A.3) is order exp(−N2−2γ−2γ)+exp(−N2−2γ−17γ) ∼ exp(−N2−19γ)

up to polynomial errors; thus 1
N logP(dBL(µ̂HAN ,E[µ̂HAN ]) > ε)→ −∞ as soon as γ < 1/19

as claimed.

Our proof of Proposition A.1 relies on the following results, which we prove after. In
them, we use the notation µ]x2 for the pushforward of a probability measure µ by the
map x 7→ x2, i.e.,

∫
f(y)(µ]x2)(dy) =

∫
f(y2)µ(dy).

Lemma A.2. In the setup of Proposition A.1, consider the matrix H̃ ∈ R(N+M)×(N+M)

given in block form by

H̃ =
1√
M

(
0 ATΓ1/2

Γ1/2A 0

)
.

Then whenever δ satisfies the implicit condition δ > (128(P +
√
δ)δ1(N,M))2/5, we have

P
(
dBL(µ̂H̃ ,E[µ̂H̃ ]) ≥ δ

)
≤ 128(P +

√
δ)

δ3/2
exp

(
−M(N +M)

1

16 diam(K)2dmax

[
δ5/2

128(P +
√
δ)
− δ1(N,M)

]2
)

Lemma A.3. Suppose that µ and ν are probability measures on the right half-line. Then
for any L we have

dBL(µ]x2, ν]x2) ≤ (1 + 2L)dBL(µ, ν) + µ((L,∞)) + ν((L,∞)).

Lemma A.4. We have

dBL(µ̂H̃]x
2,E[µ̂H̃ ]]x2) =

2N

N +M
dBL(µ̂H ,E[µ̂H ]).

Proof of Proposition A.1. By Lemma A.4, it suffices to bound P(dBL(µ̂H̃]x
2,E[µ̂H̃ ]]x2) >

δ). We do this with Lemma A.3, first using Markov’s inequality to upper-bound

µ((L,∞)) ≤
∫
R
t2µ(dt)

L2
,

then using the deterministic bound∫
R

t2µ̂H̃(dt) =
1

M(N +M)

M∑
i=1

N∑
j=1

diA
2
ij ≤

N

N +M
dmaxS,

then choosing L = dBL(µ̂H̃ ,E[µ̂H̃ ])−1/3 to obtain

dBL(µ̂H̃]x
2,E[µ̂H̃ ]]x2) ≤ dBL(µ̂H̃ ,E[µ̂H̃ ]) + dBL(µ̂H̃ ,E[µ̂H̃ ])2/3(2 + 2

N

N +M
dmaxS).

Applying Lemma A.2 twice finishes the proof.

Proof of Lemma A.2. This follows immediately from Theorem 1.3(b) of [19], thinking of
their matrix A as our matrix√

N +M

M

(
0 11TΓ1/2

Γ1/211T 0

)
,

(i.e., the top-right block has constant columns and the bottom-left block has constant

rows), which has entries uniformly bounded by
√
dmax

N+M
M .
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Proof of Lemma A.3. Take f such that ‖f‖∞ + ‖f‖Lip ≤ 1, define g by g(x) = f(x2), and
for given L define gL by

gL(x) =


g(x) x ≤ L,
(L+ 1− x)g(L) if L ≤ x ≤ L+ 1,

0 if x ≥ L+ 1.

We have ‖gL‖∞ ≤ 1 and ‖gL‖Lip ≤ 2L (technically for the restriction to the right half-line)
as well as |g(x)− gL(x)| ≤ 1{x > L} for x ≥ 0. Thus∣∣∣∣∫ f(y)(µ]x2 − ν]x2)(dy)

∣∣∣∣ =

∣∣∣∣∫ g(y)(µ− ν)(dy)

∣∣∣∣
≤
∣∣∣∣∫ gL(y)(µ− ν)(dy)

∣∣∣∣+ µ((L,∞)) + ν((L,∞))

≤ (1 + 2L)dBL(µ, ν) + µ((L,∞)) + ν((L,∞)).

Proof of Lemma A.4. Since

H̃2 =
1

M

(
ATΓA 0

0 Γ1/2AATΓ1/2

)
,

for any measurable function f we have

tr(f(H̃2)) = 2 tr(f(H)) + (max(M,N)−min(M,N))f(0),

and thus∫
f(y)(µ̂H̃]x

2 − E[µ̂H̃ ]]x2)(dy)

=

∫
f(y2)(µ̂H̃ − E[µ̂H̃ ])(dy) =

1

N +M
(tr(f(H̃2))− E[tr(f(H̃2))])

=
2

N +M
(tr(f(H))− E[tr(f(H))]) = 2

N

N +M

∫
f(y)(µ̂H − E[µ̂H ])(dy).

B Concentration for multidimensional product measures

This appendix deals with a straightforward extension of classic results of Talagrand
[37] and Guionnet-Zeitouni [19] on concentration for product measures, in order to
consider complex-Hermitian random matrices with real and imaginary parts that are not
necessarily independent of one another.

In the 1990s, Talagrand developed a theory of concentration for products of compactly-
supported measures, obtaining results of the form “If f : [−1, 1]N → R is Lipschitz and
has convex sublevel sets, and (Xi)

N
i=1 are independent random variables each valued

in [−1, 1], then the random variable f(X1, . . . , XN ) concentrates about its median” [37,
Theorem 6.6]. Guionnet and Zeitouni translated his results into random matrices, using
them to show results of the form “If the real-symmetric or complex-Hermitian Wigner
matrix WN has compactly-supported entries, then µ̂WN

concentrates about its mean
E[µ̂WN

] in Wasserstein-1 distance” [19, Corollary 1.4(b)]. However, since Talagrand’s re-
sult was written for the most digestible case of f : [−1, 1]N → R, the complex-Hermitian
case Guionnet and Zeitouni’s result required the entries of WN to have independent real
and imaginary parts; then linear statistics of WN could indeed be nice functions of the
N2 independent random variables (ReWij , ImWij)1≤i<j≤N ∪ (Wii)

N
i=1.

We want to prove results about slightly more general Wigner matrices WN , where
the real and imaginary parts of each Wij are allowed to be correlated with each other,
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as long as the entries Wij ∈ C remain independent for different upper-triangular values
of i and j. In order to do this, we need to extend Corollary 1.4(b) of [19], which in turn
requires the following extension of Theorem 6.6 of [37]. We copy Talagrand’s language
and most of his notation, so that the reader can more easily compare, but we introduce
the d-dimensional Euclidean unit balls

Bd = {x ∈ Rd : ‖x‖22 ≤ 1}.

Proposition B.1. Consider a real-valued function f defined on (Bd)
N . We assume that,

for each real number a,
the set {f ≤ a} is convex.

Consider a convex set C ⊂ (Bd)
N , consider σ > 0 and assume that the restriction of f to

C has a Lipschitz constant at most σ; that is,

∀x, y ∈ C, |f(x)− f(y)| ≤ σ‖x− y‖,

where ‖x‖ denotes the norm ‖(x1, . . . , xN )‖2 =
∑N
i=1 ‖xi‖22.

Consider independent random variables (Xi)i≤N valued in Bd, and consider the
random variable

h = f(X1, . . . , XN ).

Then, if M is a median of h, we have, for all t > 0, that

P(|h−M | ≥ t) ≤ 4c+
4

1− 2c
exp

(
− t2

16σ2

)
(B.1)

where we assume

c = P((X1, . . . , XN ) 6∈ C) <
1

2
.

The proof of Proposition B.1 is almost the same as Talagrand’s d = 1 original; one
can quickly check that eq. (6.20) in [37] is still valid in our setting, and the remainder
of Talagrand’s proof of [37, Theorem 6.6] goes through verbatim. We remark that
(B.1) has no dependence on d, which may be initially surprising, since we make no
assumptions about the correlations between the d entries of each Xi. However, the
lack of d-dependence is essentially because we have chosen to extend Talagrand’s d = 1

compact set [−1, 1] to Bd, which has Euclidean diameter 2 for each d, rather then, e.g., to
replace [−1, 1] with [−1, 1]d, which has Euclidean diameter 2

√
d. (If we instead considered

f : ([−1, 1]d)N → R and variables Xi ∈ [−1, 1]d, we would obtain a variant of (B.1) with

right-hand side 4c+ 4
1−2c exp

(
− t2

16dσ2

)
.)

We suspect that an extension of this form has already appeared in the literature,
perhaps more than once, but we have not been able to find it.

By thinking C ∼= R2 and using the d = 2 case of Proposition B.1, we obtain the
following extension of Corollary 1.4(b) of [19]. Again we copy their language and
notation for ease of comparison. We consider inhomogeneous complex-Hermitian random
matrices XA given by

XA = ((XA)ij)1≤i,j≤N , XA = X∗A, (XA)ij =
1√
N
Aijωij

with

ω = (ωR + iωI) = (ωij)1≤i,j≤N = (ωRij +
√
−1ωIij)1≤i,j≤N , ωij = ωji,

A = (Aij)1≤i,j≤N , Aij = Aji.
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Here {ωij , 1 ≤ i ≤ j ≤ N} are independent complex random variables with laws
{Pij , 1 ≤ i ≤ j ≤ N}, and the Pij ’s are probability measures on C, but now with no
assumptions on the relationship between their real and imaginary marginals, except
the condition that Pii is supported on R in order to keep XA Hermitian. Here A is a
non-random complex matrix with entries {Aij , 1 ≤ i ≤ j ≤ N} uniformly bounded by, say,
a. (By choosing all the Pij ’s to be supported on R and all entries of A real, we can of
course obtain results about real-symmetric random matrices.)

Proposition B.2. Assume that the (Pij , i ≤ j) are uniformly compactly supported, that
is that there exists a compact set K ⊂ C so that for any 1 ≤ i ≤ j ≤ N , Pij(Kc) = 0.
Write

‖K‖ = max{‖x‖ : x ∈ K}.

Fix δ1(N) = 8‖K‖
√
πa/N and M = a‖K‖

√
8. For any δ > (128(M +

√
δ)δ1(N))2/5,

P(W1(µ̂XA ,E[µ̂XA ]) > δ)

≤ 128(M +
√
δ)

δ3/2
exp

(
−N2 1

16‖K‖2a2

[
δ5/2

128(M +
√
δ)
− δ1(N)

]2
)
.

We again omit the proof, which just mimics that of Guionnet and Zeitouni; the only
observation is that here ‖K‖ is defined in such a way that K

‖K‖ ⊂ B2, so that we can use
Proposition B.1 when Guionnet and Zeitouni use [37, Theorem 6.6].

C The “compact or log-Sobolev” assumption

In this appendix we explain how to remove a certain technical assumption from
previous tilting results on top-eigenvalue LDPs in the sub-Gaussian case, which we will
call the “compact or log-Sobolev” assumption.

This assumption appears in various forms throughout the literature: earlier papers
tend to literally require some underlying measure to have either compact support or to
satisfy the log-Sobolev inequality, whereas later papers tend to require some statement
about concentration of the empirical measure which is easy to verify in the compact-or-
log-Sobolev case.

Our techniques to remove this assumption use a recent strengthening of the continuity
properties of spherical integrals, due to Guionnet and the first author [17]. This works as
follows: With µ̂N the empirical spectral measure of the matrix one is studying as defined
in (1.4), µ∞ its deterministic limit, and dBL the bounded-Lipschitz distance from (1.3),
previous results required estimates of the form

lim
N→∞

1

N
logP(dBL(µ̂N , µ∞) > N−δ) = −∞ (C.1)

for some small δ > 0. Under the better continuity properties, it suffices to show

lim
N→∞

1

N
logP(dBL(µ̂N , µ∞) > ε) = −∞ (C.2)

for every ε > 0. We see two main benefits of (C.2) over (C.1): First, we are about to show
that (C.2) is often provable without the compact-or-log-Sobolev assumption, essentially
by carefully truncating the matrix entries and using concentration results of Guionnet
and Zeitouni, in the style of Talagrand, for compactly supported product measures.
Second, one can typically show (C.2) without relying on local laws, which had been used
in previous results to verify (C.1) (see, e.g., [31, 22]). Since local laws are only available
in some cases, we think it may be useful for future LDP results that their use can be
bypassed.
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We demonstrate the ideas in the simplest setting of sharp sub-Gaussian Wigner
matrices, showing the following result, which removes the “compact-or-log-Sobolev”
assumption from the main result of [16].

Theorem C.1. Let µ be a centered probability measure on R with unit variance, and let
XN be the corresponding Wigner matrix, i.e., XN is an N ×N real-symmetric random
matrix with i.i.d. entries up to symmetry distributed according to µ√

N
. If µ is sharp

sub-Gaussian, then λmax(XN ) satisfies an LDP at speed N with the good rate function

I(x) =

{
+∞ if x < 2,
1
2

∫ x
2

√
y2 − 4 dy if x ≥ 2.

Shortly prior to the posting of this paper on the arXiv, we learned that simultaneous
independent work of Cook, Ducatez, and Guionnet [10] also removes the compact-or-
log-Sobolev assumption, but with different techniques. Roughly speaking, our argument
works at the matrix level, while their argument works at the scalar level: in their
Appendix A they prove a tail bound for convex Lipschitz functions of sub-Gaussian
variables, upgrading Talagrand’s classical tail bound for convex Lipschitz functions of
compactly supported variables.

Proof. We claim that, for every ε > 0, we have

lim
N→∞

1

N
logP(dBL(µ̂XN , ρsc) > ε) = −∞. (C.3)

The original paper [16] of Guionnet and the first author shows something slightly stronger,
under the compact-or-log-Sobolev assumption, namely that there exists some small κ > 0

with

lim
N→∞

1

N
logP(dBL(µ̂XN , ρsc) > N−κ) = −∞.

However, mimicking the arguments in our Sections 3.4 and 3.5 shows that (C.3) suffices.
To prove (C.3), we mimic the proof of Proposition 3.12, decomposing X = A + B

with Aij = Xij1{|Xij | ≤ Nγ−1/2} for some γ = γ(ε) > 0 to be chosen, and then prove
analogues of (3.4), (3.5), (3.6), and (3.7). The proof of (3.4) is as in the sample-covariance
case, except that we use the classical result dKS(µ̂XN , µ̂AN ) ≤ 1

N rank(XN − AN ) [2,
Theorem A.43], which comes from interlacing of eigenvalues, instead of [2, Theorem
A.44] from interlacing of singular values as in the main text. The estimates (3.5) and
(3.7) are just as in the main text, and the estimate (3.6) is actually easier in the Wigner
case: Define P =

√
8Nγ and ε1(N) = 16

√
πNγ−1. Since

√
NAN has entries compactly

supported in [−Nγ , Nγ ], [19, Theorem 1.4(a)] gives

P(W1(µ̂AN ,E[µ̂AN ]) > ε) ≤ 128(P +
√
ε)

ε3/2
exp

(
−N2 1

64N2γ

[
ε5/2

128(P +
√
ε)
− ε1(N)

]2
)

as long as ε satisfies the implicit equation ε > (128(P +
√
ε)ε1(N))2/5, the right-hand side

of which is order N (2γ−1)(2/5), so that the implicit equation is satisfied for all N large
enough. Then the argument of the exponential is order N2−2γ+2(−γ), and the power in
the exponential is at least 1 for γ small enough, which suffices.

Remark C.2. This proof allows the laws of the entries of XN to be sharp sub-Gaussian
without having to be compactly supported or satisfying a log-Sobolev inequality. Let
us provide an example of such a law. For this, let us consider Z a standard Gaussian
variable, F = σ({Z ∈ [n, n+ 1[} : n ∈ Z) and let us define

Z̃ = sign(Z)
√
E[Z2|F ].
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The variable Z̃ is centered of variance 1. It is obviously not compactly supported,
and since it is supported on a discrete set of points, it cannot satisfy any log-Sobolev
inequality. It remains to see that Z̃ is sharp sub-Gaussian. For this, let us look at its
moments. Since the law of Z̃ is symmetric, for k ∈ N we have

E[Z̃2k+1] = 0

and for even moments, applying Jensen’s inequality, we have

E[Z̃2k] = E[E[Z2|F ]k] ≤ E[Z2k]

and Var(Z̃) = E[Z̃2] = E[E[Z2|F ]] = E[Z2] = 1. So since Z is Gaussian, we have for t ∈ R

E[exp(tZ̃)] ≤ E[exp(tZ)] ≤ exp
( t2

2

)
,

meaning Z̃ is indeed sharp sub-Gaussian.

D Deformed Wigner matrices

In this appendix, we use our techniques to improve previous results of the second
author for so-called “deformed Wigner matrices” [31]. In this model, one considers an
N ×N random matrix

XN =
WN√
N

+DN ,

either real-symmetric or complex-Hermitian, where WN has i.i.d. entries up to symmetry
each distributed according to some centered probability measure µ (on R if β = 1 or on
C if β = 2), and where the deterministic matrix DN satisfies the following assumption,
which is weaker than the corresponding assumption from [31].

Assumption D.1. The matrix DN is real, diagonal, and deterministic, and its empirical
measure µ̂DN tends weakly as N → ∞ to a compactly supported probability measure
µD, and there are asymptotically no external outliers, in the sense that

λmax(DN )→ r(µD),

λmin(DN )→ `(µD).

Remark D.2. A word on notation: Many of the objects we used in studying the gener-
alized sample-covariance-case have analogues here. We have chosen to overload the
notation rather than cluttering it. For example, the generalized-sample-covariance case
has a threshold xc, defined in (2.3). We will need an analogous threshold here, and even
though the definition (D.1) is different, we still call the new version xc rather than, e.g.,
x

(dw)
c . We have similarly overloaded H, the rate function I, and so on, with one notable

exception: The special function J(µ, θ, λ) given in Definition 3.1 is exactly the same in
both models.

The typical limiting behavior of the empirical measure for this model is classical
[34, 38]: We have

µ̂XN → ρsc � µD =: µsc
D,

where ρsc is the semicircle law ρsc(dx) =

√
(4−x2)+

2π dx, the notation � denotes the
free (additive) convolution of two compactly supported probability measures, and µsc

D

is shorthand. We recall that � is defined in terms of the Voiculescu R-transform,
which will be important for us: For a compactly supported probability measure µ,
we recall the Stieltjes transform Gµ, which is a decreasing bijection from (r(µ),+∞)
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to (0, Gµ(r(µ))). We write its inverse as Kµ : (0, Gµ(r(µ))) → (r(µ),+∞), and its R-
transform as Rµ(y) = Kµ(y) − 1

y , which linearizes free convolution in the sense that
Rµ�ν = Rµ +Rν .

The following lemma defines functions we need to write the rate function.

Lemma D.3. The function H : (0,∞)→ R defined by

H(y) :=

{
y +KµD (y) if 0 ≤ y ≤ GµD (r(µD)),

y + r(µD) if y ≥ GµD (r(µD)),

has the following properties:

• H is continuous and convex.

• H is uniquely minimized at yc = Gρµsc
D

(r(µsc
D)), which is in (0, GµD (r(µD))], and

H(yc) = r(µsc
D).

• There exists a continuous, strictly increasing function G̃ : [r(µsc
D),+∞) → R with

the following properties:

– If 0 ≤ y ≤ GµD (r(µD)), then H(G̃(y)) = y, and

{w : H(w) = y} = {Gµsc
D

(y), G̃(y)}.

– We have G̃(y) > Gµsc
D

(y) for y > r(µsc
D), and G̃(r(µsc

D)) = Gµsc
D

(r(µsc
D)).

Definition D.4. Define I : R→ [0,+∞] by

I(x) =

{
+∞ if x < r(ρsc � µD),
1
2

∫ x
r(ρsc�µD)

(G̃(y)−Gρsc�µD (y)) dy if x ≥ r(ρsc � µD).

Theorem D.5. Suppose that Assumption D.1 holds, and that µ is sharp sub-Gaussian
(in the sense of Definition 2.1 if β = 1, or in the sense of Definition 2.20 if β = 2). Then
λmax(XN ) satisfies a large deviation principle at speed N with the good rate function
I(β) = βI. This function is convex, strictly increasing on [r(ρsc � µD),+∞) (in particular,
vanishes uniquely at r(ρsc � µD)), and

lim
x→+∞

I(β)(x)
βx2

4

= 1.

If µ is actually Gaussian, then by rotational invariance we do not need to assume that
DN is diagonal; we can just assume it is symmetric (if β = 1) or Hermitian (if β = 2) and
satisfies the rest of Assumption D.1.

Remark D.6. This improves upon the result of [31], which showed a weaker version
of Theorem D.5 requiring three additional assumptions: First, that either µ actually be
Gaussian measure (i.e., that WN√

N
be GOE/GUE), or that the important threshold

xc = xc(µD) :=

{
r(µD) +GµD (r(µD)) if GµD (r(µD)) < +∞,
+∞ otherwise

(D.1)

be infinite; second, that µ be either compactly supported or satisfy the log-Sobolev
inequality; third, that the deformation tend to its limit at some mild polynomial speed,
dBL(µ̂DN , µD) . N−ε for some ε > 0. However, the rate function was given there in a
different form; below we show that the forms are equivalent.

We get rid of the second and third assumptions using the methods of Appendix
C. We get rid of the first assumption as in the main text, namely by approximating
xc < +∞ models with a sequence of xc = +∞ models, then using textbook results about
approximating LDPs.
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Definition D.7. For any x ≥ r(ρsc � µD) and any θ ≥ 0, define

I(x, θ) := J(ρsc � µD, θ, x)− θ2 − J(µD, θ, r(µD)).

Using this, define the rate function Ĩ : R→ [0,+∞] by

Ĩ(x) :=

{
+∞ if x < r(ρsc � µD),

supθ≥0 I(x, θ) if x ≥ r(ρsc � µD).

Lemma D.8. If xc(µD) = +∞, then I = Ĩ.

Lemma D.9. If Assumption D.1 holds, and µ is sharp sub-Gaussian, and

xc(µD) = +∞,

then λmax(XN ) satisfies a large deviation principle at speed N with the good rate function
I.

Lemma D.10. Lemma D.9 implies Theorem D.5.

Proof of Lemma D.3. Continuity is easy to check. Since GµD is strictly convex on
(r(µD),+∞), the function KµD is strictly convex on (0, GµD (r(µD))), so that H is con-
vex, indeed strictly on (0, GµD (r(µD))). Since the boundary behavior is limy→0H(y) =

limy→+∞H(y) = +∞, we have that H is uniquely minimized at some yc, which must be
in (0, GµD (r(µD))]. On the other hand, let ys := Gµsc

D
(r(µsc

D)). Lemma 6.1 of [18] gives
ys ≤ min(Gρsc(r(ρsc)), GµD (r(µD)), and a computation in the proof of Proposition 6.1
in [31] shows G′µD (ys) = −1, and thus, via differentiating y = KµD (GµD (y)) in y and
evaluating at ys, that H ′(ys) = 0. Thus ys = yc. Another computation in the proof of
Proposition 6.1 in [31] shows H(ys) = r(µsc

D).

Now we study G̃. Since Rρsc(y) = y in our normalization, we have H(y) = Rρsc(y) +

RµD (y) + 1
y = Kρsc�µD (y) for y < yc. Since H is continuous, strictly convex on (0, b) for

some b, affine increasing on (b,+∞), and minimized at yc ∈ (0, b], it is easy to see that
#{w : H(w) = y} is zero for y < H(yc), one for y = H(yc), and two for y > H(yc); that
the smaller of these elements is Gρsc�µD (y); and that, if G̃ denotes the inverse of H on

(yc,+∞), then G̃ has the claimed properties.

Proof of Lemma D.8. The proof goes as in the generalized-sample-covariance case, i.e.,
by showing that I and Ĩ have the same derivative on (r(ρsc � µD),+∞), and both vanish
at r(ρsc � µD). We rely on two computations already carried out in Proposition 6.1 of
[31]. The first of these shows that Ĩ vanishes at r(ρsc � µD). The second shows that,
for each x > r(ρsc � µD), we have Ĩ(x) = I(x, θx), where θx is the unique solution to the
constrained problem

H(2θx) = 2θx +KµD (2θx) = x subject to 2θx ∈ (Gρsc�µD (r(ρsc � µD)), GµD (r(µD))),

which in the new language of branches of Stieltjes transforms we recognize as θx =
1
2 G̃(x); and that this maximizer is unique, i.e., I(x, θ) < Ĩ(x) if θ 6= θx. Thus

d

dx
Ĩ(x) =

∂

∂x
I(x, θ)

∣∣∣∣
θ=θx

=
∂

∂x
J(ρsc � µD, θ, x)

∣∣∣∣
θ=θx

= θx −
1

2
Gρsc�µD (x) =

1

2
(G̃(x)−Gρsc�µD ),

which completes the proof.
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Proof of Lemma D.9. As stated above, this is the main result of [31], except that (a) the
rate function was written there as βĨ (which Lemma D.8 shows is irrelevant), and (b)
that paper required µ to be either compactly supported or to satisfy log-Sobolev, and
required

dBL(µ̂DN , µD) ≤ CN−ε (D.2)

for some C and ε. Under the additional (b) assumptions, Lemma 5.3 of [31] showed

lim
N→∞

1

N
logP(dBL(µ̂XN , ρsc � µD) > N−κ) = −∞

for κ > 0 sufficiently small. Obtaining this small polynomial speed (a) required (a very
weak consequence) of the local law [13], and (b) was the essential reason for requiring
(D.2). But Appendix C explains that it actually suffices to show

lim
N→∞

1

N
logP(dBL(µ̂XN , ρsc � µD) > ε) = −∞ (D.3)

for every ε > 0; this allows us to drop the requirement of (D.2), and to give a proof
bypassing the local law. To do this, as in Appendix C, we split WNN

−1/2 = A + B =

AN + BN with Aij = WijN
−1/21{

∣∣WijN
−1/2

∣∣ ≤ Nγ−1/2} for some γ = γ(ε) > 0 to be
chosen, then decompose XN = (A+DN ) + (B +DN ) and show analogues of (3.4), (3.5),
(3.6), and (3.7). The analogues of (3.4), (3.5), and (3.7) go through exactly as before.
The analogue of (3.6) is the estimate

lim
N→∞

1

N
logP(dBL(µ̂A+DN ,E[µ̂A+DN ]) > ε) = −∞.

In Appendix C, when DN = 0, we noted that
√
NA had entries compactly supported

in [−Nγ , Nγ ], and applied results of [19]. When DN = 0, the matrix
√
N(A + DN ) has

entries compactly supported in boxes of size order Nγ , but whose centers have shifted
away from zero. This requires a straightforward modification of the results of [19], which
was already stated as Lemma 5.9 of [31]. This completes the proof of (D.3).

Proof of Lemma D.10. This proof also goes as in the generalized-sample-covariance case.
We use throughout results of Lemma D.3, and only write the case β = 1 for simplicity.

From its definition and Lemma D.3, we see that the rate function has the form
I(x) = 1

2

∫ x
r(ρsc�µD)

g(y) dy, where g is strictly increasing, positive for arbitrarily small

arguments, and limx→+∞
g(x)
x = 1; this proves the claimed properties of I.

Fix once and for all some µD with xc(µD) < +∞, and write di = d
(N)
i for the diagonal

entries of DN , i.e., DN = diag(d1, . . . , dN ). For ε > 0, define D
(ε)
N = diag(d

(ε)
1 , . . . , d

(ε)
N ),

where d(ε)
i = di if di ≤ r(µD)− ε and d(ε)

i = r(µD) otherwise. Then set

X
(ε)
N = N−1/2WN +D

(ε)
N ,

coupled with XN by using the same randomness WN . Set µ(ε)
D as in (4.1), and notice that

if ε→ 0 avoids any atoms present near r(µD), we have that the empirical measure of X(ε)
N

tends to ρsc � µ
(ε)
D , with a corresponding function H(ε). By construction, r(µ(ε)

D ) = r(µD),

but G
µ

(ε)
D

(r(µ
(ε)
D )) = +∞ for each ε, so that λmax(X

(ε)
N ) satisfies an LDP at speed N with

the good rate function I(ε) defined as

I(ε)(x) =

{
+∞ if x < r(ρsc � µ

(ε)
D ),

1
2

∫ x
r(ρsc�µD)

(G̃(ε)(y)−G
ρsc�µ

(ε)
D

(y)) dy if x ≥ r(ρsc � µ
(ε)
D ),

EJP 29 (2024), paper 187.
Page 45/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1228
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDP for λmax of generalized sample covariance matrices

where G̃(ε) is defined as in Lemma D.3 for the measure µ(ε)
D .

To finish the proof, we just need analogues of Lemmas 4.2, 4.3, and 4.4. The analogue
of Lemma 4.3 is even easier here, since ‖XN −X(ε)

N ‖ ≤ ε deterministically. Lemma 4.4
was essentially a consequence of Lemma 4.2, and this remains true here, so we only
need the analogue of Lemma 4.2.

Towards this result: Similar arguments as in the main text show that, for each
x > r(µD) = r(µ

(ε)
D ), the function ε 7→ G

µ
(ε)
D

(x) is non-decreasing for small ε > 0, so

that ε 7→ K
µ

(ε)
D

(y) is non-decreasing, and thus ε 7→ H(ε)(y) is non-decreasing. Thus

ε 7→ r(ρsc � µ
(ε)
D ) is non-decreasing, and lim infε↓0 r(ρsc � µ

(ε)
D ) ≥ r(ρsc � µD). For the

other inequality, it is clear that H(ε) converges to H uniformly on all compact subsets
of (0, GµD (r(µD))]. But H(ε)(y) − y is strictly decreasing in y, and tends to r(µD) as
y → +∞; thus H(ε) tends to H uniformly on all compact subsets of (0,+∞), and hence

limε→0 r(ρsc�µ
(ε)
D ) = r(ρsc�µD). Finally, for r > r(ρsc�µD) and ε small enough we have

the representations

I(ε)(x) =
1

2

∫ x

0

∫ ∞
0

1H(ε)(u)≤t dudt and I(x) =
1

2

∫ x

0

∫ ∞
0

1H(u)≤t dudt,

so that again I(ε)(x) ≤ I(x) with supx∈[a,b]

∣∣I(ε)(x)− I(x)
∣∣ ≤ Leb(D

(ε)
b ), with D

(ε)
b rede-

fined appropriately. The sets D(ε)
b are again nested with empty intersection, so their

Lebesgue measure tends to zero if it is finite. Before this finiteness was immediate, but
here takes a moment’s thought: Since limy→+∞H(y) = +∞, there exists c with H(y) ≥ b
for all y ≥ c, and then D(ε)

b ⊂ [0, b]× [0, c], so Leb(D
(ε)
b ) < +∞. The rest of the proof goes

as in the main text.
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