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Inverting Ray-Knight identities on trees*
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Abstract

In this paper, we first introduce the Ray-Knight identity and percolation Ray-Knight
identity related to loop soup with intensity α(≥ 0) on trees. Then we present the
inversions of the above identities, which are expressed in terms of repelling jump
processes. The inversion in the case of α = 0 gives the conditional law of a continuous-
time Markov chain given its local time field; while the inversion in the case of α > 0

gives the conditional law of a Markovian loop soup given its local time field. We further
show that the fine mesh limits of these repelling jump processes are the self-repelling
diffusions involved in the inversion of the Ray-Knight identity on the corresponding
metric graph.
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1 Introduction

Imagine a Brownian crook who spent a month in a large metropolis. The number of
nights he spent in hotels A, B, C, · · · , etc. is known; but not the order, nor his itinerary.
So the only information the police have is the total hotel bills. This vivid story is quoted
from [25], which is also the paper from which the name ‘Brownian burglar’ comes. In
[25], Warren and Yor constructed the Brownian burglar to describe the law of reflected
Brownian motion conditioned on its local time field. Meanwhile, Aldous [3] used the
tree structure of the Brownian excursion to show that the genealogy of the conditioned
Brownian motion is a time-changed Kingman coalescent. The article [25] can be viewed
as a construction of the process in time while [3] as a construction in space. Here we
consider the analogous problem for continuous-time Markov chains (CTMC) on electric
networks.

(Q1) How can we describe the law of a CTMC conditionally on its local time field?
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Inverting Ray-Knight identities on trees

This problem can actually be seen as a special case in a more general class of recovery
problems that we are to explain. The local time field of a CTMC is considered in the
generalized second Ray-Knight theorem, which provides an identity between the law of
the sum of half of a squared Gaussian free field (GFF) with boundary condition 0 and the
local time field of an independent Markovian path on the one hand, and the law of half
of a squared GFF with boundary condition

√
2u on the other hand (see [8]). We call this

identity a Ray-Knight identity. It is well-known that the local time field of a loop soup
with intensity α = 1/2 is distributed as half of a squared GFF by Le Jan’s isomorphism
[14, §6.2]. Therefore the generalized second Ray-Knight identity can also be stated using
the loop soup with intensity 1/2. In the case of a loop soup with arbitrary intensity α > 0,
an analogous identity holds: adding the local time field of a CTMC to the local time
field of a loop soup with ‘boundary condition’ 0 gives the distribution of the local time
field of a loop soup with ‘boundary condition’ u, see Proposition 2.2 below for a precise
statement. We call any such identity a Ray-Knight identity. Inverting the Ray-Knight
identity refers to recovering the CTMC conditioned on the total local time field.

Vertex-reinforced jump processes (VRJP), conceived by Werner and first studied by
Davis and Volkov [5, 6], are continuous-time jump processes favouring sites with higher
local times. Surprisingly, Sabot and Tarrès [24] found that a time change of a variant
of VRJP provides an inversion of the Ray-Knight identity on a general graph in the case
α = 1/2. It is natural to wonder whether an analogous description holds for an arbitrary
intensity α.

(Q2) For any α > 0, how can we describe the process that inverts the Ray-Knight identity
related to loop soup with intensity α > 0?

Note that (Q1) can be viewed as a special case of (Q2) with α = 0 if we generalize (Q2).
Intuitively, when α = 0, the external interference of the loop soup disappears. Hence
it reduces to extracting the CTMC from its own local time field. Another equivalent
interpretation of (Q2) is to recover the loop soup with intensity α conditioned on its local
time field.

In [15], Lupu gave a ‘signed version’ of Le Jan’s isomorphism where the loop soup
at intensity α = 1/2 is naturally coupled with a signed GFF. In [17, Theorem 8], Lupu,
Sabot, and Tarrès gave the corresponding version of the Ray-Knight identity (we call it a
percolation Ray-Knight identity). Besides the identity of local time fields, by adding a
percolation along with the Markovian path and finally sampling signs in every connected
component of the percolation, one can start with a GFF with boundary condition 0 and
end up getting a GFF with boundary condition

√
2u. The inversion of the percolation

Ray-Knight identity is represented as another self-interacting process [17, §3]. This leads
to the following question.

(Q3) Can we generalize the percolation Ray-Knight identity to the case of loop soup with
intensity α > 0? If so, how can we describe the process that inverts the percolation
Ray-Knight identity?

The analogous problems can also be considered for Brownian motion and Brownian
loop soup. In [18], Lupu, Sabot, and Tarrès constructed a self-repelling diffusion out
of a divergent Bass-Burdzy flow which inverts the Ray-Knight identity related to GFF
on the line and showed that the self-repelling diffusion is the fine mesh limit of the
vertex repelling jump processes involved in the case of grid graphs on the line. More
generally, it was shown in [25, 2] that the self-repelling diffusion inverting the Ray-Knight
identity on the positive half line can be constructed either with the burglar process or
the Bass-Burdzy flow.

We want to explore the relationship between the repelling jump processes in (Q1)-(Q3)
and the self-repelling diffusions in [2, 3, 25]. Our last question is the following.
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Inverting Ray-Knight identities on trees

(Q4) Are the fine mesh limits of the repelling jump processes involved in (Q1)-(Q3) the
self-repelling diffusions?

In this paper, we will focus on the case where the graph in the electric network
is a tree and give a complete answer to the above questions (Q1)-(Q4). It is shown
that the percolation Ray-Knight identity has a simple form. We construct two repelling
jump processes, namely the vertex repelling jump process and the percolation vertex
repelling jump process, that invert the Ray-Knight identity and percolation Ray-Knight
identity related to loop soup respectively, and show that the fine mesh limits of these
repelling jump processes are self-repelling diffusions involved in the inversion of the
Ray-Knight identity on the corresponding metric graph. Besides, the inversions in the
case of general graphs have been constructed in another paper of ours in preparation,
whose jump rates are expressed via the α-permanent of matrices. In particular, contrary
to the case of trees, the jump rates in the general case are generally non-local. We
restrict our discussion to the simple case of trees here mainly due to its own interests.

The main feature of this paper is the intuitive way of constructing vertex repelling
jump processes, which is rather different from [24, 17]. It is enlightened by the recovery
of the loop soup with intensity 1/2 given its local time field in [27, §2.5] and [26,
Proposition 7], where Werner involves the crossings of loop soup that greatly simplify
the recovery. In our case, the introduction of crossings translates the problem into a
‘discrete-time version’ of inverting Ray-Knight identity, which can be stated as recovering
the path of a discrete-time Markov chain conditioned on the number of crossings over
each edge, see Proposition 3.4. This inversion has a surprisingly nice description, which
can be seen as a ‘reversed’ oriented version of the edge-reinforced random walk (ERRW).

The paper is organized as follows. In §2, we introduce the Ray-Knight identity and
percolation Ray-Knight identity related to loop soup and give the main results of the
paper. In §3-4, the vertex repelling jump process and the percolation vertex repelling
jump process are shown to invert the Ray-Knight identity and the percolation Ray-Knight
identity respectively. In §5, we verify that the mesh limits of repelling jump processes
are the self-repelling diffusions. In Appendix A, we give the rigorous definition and basic
properties of a class of self-interacting processes called processes with terminated jump
rates, which contains repelling jump processes.

2 Statements of main results

In this section, we first recall the Ray-Knight identity. Then we introduce a new
Ray-Knight identity that we call percolation Ray-Knight identity. Finally, we present
our results concerning the inversion of these identities and the fine mesh limit of the
inversions.

2.1 Notation

We will use the following notation throughout the paper. N = {0, 1, 2, · · · }, R+ =

[0,∞). For any stochastic process R on some state space S, for t, u ≥ 0, x ∈ S, and a
specified point x0 ∈ S, we denote by

• LR(t, x) the local time of R. When S is discrete, LR(t, x) :=
∫ t

0
1{Rs=x} ds;

• τRu := inf{t > 0 : LR(t, x0) > u} the right-continuous inverse of t 7→ LR(t, x0);

• TR the lifetime of R;

• HR
x := inf{t > 0 : Rt = x} the hitting time of x;

• R[0,t] := (Rs : 0 ≤ s ≤ t) the path of R up to time t.
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The superscripts in the above notation are omitted when R = X, the CTMC to be
introduced immediately.

For any measurable subset D of S, the print of R on D is defined to be the process(
RA−1(t) : 0 ≤ t < A(TR)

)
, where A(t) =

∫ t
0

1{Rs∈D} ds and A−1 is the right-continuous
inverse of A.

2.2 Ray-Knight identity related to loop soup

Consider a tree T, i.e. a finite or countable connected graph without cycle, with root
x0. Denote by V its set of vertices, by E, resp. ~E, its set of undirected, resp. directed,
edges. Assume that any vertex x ∈ V has finite degree. We write x < y if x is an ancestor
of y and x ∼ y if x and y are neighbours. Denote by p(x) the parent of x. For x ∼ y, we
simply write xy := (x, y) for a directed edge. The tree is endowed with a killing measure
(kx)x∈V on V and conductances (Cxy)xy∈~E on ~E. We assume Cxy > 0 for any xy ∈ ~E and

define Cxy := 0 for xy /∈ ~E. We do not assume the symmetry of the conductances at the
moment. Write C∗xy = C∗yx =

√
CxyCyx for x ∼ y.

The conductances and killing measure naturally induce an irreducible CTMC X =

(Xt)0≤t<TX on V which being at x, jumps to a neighbour y with rate Cxy and is killed
with rate kx. TX is the time when the process is killed or explodes. Let L = Lα be the
unrooted oriented loop soup with parameter α > 0 associated to X. (See for example [4,
§4.1] for the precise definition.)

Denote by L·(L) the local time field of L, i.e. for all x ∈ V , Lx(L) is the sum of the
occupation time at x of each loop in L. It is well-known (Cf. for example [4, Corollary
4.3]) that when X is transient, Lx(L) follows a Gamma(α,G(x, x)−1) distribution1, where
G is the Green function of X; when X is recurrent, Lx(L) =∞ for all x ∈ V a.s.. We first
suppose X is transient, which ensures that the conditional distribution of L given Lx0(L)

exists. For u ≥ 0, let L(u) have the law of L given Lx0(L) = u. Without particular mention,
we always assume that X starts from x0. The next proposition (see [17, Proposition 3.7]
or [4, Proposition 5.3]) connects the path of X with the loops in L(u) that visit x0.

Proposition 2.1. For any u > 0, consider the path (Xt)0≤t≤τu conditioned on τu < TX .
Let D = (d1, d2, · · · ) be a Poisson-Dirichlet (0, α) partition, independent of X. Set
sn := u ·

∑n
k=1 dk. Then the family of the unrooted loops{

π

((
Xτsj−1

+t

)
0≤t≤τsj−τsj−1

)
: j ≥ 1

}
is distributed as the family of the loops in L(u) that visit x0, where π is the quotient map
that maps a rooted loop to its corresponding unrooted loop.

By Proposition 2.1, we can take L(0) = {γ ∈ L : γ does not visit x0} and L(u) to be the
collection of loops in L(0) and loops derived by partitioning X[0,τu], where X and L(0) are
required to be independent. This special choice of

(
L(u) : u ≥ 0

)
provides a continuous

version of the conditional distribution. We work on this version from now on. Note
that the above definition also makes sense when α = 0. In this case, L(0) = ∅ and L(u)

consists of a single loop π
(
X[0,τu]

)
(Poisson-Dirichlet (0, 0) partition is considered as the

trivial partition D = (1, 0, 0, · · · )). So we also allow α = 0 henceforth. The generalized
second Ray-Knight theorem related to loop soup reads as follows, which is direct from
the above definition.

Proposition 2.2 (Ray-Knight identity). Let L(0) and X be independent. Then for u > 0,
conditionally on τu < TX ,(

Lx(L(0)) + L(τu, x)
)
x∈V

has the same law as
(
Lx(L(u))

)
x∈V

.

1The density of Gamma(a, b) distribution at x is 1{x>0}
ba

Γ(a)
xa−1e−bx.
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2.3 Percolation Ray-Knight identity related to loop soup

In this part, we assume the symmetry of the conductances (i.e. Cxy = Cyx for any
x ∼ y) and that 0 < α < 1. An element O in {0, 1}E is also called a configuration on E.
When O(e) = 1 (resp. O(e) = 0), the edge e is thought of as being open (resp. closed). A
percolation on E refers to a random configuration on E.

Definition 2.3. For u ≥ 0, let O(u) be the percolation on E such that, conditionally on
L·(L(u)) = `:

(i) edges are open independently;

(ii) the edge {x, y} is open with probability
I1−α

(
2Cxy

√
`x`y

)
Iα−1

(
2Cxy

√
`x`y

) , if `x, `y > 0;

0, if `x ∧ `y = 0,

(2.1)

where Iν is the modified Bessel function of the first kind: for ν ≥ −1 and z > 0,

Iν(z) = (z/2)ν
∞∑
n=0

(z/2)2n

n! Γ(n+ ν + 1)
.

Remark 2.4. Let Kν(z) := π
2
I−ν(z)−Iν(z)

sin(νπ) , ν ≥ −1 and z > 0 (when ν is an integer, the
right-hand side is replaced by its limiting value), which is the modified Bessel function of
the second kind. It holds that Kν(z) > 0 for ν ≥ 0 and z > 0 (Cf. [20, Theorem 8.1]). This
implies that the quantity in (2.1) is less than 1.

Consider the loop soup L(0) and the percolation O(0). For t ≥ 0, define the aggregated
local times

φt(x) := Lx(L(0)) + L(t, x), x ∈ V. (2.2)

The process X := (Xt,Ot)0≤t≤τu is defined as follows: (X0,O0) :=
(
x0,O(0)

)
. Condi-

tionally on L·(L(0)) and (Xs : 0 ≤ s ≤ t), if Xt = x, then for any y ∼ x,

• Xt jumps to y with rate Cxy and Ot({x, y}) is set to 1 after jumping (if it was not
already).

• In case Ot({x, y}) = 0, Ot({x, y}) is set to 1 without Xt jumping with rate
Cxy

√
φt(y)

φt(x)
·
Kα

(
2Cxy

√
φt(x)φt(y)

)
K1−α

(
2Cxy

√
φt(x)φt(y)

) , if φt(x), φt(y) > 0;

0, if φt(y) = 0;

∞, if φt(x) = 0 and φt(y) > 0.

(2.3)

where Kν(z) is defined in Remark 2.4.

Be careful that although the rate is∞ in the case φt(x) = 0 and φt(y) > 0, {x, y} will not
be opened immediately. Indeed, conditionally on Xt having no jump during [t, t + ∆t],
the probability that {x, y} keeps closed until t+ ∆t is

exp

(
−
∫ ∆t

0

Cxy

√
φt(y)

s
·
Kα

(
2Cxy

√
sφt(y)

)
K1−α

(
2Cxy

√
sφt(y)

) ds

)
. (2.4)

Using the asymptotic Kν(z) ∼ 1
2Γ(ν)

(
1
2z
)−ν

as z → 0+, we have the above integrand
� s−α as s→ 0+. Hence, the probability in (2.4) goes to 1 as ∆t→ 0+. This implies a.s.
{x, y} will not be opened immediately.
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Theorem 2.5 (Percolation Ray-Knight identity). With the notation above, conditionally
on τu < TX , (φτu ,Oτu) has the same law as (L·(L(u)),O(u)).

Theorem 2.5 will be proved in §4. The process (Ot)0≤t≤τu has a natural interpretation
in terms of loop soup on a metric graph. Specifically, let T̃ be the metric graph associated
to T, where the edges are considered as intervals, so that one can construct a Brownian
motion B which moves continuously on T̃, and whose print on the vertices is distributed
as X (see §4 for details). Let L̃(0) be the unrooted oriented loop soup with intensity α
associated to B with ‘boundary condition’ 0 at x0. Starting with L̃(0) and an independent
Brownian motion B starting at x0, one can consider the field (φ̃t(x), x ∈ T̃) which is the
aggregated local time at x of the loop soup L̃(0) and the Brownian motion B up to time t.
Then one can construct Ot as the configuration where an edge e is open if the field φ̃t
does not have any zero on the edge e. See Proposition 4.1.

To study the link between the loop soup on the discrete graph and that on the metric
graph is the motivation we introduce the percolation Ray-Knight identity. In [15], Lupu
uses this link to provide new insights into the isomorphism theorem. We restrict to the
case 0 < α < 1 because the other cases are trivial in the metric graph setting: when
α ≥ 1, a.s. φ̃t > 0 everywhere for any t > 0; when α = 0, φ̃t has no zero on e if and only if
e is crossed by B[0,t].

Remark 2.6. Since the laws involved in the Ray-Knight and percolation Ray-Knight do
not depend on the killing rate kx0

(due to the conditioning τu < TX), we can generalize
the above results to the case where X is recurrent.

2.4 Inversion of Ray-Knight identities

To ease the presentation, write φ(u) for L·(L(u)) from now on. Theorem 2.5 allows us
to identify (φ(u),O(u)) with (φτu ,Oτu), which we will do.

Definition 2.7. We call the triple (
φ(0), X[0,τu], φ

(u)
)

a Ray-Knight triple (with parameter α) associated to X. Similarly, recalling the notation
Xt = (Xt,Ot), the triple (

(φ(0),O(0)),X[0,τu], (φ
(u),O(u))

)
will be called a percolation Ray-Knight triple.

Inverting the Ray-Knight, resp. percolation Ray-Knight identity is to deduce the
conditional law of X[0,τu], resp. X[0,τu], given φ(u), resp. (φ(u),O(u)).

We introduce an adjacency relation on V × {0, 1}E: For (x,O1), (y,O2) ∈ V × {0, 1}E ,
(x,O1) and (y,O2) are neighboured if they satisfy either one of the followings: (1)O1 = O2

and x ∼ y; (2) O1 and O2 differ by exactly one edge e and x, y ∈ e. This defines a graph
T′ with finite degree and Xt is a nearest-neighbour jump process on T′.

The inversion of Ray-Knight identities is expressed in terms of several processes
defined by jump rates. Readers are referred to Appendix A for the rigorous definition
and basic properties of such processes. All the continuous-time processes defined below
are assumed to be right-continuous, minimal, nearest-neighbour jump processes with
a finite or infinite lifetime. The collection of all such sample paths on T (resp. T′) is
denoted by Ω (resp. Ω′).

Given λ ∈ (R+)V , set for t ≥ 0, x, y ∈ V with x ∼ y, and ω ∈ Ω with Tω > t,

Λt(x) = Λt(λ, ω)(x) = Λt(λ, ω[0,t])(x) := λ(x)−
∫ t

0

1{ωs=x} ds,

ϕt(xy) = ϕt(λ, ω)(xy) = ϕt(λ, ω[0,t])(xy) := 2C∗xy
√

Λt(x, ω)Λt(y, ω).

(2.5)
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Intuitively, λ is viewed as the initial local time field and Λt stands for the remaining local
time field while running the process ω until time t. Although these quantities depend
on ω, we will systematically drop the notation ω for the sake of concision whenever the
process is clear from the context.

2.4.1 Inversion of Ray-Knight identity

Keep in mind that most of the following definitions have a parameter α ≥ 0, which is
always omitted in the notation for simplicity.

Set

R =

{{
λ ∈ (R+)V : λ(x) > 0 ∀x ∈ V

}
, if α > 0;{

λ ∈ (R+)V : λ(x0) > 0, supp(λ) is connected and finite
}
, if α = 0.

(2.6)

Note that with probability 1, φ(u) ∈ R. We will take R as the range of φ(u) and consider
only the law of X[0,τu] given φ(u) = λ ∈ R.

Now define the vertex repelling jump process we are interested in. Given λ ∈ R, its
distribution Pλx0

on Ω verifies that the process ω = (ωt, 0 ≤ t < Tω) starts at ω0 = x0,
behaves such that

• conditionally on t < Tω and (ωs : 0 ≤ s ≤ t) with ωt = x, it jumps to a neighbour y
of x with rate

rλt (x, y, ω[0,t]) :=


C∗xy

√
Λt(y)

Λt(x)
· Iα−1 (ϕt(xy))

Iα (ϕt(xy))
, if y = p(x),

C∗xy

√
Λt(y)

Λt(x)
· Iα (ϕt(xy))

Iα−1 (ϕt(xy))
, if x = p(y);

(2.7)

• (resurrect mechanism). every time lim
s→t−

Λs(ωs) = 0 and ωt− 6= x0, it jumps to p(ωt−)

at time t.

It finally stops at time Tω = Tλ(ω) = Tλ0 (ω) ∧ Tλ∞(ω) with

Tλ0 (ω) := sup
{
t ≥ 0 : Λt(x0) > 0

}
;

Tλ∞(ω) := sup
{
t ≥ 0 : ω[0,t] has finitely many jumps

}
.

Here Tλ0 represents the time when the local time at x0 is exhausted. The process can be
roughly described as follows: the total local time available at each vertex is given at the
beginning. As the process runs, it eats the local time. The jump rates are given in terms
of the remaining local time. It finally stops whenever the available local time at x0 is
used up or an explosion occurs.

Remark 2.8. It holds that I1 = I−1 and as z ↓ 0,

Iν(z) ∼

{
Γ(ν + 1)−1( 1

2z)
ν , if ν > −1;

1
2z, if ν = −1.

Hence,

for α > 0, Iα−1(z)/Iα(z) ∼ αz−1; I−1(z)/I0(z) ∼ z. (2.8)

The different behaviors in (2.8) for α > 0 and α = 0 indicate different behaviors of the
vertex repelling jump process in the two cases. Intuitively speaking, when α > 0, as
the process continues to stay at some x 6= x0, the jump rate to p(x) goes to infinity. So
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it actually does not need the resurrect mechanism in this case, and there is still some
positive local time left at any vertex other than x0 at the end. While in the case α = 0, the
process exhibits a different picture. As it continues to stay, the jump rate to the children
goes to infinity when α = 0. So the process is ‘pushed’ to the boundary of supp(λ) and
exhausts the available local time at one of the boundaries. To guide the process back to
x0, we resurrect it by letting it jump to the parent of the vertex. In this way, the process
finally ends up exhausting all the available local time at each vertex.

By Remark 2.8, we can see that the vertex repelling jump process is in line with our
intuition about the inversion of Ray-Knight identity. Since in the case α > 0, the given
time field includes the external time field φ(0), the inversion process will only use part
of the local time at any vertex other than x0 and end up exhausting the local time at x0.
While in the case α = 0, the given time field is exactly the local time field of the CTMC
itself, the inversion process will certainly use up the local time at each vertex.

Theorem 2.9. Suppose
(
φ(0), X[0,τu], φ

(u)
)

is a Ray-Knight triple associated to X. For
any λ ∈ R, the conditional distribution of X[0,τu] given τu < TX and φ(u) = λ is Pλx0

.

2.4.2 Inversion of percolation Ray-Knight identity

Assume the symmetry of the conductances and that 0 < α < 1. Our goal is to introduce
the percolation vertex repelling jump process that inverts the percolation Ray-Knight
identity. Given λ ∈ R and a configuration O on E, the distribution Pλ(x0,O) on Ω′ verifies

that the process ω = (ωt, 0 ≤ t < Tω) (the first coordinate being a vertex in V and the
second coordinate a configuration on E) starts at (x0, O), moves such that conditionally
on t < Tω and (ωs : 0 ≤ s ≤ t) with ωt = (x,O1), it jumps from (x,O1) to (y,O2) with rate

1{O1({x,y})=1}Cxy

√
Λt(y)

Λt(x)
· I1−α (ϕt(xy))

Iα (ϕt(xy))
, if y = p(x), O1 = O2,

1{O1({x,y})=1}Cxy

√
Λt(y)

Λt(x)
· Iα (ϕt(xy))

I1−α (ϕt(xy))
, if x = p(y), O1 = O2,

Cxy

√
Λt(y)

Λt(x)
· Iα−1 (ϕt(xy))− I1−α (ϕt(xy))

Iα (ϕt(xy))
, if y = p(x), O2 = O1 \ {x, y},

Cxz

√
Λt(z)

Λt(x)
· I−α (ϕt(xz))− Iα (ϕt(xz))

I1−α (ϕt(xz))
,

if x = y,O2 = O1 \ {x, z}
for z with x = p(z),

(2.9)

and stops at time Tω = Tλ,O(ω) when the process explodes or uses up the local time
at x0. Here for ω = (ω1, ω2) ∈ Ω′, Λt(x, ω), ϕt(xy, ω) are defined as Λt(x, ω

1), ϕt(xy, ω1)

respectively.

Theorem 2.10. Suppose ((φ(0),O(0)),X[0,τu], (φ
(u),O(u))) is a percolation Ray-Knight

triple associated to X. For any λ ∈ R and configuration O on E, the conditional
distribution of (Xτu−t)0≤t≤τu given

(
φ(u),O(u)

)
= (λ,O) and τu < TX is Pλ(x0,O).

2.5 Mesh limit of vertex repelling jump processes

We only state the result in the case of simple random walks on dyadic grids, which
can be generalized to general CTMCs on trees (see Remark 5.8). Let B be a reflected
Brownian motion on R+. View 0 as the ‘root’ and let (φ̃(0), B[0,τBu ], φ̃

(u)) be a Ray-Knight
triple associated to B (defined in a similar way to that for CTMCs). The conditional law
of B[0,τBu ] given φ̃(u) = λ is the self-repelling diffusion Bλ, which can be constructed with
the burglar process. See §5 for details.

Denote Nk := 2−kN. Consider Tk = (Nk, Ek), where Ek :=
{
{x, y} : x, y ∈ Nk, |x− y|

= 2−k
}

, endowed with conductances Cke = 2k−1 on each edge and no killing. The induced
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CTMC X(k) is the print of B on Nk. Let
(
φ(0),k, X

(k)

[0,τX
(k)

u ]
, φ(u),k

)
be a Ray-Knight triple

associated to X(k). It holds that(
X

(k)

2kt
, LX

(k)

(2kt, x), φ(0),k(x)
)
t≥0,x∈R+

d→
(
Bt, L

B(t, x), φ̃(0)(x)
)
t≥0,x∈R+

,

where LX
(k)

(2kt, ·) and φ(0),k(·) are considered to be linearly interpolated outside Nk.
In view of this, for a sequence of λk ∈ Rk (Rk is R defined in (2.6) with V = Nk in

the definition) and a non-negative, continuous function λ on R+ such that λk converges
to λ (in the sense below), we naturally consider the vertex repelling jump processes
Xλk,(k), which is obtained by speeding up 2k times the process with the conditional law
of X(k)

[0,τX
(k)

u ]
given φ(u),k = λk. The jump rates of the process are given in (5.8). Denote

dλk := inf
{
x ∈ Nk : λk(x) = 0

}
and dλ := inf

{
x ∈ R+ : λ(x) = 0

}
.

Theorem 2.11. Let λk be a sequence in Rk and λ ∈ R̃ (defined in §5) such that λk
(linearly interpolated outside Nk) converges to λ for the local uniform topology. When
α = 0, further assume that dλk → dλ. Then the family of vertex repelling jump processes
Xλk,(k) converges weakly as k → ∞ to the self-repelling diffusion Bλ for the uniform
topology, where the processes are assumed to stay at 0 after the lifetime.

We close this section with two more remarks.

Remark 2.12. We analyze detailedly in Remark 3.12 and Remark 4.5 that the results
in [24] and [17] are special cases of Theorem 2.9 and Theorem 2.10 respectively when
α = 1/2 and the graph is the tree.

Remark 2.13. Let us explain here why the tree structure is important for the results in
the paper. The statements and proofs of most results in the paper (e.g. Theorem 2.9,
Theorem 2.10, Proposition 3.2, Proposition 3.4, Lemma 4.3) rely on the tree structure.
They would be much more complicated when generalized to general graphs. For example,
the jump rates in (2.7) are local meaning that they depend only on the remaining local
times at the current position and the positions nearby. This is due to the local property
of X (resp. L) on the tree graph: for any subtree T0 of T, the print of X (resp. L) on
T0 is independent of its local times outside T0. This property does not hold on general
graphs. So in general, the jump rates on the general graph are non-local which depend
on the remaining local times at all positions.

3 Inverting Ray-Knight identity

In this section, we will obtain the inversion of Ray-Knight identity. The main idea
is to first introduce the information on crossings and explore the law of CTMC con-
ditioned on both local times and crossings. Then by ‘averaging over crossings’, we
get the representation of the inversion as the vertex repelling jump process shown in
Theorem 2.9.

To begin with, observe that it suffices to only consider the case when X is recurrent.
In fact, for x ∈ V , we set h(x) = Px(Hx0 < TX), where Px is the law of X starting from
x. Let Y be the CTMC on V starting from x0 induced by conductances Chxy = h(y)

h(x)Cxy
and no killing. It follows from Proposition A.15 that Y is recurrent and Y[0,τYu ] has the
law of X[0,τu] conditioned on τu < TX . Note that Y can also be obtained by removing the
killing rate at x0 from the h-transform of X (the latter process is killed at x0 with rate
Cx0 − Chx0

, where Cx = kx +
∑
y:y∼x Cxy and Chx =

∑
y:y∼x C

h
xy). Combine the two facts:

(1) the law of the loop soup is invariant under h-transforms (Cf. [4, Proposition 3.2]); (2)
the law of the Ray-Knight triple does not depend on the killing rate at x0. We have the
Ray-Knight triple associated to X has the same law as that associated to Y . Then it is
easy to deduce Theorem 2.9 in the transient case from that in the recurrent case.
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Throughout this section, we will assume X is recurrent, which particularly implies
that τu < TX a.s.

3.1 The representation of the inversion as a vertex-edge repelling process

Definition 3.1. An element n = (n(xy))xy∈~E ∈ N
~E is called a network (on T). For any

network n, set

qn(xy) = n(xy) + (α− 1) · 1{y=p(x)},

and for x ∈ V , n(x) :=
∑
y:y∼x n(xy) and qn(x) :=

∑
y:y∼x qn(xy). If n(xy) = n(yx) for

any {x, y} in E, we say that the network n is sourceless, denoted by ∂n = ∅. Given
λ ∈ R, we call N a sourceless α-random network associated to λ if N is a sourceless
network, and {N (xy) : x = p(y)} are independent with N (xy) following the Bessel (α− 1,
2C∗xy

√
λ(x)λ(y)) distribution2.

More generally, let p(x0, x) be the unique self-avoiding path from x0 to x, also seen
as a collection of unoriented edges. For i ∈ V \ {x0}, we say that n has sources (x0, i),
denoted by ∂n = (x0, i), if for any xy ∈ ~E with x = p(y),{

n(xy) = n(yx)− 1, if {x, y} ∈ p(x0, i);

n(xy) = n(yx), if {x, y} /∈ p(x0, i).

Given λ ∈ R and i ∈ V \{x0}, we call N an α-random network with sources (x0, i) associ-
ated to λ if N is a network with sources (x0, i) and {N (xy) : x = p(y)} are independent
with N (xy) following the Bessel (α, 2C∗xy

√
λ(x)λ(y)) distribution if {x, y} ∈ p(x0, i), and

the Bessel (α− 1, 2C∗xy
√
λ(x)λ(y)) distribution otherwise.

Remark. We will sometimes use the convention that a network with sources (x0, x0) is a
sourceless network.

Every loop configuration L (i.e. a collection of unrooted, oriented loops) induces a
network θ(L ): for x ∼ y,

θ(L )(xy) := # crossings from x to y by the loops in L .

Due to the tree structure, it holds that θ(L )(xy) = θ(L )(yx) for any xy ∈ ~E, i.e. θ(L ) is
sourceless.

Let
(
φ(0), X[0,τu], φ

(u)
)

be the Ray-Knight triple associated to X, where φ(0) is the local
time field of a loop soup L(0) independent of X. The path X[0,τu] is also viewed as a loop
configuration consisting of a single loop. Let N (u) := θ(L(0)) + θ(X[0,τu]). We have the
following result, the proof of which is contained in §3.1.1. We mention that [12, Theorem
3.1] provides another proof for the case α = 0.

Proposition 3.2. For λ ∈ R with λ(x0) = u, conditionally on φ(u) = λ, N (u) is a source-
less α-random network associated to λ.

With this proposition, for the recovery of X[0,τu], it suffices to derive the law of X[0,τu]

given φ(u) and N (u). For any λ ∈ R, set

N = Nλ :=

{{
n ∈ N~E : ∂n = ∅

}
, if α > 0;{

n ∈ N~E : ∂n = ∅, ∀xy ∈ ~E, n(xy) ≥ 1 iff x, y ∈ supp(λ)
}
, if α = 0.

2For ν ≥ −1 and z > 0, the Bessel (ν, z) distribution is a distribution on N given by:

bν,z(n) = Iν(z)−1 (z/2)2n+ν

n! Γ(n+ ν + 1)
, n ∈ N. (3.1)

Bessel (ν, 0) distribution is defined to be the Dirac measure at 0.
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The superscript λ in Nλ is omitted whenever it is clear from the context. Given n ∈ N~E ,
for ω ∈ Ω and x, y ∈ V with x ∼ y, set

Θt(xy) = Θt(n, ω)(xy) = Θt(n, ω[0,t])(xy)

:= n(xy)−# {0 < s ≤ t : ωs− = x, ωs = y} ,
(3.2)

which represents the remaining crossings while running the process ω until time t with
the initial crossings n. Recall the notation introduced at the beginning of §2.4.1. Given
λ ∈ R and n ∈ N, the vertex-edge repelling jump process Xλ,n is defined to be a process
starting from x0, behaves such that

(i) conditionally on t < TX
λ,n

and
(
Xλ,n
s : 0 ≤ s ≤ t

)
with Xλ,n

t = x, it jumps to a

neighbour y of x with rate rλ,nt
(
x, y,Xλ,n

[0,t]

)
;

(ii) every time lim
s→t−

Λs(X
λ,n
s ) = 0 and Xλ,n

t− 6= x0, it jumps to p(x) at time t,

and stops at time TX
λ,n

when the process exhausts the local time at x0 or explodes. Here
for ω ∈ Ω with Tω > t,

rλ,nt (x, y, ω) :=
qΘt(xy)

Λt(x)
. (3.3)

In the above expression, Θt is viewed as a network, and qΘt is defined as before.
Intuitively, for this process, both the local time and crossings available are given at

the beginning. The process eats the local time during its stay at vertices and consumes
crossings at jumps over edges.

Theorem 3.3. For any λ ∈ R and n ∈ N, Xλ,n has the law of X[0,τu] conditioned on
φ(u) = λ and N (u) = n.

3.1.1 Proof of Proposition 3.2

Recall that L(u) consists of the partition of the path of X[0,τu] and an independent loop
soup L(0). By the excursion theory (Cf. [23, §8 in Chapter VI]) (resp. basic properties of
Poisson point processes), the prints of X[0,τu] (resp. L(0)) on the different branches3 at
x0 are independent. Here the print of a loop configuration is the collection of the prints
of loops in the configuration. In particular, for any x ∼ x0, N (u)(x0x) is independent of
the prints of L(u) on the branches that do not contain x. By considering other vertices
as the root of T, we can readily obtain that given φ(u) = λ,

(
N (u)(yz) : y = p(z)

)
are

independent and the conditional law of N (u)(yz) depends only on λ(y) and λ(z)4.
Now it reduces to considering the law of N (u)(yz) conditioned on φ(u)(y) = λ(y) and

φ(u)(z) = λ(z). We focus on the case yz = x0x only, since it is the same for other edges.
Without conditioning, it holds that

(i) N (u)(x0x) has a Poisson distribution with parameter uCx0,x;

(ii) L(τu, x) equals a sum of N (u)(x0x) i.i.d. exponential random variables with parame-
ter Cx,x0 ;

3A branch at x0 is defined as a connected component of the tree when removing the vertex x0, to which we
add x0.

4To see the root x0 plays no special role, we add some killing rate at x0. Then for any λ ∈ R with λ(x0) = u,
L(u) conditioned on L·(L(u)) = λ has the same law as the loop soup L (associated to the process with killing
rate) conditioned on L·(L) = λ.

EJP 29 (2024), paper 114.
Page 11/44

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1176
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverting Ray-Knight identities on trees

(iii) Lx(L(0)) follows a Gamma(α, Cx,x0
) distribution (a Gamma(0, β) r.v. is interpreted

as a r.v. identically equal to 0). In fact, Lx(L(0)) follows a Gamma(α,Gx̄0(x, x)−1)
distribution, where Gx̄0 is the Green function of the process X killed at x0. The
recurrence of X implies that Gx̄0(x, x) = C−1

x,x0
.

(iv) The above exponential random variables, N (u)(x0x) and Lx(L(0)) are mutually
independent.

It follows that the conditional law of N (u)(x0x) is the same as the conditional law of U
given

R∗ +R1 + · · ·+RU = λ(x),

when U has Poisson(uCx0,x) distribution, R∗ has Gamma(α, Cx,x0
) distribution, R1, R2, · · ·

have Exponential(Cx,x0
) distribution and U,R∗, R1, R2, · · · are mutually independent. By

directly writing the density of R∗+R1 + · · ·+RU and then conditioning on the sum being
λ(x), we can readily obtain that the conditional distribution is Bessel (α−1, 2C∗x0x

√
uλ(x))

(see also [9, §2.7]). We have thus proved the proposition.

3.1.2 Proof of Theorem 3.3

The recovery of X[0,τu] given φ(u) and N (u) is carried out by the following two steps:

(1) reconstruct the jump chain of X[0,τu] conditionally on φ(u) and N (u);

(2) assign the holding times before every jump conditionally on φ(u), N (u) and the jump
chain.

We shall prove the process recovered by the above two steps is exactly the vertex-edge
repelling jump process.

For step (1), it is easy to see that the conditional law of the jump chain actually
depends only on N (u). Moreover, let X̄ be distributed as the jump chain of X. For
k ≥ 0, let τ̄k := inf{l ≥ 0 : #{1 ≤ j ≤ l : X̄j = x0} = k}. Fixing a sourceless network
n, set m = n(x0). We consider X̄ up to τ̄m. Let L̄(0) have the law of the discrete
loop soup induced by L(0), and be independent of X̄. Set N̄ := θ(X̄[0,τ̄m]) + θ(L̄(0)),
where θ(X̄[0,τ̄m]) and θ(L̄(0)) have the obvious meaning. Denote by X̄n the process X̄
conditioned on N̄ = n. Then X̄n has the same law as the jump chain of X[0,τu] conditioned
on N (u) = n. The following proposition plays a central role in the inversion. We present
a combinatorial proof later.

Proposition 3.4. The law of X̄n can be described as follows. It starts from x0. Condi-
tionally on

(
X̄n
k : 0 ≤ k ≤ l

)
with l < T X̄

n

and X̄n
l = x,

• if qΘl(x) > 0, it jumps to a neighbour y of x with probability

qΘl(xy)

qΘl(x)
,

• if qΘl(x) = 0 and x 6= x0, it jumps to p(x); (This can only happen when α = 0.)

And finally X̄n stops at time T X̄
n

. Here

Θl(xy) = Θl(n, X̄
n
[0,l])(xy) := n(xy)−#{0 ≤ k ≤ l − 1 : X̄n

k = x, X̄n
k+1 = y},

T X̄
n

:= inf{k ≥ 0 : Θk(x0) = 0}.

Now turn to step (2), i.e. recovering the jump times.
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Proposition 3.5. Given φ(u) = λ, N (u) = n and the jump chain of X[0,τu], denote by r(x)

the number of visits to x by the jump chain and hxi the i-th holding time at vertex x. Note
that r(x) = n(x) for each x in the case α = 0. The following hold:

(i) the holding times at different vertices are independent;

(ii)
(∑i

j=1 h
x0
j : 1 ≤ i ≤ n(x0)

)
have the same law as n(x0) i.i.d. uniform random

variables on [0, u] ranked in ascending order and hx0

n(x0)+1 = u−
∑n(x0)
j=1 hx0

j ;

(iii) for any x( 6= x0) visited by X[0,τu],

(
hx1
λ(x) , · · · ,

hxr(x)

λ(x) , 1−
∑r(x)
j=1 h

x
j

λ(x)

)
is a Dirichlet distri-

bution with parameter (1, · · · , 1, n(x)− r(x) + α).

Here m-variable Dirichlet distribution with parameter (1, · · · , 1, 0) is interpreted as
(m− 1)-variable Dirichlet distribution with parameter (1, · · · , 1).

Proof. First, we recall the following fact of loop soups.

Fact 3.6. Suppose L is a loop soup associated to some transient CTMC on T. Then
conditionally on the discrete skeleton of L, L is obtained by including independent
Exponential(Cx) holding times at each visit to x ∈ V and adding one-point loops on which
the holding times is a Poisson point process with intensity density e−Cxt/t.5 Consequently,
the conditional law of the local time field L·(L) of L can be described as follows:

• {Lx(L) : x ∈ V } are independent;

• suppose there is m(x) visits at x by the discrete skeleton for each x ∈ V . Then for
any x ∈ V , Lx(L) follows a Gamma (m(x) + α,Cx) distribution.

Since φ(0) is the loop soup associated to X killed at x0, the independence in (i) comes
from the above facts and basic properties of CTMC.{∑i

j=1 h
x0
j : 1 ≤ i ≤ n(x0)

}
is distributed as the jump times of a Poisson process on

[0, u] conditioned on that there are exactly n(x0) jumps during this time interval. That
deduces (ii).

For (iii), again using the above fact, we have for any x 6= x0,
{
hxj : 1 ≤ j ≤ r(x)

}
has the law of r(x) i.i.d exponential variables with parameter Cx = kx +

∑
y:y∼x Cxy

conditioned on the sum of them and an independent Gamma(n(x)− r(x) +α, Cx) random
variable equal to λ(x) (recall that a Gamma(0, β) r.v is identically equal to 0).

Proposition 3.4 and 3.5 give a representation of the inversion of the Ray-Knight
identity in terms of its jump chain and holding times. Using this, we can readily calculate
the jump rates.

Proof of Theorem 3.3. It suffices to show that the jump chain and holding times of Xλ,n

are given by Proposition 3.4 and 3.5 respectively. As shown in the proof of Theorem A.6,
Xλ,n can be realized by a sequence of i.i.d exponential random variables. It is direct
from this realization that the jump chain of Xλ,n coincides with X̄n in Proposition 3.4.
To see this, one only needs to note that for any fixed t ≥ 0 and ω ∈ Ω with Tω > t and
ωt = x, the jump rate rλ,nt (x, y, ω) is proportional to qΘt(n, ω)(xy) for y ∼ x. So it remains
to check the holding times. We consider X[0,τu] given φ(u) = λ, N (u) = n, and its jump

5To get this, we consider an unrooted loop γ under the loop measure µ. It is not hard to deduce from [4,
§3.1] (for example, one can use the definition of the pointed loop measure µp∗ and the fact that µp∗ induces µ
on unrooted loops) that under µ, conditionally on the discrete skeleton of γ, if γ visits more than one vertices,
then γ is obtained by adding independent exponential holding times at each visit to vertices; if γ is a one-point
loop, then its holding time has density e−Cxt/t. The above fact of L is then derived using the properties of
Poisson point processes.
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chain. Use the same notation r(x) and hxi as before. For 1 ≤ i ≤ n(x), set lxi :=
∑i
j=1 h

x
j .

By Proposition 3.5, conditionally on all the holding times before the i-th visit at x, it
holds that hxi+1/(λ(x) − lxi ) follows a Beta (1, qn(x) − i + 1) distribution. We can readily
check that

(λ(x)− lxi ) · Beta(1, qn(x)− i+ 1)
d
=
(
u(i)
x

)−1
(γ),

where u(i)
x (t) =

∫ t
0

qn(x)−i+1
λ(x)−lxi−s

ds (0 ≤ t < λ(x)− lxi ) and γ is an exponential random variable

with parameter 1. This is exactly the same holding times as Xλ,n. We have thus proved
the theorem.

The remaining part is devoted to the proof of Proposition 3.4.

Proof of Proposition 3.4. Case α = 0. Condition on
(
X̄n
k : 0 ≤ k ≤ l

)
with l < T X̄

n

and
X̄n
l = x. It holds that the remaining path of X̄ is completed by uniformly choosing a path

with edge crossings Θl since the conditional probability of any such path is the same,
which equals ∏

yz∈~E

(Cyz/Cy)Θl(yz).

So for the probability of the next jump, it suffices to count for any y ∼ x, the number
of all possible paths with edge crossings Θl and the first jump being to y. Here we use
the same idea as the proof of [11, Proposition 2.1]. This number equals the number of
relative orders of exiting each vertex satisfying (1) the first exit from x is to y; (2) the last
exit from any z 6= x0 is to p(z). In particular, it is proportional to the number of relative
orders of exiting x satisfying the above conditions at vertex x, which equals (Θl(x)−1−1{x6=x0})!∏

z:z∼x(Θl(xz)−1{z=p(x)}−1{z=y})!
, if Θl(x) ≥ 2;

1{y=p(x)}, if Θl(x) = 1,

where (−1)! :=∞. Thus the conditional probability that X̄n
l+1 = y is

qΘl(xy)

qΘl(x)
, if Θl(x) ≥ 2;

1{y=p(x)}, if Θl(x) = 1.

(3.4)

Case α > 0. (1) The conditional transition probability at x0. We will first
deal with the conditional transition probability given

(
X̄n
k : 0 ≤ k ≤ l

)
with l < T X̄

n

and
X̄n
l = x0. We further condition on the remaining crossings of X̄n, i.e. θ′ := θ(X̄n

[l,T X̄n ]
).

Note that Θl = θ′ + θ(L̄(0)). In particular, it holds that θ′(x0y) = Θl(x0y) for any y ∼ x0.
By (3.4), the conditional probability that X̄n

l+1 = y is

θ′(x0y)

θ′(x0)
=

Θl(x0y)

Θl(x0)
,

which is independent of the further condition and hence gives the conclusion.
(2) The conditional transition probability at x 6= x0. When T is infinite, L

contains infinitely many loops and the probability that L equals any loop configuration is
zero. So to avoid talking about something with zero probability, we first assume that T is
finite. Recall that the law of the Ray-Knight triple is independent of kx0

. In this case, it
is easier to consider the process X killed at x0 with rate 1. With an abuse of notation,
we still use X and L to denote this process and its associated loop soup respectively6.

6We mention that such notation is only used in this part.
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Inverting Ray-Knight identities on trees

The main idea is to transform the recovery of the Markovian path to the recovery of the
discrete loop soup. Roughly speaking, the latter recovery is just to glue the crossings
together to reconstruct the discrete loop soup. The properties of discrete loop soups
make the recovery quite intuitive as we will see later. Let us make some preparations
first.

(a) Concatenation process L. First, we give a representation of the path X̄n as
a concatenation of loops in a loop soup as follows. Let L̄ be the discrete loop soup
associated to L. We focus on the loops in L̄ that visit x0. The number of such loops is
denoted by K. For each of them, we uniformly and independently root it at one of its
visits at x0. Then we choose uniformly at random (among all K! choices) an order for the
rooted loops labeled in order by {γ̄i : 1 ≤ i ≤ K} and concatenate them:

L := γ̄1 ◦ γ̄2 ◦ · · · ◦ γ̄K.

We call L the concatenation process of L̄. It can be easily deduced from the properties of
discrete loop soup that the path between consecutive visits of x0 in any γ̄i has the same
law as an excursion of X̄ at x0. Thus, conditionally on θ(L)(x0) = m, L has the same law
as X̄[0,τ̄m]. Consequently, we have the following corollary.

Corollary 3.7. Given a network n ∈ N, denote by Ln the process L conditioned on
θ(L̄) = n. Then Ln has the same law as X̄n.

(b) Pairing on the extended graph. To further explore the law of Ln, we need to
introduce the extended graphs of T and the definition of ‘pairing’. We choose to work on
the extended graph TK (defined in the following) to make sure that the probability of a
loop configuration on TK is proportional to α#loops in the configuration as K →∞. Let K ≥ 1.
Replace each edge of T by K copies. The graph thus obtained, denoted by TK = (V,EK),
is an extended graph (of T). The collection of all directed edges in TK is denoted by
~EK . The graph TK is equipped with the killing measure δx0

, the Dirac measure at x0,
and for any x ∼ y, the conductance on each one of the K directed edges from x to y is
CKxy := Cxy/K. Any element in N

~EK is called a network on TK . We will use N to denote
a deterministic network on TK . For a network N on TK , the projection of N on T is a
network on T defined by:

NT(xy) :=
∑
~e∈~EK

N(~e)1{~e is from x to y}.

In the following, we only focus on the network N ∈ {0, 1}~EK . For such a network N ,
denote [N ] := {~e ∈ ~EK : N(~e) = 1}. For simplicity, we omit the superscript ‘→’ for
directed edges throughout this part.

Definition 3.8. Given a sourceless network N ∈ {0, 1}~EK , a pairing of N is defined to
be a bijection from [N ] to [N ], such that for any e ∈ [N ], the image of e is a directed edge
whose head is the tail of e.

Given N ∈ {0, 1}~EK , a pairing b of N and a subset [N0] of [N ], b|[N0] = {b(e) : e ∈ [N0]}
determines a set of loops and bridges. Precisely, for each e ∈ [N0], following the pairing
on e, we arrive at a new (directed) edge b(e). Continuing to keep track of the pairing on
the new edge b(e), we arrive at another edge b(b(e)). This procedure stops when arriving
at either the initial edge e again, or an edge ∈ [N ] \ [N0] because we lose the information
about the pairing on [N ] \ [N0]. In the former case, a loop is obtained. In the latter case,
we get a path whose first edge is e and last edge ∈ [N ] \ [N0]. Any two such paths are
either disjoint, or one is a part of the other. This naturally determines a partial order. All
the maximal elements with respect to this partial order and the loops obtained in the
former case form the set of bridges and loops determined by b|[N0].
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Now we start the proof of the conditional transition probability at x 6= x0. Let XK

be the CTMC on TK starting from x0 induced by the conductances
(
CKxy

)
and killing

measure δx0
. Consider the discrete loop soup L̄K associated to XK , the projection of

which on T has the same law as L̄. Let LK be its concatenation process. By Corollary 3.7,

it suffices to consider the law of (the projection of) LK given
(
θ(L̄K)

)T
= n.

Observe that conditionally on l < TLK and
(
LKk : 0 ≤ k ≤ l

)
with LKl = x (6= x0), for

the next step, it will definitely jump along its present loop in L̄K , which is a loop visiting
both x and x0. Note that the probability that L̄K uses every edge at most once tends to 1

as K →∞. So by the standard arguments (see [26, 27]), it suffices to show that for any
N ∈ {0, 1}~EK with NT(yz) = n(yz) for any y ∼ z, the transition probability of LK at x is
given by the statements in the proposition, i.e.

P
(
LKl+1 = y

∣∣ θ(L̄K) = N,LK[0,l],L
K
l = x, l < TLK

)
=

qΘl(n,L
K
[0,l])(xy)

qΘl(n,LK[0,l])(x)
, (3.5)

where on the right-hand side, the path LK[0,l] is considered as its projection on T.
Next, we shall translate conditioning in (3.5) into the language of pairings. Let b be

the pairing of [N ] induced by L̄K and

[N0] :=
{
e ∈ [N ] : e is crosses by LK[0,l−1] or the tail of e is not x

}
.

Then the information of LK[0,l] is contained in b|[N0] and the (relative) concatenation order

of the loops crossed by LK[0,l]. Observe that since x 6= x0, conditionally on θ(L̄K) = N and

b|[N0], we have LKl LKl+1 = b(LKl−1L
K
l ) is independent of the concatenation order of the

loops crossed by LK[0,l]. Thus it is enough to show that

P
(
b(LKl−1L

K
l ) is from x to y

∣∣ b|[N0]

)
=

qΘl(n,L
K
[0,l])(xy)

qΘl(n,LK[0,l])(x)
. (3.6)

The condition b|[N0] determines a set of loops and bridges from and to x. Denote

Nl(e) = 1{
e∈[N ] and is not crossed by LK

[0,l]

} for e ∈ ~EK . Then there are exactly NT
l (x) bridges,

including exactly NT
l (xy) bridges whose first edge enters y, for any y ∼ x. Moreover,

there is exactly one bridge partly crossed by the path LK[0,l]. This bridge is a part of the

loop that LK is walking along at time l. So it visits x0 by the construction of LK , which
implies that the first edge of the bridge enters p(x) due to the tree structure.

Now we focus on the conditional law of the pairing of these bridges, i.e. the condi-
tional law of b∗ := b|[N∗], where [N∗] = [N ] \ [N0] is the collection of the last edges in
the above NT

l (x) bridges. Note that b∗([N∗]) consists of the first edges in these bridges.
Denote [N∗] = {e1, · · · , er} and b∗([N∗]) = {f1, · · · , fr}, where r = NT

l (x) and we assign
the subscripts such that

• ei and fi are in the same bridge (i = 1, · · · , r);
• e1 = LKl−1L

K
l . (So the bridge containing e1 and f1 is exactly the unique bridge

partly crossed by LK[0,l].)

The totality of bijections from {e1, · · · , er} to {f1, · · · , fr} is denoted by B. Every b ∈ B
pairs the bridges into a loop configuration. We simply call it the configuration completed
by b. It is easy to see that this defines a one-to-one correspondence between B and all
the possible configurations obtained by pairing these bridges.

A key observation is that conditionally on θ(L̄K) = N , the probability of a loop
configuration of L̄K is proportional to α#loops in the configuration. In fact, L̄K is a Poisson
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point process on the space of loops on T. The intensity of a loop is α times the product
of the transition probabilities of the edges divided by the multiplicity of the loop. Note
that for any configuration L with θ(L ) = N , the multiplicities of the loops in L are all
1. Hence the probability that L̄K = L is

P∅ · α#loops in L
∏
yz∈~E

(Cyz/KCy)N
T(yz),

where P∅ is the probability that L̄K,x is empty. So we have

P
(
b∗ = b | b|[N0]

)
∝ α#(b),

where #(b) := #loops in the configuration completed by b. Set Bi := {b ∈ B : b(e1) = fi}.
For 1 ≤ i, j ≤ r with i 6= j, a bijection Υij from Bi to Bj can be defined as follows. For
any b ∈ Bi, Υij(b) is defined by exchanging the image of e1 and b−1(fj). Precisely,

(Υij(b)) (e) :=


fj , if e = e1;

fi, if e = b−1(fj);

b(e), otherwise.

We can readily check that for b ∈ Bi,{
#(b) = #(Υij(b)), if i, j 6= 1;
#(b) = #(Υij(b)) + 1, if i = 1 and j 6= 1.

Therefore if we denote by pi the conditional probability that b∗ ∈ Bi, then pi = pj for
i, j 6= 1, and p1 = αpj for j 6= 1. Namely,{

p1 = α/(r + α− 1);

pi = 1/(r + α− 1), for i 6= 1.

It follows that the conditional probability of LKl+1 = y is

Nl(x)∑
i=1

1{the tail of fi is y} · pi =
qNT
l (xy)

qNT
l (x)

=
qΘl(n,L

K
[0,l])(xy)

qΘl(n,LK[0,l])(x)
,

where the first equality is due to the fact that f1 enters p(x). That completes the proof in
the case of the finite T.

Finally, let us tackle the case where T is infinite. The result follows from the local
property: for any finite subtree T0 = (V0, E0) of T containing x0, the print of L on V0

is independent of θ(L)|~E\~E0
. Indeed, denote by LT0 the print of L on V0 and by LT0,n

the process LT0 conditioned on θ(LT0) = n|~E0
. Since the print of L on V0 is a loop soup

associated to the print of X on V0 (Cf. [14, §3.2]), the previous proof in the finite case
tells us that the law of LT0,n is given by that in the statement of Proposition 3.4 with X
replaced by its print on V0. Then the local property implies the result we want.

To get the local property, we consider two finite subtrees Ti = (Vi, Ei) (i = 0, 1)
containing x0 with V0 ⊂ V1. It is directly seen from the laws of LT0,n and LT1,n that LT0,n

is the print of LT1,n on V0. In other words, conditionally on n|~E1
, LT0 has the same law

as LT0,n. This implies that LT0 is independent of n|~E1\~E0
. The local property then follows

immediately.
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3.2 The representation of the inversion as a vertex repelling jump process

Let N λ be a sourceless α-random network associated to λ as in Definition 3.1 and
Xλ be a process distributed, conditionally on N λ = n, as Xλ,n. By Proposition 3.2
and Theorem 3.3, Xλ has the law of X[0,τu] conditioned on φ(u) = λ. The goal of this
subsection is to show the following proposition, so as to obtain Theorem 2.9. Recall the
distribution Pλx0

introduced in §2.4.1.

Proposition 3.9. For any λ ∈ R, Xλ has the law Pλx0
.

In other words, Xλ is a jump process on V with jump rates given by (2.7). Recall the
definition of Λt and Θt in (2.5) and (3.2) respectively. The key to Proposition 3.9 is the
following lemma, which reveals a renewal property of the remaining crossings of Xλ, i.e.
Θt(N λ, Xλ

[0,t]) = Θt(n,X
λ
[0,t])

∣∣
n=Nλ . The proof is given in §3.2.1.

Lemma 3.10. For any λ ∈ R, conditionally on t < TX
λ

and
(
Xλ
s : 0 ≤ s ≤ t

)
, the network

Θt(N λ, Xλ
[0,t]) is an α-random network with sources (x0, X

λ
t ) associated to Λt.

Remark. In the statement of the lemma and below, a network with sources (x0, x0) has
to be understood as a sourceless network.

Proof of Proposition 3.9. By Lemma 3.10, for λ ∈ R, conditionally on t < TX
λ

and(
Xλ
s : 0 ≤ s ≤ t

)
with Xλ

t = x, for any y ∼ x,

• if x = p(y), Θt(N λ)(xy) follows a Bessel (α− 1, ϕt(xy)) distribution;

• if y = p(x), Θt(N λ)(xy)− 1 follows a Bessel (α, ϕt(xy)) distribution.

Note that if further conditioned on Θt(N λ), the process jumps to y at time t with rate

qΘt(N λ)(xy)

Λt(x)
.

So using Corollary A.10 and averaging over Θt(N λ)(xy), we get the probability of a jump
of Xλ from x to y during [t, t+ ∆t] is

(
Iα (ϕt(xy))−1∑

k≥0

k + α

Λt(x)

(ϕt(xy)/2)2k+α

k! · Γ(k + α+ 1)

)
∆t+ o(∆t), if y = p(x);(

Iα−1 (ϕt(xy))−1∑
k≥0

k

Λt(x)

(ϕt(xy)/2)2k+α−1

k! · Γ(k + α)

)
∆t+ o(∆t), if x = p(y),

which gives the jump rates (2.7).

3.2.1 Proof of Lemma 3.10

For any x ∈ V , set

Rx := {λ ∈ R : λ(x) > 0},

Nx = Nλ,x :=
{
n ∈ N : ∂n = (x0, x), ∀xy ∈ ~E with y = p(x),

n(xy) ≥ 1 if and only if x, y ∈ suppλ
}
.

(3.7)

In particular, R = Rx0 and N = Nx0 . First, let us generalize the notation Xλ, Xλ,n and

N λ. Forgetting the original definition before, we construct
{
Xλ,n

[0,TX
λ,n

]
: λ ∈ R, n ∈⋃

x∈V Nx
}

,
{
N λ : λ ∈ R

}
and

{
Px : x ∈ V

}
a family of stochastic processes, random

networks, and probability measures respectively on the same measurable space, such
that for any x ∈ V , λ ∈ Rx, and n ∈ Nx, under Px,

EJP 29 (2024), paper 114.
Page 18/44

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1176
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverting Ray-Knight identities on trees

• Xλ,n is a process that starts at x, has the jump rates rλ,nt (as defined in (3.3)) and
the same resurrect mechanism as the vertex-edge repelling jump process, and
stops at TX

λ,n

the time when the process exhausts the local time at x0 or explodes;

• N λ is an α-random network with sources (x0, x) associated to λ;

• Xλ is a process distributed, conditionally on N λ = n, as Xλ,n.

It is easy to see that for λ ∈ R and n ∈ N, under Px0 , Xλ, Xλ,n and N λ are consistent
with the original definition.

We start the proof with an observation. To emphasize the tree where Xλ is defined, let
us write Xλ = Xλ,T. Any subtree T0 = (V0, E0) containing x0 is automatically equipped
with conductances (Cxy)xy∈~E0

and no killing. The induced CTMC is exactly the print
of X on V0 (recall §2.1). The following restriction principle is obtained using a similar
argument to the last part of the proof of Proposition 3.4 (the proof of the local property).

Proposition 3.11 (Restriction principle). For λ ∈ R and any subtree T0 = (V0, E0)

containing x0, the print of Xλ,T on V0 has the same law as Xλ|T0
,T0 .

Observe that by the restriction principle, it suffices to tackle the case where T is
finite, which we will assume henceforth.

For λ ∈ Rx, consider Xλ under Px. In the following, we simply write Θt(N λ) for

Θt(N λ, Xλ
[0,t]) and denote by J1 = JX

λ

1 the first jump time of Xλ. For 0 < t ≤ λ(x), let

λt(y) := λ(y)− t · 1{y=x} for y ∈ V . We will show that under Px,

(i) for any 0 < t ≤ λ(x), conditionally on Xλ
s = x on [0, t], Θt(N λ) is an α-random

network with sources (x0, x) associated to λt;

(ii) for any y ∼ x, conditionally on J1 ≤ λ(x) and Xλ
J1

= y, ΘJ1(N λ) is an α-random
network with sources (x0, y) associated to λJ1 .

Note that once (i) and (ii) are proved, we have conditionally on a stay or jump at the
beginning of Xλ,

(a) the remaining crossings Θt(N λ) is distributed as an α-random network associated to
the remaining local time field;

(b) the process in the future is distributed as Xλ′ under Py, where λ′ is the remaining
local time and y equals x or the vertex it jumps to accordingly. In fact, it is simple to
deduce from the strong renewal property of Xλ,n (see Corollary A.9) an analogous
property for Xλ that reads as follows: for any stopping time S, conditionally on
S < TX

λ

and
(
Xλ
t : 0 ≤ t ≤ S

)
with Xλ

S = y and ΛS(·, Xλ
[0,S]) = λ′, the process after

S i.e.
(
Xλ
S+t : 0 ≤ t ≤ TX

λ − S
)

has the same law as Xλ′,N ′ under Py, where N ′

is a random network following the conditional distribution of ΘS(N λ). Then the
statement follows from (a).

Under Px0
, iteratively using (a) and (b), we have after a chain of stays or jumps,

Θt(N λ) keeps being distributed as an α-random network associated to the remaining
local time, which leads to the conclusion.

We present the proof of (ii), and the proof of (i) is similar. First, consider the case
J1 = λ(x). Notice that this event has a positive probability under Px only when α = 0,
x 6= x0, y = p(x) and N λ(x) = N λ(xy) = 1. In this case, N λ is a 0-random network
with sources (x0, x) associated to λ conditioned on N λ(x) = 1. Since ΘJ1

(N λ)(ij) =

N λ(ij)− 1{ij=xy} for ij ∈ ~E, it is easily seen that ΘJ1
(N λ) is a 0-random network with

sources (x0, x) associated to λJ1 .
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Now we focus on the case where J1 < λ(x). Recall the α-random network defined
in Definition 3.1. A simple calculation shows that the law of an α-random network with
sources (x0, i) associated to λ is given by: for any n ∈ N~E ,

Kλ,i(n) = 1{∂n=(x0,i)}σ
i
α(λ)−1

√
λ(x0)

λ(i)

∏
x∈supp(λ)

λ(x)n(x)+α−1
2 deg(x)

∏
x,y∈supp(λ)

(
C∗xy

)
qn(xy)

Γ(qn(xy) + 1)
,

where deg(x) := #{y ∈ V : y ∼ x} and

σiα :=
∏

{x,y}∈p(x0,i)

Iα
(
2C∗xy

√
λ(x)λ(y)

) ∏
{x,y}∈supp(λ)\p(x0,i)

Iα−1

(
2C∗xy

√
λ(x)λ(y)

)
.

For r ∈ Ny, set r′(ij) = r(ij) + 1{ij=xy} for ij ∈ ~E. Then for any Borel subset
D ⊂ (0, u),

Px
(
J1 ∈ D, Xλ

J1
= y, ΘJ1(N λ) = r

)
= Kλ,x(r′) · Px

(
J1(Xλ,r′) ∈ D, Xλ,r′

J1(Xλ,r′ )
= y
)

= Kλ,x(r′)

∫
D

(
λs(x)

λ(x)

)
qr′(x)

qr′(xy)

λs(x)
ds =

∫
D

C(λ, s)Kλs,y(r) ds,

(3.8)

where the second equality is due to (A.1) and in the last expression,

C(λ, s) :=
Kλ,x(r′)

Kλs,y(r)

(
λs(x)

λ(x)

)
qr′(x)

qr′(xy)

λs(x)
=
σyα(λs)

σxα(λ)

√
λ(x0)λ(y)

λs(x0)λ(x)

(
λ(x)

λs(x)

)(1−α)1{x 6=x0}

,

which is independent of r. Summing over r ∈ Nx in (3.8), we get

Px
(
J1 ∈ D, Xλ

J1
= y
)

=

∫
D

C(λ, s) ds. (3.9)

By the monotone class methods, we can replace ‘1D’ in (3.9) by any non-negative
measurable function on R+ vanishing on [u,∞). In particular,

Ex

(
KλJ1 ,y(r); J1 ∈ D, Xλ

J1
= y
)

=

∫
D

C(λ, s)Kλs,y(r) ds. (3.10)

Comparing (3.8) and (3.10), we have

Px
(
ΘJ1

(N λ) = r, J1 ∈ D, Xλ
J1

= y
)

= Ex

(
KλJ1 ,y(r); J1 ∈ D, Xλ

J1
= y
)
.

We have thus reached (ii).

Remark 3.12 (Connection to the process of Sabot and Tarrès [24]). When V is finite,
α = 1/2, and the conductances are symmetric, the jump rates in (2.7) coincide with
that in [24, Theorem 5]. Precisely, in [24], the authors express the jump rates as

Cxy

√
Λt(y)
Λt(x)

〈σy〉t
〈σx〉t . Here (σz)z∈V is the Ising model with boundary condition σx0

= +1 on

the graph G with interaction ϕt(zw) at two neighboured vertices z and w. And 〈σx〉t is
the expectation of σx under the law of the Ising model. By the expansion of Ising model
in [7, (9)] and the tree structure in our case, we have

〈σx〉t = 2|V |
∑

n∈N~E :∂n=(x0,x)

∏
{i,j}∈E

(ϕt(ij))
n(ij)+n(ji)(

n(ij) + n(ji)
)
!
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= 2|V |
∑
n∈NE

∏
{i,j}∈p(x0,x)

(ϕt(ij))
2n{i,j}+1(

2n{i,j} + 1
)
!

∏
{i,j}∈E\p(x0,x)

(ϕt(ij))
2n{i,j}(

2n{i,j}
)
!

= 2|V |π
|E|
2

∑
n∈NE

∏
{i,j}∈p(x0,x)

(ϕt(ij)/2)
2n{i,j}+1

n{i,j}!Γ(n{i,j} + 3
2 )

∏
{i,j}∈E\p(x0,x)

(ϕt(ij)/2)
2n{i,j}

n{i,j}!Γ(n{i,j} + 1
2 )

= 2|V |
(π

2
ϕt(ij)

) |E|
2

∏
{i,j}∈p(x0,x)

I1/2 (ϕt(ij))
∏

{i,j}∈E\p(x0,x)

I−1/2 (ϕt(ij)) .

It follows that Cxy
√

Λt(y)
Λt(x)

〈σy〉t
〈σx〉t equals the rates in (2.7).

3.3 Continuity with respect to initial local time fields

Recall the notation Tλ0 , Tλ∞ defined in §2.4.1. Under Pλx0
, there are two possible cases

that the process stops at a finite time: either the process exhausts the local time at x0,
i.e. Tλ0 < ∞, or there is an explosion, i.e. Tλ∞ < ∞. In this part, we will show that the
measure Pλx0

1{Tλ0 <∞} is continuous with respect to λ. The result will be used in §5.
Consider an increasing sequence of finite subtrees Ti = (Vi, Ei) of T, such that

x0 ∈ Vi for all i and Vi ↑ V . (When T is finite, we can directly take Ti = T for all i.) For
any λ ∈ (R+)V , the local uniform norm on T is defined as:

‖λ‖T,loc =
∑
i≥1

2−i
(
1 ∧max{λ(x) : x ∈ Vi}

)
, (3.11)

where for different choices of (Ti)i≥1, the norms are equivalent.

Theorem 3.13. Let {λ(i)}i≥1 and λ be in R, such that λ(i)
‖·‖T,loc−−−−→ λ. If α = 0, further

require that supp(λ(i)) = supp(λ) for all i. Then Pλ
(i)

x0
1{Tλ0 <∞} converges vaguely to

Pλx0
1{Tλ0 <∞}.

Remark. Here for the topology in Ω, we consider every path in Ω with a finite lifetime
to stay at a cemetery point ∆ after the death. Then the topology on DV∆

[0,∞) (V∆ :=

V ∪ {∆}) induces the topology on Ω.

Proof. We only give the proof for the case λ(x0) = λ(i)(x0), from which the general case
easily follows. Fix {λ(i)}i≥1, λ in R satisfying the above condition and the conditions in

the statement. It suffices to prove that for any A := A
(
x0

[0,∞)→ x1
[0,∞)→ · · · [0,∞)→ xl

∞→
)

with xl−1 = x0 and xl = ∆ (see the beginning of Appendix A and (A.2) for the notation σ
and A),

Pλ
(i)

x0
( · ;A)→ Pλx0

( · ;A) in total variation. (3.12)

Proof of (3.12) in the case α > 0. We denote u = λ(x0) = λ(i)(x0). Note that
conditionally on Tλ0 < ∞, it holds that Tλ0 (ω) = τωu− a.s. By the path probability (A.7)
shown in Appendix A (also recall Remark A.7), we have for any bounded measurable
function Φ on Ω,

Eλx0
(Φ ;A) =

∫
Φ(σ)dλσ

l−1∏
j=1

dtj (3.13)

where σ = σ(x0
t1→ x1

t2→ · · · tl→ xl
∞→) and

dλσ := 1Eλ(σ) exp

(
−
∫ τσu−

0

∑
y:y∼σv

rλv (σv, y, σ) dv

)
l−1∏
j=1

rλtj (xj−1, xj , σ), (3.14)
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with Eλ =
{
σ ∈ Ω : t1 < · · · < tl = τσu− and Λτσu−(x, σ) > 0 ∀x 6= x0

}
. Note that σ ∈ A is

determined by its jump times t1, · · · , tl−1. By Scheffé’s lemma, it suffices to prove

(i) dλ
(i)

σ → dλσ for Lebesgue-a.s. t1, · · · , tl−1;

(ii) Pλ
(i)

x0
(A)→ Pλx0

(A).

Since {λ(i)} and λ with λ(i) → λ, any σ ∈ Eλ is also in Eλ(i) for i sufficiently large. For

such i, by (2.8), we have lim
v↑τσu−

rλv (σv, y, σ) and lim
v↑τσu−

rλ
(i)

v (σv, y, σ) exists for any y ∼ x0, and

lim
v↑τσu−

rλ
(i)

v (σv, y, σ)→ lim
v↑τσu−

rλv (σv, y, σ) as i ↑ ∞. So it follows easily from the dominated

convergence theorem that dλ
(i)

σ → dλσ for any σ ∈ Eλ. This concludes (i).
For (ii), recall that Xλ (defined in the beginning of §3.2) has the law Pλx0

. We take
any finite subtree T0 = (V0, E0) of T such that xi ∈ V0 \ ∂V0

7 for all i = 0, 1, · · · , l. The
conclusion follows immediately from the fact that

• the law of N λ|~E0
is continuous with respect to λ;

• P
(
Xλ,n ∈ A

)
, as a function of (λ, n), depends only on n|~E0

. (The space of networks
on T0 is equipped with the discrete topology. So any function of these networks is
automatically continuous.)

Proof of (3.12) in the case α = 0. In this case, we can further assume {xi}0≤i≤l =

supp(λ). The proof is quite similar to the case α > 0, except that one needs to note that
after the last visit at any vertex x, it will definitely exhaust the remaining local time at x
and then jump to p(x) if x 6= x0. So (3.13) should be modified as follows: For 0 ≤ j < l,
we keep those j’s such that there exists j < j′ < l such that xj′ = xj , i.e. the j-th jump
is not the last visit to xj . Denote the collection of all these j’s as {i1, · · · , id}, where
d = l −#supp(λ). The integral on the right-hand side of (3.13) should be replaced by
the integral with respect to

∏d
j=1 dtij+1, that is the Lebesgue measure on Rd, and the

other tj ’s in the expression are determined by: (t0 := 0)

l∑
i=1

1{xi−1=x}(ti − ti−1) = λ(x) for any x ∈ supp(λ).

The remaining part of the proof is exactly the same as the case α > 0.

4 Inverting percolation Ray-Knight identity

In this section, we only consider the case where the conductances are symmetric and
α ∈ (0, 1). In §4.1, we will introduce the metric-graph Brownian motion. It turns out
that the metric-graph Brownian motion together with the associated percolation process
gives a realization of X defined in §2.3, which leads to the percolation Ray-Knight identity
(Theorem 2.5). §4.2 is devoted to the proof of the inversion of percolation Ray-Knight
identity (Theorem 2.10).

4.1 Percolation Ray-Knight identity

Replacing every edge e = {x, y} of T by an interval Ie with length 1/2Cxy, it defines

the metric graph associated to T, denoted by T̃. V is considered to be a subset of T̃.
One can naturally construct a metric-graph Brownian motion B on T̃, i.e. a diffusion
that behaves like a Brownian motion inside each edge, performs Brownian excursion
inside each adjacent edge when hitting a vertex in V and is killed at each vertex x ∈ V

7∂V0 := {x ∈ V0 : there exists y ∈ V \ V0 such that y ∼ x}.
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with rate kx. Let L̃ be the loop soup associated to B. Then X and B, resp. L and L̃,
can be naturally coupled through restriction (i.e. X, resp. L, is the print of B, resp. L̃,
on V ), which we will assume from now on. See [15] for more details of metric graphs,
metric-graph Brownian motions, and the above couplings. Notation such as L·(L̃) and
L̃(u) (u ≥ 0) are similarly defined for L̃ as for L. Assume that B starts from x0. We
also have the Ray-Knight identity for B, that is to replace L(u), X, τu in Theorem 2.2 by
L̃(u), B, τBu respectively.

Let B and L̃(0) be independent. On {τu < TX} = {τBu < TB}, we set

φ̃t(x) := Lx(L̃(0)) + LB(Q−1(t), x), for x ∈ T̃ and 0 ≤ t ≤ τu.

where Q(t) =
∑
x∈V L

B(t, x) and Q−1 is the right-continuous inverse. By the coupling

of B and X, it holds that φ̃t|V = φt (defined in (2.2)). Next, for t ≥ 0, Õt will denote a
percolation on E defined as: for e ∈ E,

Õt(e) = 1{φ̃t has no zero on Ie}.

Recall the notation defined in §2.3. We will show the following proposition, which
immediately implies the percolation Ray-Knight identity in Theorem 2.5.

Proposition 4.1. Conditionally on τu < TX ,

(i) (φ̃τu |V , Õτu) has the same law as (L·(L(u)),O(u));

(ii) X̃ := (Xt, Õt)0≤t≤τu has the same law as X = (Xt,Ot)0≤t≤τu .

Before the proof of Proposition 4.1, we present two lemmas in terms of the loop soups
L and L̃, which will later be translated into the analogous versions associated to X̃ using
the Ray-Knight identity.

Define O(L), O(L̃) on E as follows: for e ∈ E,

O(L̃)(e) := 1{L·(L̃) has no zero on Ie}, O(L)(e) := 1{e is crossed by L}.

Remember that L and L̃ are naturally coupled. So it holds that O(L̃) ≥ O(L). Moreover,
they have the following relations.

Lemma 4.2. Conditionally on L,
(
O(L̃)(e) : e ∈ E, O(L)(e) = 0

)
is a family of indepen-

dent random variables, and

P
(
O(L̃)({x, y}) = 0

∣∣L·(L) = `, O(L)({x, y}) = 0
)

=

{
2Γ(1− α)−1

(
Cxy

√
`x`y

)1−α
K1−α

(
2Cxy

√
`x`y

)
, if `x, `y > 0;

1, if `x ∧ `y = 0.

(4.1)

Remark. This lemma is still true on general graphs.

Lemma 4.3. Conditionally on L·(L),
(
O(L̃)(e) : e ∈ E

)
is a family of independent random

variables, and

P
(
O(L̃)({x, y}) = 1

∣∣L·(L) = `
)

=


I1−α

(
2Cxy

√
`x`y

)
Iα−1

(
2Cxy

√
`x`y

) , if `x, `y > 0,

0, if `x ∧ `y = 0.

(4.2)

Proof of Lemma 4.2. The independence follows from an argument using the Ray-Knight
identity of B and the excursion theory similar to that in the proof of Proposition 3.2.
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With the same idea as [15, §3], conditionally on O(L)({x, y}) = 0, the print of L̃ in
I{x,y} consists of the loops entirely contained in I{x,y}, excursions from and to x (resp.

y) inside I{x,y} of loops in L̃ visiting x (resp. y). By considering the contribution to the
local time field by each part, we have that the left-hand side of (4.1) is the same as the
probability that the sum of three independent processes(

a
(h)
t + b

(h,`x)
t + b

(h,`y)
h−t

)
0≤t≤h

(4.3)

has a zero on (0, h). Here h = 1/2Cxy, (a
(h)
t )0≤t≤h is a BESQ2α,h

0→0 (i.e. a 2α-dimensional

BESQ bridge from 0 to 0 over [0, h]) and (b
(h,l)
t )0≤t≤h is a BESQ0,h

l→0.

For (4.3) to have a zero, the process b
(h,`x)
t has to hit 0 before the last zero of

(a
(h)
t + b

(h,`y)
h−t )0≤t≤h. The density of the first zero of b(h,`x)

t is

1{0<t<h}
`x
2t2

exp

(
− (h− t)`x

2ht

)
dt. (4.4)

To get this, one can start with the well-known fact that the first zero of a 2δ-dimensional
BESQ process starting from x is distributed as x2/2Gamma(1− δ, 1) (Cf. for example [13,
Proposition 2.9]). Then use the fact that for a 2δ-dimensional BESQ process ρt starting
from x, the process h(1− u/h)2ρu/(h−u) (0 ≤ u ≤ h) is a BESQ2δ,h

x→0.

Since (a
(h)
t + b

(h,`y)
h−t )0≤t≤h has the same law as a BESQ2α,h

0→`y , its last zero has the same

law as h minus the first zero of a BESQ2α,h
`y→0, which has the density

1{0<t<h}
2α−1

Γ(1− α)
hα`1−αy t−α(h− t)α−2 exp

(
− `yt

2h(h− t)

)
dt. (4.5)

Gathering (4.4), (4.5) and taking h = 1/2Cxy, we get the probability of (4.3) having a
zero is∫ h

0

∫ t

0

`x
2s2

exp

(
− (h− s)`x

2hs

)
2α−1

Γ(1− α)
hα`1−αy t−α(h− t)α−2 exp

(
− `yt

2h(h− t)

)
dsdt

=
2α−1

Γ(1− α)
`1−αy hα exp

(
`y + `x

2h

)∫ h

0

exp

(
−`x

2t
− `y

2(h− t)

)
t−α(h− t)α−2 dt

=
1

Γ(1− α)

∫ ∞
0

exp

(
− `x`y

(2h)2s
− s
)

ds

sα

=

{
2Γ(1− α)−1

(
Cxy

√
`x`y

)1−α
K1−α

(
2Cxy

√
`x`y

)
, if `x, `y > 0,

1, if `x ∧ `y = 0,

where in the second equality, we use the change of variable s =
`yt

2h(h− t)
and the last

equality follows from [22, (136)].

Proof of Lemma 4.3. By Proposition 3.2,

P (O(L)({x, y}) = 0|L·(L) = `) =


(
Cxy

√
`x`y

)α−1

Γ(α)Iα−1(2Cxy
√
`x`y)

, if `x, `y > 0,

1, if `x ∧ `y = 0.

(4.6)

The probability we are interested in equals 1 minus the multiplication of (4.1) and (4.6).

EJP 29 (2024), paper 114.
Page 24/44

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1176
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverting Ray-Knight identities on trees

Proof of Proposition 4.1. By the Ray-Knight identity of B, we have φ̃τu has the law
of L·(L̃(u)). So it follows from Lemma 4.3 that (φ̃τu |V , Õτu) has the same law as
(L·(L(u)),O(u)). That concludes (i).

For (ii), if X jumps through the edge {x, y}, then B crosses the interval I{x,y}, which

makes φ̃t positive on this interval. So Õt({x, y}) turns to 1.
It remains to calculate the rate of opening an edge without X jumping. The key

observation is that conditionally on X̃[0,t], if Õt({x, y}) = 0, then φ̃t|I{x,y} has the same law

as the occupation field of L̃ on I{x,y} conditioned on Lx(L̃) = φt(x) and Ly(L̃) = φt(y),
which is obtained by considering the print of B on the branch at x containing y and using
the Ray-Knight identity of B. It follows easily that (X̃ , φ) is a Markov process, which
allows us to condition only on (X̃t, φt) when calculating the rate. Note that the case of
opening {x, y} without X jumping can happen only when X stays at x and x = p(y). We
use {X[t,t+∆t] = x} to stand for the event that X stays at x during [t, t+ ∆t]. Denote by
A1 the event that at some time in [t, t + ∆t], {x, y} is opened without X jumping. And
let A2 := A1 ∩ {X[t,t+∆t] = x}. For (X̃t, φt) with Xt = x and Õt({x, y}) = 0, if we write
Q = P(· |Xt = x, φt), then

P(A2 | X̃t, φt) = Q(Õt+∆t({x, y}) = 1, X[t,t+∆t] = x | Õt({x, y}) = 0)

= Q(Õt({x, y}) = 0)−1 ·
[
Q(Õt({x, y}) = 0, X[t,t+∆t] = x)

−Q(Õt+∆t({x, y}) = 0, X[t,t+∆t] = x)
]

= Q(X[t,t+∆t] = x) ·

[
1−

Q(Õt+∆t({x, y}) = 0 |X[t,t+∆t] = x)

Q(Õt({x, y}) = 0)

]
.

Again using the observation above, we have the fraction in the above square brackets
equals

P
(
O(L̃)({x, y}) = 0 |O(L)({x, y}) = 0, Lx(L) = φt(x) + ∆t, Ly(L) = φt(y)

)
P
(
O(L̃)({x, y}) = 0 |O(L)({x, y}) = 0, Lx(L) = φt(x), Ly(L) = φt(y)

) ,

which further equals f(φt(x) + ∆t)/f(φt(x)) with

f(s) := 2Γ(1− α)−1
(
Cxy

√
sφt(y)

)1−α
K1−α

(
2Cxy

√
sφt(y)

)
by Lemma 4.2. Therefore,

P(A2 | X̃t, φt) = −f
′(φt(x))

f(φt(x))
∆t+ o(∆t). (4.7)

Observe that

A1 \A2 ⊂{X has at least 2 jumps in [t, t+ ∆t]}
⋃

{∃ 0 < δ1 < δ2 ≤ ∆t, s.t. {x, y} is opened at t+ δ1,

X[t,t+δ2) = x, and X jumps at t+ δ2}.

The (conditional) probability of the first event on the right-hand side is obviously o(∆t);
while we can use the same argument as the proof of Lemma A.11 to show the probability
of the second event is also o(∆t). So

P(A1 | X̃t, φt) = P(A2 | X̃t, φt) + o(∆t) = −f
′(φt(x))

f(φt(x))
∆t+ o(∆t),

which leads to the rate in (2.3) by using [zνKν(z)]′ = −zνKν−1(z) and K−ν = Kν .
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Remark 4.4. In this remark, we will average over O(0,τu) in the process
←−
X [0,τu] and

describe the annealed law of (X[0,τu],O0,Oτu). In particular, we will see that when
α = 1/2, the annealed law coincides with that in Theorem 8 in the paper of Lupu, Sabot,
and Tarrès [18].

In the process
←−
X t = (Xt,Ot), an edge {x, y}, with x = p(y), is open in Oτu if either

one of the following cases happens: (1) it is open in O0; (2) it is crossed by X[0,τu]; (3) it
is opened during X staying at x.

Observe that conditionally on τu < TX and (L·(L(0)),O0, X[0,τu]), if neither case (1)
or (2) happens, then the probability that case (3) happens equals1− exp

(
−
∫ φτu (x)

φ0(x)
Cxy

√
φ0(y)
s · Kα(2Cxy

√
sφ0(y))

K1−α(2Cxy
√
sφ0(y))

ds
)

8, if φ0(y) > 0;

0, if φ0(y) = 0.
(4.8)

It can be seen from the proof of Proposition 4.1 that the integrand on the first line in (4.8)

equals − f
′(s)
f(s) with f defined as (4.7) (recall that φt(y) ≡ φ0(y) under the condition). It

follows that the first probability in (4.8) further equals

1−

√
φτu(x)

φ0(x)
·
K1−α(2Cxy

√
φτu(x)φ0(y))

K1−α(2Cxy
√
φ0(x)φ0(y))

.

The above results yield that if we average over O(0,τu), then (O0, X[0,τu]) has the same
law as before and conditionally on them, the open edges in Oτu consist of the open
edges in O0, the edges crossed by X[0,τu], and additional edges opened conditionally
independently with probability1−

√
φτu (x)
φ0(x) ·

K1−α(2Cxy
√
φτu (x)φ0(y))

K1−α(2Cxy
√
φ0(x)φ0(y))

, if φ0(y) > 0;

0, if φ0(y) = 0.
(4.9)

When α = 1/2, using K1/2(z) =
(
π
2z

)1/2

e−z, we have the first probability in (4.9)

equals

1− exp
{
− 2Cxy

√
φ0(y)(

√
φτu(x)−

√
φ0(x))

}
. (4.10)

The relation between the above coupling of O0 and Oτu and Theorem 8 in [18] is as
follows. In [18] the authors consider the coupling of two Gaussian free fields with
different boundary conditions. The key part is the coupling between the sign clusters of
the Gaussian free fields on the metric graph with boundary conditions 0 and

√
2u. By

Lupu’s isomorphism theorem (see [18, Theorem 3] or [15, §2]), it is equivalent to the
coupling of O0 and Oτu . With this points of view, if we assume the Gaussian free fields
in [18, Theorem 8] are coupled with metric-graph loop soups as in Lupu’s isomorphism
theorem, then the probability in (4.10) coincides with that in Theorem 8 in [18]. Hence
the two couplings are essentially the same.

4.2 Proof of Theorem 2.10

Let
←−
X = (

←−
X t,
←−
O t)0≤t≤τu be the time reversal of X , i.e.

←−
X = (Xτu−t)0≤t≤τu . In this

part, we will verify that for any λ ∈ R and configuration O on E, the jump rate of←−
X conditionally on τu < TX and

(
φ(u),O(u)

)
= (λ,O) is given by (2.9), which leads to

Theorem 2.10.

8Note that under the condition, y is not visited by X[0,τu]. Thus φt(y) ≡ φ0(y), t ∈ [0, τu].
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Recall the notation in (2.5). In the following, we will use Λt and ϕt to represent
Λt(λ,

←−
X [0,t]) and ϕt(λ,

←−
X [0,t]) respectively. Note that given φ(u) = λ, the aggregated

local time φτu−t equals Λt. Let us condition on τu < TX ,
(
φ(u),O(u)

)
= (λ,O) and

the path
←−
X [0,t] with

←−
X t = x, and calculate the jump rates related to the edge {x, y},

i.e. the rate of the jump from x to y by
←−
X t without modifying

←−
O t, or the closure of

{x, y} in
←−
O t without

←−
X t jumping, or the jump and closure simultaneously. Due to the

Markov property of X , it suffices to condition only on (
←−
X t,Λt). For simplicity, denote

by Q = P(· |
←−
X t = x,Λt) = P(· |Xτu−t = x, φτu−t) henceforth. Be careful that in the

definition of Q, we do not condition on
←−
O t. The jump rates are analyzed in the following

two cases.
(1) if y = p(x), then there are two possible jumps:

←−
X t jumps from x to y without

modifying
←−
O t, or it jumps with the closre of {x, y} in

←−
O t. Since

←−
X t = x, it holds that

←−
O t({x, y}) = 1. This allows us to ignore the condition on

←−
O t({x, y}). Note that the law of

←−
X given φ(u) = λ and τu < TX is also Pλx0

(defined in §2.4). So the rate of the jump from

x to y by
←−
X at time t is Cxy

√
Λt(y)

Λt(x)
· Iα−1(ϕt(xy))

Iα(ϕt(xy))
as shown in (2.7).

We further consider the probability that the jump is accompanied by the closure of
{x, y} in

←−
O t. Observe that this happens if and only if O(τu−t)−({x, y}) = 0. Condition-

ally on Λt and
←−
X jumping from x to y at time t, O(τu−t)−({x, y}) has the same law as

O(L̃)({x, y}) given Lx(L̃) = Λt(x) and Ly(L̃) = Λt(y). By Lemma 4.3, the conditional
probability that O(τu−t)−({x, y}) = 0 is

1− I1−α(ϕt(xy))

Iα−1(ϕt(xy))
. (4.11)

Therefore,
←−
X jumps from x to y and

←−
O({x, y}) turns to 0 at time t with rate

Cxy

√
Λt(y)

Λt(x)
· Iα−1(ϕt(xy))

Iα(ϕt(xy))
·
(

1− I1−α(ϕt(xy))

Iα−1(ϕt(xy))

)
= Cxy

√
Λt(y)

Λt(x)
· Iα−1(ϕt(xy))− I1−α(ϕt(xy))

Iα(ϕt(xy))
;

while
←−
X jumps from x to y at time t without modifying

←−
O t with rate

Cxy

√
Λt(y)

Λt(x)
· I1−α(ϕt(xy))

Iα(ϕt(xy))
.

(2) if x = p(y), the possible jumps are:
←−
X t jumps from x to y without modifying

←−
O t,

or {x, y} is closed without
←−
X t jumping. Denote by A1 (resp. A2) the event that there is

a jump of the first (resp. second) kind during [t, t+ ∆t]. Note that A1 can happen only

when
←−
O t−({x, y}) =

←−
O t({x, y}) = 1, since there exists s > t such that

←−
X jumps from y to

x at time s. We have

P(A1 |
←−
X t = x,

←−
O t({x, y} = 1,Λt) = Q(A1)/Q(

←−
O t({x, y}) = 1)

= Cxy

√
Λt(y)

Λt(x)
· Iα (ϕt(xy))

Iα−1 (ϕt(xy))
∆t ·

(
I1−α(ϕt(xy))

Iα−1(ϕt(xy))

)−1

+ o(∆t)

= Cxy

√
Λt(y)

Λt(x)
· Iα (ϕt(xy))

I1−α (ϕt(xy))
∆t+ o(∆t).

(4.12)
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Now we turn to A2. Observe that A2 is also the event that at some time in [τu − t−
∆t, τu − t], {x, y} is opened in O without X jumping. Let A3 = A2 ∩ {X[τu−t−∆t,τu−t] = x}.
Then

P(A3 |
←−
X t = x,

←−
O t({x, y}) = 1,Λt)

= Q(Oτu−t−∆t({x, y}) = 0, X[τu−t−∆t,τu−t] = x | Oτu−t({x, y}) = 1)

= Q(X[τu−t−∆t,τu−t] = x | Oτu−t({x, y}) = 1)

−Q(Oτu−t−∆t({x, y}) = 1, X[τu−t−∆t,τu−t] = x | Oτu−t({x, y}) = 1) =: q1 − q2.

We observe that

q1 = 1− Cxy

√
Λt(y)

Λt(x)
· Iα (ϕt(xy))

I1−α (ϕt(xy))
∆t+ o(∆t)

by (4.12); while if we denote h(s) =
I1−α(2Cxy

√
sΛt(y))

Iα−1(2Cxy
√
sΛt(y))

, then by Lemma 4.3,

q2 = q1P(Oτu−t−∆t = 1 |Xτu−t−∆t = x,Λτu−t−∆t = `−∆t · δx)|`=Λt

= q1h(Λt −∆t) = q1[h(Λt)− h′(Λt)∆t]

= 1− Cxy

√
Λt(y)

Λt(x)
· I−α (ϕt(xy))

I1−α (ϕt(xy))
∆t+ o(∆t).

So P(A3 |
←−
X t = x,

←−
O t({x, y}) = 1,Λt) equals

Cxy

√
Λt(y)

Λt(x)
· I−α(ϕt(xy))− Iα(ϕt(xy))

I1−α(ϕt(xy))
∆t+ o(∆t). (4.13)

Similar to the last part of the proof of Proposition 4.1, we can show that P(A2 \
A3 |
←−
X t = x,

←−
O t({x, y}) = 1,Λt) = o(∆t). Hence P(A2 |

←−
X t = x,

←−
O t({x, y}) = 1,Λt) also

equals (4.13). We have thus shown all the rates in (2.9). The rates already determine
the process (Cf. Appendix A). So we are done.

Remark 4.5 (Connection to the process of Lupu, Sabot, and Tarrès [18, §3]). When

α = 1/2, using I1/2(z) =
(

2
πz

)1/2

sinh(z) and I−1/2(z) =
(

2
πz

)1/2

cosh(z), we get the jump

rates in (2.9) can be simplified as
1{O1({x,y})=1}Cxy

√
Λt(y)

Λt(x)
, if x 6= y,O1 = O2,

2Cxy

√
Λt(y)

Λt(x)
·
(
e2ϕt(xy) − 1

)−1
, if O2 = O1 \ {x, z} for some z ∼ x.

As in Remark 4.4, if we assume the Gaussian free fields in [18] are coupled with the
metric-graph loop soups as in Lupu’s isomorphism theorem, then the above jump rates
coincide with that of (X̌t, Čt) defined in Proposition 3.4 in [18].

5 Mesh limits of repelling jump processes

Recall the setting in §2.5. In this section, we first introduce the self-repelling diffusion
Bλ which inverts the Ray-Knight identity of reflected Brownian motion, and then show
that Bλ is the mesh limit of vertex repelling jump processes as stated in Theorem 2.11.

Throughout the section, B is a reflected Brownian motion on R+; L̃(0) and L̃(u) are the
loop soups associated to B conditioned on their local time at 0 are 0 and u respectively;(
φ̃(0), B[0,τBu ], φ̃

(u)
)

is a Ray-Knight triple associated to B with starting point 0.
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5.1 Self-repelling diffusions

First, we define a process M = Mα closely related to the Ray-Knight triple. When
α = 0, M = (Mt : t ≥ 0) is a reflected Brownian motion on R+; when α > 0, M = (Mt :

t ∈ R) is the print of a two-sided perturbed reflected Brownian motion with parameter
1/α on R+ which can be constructed as

Mt =

{
|β′−t|+ α−1Lβ

′
(−t, 0), t < 0,

|βt|, t ≥ 0,

where (βt, t ≥ 0) and (β′t, t ≥ 0) are two independent Brownian motions.
When α > 0, M(−∞,0] and L̃(0) is linked as follows (Cf. [16, §5]): by reading off

the excursions of M above the minimum process t 7→ infs∈(−∞,t]Ms, t ∈ (−∞, 0], and
forgetting the starting points of the excursions, we get a collection of loops which have
the same law as L̃(0); conversely, by rooting the loops in L̃(0) at their minimum and
‘concatenating’ them together (see [16, §5] for the details of this concatenation), we get
a process distributed as M(−∞,0]. In particular, it can be deduced from the above link

that the local time field of M(−∞,0] has the same law as L̃(0). (Both are distributed as a
BESQ2α process starting from 0. See [16, Proposition 4.6].)

We denote by LM (τMu , ·) the local time field of M[0,τMu ] (when α = 0) or M(−∞,τMu ]

(when α > 0). It is seen that

• M[0,τMu ] has the law of B[0,τBu ];

• when α > 0, the local time field of M(−∞,0] is independent of M[0,τMu ] and distributed

as L̃(0).

This implies that M[0,τMu ] conditioned on LM (τMu , ·) has the same law as B[0,τBu ] condi-

tioned on φ̃(u).
In the following, we shall present the conditional law of M[0,τMu ] shown in [25] (α = 0)

and [2] (α > 0). It is shown that by performing a time-space transformation of M[0,τMu ]

which depends only on the local time LM (τMu , ·) (and some extra randomness in the case
α = 0), we get a process independent of LM (τMu , ·), which we call burglar. So to get the
conditional law, one can start with the burglar and make the inverse transformation
using the given time field. The idea also comes from the Perkins’ disintegration theorem
(Cf. [1, §3]). The details are as follows.

For any non-negative continuous function f on R+ with f(0) > 0, denote by df the
hitting time of 0 by f , i.e. df := inf{x > 0 : f(x) = 0} ∈ (0,∞]. We call f admissible if∫ df

0

f(x)−1 dx =∞.

Let R̃ be the set of non-negative, continuous, admissible functions λ on R+ with λ(0) > 0

when α > 0 and further with dλ <∞ and λ(x) = 0 for all x ≥ dλ when α = 0.
For f ∈ R̃, define the following change of scale ηf and change of time Cf associated

to a deterministic continuous process R on R+ starting from 0:

ηf (y) =

∫ y

0

f(x)−1 dx, y ∈ [0, df ), Cf (t) = CRf (t) =

∫ t

0

f(Rs)
−2ds, t ∈ [0, HR

df
).

For 0 < a ≤ HR
df

, we define Φ(R[0,a), f) to be the process
(
ηf
(
RC−1

f (t)

)
: t ∈ [0, Cf (a))

)
.

And Φ(R[0,a], f) can be defined for 0 < a < HR
df

.

Denote h(x) = LM
(
τMu , x

)
, which has the law of a BESQ2α process starting from u.

It follows from the properties of BESQ processes that h ∈ R̃ a.s. When α > 0, define
Z := Φ

(
M[0,τMu ], h

)
.
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Proposition 5.1 ([2, Theorem 5.15]). Z is independent of h.

When α = 0, we divide M[0,τMu ] into two parts: the processes before and after Tmax,
where Tmax is the time when M[0,τMu ] attains its maximum. Set

h(1)(x) = LM (Tmax, x), h(2)(x) = LM
(
τMu , x

)
− LM (Tmax, x),

Z(1) = Φ(M[0,Tmax), h
(1)), Z(2) = Φ

(
(MτMu −t : 0 ≤ t < τMu − Tmax), h(2)

)
.

Proposition 5.2 ([25, Theorem 9]). The three processes Z(1), Z(2) and h are indepen-
dent. Z(1) and Z(2) have the same law. Moreover, there exists an independent Jacobi
diffusion J 2,2 with dimensions 2 and 2 starting from a uniform point in [0, 1], i.e. a
diffusion on [0, 1] with infinitesimal generator 2x(1− x) d2x+ 2(1− 2x) dx, such that

h(1)(x)/h(x) = J 2,2
ηh(x), 0 ≤ x < dh = MTmax .

The above Z(i), resp. Z, is called the burglar with parameter 0, resp. with parameter
α(> 0). Now given h, we can start with Z(1),Z(2),J 2,2 (when α = 0) or Z (when α > 0),
and perform the inverse transformation to derive the conditional law of M[0,τMu ] given h.
The detailed construction is as follows:

For f ∈ R̃, define the following change of time Kf associated to a deterministic
continuous process R on R+ starting from 0:

Kf (t) = KR
f (t) =

∫ t

0

(
f ◦ η−1

f (Rs)
)2

ds, t ∈ [0, HR
df

).

Set Φ−1(R[0,a), f) :=
(
η−1
f

(
RK−1

f (t)

)
: t ∈ [0,Kf (a))

)
for 0 < a ≤ HR

df
. We can check that

for any a and f with 0 < a ≤ HR
df

,

Φ−1
(
Φ(R[0,a), f), f

)
= R[0,a).

In fact, denote St = Φ(R[0,a)], f) = ηf
(
R(CRf )−1(t)

)
. It reduces to showing R(KS

f ◦C
R
f )−1(t) =

Rt. This follows from the fact that (KS
f ◦ CRf )′(t) =

(
f ◦ η−1

f (SCRf (t))
)2 · f(Rt)

−2 = 1.

Definition 5.3. For any λ ∈ R̃, define the self-repelling diffusion Bλ as follows:

• when α > 0, set
Bλ := Φ−1(Z, λ);

• when α = 0, let Z(1), Z(2) and J 2,2 be three independent processes such that Z(1)

and Z(2) are identically distributed as the burglar with parameter 0 and J 2,2 is a
Jacobi diffusion with dimensions 2 and 2 starting from a uniform point in [0, 1]. Set

λ(1) = λ(x)J 2,2
ηλ(x), λ

(2)(x) = λ(x)− λ(1)(x) and t(i) = KZ(i)

λ(i) (∞)9 (i = 1, 2). Define

Bλt :=

{
Φ−1(Z(1), λ(1),∞)(t), 0 ≤ t ≤ t(1),

Φ−1(Z(2), λ(2),∞)(t(1) + t(2) − t), t(1) < t ≤ t(1) + t(2).
(5.1)

Proposition 5.4 ([2, 25]). For any λ ∈ R̃, Bλ has the law of M[0,τMu ] conditioned on

LM (τMu , ·). Hence it also has the law of B[0,τBu ] conditioned on φ̃(u) = λ.

It is known that Bλ admits bicontinuous local times LB
λ

(t, x). We naturally gen-
eralize the notation Λt in (2.5) to the setting of continuous state space. In particular,
Λt(λ,B

λ)(x) = λ(x) − LBλ(t, x). The next proposition shows the continuity of the self-
repelling diffusion with respect to the initial local time field, which is crucial in the proof
of the convergence.

9It holds that TZ
(i)

=∞ (Cf. [25]).
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Proposition 5.5. Let {ak}k≥1 be a sequence of random functions in R̃ that converges

weakly to a deterministic function λ in R̃ for the local uniform topology on [0,∞). If α = 0,
further require that dak converges weakly to dλ. Let Bak and Bλ be the corresponding
self-repelling diffusions. Then(

Bakt , TB
ak
,Λt(ak, B

ak)(x)
)
t≥0,x∈R+

converge weakly to
(
Bλt , T

Bλ ,Λt(λ,B
λ)(x)

)
t≥0,x∈R+ for the uniform topology in t and the

local uniform topology on [0,∞) in x.

Remark. In the statement of the proposition and below, we assume that all the vertex
repelling jump processes and self-repelling diffusions stay at 0 after the lifetimes, and
their local time fields stay still after that time.

Proof. By Skorokhod’s representation theorem, we can assume that all ak are defined
on the same probability space and the convergences in the proposition are all almost
sure. Besides, we assume that Bak and Bλ are constructed from the same processes
Z(1), Z(2), J 2,2. We will show that(

Bakt , TB
ak
,Λt(ak, B

ak)(x)
)
t≥0,x∈R+ (5.2)

converges almost surely to
(
Bλt , T

Bλ ,Λt(λ,B
λ)(x)

)
t≥0,x∈R+ .

(1) Case α = 0. Note that in this case, we have TB
λ

=
∫ d

0
λ(x) dx by Proposition 5.4.

So the above assumptions imply that

TB
ak

=

∫ dak

0

ak(x) dx→ TB
λ

=

∫ dλ

0

λ(x) dx, a.s.. (5.3)

From the definition (5.1), Bak and Bλ can be constructed from each other by a time-
space transformation. Precisely, if we write Λakt and Λλt for Λt(ak, B

ak) and Λt(λ,B
λ)

respectively, then for 0 ≤ t ≤ C(1)
k (TB

λ

max) and x ∈ [0, dak),
Bakt =

(
η

(1)
k

)−1
(
Bλ

(C
(1)
k )−1(t)

)
;

Λakt (x) = a
(1)
k (x)

(
λ(1) ◦ η(1)

k (x)
)−1
[
Λλ

(C
(1)
k )−1(t)

(
η

(1)
k (x)

)
− λ(2)(x)

]
+ a

(2)
k (x),

where

• TB
λ

max is the time when Bλ attains its maximum;

• for i = 1, 2, η(i)
k = (ηλ(i))−1 ◦ η

a
(i)
k

with λ(1)(x) = λ(x)J 2,2
ηλ(x), λ

(2)(x) = λ(x)− λ(1)(x)

and a(1)
k (x) = ak(x)J 2,2

ηak (x), a
(2)
k (x) = ak(x)− a(1)

k (x);

• C
(1)
k (t) =

∫ t
0

(
a

(1)
k ◦ η

(1)
k (Bλs )

)2
λ(1)(Bλs )−2 ds for t ∈ [0, TB

λ

max].

Observe that for any m < dλ, we have inf0≤x≤m λ
(1)(x) > 0 a.s.. Using this, we can

readily check that for any m < dλ and T < TB
λ

max,

sup
x∈[0,m]

∣∣∣η(1)
k (x)− x

∣∣∣ ∨ ∣∣∣(η(1)
k

)−1
(x)− x

∣∣∣→ 0, sup
t∈[0,T ]

∣∣∣C(1)
k (t)− t

∣∣∣→ 0. (5.4)

In particular, fixing ε > 0, we let ζ(1)
ε be the last visit time of dλ − ε by Bλ before time

TB
λ

max, and take T = ζ
(1)
ε and m = max

{
Bλt : t ∈ [0, ζ

(1)
ε ]
}

in (5.4). Further note the facts:

(1) ζk,(1)
ε := C

(1)
k (ζ

(1)
ε ) is the last visit time of

(
η

(1)
k

)−1
(dλ − ε) by Bak before TB

ak

max (the
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time when Bak attains its maximum), (2) LB
λ

(t, x) is bicontinuous and hence so is Λt(x).
Using these, it can be deduced from (5.4) that a.s.

sup
{∣∣Bakt −Bλt ∣∣ : t ∈ [0, ζk,(1)

ε ]
}
→ 0,

sup
{∣∣Λakt (x)− Λλt (x)

∣∣ : t ∈ [0, ζk,(1)
ε ], x ∈ [0, dλ − ε]

}
→ 0.

(5.5)

We can also consider processes after time TB
λ

max. A similar argument together with (5.3)
yields that 

sup
{∣∣Bakt −Bλt ∣∣ : t ∈ [ζk,(2)

ε ,∞]
}
→ 0,

sup
{∣∣Λakt (x)− Λλt (x)

∣∣ : t ∈ [ζk,(2)
ε ,∞], x ∈ [0, dλ − ε]

}
→ 0,

(5.6)

where ζk,(2)
ε is the first hitting time of

(
η

(2)
k

)−1
(dλ − ε) by Bak after TB

ak

max .
Furthermore, observe that for k large enough (depending on ω), it holds that

(i)
(
η

(1)
k

)−1
(dλ − ε) ∧

(
η

(2)
k

)−1
(dλ − ε) > dλ − 2ε and dak < dλ + ε;

(ii) ζk,(1)
ε = C

(1)
k (ζ

(1)
ε ) > ζ

(1)
2ε := the last visit time of dλ − 2ε before TB

λ

max by Bλ; similarly,

ζ
k,(2)
ε < ζ

(2)
2ε := the first hitting time of dλ − 2ε after TB

λ

max by Bλ;

(iii) ak(x) ≤ λ(x) + ε for all x.

(i) and (ii) tell us Bakt , Bλt ∈ (dλ − 2ε, dλ + ε) for any t ∈ (ζ
k,(1)
ε , ζ

k,(2)
ε ); while (iii) implies

that Λakt (x),Λλt (x) ≤ supx∈[dλ−2ε,dλ) λ(x) + ε for all t ≥ 0 and x ≥ dλ − 2ε. These together
with (5.5) and (5.6) lead to the conclusion.

(2) Case α > 0. In this case, the time-space transformation is: for t ≥ 0 and
x ∈ [0, dak), 

Bakt = ηk
(
BλCk(t)

)
;

Λakt (x) = ak(x)(λ ◦ ηk(x))−1ΛλCk(t)(ηk(x));

TB
ak

= Ck
(
TB

λ)
,

where ηk := (ηλ)−1 ◦ ηak and Ck :=
∫ t

0

(
ak ◦ ηk(Bλs )

)2
λ(Bλs )−1 ds for t ∈ [0, TB

λ

]. We can

deduce from the last equality that TB
ak → TB

λ

a.s.. The other parts of the proof follow
a similar way to the case α = 0. So we omit the details.

5.2 Convergence of vertex repelling jump processes

Recall the notation in §2.5. Henceforth we fix λk ∈ Rk and λ ∈ R̃ such that λk
(linearly interpolated outside Nk) convergence to λ for the local uniform topology. Let
Ωk be the collection of the right-continuous, minimal paths on Tk. For k ≥ 1, x, y ∈ Nk
with x ∼ y and ω ∈ Ωk with Tω > t, set

Λkt (x, ω) = λk(x)− 2k
∫ t

0

1{ωs=x} ds,

ϕkt (xy, ω) = 2Ckxy

√
Λkt (x, ω)Λkt (y, ω).

(5.7)

Using Theorem 2.9, we can readily check that Xλk,(k) is a jump process on Nk with jump
rates rλ,(k)(x, y) and the similar resurrect mechanism and lifetime as before, where

rλ,(k)(x, y) :=


22k−1

√
Λkt (y)

Λkt (x)
· Iα−1(ϕkt (xy))

Iα(ϕkt (xy))
, if x = p(y);

22k−1

√
Λkt (y)

Λkt (x)
· Iα(ϕkt (xy))

Iα−1(ϕkt (xy))
, if y = p(x).

(5.8)
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Our proof of Theorem 2.11 follows a similar way to [18]. The key step is Proposi-
tion 5.7 which enables us to realize vertex repelling jump processes as the prints of
self-repelling diffusions on dyadic grids.

For any k ≥ 1, let φλk be distributed as φ̃(u) conditioned on φ̃(u)(x) = λk(x) for all
x ∈ Nk. Precisely, φλk can be obtained by interpolating between values φλk(x) = λk(x)

for consecutive points x ∈ Nk with independent BESQ2α bridges.

Remark 5.6. Note that if λk(x) = 0 for some x ∈ Nk \ {0}, then the properties of BESQ
bridge yield that φλk is admissible a.s..

Proposition 5.7. Suppose the field λk satisfies φλk is admissible a.s.. Let Bφ
λk be

the self-repelling diffusion with random initial local time field φλk . Denote Qk(t) :=∑
x∈Nk L

Bφ
λk

(t, x). Then (
Bφ

λk

(Qk)−1(2kt)

)
t≥0

d
= Xλk,(k). (5.9)

Proof. Recall X(k) defined in §2.5. It holds that(
X

(k)

2kt
, LX

(k)

(2kt, x)
)
t≥0,x∈Nk

d
=
(
B(Q̃k)−1(2kt), L

B
(
(Q̃k)−1(2kt), x

))
t≥0,x∈Nk

,

where Q̃k(t) =
∑
x∈Nk L

B(t, x). So for λk not fixed but randomly distributed as φ̃(u)|Nk ,
(5.9) is a direct consequence of Theorem 2.9 and Theorem 5.4, which implies that (5.9)
holds for a.s. λk with respect to the law of φ̃(u)|Nk . Further note that by Theorem 2.9, we
have for a.s. λk, Xλk,(k) ends up exhausting the local time at x0. Then the identity for all
λk with φλk admissible a.s. follows from the continuity with respect to the initial time
field of both sides (see Theorem 3.13 and Proposition 5.5).

Proof of Theorem 2.11. First, we additionally assume that for any k ≥ 1, λk satisfies
that φλk is admissible a.s.. (The assumption automatically holds in the case α = 0 by

Remark 5.6) Then by Proposition 5.7, it suffices to prove Bφ
λk

(Qk)−1(2k·) converges weakly

to Bλ. For this convergence, by Proposition 5.5, it is enough to prove:

(i) φλk converges weakly to λ for the local uniform topology on [0,∞). Besides, in the
case α = 0, dφλk converges weakly to dλ;

(ii) t 7→
(
Qk
)−1

[
2kt ∧Qk

(
TB

φλk
)]

converges weakly to t 7→ t ∧ TBλ for the uniform

topology.

The second convergence in (i) is immediate from the convergence of dλk . For the
first convergence, recall that φλk is obtained by interpolating with independent BESQ2α

bridges. Denote by Qδ,t
x,y a BESQδ bridge from x to y over [0, t]. Fix r ∈ ∪kNk. Let

M := sup
0≤x≤r

λ(x) ∨ sup{λk(x) : k ≥ 1, 0 ≤ x ≤ r}.

For the convergence of φλk , it suffices to prove for any ε > 0, there exists 0 < σ < ε,
such that for all x, y ∈ [0,M ] with |x− y| < σ, the probability that a Qδ,tx,y bridge deviates
more than ε from x is o(t), where o(t) is uniform for all x, y. In fact, once it is proved, we
consider k large enough such that supx∈Nk∩[0,r] |λk(x)− λ(x)| < σ/3 and |λ(x)− λ(y)| <
σ/3 for any x, y ∈ [0, r] and |x− y| < 2−k. Then the probability of the difference between
λ and φλk on a subinterval [i/2k, (i + 1)/2k] of [0, r] greater than 2ε is o

(
2−k

)
, where

o
(
2−k

)
depends on ε and is independent of i. The probability beats the 2k factor, which

implies the convergence.
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For the proof of the above statement, we note that the BESQ bridge has the following
independent decomposition (Cf. [21, (1.f)])

Qδ,t
x→y = Q0,t

x→0 ⊕ Q0,t
0→y ⊕ Qδ,t

0→0 ⊕
∞∑
n=1

bδ/2−1(
√
xy, n)Q4n,t

0→0,

where b is defined in (3.1). We shall first show that for any δ ≥ 0 and ε > 0,

P

(
Qδ,t

0→0 ⊕
∞∑
n=1

bδ/2−1(
√
xy, n)Q4n,t

0→0 > ε

)
= o(t), (5.10)

which implies that if the statement holds for a certain δ ≥ 0, then it automatically holds
for all δ ≥ 0. We will then prove the statement in the special case δ = 1.

Te get (5.10), note that the tail probability of the maximum of a standard BESQ bridge
is (Cf. for example [10, Remark 3.1])

P
(

sup Qδ,t
0→0 > m

)
∼ 2δ/2

√
2π

Γ(δ/2)
(m/t)(δ−3)/2e−2m/t, as t ↓ 0. (5.11)

Besides, set ξ =
∑∞
n=0 bδ/2−1(

√
xy, n)Q4n,t

0→0 and denote c(x, y, δ) =
∑
n≥1 n

2bδ/2−1(
√
xy, n),

which is uniformly bounded for x, y ∈ [0,M ]. Then using the scaling property and
additivity property of BESQ bridge, we get

P(sup ξ > m) ≤
∞∑
n=1

P
(

sup Q4n,t
0→0 > c(x, y, δ)−1mn2

)
≤
∞∑
n=1

nP
(

sup Q4,t
0→0 > c(x, y, δ)−1mn

)
=

∞∑
n=1

nP
(

sup Q4,t/n
0→0 > c(x, y, δ)−1m

)
≤ C1e

−C2/t for some constant C1, C2 > 0.

(5.12)

Here the last line comes from (5.11). Combining (5.11) and (5.12), we get (5.10).
Now we consider the case δ = 1. Observe that a Q1,t

x,y bridge can be constructed by
first sampling η ∈ {±1} with

P(η = ±1) =
e−(
√
x∓√y)2/2t

e−(
√
x−√y)2/2t + e−(

√
x+
√
y)2/2t

,

and then sampling a Brownian bridge from
√
x to η

√
y over [0, t] and taking the square.

Then it is a simple exercise to deduce the conclusion from the basic properties of
Brownian bridges. That concludes the convergence of φλk .

Since we have proved (i), the convergences in the conclusion of Proposition 5.5 hold.
As in the proof of Proposition 5.5, we assume the convergences in (i) and the conclusion
of Proposition 5.5 are all almost sure. For (ii), first, let us show that

t 7→ 2−kQk(t ∧ TB
φλk

) converges uniformly to t 7→ t ∧ TB
λ

a.s.. (5.13)

It follows from the definition of Qk that

2−kQk(t ∧ TB
φλk

) = 2−k
∑
x∈Nk

(
λ(x)− Λt(φ

λk , Bφ
λk

)(x)
)

= 2−k
∑
x∈Nk

(
Λt(λ,B

λ)(x)− Λt(φ
λk , Bφ

λk
)(x)

)
+ 2−k

∑
x∈Nk

(
λ(x)− Λt(λ,B

λ)(x)
)
.
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The convergence of the paths implies that a.s. Bφ
λk and Bλ are bounded by a common

constant m (depending on ω). It follows that the terms in the first sum on the right-hand
side of the last equality are all zero for x > m. Then the convergence of Λt implies that
the first sum converges to 0 a.s.. Besides, it is direct from the occupation times formula
that the second sum goes to t ∧ TBλ . This gives (5.13).

Using the substitution t = 2−kQk(s) for 0 ≤ t ≤ 2−kQk(TB
φλk

), for s and t in the
corresponding range, we have

sup

∣∣∣∣(Qk)−1
[
2kt ∧Qk(TB

φλk

)
]
− t ∧ TB

λ

∣∣∣∣
= sup

∣∣∣∣s ∧ TBφλk − 2−kQk(s ∧ TB
φλk

) ∧ TB
λ

∣∣∣∣ ,
which goes to 0 as k ↑ ∞ by (5.13) and the convergence TB

φλk → TB
λ

. For t >

2−kQk(TB
φλk

), the above quantity is bounded by∣∣∣∣TBφλk − TBλ ∣∣∣∣+

∣∣∣∣TBφλk − 2−kQk(TB
φλk

)

∣∣∣∣ ,
which also goes to 0. That completes the proof of (ii).

Finally, we remove the additional assumption. Without loss of generality, we assume
α > 0. For k ≥ 1, let

ok = ok(λ) := inf
{
x ∈ Nk : x ≥ dλ}.

Given λk, we define another sequence of fields λ′k on Nk as follows: for each k ≥ 1,

λ′k(x) =

{
0, if x = ok;

λk(x), otherwise.

Then λ′k satisfies the additional assumption and converges to λ for the local uniform
topology. So the previous proof implies that

Xλ′k,(k) d→ Bλ. (5.14)

In particular, since a.s. supt≥0B
λ
t < dλ, we have for any ε > 0, there exists o∗ ∈ (0, dλ)

such that for k sufficiently large,

P

(
sup
t≥0

Xλ′k,(k) ≥ o∗
)
< ε.

On the other hand, we observe that λk(x) = λ′k(x) for x ∈ [0, ok) ∩Nk and the event{
supt≥0X

λ′k,(k) ≥ o∗
}

(resp.
{

supt≥0X
λ′k,(k) ≥ o∗

}
) depends only on the print of Xλk,(k)

(resp. Xλ′k,(k)) on [0, ok) ∩Nk. By the restriction principle (see Proposition 3.11), we can
couple Xλk,(k) and Xλ′k,(k) such that their prints on x ∈ [0, ok) ∩Nk coincide. Then

P
(
Xλk,(k) 6= Xλ′k,(k)

)
≤ P

(
sup
t≥0

Xλk,(k) ≥ o∗
)

+ P

(
sup
t≥0

Xλ′k,(k) ≥ o∗
)

= 2P

(
sup
t≥0

Xλ′k,(k) ≥ o∗
)
< 2ε.

Combining with (5.14), we get Xλk,(k) d→ Bλ.
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Remark 5.8. In this remark, we explain how to generalize the convergence result on
R+ in Theorem 2.11 to the case of general trees. We won’t give the proof of this. For
details supporting what we explain see [1, §3]. The self-repelling diffusion Bλ on R+

enjoys the local property. Namely, for any [a, b] on Bλ, the law of the print of Bλ on
[a, b] depends only on λ|[a,b]. So we can make sense of B|[a,b] conditioned on a time
field λ = (λx : x ∈ [a, b]) on [a, b], which we denote by Bλ[a,b]. Moreover, it holds that

Bλ[a,b] = Bλ◦θb[0,b−a], where λ ◦ θb = (λb+x : x ∈ [0, b− a]) is a time field on [0, b− a].

For a general metric graph T̃ associated to a tree, write it as the union of the intervals
∪nI{an,bn} (recall the notation Ie defined in §4), where we assume an = p(bn) on the tree.
Each I{an,bn} is also identified with the interval

[
0,
∣∣I{an,bn}∣∣ ] (an is identified with 0),

where | · | is the length of the interval. For any time field λ on T̃, we associate each

I{an,bn} with the process B
λ|I{an,bn}
I{an,bn}

. The self-repelling diffusion on T̃ is constructed by
gluing the excursions of these processes at vertices an and bn, n ≥ 1, indexed by the
local times10, which inverts the Ray-Knight identity on T̃ with initial time field λ.

A Processes with terminated jump rates

Let G = (V,E) be a finite or countable graph where each vertex has finite degree.
All the processes considered in this part are assumed to be right-continuous, minimal,
nearest-neighbour jump processes on G with a finite or infinite lifetime. We consider the
process to stay at a cemetery point ∆ after the lifetime. The collection of all such sample
paths is denoted by Ω, and Ω∞ := {ω ∈ Ω : ω has infinite lifetime}. Let {Ft : t ≥ 0} be
the natural filtration of the coordinate process on Ω∞.

Let us introduce some notation that will be used throughout this part. For 0 ≤
a < b ≤ ∞, [a, b〉 represents the interval [a, b] or [a, b) respectively as b < ∞ or b = ∞
respectively. Let l ≥ 0, t ∈ (0,∞], {ti}1≤i≤l be positive real numbers and {xi}0≤i≤l be
vertices in V , such that 0 =: t0 < t1 < · · · < tl ≤ tl+1 := t and x0 ∼ x1 ∼ · · · ∼ xl. Denote

by σ(x0
t1→ x1

t2→ · · · tl→ xl
t→) the function: [0, t〉 → V , that equals xi on [ti, ti+1) (resp.

[ti, ti+1〉) for i = 0, · · · , l − 1 (resp. i = l).

Definition A.1 (LSC stopping time). Let T be a stopping time with respect to (Ft : t ≥ 0),
such that it is lower semi-continuous under the Skorokhod topology. We simply say
T is a LSC stopping time. The notation 1{t<T (ω[0,t])} has the natural meaning when T

is a stopping time. We further say T is regular if for any ω ∈ Ω∞ with t < T (ω) and
ωt = x, there exists l = l(ω[0,t]) > 0, such that for any 0 < s ≤ l and y ∼ x, it holds that

T
(
ω[0,t] ◦ σ(x

s→ y
∞→)
)
≥ t+ l. Roughly speaking, for a regular T , if the process ω does

not ‘reach’ the stopping time T (ω) at time t, then as long as it has exactly one jump
during [t, t+ l], it will not ‘reach’ T (ω) until time t+ l.

Definition A.2 (Terminated jump rates). Given a LSC stopping time T . Denote

DT :=
{

(t, x, y, ω) ∈ R+ × V × V × Ω∞ : 0 ≤ t < T (ω), x ∼ y, ωt = x
}
.

A function r = rt(x, y) = r(t, x, y, ω): DT → R+ is called (a family of) T -terminated jump
rates if (1) it is continuous with respect to the product topology, where Ω∞ is equipped
with the Skorokhod topology; (2) for any x ∼ y, the process

(
rt(x, y)1{t<T, ωt=x} : t ≥ 0

)
is adapted to (Ft). For such r, we also write rt(x, y, ω) = rt(x, y, ω[0,t]) on {t < T (ω), ωt =

x}.
From now on, we always assume that T is a LSC stopping time and r is T -terminated

jump rates.

10for edges e1, · · · , en with common vertices a, let `j(a) be the local time at a of the processes associated
to Iej for j = 1, · · · , n. In the gluing procedure, we glue their excursions at vertices a up to the local time
min{`j(a) : j = 1, · · · , n}. So some of the excursions are not used in this procedure.
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Definition A.3 (Processes with terminated jump rates). A process Z = (Zs : 0 ≤ s < TZ)

is said to have jump rates r if for any t ≥ 0, conditionally on t < TZ and (Zs : 0 ≤ s ≤ t)
with Zt = x,

(R1) the probability that the first jump of Z after time t occurs in [t, t + ∆t] and the
jump is to a neighbour y is rt(x, y, Z[0,t])∆t + o(∆t), where o(∆t) depends on the
conditioned path Z[0,t],

and the process finally stops at time TZ . Here TZ = TZ0 ∧ TZ∞ with

TZ0 := sup{t ≥ 0 : t < T (Z[0,t])};
TZ∞ := sup{t ≥ 0 : Z[0,t] has finitely many jumps}.

Remark A.4. In the above definition, if it holds that T is regular, then the condition
(R1) can be replaced by (R2) below without affecting the law of the defined process (see
Remark A.13 for details).

(R2) the probability of a jump of Z from x to a neighbour y in [t, t+∆t] is rt(x, y, Z[0,t])∆t+

o(∆t), where o(∆t) depends on the conditioned path Z[0,t].

The following renewal property is direct from the definition.

Proposition A.5 (Renewal property). Suppose Z is a process with jump rates r. Then for
any t ≥ 0, conditionally on t < TZ and (Zs : 0 ≤ s ≤ t), the process (Zt+s : 0 ≤ s < TZ − t)
is a process with jump rates r′u(x, y, ω) = rt+u(x, y, Z[0,t) ◦ ω) starting from Zt, where
Z[0,t) ◦ ω is a function that equals Z[0,t) on [0, t) and equals ω(· − t) on [t,∞).

Now we tackle the basic problem: the existence and uniqueness of the processes
with jump rates r. Let B be the σ-field on Ω generated by the coordinate maps.

Theorem A.6. For any x0 ∈ V , there exists a process with jump rates r starting from x0.
Moreover, if T is regular, then all such processes have the same distribution on (Ω,B).

Proof of the existence part of Theorem A.6. Similar to the case of CTMC, we can use a
sequence of i.i.d. exponential random variables to construct the process. Precisely, let
(γx : x ∼ x0) be a family of i.i.d. exponential random variables with parameter 1. For
x ∼ x0, we set

ux0x(t) =

∫ t

0

rs(x0, x, σ(x0
∞→)) ds

(
0 ≤ t < T (σ(x0

∞→)
)

and Γx0x = (ux0x)−1(γx), where (ux0x)−1 is the right-continuous inverse of ux0x and if
γx ≥ ux0x(T (σ(x0

∞→)−), then Γx0x :=∞. The process is constructed as follows. It starts
from x0. If Γx0

:= minx∼x0
Γx0x =∞, the process stays at x0 until the lifetime T (σ(x0

∞→)).
Otherwise, i.e., Γx0

< ∞, it jumps at time J1 := Γx0
to x1, which is the unique x ∼ x0

such that Γx0x = Γx0
. For the second jump, the protocol is the same except that x0 and

σ(x0
∞→) are replaced by x1 and σ(x0

J1→ x1
∞→) respectively.

In the same way that one verifies the jump rates of a CTMC constructed from a
sequence of i.i.d. exponential random variables, it is simple to check that the process
constructed above has jump rates r.

The proof of the uniqueness part is delayed to §A.1 after the introduction of path
probability.

Remark A.7. In this remark, we give the rigorous definitions of repelling processes
presented in §2 ∼§4. We only construct the process with law Pλx0

(defined in §2.4.1)
and it is similar for the others. For λ ∈ R, let Tλ(ω) := sup{t ≥ 0 : Λt(ωt−, ω) > 0} and
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consider rλ (defined as (2.7)) restricted to DTλ . Intuitively, Tλ(ω) represents the time
when the process ω uses up the local time at some vertex. We can readily check that
Tλ is a regular LSC stopping time and rλ is Tλ-terminated jump rates. We first run a
process Z1 with jump rates rλ starting from x0 up to TZ

1

. If the death is due to the
exhaustion of local time at some vertex x 6= x0, i.e. TZ

1

= TZ
1

0 and Z1
TZ1− = x, we record

the remaining local time at each vertex, say %. Then we resurrect the process by letting
it jump to p(x) and running an independent process Z2 with jump rates r% starting from
p(x) up to TZ

2

. After the death, we resurrect the process again. This continues until it
explodes or exhausts the local time at x0. This procedure defines a process, the law of
which is defined to be Pλx0

. By Theorem A.6, such a process always exists and the law is
already determined by the definition.

By the analysis in §2, when α > 0, Z1 cannot die at x 6= x0. So in this case, we actually
do not need the resurrect procedure, and Z1 up to TZ

1

has the law Pλx0
.

We assume the regularity of T henceforth. Based on Theorem A.6, when considering
a process with terminated jump rates, we can always focus on its special construction
presented in the previous proof of the existence part. The following three corollaries are
immediately derived from this perspective.

Corollary A.8. Suppose Z is a process with jump rates r. Let J1 = JZ1 be the first jump
time of Z. Then

P (J1 ∈ dt, ZJ1
= x)

= 1{t<T (σ(x0
∞→))} exp

(
−
∫ t

0

∑
y:y∼x0

rs(x0, y, σ(x0
∞→)) ds

)
· rt(x0, x, σ(x0

∞→)) dt.
(A.1)

Corollary A.9 (Strong renewal property). Suppose Z is a process with jump rates r
starting from x0. Then for any stopping time S with respect to the natural filtration of
Z, conditionally on S < TZ and (Zs : 0 ≤ s ≤ S), the process (ZS+s : 0 ≤ s ≤ TZ) is a
process with jump rates r′t(x, y, ω) = rt+S(x, y, Z[0,S) ◦ ω) starting from ZS .

The proof of the above strong renewal property is almost a word-by-word copy of the
proof of the strong Markov property of CTMC presented in [19, Theorem 6.5.4].

The next corollary gives a more accurate bound of the probability in (R1) and (R2).
We only state in terms of the event in (R2). For t ≥ 0 and σ ∈ Ωt := {ω[0,t] : ω ∈ Ω∞}, we
use σ→ to represent the function in Ω∞ that equals σ on [0, t] and stays at σt after time t.

Corollary A.10. Suppose Z is a process with jump rates r starting from x0. Then for

any σ ∈ Ωt with σt = x and t < T (σ), if we denote R(z) = exp
(
−
∫ t+∆t

t
rs(x, z, σ

→) ds
)

for z ∼ x, it holds that for y ∼ x,

P
(

there is a jump of Z from x to y in [t, t+ ∆t]
∣∣∣Z[0,t] = σ

)
∈
[( ∏

z:z∼x, z 6=y

R(z)
)
·
(
1−R(y)

)
, 1−R(y)

]
.

A.1 Path probability

Assume T is regular. Let Z be a process with jump rates r starting from x0. For any
Borel subsets {Di}1≤i≤l of R+, t ∈ (0,∞] and {xi}1≤i≤l with x0 ∼ x1 ∼ · · · ∼ xl, denote

A
(
x0

D1→ x1
D2→ · · · Dl→ xl

t→
)

:=
{
σ(x0

s1→ x1
s2→ · · · sl→ xl

t→) : 0 < s1 <

· · · < sl ≤ t and si ∈ Di ∀ 1 ≤ i ≤ l
}
.

(A.2)
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The goal of this part is to calculate the path probability

P
(
Z[0,t] ∈ A

(
x0

D1→ x1
D2→ · · · Dl→ xl

t→
))
. (A.3)

The key point of the calculation is the following lemma. At first glance, the lemma seems
obvious. We mention that the main difficulty comes from the dependence of o(∆t) in (R1)
on the conditioned path Z[0,t].

Lemma A.11. Conditionally on t < TZ and (Zs : 0 ≤ s ≤ t), the probability that Z has at
least 2 jumps during [t, t+ ∆t] is O((∆t)2), where O((∆t)2) depends on the conditioned
path.

Remark. Without the regularity of T , the conditional probability of two jumps in [t, t+∆t]

may be comparable to ∆t. For example, we consider a path-dependent Poisson process
as follows. Starting from 0, it jumps to 1 with rate 1. Its jump rate at 1 is given by:

rs
(
1, 2, σ(0

t→ 1
∞→)
)

:=
1

2t− s
for t > 0 and t ≤ s ≤ 2t.

Let us consider the special realization presented in Theorem A.6 with the above rates.
Then it holds that conditionally on the process jumping from 0 to 1 at time t, it is bound
to jump from 1 to 2 before time 2t. So the probability of two jumps in [0,∆t] is no less
than 1− e−∆t/2.

Before the proof, we present a simple result. Recall the notation σ→. It is easy to see
that given s > t ≥ 0 and σ ∈ Ωt with σt = x and s < T (σ→),

P
(
Zv = x on [t, s]

∣∣Z[0,t] = σ
)

= exp
(
−
∫ s

t

∑
y:y∼x

ru(x, y, σ→) du
)
. (A.4)

To this end, one can consider the left-hand side of (A.4) as a function of s and formulate
a differential equation.

Proof of Lemma A.11. The renewal property (in Proposition A.5) enables us to consider
only the case t = 0. It suffices to fix a neighbour y of x0 and prove the probability that Z
has at least 2 jumps during [0,∆t] and the first jump is to y is O((∆t)2). Let J1 and J2

be the first and second jump time of Z respectively, and B :=
{
J1, J2 ∈ [0,∆t], ZJ1 = y

}
.

The event B can be divided according to the jump times as follows. For n ≥ 1, define

Bj,n :=
{
J1 ∈

(j − 1

2n
∆t,

j

2n
∆t
]
, J2 ∈

( j
2n

∆t,∆t
]
, ZJ1 = y

}
(1 ≤ j ≤ 2n − 1).

Set Bn :=
⋃2n−1
j=1 Bj,n. Then it holds that Bn ↑ B. So it suffices to show that there exists

a constant C independent of n, such that

P(Bn) ≤ C(∆t)2, for all n ≥ 1.

For any j and n with 1 ≤ j ≤ 2n − 1, let B(1)
j,n be the event that J1 ∈

(
j−1
2n ∆t, j2n∆t

]
and

Zu = y for u ∈
[
J1,

j
2n∆t

]
. Then

P (Bj,n) ≤ P
(
J2 ∈

( j
2n

∆t,∆t
] ∣∣∣B(1)

j,n, J2 >
j

2n
∆t
)
· P
(
B

(1)
j,n

)
.

For the first probability on the right-hand side, observe that if we further condition on
J1, then we have conditioned on the whole path (Zs : 0 ≤ s ≤ j

2n∆t). By the regularity
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of T , for ∆t sufficiently small, T (σ(x0
u→ y

∞→)) > ∆t for any 0 < u ≤ ∆t. Then it follows

from (A.4) that on B(1)
j,n ∪ {J2 >

j
2n∆t},

P
(
J2 ∈

( j
2n

∆t,∆t
] ∣∣∣ J1

)
= P

(
J2 ∈

( j
2n

∆t,∆t
] ∣∣∣Z[0, j2n∆t] = σ

(
x0

t1→ y
j

2n∆t
→

))∣∣∣
t1=J1

= 1− exp

(
−
∫

( j
2n∆t,∆t]

∑
z:z∼y

rv
(
y, z, σ

(
x0

t1→ y
j

2n∆t
→

))
dv

)∣∣∣∣
t1=J1

≤ C∆t,

where C = sup
{∑

z:z∼y rv(y, z, σ(x0
u→ x1

∞→)) : 0 ≤ u ≤ v ≤ ∆t
}

, which is finite by the

continuity of r. The same bound also holds for P
(
J2 ∈

(
j

2n∆t,∆t
] ∣∣∣B(1)

j,n, J2 >
j

2n∆t
)

. So

P(Bn) =

n−1∑
j=1

P(Bj,n) ≤ C∆t

n−1∑
j=1

P
(
B

(1)
j,n

)
≤ C∆t · P(J1 ∈ [0,∆t], ZJ1

= y)

= C∆t ·
(
r0(x0, y, σ(x0

∞→))∆t+ o(∆t)
)
≤ C ′(∆t)2.

That completes the proof.

Corollary A.12. Conditionally on t < TZ and (Zs : 0 ≤ s ≤ t) with Zt = x, the probability
that Z has exactly one jump during [t, t+∆t] and the jump is to y is rt(x, y, Z[0,t])∆t+o(∆t),
where o(∆t) depends on the conditioned path.

Let us start the calculation of path probability (A.3). The case l = 0 has been
covered by (A.4). For l ≥ 1, Corollary A.12 enables us to use the methods of formulating
differential equations to calculate path probabilities. Fix x1 ∼ x0 and 0 < t1 < t2 ≤ ∞
with t2 < T (σ(x0

t1→ x1
∞→)). By the lower semi-continuity of T , there exists 0 < u < t2−t1,

such that for any 0 ≤ s < u, t2 < T
(
σ(x0

t1+s→ x1
∞→)
)

. For such s, let us calculate

q(s) := P
(
Z[0,t2] ∈ A

(
x0

[t1,t1+s]→ x1
t2→
))
.

For 0 < ∆s < u− s,

q(s+ ∆s)− q(s) = P
(
Z[0,t2] ∈ A

(
x0

[t1+s,t1+s+∆s]→ x1
t2→
))

=: q1q2q3,

where q1 = P(E1), q2 = P(E2 |E1), q3 = P(E3 |E1 ∩ E2) with

E1 = {Zu = x0 for u ∈ [0, t1 + s]},
E2 = {Z has exactly one jump during [t1 + s, t1 + s+ ∆s] and the jump is to x1},
E3 = {Zu = x1 for u ∈ [t1 + s+ ∆s, t2]}.

It holds that

q1 = exp
(
−
∫ t1+s

0

∑
y:y∼x0

rv
(
x0, y, σ(x0

∞→)
)

dv
)

;

q2 = rt1+s

(
x0, x1, σ(x0

∞→)
)
·∆s+ o(∆s);

q3 = exp
(
−
∫ t2

t1+s

∑
y:y∼x1

rv
(
x1, y, σ(x0

t1+s→ x1
∞→)
)

dv
)

+ o(1),

(A.5)
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where q1 and q2 follows from (A.4) and Corollary A.12 respectively. For q3, it suffices to

note that for any 0 ≤ h ≤ ∆s, conditionally on Z[0,t1+s+∆s] = σ(x0
t1+s+h→ x1

t1+s+∆s→ ), the
probability of E3 is

exp
(
−
∫ t2

t1+s+∆s

∑
y:y∼x1

rv
(
x1, y, σ(x0

t1+s+h→ x1
∞→)
))

dv,

which together with the continuity of r easily leads to the probability q3.
By further considering the case ∆s < 0, we can formulate a differential equation, the

solution of which gives: for 0 ≤ s < u,

q(s) =

∫ t1+s

t1

exp
(
−
∫ t2

0

∑
y:y∼σv

rv(σv, y, σ) dv
)
· rs′(x0, x1, σ) ds′,

where σ = σ(x0
s′→ x1

∞→) which varies with s′. Observe that the lower semi-continuity

of T implies that {s′ ∈ [0, t2] : t2 < T (σ(x0
s′→ x1

t2→))} is a relatively open subset of [0, t2].
So we can readily deduce that for any Borel subset D in R+ and x1 ∈ V ,

P
(
Z[0,t] ∈ A

(
x0

D→ x1
t→
))

=

∫
D

1{s′<t<T (σ)} exp
(
−
∫ t

0

∑
y:y∼σv

rv(σv, y, σ) dv
)
· rs′(x0, x1, σ) ds′.

Similarly, we can inductively check that for Borel subsets Di in R+ and xi ∈ V

(1 ≤ i ≤ l),

P
(
Z[0,t] ∈ At

)
=

∫
· · ·
∫
D1×···×Dl

1{s1<···<sl<t<T (σ)} ·
l∏

j=1

rtj (xj−1, xj , σ)

· exp
(
−
∫ t

0

∑
y:y∼σv

rv(σv, y, σ) dv
)
·

l∏
j=1

dsj ,

(A.6)

where σ = σ(x0
s1→ x1

s2→ · · · sl→ xl
t→) and At = A

(
x0

D1→ x1
D2→ · · · Dl→ xl

t→
)
.

When (xi), (Di) and t vary, all the sets At = A
(
x0

D1→ x1
D2→ · · · Dl→ xl

t→
)

constitute
a π-system. The σ-field generated by these sets on (Ω,B) contains sets in the form
{ω : ωs = x} (x ∈ V , s ≥ 0) and hence equals B. So (A.6) determines the law of Z. That
completes the proof of the uniqueness part of Theorem A.6.

Remark A.13. Observe that if we replace (R1) by (R2) in the Definition A.3, then
following the same routine, we obtain the same path probability (A.6). In fact, the only
difference in the proof is that in (A.4) ‘=’ should be replaced by ‘≥’, and the later proofs
still work with minor modifications. This easily leads to the statement in Remark A.4.

In the following, we present several other forms of path probability and give an
application. Note that (A.6) can also be written as an equality of measures:

P
(
Z[0,t] ∈ At

)
= d(t)

σ

l∏
j=1

dtj ,

where At = A
(
x0

dt1→ x1
dt2→ · · · dtl→ xl

t→
)
, σ = σ(x0

t1→ x1
t2→ · · · tl→ xl

t→) and

d(t)
σ = 1{t1<···<tl<t<T (σ)} exp

(
−
∫ t

0

∑
y:y∼σv

rv(σv, y, σ) dv
)
·

l∏
j=1

rtj (xj−1, xj , σ).
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An argument of the monotone class methods yields that for any bounded measurable
function Φ on Ωt,

E
(
Φ(Z[0,t]); Z[0,t] ∈ At

)
= d(t)

σ Φ(σ)

l∏
j=1

dtj .

We further give another path probability including the information of the lifetime.
Recall that we consider the process to stay at the cemetery point ∆ after the lifetime.
We naturally generalize to allow xl = ∆ in the definition of A and σ. Then we can obtain
that for any bounded measurable function Φ on Ω,

E
(
Φ(Z); Z ∈ A

)
= d∆

σ Φ(σ)δT (σ)( dtl)

l−1∏
j=1

dtj , (A.7)

where A = A
(
x0

dt1→ x1
dt2→ · · · dtl→ xl = ∆

∞→
)
, σ = σ(x0

t1→ x1
t2→ · · · tl→ xl = ∆

∞→) and

d∆
σ = 1{t1<···<tl=T (σ)} exp

(
−
∫ tl

0

∑
y:y∼σv

rv(σv, y, σ) dv
)
·
n∏
j=1

rtj (xj−1, xj , σ).

We mention that δT (σ)( dtl) makes sense since T (σ) depends only on t1, · · · , tl−1.

Remark A.14. More generally, we may allow the terminated jump rates to further
contain the rates from any x ∈ V to the cemetery point ∆. In this case, we can similarly
define the processes with terminated jump rates. In particular, such processes also stop
when jumping to ∆. The results of the path probability can be easily generalized to this
case.

Now we give an application of the path probability. With the same notation as §2,
let
(
φ(0), X[0,τu], φ

(u)
)

be a Ray-Knight triple associated to X. We will show that X[0,τu]

conditioned on τu < TX is distributed as Y[0,τYu ] defined in the beginning of §3.

Proposition A.15. • Y is recurrent.

• For any u > 0, X[0,τu] conditioned on τu < TX has the same law as Y[0,τYu ].

Proof. In this proof, we always consider the processes with terminated jump rates in the
sense of Remark A.14. Fix u > 0. We note that X and Y are the processes with jump rates
given by the conductances and killing measure. Let T (ω) = τωu− for ω ∈ Ω∞. Restrict
the above two jump rates to DT . Then the processes with the terminated jump rates
are X[0,τu−∧TX) and Y[0,τYu−∧TY ) respectively. For both processes, using the generalized
version of (A.7), we can deduce that for any bounded measurable function Φ on Ω,

E
(

Φ
(
Y[0,τYu−)

)
; τYu < TY

)
= eu(Cx0

−Chx0
)
E
(

Φ
(
X[0,τu−)

)
; τu < TX

)
, (A.8)

where X[0,τu−) and Y[0,τYu−) are considered to stay at ∆ after time τu− and τYu− respectively.
The standard results in the electric network theory tell us

Px
(
τu < TX

)
= Px

(
Hx0 < TX

)
Px0

(
τu < TX

)
= h(x)e−u(Cx0−C

h
x0

).

This together with (A.8) leads to the conclusions.
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