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Abstract

We study the characteristic polynomials of both the Gaussian Orthogonal and Sym-
plectic Ensembles. We show that for both ensembles, powers of the absolute value
of the characteristic polynomials converge in law to Gaussian multiplicative chaos
measures after normalization for sufficiently small real powers. The main tool is a new
asymptotic relation between the fractional moments of the absolute characteristic
polynomials of Gaussian Orthogonal, Unitary, and Symplectic Ensembles.
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1 Introduction

The Gaussian Orthogonal/Unitary/Symplectic Ensembles are probability measures on
the space of N ×N Symmetric/Hermitian/Quaternionic-Hermitian matrices with density

Pβ(A) =
1

ZN,β
exp(−NβTr(A2)), (1.1)

where here β = 1/2/4, respectively, and ZN,β is a normalization constant. We will write
AN,β for a matrix sampled from the measure (1.1).

The focus of this paper will be the study of the (absolute) characteristic polynomial
of matrices sampled from these ensembles in the large N limit. Our understanding of
the behavior of such random characteristic polynomials for these (and other) matrix
ensembles has seen much progress in recent years (see, for example [4] and the ref-
erences therein). Much of this progress has been motivated by conjectures on these
processes due to Fyodorov, Hiary, Keating, and Simm in [22, 19, 20], who predict a
detailed picture of the extremal values of these processes by relating these characteristic
polynomials to objects from the theory of log-correlated fields. Key to this picture is the
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foundational work of Fyodorov, Khoruzhenko, and Simm [21], which shows that for β = 2,
the normalized logarithm of the characteristic polynomial converges (in a suitable sense)
to a log-correlated Gaussian random field, expanding the picture derived by Hughes,
Keating, and O’Connell [23] in the Unitary case. More explicitly, in [21] they construct a
centered Gaussian field X on (−1, 1) with covariance kernel

EX(x)X(y) = −1

2
log |2(x− y)|.

Due to the divergence of this covariance kernel on the diagonal, X does not exist as
a random function, but instead, they show that it may be constructed as a random
variable valued in a suitable space of distributions. They then proceed to show that
the normalized logarithm of |det(AN,2 − xI)| converges in law to X with respect to the
topology given by a suitable Sobolev norm.

A key tool used to understand the geometric properties of log–correlated fields (such
as X) is their associated (GMC) Gaussian multiplicative chaos measures, introduced by
Kahane [26], which are roughly given by regularizing the exponential of the field. For
more background on log-correlated fields and GMC measures, the reader is invited to
consult [36].

In view of the results of [21, 23], one thus expects that the asymptotic behavior of
the characteristic polynomials of these ensembles and their powers should be described
by a family of GMC measures, and indeed it is from this perspective that [22, 20] were
able to formulate their conjectures. Much progress has been achieved in establishing
this picture rigorously. In particular, for β = 2, Berestycki, Webb, and Wong [4] establish
that small enough powers of the absolute value of the characteristic polynomial can
be described in the large N limit by a Gaussian multiplicative chaos (GMC) measure.
Explicitly, they construct a family of random measures µα, for α ∈ (0, 2), which may be
heuristically written as

µα(dx) = exp

(
αX(x)− α2

2
E[X(x)2]

)
dx. (1.2)

They then show that when viewed as random measures on (−1, 1), the sequence

|det(AN,2 − xI)|α

E[|det(AN,2 − xI)|α]
dx

converges in law to µα with respect to the topology of weak convergence of measures.
Our main result will be an analog of this result for the Gaussian Orthogonal and Sym-
plectic ensembles (i.e., β = 1, 4).

Theorem 1.1. For α ∈ (0, 1/
√

2), we have as N →∞ that

|det(A2N,1 − xI)|α

E[|det(A2N,1 − xI)|α]
dx⇒ µ√2α(dx)

in law with respect to the topology of weak convergence of measures.
Similarly, for α ∈ (0,

√
2) we have as N →∞ that

|det(AN,4 − xI)|α

E[|det(AN,4 − xI)|α]
dx⇒ µα/

√
2(dx)

in law with respect to the topology of weak convergence of measures.

We note that some analogous results are known outside of the case of Gaussian
ensembles. In particular, Webb [40] showed that suitably small powers (more precisely
powers in the L2-regime) of the characteristic polynomial of a Haar distributed random
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unitary matrix converges in law to a certain GMC measure on the unit circle, after a
suitable normalization. This result was later extended by Nikula, Saksman, and Webb
[34] to the larger L1-regime, which is believed to be optimal. Additionally, Forkel and
Keating [16] have shown a similar result for the characteristic polynomials of matrices
sampled from the Haar measures on both the orthogonal and symplectic groups.

In all of these cases though, the results rely on precise asymptotics for the frac-
tional moments of characteristic polynomials (for example, see Sections 3 and 4 of [4]).
Depending on the case, this becomes equivalent to obtaining asymptotics for certain
Toeplitz, Hankel, or Toeplitz+Hankel determinants associated with certain measures
with Fischer-Hartwig singularities (see [18] for further background). These asymptotics
have been computed in many cases through the use of Riemann-Hilbert methods (see,
for example, [29]). These methods though, are specific to the case of β = 2, with no clear
generalization to the β = 1, 4 cases.

Here we take a different approach to prove Theorem 1.1. Instead of calculating the
fractional moments directly (which appear to still be inaccessible to current methods),
we instead relate fractional moments of |det(A2N,1−xI)| and |det(AN,4−xI)| to those of
|det(A2N,2 − xI)|. For notational convenience in stating our result, here and elsewhere,
we will denote

DN,β(x) = det(AN,β − xI).

Our main tool in proving Theorem 1.1 is then the following asymptotic relation, which
may also be of independent interest.

Theorem 1.2. Let m ≥ 1, and for each 1 ≤ i ≤ m, let us take αi > 0 and λi ∈ (−1, 1)

such that −1 < λm < · · · < λ1 < 1. Let W be a smooth, compactly-supported function
that coincides with a polynomial on a neighborhood of [−1, 1]. Then we have that

E

[
eTr(W(A2N,1))

m∏
i=1

|D2N,1(λi)|αi
]
× E

[
eTr(2W(AN,4))

m∏
i=1

|DN,4(λi)|2αi
]

=E

[
eTr(2W(A2N,2))

m∏
i=1

|D2N,2(λi)|2αi
]

(1 +O(N−1/6)).

Moreover the error term is uniform over compact subsets of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈
(−1, 1)m : λ1 > · · · > λm}.
Remark 1.3. Theorem 1.2 may be compared to the following relation given by Baik and
Rains [3] (also noted in [18]). Denote by ON , UN , and SN , a random matrix sampled
from the Haar measure on SO(N), U(N), and Sp(N), respectively. Then for a large class
of functions g (including integrable functions), we have the following relation

E[det(g(O2N+2))]E[det(g(S2N ))] = E[|det(g(U2N ))|2].

For other occurrences of GMC measures in random matrix theory, see [31] as well
as the references therein. We also mention the work of Lambert, Ostrovsky, and Simm
[32], where they establish the convergence of a regularized version of log(|DN,β(x)|)
to a log-correlated field for arbitrary β > 0. Additionally, we also mention the recent
work of Bourgade, Mody, and Pain [6], where they establish normalized fluctuations of
log(|DN,β(x)|) at a finite collection of points. In the work of Claeys, Fahs, Lambert, and
Webb [9], a similar convergence to a GMC measure is shown for the exponential of the
eigenvalue counting function, from which they derive optimal bounds on eigenvalue
fluctuations. Lastly, for some beautiful relationships between log-correlated fields,
random matrices, and the behavior of special functions in number theory, one may
consult [28, 20, 22], and the references therein.
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Lastly, we also remark that the restriction to the even case for β = 1 in Theorem 1.1
appears to be a technical artifact of our method of proof, which relies crucially on
Theorem 1.2. Similarly, we note that the parameter ranges for α in Theorem 1.1 amount
to only a strict subset of the L2-phase, which occurs for α <

√
β. This restriction as well

is a limitation of our method and is due to having to rely on the convergence of the β = 2

at larger powers, as is explained below.

1.1 Construction of GMC and sketch of the proof of Theorem 1.1 from Theo-
rem 1.2

We now outline our method to obtain Theorem 1.1 from Theorem 1.2. Details are
given in Section 3. We begin by recalling the basics of the construction of the GMC
measure (1.2). We first recall a sequence of Gaussian processes on (−1, 1), denoted XM ,
such that a.s. XM ⇒ X as M →∞ in the distributional sense. This decomposition comes
from the identity (see, for example, Appendix C of [35]) that for x, y ∈ (−1, 1), we have
that

− 1

2
log(2|x− y|) =

∞∑
k=1

1

k
Tk(x)Tk(y),

where Tk is k-th Chebyshev polynomial of the first kind defined by the relation Tk(cos(θ))

= cos(kθ) for θ ∈ (0, 2π]. The polynomial Tk is also the k-th orthogonal polynomial with
respect to the measure µas, where µas(x) = 2

π (1− x2)−1/2I(|x| < 1) denotes the (shifted)
arcsine distribution. In particular, from this, we have the following (formal) distributional
identity

X(x) =

∞∑
k=1

Zk√
k
Tk(x),

where (Zk)k is a sequence of i.i.d standard Gaussians random variables. We define

XM (x) =

M∑
k=1

Zk√
k
Tk(x),

which is the formal projection of X onto polynomials of degree-M in L2(µas).

If we define µM,α(dx) = exp(αXM (x) − α2

2 E[XM (x)2])dx, it is shown in [4] that for
α ∈ (0, 2), the measures µM,α converge weakly in law to a nontrivial limiting measure,
which will be our µα. In addition, for α ∈ (0,

√
2), it is shown that µM,α converges to µα

in the L2-norm as well.
We now define

µN,β,α(dx) =
|DN,β(x)|α

E[|DN,β(x)|α]
dx.

In addition, we introduce processes XN,M,β, similar to XM , but relating instead to
log(|DN,β(x)|). As the eigenvalues of AN,β may live outside of (−1, 1), we first must
smoothly extend Tk to a compactly-supported function. In particular, let us fix some ε > 0

and choose, for each k, a function T̃k(x) which is smooth and of compact support, and
such that T̃k(x) = Tk(x) on (−1− ε, 1 + ε). We define

XN,M,β(x) = −
M∑
k=1

2

k
Tr(T̃k(AN,β))Tk(x), µN,M,β,α(dx) =

eαXN,M,β(x)

EeαXN,M,β(x)
dx.

For a measure µ on (−1, 1), and a function f , let us denote µ(f) :=
∫ 1

−1 f(x)µ(dx). We
note that by a standard argument (see Section 4 of [27]), there is no loss of generality to
replace the weak convergence in Theorem 1.1 with vague convergence. That is, it suffices
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to show for any fixed continuous compactly-supported function ϕ : (−1, 1)→ [0,∞), and
for α <

√
β/2, that we have that

µN,β,α(ϕ)⇒ µ
α
√

2/β
(ϕ) (1.3)

in law as N →∞ for β = 1, 4 (where N only runs over even numbers if β = 1).
For β = 1, 2, 4 and α > 0 and M fixed we have that

µN,M,β,α(ϕ)⇒ µ
M,α
√

2/β
(ϕ)

in law as N → ∞. This result is a consequence of the classical asymptotics for linear
statistics given in [25]. In particular, this follows immediately by repeating the proof
of the β = 2 case given in Section 6 of [4], as the results of [25] hold for all β = 1, 2, 4.
Noting the inequality,

1

4
E(µN,β,α(ϕ)− µ

α
√

2/β
(ϕ))2 ≤ E(µN,β,α(ϕ)− µN,M,β,α(ϕ))2

+ E(µN,M,β,α(ϕ)− µ
M,α
√

2/β
(ϕ))2 + E(µ

M,α
√

2/β
(ϕ)− µ

α
√

2/β
(ϕ))2,

we see that when taking the limit N → ∞ and then the limit M → ∞, the second and
third terms on the right-hand side vanish, so to demonstrate (1.3) it suffices to show that
for β = 1, 4, we have that

lim
M→∞

lim
N→∞

E(µN,β,α(ϕ)− µN,M,β,α(ϕ))2 = 0, (1.4)

where again N only ranges over even numbers if β = 1.
One should note that in the case of β = 2, the left-hand side of (1.4) is shown to

vanish in [4]. The key step will then be to define an additional pair of measures

νN,α(dx) =
|D2N,1(x)|α|DN,4(x)|2α

E
[
|D2N,1(x)|α

]
E
[
|DN,4(x)|2α

]dx,
νN,M,α(dx) =

eαX2N,M,1(x)e2αXN,M,4(x)

EeαX2N,M,1(x)Ee2αXN,M,4(x)
dx,

where A2N,1 and AN,4 are sampled independently. We observe that EA2N,1
[νN,α(ϕ)] =

µN,4,2α(ϕ) and EAN,4 [νN,α(ϕ)] = µ2N,1,α(ϕ), where EA2N,1
and EAN,4 denote expectation

with respect to A2N,1 and AN,4, respectively. A similar result holds for νN,M,α. A key
observation is that Jensen’s inequality implies that

E(µN,4,α(ϕ)−µN,M,4,α(ϕ))2 = E(EA2N,1
(νN,α(ϕ)−νN,M,α(ϕ)))2 ≤ E(νN,α(ϕ)−νN,M,α(ϕ))2.

With a similar observation at β = 1, this implies that to show (1.4), it suffices to show
that for α < 1/

√
2

lim
M→∞

lim
N→∞

E(νN,α(ϕ)− νN,M,α(ϕ))2 = 0.

In addition, it will suffice to show that

lim
M→∞

lim
N→∞

E(νN,α(ϕ)−νN,M,α(ϕ))2 = lim
M→∞

lim
N→∞

E(µ2N,2,2α(ϕ)−µ2N,M,2,2α(ϕ))2, (1.5)

as the latter is shown to vanish in Proposition 2.9 of [4]. Expanding both sides of (1.5), we
will see that all the integrands coincide pointwise as N →∞ by Theorem 1.2, reducing
the remaining work to showing that the error term is suitably uniform. Details of this
are given in Section 3.
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1.2 Outline of the proof of Theorem 1.2

We now outline the method of proof of Theorem 1.2. Let us choose some m ≥ 1 and
(W, {λi}i, {αi}i) satisfying the conditions of Theorem 1.2. We will denote the polynomial
coinciding withW on (−1, 1) asW0, and denote the difference as E =W −W0. We will
omit the data (N,W, {λi}i, {αi}i) from the notation when such a choice is clear from the
context. We will reduce the proof of Theorem 1.2 to the computation of the asymptotics
of the determinant of an N -by-N matrix ∆N := ∆N (W, {λi}i, {αi}i), defined in (2.3).
More specifically, we show that

E[eTr(W(A2N,1))
∏m
i=1 |D2N,1(λi)|αi ]E[eTr(2W(AN,4))

∏m
i=1 |DN,4(λi)|2αi ]

E[eTr(2W(A2N,2))
∏m
i=1 |D2N,2(λi)|2αi ]

=
√

det(∆N ).

(1.6)
This reduces the proof of Theorem 1.2 to the computation of det(∆N ).

This representation was essentially observed as Remark 2.4 of [37] and will essentially
follow (up to normalization constants) from the representations presented in [2]. This
matrix ∆N originally appeared in [41], and was used to express the correlation functions
of Orthogonal and Symplectic ensembles, and is shown there to be quite sparse. In
particular in the case W = 0, we have that ∆N coincides with the identity outside of
an (m+ 1)-by-(m+ 1) block. In the case ofW 6= 0 we will show that ∆N is the identity
outside a (m+ max(deg(W0)− 1, 1))-by-(m+ max(deg(W0)− 1, 1)) block, up to an error
term which we show is exponentially small in Section 5.

In either case, the entries of this distinguished block may be expressed explicitly in
terms of the orthogonal polynomials with respect to the measure

wN (x) := w(x;N,W, {λi}i, {αi}i) = e−2Nx
2

e2W(x)
m∏
i=1

|x− λi|2αi . (1.7)

The asymptotics of the orthogonal polynomials with respect to this measure are known
in the case of W = 0 by [29], and W 6= 0 by [4], and are recalled in detail in Section 4.
With this information, we are able to compute the asymptotics of this block matrix to
sufficient order to compute the first-order behavior of det(∆N ). This is done in Section 6.

We remark that computations of ∆N for other measures form a key step in the
proof of universality for the correlations functions of various symmetric and symplectic
ensembles [12, 13, 11, 37].

1.3 Structure of the paper

In Section 2, we prove (1.6) and reduce the asymptotic computation of det(∆N )

to Propositions 2.6 and 2.9. In addition, we provide a modification of Theorem 1.2,
Proposition 2.10, which applies in the case of (subcritical) merging singularities and
reduce its proof to Proposition 2.13. In Section 3 we complete the proof of Theorem 1.1,
which by the argument given above is reduced to demonstrating (1.5). The bulk of this
statement will follow from Theorem 1.2 and Proposition 2.10. In Section 4, we provide
asymptotics for the orthogonal polynomials with respect to wN , while in Section 5 we
employ these asymptotics to prove Proposition 2.6, which effectively allows us to neglect
all but finitely many entries of det(∆N ). In Section 6, we prove Proposition 2.9, which
consists of computing the highest order behavior of certain integrals of orthogonal
polynomials, by employing classical methods of steepest descent to the asymptotics of
Section 4. Furthermore, in Section 7, we will provide a proof of Proposition 2.13. The
methods of this section will be similar to those of Section 6, and indeed the cases of
Proposition 2.9 and Proposition 2.13 have significant overlap.
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2 Preliminary results

In this section, we will prove (1.6). In addition, we will analyze the terms of ∆N to
reduce the computation of det(∆N ) to a sequence of integrals and quantities given in
terms of the orthogonal polynomials of wN .

We will assume henceforth that N > m + deg(W0). We define the unnormalized
expected characteristic polynomial as

ΦN,β(W, {λi}i, {αi}i) =
1

N !

∫
RN
|∆N (x)|β

N∏
i=1

(e−Nβx
2
i+W(xi)

m∏
j=1

|xi − λj |αj )dxN ,

where here {λi}i = (λ1, · · · , λm), {αi}i = (α1, · · · , αm), and ∆N (x) =
∏

1≤i<j≤N (xi − xj)
denotes the Vandermonde determinant. We note that (see Chapter 1 of [17])

ΦN,β(W, {λi}i, {αi}i) = ZN,βE

[
eTr(W(AN,β))

m∏
i=1

|det(AN,β − λiI)|αi
]
.

We will need the following relation.

Lemma 2.1. For all N ≥ 1, we have that Z2N,1ZN,4 = 22NZ2N,2.

Proof. The values of ZN,β are known exactly as

ZN,β = (2N)−β
N(N−1)

4 −N/2(N !)−1β−
N
2 −β

N(N−1)
4 (2π)N/2

N∏
j=1

Γ(1 + jβ/2)

Γ(1 + β/2)
.

This follows from equation 1.163 of [17], up to rescaling. In view of this, we may rewrite

Z2N,1ZN,4
Z2N,2

=
(4N)

−2N(2N−1)
4 −N (2N)−N(N−1)−N/2

(4N)−
2N(2N−1)

2 −N

4−N/2−N(N−1)Γ(2)2N

2−N−N(2N−1)Γ(3)N

× (2π)N/2

Γ(3/2)2NN !

∏2N
j=1 Γ(1 + j/2)

∏N
j=1 Γ(1 + 2j)∏2N

j=1 Γ(1 + j)
. (2.1)

We observe that

(4N)
−2N(2N−1)

4 −N (2N)−N(N−1)−N/2

(4N)−
2N(2N−1)

2 −N
= 2N

2−N2 ,
4−N/2−N(N−1)Γ(2)2N

2−N−N(2N−1)Γ(3)N
= 1.

We may also obtain that∏2N
j=1 Γ(1 + j/2)

∏N
j=1 Γ(1 + 2j)∏2N

j=1 Γ(1 + j)
=N !

N∏
j=1

Γ(j + 1/2)Γ(j)

Γ(2j)
=

N∏
j=1

Γ(j + 1/2)Γ(1 + j)

Γ(2j)

=N !πN/2
N∏
j=1

21−2j = N !πN/22−N
2

,

where in the second to last equality we have employed the Legendre duplication formula
(see 6.1.18 of [1])

Γ(z)Γ(z + 1/2)/Γ(2z) = 21−2zπ.

In particular we may rewrite (2.1) as

2−N/2πN/2
(2π)N/2

Γ(3/2)2N
=

πN

Γ(3/2)2N
= 22N ,

where in the last step we used Γ(3/2) = 1
2

√
π. As (2.1) coincides with Z2N,1ZN,4/Z2N,2

we obtain the desired result.
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From this, we see that

E[eTr(W(A2N,1))
∏m
i=1 |D2N,1(λi)|αi ]E[eTr(2W(AN,4))

∏m
i=1 |DN,4(λi)|2αi ]

E[eTr(2W(A2N,2))
∏m
i=1 |D2N,2(λi)|2αi ]

= 22N
Φ2N,1(W, {λi}i, {αi}i)ΦN,4(2W, {λi}i, {2αi}i)

Φ2N,2(2W, {λi}i, {2αi}i)
. (2.2)

We now recall a classical representation of these integrals. For simplicity, for the
remainder of the section, we will fix (W, {λi}i, {αi}i) and denote, as above,

wN (x) = w(x;N,W, {λi}i, {αi}i).

We give families of N -by-N matrices defined for 1 ≤ i, j ≤ N as

[M2
N (W, {λi}i, {αi}i)]ij =

∫
xi+j−2wN (x)dx,

[M4
N (W, {λi}i, {αi}i)]ij =

1

2

∫
((xi−1)′(xj−1)− (xi−1)(xj−1)′)wN (x)dx,

[M1
N (W, {λi}i, {αi}i)]ij =

1

2

∫ ∫
xj−1yi−1 ε(x− y)

√
wN (x)wN (y)dxdy,

where here and elsewhere ε refers to the sign function.
We note that the latter two matrices are antisymmetric, while the first is symmetric.

The relationship between these matrices and the various ΦN,β is classical.

Lemma 2.2. We have for all N ≥ 1, that

det(M2
N (W, {λi}i, {αi}i)) =Φ2,N (2W, {λi}i, {2αi}i),

pf(M1
2N (W, {λi}i, {αi}i)) =2−NΦ1,2N (W, {λi}i, {αi}i),

pf(M4
2N (W, {λi}i, {αi}i)) =2−NΦ4,N (2W, {λi}i, {2αi}i),

where here pf denotes the Pfaffian.

Proof. This follows immediately from Propositions 5.2.1, 6.1.8, and 6.3.4 of [17].

From this we may further write (2.2) as

pf(M1
2N (W, {λi}i, {αi}i))pf(M4

2N (W, {λi}i, {αi}i))
det(M2

2N (W, {λi}i, {αi}i))
.

To relate the various Mβ
N further we introduce operators J±1N := J±1(N,W, {λi}i, {αi}i)

by

JNf(x) =wN (x)−1/2
d

dx
wN (x)1/2f(x) = f ′(x)− 2Nxf(x) +

m∑
i=1

αi
x− λi

f(x) +W ′(x)f(x),

J−1N f(x) =wN (x)−1/2
1

2

∫
ε(x− y)f(y)wN (y)1/2dy.

We note that as long as f is continuously differentiable and of sub-exponential growth,
then

(JNJ
−1
N f)(x) = wN (x)−1/2

d

dx

1

2

∫
ε(x− y)f(y)wN (y)1/2dy = f(x),

and similarly (JNJ
−1
N f)(x) = f(x). As this will always be the case in this work, we will

use these relations without mention. The utility of these operators is clear from the
following classical relations.
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Lemma 2.3. Let f and g be polynomials. Then∫
(J−1N f)(x)g(x)wN (x)dx =

1

2

∫ ∫
g(x)f(y)ε(x− y)

√
wN (x)wN (y)dxdy,∫

(JNf)(x)g(x)wN (x)dx =
1

2

∫
(f ′(x)g(x)− f(x)g′(x))wN (x)dx.

We note that in view of this lemma, we may express, for even N ,

[M1
N (W, {λi}i, {αi}i)]ij =

∫
(J−1N xi−1)xj−1wN (x)dx,

[M4
N (W, {λi}i, {αi}i)]ij =

∫
(JNx

i−1)xj−1wN (x)dx.

To further simplify these, it will be useful to recall the sequence of orthogonal
polynomials related to wN . Namely, let pi(x) := pi(x;N,W, {λi}i, {αi}i) denote the
unique sequence of polynomials, with pi of degree-i, such that∫

pi(x)pj(x)wN (x)dx = δij ,

and such that if we denote the leading coefficient of pi as κi := κi(N,W, {λi}i, {αi}i), we
have that κi > 0. It is important to note that each pi is N -dependant. As we will keep N
fixed throughout the remainder of this section, we will omit N , as well (W, {λi}i, {αi}i),
from the notation for the pi below.

We introduce the Christoffel-Darboux kernel

KN (x, y) =

N−1∑
i=0

pi(x)pi(y),

as well as the corresponding operator

(ΠNf)(x) =

∫
KN (x, y)f(y)wN (y)dy.

Let us denote the space of polynomials of degree less than m as Pm. We will denote
the space of polynomials as P. Both of these inherit the inner-product (f, g)w,N =∫
f(x)g(x)wN (x)dx. With respect to this inner-product ΠN is the orthogonal projection

of P onto PN . We will also use the notation Π⊥N = I −ΠN . We introduce an N ×N matrix
given for 1 ≤ i, j ≤ N as

[∆N ]ij = [∆N (W, {λi}i, {αi}i)]ij =

∫
(J−1N ΠNJNpi−1)(x)pj−1(x)wN (x)dx. (2.3)

We observe that the matrix ∆N is the representation of the operator ΠNJ
−1
N ΠNJNΠN

with respect basis of PN given by the orthogonal polynomials. We will often refer to
ΠNJ

−1
N ΠNJNΠN as ∆N when no confusion may arise. We have the following formula.

Lemma 2.4. For N even, we have that[
pf(M1

N (W, {λi}i, {αi}i))pf(M4
N (W, {λi}i, {αi}i))

det(M2
N (W, {λi}i, {αi}i))

]2
= det(∆N (W, {λi}i, {αi}i)).

Proof. For simplicity, we will omit (W, {λi}i, {αi}i) from the notation for Mβ
N for this

proof. By changing to the basis of PN given by orthogonal polynomials, we see that
det(M2

N ) =
∏N−1
i=0 κ−2i . In addition, we see that if we define for 1 ≤ i, j ≤ N ,

[M ′ 1N ]ij =

∫
(J−1N pi−1)(x)pj−1(x)wN (x)dx, [M ′ 4N ]ij =

∫
(JNpi−1)(x)pj−1(x)wN (x)dx,
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then by again changing the basis, we have that

det(M1
2N ) det(M4

N ) = (

N−1∏
i=0

κ−2i )2 det(M ′ 1N ) det(M ′ 4N ).

On the other hand, we see that

[M ′ 1N (M ′ 4N )T ]ij =

N−1∑
k=0

(∫
(J−1N pi−1)(x)pk(x)wN (x)dx

)(∫
(JNpj−1)(y)pk(y)wN (y)dy

)
=

∫
(J−1N pi−1)(x)

(∫
KN (x, y)(JNpj−1)(y)wN (y)dy

)
wN (x)dx

=

∫
(J−1N pi−1)(x)(ΠNJNpj−1)(x)wN (x)dx

=−
∫
pi−1(x)(J−1N ΠNJNpj−1)(x)wN (x)dx.

In particular [
pf(M1

N )pf(M4
N )

det(M2
N )

]2
= det(M ′ 1N ) det(M ′ 4N ) = (−1)N det(∆N ).

As N is even, this completes the proof.

These lemmas combined complete the verification of (1.6). To proceed, we must
reduce ∆N to a more manageable form. In view of the identity,

ΠNJ
−1
N ΠNJNΠN = ΠN −ΠNJ

−1
N [JN ,ΠN ]ΠN (2.4)

we see that it suffices to understand the action of J−1N [JN ,ΠN ] on PN . To do so, we first
compute the commutator of [JN ,ΠN ] on PN . For this, we recall the Christoffel-Darboux
formula (see [38]):

KN (x, y) =
κN−1
κN

(
pN (x)pN−1(y)− pN−1(x)pN (y)

x− y

)
; x 6= y, (2.5)

KN (x, x) =
κN−1
κN

(
p′N (x)pN−1(x)− p′N−1(x)pN (x)

)
, (2.6)

as well as the classical three-term recurrence

xpj(x) = bj−1pj−1(x) + ajpj(x) + bjpj+1(x), bj =
κj
κj+1

, aj = βj − βj+1, (2.7)

where βj is defined so that pj(x)κ−1j = xj + βjx
j−1 + · · · . Additionally, we denote by

HN (f)(y) = p.v

∫
f(x)

x− y
wN (x)dx

the wN -weighted Hilbert transform of f , where here p.v denotes the Cauchy principal
value integral taken at y. We define, for 1 ≤ i ≤ m,

`i(x) =eNλ
2
iNαi

κN−1
κN

pN (x)HN (pN−1)(λi)−HN (pN )(λi)pN−1(x)

x− λi
, (2.8)

qi(x) =e−Nλ
2
iN−αiKN (x, λi). (2.9)

The utility of these functions comes from the following decomposition.
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Proposition 2.5. For f ∈ PN , we have that

[JN ,ΠN ]f =−
m∑
k=1

e−Nλ
2
kN−αkαk`kf(λk)− 2NΠ⊥N (xf(x)) + Π⊥N (W ′(x)f(x))

=−
m∑
k=1

αk`k

∫
qk(x)f(x)wN (x)dx− 2NΠ⊥N (xf(x)) + Π⊥N (W ′(x)f(x)).

Proof of Proposition 2.5. Observing that ΠNf = f we see that

[JN ,ΠN ] =

[
d

dx
,ΠN

]
f − 2N [x,ΠN ] f +

∑
k

αk

[
1

x− λk
,ΠN

]
f + [W ′,ΠN ]f

=Π⊥N (f ′)− 2NΠ⊥N (xf) + Π⊥N (W ′f) +
∑
k

αk

[
1

x− λk
,ΠN

]
f.

We note that Π⊥N (f ′) = 0 so it suffices to evaluate [(x− λk)−1,ΠN ]. We compute that([
1

x− λk
,ΠN

]
f

)
(x)

=

∫ (
1

x− λk
− 1

y − λk

)
kN−1
kN

pN (x)pN−1(y)− pN (y)pN−1(x)

x− y
f(y)wN (y)dy

= −
∫
kN−1
kN

pN (x)pN−1(y)− pN (y)pN−1(x)

(x− λk)(y − λk)
f(y)wN (y)dy

= −
∫
kN−1
kN

pN (x)pN−1(y)− pN (y)pN−1(x)

x− λk

(
f(y)− f(λk)

y − λk
+

f(λk)

y − λk

)
wN (y)dy

= −
∫
kN−1
kN

pN (x)pN−1(y)− pN (y)pN−1(x)

(x− λk)(y − λk)
f(λk)wN (y)dy

= −e−Nλ
2
kN−αk`k(x)f(λk),

where in second to last equality we have used that fact that (f(y)− f(λk))/(y − λk) is a
polynomial of degree less than N − 1, so that∫

pN (y)
f(y)− f(λk)

y − λk
wN (y)dy =

∫
pN−1(y)

f(y)− f(λk)

y − λk
wN (y)dy = 0.

Together, these statements establish the first equality. To obtain the second equality, we
observe that ∫

qi(x)f(x)wN (x)dx = e−Nλ
2
iN−αif(λi). (2.10)

We now introduce a modification of ∆N that will be more computable. For f ∈ PN let

∆0
Nf =f + ΠNJ

−1
N

( m∑
k=1

αk`k

∫
qk(y)f(y)wN (y)dy

+ 2NΠNJ
−1
N Π⊥N (xf(x))−ΠNJ

−1
N Π⊥N (W ′0(x)f(x))

)
, (2.11)

and let us define the difference ∆1
N = ∆N −∆0

N . In sight of Proposition 2.5 and (2.4)
only the final terms in the expressions for ∆N and ∆0

N differ, and we see that

∆1
N = −ΠNJ

−1
N Π⊥NW ′(x) + ΠNJ

−1
N Π⊥NW ′0 = −ΠNJ

−1
N Π⊥NE ′, (2.12)

where E =W −W0, as before. It is clear that whenW = 0, we have that ∆0
N = ∆N . In

general, we shall show that this difference is negligible on the exponential scale.
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Proposition 2.6. Let (W, {λi}i, {αi}i) be as in Theorem 1.2. There exists a choice of
c > 0 such that

det(∆N ) = det(∆0
N ) +O(e−Nc).

Moreover for any choice of compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 >

· · · > λm}, we may choose c > 0 small enough that the error term is uniform over the
chosen of compact subset.

This proposition will be proven in Section 5. We now turn our attention to the variant
∆0
N . Let us write d = max(1,deg(W0)− 1), and let us define two subspaces of PN :

PN,2 = {f ∈ PN−d : f(λ1) = · · · = f(λm) = 0},

and PN,1 = P⊥N,2, the subspace of PN which is orthogonal to PN,2 with respect to
the inner-product product of (∗, ∗)w,N . We first show a preliminary result about these
subspaces.

Lemma 2.7. If N > m+ d+ 1, then BN = (q1, · · · , qm, pN−d, · · · , pN−1) is a basis of PN,1.
Additionally for f ∈ PN,2, we have that ∆0

Nf = f .

Proof. By the Euclidean algorithm for polynomials, we conclude that dim(PN,2) = N −
m− d, so that dim(PN,1) = m+ d. In view of (2.10) we see that BN ⊆ PN,1. Thus to show
that BN is a basis for PN,1, it suffices to show that it is linearly independent. For this, we
observe that for 1 ≤ i, j ≤ m, and 1 ≤ l ≤ d∫

qi(x)

m∏
k=1,k 6=j

(x− λk)wN (x)dx =δije
−Nλ2

iN−αi
m∏

k=1,k 6=i

(λi − λk),

∫
pN−l(x)

m∏
k=1,k 6=j

(x− λk)wN (x)dx =0.

We will derive linear independence from these relations. For this let us assume we have
an arbitrary relation

m∑
k=1

xkqk +

d∑
k=1

ykpN−k = 0, (2.13)

for some xk, yk ∈ R. Integrating this expression against
∏m
k=1,k 6=i(x − λk)wN (x), then

yields

xi

e−Nλ2
iN−αi

m∏
k=1,k 6=i

(λi − λk)

 = 0.

As the second term on the left is non-zero, we conclude that xi = 0 for all 1 ≤ i ≤
m. In particular, (2.13) now reads

∑d
k=1 ykpN−k = 0. As the pi are independent by

construction, we conclude that yk = 0 for 1 ≤ k ≤ d. This demonstrates the desired
linear independence.

For the second claim, we observe that if f ∈ PN,2, then (2Nx−W ′0(x))f(x) ∈ PN , so
Π⊥N (2Nx−W ′0(x))f(x) = 0. We have as well that

m∑
k=1

αk`k

∫
qk(y)f(y)wN (y)dy =

m∑
k=1

αk`ke
−Nλ2

kN−αkf(λk) = 0,

so indeed, we see that for f ∈ PN,2, only the identity term is nonzero, which completes
the proof of the second claim.
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Let us now write the block-decomposition of the operator ∆0
N on PN with respect to

(PN,1,PN,2) as

∆0
N =

[
[∆0

N ]11 [∆0
N ]12

[∆0
N ]21 [∆0

N ]22

]
,

and similarly for other operators on PN . From the second claim of Lemma 2.7, we see
that [∆0

N ]12 = 0 and [∆0
N ]22 = I. In particular, we have that det(∆0

N ) = det([∆0
N ]11).

We now focus our attention on understanding det([∆0
N ]11). To proceed we observe

that for f ∈ PN , we have that (2Nx−W ′0(x))f(x) ∈ PN+d. Noting that for g ∈ PN+d,

(Π⊥Ng)(x) =

d∑
i=1

pN+i−1(x)

∫
pN+i−1(y)g(y)wN (y)dy,

we see that

(Π⊥N (2Ny −W ′0(y))f(y))(x)

=

d∑
i=1

pN+i−1(x)

∫
pN+i−1(y)(2Ny −W ′0(y))f(y)wN (y)dy

=

d∑
i=1

N−1∑
k=0

pN+i−1(x)

∫
(2Nz −W ′0(z))pN+i−1(z)pk(z)wN (z)dz

∫
pk(y)f(y)wN (y)dy

=

d∑
i=1

d∑
j=1

pN+i−1(x)

∫
(2Nz −W ′0(z))pN+i−1(z)pN−j(z)wN (z)dz

∫
pN−j(y)f(y)wN (y)dy,

(2.14)

where we have employed the relation ΠNf = f in the second equality, and in the third
we have observed that (2Nz −W ′0(z))pk(z) ∈ Pk+d+1 so that if k < N − d and i > 0∫

(2Nx−W ′0(x))pN+i−1(x)pk(x)wN (x)dx = 0.

If we define d-by-d matrices MN,0,MN,1 by setting for 1 ≤ i, j ≤ d,

[MN,0]ij =

∫
2NzpN+i−1(z)pN−j(z)wN (z)dz,

[MN,1]ij =−
∫
W ′0(z)pN+i−1(z)pN−j(z)wN (z)dz,

then we may rewrite (2.14) as

Π⊥N (2Ny −W ′0(y)f(y))(x) =

d∑
i,j=1

[MN,0 +MN,1]ijpN+i−1(x)

∫
pN−j(y)f(y)wN (y)dy.

(2.15)
To understand the other terms in ∆0

N we further define an (d + m)-by-(d + m) matrix,
MN , by

MN =


MN,0 +MN,1

α1

. . .

αm

 ,

and define an (d+m)-by-(d+m) inner-product matrix by

DN =

(∫
J−1N pN+j−1(x)pN−i(x)wN (x)dx

∫
J−1N `l(x)pN−i(x)wN (x)dx∫

J−1N pN+j−1(x)qk(x)wN (x)dx
∫
J−1N `l(x)qk(x)wN (x)dx

)
where 1 ≤ i, j ≤ d and 1 ≤ k, l ≤ m. We now have the following identification.
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Lemma 2.8. For N > d+m+ 1, we have that det(∆0
N ) = det(I +DNMN ).

Proof. Let us denote vi = pN−i for 1 ≤ i ≤ d and vi = qi−d for d < i ≤ m + d. By
Lemma 2.7 this is a basis for PN,1. We shall denote the matrix for the operator [∆0

N ]11
with respect to this basis as ∆0

N,B, so that by definition det([∆0
N ]11) = det(∆0

N,B). We will
also denote ui = pN+i−1 for 1 ≤ i ≤ d, and ui = `i−d for d < i ≤ m+ d. Now with (2.15),
and recalling the notation (f, g)w,N =

∫
f(x)g(x)wN (x)dx, we see that for f ∈ PN

∆0
Nf = f +

d+m∑
i,j=1

(ΠNJ
−1
N ui)Mij(vj , f)w,N . (2.16)

Let us define an (m+d)-by-(m+d) matrixO by setting for 1 ≤ i, j ≤ m+d, Oij = (vj , vi)w,N .
This matrix is invertible as (vi)

d+m
i=1 is a linearly independent set. We also observe that

(∆0
Nvj , vi)w,N = ([∆0

N ]11vj , vi)w,N =

d+m∑
k=1

([∆0
N,B]kjvk, vi)w,N = [O∆0

N,B]ij .

On the other hand noting that [DN ]ij = (J−1N uj , vi)w,N , we see by (2.16) that

(∆0
Nvj , vi)w,N = Oij + (DNMNO)ij ,

so that finally
∆0
N,B = O−1(I +DNMN )O.

Taking the determinant of both sides completes the proof.

We will later derive that (see Lemma 4.5) for fixed k ∈ Z we have that bN−k, aN−k =

O(1). Repeatedly applying (2.7) we may thus conclude that for 1 ≤ i, j ≤ d, [MN,1]ij =

O(1) and [MN,0]ij = 2NbN−1δijδj1 = O(N)δijδj1. Our understanding of DN comes from
the following proposition.

Proposition 2.9. For N even, 1 ≤ l, k ≤ m, and 1 ≤ i, j ≤ d we have that∫
J−1N pN+j−1(x)pN−i(x)wN (x)dx =O(N−1)∫

J−1N `l(x)pN−i(x)wN (x)dx =O(N−1 log(N)),∫
J−1N pN+j−1(x)qk(x)wN (x)dx =O(N−1/2),∫

J−1N `l(x)qk(x)wN (x)dx =O(N−1/2)∫
J−1N pN (x)pN−1(x)wN (x)dx =O(N−7/6).

Moreover each error term is uniform over compact subsets of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈
(−1, 1)m : λ1 > · · · > λm}.

The proof of this will be carried out in Section 6. We are now ready to give the proof
of Theorem 1.2.

Proof of Theorem 1.2. As noted above, it suffices to show that det(∆N ) = 1 +O(N−1/6).
By Proposition 2.6, we see that it further suffices to show that det(∆0

N ) = det(I +

DNMN ) = 1 +O(N−1/6). If we write DN as a block matrix with square blocks of size 1

by (d− 1) by m, we see that Proposition 2.9 shows that

DN =

O(N−7/6) O(N−1) O(N−1 log(N))

O(N−1) O(N−1) O(N−1 log(N))

O(N−1/2) O(N−1/2) O(N−1/2)

 ,
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where all errors are taken entrywise in each block. Similarly, the above observations for
MN show that

MN =

O(N) O(1) 0

O(1) O(1) 0

0 0 O(1)

 .
In particular, we see that

I +DNMN =

1 +O(N−1/6) O(N−1) O(N−1 log(N))

O(1) I +O(N−1) O(N−1 log(N))

O(N1/2) O(N−1/2) I +O(N−1/2)

 .
If we denote the diagonal matrix ΛN = diag(N−2/3, 1, · · · , 1) we see that

Λ−1N (I +DNMN )ΛN =I + Λ−1N DNMNΛN

=

1 +O(N−1/6) O(N−1/3) O(N−1/3 log(N))

O(N−2/3) I +O(N−1) O(N−1 log(N))

O(N−1/6) O(N−1/2) I +O(N−1/2)

 .
Taking the determinant of this expression we see that

det(I +DNMN ) = det(Λ−1N (I +DNMN )ΛN ) = 1 +O(N−1/6).

Noting as well that all of the error estimates we have used are uniform in the sense of
Theorem 1.2, we obtain the desired statement.

2.1 Case of merging singularities

As mentioned above, to prove Theorem 1.1, we will need to supplement Theorem 1.2
with an analogous result in the case in which m = 2,W = 0, and α1 = α2 = α, but where
λ1, λ2 are allowed to depend on N and λ1 − λ2 → 0. We will assume this set-up for the
remainder of this subsection. We have the following analog of Theorem 1.2.

Proposition 2.10. Let us fix a choice α > 0, ε > 0, and 0 < γ < 1. Then for any
λ1, λ2 ∈ (−1 + ε, 1− ε) (possibly N -dependant) such that (λ1 − λ2) > N−γ , we have that

E

[
2∏
i=1

|D2N,1(λi)|α
]
E

[
2∏
i=1

|DN,4(λi)|2α
]

= E

[
2∏
i=1

|D2N,2(λi)|2α
]

(1 +O(max(N−1/6, Nγ−1 log(N)))). (2.17)

Moreover the error term is uniform over all available choices of λ1, λ2 ∈ (−1 + ε, 1− ε)
with (λ1 − λ2) > N−γ .

Remark 2.11. We observe that as we have allowed the choice of (λ1, λ2) to be N -
dependant, the uniformity of the error claimed in Proposition 2.10 follows immediately
from the pointwise statement of (2.17).

Remark 2.12. We note that the case of m = 2 and (λ1 − λ2) = 0 coincides with Theo-
rem 1.2 in the case of m = 1 with λ1 = λ1 and α 7→ 2α. In particular, by Theorem 1.2,
|det(∆N )| = 1 + O(N−1/6). As such, we expect that the apparent divergence of the
error-term in Proposition 2.10 when N(λ1 − λ2) = O(1) is an artifact of our method of
proof, which avoids using more refined asymptotics for the singularities in the merging
case.
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All of the constructions of the above section work without modification. We also
note that an analog of Proposition 2.6 is not required as W = 0 in this case. We will
show in Proposition 4.16 below, that the conclusions of Lemma 4.5 still hold, so that
[MN,0]11 = 2NbN−1 = O(N) uniformly in the choice of (λ1, λ2). We also have that
MN,1 = 0. Finally, we will need the following modification of Proposition 2.9.

Proposition 2.13. With the assumptions of Proposition 2.10 and N even, we have for
1 ≤ l, k ≤ 2 that∫

J−1N pN (x)pN−1(x)wN (x)dx =O(N−1−min(1−γ,1/6)),∫
J−1N `l(x)pN−1(x)wN (x)dx =|λ1 − λ2|αO(max(N−1/2−(1−γ), N−1 log(N))),∫
J−1N pN (x)qk(x)wN (x)dx =|λ1 − λ2|−αO(N−1/2),∫
J−1N `l(x)qk(x)wN (x)dx =O(max(N−1/2, Nγ−1 log(N))).

Moreover all error terms are uniform over all available choices of λ1, λ2 ∈ (−1 + ε, 1− ε)
with (λ1 − λ2) > N−γ .

The proof of this result will be given in Section 7.

Proof of Proposition 2.10. As above, it will suffice to show that

det(I +DNMN ) = 1 +O(N−min(1−γ,1/6) log(N)).

If we let δ = min(1− γ, 1/6) and define the diagonal matrix

ΛN = diag(N−1/2−δ|λ1 − λ2|α, 1, 1),

then as above, Proposition 2.13 shows that if we write the 3-by-3 matrix Λ−1N DNMNΛN
in terms of square blocks of size 1 and 2 we have that

I + Λ−1N DNMNΛN =

[
1 +O(N−δ) O(max(N−(1−γ)+δ, N−1/2+δ log(N)))

O(N−δ) I +O(max(N−1/2, Nγ−1 log(N)))

]
. (2.18)

We observe that max(N−(1−γ)+δ, N−1/2+δ log(N)) ≤ 1 and max(N−1/2, Nγ−1 log(N)) ≤
N−δ log(N) so that (2.18) implies the weaker bound

I + Λ−1N DNMNΛN =

[
1 +O(N−δ) O(1)

O(N−δ) I +O(N−δ log(N))

]
.

Taking a cofactor expansion in the first column we see that

det(I + Λ−1N DNMNΛN ) = 1 +O(N−δ log(N)),

implies the desired claim.

3 Proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1 given in the introduction,
assuming Theorem 1.2 and Proposition 2.10. As explained in the introduction, it will
suffice to show that the quantity

lim
M→∞

lim
N→∞

E(νN,α(ϕ)− νN,M,α(ϕ))2
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coincides with the quantity

lim
M→∞

lim
N→∞

E(µ2N,2,2α(ϕ)− µ2N,M,2,2α(ϕ))2

which vanishes for 0 < 2α <
√

2 by Proposition 2.9 of [4]. We begin by noting that by
classical asymptotics for smooth, compactly-supported linear statistics (see [25]), we
have that

lim
M→∞

lim
N→∞

E(νN,M,α(ϕ)2) = lim
M→∞

lim
N→∞

E(µ2N,M,2,2α(ϕ)2).

For the remaining terms, we have that

E(νN,α(ϕ)2)

=

∫ ∫
ϕ(x)ϕ(y)

E|D2N,1(x)|α|D2N,1(y)|αE|DN,4(x)|2α|DN,4(y)|2α

E|D2N,1(x)|αE|D2N,1(y)|αE|DN,4(x)|2αE|DN,4(y)|2α
dxdy. (3.1)

E(νN,α(ϕ)νN,M,α(ϕ))

=

∫ ∫
ϕ(x)ϕ(y)

E|D2N,1(x)|αeαX2N,M,1(y)E|DN,4(x)|2αe2αXN,M,4(y)

E|D2N,1(x)|αEeαX2N,M,1(y)E|DN,4(x)|2αEe2αXN,M,4(y)
dxdy. (3.2)

Working first with the latter, we may apply Theorem 1.2 to the integrand of (3.2) to
obtain that

E(νN,α(ϕ)νN,M,α(ϕ))

=

∫ ∫
ϕ(x)ϕ(y)

E|D2N,2(x)|2αe2αX2N,M,2(y)

E|D2N,2(x)|2αEe2αX2N,M,2(y)
(1 +O(N−1/6))dxdy

=

∫ ∫
ϕ(x)ϕ(y)

E|D2N,2(x)|2αe2αX2N,M,2(y)

E|D2N,2(x)|2αEe2αX2N,M,2(y)
dxdy(1 +O(N−1/6))

= E(µ2N,2,2α(ϕ)µ2N,M,2,2α(ϕ))(1 +O(N−1/6)),

where we have used the uniformity of the O(N−1/6)-term to obtain the second equality.
Thus we are left to understand (3.1). This case is complicated by the non-uniformity of
the error of Theorem 1.2 around the diagonal. We will proceed similarly to the proof of
Proposition 6.4 of [4]. For any ε > 0 and β ∈ (2α2, 1), we may decompose the integral of
(3.1) into three integrals over {|x− y| > ε}, {ε > |x− y| > 2N−β}, and {2N−β > |x− y|}.
We denote these integrals by AN1,ε, A

N
2,ε and AN3 , respectively. Identically to the above

case, we can show that for fixed ε > 0

AN1,ε =

∫ ∫
|x−y|>ε

ϕ(x)ϕ(y)
E|D2N,2(x)|2α|D2N,2(y)|2α

E|D2N,2(x)|2αE|D2N,2(y)|2α
dxdy(1 +O(N−1/6)).

In view of the proof of Proposition 6.4 of [4], we have that

lim
ε→0

lim
N→∞

AN1,ε = lim
N→∞

E(µ2N,2,2α(ϕ)2),

so that it suffices to show that limN→∞AN3 = 0 and that limε→0 lim supN→∞AN2,ε = 0. To
bound AN3 , we observe by the Cauchy-Schwarz inequality we have that AN3 is less than∫ ∫

2N−β>|x−y|
ϕ(x)ϕ(y)

√
E|D2N,1(x)|2αE|DN,4(x)|4αE|D2N,1(y)|2αE|DN,4(y)|4α
E|D2N,1(x)|αE|DN,4(x)|2αE|D2N,1(y)|αE|DN,4(y)|2α

dxdy.

By repeatedly applying Theorem 1.2 we may write the right-hand side as∫ ∫
2N−β>|x−y|

ϕ(x)ϕ(y)

√
E|D2N,2(x)|4αE|D2N,2(y)|4α
E|D2N,2(x)|2αE|D2N,2(y)|2α

dxdy(1 +O(N−1/6)).
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By applying the asymptotics of [29] (see also the proof of Proposition 6.4 in [4]) we see
that √

E|D2N,2(x)|4αE|D2N,2(y)|4α
E|D2N,2(x)|2αE|D2N,2(y)|2α

= O(N2α2−β),

uniformly on the support of ϕ. As β > 2α2, we see that limN→∞AN3 = 0.

We finally show that limε→0 lim supN→∞AN2,ε = 0. By repeatedly applying Proposi-
tion 2.10 as before, we have that

AN2,ε =

∫ ∫
2N−β<|x−y|<ε

ϕ(x)ϕ(y)
E|D2N,2(x)|2α|D2N,2(y)|2α

E|D2N,2(x)|2αE|D2N,2(y)|2α
dxdy

× (1 +O(N−min(1−β,1/6) log(N))).

It is shown in the last line of the proof of Proposition 6.4 of [4] that

lim
ε→0

lim sup
N→∞

∫ ∫
2N−β<|x−y|<ε

ϕ(x)ϕ(y)
E|D2N,2(x)|2α|D2N,2(y)|2α

E|D2N,2(x)|2αE|D2N,2(y)|2α
dxdy = 0.

As β < 1, together these imply that limε→0 lim supN→∞AN2,ε = 0, which completes the
proof of Theorem 1.1.

4 Asymptotics of orthogonal polynomials and related quantities

In this section, we state the leading order asymptotics for orthogonal polynomials
with respect to the measure wN , as well as those for some related quantities. Due to the
complexity of the expressions of this asymptotics (especially in the regions around λi),
we will state our expressions as entries in a matrix product. These asymptotics were
obtained in our setting by [4], building upon the work of [29]. In both cases, they are
obtained via asymptotic analysis of an associated Riemann-Hilbert problem.

We note that away from the points {λi}mi=1, these asymptotics are closely related to the
classical Plancherel-Rotach asymptotics for Hermite polynomials (see [38]). In particular,
Propositions 4.7 and 4.10 coincide with the corresponding classical expressions for
Hermite polynomials except with a modification to the O(1)-term. Around the points
{λi}mi=1 though (where the asymptotics are described by Proposition 4.13), they are
described in terms of Bessel functions. Some related expressions appear in [30], where
they give a description of the asymptotics of the Christoffel-Darboux kernel around these
points in terms of the Bessel kernel.

The structure of this section will be as follows. We will begin this section by recalling
some relevant background and notation to present Proposition 4.2, which is essentially
Theorem 4.37 of [4] restricted to R. This expression gives (uniform) asymptotics for
our desired orthogonal polynomials in terms of a variety of parametric. To make use of
these asymptotics, we must recall and compute the behavior of these parametrices on
R. The result of this translation will be our main asymptotic results, which are given
by Proposition 4.7, 4.10, and 4.13. After this, we will give asymptotics for `i and qi in
Proposition 4.14.

Finally, we will provide the modifications of these results needed in the merging case
in Subsection 4.1. These results will essentially follow from the results of [8, 10]. The
main results are Propositions 4.16 and 4.17. As we are only interested in the subcritical
merging regime (i.e., N(λ1 − λ2) → ∞) our asymptotic expressions will essentially
coincide with those in the non-merging case, with the only significant difference being
that the bounds on the error terms are weaker, and the domains in which they are valid
are smaller.
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We will fix for this section a choice of (W, {λi}i, {αi}i) as in Theorem 1.2. We begin by
recalling an analytic matrix-valued function on C−R, YN (z) := Y (z;N,W, {λi}i, {αi}i),
defined as

YN (z) =

[
κ−1N pN (z) κ−1N (2πi)−1

∫ pN (y)
y−z wN (y)dy

−2πiκN−1pN−1(z) −κN−1
∫ pN−1(y)

y−z wN (y)dy

]
,

where wN is defined in (1.7). This function occurs as the solution to the Riemann-Hilbert
problem defined by the measure wN , in the sense of [15] (see Proposition 3.4 of [4]). The
asymptotics of YN are then computed by using the method of nonlinear steepest descent,
pioneered in [14]. Our primary purpose is to specialize these asymptotics to R. To ease
the reader in translation of the results of [4], we note that we are in their case of t = s = 1

and their (k, V, T , {xi}ki=1, {βi}ki=1) coincides with our (m, 2x2, 2W, {λm−i}mi=1, {2αi}mi=1).
It is well known in the quadratic case that `V = ` where ` = −1− 2 log(2), as can easily
be verified from (2.3) and (2.4) in [4], and that d1(λ) = 2/π.

When x ∈ R we will use the notation f+(x) = limz→x f(z) where the limit is taken
along sequences in the upper-half plane H = {z ∈ C : Im(z) > 0}, within the domain of f ,
not tangential to R. We are interested in understanding the asymptotics of (YN )+. The
asymptotics of YN are stated in terms of a related matrix-valued function SN (defined in
(4.5) and (4.11) of [4]). To understand the relation between SN and YN , we recall the
3rd and 1st Pauli matrices defined as

σ = σ3 =

[
1 0

0 −1

]
, σ1 =

[
0 1

1 0

]
.

Then for z ∈ H, such that Re(z) ∈ R \ {λ1, · · ·λm}, and Im(z) is sufficiently small
(depending only on Re(z)), we have that

YN (z) =eN
`
2σSN (z)eN(g1(z)−`/2)σ for |Re(z)| ≥ 1, (4.1)

YN (z) =eN
`
2σSN (z)

[
1 0

f1(z)−1e−Nh1(z) 1

]
eN(g1(z)−`/2)σ for |Re(z)| < 1, (4.2)

where g1(z), h1(z) and f1(z) are defined in (4.3), (4.9) and (4.13) of [4]. These follow
from Definitions 4.1 and 4.9 of [4]. We will not need the exact form of these functions,
though we will need their behavior of R. For this, we define the functions

s(x) =

{
2
∫ 1

x

√
1− y2dy; |x| < 1

2
∫ |x|
1

√
y2 − 1dy; |x| ≥ 1

, ω(x) =

m∏
i=1

|x− λi|2αi .

We observe as well that

s(x) =

{
|x|
√
x2 − 1− arcosh(|x|); |x| ≥ 1

−x
√

1− x2 + arccos(x); |x| < 1
.

We may now state the behavior of the above functions on the real line.

Lemma 4.1. We have that for x ∈ R

(g1)+(x) = x2 + `/2 + (h1)+(x)/2, (h1)+(x) =


−2s(x); x ≥ 1

2πi− 2s(x); x ≤ −1

i2s(x); |x| < 1

,

and (f1)+(x) = e2W(x)ω(x).
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Proof. The statements for (h1)+ and (f1)+ follow routinely from their definitions (i.e.
(4.9) and (4.13) of [4]). For the results on (g1)+, combining the results of (4.6) and (4.7)
of [4], we see that for x ∈ (−1, 1),

(g1)+(x) = x2 + `/2 + h+(x)/2 = x2 + `/2 + is(x).

Finally, we see by direct computation that for x ≥ 1,

(g1)+(x) =

∫ 1

−1

2

π

√
1− λ2 log(x− λ)dλ = x2 + `/2− s(x),

and (g1)+(−x) = (g1)+(x) + iπ.

By applying the results of Lemma 4.1 to (4.1-4.2) we see that for x ∈ (−1, 1) \
{λ1, · · · , λm}

(YN )+(x) = eN
`
2σ(SN )+(x)

[
1 0

e−2Nis(x)−2W(x)ω(x)−1 1

]
eNis(x)σeNx

2σ, (4.3)

and for |x| ≥ 1 that

(YN )+(x) = eN
`
2σ(SN )+(x)e−Ns(x)σeNx

2σ(−1)NI(x<0)σ. (4.4)

We are primarily interested in the first column of YN , so noting that wN (x) =

ω(x)e−2Nx
2+2W(x), we see that for x ∈ (−1, 1) \ {λ1, · · ·λm}

e−N
`
2σ

[
[(YN )+]11(x)

[(YN )+]21(x)

]
=(SN )+(x)

[
eNis(x)

e−Nis(x)−2W(x)ω(x)−1

]
eNx

2

=(SN )+(x)eNis(x)σeW(x)σω(x)σ/2
[
1

1

]
wN (x)−1/2, (4.5)

and that for |x| ≥ 1

e−N
`
2σ

[
[(YN )+]11(x)

[(YN )+]21(x)

]
= ((SN )+(x)e1)eN(x2−s(x))(−1)NI(x<0). (4.6)

Now Theorem 4.37 of [4] implies the following asymptotic result, which shows that up
to a small error term RN , SN may be described in terms of various explicit parametrices,
whose behavior on R we will specify below. Here and elsewhere, we will use the notation
λ0 = 1 and λm+1 = −1.

Proposition 4.2. There exists δ0 > 0, such that for 0 < δ < δ0, we may write

(SN )+(x) = (I +RN (x))(PN )+(x),

for some matrix-valued function RN (x) := R(x; δ,N,W, {λi}i, {α}i), and

(PN )+(x) =


(Pλi)+(x); x ∈ (λi − δ, λi + δ)

(P±1)+(x); x ∈ (±1− δ,±1 + δ)

(P∞)+(x); otherwise

,

where here P∞, Pλi , and P±1 are certain matrix-valued functions defined in Definition

4.12, 4.21, and 4.28 of [4], respectively. Then, for any l ≥ 0, we have that R(l)
N (x) =

O(N−1) uniformly for x ∈ R \
⋃m+1
i=0 {λi − δ, λi + δ}. Moreover for any choice of compact

subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 > · · · > λm}, we may choose δ > 0 small

enough that R(l)
N (x) = O(N−1) uniformly in both x ∈ R \ ∪m+1

i=0 {λi − δ, λi + δ} and {λi}mi=1

in our chosen compact set.

EJP 29 (2024), paper 22.
Page 20/71

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1083
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian multiplicative chaos for Gaussian Orthogonal and Symplectic Ensembles

Remark 4.3. In the statement of Theorem 4.37 in [4], the error bounds are only stated
for RN and R′N . On the other hand, the method of proof used to establish the error
bounds on R′N extends trivially to higher derivatives.

We note as well that all of these parametrices are N -dependant, though as we will
not use them in our final asymptotic expressions, we omit this from the notation. We
will compute the values of P∞, P±1, and Pλi on R below, though before beginning this
computation we explain how to obtain results for the full range of polynomials pN−k
for k ∈ Z fixed from Proposition 4.2 instead of only (pN , pN−1). As the polynomials
pN−k(x) := pN−k(x;N,W, {λi}i, {αi}i) themselves depend on the N -dependant measure
wN , we observe that the (N − k)-case of Proposition 4.2 does not precisely describe
an asymptotic for pN−k. On the other hand, we observe that if we define ηk = ηN,k =√

(N − k)/N , then for N > k, and A =
∑m
i=1 αi, the polynomial

η
A+1/2
k pN−k(ηkx;N,W, {λi}i, {αi}i)

coincides with the (N−k)-th orthogonal polynomial with respect to the rescaled measure

wN,k(x) = wN,k(x;W, {λi}i, {αi}i) = wN (ηx)η−2A = e2W(ηkx)e−2(N−k)x
2
m∏
i=1

|x−η−1k λi|2αi .

If we denoteWN,k(x) =W(ηkx), then we see that

wN,k(x;W, {λi}i, {αi}i) = wN−k(x;WN,k, {η−1k λi}i, {αi}i).

In particular, we may apply Proposition 4.2 to wN,k to obtain asymptotics for pN−k defined
with respect to wN , though with a number of scaling factors of ηk appearing. For clarity
of the notation, we will reserve the notations Pλi , P∞, P±1 for the parametrices resulting
from the choice of parameters (N,W, {λi}i, {αi}i) and will take care to explicitly specify
when objects are considered which are defined with respect to the measure wN,k.

Lastly, to account for the factors of ηk appearing in the following asymptotics, we will
have repeated use for the following result, which follows from an application of Taylor’s
Theorem.

Lemma 4.4. For fixed k ∈ Z, we define sN,k(x) = s(η−1k x). Then if one defined functions
rN such that

(N − k)sN,k(x) =Ns(x)− karccos(x) + rN (x) for |x| < 1,

(N − k)sN,k(x) =Ns(x) + karcosh(|x|) + rN (x) for |x| > 1,

then for any l ≥ 0, we have that r(l)N (x) = O(N−1) uniformly over compact subsets of
x ∈ R \ {±1}.

We are now ready to begin stating our asymptotic expressions, beginning with those
for some leading-order coefficients of pN−k specified in (2.7).

Lemma 4.5. For fixed k ∈ Z, we have that

κ2N−k = π−1e−(N−k)`+kD−2∞ (1 +O(N−1)), βN+1−k = O(1), (4.7)

where here D∞ = 2−A exp
(

1
π

∫ 1

−1
W(u)√
1−u2

du
)

. Moreover the error terms are uniform over

compact subsets of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 > · · · > λm}.
Remark 4.6. We observe from Lemma 4.5 that

D−σ∞ e−N
`
2σ

[
κ−1N pN (x)

−2πiκN−1pN−1(x)

]
= (I +O(N−1))

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
, (4.8)

where the error term in (4.8) is independent of x and uniform in {λi}mi=1 in the same
sense as Lemma 4.5.
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For notational clarity, we will delay the proof of Lemma 4.5 to after the statement of
Proposition 4.7 below. Now we define functions

D(x) =


exp(i[−Aarccos(x) +

√
1−x2

π p.v
∫ 1

−1
W(u)√
1−u2

1
x−udu]); |x| < 1

exp([−Aarcosh(x) +
√
x2−1
π

∫ 1

−1
W(u)√
1−u2

1
x−udu]); x > 1

exp([−Aarcosh(−x)−
√
x2−1
π

∫ 1

−1
W(u)√
1−u2

1
x−udu]); x < −1

. (4.9)

We introduce a fixed matrix-valued function A(x), defined for |x| < 1 by

A(x) =
1

2(1− x2)1/4

[
e−iπ/4

√
1 + x+ eiπ/4

√
1− x i[e−iπ/4

√
1 + x− eiπ/4

√
1− x]

−i[e−iπ/4
√

1 + x− eiπ/4
√

1− x] e−iπ/4
√

1 + x+ eiπ/4
√

1− x

]
,

and on |x| > 1 by

A(x) =
1

2(x2 − 1)1/4

[ √
|1 + x|+

√
|1− x| i[

√
|1 + x| −

√
|1− x|]

−i[
√
|1 + x| −

√
|1− x|]

√
|1 + x|+

√
|1− x|

]
. (4.10)

We now define
T∞(x) = A(x)D(x)−σ. (4.11)

Lastly we define an additional function

TN,k,∞(x) = T∞(η−1k x;WN,k, {η−1k λi}i, {αi}i).

We may now state the asymptotics away from the points {±1, λ1, · · ·λm}.
Proposition 4.7. For δ > 0 small enough, and any choice of k ∈ Z, we may define RN (x)

such that for any choice of 0 ≤ i ≤ m, and x ∈ (λi+1 + δ, λi − δ) we have that[
π1/2pN−k(x)

−iπ1/2pN−k−1(x)

]
wN (x)1/2 = (I +RN (x))T∞(x)e[−ikarccos(x)−iπ

∑i
k=1 αk]σ

[
eiNs(x)

e−iNs(x)

]
,

(4.12)
and for |x| > 1 + δ we have that[

π1/2pN−k(x)

−iπ1/2pN−k−1(x)

]
wN (x)1/2 = [(I +RN (x))TN,k,∞(x)e1]e−NsN,k(x)(−1)(N−k)I(x<0).

(4.13)
Then for any l ≥ 0 and any choice of compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m :

λ1 > · · · > λm}, we may choose δ0 > 0 small enough that for 0 < δ < δ0 we have that

R
(l)
N (x) = O(N−1) uniformly in both x ∈ R\

⋃m+1
i=0 (λi−δ, λi+δ) and {λi}mi=1 in our chosen

compact set.

In the proof of both of these results, we will need to understand the parametric P∞
given in Definition 4.12 of [4]. While we will not recall the definitions for each of their
functions, we will recall some of their real limits for the ease of the reader. Namely the
functions r, a, and D1 defined in (4.19), (4.20) and (4.21) satisfy for x ∈ R

r+(x) =

{
ε(x)
√
x2 − 1; |x| ≥ 1

i
√

1− x2; |x| < 1
,

a+(x) =
|x− 1|
|x+ 1|

{
1 |x| ≥ 1

eiπ/4; |x| < 1
,

(D1)+(x) =D(x)ω(x)1/2

{
1; |x| ≥ 1

eW(x)e−πi
∑m
l=1 αlI(x<λl); |x| < 1

,
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where in the last case for D1 we have used the Sokhotski–Plemelj formula: for smooth f
and a < 0 < b we have that

lim
ε→0+

∫ b

a

f(x)

x+ iε
dx = −iπf(0) + p.v

∫ b

a

f(x)

x
dx.

From this we can see that for x ∈ (−1, 1) \ {λ1, · · · , λm},

(P∞)+(x) = Dσ
∞T∞(x)e−iπ

∑m
k=1 I(x<λk)αkσe−W(x)σω(x)−σ/2, (4.14)

and for x ∈ R \ (−1, 1) we have that

(P∞)+(x) = Dσ
∞T∞(x)ω(x)−σ/2. (4.15)

Proof of Lemma 4.5. The proof will be similar to the proof of the W = 0 case given in
Section 4 of [29] (one may also see the proof of this case given in Section 5 of [7]). We
will first provide a proof in the special case of k = 1. We observe that we may write

κ2N−1 =
1

−2πi
lim
x→∞

[(YN )+]21(x)

xN−1
, βN = lim

x→∞

[(YN )+]11(x)− xN

xN−1
.

Now employing Proposition 4.2 in view of (4.6) and (4.15), we see that for any small
δ > 0, x > 1 + δ, and j = 1, 2

eN`/2(−1)
j

[(YN )+]j1(x) = [(I +RN (x))Dσ
∞T∞(x)ω(x)−σ/2]j1e

N(x2−s(x)), (4.16)

where here RN (x) = O(N−1) uniformly in the sense of Theorem 4.2. Routine application
of Taylor’s Theorem shows that

s(x) =x
√
x2 − 1− arcosh(x) = x2 + `/2− log(x) +O(x−2),

ω(x)−1/2 =x−A

(
1 +

m∑
i=1

αiλi
x

+O(x−2)

)
,

A(x) =I +
1

2x

[
0 i

−i 0

]
+O(x−2),

D(x) =x−AD∞

(
1 +

1

πx

∫ 1

−1

W(u)u√
1− u2

du+O(x−2)

)
.

From these results, we see that for j = 1, 2,

[Dσ
∞T∞(x)ω(x)−σ/2]j1e

N(x2−s(x))

= D−(−1)
j

∞ [A(x)]j1D(x)−1ω(x)−1/2eN(x2−s(x))

= D−(−1)
j−1

∞

[
I(1 +

1

x

[ m∑
i=1

αiλi −
1

π

∫ 1

−1

W(u)u√
1− u2

du

]
) +

1

2x

[
0 i

−i 0

]
+O(x−2)

]
j1

xNe−N
`
2

= e−N
`
2D−(−1)

j−1
∞

[
1 + x−1

(∑m
i=1 αiλi −

1
π

∫ W(u)u√
1−u2

du
)

−x−1i/2

]
j

xN +O(xN−2). (4.17)

We now recall from (4.58) of [4] that RN (x) = O(|x|−1). In fact, we additionally have
that RN (x) = O(N−1|1 + x|−1), uniformly in x ∈ R, and compact subsets of {λi}mi=1, as in
Proposition 4.2. This is not explicitly stated in [4], but follows from a standard contour
deformation argument using the uniform decay of the jump matrix (∆ = JR − I in [4])
for large |z|, as in theW = 0 case discussed in Section 4 of [29] (one also may consult
the detailed argument given in the proof of Proposition 7.5 of [9] in a related case).
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Employing this asymptotic, (4.17), and (4.16), we see that

κ2N−1 =
1

−2πi
lim
x→∞

[(YN )+]21(x)

xN−1
=

1

4π
e−N`D−2∞ (1 +O(N−1))

=π−1e−(N−1)`+1D−2∞ (1 +O(N−1)).

Similarly, we derive that

βN = lim
x→∞

[(YN )+]11(x)− xN

xN−1
=

m∑
i=1

αiλi −
1

π

∫ 1

−1

W(u)u√
1− u2

du+O(N−1) = O(1).

This completes the proof of the k = 1 case. To complete the general case, we see that

κN−k−1(N,W, {λi}i, {αi}i) =η
−A−1/2−(N−k−1)
k κN−k−1(N − k,WN,k, {η−1k λi}i, {αi}i),

βN−k(N,W, {λi}i, {αi}i) =ηkβN−k(N − k,WN,k, {η−1k λi}i, {αi}i).

Observing that η−A−1/2−(N−k−1)k = ek/2(1 +O(N−1)) and that

D∞(WN,k, {η−1k λi}i, {αi}i) = D∞(1 +O(N−1)),

we obtain the general case by applying the k = 1 case to wN,k.

Before continuing on to the proof of Proposition 4.7, we record the following useful
remark.

Remark 4.8. We observe as T∞(x) is smooth on R \ {±1} and independent of {λi}mi=1

and N , we may show that for fixed k ∈ Z, if we define R̄N (x) so that TN,k,∞(x) =

T∞(x) + R̄N (x), then for l ∈ N, R̄(l)
N (x) = O(N−1) uniformly over both compact subsets

of x ∈ R \ {±1} (and of course still independently of {λi}mi=1). On the other hand, taking
RN (x) = R̄N (x)T−1∞ (x), we may write

TN,k,∞(x) = (I +RN (x))T∞(x).

Now as one may check that det(T∞(x)) = 1, we see that the entries of T−1∞ (x) are also
smooth on R \ {±1}, so we see that RN satisfies the same estimates as R̄N .

Proof of Proposition 4.7. We will take δ = δ0/2, where δ0 is the constant given in Propo-
sition 4.2. We will begin with the proof in the case that k = 0. By Proposition 4.2, (4.14),
and (4.5) we see that for x ∈ (λi+1 + δ, λi − δ)

D−σ∞ e−N
`
2σ

[
κ−1N pN (x)

−2πiκN−1pN−1(x)

]
wN (x)1/2

= D−σ∞ (I + R̄N (x))(P∞)+(x)eNis(x)σeW(x)σω(x)σ/2
[
1

1

]
= (I +RN (x))T∞(x)e−iπ

∑i
k=1 αkσ

[
eNis(x)

e−Nis(x)

]
,

where R̄N (x) is the error term from Proposition 4.2 and RN (x) = D−σ∞ R̄N (x)Dσ
∞. By

Remark 4.6, we see that modifying RN (x) by the constant matrix I +O(N−1) appearing
in (4.8), we obtain (4.12) in the k = 0 case. Now using the fact that the coefficients
D∞ are N -independent and independent of {λi}i, we see that the function RN satisfies

the same estimates as R̄N , as stated in Proposition 4.2. In particular, R(l)
N (x) = O(N−1)

uniformly in the sense needed in Proposition 4.7. Similarly, using (4.15) and (4.6) and
the same choice of RN , we obtain (4.13) in the case of k = 0. Together these complete
the k = 0 case.
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To establish the case of k 6= 0, with notation as above, we see that by Remark 4.8,
Remark 4.6, and the k = 0 case applied to the measure wN,k, we see for x ∈ (λi+1 +

δ, λi − δ),

D−σ∞ e−N
`
2σ

[
κ−1N pN (x)

−2πiκN−1pN−1(x)

]
wN (x)1/2

= (I +RN (x))T∞(x)e−iπ
∑i
k=1 αkσ

[
ei(N−k)sN,k(x)

e−i(N−k)sN,k(x)

]
,

where RN satisfies asymptotics as before.
Now recalling rN (x) from Lemma 4.4 we see that

T∞(x)e−iπ
∑i
k=1 αkσ

[
ei(N−k)sN,k(x)

e−i(N−k)sN,k(x)

]
= (I + R̂N (x))T∞(x)e[−ikarccos(x)−iπ

∑i
k=1 αk]σ

[
eiNs(x)

e−iNs(x)

]
,

where R̂N (x) = (I + RN (x))T∞(x)erN (x)σT∞(x)−1 − I. As rN (x) = O(N−1), T∞(x) is

smooth on (−1, 1), and det(T∞(x)) = 1, we see from the estimates on RN that R̂(l)
N (x) =

O(N−1) for l ≥ 0. Together, these results complete the proof of (4.12). The general case
of (4.13) follows more simply from Remark 4.6 and a similar appeal to the k = 0 case.

Remark 4.9. for any δ > 0, we may find c > 0, such that s(x) > 2cx2 for x ∈ R \ [−1 −
δ, 1 + δ]. Noting that T∞ grows only polynomially in x, we see that the asymptotic (4.15)
implies that for any choice of k ∈ Z, l ≥ 0, and |x| > 1 + δ, we have that

p
(l)
N−k(x)wN (x)1/2 = O

(
e−Ncx

2
)
,

and additionally, for any compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 > · · · >
λm}, we may choose c > 0 small enough that this error bound is uniform in |x| > 1 + δ

and our chosen compact subset of {λi}mi=1.

We will now turn to describe the asymptotics of the orthogonal polynomials around
the points ±1. We define functions

f1(x) = ε(x− 1)

(
3

2
|s(x)|

)2/3

, f−1(x) = f1(−x). (4.18)

It is routine to verify that f±1 are defined and smooth in a neighborhood around ±1

(see also Definition 4.25 of [4]). Moreover, one may verify that f ′±1(±1) = ±2 and
that f±1(±1) = 0. We also define fN,k,±1(z) = f±1(η−1k z) as before. We will also need
additional matrix valued functions

T1(x) =
√
πe−i

π
4 T∞(x)eW(x)I(x≥1)σei

π
4 σ

[
1 −1

1 1

]
eiσ

π
4 I(x<1)|f1(x)|σ/4, (4.19)

T−1(x) =
√
πe−i

π
4 T∞(x)eW(x)I(x≤−1)σe−iπAσei

π
4 σ

[
1 1

−1 1

]
eiσ

π
4 I(x>−1)|f−1(x)|σ/4.

We are now ready to state the asymptotics around ±1. In the following proposition, Ai

denotes the Airy function.

Proposition 4.10. For δ > 0 small enough, and any choice of k ∈ Z, we may find RN (x)

such that for x ∈ (1− δ, 1 + δ) we have that[
π1/2pN−k(x)

−iπ1/2pN−k−1(x)

]
wN (x)1/2

= (I +RN (x))T1(x)

[
(N − k)1/6Ai((N − k)2/3fN,k,1(x))

(N − k)−1/6Ai′((N − k)2/3fN,k,1(x))

]
, (4.20)
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and for x ∈ (−1− δ,−1 + δ) we have that[
π1/2pN−k(x)

−iπ1/2pN−k−1(x)

]
wN (x)1/2

= (I +RN (x))T−1(x)

[
(N − k)1/6Ai((N − k)2/3fN,k,−1(x))

−(N − k)−1/6Ai′((N − k)2/3fN,k,−1(x))

]
(−1)N−k. (4.21)

Additionally, for any l ≥ 0, and any choice of compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈
(−1, 1)m : λ1 > · · · > λm}, we may choose δ0 > 0 such that for 0 < δ < δ0 we have that

R
(l)
N (x) = O(N−1) uniformly in both x ∈ (−1− δ,−1 + δ)∪ (1− δ, 1 + δ) and {λi}mi=1 in our

chosen compact set.

To prove this, we will have to recall the form of P±1. We begin with the case of P1,
which is given in Definition 4.28 of [4]. We observe that for the function ξ1(z) defined
in (4.42) of [4], we have that (ξ1)+(x) = N2/3f1(x), and additionally we have that the
function defined in (4.28) of [4] has (φ1)+(x) = (h1)+(x)/2. Employing these observations
and Lemma 4.1 we derive from Definition 4.28 of [4] that for x ∈ (1− δ, 1 + δ)

(P1)+(x) =F+(x)Q+(Nf1(x))e(I(x≥1)−iI(x<1))s(x)σω(x)−σ/2e−W(x)σ, (4.22)

F+(x) =(P∞)+(x)eW(x)σω(x)σ/2ei
π
4 σ
√
π

[
1 −1

1 1

]
eiσ

π
4 I(x<1)|f1(x)|σ/4Nσ/6e−iπ/12,

Q+(ζ) =

[
Ai(ζ) Ai(ω2ζ)

Ai′(ζ) ω2Ai′(ω2ζ)

]
e−πiσ/6; ζ > 0,

Q+(ζ) =

[
Ai(ζ) Ai(ω2ζ)

Ai′(ζ) ω2Ai′(ω2ζ)

]
e−πiσ/6

[
1 0

−1 1

]
; ζ < 0,

where here ω = e2πi/3. Now employing (4.14) and (4.15) we see that

F+(x) =Dσ
∞T∞(x)eW(x)I(x≥1)ei

π
4 σ
√
π

[
1 −1

1 1

]
eiσ

π
4 I(x<1)|f1(x)|σ/4Nσ/6e−iπ/12

=Dσ
∞e

iπ/6T1(x)Nσ/6. (4.23)

We now proceed to the −1 case. While not defined in [4], the definition is a similar
modification of the equation obtained in theW = 0 case considered in (80) of [29] (or
similarly, from the +1 case for the reversed measure wN (−x,W(−x), {−λi}mi=1, {αi}mi=1).
In particular, we obtain by a similar argument that for x ∈ (−1− δ,−1 + δ)

(P−1)+(x) =F̂+(x)σQ−(Nf−1(x))σe(I(x≤−1)−iI(x>−1))s(x)σ

× ω(x)−σ/2e−W(x)σ(−1)Nσ, (4.24)

F̄+(x) =Dσ
∞e

iπ6 T−1(x)Nσ/6, (4.25)

σQ−(ζ)σ =

[
Ai(ζ) ω2Ai(ωζ)

−Ai′(ζ) −Ai′(ω2ζ)

]
e−πiσ/6; ζ ≥ 0,

σQ−(ζ)σ =

[
Ai(ζ) ω2Ai(ωζ)

−Ai′(ζ) −Ai′(ω2ζ)

]
e−πiσ/6

[
1 0

−1 1

]
; ζ < 0.

Remark 4.11. We observe that F (z) (F̄ (z)) is analytic in a neighborhood around 1 (−1)
respectively (see Lemma 4.30 of [4]). In particular, from (4.23) and (4.25) we see that
T±1(z) is as well. We note that T±1 is independant of {λi}i and N . As we also have
|det(T±1(x))| = 4π, the same aurgument as in Remark 4.8 shows that for k ∈ Z, there is
RN (x) such that for x ∈ (±1− δ,±1 + δ)

T±1(η−1k x;WN,k, {η−1k λi}i, {αi}i) = (I +RN (x))T±1(x),
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where for any ` ≥ 0, R(`)
N (x) = O(N−1) uniformly in both x ∈ (±1− δ,±1 + δ) (and again

independently of the choice of {λi}mi=1).

Proof of Proposition 4.10. The proof is essentially the same as that of Proposition 4.7.
In particular, employing Proposition 4.2, (4.14), (4.5), (4.6) and Remark 4.6 as in the
proof of Proposition 4.7, we obtain the k = 0 case routinely from the expansions for P±1
given by (4.22), (4.24), (4.23), and (4.25). The proof of the arbitrary k follows similarly
by employing Remark 4.11.

Finally, we will state the asymptotics in the region around the points {λ1, · · · , λm}.
Define for x ∈ (−1, 1), the function

fx(z) = s(x)− s(z) = 2

∫ z

x

√
1− y2dy. (4.26)

This function is smooth and invertible in a neighborhood of x, and we see that f ′x(x) =

2
√

1− x2. As before, we define fN,k,x(z) = fη−1
k x(η−1k z). We define a matrix-valued

function for 1 ≤ j ≤ m by

TN,k,λj (x) = e−i
π
4 T∞(x)ei

ρN,j,k
2 σe−i

π
4 σ

1√
2

[
1 i

i 1

]
, (4.27)

where ρN,j,k denotes

ρN,j,k = 2(N − k)sN,k(λj)− παj − 2π

j−1∑
i=1

αi.

For simplicity, we will denote TN,0,λj (x) = TN,λj (x) and ρN,j,0 = ρN,j .

Remark 4.12. Unlike T∞(x) and T±1(x), the function TN,k,λj (x) depends on N . On the
other hand, this is only through the factor exp(iρN,j,kσ/2), whose norm is N -independent.
Thus by Remark 4.8 we see that TN,k,λj (x) is smooth on (−1, 1), and that for any δ > 0,

and any l ≥ 0, T (l)
N,k,λj

(x) is uniformly bounded jointly in N , x ∈ (λj − δ, λj + δ) and any
chosen compact subset of {λi}mi=1 ∈ (−1, 1)m. Observing that |det(TN,k,λj (x))| = 1, we
see additionally that the same is true for T−1N,k,λj

(x). Lastly, combining these observations
with Lemma 4.4, we see that for any k ∈ Z, there is RN (x) such that

TN,k,λj (x) = (I +RN (x))TN,η−1
k λj

(η−1k x;WN,k, {η−1k λi}i, {αi}i),

where for any l ≥ 0, R(l)
N (x) = O(N−1) uniformly both x ∈ (λj − δ, λj + δ) and compact

subsets of {λi}mi=1 ∈ (−1, 1)m.

Lastly, we define the following vector of special functions

Jα(x) =

[
ε(x)

√
π|x|Jα+1/2(|x|)√

π|x|Jα−1/2(|x|)

]
, (4.28)

where here Jν denotes the Bessel function of parameter ν.

Proposition 4.13. For δ > 0 small enough, and any choice of k ∈ Z, we may find RN (x)

such that for any choice of 1 ≤ i ≤ m and x ∈ (λi − δ, λi + δ) we have that[
π1/2pN−k(x)

−iπ1/2pN−k−1(x)

]
wN (x)1/2 = (I +RN (x))TN,k,λi(x)Jα((N − k)fN,k,λi(x)). (4.29)

Additionally, for any l ≥ 0, and any choice of compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈
(−1, 1)m : λ1 > · · · > λm}, we may choose δ0 > 0 such that for 0 < δ < δ0 we have that

R
(l)
N (x) = O(N−1) uniformly in both x ∈

⋃m
k=1(λk − δ, λk + δ) and {λi}mi=1 in our chosen

compact set.
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As before, this result will follow from analyzing the parametrix Pλj defined in Defini-
tion 4.21 of [4]. We observe that the function defined in (4.27) of [4] satisfies

(Wj)+(x) = eW(x)ω(x)1/2e−iπαjε(x−λj).

Employing this we see that for x ∈ (λj − δ, λj + δ)

(Pλj )+(x) =(Ej)+(x)(Ψαj )+(Nfλj (x))e−W(x)σω(x)−σ/2eiπαjε(x−λj)σe−Nis(x)σ, (4.30)

(Ej)+(x) =(P∞)+(x)eW(x)σω(x)σ/2e−iπαjε(x−λj)σ/2eiNs(λj)σe−i
π
4 σ

1√
2

[
1 i

i 1

]
,

and where Ψα is a fixed matrix-valued function (defined in (4.26-4.33) of [39]) and
satisfying

(Ψα)+(ζ) =

√
π

2

√
ζ

[
H

(2)
α+1/2(ζ) −iH(1)

α+1/2(ζ)

H
(2)
α−1/2(ζ) −iH(1)

α−1/2(ζ)

]
e−(α+1/4)πiσ; ζ > 0,

(Ψα)+(ζ) =

√
π

2

√
−ζ

[
iH

(1)
α+1/2(−ζ) −H(2)

α+1/2(−ζ)

−iH(1)
α−1/2(−ζ) H

(2)
α−1/2(−ζ)

]
e(α+1/4)πiσ; ζ < 0,

where here H(1)
β and H

(2)
β denote the Hankel functions of the first and second kind at

parameter β, respectively. Employing (4.14) we see that we may write

(Ej)+(x) = Dσ
∞e

iπ4 TN,λj (x). (4.31)

Proof of Proposition 4.13. As we have that H(1)
β (x) +H

(2)
β (x) = 2Jβ(x) (see Section 9.1

of [1]), we see that for ζ ∈ R

(Ψα)+(ζ)eiπαε(ζ)σ
[
1

1

]
= e−iπ/4Jα(ζ).

Combining this with (4.30), (4.31), and observing that ε(x − λj) = ε(Nfλj (x)), we see
that

(Pλj )+(x)eNis(x)σeW(x)σω(x)σ/2
[
1

1

]
=Dσ

∞e
iπ4 TN,λj (x)e−i

π
4 Jαj (Nfλj (x))

=Dσ
∞TN,λj (x)Jαj (Nfλj (x)).

Now employing Proposition 4.2, (4.5), and Remark 4.6 we obtain the k = 0 case of (4.29).
The proof for arbitrary k follows from Remark 4.12.

Together these results will allow us to uniformly describe the behavior of pN−k on R.
What remains is to understand the behavior of `i and qi introduced in (2.8) and (2.9) for
1 ≤ i ≤ m. To do so, we introduce the following matrix

VN,λi = eNλ
2
iσNαiσ

[
−κN−1H(pN−1)(λi) −κ−1N (2πi)−1H(pN )(λi)

2πiκN−1pN−1(λi) κ−1N pN (λi)

]
.

The utility of this matrix comes from the following relation

(x− λi)
[
−`i(x)

2πiqi(x)

]
= VN,λi

[
κ−1N pN (x)

−2πiκN−1pN−1(x)

]
. (4.32)

In particular, in view of the above understanding of pN and pN−1, to understand `i and
qi, we only need to provide asymptotics for VN,λi .
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Proposition 4.14. For 1 ≤ j ≤ m, we have that

VN,λj = c−σj ei
π
4 e−

πi
4 σσ1TN,λj (λj)

−1D−σ∞ (I +O(N−1))e−N
`
2σ,

where here we denote

cj =

√
2π(1− λ2j )αj/2

Γ(αj + 1/2)
e−W(λj)

∏
k 6=j

|λk − λj |−αk .

Moreover the error term is uniform over compact subsets of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈
(−1, 1)m : λ1 > · · · > λm}.
Remark 4.15. We observe that by combining Remark 4.6, Proposition 4.14, and (4.32)
we see that for 1 ≤ i ≤ m there are constants Ck,N for 1 ≤ k ≤ 4, such that

`i(x) =C1,N
pN (x)

x− λi
+ C2,N

pN−1(x)

x− λi
,

qi(x) =C3,N
pN (x)

x− λi
+ C4,N

pN−1(x)

x− λi
,

where for all i, we have that Ci,N = O(1) uniformly in compact subsets of {λi}mi=1 ∈
{(λ1, · · ·λm) ∈ (−1, 1)m : λ1 > · · · > λm}.

Proof. By the Christoffel-Darboux formula (2.5), we see that det(YN (z)) = 1. From this,
we observe that for 1 ≤ j ≤ m

VN,λj = eNλ
2
jσNαjσ(YN )+(λj)

−1. (4.33)

Additionally, we observe the matrix relation

e−W(x)σω(x)−σ/2e−Nis(x)σ
[

1 0

e−2Nis(x)−2W(x)ω(x)−1 1

]
eN(is(x)+x2)σ =

[
1 0

1 1

]
wN (x)−σ/2.

Using this relation and Proposition 4.2, (4.3), (4.30) and (4.31), we see that for x ∈
(λj , λj + δ)

(YN )+(x) = eN
`
2σ(I +RN (x))Dσ

∞e
iπ
4 TN,λj (x)(Ψαj )+(Nfλj (x))eiπαjσ

[
1 0

1 1

]
wN (x)−σ/2,

(4.34)
where RN is the remainder term from Proposition 4.2. We recall from Section 4.3 of [39]
(more precisely, the analytic continuation of their (4.21)) that for ζ > 0:

(Ψα)+(ζ)

[
1 0

e−2πiα 1

]
=
√
ζ

[ √
πIα+1/2(−iζ) − 1√

π
Kα+1/2(−iζ)

−i
√
πIα−1/2(−iζ) − i√

π
Kα−1/2(−iζ)

]
e−i

α
2 πσ, (4.35)

where here Iα and Kα are modified Bessel functions of the first and second kind,
respectively, where both are taken with respect to the principal branch given by arg(z) ∈
(−π, π). The asymptotics of the right-hand side of (4.35) as ζ → 0 are computed in (112)
of [29] as

ei
π
4

([
0 −1

−i 0

]
+ Cα(ζ)

)( √
2πζα

Γ(α+ 1/2)2α

)σ
e−iπασ,

where Cα(ζ) = O(ζ log(|ζ|)) entrywise as ζ → 0. We note as well that

e−iπασ
[

1 0

e−2πiα 1

]−1
eiπασ

[
1 0

1 1

]
= I.
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Recalling that both RN (x) and TN,λj (x) are continuous at λj , we see by (4.34) that

(YN )+(λj) =eN
`
2σ(I +RN (λj))D

σ
∞e

iπ4 TN,λj (λj)e
iπ4

[
0 −1

−i 0

]

×
(√

2π(Nf ′λj (λj))
αj

2αjΓ(αj + 1/2)

)σ∏
k 6=j

|λj − λk|−αkσ
 e−W(λj)σeNλ

2
jσ

=eN
`
2σ(I +RN (λj))D

σ
∞TN,λj (λj)

[
0 −i
1 0

]
cσjN

αjσeNλ
2
jσ.

where in the last step we have used that f ′x(x) = 2
√

1− x2. Combining this with (4.33)
and observing that [

0 −i
1 0

]−1
= ei

π
4 e−

πi
4 σσ1

completes the proof.

4.1 Modifications for merging singularities

We will conclude this section by considering the modifications that need to be
made when we are in the case of merging singularities required in Proposition 2.10.
In particular, for the rest of this section assume that we are in the case of m = 2,
W = 0, α1 = α2 = α > 0, and are allowing λ1, λ2 to depend on N . Analysis of the
Riemann-Hilbert problem with such merging singularities is undertaken in [8], where
they modify the above parametrices to obtain asymptotics in this case. We will primarily
be reliant on the results on merging singularities in [8, 10], as well as the discussion in
[4]. As we only require the supercritical case for merging singularities (i.e., we consider
|λ1 − λ2|−1 = O(Nγ) where γ < 1), all the above results will still hold only with worse
bounds on the error terms and different domains.

Away from the points {λ1, λ2} though, the above asymptotics hold essentially as
stated.

Proposition 4.16. Let ε > 0. Then there is δ0 > 0, such that for 0 < δ < δ0, and any
choice of λ1, λ2 ∈ (−1 + ε, 1 − ε) (possibly N -dependant) with δ > λ1 − λ2 > 0, there is

an error term RN , such that for l ≥ 0, we have that R(l)
N (x) = O(N−1) uniformly in both

x ∈ R\{±1−δ,±1+δ}∪ [λ2−δ, λ1+δ] and the choice (λ1, λ2), and such that the following
asymptotics hold: For x ∈ (−1 + δ, 1− δ) \ (λ2 − δ, λ1 + δ), we have (4.12), for |x| ≥ 1 + δ,
we have (4.13), for x ∈ (1− δ, 1 + δ), we have (4.20), and for x ∈ (−1− δ,−1 + δ), we have
(4.21). Lastly, (4.7) and thus (4.8) hold as well, with error term uniform in the choice of
(λ1, λ2) as well.

For the remaining regions around λ1 and λ2, the asymptotics of Proposition 4.13 and
Proposition 4.12 occur in a smaller region and have a worse error bound.

Proposition 4.17. Let ε > 0 and 0 < γ < 1. Then there is δ0 > 0, such that for 0 < δ < δ0,
and any choice of λ1, λ2 ∈ (−1 + ε, 1− ε) (possibly N -dependant) with δ > λ1 − λ2 > N−γ ,
the following holds. Denoting rN = 2(λ1 − λ2), there is an error term RN , such that

for l ≥ 0, we have that R(l)
N (x) = O(r−1N ) uniformly in x ∈ (λ2 − δ, λ1 + δ) and the choice

of (λ1, λ2), and such that the following asymptotics hold: For x ∈ (λ2 − δ, λ2 − δr−1N ) ∪
(λ2 + δr−1N , λ1 − δr−1N ) ∪ (λ1 + δr−1N , λ1 + δ), we have (4.12), and for 1 ≤ i ≤ 2, and
x ∈ (λi − δr−1N , λi + δr−1N ), we have that (4.29) holds. Additionally, the asymptotics of
Proposition 4.14 holds with error term now of order O(Nγ−1), but now uniform in the
choice of (λ1, λ2).

We will now begin to establish the prerequisites for the proofs for these statements.
For the remainder of the section we will denote u = (λ1 − λ2)2/4 and v = (λ1 + λ2)/2. As
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before, this will essentially follow from recalling and simplifying various parametrices.
More specifically, in [8] they give asymptotics of YN in the merging case in terms of
a related matrix-valued function “S”, which we denote by SMN to avoid confusion with
the above SN . To aid the reader in the translation of their notation, their (n, t, V, a, b)

coincides with our (N, u,−2(x− v)2, 1− v,−1− v). The definition of SMN in [8] is given in
(4.10) and (5.1), only employing Fig. 8 rather than Fig. 7, as explained in their Section
6.1. The construction is almost identical to the one in [4] (which we used above) with
the only non-notational change being that for x ∈ (λ1, λ2) the function SMN is defined by
(4.4) rather than (4.3) (see the difference between Figure 1 of [4] and Figure 8 of [8]).
In particular, the function (SMN )+ may be given in terms of the above (SN )+ as follows:
For x /∈ [λ1, λ2], (SMN )+(x) = (SN )+(x), and for x ∈ (λ1, λ2), we have that

(
SMN
)
+

(x) = (SN )+(x)

[
1 0

1 1

]
. (4.36)

They then, as above, solve this by employing a sequence of paramatrices. We are only
concerned with the case that t > 0, which is dealt with in Section 6 of [8]. They construct
paramatrices N , P (a), P (b), and P , where P (a) is defined in a neighborhood of 1, P (b)

is defined in a neighborhood of −1, P is defined in a neighborhood of [λ2, λ1], and N is
defined in the remainder. These first three though are defined as P (∞), P (1), and P (−1)

in [4], which coincide with our P∞, P1, and P−1. In particular, they prove the following
result.

Proposition 4.18. Let us fix ε > 0. Then there is δ0 > 0 such that for any 0 < δ < δ0,
and any choice of λ1, λ2 ∈ (−1 + ε, 1− ε) (possibly N -dependant) with δ > (λ1 − λ2) > 0.
Then there is RN such that

(SMN )+(x) = (I +RN (x))(Pδ)+(x),

where here

(Pδ)+(x) =


(Pu,v)+(x); x ∈ (λ2 − δ, λ1 + δ)

(P±1)+(x); x ∈ (±1− δ,±1 + δ)

(P∞)+(x); otherwise

,

and where for any l ≥ 0, we have that R(l)
N (x) = O(N−1) uniformly in x ∈ R \ {±1 −

δ,±1 + δ, λ2 − δ, λ1 + δ} and the choice of (λ1, λ2).

This result for RN essentially follows from Section 6.5 of [8], though they only state
the error bounds for RN . On the other hand, they actually establish that RN satisfies
a small norm Riemann-Hilbert problem, with N -independent contours, whose jump
matrices are O(N−1) uniformly in a N -independent neighborhood of the contours. In
particular, applying a contour deformation argument and the Cauchy integral formula
as in the proof of Theorem 4.37 in [4] (see also the discussion in Section 4 of [29]), we
obtain the desired error bounds on R(l)

N for all l ≥ 0. In addition, while the results of [8]
establish uniformly only in u, the extension to uniformity in v is shown in Appendix G of
[4].

As the paramatrices P∞ and P±1 here coincide with those considered in the previous
subsection exactly, replacing Proposition 4.2 with Proposition 4.18 as appropriate in
the proofs in the previous subsection gives a proof of Proposition 4.16 (noting that
(SN )+ = (SMN )+ in all regions considered in this proposition).

On the other hand, the parametrix Pu,v, which is defined in Section 6.4 of [8], does not
directly coincide with any of the parametrices considered above. It is primarily reliant on
the special family of parametrices studied in [10], which involve more complicated special
functions than those considered above. Moreover, when one lets (λ1−λ2) = O(N−1), they
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appear to be quite different from a simple combination of the parametrices considered
above.

Luckily though, we do not need to contend with these parametrices directly, as the
asymptotics of the parametrix family of [10] is already considered in [10]. Up to a variety
of translations, these relate the parametrix Pu,v, to those considered above, up to an
error term now dependent on (λ1 − λ2). In particular, the result of this translation will
be the following result, whose proof will comprise the majority of the remainder of the
section.

Lemma 4.19. With the set-up of Proposition 4.18, there is δ1 > 0, such that if (λ1−λ2) >

δ1N
−1, then there is RN (x) such that

(Pu,v)+(x) =(I +RN (x))(P∞)+(x); x /∈ (λ2 −
√
uδ, λ1 +

√
uδ),

(Pu,v)+(x) =(I +RN (x))(P∞)+(x)

[
1 0

1 1

]
; x ∈ (λ2 +

√
uδ, λ1 −

√
uδ),

(Pu,v)+(x) =(I +RN (x))(Pλ1
)+(x); x ∈ (λ1, λ1 +

√
uδ),

(Pu,v)+(x) =(I +RN (x))(Pλ1
)+(x)

[
1 0

1 1

]
; x ∈ (λ1 −

√
uδ, λ1),

(Pu,v)+(x) =(I +RN (x))(Pλ2
)+(x); x ∈ (λ2 −

√
uδ, λ2),

(Pu,v)+(x) =(I +RN (x))(Pλ2
)+(x)

[
1 0

1 1

]
; x ∈ (λ2, λ2 +

√
uδ),

where for any l ≥ 0, we have that R(l)
N (x) = O(u−1/2N−1) uniformly in both x in these

regions, and in the choice of (λ1, λ2).

Recalling (4.36) for x ∈ [λ1, λ2], we see that the combined asymptotics of this lemma
and Proposition 4.19 essentially coincide with those in Proposition 4.2 around {λ1, λ2},
except that now that choice of δ is now N -dependant and the error terms are now
of order O(N−1u−1/2) instead of O(N−1). Thus repeating the proofs given above, re-
placing O(N−1) by O(N−1u−1/2) = O(N−1rN ) when necessary is sufficient to prove
Proposition 4.17.

The remainder of this subsection will consist of the proof of Lemma 4.19. As previously
remarked, this Lemma is essentially a special case of the asymptotics considered in
Section 5 of [10], though we will have to trace a variety of notations from [8, 10] and
perform some simple manipulations to obtain this. For the convenience of the reader, we
remark that a similar translation is given in Appendix G of [4], whose notation we will
borrow when possible.

In preparation, let us define for x ∈ R

λ(x) = N

(
s(λ1) + s(λ2)

2
− s(x)

)
, sN = 2Ni(s(λ2)− s(λ1)).

We recall a form for the parametrix Pu,v, which is defined in Section 6.4 of [8]. For
x ∈ (v − δ0, v + δ0)

(Pu,v)+(x) =E+(x)Ψ
(2)
+ (λ(x); sN )ω(x)σ/2eNis(x)σ(σσ1),

E+(x) =Dσ
∞T∞(x)(σσ1)−1eiπασe−iN

s(λ1)+s(λ2)
2 σ,

where Ψ(2)(λ, s) is a fixed matrix-valued function defined in Section 3 of [8], which

depends only on α and s. We will need the asymptotics of Ψ
(2)
+ as s→∞. To get these,

we note that in view of (3.11) and (3.5) of [8], we may write

Ψ(2)(x, s) = ΨCK

(
−4x

|s|
i; s

){
e−ε(x)πiασ; |x| > |s|/4
I; |x| < |s|/4

, (4.37)
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where ΨCK is the solution to the model Riemann-Hilbert problem introduced in Section
3 of [10] with parameters α1 = α2 = α and β1 = β2 = 0. In Section 5 of [10] uniform
asymptotics for ΨCK in the case of |s| → ∞ are derived. To demonstrate these, the
Riemann-Hilbert problem for ΨCK is solved using elementary transformations and yet
another auxiliary Riemann-Hilbert problem M . We note for the convenience of the reader
that in the case relevant to us (i.e., β = 0), M is expressed explicitly in terms of Hankel
and modified Bessel functions in (2.47) of [8]. In particular, we see that

M+(x) = (σσ1)e−i
π
4 σ

1√
2

[
1 i

i 1

]
(Ψα)+(x)(σσ1)−1e−i

π
2 αiσ. (4.38)

The following asymptotics of Ψ(2)(x; s) follow from those in Section 5 of [10] and (4.37).

Lemma 4.20. There exists s0 > 0 and δ0 > 0 such that for any s ≥ s0 and δ0 > δ > 0,
there is R̄s, such that

Ψ
(2)
+ (x; s) =(I + R̄s(x))eixσe−iαπσε(x); |x| > |s|

4
+ |s|δ

Ψ
(2)
+ (x; s) =(I + R̄s(x))eixσ

[
1 −1

0 1

]
; |x| < |s|

4
− |s|δ

Ψ
(2)
+ (x; s) =(I + R̄s(x))e−iπα/2σe−i|s|/4σM(x)e

3
2αiπσ;

|s|
4
≤ x ≤ |s|

4
+ |s|δ

Ψ
(2)
+ (x; s) =(I + R̄s(x))e−iπα/2σe−i|s|/4σM(x)e−

1
2αiπσ

[
1 −1

0 1

]
;
|s|
4
− |s|δ ≤ x ≤ |s|

4

Ψ
(2)
+ (x; s) =(I + R̄s(x))e−

3iπ
2 ασei|s|/4σM(x)e−

1
2απσ;

|s|
4
≤ −x ≤ |s|

4
+ |s|δ

Ψ
(2)
+ (x; s) =(I + R̄s(x))e−

3iπ
2 ασei|s|/4σM(x)e

3
2αiπσ

[
1 −1

0 1

]
;
|s|
4
− |s|δ ≤ −x ≤ |s|

4
,

and such that for l ≥ 0, we have that R̄(l)
s (x) = O(s−l(s+ |x|)−1) uniformly in s ∈ (s0,∞)

and x in the regions above.

Remark 4.21. The factor of s−l occurring in the error term in Lemma 4.20 is due to the
s−1-scaling in (4.37). Indeed if one denotes by R̂s the error term for the corresponding
error term in the expansion of ΨCK(x; s), one has that for any l ≥ 0, R̂(l)

s (x) = O(s−1(1 +

|x|)−1) (see (5.25) of [10]).

Proof of Lemma 4.19. We recall that σ1σ = −σσ1, so that aσσ1 = σa−σ. We also note
that

(σσ1)−1
[
1 −1

0 1

]
(σσ1) =

[
1 0

1 1

]
.

With these results and (4.38), all of these expressions follow by routine computation.
For example, we observe for x ∈ (λ1, λ1 +

√
uδ) that (potentially changing δ) λ(x) ∈

(|s|/4, |s|/4 + δ|s|) so that

(Pu,v)+(x) =Dσ
∞T∞(x)(σσ1)−1eiπασe−iN

s(λ1)+s(λ2)
2 σ

× (I + R̄s(λ(x)))eiN
s(λ1)+s(λ2)

2 σe−iαπσω(x)σ/2(σσ1).

Noting that R̄sN (λ(x)) = O(u−1/2N−1) we see that conjugating R̄sN as above

(Pu,v)+(x) = (I +O(N−1u−1/2))Dσ
∞T∞(x).

All claims follow from similar computations.
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5 Proof of Proposition 2.6

In this section, we will prove Proposition 2.6. As E vanishes on a neighborhood
of [−1, 1], the integrals which compose the entries of ∆1

N are supported on regions
where the integrand is exponentially small (see Remark 4.9). Combining this with some
rough estimates for the elements of ∆0

N (see Proposition 5.1), we will be able to obtain
Proposition 2.6 by employing bounds for the determinant under perturbation.

Now, as before we fix a choice of (W, {λi}i, {αi}i) satisfying the hypotheses of Theo-
rem 1.2. For a linear operator A on an inner-product space, let ‖A‖F =

√
Tr(A∗A) denote

the Frobenius norm. We recall the operators ∆1
N and ∆0

N (defined in (2.11) and (2.12)) of
Section 2, which act on PN with the inner-product (f, g)w,N =

∫
f(x)g(x)wN (x)dx. The

main technical result of this section is the following proposition.

Proposition 5.1. There are C, c > 0, such that

‖∆1
N‖F = O

(
e−Nc

)
, ‖∆0

N‖F = O
(
NC

)
.

Moreover for any choice of compact subset of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 >

· · · > λm}, we may choose C, c such that these estimates are uniform on the chosen
compact set.

We will now give the proof of Proposition 2.6 assuming Proposition 5.1.

Proof of Proposition 2.6. We recall from Lemma 2.7 that [∆0
N ]22 = I, so that [∆N ]22 =

I + [∆1
N ]22. We observe that by Proposition 5.1, we have that ‖[∆1

N ]22‖F = O
(
e−Nc

)
.

Thus by the Neumann series for the inverse, we see that for sufficiently large N [∆N ]22
is invertible and that ‖[∆N ]−122 − I‖F = O

(
e−Nc

)
. By the Schur complement formula, we

have that
det(∆N ) = det([∆N ]22) det([∆N ]11 − [∆N ]12[∆N ]−122 [∆N ]21). (5.1)

Now recall that [∆0
N ]12 = 0 so that [∆N ]12 = [∆1

N ]12. Thus we have that

‖[∆1
N ]11 − [∆N ]12[∆N ]−122 [∆N ]21‖F = ‖[∆1

N ]11 − [∆1
N ]12[∆N ]−122 [∆N ]21‖F

≤ ‖[∆1
N ]11‖F + ‖[∆1

N ]12‖F ‖[∆N ]−122 ‖F ‖[∆N ]21‖F .

The work above shows that ‖[∆N ]−122 ‖F = ‖I‖F +O(e−Nc) = O(N), and by Proposition 5.1
we have that ‖[∆1

N ]11‖F , ‖[∆1
N ]12‖F = O(e−Nc) and ‖[∆N ]21‖F = O(N c). Combining these

with the above inequality, we see that

‖[∆1
N ]11 − [∆N ]12[∆N ]−122 [∆N ]21‖F = O(e−Nc/2). (5.2)

We recall the bound on `-by-` matrices A and B (see Theorem 2.12 of [24])

|det(A)− det(B)| ≤ `‖A−B‖F (max(‖A‖F , ‖B‖F ))`−1.

Recalling that dim(PN,1) = m+ d, we see that by applying this inequality, the bound of
(5.2), and Proposition 5.1

|det([∆N ]11 − [∆N ]12[∆N ]−122 [∆N ]21)− det([∆0
N ]11)| = O(e−Nc/4). (5.3)

We will further need the bound on `-by-` matrices A (see Corollary 2.14 of [24])

|det(I +A)− 1| ≤ (`‖A‖F + 1)` − 1.

Employing the formula [∆N ]22 = I + [∆1
N ]22, as well as Proposition 5.1, this bound yields

that |det([∆N ]22)− 1| = O(e−Nc/2). Using this, (5.1), and (5.3), we have that

det(∆N ) = det([∆0
N ]11)(1 +O(e−Nc/2)) +O(e−Nc/4).

Finally applying Proposition 5.1 to see that det([∆0
N ]11) = O(eNc/4), and recalling that

det([∆0
N ]11) = det(∆0

N ) completes the proof.
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The remainder of the section will be spent on the proof of Proposition 5.1. We first
note that by Proposition 2.5 we have that

‖∆1
N‖F = ‖ΠNJ

−1
N Π⊥NE ′ΠN‖F ≤ ‖ΠNJ

−1
N E

′ΠN‖F + ‖ΠNJ
−1
N ΠNE ′ΠN‖F , (5.4)

‖∆0
N‖F ≤ ‖I‖F + 2N‖ΠNJ

−1
N ΠNxΠN‖F +

m∑
i=1

|αi|‖ΠNJ
−1
N `iq

T
i ΠN‖F , (5.5)

where here, the transpose fT is taken with respect to the inner-product on PN inherited
from (∗, ∗)w,N . Thus it suffices to compute the order of all terms on the right. The
terms ‖ΠNJ

−1
N E ′ΠN‖F , ‖ΠNJ

−1
N ΠNE ′ΠN‖F and ‖ΠNJ

−1
N ΠNxΠN‖F will all follow from

the same method, which we now illustrate. Let A be a symmetric operator on PN with
Schwartz kernel Af(x) =

∫
G(x, y)f(y)wN (y)dy. Then evaluating the Frobenius norm

with respect to the basis given by orthogonal polynomials, we see that

‖A‖2F =

N−1∑
i=0

∫ ∫ ∫
G(x, y)G(x, z)pi(y)pi(z)wN (x)wN (y)wN (z)dxdydz

=

∫ ∫ ∫
G(x, y)G(x, z)KN (y, z)wN (x)wN (y)wN (z)dxdydz (5.6)

where KN is the Christoffel-Darboux kernel. Let us denote

KN (x, y) = wN (x)1/2wN (y)1/2KN (x, y).

In the sense above, the operator ΠNJ
−1
N E ′ΠN has kernel

G(x, y) = wN (x)−1/2
(

1

2

∫
KN (x, z)ε(z − y)dz

)
E ′(y)w

−1/2
N (y)

on PN . We may employ (5.6) to obtain

‖ΠNJ
−1
N E

′ΠN‖2F

=
1

4

∫
· · ·
∫
KN (x1, x2)ε(x2 − x3)E ′(x3)KN (x1, x4)ε(x4 − x5)E ′(x5)KN (x3, x5)

5∏
i=1

dxi.

By taking the absolute value of the integrand, we may upper-bound this quantity by

1

4

(∫ ∫ ∫
|KN (x1, x2)KN (x1, x4)|dx1dx2dx4

)(∫ ∫
|E ′(x3)E ′(x5)KN (x3, x5)|dx3dx5

)
.

(5.7)
By the Cauchy-Schwarz inequality we have that

|KN (x, y)| ≤ KN (x, x)1/2KN (y, y)1/2.

Repeatedly applying this bound to (5.7), and observing that
∫
KN (x, x)dx = N , we see

that ‖ΠNJ
−1
N E ′ΠN‖2F ≤ N

4 I
2
1I

2
2 , where

I1 =

∫
KN (w,w)1/2dw, I2 =

∫
KN (w,w)1/2|E ′(w)|dw.

To compute these integrals let us denote ϕN,1(x) = pN (x)wN (x)1/2 and ϕN,2(x) =

pN−1(x)wN (x)1/2. We note that by Remark 4.9 for any δ > 0 there is c > 0 small
enough so that for |x| > 1 + δ

d

dx
ϕN,i(x), ϕN,i(x) = O(exp(−cNx2)).
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By the Christoffel-Darboux formula (2.6) and Lemma 4.5, we see that KN (x, x) =

O(exp(−cNx2)) uniformly on |x| > 1 + δ. Now applying the Cauchy-Schwarz inequality,
we see that

I1 =

∫
|w|>1+δ

KN (w,w)1/2dw +

∫
|w|<1+δ

KN (w,w)1/2

≤
∫
|w|>1+δ

KN (w,w)1/2dw + (2 + 2δ)1/2
(∫
KN (w,w)dw

)1/2

. (5.8)

The first integral on the right-hand side of (5.8) is seen to be of order O(e−Nc/4) using
the above asymptotic, and the second is exactly (2 + 2δ)1/2N1/2, so that I1 = O(N1/2).
When applying the same trick to I2, the first term is O(e−Nc/4), and the latter vanishes,
so that I2 = O(e−Nc/4), so that ‖ΠNJ

−1
N E ′ΠN‖2F = O(e−Nc/8). The same method works

to show that ‖ΠNJ
−1
N ΠNE ′ΠN‖F = O(e−Nc/4) and that ‖ΠNJ

−1
N ΠNxΠN‖F = O(N5).

We now focus our attention to ‖ΠNJ
−1
N `iq

T
i ΠN‖F . In this case we see that, recalling

(2.10) and applying again the inequality |KN (x, y)| ≤ KN (x, x)1/2KN (y, y)1/2,

‖ΠNJ
−1
N `iq

T
i ΠN‖2F

= e−2Nλ
2
iN−2αiKN (λi, λi)

∫ ∫
KN (x1, x2)J−1N `i(x1)J−1N `i(x2)wN (x1)wN (x2)dx1dx2

≤ e−2Nλ
2
iN−2αiKN (λi, λi)

(∫
KN (x, x)1/2

∣∣∣ε(`iw1/2
N )(x)

∣∣∣ dx)2

,

where here

ε(f)(x) =
1

2

∫
ε(x− y)f(y)dy.

To understand these quantities we will first employ Proposition 4.29 to write, for
x ∈ (λi − δ, λi + δ) and k = 1, 2

ϕN,k(x) = GN,k(x)Jαi(Nfλi(x)), GN,k(x) = iI(k=2)π−1/2eTk (I +RN (x))TN,λi(x), (5.9)

where ek is the k-th standard coordinate vector. We also recall some classical asymptotics
of Bessel functions (see Chapter 9 of [1]): for ν > −1 and x ∈ (0,∞), we have that

x−νJν(x),
d

dx

(
x−νJν(x)

)
= O

(
(1 + x)−ν−1/2

)
,

where both the errors are uniform in x ∈ (0,∞). From this, and recalling the definition
of Jν(x) from (4.28) we see that for ν > −1/2 and for x ∈ R,

x−νJν(x),
d

dx

(
x−νJν(x)

)
= O

(
(1 + |x|)−ν+1/2

)
, (5.10)

where again, the error term is uniform in x ∈ R. We will denote ϕ̂N,k(x) = ϕN,k(x)|x−
λi|−αi , which removes the singular part of ϕN,k around λi coming from wN (x)1/2. Now
employing (5.10) and Remark 4.12 to the representation in (5.9), we see that for x ∈
(λi − δ, λi + δ) and k = 1, 2, we have that,

ϕ̂N,k(x),
d

dx
ϕ̂N,k(x) = O(Nαi+2), (5.11)

again uniformly in x and compact subsets of {λi}mi=1 ∈ {(λ1, · · ·λm) ∈ (−1, 1)m : λ1 >

· · · > λm}. Applying this to the Christoffel-Darboux formula (2.6), we obtain that

e−2Nλ
2
iN−2αiKN (λi, λi) = O(N8). (5.12)
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We now focus on the term ε(`iw
1/2
N )(x). We note that∣∣∣∣∫ ε(x− y)

ϕN,k(y)dy

y − λi

∣∣∣∣ ≤ 1

δ

∫
|y−λi|>δ

|ϕN,k(y)|dy +

∣∣∣∣∣
∫
|y−λi|<δ

ε(x− y)
ϕN,k(y)

y − λi
dy

∣∣∣∣∣ . (5.13)

Using that ∫
ϕ2
N,k(y)dy =

∫
pN−k+1(y)2wN (x)dx = 1

and proceeding as in (5.8), we may see that the first integral on the right-hand side of
(5.13) is O(1), leading us to bound the second. We have that∫

|y−λi|<δ
ε(x− y)

ϕN,k(y)

y − λi
dy =

∫
|y−λi|<δ

ε(x− y)
(ϕ̂N,k(y)− ϕ̂N,k(λi))|y − λi|αi

y − λi
dy

+ ϕ̂N,k(λi)

∫
|y−λi|<δ

ε(x− y)
|y − λi|αi
y − λi

dy.

The latter term is O(Nαi+2) by (5.11). Additionally, applying again (5.11) and the mean
value theorem to ϕN,k,i, we see that∫

|y−λi|<δ
ε(x− y)

(ϕ̂N,k(y)− ϕ̂N,k(λi))|y − λi|αi
y − λi

dy = O
(
Nαi+2

)
.

These bounds are additionally uniform in y, so that in particular we may conclude that
for k = 1, 2 that ε(ϕN,k)(x) = O(Nαi+2), uniformly in x ∈ R. By Remark 4.15, we see that

ε(`iw
1/2
N )(x) = O(Nαi+2). Again proceeding as in (5.8), we obtain that∫

KN (x, x)1/2ε
(
`iw

1/2
N

)
(x)dx = O

(
Nαi+4

)
. (5.14)

Combining (5.12) and (5.14) we see that

e−2Nλ
2
iKN (λi, λi)

(∫
KN (x, x)1/2ε

(
`iw

1/2
N

)
(x)dx

)2

= O
(
N16(1+αi)

)
.

In total these results show that the right-hand side of (5.4) is of order O
(
e−Nc/4

)
, and

that the right-hand side of (5.5) is of order O
(
N16(1+

∑m
i=1 αi)

)
, which together completes

the proof of Proposition 5.1.

6 Proof of Proposition 2.9

In this section, we will prove Proposition 2.9. The evaluation of these integrals is a
key technical step in this paper. Away from the points {±1} and {λi}mi=1 this computation
will follow by standard methods for oscillatory integrals (see for example Lemma 6.3).
The remainder of the work is then spent understanding the contributions around the
points {±1} and {λi}mi=1. This will follow from applications of the classical asymptotics
for the Bessel and Airy functions and careful analysis to compare these integrals with
those in the remainder of the bulk. There is some similarity with methods used in
[12, 11, 13], particularly for the asymptotics away from the points {λi}mi=1.

To begin, we first note that we may write∫
J−1N f(x)g(x)wN (x)dx =

1

2

∫ ∫
ε(x− y)g(x)f(y)wN (x)1/2wN (y)1/2dxdy.
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We observe that if functions f and g are supported on disjoint intervals, then we have
that∫ ∫

ε(x− y)g(x)f(y)wN (x)1/2wN (y)1/2dxdy = ±
∫
g(x)wN (x)1/2dx

∫
f(y)wN (y)1/2dy,

(6.1)
where ± = + if the interval supporting g lies to the right of the interval supporting f in
R and ± = − if this interval instead lies to the left.

This will be an important observation. With this identity and a partition of unity, we
will reduce the integrals into a sequence of simpler integrals supported over regions
where a single asymptotic expression holds. We again fix (W, {λi}i, {αi}i) satisfying the
conditions of Proposition 1.2, and in all results below, the error will be uniform in a
neighborhood of {λi} ∈ {(λ1, · · · , λm) ∈ (−1, 1)m : λ1 > · · · > λm}. We will employ, as
before, the notation λ0 = 1 and λm+1 = −1.

Lemma 6.1. Assume that φ is a smooth function onR of sub-exponential growth. Assume
that there is some δ > 0 such that φ vanishes on (λi − δ, λi + δ) for all 0 ≤ i ≤ m + 1.
Then for each k and any c ∈ N, we have that∫

φ(x)pN−k(x)wN (x)1/2dx = O(N−c).

Proof. For notational clarity, we will assume that k = 0. The proof will proceed by
applying the results of Section 4 on each region. Using the assumptions on the support
of φ, we see that∫

φ(x)pN (x)wN (x)1/2dx =

∫
|x|>1+δ

φ(x)pN (x)wN (x)1/2dx+

∫
|x|<1

φ(x)pN (x)wN (x)1/2dx.

We note that by Remark 4.9 we have that∫
|x|>1+δ

φ(x)pN (x)wN (x)1/2dx = O
(
e−NC/2

)
.

We now focus on the computation of
∫
|x|<1

φ(x)pN (x)wN (x)1/2dx. If φ is supported on

(λi+1 + δ, λi − δ), for some 0 ≤ i ≤ m, we may apply Proposition 4.7 to rewrite∫
|x|<1

φ(x)pN (x)wN (x)1/2dx =
1

π1/2

[ ∫
φ(x)[(I +RN (x))T∞(x)]11e

−iπ
∑i
k=1 αkeiNs(x)dx

+

∫
φ(x)[(I +RN (x))T∞(x)]12e

iπ
∑i
k=1 αke−iNs(x)dx

]
,

(6.2)

where RN is the error term of Proposition 4.7. We now recall that if f is a smooth
function of compact support, then for any c ∈ N, we have that∣∣∣∣∫ e−iNxf(x)dx

∣∣∣∣ ≤ 1

N c

∫
|f (c)(x)|dx. (6.3)

This inequality, and a change of variables, will be sufficient to complete the proof. Indeed,
let us consider the first term of (6.2) and denote for l ∈ {1, 2}

fN,l(x) = φ(x)[(I +RN (x))T∞(x)]1le
(−1)liπ

∑i
k=1 αk .

As we have that for any n ≥ 0, R(n)
N (x) = O(N−1) uniformly on the support of φ, and

recalling that by Remark 4.8, T∞(x) is N -independent and smooth, we see that for any
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c ∈ N, we have that f (c)N,l(x) = O(1) uniformly for x ∈ R. By (6.3) we see that∣∣∣∣∫ fN,l(x)e±iNs(x)dx

∣∣∣∣ =

∣∣∣∣∫ (s−1)′(y)fN,l(s
−1(y))e±iNydy

∣∣∣∣
≤ 1

N c

∫ ∣∣∣∣ dcdyc ((s−1)′(y)fN,l(s
−1(y))

)∣∣∣∣ dy.
Recalling the definition of s from (4.3), we see that s is smooth and non-degenerate on
the support of fN,l, we see that the integrand of the right-hand side is uniformly O(1),
and supported inside of the compact set [s(1), s(−1)] = [0, π], so that terms of (6.2) are of
order O(N−c). Applying this argument to each region completes the proof.

Lemma 6.2. Let φ and ϕ be smooth functions of subexponential growth on R. Assume
that there is some δ > 0 such that both φ and ϕ vanishes on (λi − δ, λi + δ) for all
0 ≤ i ≤ m+ 1. Then for each n and m, we have that

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−2).

Proof. Applying a partition of unity and linearity, we may assume we are in the case
where φ is supported on (λi+1 + δ, λi − δ) for some i, or on (1 + δ,∞)∪ (−∞,−1− δ), and
similarly for ψ. In the case where ψ and φ have disjoint support, we see by (6.1) that∣∣∣∣∫ ∫ φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

∣∣∣∣
=

∣∣∣∣∫ φ(x)pN−n(x)wN (x)1/2dx

∫
ϕ(y)pN−m(y)wN (y)1/2dy

∣∣∣∣ .
By Lemma 6.1, both of these integrals on the right-hand side are O(N−2). Thus we may
assume that we are in the case where either both ψ and φ are supported on (λi+1+δ, λi−δ)
for some i, or on (1 + δ,∞) ∪ (−∞,−1− δ). In the latter case, by the Cauchy-Schwarz
inequality, we have that∣∣∣∣∣

∫ ∫
min(|x|,|y|)>1+δ

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

∣∣∣∣∣
≤

(∫
|x|>1+δ

pN−n(x)2φ(x)2wN (x)dx

∫
|y|>1+δ

pN−m(y)2ϕ(y)2wN (y)dy

)1/2

. (6.4)

Then applying Remark 4.9 as in the proof of Lemma 6.1, we see that the right-hand side
of (6.4) is O(e−NC/4).

Thus we may assume that φ and ϕ are both supported on (λi+1 + δ, λi − δ) for some i.
To compute this integral, we will use the following lemma (see Chapter 8.4 of [5]).

Lemma 6.3. Let h be a smooth, compactly supported function on R. Then we have that

1

2

∫ ∫
h(x, y)e±iN(x+y)ε(x− y)dxdy =O(N−2)

1

2

∫ ∫
h(x, y)e±iN(x−y)ε(x− y)dxdy =± i

N

∫
h(x, x)dx+O(N−2).

More specifically, the error may be bounded by

1

N2

(∫ ∫
‖∇h(x, y)‖dxdy + 4

∫ ∣∣∣∣ ddxh(x, x)

∣∣∣∣ dx) .
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Using the asymptotics of Proposition 4.12, we may write

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2π

∑
j,k=1,2

∫ ∫
fN,j,k(x, y)e−(−1)

jNis(x)−(−1)kNis(y)ε(x− y)dxdy,

where here

fN,j,k(x, y) =φ(x)ϕ(y)[(I +RN (x))T∞(x)]1j [(I + R̄N (y))T∞(y)]1k

× exp

(
(−1)ji(narccos(x) + π

i∑
l=1

αl) + (−1)ki(marccos(y) + π

i∑
l=1

αl)

)
,

and RN and R̄N denote the error terms in Proposition 4.7 for the case of n and m,
respectively. Recalling Remark 4.8 as before, as well as the bound R

(c)
N (x), R̄

(c)
N (y) =

O(N−1) for any c ∈ N, we see that for j, k ∈ {1, 2}, we have that fN,j,k(x, y) = O(1) and
‖∇fN,j,k(x, y)‖ = O(1), both uniformly in x, y ∈ R. From this, we see that

‖∇((s−1)′(x)(s−1)′(y)fN,j,k(s−1(x), s−1(y)))‖ = O(1)

uniformly in x, y ∈ R. Thus applying Lemma 6.3 and a change of variables with respect
to s, and recalling that s′(x) < 0 for x ∈ (−1, 1), so that ε(s(x)− s(y)) = −ε(x− y), we see
that

1

2π

∑
j,k=1,2

∫ ∫
fN,j,k(x, y)e−(−1)

jNis(x)−(−1)kNis(y)ε(x− y)dxdy

=
−1

2π

∑
j,k=1,2

∫ ∫
(s−1)′(x)(s−1)′(y)fN,j,k(s−1(x), s−1(y))e−(−1)

jNix−(−1)kNiyε(x− y)dxdy

= − i

πN

∫
fN,1,2(x, x)

|s′(x)|
dx+

i

πN

∫
fN,2,1(x, x)

|s′(x)|
dx+O(N−2). (6.5)

We now observe that as RN (x), R̄N (x) = O(N−1), we have that

fN,j,k(x, y) =φ(x)ϕ(y)[T∞(x)]1j [T∞(y)]1k

× e(−1)
ji(narccos(x)+π

∑i
l=1 αl)+(−1)ki(marccos(y)+π

∑i
l=1 αl) +O(N−1).

Thus we may express the right-hand side of (6.5) as

i

πN

∫ ∫
φ(x)ϕ(x)

|s′(x)|
[T∞(x)]11[T∞(x)]12

(
ei(n−m)arccos(x) − e−i(n−m)arccos(x)

)
dx+O(N−2).

Recalling the definition of T∞ from (4.11) and s from (4.3), we may derive the identities
[T∞(x)]11[T∞(x)]12 = 1

2(1−x2)1/2
and s′(x) = −2

√
1− x2. With these we obtain that

i

4πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)

(
ei(n−m)arccos(x) − e−i(n−m)arccos(x)

)
dx

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−2).

Considered altogether, these results yield the desired claim.

We will now begin to compute integrals of functions supported around λi for 1 ≤ i ≤ m.
It will be convenient to prove a result to match the behavior of the asymptotics of
Proposition 4.7 and 4.13 over their overlapping regions.
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We recall the asymptotics for the Bessel function (see Chapter 9 of [1]):

Jν(x) =

√
2

πx

[
cos
(
x− νπ

2
− π

4

)
+O(x−1)

]
. (6.6)

By employing this expansion, we obtain that with Jα defined as in (4.28), we have that,

Jα(x) = (I +O(x−1))Iα(x), Iα(x) =

[
ε(x)
√

2 sin(|x| − απ
2 )√

2 cos(|x| − απ
2 )

]
, (6.7)

uniformly in x ∈ R. We will make use of the following matching computation.

Lemma 6.4. For any q ∈ R and x ∈ (−1, 1), we have that

TN,k,λj (x)Iαj+q((N − k)(sN,k(λj)− sN,k(x)))

= T∞(x)e(−iπ
∑j−1
k=1 αk−iπαjI(x<λj))σeiε(x−λj)

π
2 qσ

[
ei(N−k)sN,k(x)

e−i(N−k)sN,k(x)

]
. (6.8)

Proof. We observe that as sN,k is monotonically decreasing, if we denote ± = ε(x−λj) =

ε(sN,k(λj)− sN,k(x)) then

Iαj+q((N − k)(sN,k(λj)− sN,k(x))) =

[√
2 sin((N − k)(sN,k(λj)− sN,k(x))∓ (αj + q)π2 )√
2 cos((N − k)(sN,k(λj)− sN,k(x))∓ (αj + q)π2 )

]
.

We also note that for any a, b ∈ R, we have that

e−i
π
4 e−i

π
4 σ

1√
2

[
1 i

i 1

] [√
2 sin(b− a)√
2 cos(b− a)

]
= e−i

π
4 e−i

π
4 σ

[
iei(a−b)

e−i(a−b)

]
= eiaσ

[
e−ib

eib

]
,

so that we see that

e−i
π
4 e−i

π
4 σ

1√
2

[
1 i

i 1

]
Iαj+q((N − k)(sN,k(λj)− sN,k(x)))

= e±
iπ
2 (αj+q)σe−i(N−k)sN,k(λj)σ

[
ei(N−k)sN,k(x)

e−i(N−k)sN,k(x)

]
. (6.9)

Multiplying both sides of (6.9) by T∞(x)ei
ρN,k,j

2 σ, and recalling the definition for TN,k,λj
given in (4.27), we see that the left-hand and right-hand sides simplify to the left-hand
and right-hand sides of (6.8).

We will also need the following elementary result, which will follow by integration by
parts.

Lemma 6.5. Let f, g : [0,∞)→ [0,∞) be monotone increasing smooth bijections, with
everywhere positive derivatives on (0,∞). Let h, l be smooth functions of compact
support and let F,G be continuous functions, all defined on [0,∞). Then we have that

1

2

∫ ∞
0

∫ ∞
0

h(x)l(y)F (f(x))G(g(y))ε(x− y)dxdy = I + II + III, (6.10)

where here

I =

∫ ∞
0

F (f(x))

(∫ g(x)

0

G(z)dz

)
h(x)l(x)

g′(x)
dx,

II =

∫ ∞
0

(∫ f(x)

0

F (z)dz

)(∫ g(x)

0

G(z)dz

)
h(x)

f ′(x)

d

dx

(
l(x)

g′(x)

)
dx,

III =
1

2

∫ ∞
0

∫ ∞
0

(∫ f(x)

0

F (z)dz

)(∫ g(y)

0

G(z)dz

)
d

dx

(
h(x)

f ′(x)

)
d

dy

(
l(y)

g′(y)

)
ε(x− y)dxdy.
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Proof. We introduce h̄(x) = h(f−1(x))(f−1)′(x) and l̄(x) = l(g−1(x))(g−1)′(x), so that we
may write the left-hand side of (6.10) as

1

2

∫ ∞
0

∫ ∞
0

h̄(u)l̄(v)F (u)G(v)ε(f−1(u)− g−1(v))dudv. (6.11)

We observe that by monotonicity of g we have that ε(f−1(u)− g−1(v)) = ε(g(f−1(u))− v),
and furthermore by integration by parts we see that for u > 0

1

2

∫ ∞
0

l̄(v)G(v)ε(g(f−1(u))− v)dv

=
1

2

∫ g(f−1(u))

0

l̄(v)G(v)dv − 1

2

∫ ∞
g(f−1(u))

l̄(v)G(v)dv

= l̄(g(f−1(u)))

(∫ g(f−1(u))

0

G(z)dz

)
− 1

2

∫ ∞
0

l̄′(v)

(∫ v

0

G(z)dz

)
ε(g(f−1(u))− v)dv.

Applying this, we see that (6.11) may be rewritten as the sum I ′ + II ′ where

I ′ =

∫ ∞
0

h̄(u)F (u)l̄(g(f−1(u)))

(∫ g(f−1(u))

0

G(z)dz

)
du,

II ′ = −1

2

∫ ∞
0

∫ ∞
0

h̄(u)F (u)l̄′(v)

(∫ v

0

G(z)dz

)
ε(g(f−1(u))− v)dudv.

Again applying a change of variables with respect to f , and observing that l̄(g(y)) =

l(y)/g′(y), we see that I = I ′. Similarly, noting that

l̄′(g(y)) =
l′(y)

(g′(y))2
− l(y)g′′(y)

(g′(y))3
=

1

g′(y)

d

dy

(
l(y)

g′(y)

)
we see that

II ′ = −1

2

∫ ∞
0

∫ ∞
0

F (f(x))

(∫ g(y)

0

G(z)dz

)
h(x)

d

dy

(
l(y)

g′(y)

)
ε(x− y)dxdy.

By applying essentially the same argument, integrating by parts with respect to x instead
of y, we may show that II ′ = II + III. More specifically, we may observe that if we
swap the dummy-variables (x, y) in II ′, then II ′ is just the left-hand side of (6.10) with
a modified set of functions, so repeating the above argument, one may indeed confirm
that II ′ = II + III.

We are now able to state the appropriate generalizations of the above lemmas to the
case of functions supported around λi.

Lemma 6.6. For each 1 ≤ i ≤ m, there exists δ > 0, such that if φ and ϕ are smooth
functions supported on (λi − δ, λi + δ), then we have for any n and m that∫

φ(x)pN−n(x)wN (x)1/2dx = O(N−1),

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−2).

Proof. For convenience, let us denote λ = λi and α = αi for this proof. We choose δ > 0

so the asymptotics of Proposition 4.13 hold on (λ− 2δ, λ+ 2δ). We recall the following
lemma due to [33].
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Lemma 6.7. Let h be a smooth, compactly supported function, and assume that µ+ ν >

−1. Then we have that∫ ∞
0

Jν(Nt)tµh(t)dt−D(ν, µ)
h(0)

Nµ+1
= O(N−µ−2), D(ν, µ) = 2µ

Γ((µ+ ν + 1)/2)

Γ((ν − µ+ 1)/2)
.

More specifically, the error is bounded by:

Cµ,ν
Nµ+2

dµ+3/2e∑
i=0

∫ ∞
0

|h(i)(x)|dx


for some absolute constant Cµ,ν > 0.

From Proposition 4.13, and recalling fN,n,λ from (4.26), we may write

φ(x)pN−n(x)wN (x)1/2 =hN,1(x)ε(x− λ)
√
π|(N − n)fN,n,λ(x)|Jα+1/2((N − n)fN,n,λ(x))

+ hN,2(x)
√
π|(N − n)fN,n,λ(x)|Jα−1/2((N − n)fN,n,λ(x)),

where here hN,k(x) = φ(x) 1
π1/2 [(I +RN (x))TN,n,λ(x)]1k. We recall from Remark 4.12 that

for c ∈ N and i, j ∈ {1, 2}, we have that [T
(c)
N,n,λ(x)]ij = O(1) uniformly in x ∈ (λ− δ, λ+ δ).

As we also have that R(c)(x) = O(N−1) uniformly, we see that h(c)N,k(x) = O(1) for c ∈ N.
From this, we see from Lemma 6.7 and a change of coordinates that there is C, only
dependant on α, such that∣∣∣∣ ∫ λ±δ

λ

φ(x)pN−n(x)wN (x)1/2dx

∣∣∣∣
≤N−1π1/2|(f−1N,n,λ)′(0)| |D(α+ 1/2, 1/2)|hN,1(λ)|+D(α− 1/2, 1/2)|hN,2(λ)||

+
C

N2

∑
k=1,2

2∑
l=0

∫ ∞
0

∣∣∣∣ dldxl ((f−1N,n,λ)′(x)hN,k(f−1N,n,λ(x))
)∣∣∣∣ dx. (6.12)

We see as above that the integrands on the right-hand side of (6.12) are O(1), so we
see that ∫ λ±δ

λ

φ(x)pN−n(x)wN (x)1/2dx = O(N−1), (6.13)

which establishes the first claim.
The case of double integrals will require more care. We note that by (6.1) and (6.13),

we have that

1

2

∫ λ±δ

λ

∫ λ∓δ

λ

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy = O(N−2),

as we may split this double integral into a product of the single variable integrals dealt
with above. Thus by breaking the double-integral into four regions, we see that

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2

∫ ∞
λ

∫ ∞
λ

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

+
1

2

∫ λ

−∞

∫ λ

−∞
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy +O(N−2).

(6.14)

EJP 29 (2024), paper 22.
Page 43/71

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1083
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian multiplicative chaos for Gaussian Orthogonal and Symplectic Ensembles

We compute the first integral, with the other case being identical. For notational ease,
we will denote gN,k(x) = (N − k)fN,k,λ(x). In view of Proposition 4.13, we further denote
hN,i(x) = φ(x)[(I +RN (x))TN,n,λ(x)]1i and lN,i(x) = ϕ(x)[(I + R̄N (x))TN,m,λ(x)]1i, where
RN and R̄N denote the error terms in Proposition 4.13 for case of k = n and k = m,
respectively. Thus by employing Proposition 4.13, we may rewrite the first integral on
the right-hand side of (6.14) as

1

2π

∑
k,l=1,2

∫ ∞
λ

∫ ∞
λ

hN,k(x)[Jα(gN,n(x))]klN,l(y)[Jα(gN,m(y))]lε(x− y)dxdy. (6.15)

We now observe that f ′N,k,λ(x) = 2η−1k

√
1− η−2k x2, and that fN,k,λ(λ) = 0. Thus by

Lemma 6.5 we see that for k fixed and N sufficiently large, we may rewrite (6.15) as
I + II + III where

I =
1

π

∑
k,l=1,2

∫ ∞
λ

[Jα(gN,n(x))]k

(∫ gN,m(x)

0

[Jα(z)]ldz

)
hN,k(x)lN,l(x)

g′N,m(x)
dx,

II =
1

π

∑
k,l=1,2

∫ ∞
λ

(∫ gN,n(x)

0

[Jα(z)]kdz

)(∫ gN,m(x)

0

[Jα(z)]ldz

)

× hN,k(x)

g′N,n(x)

d

dx

(
lN,l(x)

g′N,m(x)

)
dx,

III =
1

2π

∑
k,l=1,2

∫ ∞
λ

∫ ∞
0

(∫ gN,n(x)

0

[Jα(z)]kdz

)(∫ gN,m(y)

0

[Jα(z)]ldz

)

×

(
d

dx

hN,k(x)

g′N,n(x)

)(
d

dy

lN,l(y)

g′N,m(y)

)
ε(x− y)dxdy.

We now recall another important asymptotic for understanding these terms. Assuming
that `+ ν > −1, we may define

Jν,`(x) =

∫ x

0

y`Jν(y)dy, Iν,`(x) = D(ν, `)− Jν,`(x).

We have the following asymptotics (see Chapter 2 of [33])

Iν,`(z) = z`−1/2
√

2

π
cos
(
z − νπ

2
+
π

4

)
+O(z`−3/2), z > 1; Iν,`(z) = O(1), z ≤ 1.

(6.16)
From these asymptotics, and recalling the definition of Jα from (4.28), we see that∫ gN,n(x)

0

[Jα(z)]kdz =
√
πJα−(−1)k/2,1/2(gN,n(x)) = O(1). (6.17)

As hN,k(x), lN,l(x), h′N,k(x), l′N,l(x) = O(1) uniformly, and as gN,n(x) = (N − k)fN,n,λ(x),
we thus see that II, III = O(N−2).

We may further rewrite I as the sum of two terms

I ′ =−
∑

k,l=1,2

∫ ∞
λ

√
gN,n(x)Jα−(−1)k1/2(gN,n(x))Iα−(−1)l1/2,1/2(gN,m(x))

hN,k(x)lN,l(x)

g′N,m(x)
dx

II ′ =
∑

k,l=1,2

D(α− (−1)l1/2, 1/2)

∫ ∞
λ

Jα−(−1)k1/2(gN,n(x))
hN,k(x)lN,l(x)

g′N,m(x)
dx.
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We have that II ′ = O(N−2) by Lemma 6.7. Finally, employing the asymptotics for Jµ and
Iµ,` given by (6.16) and (6.7) one derives that

I ′ =− 2

π

∑
k,l=1,2

∫ ∞
λ

cos

(
gN,n(x)− απ

2
+

((−1)k − 1)π

4

)

× cos

(
gN,m(x)− απ

2
+

((−1)l + 1)π

4

)
hN,k(x)lN,l(x)

g′N,m(x)
dx+O(N−2)

=−
∑

k,l=1,2

1

π

∫ ∞
λ

[Iα(gN,n(x))]k[Iα−1(gN,m(x))]l
hN,k(x)lN,l(x)

g′N,m(x)
dx+O(N−2).

From the error bounds on RN and R̄N , we see that hN,i(x) = φ(x)[TN,n,λ(x)]1i +O(N−1)

and lN,i(x) = ϕ(x)[TN,m,λ(x)]1i +O(N−1), uniformly. Applying these, we see that

I ′ =− 1

πN

∑
k,l=1,2

∫ ∞
λ

[Iα(gN,n(x))]k[Iα−1(gN,m(x))]l

× φ(x)ϕ(x)[TN,n,λ(x)]1k[TN,m,λ(x)]1l
f ′N,m,λ(x)

dx+O(N−2).

Recalling that gN,k(x) = (N − k)fN,k,λ(x) = (N − k)(sN,k(λ) − sN,k(x)), we see that by
Lemma 6.4

I ′ =− 1

πN

∫ ∞
λ

[T∞(x)e−iπ
∑j−1
p=1 αpσ

[
ei(N−n)sN,n(x)

e−i(N−n)sN,n(x)

]
]1

× [T∞(x)e−iπ
∑j−1
p=1 αpσe−i

π
2 σ

[
ei(N−m)sN,m(x)

e−i(N−m)sN,m(x)

]
]1
φ(x)ϕ(x)

|s′N,m(x)|
dx+O(N−2). (6.18)

Employing Lemma 4.4, we may now expand the integral on the right-hand side of (6.18)
as

− i

πN

∑
k,l=1,2

∫ ∞
λ

e−(−1)
kNis(x)−(−1)lNis(x) fk,l(x)

|s′(x)|
dx+O(N−2), (6.19)

where here

fk,l(x) =φ(x)e(−1)
kinarccos(x)[T∞(x)]1ke

(−1)kiπ
∑j−1
p=1 αp

× ϕ(x)e(−1)
limarccos(x)[T∞(x)]1le

(−1)liπ
∑j−1
p=1 αp(−1)l.

We see that by integration by parts (6.3) that the terms with l = k in (6.19) are O(N−2).
Thus (6.19) may further be written as

− i

πN

∫ ∞
λ

(
f1,2(x)

|s′(x)|
+
f2,1(x)

|s′(x)|

)
dx =

−i
πN

∫ ∞
λ

φ(x)ϕ(x)
[T∞(x)]11[T∞(x)]12

|s′(x)|
dx

×
(
e−i(n−m)arccos(x) − ei(n−m)arccos(x)

)
+O(N−2).

The identities at the end of Lemma 6.2 now show that this coincides with

I ′ =
1

2πN

∫ ∞
λ

φ(x)ϕ(x)

(1− x2)
sin((m− n) arccos(x))dx+O(N−2)

This completes the evaluation of the first integral on the right-hand side of (6.14). The
second integral is similarly given by

1

2πN

∫ λ

−∞

φ(x)ϕ(x)

(1− x2)
sin((m− n) arccos(x))dx+O(N−2).

Together these computations complete the proof of the second claim.

EJP 29 (2024), paper 22.
Page 45/71

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1083
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian multiplicative chaos for Gaussian Orthogonal and Symplectic Ensembles

To compute the integrals supported around {±1} we will need a lemma similar to
Lemma 6.4. We recall that for x > 0 we have that (Chapter 10 of [1])

Ai (−x) =
1√
πx1/4

(
sin

(
2

3
x3/2 + π/4

)
+O

(
x−3/2

))
Ai′ (−x) =− x1/4√

π

(
cos

(
2

3
x3/2 + π/4

)
+O

(
x−3/2

))
.

Similarly to Lemma 6.4, we have the following matching formula.

Lemma 6.8. We have for |x| ≤ 1 that

1√
π
T1(x)

[
|f1(x)|−1/4 sin(a+ π/4)

−|f1(x)|1/4 cos(a+ π/4)

]
= T∞(x)

[
eia

e−ia

]
,

and that

1√
π
T−1(x)

[
|f−1(x)|−1/4 sin(a+ π/4)

|f−1(x)|1/4 cos(a+ π/4)

]
= T∞(x)e−iπ

∑m
j=1 αjσ

[
eia

−e−ia
]
.

Proof. We observe that

e−i
π
4 ei

π
4 σ

[
1 −1

1 1

]
ei
π
4 σ

[
sin(a+ π/4)

− cos(a+ π/4)

]
= ei

π
4

[
1 i

−i −1

] [
sin(a+ π/4)

− cos(a+ π/4)

]
=

[
eia

e−ia

]
.

Applying T∞ and recalling the definition of T1 given in (4.19) then achieves the first
equality. The proof of the result for T−1 follows similarly.

We will also need the following computation.

Lemma 6.9. We have that

[T1(1)]11 =
√

2π, [T−1(−1)]11 =
√

2π.

Proof. With D as in (4.9), we see that D(x) = exp(W(x))(1 +O
(
|x− 1|1/2)

)
(see as well

the proof of Lemma 4.15 in [4]). Recalling f1 and T1 from (4.18) and (4.19), we see that
f ′1(1) = 2, and in addition that for x > 1

T1(x) =
√
πe−i

π
4A(x)ei

π
4 σ

[
1 −1

1 1

]
2σ/4(x− 1)σ/4 +O((x− 1)1/4).

Recalling as well A from (4.10), we note that for x > 1 we have that

A(x) =
1

23/4(x− 1)1/4

[
1 i

−i 1

]
+

(x− 1)1/4

25/4

[
1 −i
i 1

]
+O((x− 1)3/4).

From this, one may routinely obtain that

√
πe−i

π
4A(x)ei

π
4 σ

[
1 −1

1 1

]
2σ/4 =

√
2π(x− 1)−1/4

[
1 0

−i 0

]
+ i

√
π

2
(x− 1)1/4

[
0 −1

0 −i

]
+O((x− 1)3/4).

Together these are sufficient to establish that [T1(1)]11 =
√

2π. The case of −1 is
similar.
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With these results established, we are now able to compute the relevant integrals
in the regions around {±1}. This result will follow from similar methods to Lemma 6.6,
though we will contend with a variety of complications as the integrand switches from
being oscillatory to exponentially decaying. Particularly, this transition will cause a
variety of boundary terms to appear, which requires us to carefully analyze each term
carefully to get the exact contribution. In addition, the non-smooth nature of many of
the functions composing T±1 will require us to carefully Taylor expand many quantities
to show cancellation.

We note that we will only need this level of detail for one integral of Proposition 2.9,
which is recalled as (6.37) below, and showing simply that (6.21) is simply O(N−1) is
significantly simpler.

Lemma 6.10. There is δ > 0, such that if φ and ϕ are smooth functions supported on
(±1− δ,±1 + δ), then we have for any n and m that∫

φ(x)pN−n(x)wN (x)1/2dx =
1

(2N)1/2
(±1)N−nφ(±1) +O(N−5/6), (6.20)

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−7/6). (6.21)

Proof. Fix δ as in Lemma 6.6. We demonstrate the case of +1, the case of −1 being
identical. We first recall that there is C such that |Ai(x)|, |Ai′(x)| ≤ Ce−x (see Chapter
10 of [1]). From the asymptotics of Proposition 4.10 we see that∫ ∞

1

φ(x)pN−n(x)wN (x)1/2dx =
1

π1/2

∫ ∞
0

(N − n)1/6hN,1(x)Ai((N − n)2/3x)dx

+
1

π1/2

∫ ∞
0

(N − n)−1/6hN,2(x)Ai′((N − n)2/3x)dx,

(6.22)

where here hN,i(x) = (f−1N,n,1)′(x)[(I +RN (f−1N,n,1(x)))T1(f−1N,n,1(x))]1iφ(f−1N,n,1(x)). Noting
that hN,2 is uniformly bounded on (1,∞), we see that by the exponential bound on Ai′

the second integral on the right-hand side of (6.22) is O(N−5/6), so we may focus on the
first integral on the right-hand side. As hN,1(x) is smooth and of compact support, we
see that there is C such that |hN,1(x)− hN,1(0)| ≤ C|x|. In particular,∣∣∣∣∫ ∞

0

(hN,1(x)− hN,1(0))Ai((N − n)2/3x)dx

∣∣∣∣ ≤ C ∫ ∞
0

|xAi((N − n)2/3x)|dx.

Using that Ai is subexponential, we see there is C > 0 such that∫ ∞
0

|xAi((N − n)2/3x)|dx ≤ C(N − n)−4/3
∫ ∞
0

xe−xdx = O(N−4/3),

so that∫ ∞
0

hN,1(x)Ai((N − n)2/3x)dx = hN,1(0)

∫ ∞
0

Ai((N − n)2/3x)dx+O(N−4/3).

As f ′1(1) = 2, we see that hN,1(0) = 2−1φ(1)[T1(1)]11 + O(N−1), and thus (6.22) may be
rewritten as

1

2π1/2
N−1/2φ(1)[T1(1)]11

∫ ∞
0

Ai(x)dx+O(N−5/6).
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Applying Lemma 6.9 and the fact that
∫∞
0

Ai(x)dx = 1
3 (see (10.4.82) of [1]) we see that

we may further reduce this to

φ(1)
1

(2N)1/2
1

3
+O(N−5/6). (6.23)

To compute the integral in the region (1− δ, 1) we observe that we have that

Ai(−x) =

√
x

3

(
J1/3

(
2

3
x3/2

)
+ J−1/3

(
2

3
x3/2

))
,

Ai′(−x) =
x

3

(
J2/3

(
2

3
x3/2

)
− J−2/3

(
2

3
x3/2

))
,

which occur as (10.4.15) and (10.4.17) of [1]. By applying Lemma 6.7 to the terms in
this expression, we obtain that for smooth, compactly-supported h, we have that∫ ∞

0

h(t)Ai(−N2/3t)dt =
h(0)

N2/3

2

3
+O(N−4/3),∫ ∞

0

h(t)Ai′(−N2/3t)dt =
h(0)

32/3Γ(2/3)N2/3
+O(N−4/3), (6.24)

where the error can similarly be expressed in terms of the derivatives of h. Proceeding
similarly to the case of (1, 1 + δ), and noting that∫ 1

−∞
φ(x)pN−n(x)wN (x)1/2dx =

φ(1)

(2N)1/2
2

3
+O(N−5/6). (6.25)

Together these yield (6.20).
We now proceed to derive the double integral result. We observe that in view of

(6.25), (6.23) and (6.1), we have that∫ 1

∓∞

∫ ±∞
1

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=± φ(1)ϕ(1)

9N
+O(N−4/3),

so that splitting the domain of the double integral into four regions, we see that∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=

∫ ∞
1

∫ ∞
1

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

+

∫ 1

−∞

∫ 1

−∞
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy +O(N−4/3).

To evaluate these integrals, we will denote hN,i(x) = [(I + RN (x))T1(x)]1iφ(x) and
lN,i(x) = [(I + R̄N (x))T1(x)]1iϕ(x), where RN and R̄N denote the error terms in Proposi-
tion 4.10 for case of k = n and k = m, respectively. Let us denote

AN,k(x) =

[
(N − k)1/6Ai(x)

(N − k)−1/6Ai′(x)

]
,

and gN,k(x) = N2/3fN,k,1(x). With this notation, we may write the integral over the
region (1,∞)2 as

1

2π

∑
i,j=1,2

∫ ∞
1

∫ ∞
1

hN,i(x)lN,j(y)[AN,n(gN,n(x))]i[AN,m(gN,m(y))]jε(x− y)dxdy. (6.26)
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We note that for l, k ∈ {1, 2}, there is C, c > 0 such that for x ≥ 1,

|[AN,l(gN,m(x))]k| ≤ CN−(−1)
k/6e−cN

2/3(x−1).

Applying this and noting that hN,i, lN,i = O(1), we see that we see that (i, j)-th term in

(6.26) is of order O(N−4/3−(−1)
i/6−(−1)j/6), so that it suffices to treat the i = j = 1 term.

Arguing with Taylor’s theorem as in the single integral case, we see that the integral∫ ∞
1

∫ ∞
1

hN,1(x)

(
gN,1(y)− gN,1(1)

hN,1(1)
hN,1(y)

)
× [AN,n(gN,n(x))]1[AN,m(gN,m(y))]1ε(x− y)dxdy

is of order O(N−4/3). Noting that |gN,n(x)− gN,m(x)| = O(N−1/3), we see by the above
estimate on Ai′, as well as Taylor’s theorem again, that there is C, c > 0 such that for
x ∈ (1, 1 + δ)

|[AN,n(gN,n(x))]1 − [AN,m(gN,m(x))]1| ≤ CN−1/6e−cN
2/3(x−1),

so that∫ ∞
1

∫ ∞
1

hN,1(x)hN,1(y)[AN,n(gN,n(x))]1([AN,m(gN,n(y))]1−[AN,m(gN,m(y))]1)ε(x−y)dxdy

is of order O(N−4/3). Now noting that by symmetry, we have that

1

2

∫ ∞
1

∫ ∞
1

hN,1(x)hN,1(y)[AN,n(gN,n(x))]1[AN,n(gN,n(y))]1ε(x− y)dxdy = 0,

we see combining these results that the i = j = 1 term in (6.26) is of order O(N−4/3), so
that in total we have that∫ ∞

1

∫ ∞
1

φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy = O(N−4/3).

Combining these to show (6.21), we see that it suffices to show that

1

2

∫ 1

−∞

∫ 1

−∞
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−7/6). (6.27)

As above, we write the integral over (−∞, 1)2 as

1

2π

∑
i,j=1,2

∫ 1

−∞

∫ 1

−∞
hN,i(x)lN,j(y)[AN,n(gN,n(x))]i[AN,m(gN,m(y))]jε(x− y)dxdy. (6.28)

Except for the case of i = j = 1, all of these terms may be dealt with essentially as in
the proof of Lemma 6.6. On the other hand, the i = j = 1 term will require an amount of
technical care, as did for the integral over (1,∞)2. For this reason, instead of employing
Lemma 6.5 directly, we will need to modify its proof by integrating by parts using

∫∞
−y

rather than
∫ y
0

. This will be convenient as otherwise, each integral in Lemma 6.5 would
still be of leading order for the i = j = 1 term.
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To begin, we note that by integration by parts, we may write

1

2

∫ 1

−∞
lN,j(y)[AN,m(gN,m(y))]jε(x− y)dy

=
lN,j(x)

g′N,m(x)

(∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

)
− 1

2

lN,j(1)

g′N,m(1)

(∫ ∞
−gN,m(1)

[AN,m(−z)]jdz

)

− 1

2

∫ 1

−∞

(∫ ∞
−gN,m(y)

[AN,m(−z)]jdz

)
d

dy

(
lN,j(y)

g′N,m(y)

)
ε(x− y)dy.

Employing this, we see that we may write the (i, j)-th term of (6.28) as the sum Iij +

IIij + III ′ij where

Iij =
1

π

∫ 1

−∞
[AN,n(gN,n(x))]i

(∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

)
hN,i(x)lN,j(x)

g′N,m(x)
dx,

IIij =− 1

2π

(∫ 1

−∞
[AN,n(gN,n(x))]ihN,i(x)dx

)
lN,j(1)

g′N,m(1)

∫ ∞
−gN,m(1)

[AN,m(−z)]jdz,

III ′ij =− 1

2π

∫ 1

−∞

∫ 1

−∞
[AN,n(gN,n(x))]i

×

(∫ ∞
−gN,m(y)

[AN,m(−z)]jdz

)
hN,i(x)

d

dy

(
lN,j(y)

g′N,m(y)

)
ε(x− y)dxdy.

By a similar integration by parts we may write III ′ij itself as a sum IIIij + IVij +Vij with

IIIij =
1

π

∫ 1

−∞

(∫ ∞
−gN,n(x)

[AN,n(−z)]idz

)(∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

)

× hN,i(x)

g′N,n(x)

d

dx

(
lN,j(x)

g′N,m(x)

)
dx,

IVij =− 1

2π

hN,i(1)

g′N,n(1)

∫ ∞
−gN,n(1)

[AN,n(−z)]idz

×
∫ 1

−∞

d

dy

(
lN,j(y)

g′N,m(y)

)(∫ ∞
−gN,m(y)

[AN,m(−z)]jdz

)
dy,

Vij =
1

2π

∫ 1

−∞

∫ 1

−∞

(∫ ∞
−gN,n(x)

[AN,n(−z)]idz

)(∫ ∞
−gN,m(y)

[AN,m(−z)]jdz

)

× d

dx

(
hN,i(x)

g′N,n(x)

)
d

dy

(
lN,j(y)

g′N,m(y)

)
ε(x− y)dxdy.

We now collect the following asymptotics for x ∈ (1,∞) (see Chapter 10 of [1])

√
πAi(−x) =

1

x1/4
sin

(
2

3
x3/2 + π/4

)
+O(x−7/4)

√
πAi′(−x) =− x1/4 cos

(
2

3
x3/2 + π/4

)
+O(x−5/4),

√
π

∫ ∞
x

Ai(−y)dy =− 1

x3/4
sin

(
2

3
x3/2 − π

4

)
+O(x−9/4),

√
π

∫ ∞
x

Ai′(−y)dy =− 1

x1/4
cos

(
2

3
x3/2 − π

4

)
+O(x−7/4). (6.29)
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For now we only take from these that these functions are bounded, so that for fixed
k ∈ Z and x ∈ [1− δ, 1]

[AN,k(x)]l = O(N−(−1)
l/6),

∫ ∞
−gN,k(x)

[AN,k(−z)]ldz = O(N−(−1)
l/6). (6.30)

Employing these bounds, and recalling that gN,k(x) = O(N2/3), we see that for any

i, j = 1, 2 the integrals IIIij , IVij and Vij are of order O(N−4/3−(−1)
i/6−(−1)j/6). Further

employing (6.24) we see that∫ 1

−∞
[AN,n(gN,n(x))]ihN,i(x)dx = O(N−(−1)

i/6−2/3).

Thus we see as well that IIij has order O(N−4/3−(−1)
i/6−(−1)j/6). In particular, if (i, j) 6=

(1, 1) all integrals except for Iij are O(N−4/3).
If i = j = 1 though, none of these bounds are sufficient. Instead we will need to note

that for k ∈ Z and x ∈ (1− δ, 1]

[AN,k(x)]1 = O((1− x)−1/4),

∫ ∞
−gN,k(x)

[AN,k(−z)]1dz = O(N−1/3(1− x)−3/4). (6.31)

Employing (6.30) for x ∈ (1−N−2/3, 1] and (6.31) elsewhere we see that there is C such
that

|III11| ≤
C

N4/3

(
1

N2/3

∫ ∞
N−2/3

dx

x6/4
+N1/3

∫ N−2/3

0

dx

)
=

3C

N5/3
.

Similarly we see that IV11, V11 are O(N−4/3).
Lastly, by applying (6.24) to II11, we see that

II11 = −N
1/3

2π

hN,1(1)

g′N,n(1)

lN,1(1)

g′N,m(1)

(
2

3

)2

+O(N−4/3) = −φ(1)ϕ(1)

18πN
[T1(1)]211 +O(N−4/3).

Now we are left to consider Iij . As before, the case of i = j = 1 will present an
additional subtlety. Let us denote

SN (x) =

[
|fN,n(x)|−1/4 sin((N − n)sN,n(x) + π/4)

−|fN,n(x)|1/4 cos((N − n)sN,n(x) + π/4)

]
,

CN (x) =

[
−|fN,m(x)|−1/4 sin((N −m)sN,m(x)− π/4)

−|fN,m(x)|1/4 cos((N −m)sN,m(x)− π/4)

]
.

We observe that by applying the asymptotics of (6.29), for 1 − δ ≤ x ≤ 1 − N−2/3 and
i = 1, 2

[AN,n(gN,n(x))]i =[AN,n((N − n)2/3fN,n,1(x))]i

=π−1/2[SN (x)]i +O(N−1(1− x)−7/4),∫ ∞
−gN,m(x)

[AN,m(−z)]idz =(N −m)1/2|fN,m,1(x)|1/2
∫ ∞
−(N−m)2/3fN,m,1(x)

[AN,m(−z)]idz

=π−1/2(N −m)−1/3|fN,m,1(x)|−1/2[CN (x)]i

+O(N−4/3(1− x)−9/4). (6.32)

The subtlety that arises is that direct substitution of these asymptotic into I11, even
neglecting the error terms, leads to a quantity that is not integrable. To deal with this, we
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will need to treat the integral of Iij over the regions [1−N−1/3, 1] and [1− δ, 1−N−1/3]

separately. In the latter integral, we will be able to apply (6.32), while the integral
over the prior will be negligible unless i = j = 1, where it will surprisingly cancel the
contribution from II11 up to lower order terms.

To begin, we note that by (6.32) for i, j = 1, 2 and 1− δ ≤ x ≤ 1−N−2/3

[AN,n(gN,n(x))]i

∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

= π−1N−1/3|fN,m,1(x)|−1/2[SN (x)]i[CN (x)]j +O(N−7/3(1− x)−4). (6.33)

We now note that

N−7/3
∫ ∞
N−1/3

x−4dx = O(N−4/3).

Employing this and (6.33) we see that

1

π

∫ 1−N−1/3

−∞
[AN,n(gN,n(x))]i

(∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

)
hN,i(x)lN,j(x)

g′N,m(x)
dx

=
1

π2(N −m)

∫ 1−N−1/3

−∞
[SN (x)]i[CN (x)]j

hN,i(x)lN,j(x)

fN,m,1(x)1/2f ′N,m,1(x)
dx+O(N−4/3).

Now if (i, j) = (1, 2) or (i, j) = (2, 1) then for 1− δ ≤ x ≤ 1−N−2/3

[AN,n(gN,n(x))]i

∫ ∞
−gN,m(x)

[AN,m(−z)]jdz = O(N−1/3x−1/2),

and O(1) for 1−N−2/3 ≤ x ≤ 1. Combining both of these, we see that

1

π

∫ 1

1−N−1/3

[AN,n(gN,n(x))]i

(∫ ∞
−gN,m(x)

[AN,m(−z)]jdz

)
hN,i(x)lN,j(x)

g′N,m(x)
dx = O(N−4/3).

(6.34)
The case of (i, j) = (2, 2) follows more simply by just employing (6.30) to obtain (6.34).
Now we will focus on the case of (i, j) = (1, 1). We note that by Taylor’s Theorem
fN,n,1(x) − fN,m,1(x) = O(N−1) uniformly for x ∈ (1 − δ, 1 + δ). Moreover we note
that by the above asymptotic for Ai′ there is C such that for x ∈ (−∞, 0) we have
that |Ai′(x)| ≤ C(1 + |x|1/4). Thus by again applying Taylor’s Theorem we see that for
1−N−1/3 ≤ x ≤ 1,

|[AN,n(gN,n(x))]1 − [AN,m(gN,m(x))]1| = O(N−1/6 + (1− x)1/4).

From this, we see that there is C such that∣∣∣∣ ∫ 1

1−N−1/3

([AN,n(gN,n(x))]1 − [AN,m(gN,m(x))]1)

(∫ ∞
−gN,m(x)

[AN,m(−z)]1dz

)

× hN,1(x)lN,1(x)

g′N,m(x)
dx

∣∣∣∣ ≤ CN−1 ∫ 1

1−N−1/3

N−1/6 + (1− x)1/4

(1− x)3/4
dx = O(N−7/6).

In addition, we note that by integration by parts we may write

1

π

∫ 1

1−N−1/3

[AN,m(gN,m(x))]1

(∫ ∞
−gN,m(x)

[AN,m(−z)]1dz

)
hN,1(x)lN,1(x)

g′N,m(x)
dx = I ′ + II ′,
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where here

I ′ =
1

2π

[
hN,1(x)lN,1(x)

g′N,m(x)g′N,m(x)

(∫ ∞
−gN,m(x)

[AN,m(−z)]1dz
)2]1

1−N−1/3

,

II ′ =− 1

2π

∫ 1

1−N−1/3

d

dx

(
hN,1(x)lN,1(x)

g′N,m(x)g′N,m(x)

)(∫ ∞
−gN,m(x)

[AN,m(−z)]1dz
)2

.

Using (6.30) we see that II ′ = O(N−4/3) and using (6.31) that

I ′ =
φ(1)ϕ(1)

18πN
[T1(1)]211 +O(N−4/3).

We observe that this is the negation of asymptotic for II11 obtained above. In particular,
combining all of these results, we see that the left-hand side of (6.27) may be rewritten
as

1

π2(N −m)

∑
i,j=1,2

∫ 1−N−1/3

−∞
[SN (x)]i[CN (x)]j

hN,i(x)lN,j(x)

fN,m,1(x)1/2f ′N,m,1(x)
dx+O(N−7/6). (6.35)

Combining the relation s′N,m(x) = fN,m,1(x)1/2f ′N,m,1(x) (recalling fN,m,1 from (4.18))
Lemma 6.8, and the bounds on RN , R̄N , as in the proof of Lemma 6.6, we see that the
integral of (6.35) may further be rewritten as

1

π(N −m)

∫ 1−N−1/3

−∞

[
T∞(x)

[
ei(N−n)sN,n(x)

e−i(N−n)sN,n(x)

]]
1

×
[
T∞(x)e−i

π
2 σ

[
ei(N−m)sN,m(x)

e−i(N−m)sN,m(x)

]]
1

φ(x)ϕ(x)

s′N,m(x)
dx+O(N−7/6)

=
−i

π(N −m)

∑
k,l=1,2

∫ 1−N−1/3

−∞
[T∞(x)]1k[T∞(x)]1l

× exp

(
− (−1)ki(N − n)sN,n(x)− (−1)li(N −m)sN,m(x)

)
(−1)l

φ(x)ϕ(x)

s′N,m(x)
dx (6.36)

We will show that the terms in this equation when k = l are negligible. For this, we
observe that by integration by parts, we may write the (k, l) = (1, 1) term in (6.36) as the
sum I ′′ + II ′′ where

I ′′ =

[
−i

π(N −m)

(
[T∞(x)]211φ(x)ϕ(x)

s′N,m(x)((N − n)s′N,n(x) + (N −m)s′N,m(x))

)

× exp (i((N − n)sN,n(x) + (N −m)sN,m(x)))

]1−N−1/3

−∞

II ′′ =
i

π(N −m)

∫ 1−N−1/3

−∞

d

dx

(
[T∞(x)]211φ(x)ϕ(x)

s′N,m(x)((N − n)s′N,n(x) + (N −m)s′N,m(x))

)
× exp(i((N − n)sN,n(x) + (N −m)sN,m(x)))dx.

Observing that [T∞(x)]11 = O((1 − x)−1/4) and that s′(x) = O((1 − x)1/2), we see that
there is C such that

|I ′| ≤ N−2C|[x−3/2]∞N−1/3 | = CN−3/2, |II ′′| ≤ C

N2

∫ ∞
N−1/3

dx

x5/2
≤ CN−3/2.

Together these show that the (k, l) = (1, 1) term in (6.36) is O(N−3/2). Showing that
the term (k, l) = (2, 2) is O(N−3/2) is similar. Now lastly, we will need a sharp form
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of Lemma 4.4. For this we note that for |x| < 1, s′(x) = −
√

1− x2, and so for x ∈
(1− δ, 1−N−1/3) we have that s′′(x) = O(N1/6). From this, we see that for fixed k and
x ∈ (1− δ, 1−N−1/3), we have that

(N − k)sN,k(x) = Ns(x)− karccos(x) +O(N−5/6).

Employing this and proceeding as in the proof of Lemma 6.6, we may show now that
(6.36) coincides with

1

2πN

∫ 1−N−1/3

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx+O(N−7/6)

Altogether, these statements complete the proof of (6.27).

Taking a partition of unity with respect to all of the above regions, we may conclude
the following proposition.

Proposition 6.11. Let φ and ϕ be smooth functions of subexponential growth. Then we
have that for any n and m that

1

2

∫ ∫
φ(x)ϕ(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dx

=
1

2πN

[∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx

]
+

1

4N
[(−1)N−mφ(1)ϕ(−1)− (−1)N−nφ(−1)ϕ(1)] +O(N−7/6).

We see that as ∫ 1

−1

sin(arccos(x))

(1− x2)
dx = π,

Proposition 6.11 shows that when N is even that∫
J−1N (pN )(x)pN−1(x)wN (x)dx = O(N−7/6). (6.37)

For n and m arbitrary, we additionally see that∫
J−1N (pN−n)(x)pN−m(x)wN (x)dx = O(N−1).

Together these demonstrate two of the integrals required by Proposition 2.9. Before
proceeding, we also observe the following corollary of Lemma 6.1, and the single integral
cases of Lemmas 6.6 and 6.10.

Corollary 6.12. Assume that φ is a smooth function on R of sub-exponential growth.
Then for fixed k, we have that∫

φ(x)pN−k(x)wN (x)1/2dx = O(N−1/2).

To complete the proof of Proposition 2.9, we must now focus our attention on the
integrals involving `i and qi (defined in (2.8) and (2.9) above). We will begin with some
single integral computations.
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Lemma 6.13. Assume that φ is a smooth function of subexponential growth. Then for
any 1 ≤ i ≤ m, we have that∫

φ(x)`i(x)wN (x)1/2dx = O(N−1/2),

∫
φ(x)qi(x)wN (x)1/2dx = O(1).

Proof. We adopt the notation λ = λi and α = αi as before. In view of Proposition 4.14
and (4.32) we see that∫

φ(x)

[
−`i(x)

2πiqi(x)

]
wN (x)1/2dx =c−σi e−i

π
4 e−

πi
4 σσ1TN,λ(λ)−1Dσ

∞(I +O(N−1))e−N
`
2σ

×
(∫

φ(x)

x− λ

[
κ−1N pN (x)

−2πiκN−1pN−1(x)

]
wN (x)1/2dx

)
.

From Remark 4.6 we see that the right-hand side may further be written as

c−σi e−i
π
4 e−

πi
4 σσ1TN,λ(λ)−1(I +O(N−1))

(∫
φ(x)

x− λ

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx

)
.

Thus we see that it suffices to show that∫
φ(x)

x− λ

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx = TN,λ(λ)

[
O(1)

0

]
+O(N−1/2). (6.38)

Let us pick δ0 > 0 such that asymptotics of Proposition 4.13 hold. By applying Corol-
lary 6.12 we see that it suffices to assume that φ is supported on (λ− δ0, λ+ δ0). With
the asymptotics of Proposition 4.13, and a change of coordinates by fλ, (and recalling
the definition of Jα from 4.28) we may write∫

φ(x)

x− λ

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx

=

∫
GN,1(x)

x
ε(x)

√
π|Nx|Jα+1/2(N |x|)dx+

∫
GN,2(x)

x

√
π|Nx|Jα−1/2(N |x|)dx = I + II,

where here GN,i = (f−1λ )′(x)φ(f−1λ (x))[(I +RN (f−1λ (x)))TN,λ(f−1λ (x))]ei. We observe that

G
(c)
N,i(x) = O(1) uniformly for all c ∈ N and x ∈ R. From this, we see by Lemma 6.7 that

I =2
√
πGN,1(0)D(α+ 1/2,−1) +O(N−1)

=
√
π(f−1λ )′(0)φ(λ)[TN,λ(λ)]e1D(α+ 1/2,−1/2) +O(N−1).

The case of II is similar except that the first-order contribution of the integrals on (0,∞)

and (−∞, 0) cancel so that II = O(N−1). Together these computations show that∫
φ(x)

x− λ

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx = TN,λ(λ)

[
φ(λ)
√
π2D(α+ 1/2,−1/2)

0

]
+O(N−1),

which is more than sufficient to verify (6.38).

We recall from Remark 4.15 that for fixed 1 ≤ i ≤ m there are constants C1,N , C2,N

with Ck,N = O(1) and such that

`i(x) = C1,N
pN (x)

x− λi
+ C2,N

pN−1(x)

x− λi
, (6.39)

and similarly for qi. Let us take δ sufficiently small as above. We fix for, each 1 ≤ l ≤ m,
a choice of smooth function φl supported on (λl − δ/2, λl + δ/2), such that φl(x) = 1 for
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x ∈ (λl − δ/4, λl + δ/4). In addition, we choose ϕl supported on (λl − δ, λl + δ), such that
ϕl(x) = 1 for x ∈ (λl − δ/2, λl + δ/2).

With these selected, we may write∫
J−1N `i(x)pN−n(x)wN (x)dx =

∫
(J−1N φi`i)(x)pN−n(x)wN (x)dx

+

∫
(J−1N (1− φi)`i)(x)pN−n(x)wN (x)dx.

Employing (6.39), we may write the second integral as∑
k=0,1

Ck+1,N

2

∫ ∫
pN−n(x)pN−k(y)

(1− φi(y))

(y − λi)
wN (x)wN (y)dxdy. (6.40)

Observing that the function (1− φi(x))/(x− λi) is smooth and bounded, we may apply
Proposition 6.11 to see that the terms in (6.40) are of order O(N−1). From this, we see
that ∫

J−1N `i(x)pN−n(x)wN (x)dx =

∫
(J−1N φi`i)(x)pN−n(x)wN (x)dx+O(N−1).

We now also write∫
(J−1N φi`i)(x)pN−n(x)wN (x)dx =

∫
(J−1N φi`i)(x)pN−n(x)ϕi(x)wN (x)dx

+

∫
(J−1N (φi`i))(x)(1− ϕi(x))pN−n(x)wN (x)dx.

We note that as φi`i and (1− ϕi) have disjoint support, we may expand J−1N and employ
(6.1) to rewrite the second integral on the right-hand side as

1

2

∫
φi(y)`i(y)wN (y)1/2dy

∫
(1− ϕi(x))ε(x− λi)pN−n(x)wN (x)1/2dx

which is O(N−1) by employing Lemma 6.13 and Corollary 6.12. Altogether we see that∫
J−1N `i(x)pN−n(x)wN (x)dx =

∫
J−1N (φi`i)(x)ϕi(x)pN−n(x)wN (x)dx+O(N−1).

Similarly, we obtain that∫
J−1N pN−n(x)qi(x)wN (x)dx =

∫
J−1N (φipN−n)(x)ϕi(x)qi(x)wN (x)dx+O(N−1/2),

and that∫
J−1N `i(x)qj(x)wN (x)dx = δij

∫
J−1N (φi`i)(x)ϕi(x)qi(x)wN (x)dx+O(N−1/2).

From these computations and (6.39), we see that to complete the proof of Proposition 2.9,
it suffices to show the following.

Lemma 6.14. There is δ > 0 such that if φ and ϕ are smooth functions supported on
(λj − δ, λj + δ) for some 1 ≤ j ≤ m, then for any choice of fixed n and m we have that

1

2

∫ ∫
φ(x)pN−n(x)

x− λj
ϕ(y)pN−m(y)wN (x)1/2wN (y)1/2dxdy = O(N−1 log(N)). (6.41)

Moreover, if |n−m| ≤ 1, then we additionally have that

1

2

∫ ∫
φ(x)pN−n(x)

x− λj
ϕ(y)pN−m(y)

y − λj
wN (x)wN (y)dxdy = O(N−1 log(N)). (6.42)
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Proof. Again, for convenience, we write λ = λj and α = αj , and choose δ as before. We
begin by proving the first statement. With notation as in Lemma 6.6, we may rewrite the
left-hand side of (6.41) as in (6.15) as

1

2π

∑
k,l=1,2

∫ ∫
1

x− λ
hN,k(x)[Jα(gN,n(x))]klN,l(y)[Jα(gN,m(y))]lε(x− y)dxdy. (6.43)

We claim that the summand for each choice of (k, l) is O(N−1 log(N)). To begin, we
define, for i = 1, 2, the functions Ii(x) = 1

2

∫
ε(x − y)[Jα(y)]iy

−1dy. We note that by
performing integration by parts in x (see the proof of Lemma 6.5) we may write (6.43)
as the sum I + II where

I =
1

π

∑
k,l=1,2

∫
[Jα(gN,m(x))]lIk(gN,n(x))

hN,k(x)lN,l(x)gN,n(x)

g′N,n(x)(x− λ)
dx,

II =− 1

2π

∑
k,l=1,2

∫ ∫
[Jα(gN,m(x))]lIk(gN,n(y))lN,l(y)

d

dx

(
hN,k(x)gN,n(x)

g′N,n(x)(x− λ)

)
ε(x− y)dxdy.

We observe that as gN,n(λ) = 0 we have that gN,n(x)/((x − λ)g′N,n(x)) as well as its
derivatives are O(1) for x ∈ (λ − δ, λ + δ). We note that I1(x) (I2(x)) is anti-symmetric
(symmetric), respectively. Moreover, for x > 0, we have the relations

I1(x) =

∫ x

0

[Jα(y)]1y
−1dy =

√
πJα+1,−1/2(x),

I2(x) =

∫ ∞
x

[Jα(y)]2y
−1dy =

√
π

∫ ∞
x

y−1/2Jα+1/2(y)dy.

Applying the asymptotics (6.16) and (5.10) above, it follows that for i = 1, 2 we have
that Ii(x) = O

(
(1 + |x|)−1

)
for x ∈ R. Applying these bounds pointwise, and noting that

hN,k(x), lN,l(x) = O(1), we see that the integrand of I is uniformly O(N−1|x|−1) for |x| ≥
1/N , and O(1) for |x| ≤ 1/N . Thus contribution of the integral over R\(λ−N−1, λ+N−1)

is of orderO(N−1 log(N)) and the contribution over (λ−N−1, λ+N−1) is of orderO(N−1),
so that I = O(N−1 log(N)). Similarly we see that II = O(N−1 log(N)). Together these
establish (6.41).

We now establish (6.42). The key difference, in this case, is that we may employ
Proposition 4.13 only once to obtain the asymptotics of both pN−n and pN−m. For
notational ease, we will only prove the case when n = 0 and m = 0, 1. We write
hN,k(x) = φ(x)[(I+RN (x))TN,λ(x)]1k and lN,k(x) = iI(m=1)ϕ(x)[(I+RN (x))TN,λ(x)](1+m)k,
where RN is as in Proposition 4.13. This is where we use the assumption that |n−m| ≤ 1

so that we may write both terms with the same asymptotic. Using this, we may rewrite
the left-hand side of (6.42) as

1

2π

∑
k,l=1,2

∫ ∫
hN,k(x)lN,l(y)

(x− λ)(y − λ)
[Jα(Nfλ(x))]k[Jα(Nfλ(y))]lε(x− y)dxdy.

If we define

h̄N,i(x) = hN,i(f
−1
λ (x))

(f−1λ )′(x)x

(f−1λ (x)− λ)
,

and similarly for l̄N,i, we may further rewrite (6.42) as

1

2π

∑
k,l=1,2

∫ ∫ (
h̄N,k(x)l̄N,l(y)

xy

)
[Jα(Nx)]k[Jα(Ny)]lε(x− y)dxdy.
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Let us fix χ(x), a smooth, even, function of compact support, with χ(x) = 1 for x ∈
(−δ/2, δ/2). As before, we have that h̄N,l and l̄N,l, as well as their derivatives, are both
uniformly O(1) for x ∈ (λ− δ, λ+ δ), and vanish elsewhere. Applying Taylor’s theorem,
we may write

h̄N,l(x) = h̄N,l(λ)χ(x− λ) + (x− λ)ĥN,l(x),

where ĥN,l is a smooth function, with values and derivatives uniformly O(1), and which
is supported on (λ− δ, λ+ δ). Likewise, we may define such a function l̂N,l.

Inserting these two decompositions into (6.42) yields four integrals. However, to
treat the integrals involving either (x− λ)ĥN,l(x) or (y − λ)l̂N,l(y), one may cancel either
the common factor of (x−λ) or (y−λ), and show the resulting integral is O(N−1 log(N))

in the same way as (6.41). Thus we may conclude that (6.42) is∑
k,l=1,2

h̄N,k(λ)l̄N,l(λ)

2π

∫ ∫
χ(x)χ(y)

xy
[Jα(Nx)]k[Jα(Ny)]lε(x− y)dxdy +O(N−1 log(N)).

In particular, it suffices to show that that for all 1 ≤ i, j ≤ 2

1

2

∫ ∫
χ(x)χ(y)

xy
[Jα(Nx)]i[Jα(Ny)]jε(x− y)dxdy = O(N−1 log(N)). (6.44)

This integral is antisymmetric under the interchange of i and j. Thus it suffices to prove
the case of (i, j) = (1, 2). By employing Lemma 6.5 we may rewrite (6.44) in the case
(i, j) = (1, 2) as the sum of three integrals I + II + III

I =

∫
x−1[Jα(Nx)]1I2(Nx)χ(x)χ(x)dx,

II =

∫
I1(Nx)I2(Nx)χ(x)χ′(x)dx,

III =
1

2

∫ ∫
I1(Nx)I2(Ny)χ′(x)χ′(y)ε(x− y)dxdy.

As χ′ vanishes in a neighborhood of 0, and Ii(x) = O(|x|−1), we see that II, III = O(N−2).
To deal with I, we first rewrite it as

I =

∫
x−1[Jα(x)]1I2(x)χ(x/N)2dx.

As [Jα(x)]1 = O(1), we note that as x−1[Jα(x)]1I2(x) = O
(
(1 + |x|)−2

)
, we see that

x−1[Jα(x)]1I2(x) is integrable. In addition, we see that there is C such that∣∣∣∣∫ x−1[Jα(x)]1I2(x)(1− χ(x/N)2)dx

∣∣∣∣ ≤ C ∫
|x|≥δN

x−2dx = 2Cδ−1N−1.

Combining these, we see that

I =

∫
x−1[Jα(x)]1I2(x)dx+O(N−1) = 2

√
π

∫ ∞
0

x−1/2Jα+1/2(x)I2(x)dx+O(N−1).

We write

I ′ =
1√
π

∫ ∞
0

x−1/2Jα+1/2(x)I2(x)dx =

∫ ∞
0

∫ ∞
x

x−1/2Jα+1/2(x)y−1/2Jα−1/2(y)dydx,

so we now need only show that I ′ = 0. Making the change of variables y = ax, this
integral becomes ∫ ∞

0

∫ ∞
1

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx. (6.45)
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We note that by equation 11.4.41 of [1], we have that∫ ∞
0

a−1/2Jα+1/2(x)Jα−1/2(ax)dx = 0; a > 1.

This shows that (6.45) vanishes when the integrals are taken in the opposite order. As
the integrals are not absolutely convergent though, we must proceed with care. Applying
the above bounds on I2 and Jα+1/2, we have that∫ L

0

∫ ∞
L

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx =
1√
π

∫ L

0

x−1/2Jα+1/2(x)I2(Lx)dx

is of order O(L−1 log(L)). Thus we have that

I ′ = lim
L→∞

∫ L

0

∫ ∞
1

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx

= lim
L→∞

∫ L

0

∫ L

1

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx.

By employing (6.6) and the double-angle formula, we may compute that∫ L

1

∫ ∞
L

a−1/2Jα+1/2(x)Jα−1/2(ax)dxda

= − 2

π

∫ L

1

∫ ∞
L

(
sin(x+ απ2 ) cos(ax+ απ2 )

xa
+O(x−2a−1)

)
dxda

= − 2

π

∫ L

1

1

2a

[ ∫ ∞
L

(
sin((1 + a)x+ απ)x−1 − sin((a− 1)x)x−1

)
dx

]
da+O(L−1 log(L)).

We note that there is C such that for y > 0, we have that
∫∞
y

sin(x)x−1dx ≤ Cy−1.
Employing this, we see that∣∣∣∣∣

∫ L

1

1

a

∫ ∞
L

sin((1 + a)x+ απ)x−1dxda

∣∣∣∣∣ ≤ C2

∫ L

1

1

aL
da = O(L−1 log(L)).

We also note that there is C such that for y > 0∣∣∣∣∫ ∞
y

sin(x)x−1dx

∣∣∣∣ ≤ C.
From this, we see that∣∣∣∣∣

∫ L

1

1

a

∫ ∞
L

sin((a− 1)x)x−1dxda

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1+L−1

1

1

a

∫ ∞
L(a−1)

sin(x)x−1dxda

∣∣∣∣∣+

∣∣∣∣∣
∫ L

1+L−1

1

a

∫ ∞
L(a−1)

sin(x)x−1dxda

∣∣∣∣∣
≤ C

∣∣∣∣∣
∫ L

1+L−1

1

La(a− 1)
dxda

∣∣∣∣∣+ C

∣∣∣∣∣
∫ L

1+L−1

1

a
da

∣∣∣∣∣ . (6.46)

The first integral on the right-most side of (6.46) is of order O(L−1) and the second is of
order O(L−1 log(L)). Altogether we see that

lim
L→∞

∫ L

1

a−1/2
∫ ∞
L

Jα+1/2(x)Jα−1/2(ax)dxda = 0.
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Thus finally

lim
L→∞

∫ L

0

∫ L

1

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx

=

∫ ∞
0

∫ ∞
1

a−1/2Jα+1/2(x)Jα−1/2(ax)dadx = 0.

This shows that I ′ = 0 which completes the proof of (6.41).

7 Proof of Proposition 2.13

In this section, we will provide a proof of Proposition 2.13. The method of proof will
be almost identical in structure to the proof of Proposition 2.9 given in the last section.
The main differences that occur are that we must now choose N -dependent partitions
of unity to isolate the regions of each specified asymptotics and that now the error
asymptotics of RN are of order O(Nγ−1) in the regions around {λ1, λ2}. We will now, for
the remainder of this section, assume that we are in the case of Proposition 2.13. That
is, we will fix 1 > γ > 0 and ε > 0, and only consider choices of (possibly N -dependant)
λ1, λ2 ∈ (−1 + ε, 1− ε) such that (λ1 − λ2) > N−γ .

We will first focus on integral results in the region (λ2 − δ, λ1 + δ). Let us fix ε, δ0 > 0

as in Proposition 4.17, and δ < min(ε/4, 1/4, δ0/2). Let us denote δN = δ(λ1 − λ2). We
will fix a symmetric smooth function χ, such that χ(x) = 1 for |x| < 1/8 and χ(x) = 0 for
|x| > 1/4. We define χN,i(x) = χ((x − λi)δ−1N ). We additionally choose another smooth
compactly-supported function χ̄, supported on (λ2− δ/2, λ1 + δ/2), such that χ̄(x) = 1 for
x ∈ (λ2 − δ/4, λ1 + δ/4). We define χN,0(x) = χ̄(x)− χN,1(x)− χN,2(x). A key property of
these functions is the following: for k ∈ N and i ∈ {0, 1, 2}, there is C such that∫
|χ(k)
N,i(x)|dx ≤ C(δ−k+1

N +δikδk0) ≤ C2(Nγ(k−1)+δikδk0), sup
x
|χ(k)
N,i(x)| ≤ Cδ−kN ≤ C2Nγk.

(7.1)

In addition, we will define χN,i,j(x) = χN,i(x)/(x − λj). An important subtlety that
arises in the current context is that for i 6= j, the function χN,i,j(x) is no longer O(1). On
the other hand, we instead observe that for i 6= j, and k ∈ N, there is C > 0, such that∫

|χ(k)
N,i,j(x)|dx ≤ C(δ−kN + log(δN )δikδk0) ≤ C2(Nγk + γ log(N)δikδk0),

sup
x
|χ(k)
N,i,j(x)| ≤ Cδ−k−1N ≤ C2Nγ(k+1). (7.2)

The key property we will use for χN,i and χN,i,j will be (7.1) and (7.2), respectively, the
majority of proofs of the results below are identical for both functions, with slightly
worse bounds for the latter. We begin our analysis with the following modification of
Lemma 6.1.

Lemma 7.1. Let φ be a smooth function. Then for each fixed k ∈ Z, i = 1, 2, and choice
of c ∈ N, we have that∫

φ(x)χN,0(x)pN−k(x)wN (x)1/2dx =O(N−c), (7.3)∫
φ(x)χN,0,i(x)pN−k(x)wN (x)1/2dx =O(N−c). (7.4)

Proof. We may assume that c > 1. We first establish (7.3). For notational clarity, we
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assume again that k = 0. We define fN,l as in Lemma 6.1. By (6.3) we see that for c ∈ N,∣∣∣∣∫ φ(x)χN,0(x)pN (x)wN (x)1/2dx

∣∣∣∣
≤ 1

π1/2

∑
l=1,2

1

N c

∫ ∣∣∣∣ dcdyc ((s−1)′(y)χN,0(s−1(y))fN,l(s
−1(y)))

∣∣∣∣ dy.
We observe that f (c)N,l(x) = O(1) for c ∈ N. By the product formula, we may inductively
write

dc

dyc
((s−1)′(y)χN,0(s−1(y))fN,l(s

−1(y))) =

c∑
k=0

χ
(k)
N,0(s−1(y))ak,l,N (y),

where ak,l,N (y) are smooth functions with ak,l,N (y) = O(1) uniformly. Thus we have that
there is C such that∫ ∣∣∣∣ dcdyc ((s−1)′(y)χN,0(s−1(y))fN,l(s

−1(y)))

∣∣∣∣ dy ≤ c∑
k=0

∫
|χ(k)
N,0(y)ak,l,N (s(y))s′(y)|dy

≤ C
c∑

k=0

∫
|χ(k)
N,0(y)|dy ≤ C2N cγ ,

where in the second inequality, we have used (7.1). In particular, we see that∫
φ(x)χN,0(x)pN (x)wN (x)1/2dx = O(N c(γ−1)).

As c ∈ N was arbitrary, we see that taking c 7→ dc/(1− γ)e, we obtain (7.3).
To show (7.4), the above proof works, replacing (7.1) for (7.2) to show that the

left-hand side of (7.4) is O(N (c+1)γ−c). Adjusting c again gives (7.4).

We now state the modification of Lemma 6.2 that we shall use.

Lemma 7.2. Let φ and ϕ be smooth functions. Then for fixed choice of n and m and
i, j ∈ {1, 2}, we have that

1

2

∫ ∫
φ(x)ϕ(y)χN,0(x)χN,0(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)χN,0(x)2

(1− x2)
sin((m− n)arccos(x))dx+O(Nγ−2), (7.5)∫ ∫

φ(x)ϕ(y)χN,0,i(x)χN,0(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(N−1), (7.6)∫ ∫
φ(x)ϕ(y)χN,0,i(x)χN,0,j(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(N−min(1,2(1−γ))). (7.7)

Proof. We begin with the proof of (7.5). As in the proof of Lemma 6.2, we write

1

2

∫ ∫
φ(x)ϕ(y)χN,0(x)χN,0(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2π

∑
j,k=1,2

∫ ∫
χN,0(x)χN,0(y)fN,j,k(x, y)e−(−1)

jNis(x)−(−1)kNis(y)ε(x− y)dxdy,

where here fN,j,k is defined as in the proof of Lemma 6.2. We denote

f̄N,j,k(x, y) = (s−1)′(x)(s−1)′(y)fN,j,k(s−1(x), s−1(y)).
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We have that for c ∈ N that f̄ (c)N,j,k(x) = O(1) uniformly in x. One may apply Lemma 6.3
as in the proof of Lemma 6.2 to write

1

2

∑
j,k=1,2

∫ ∫
χN,0(x)χN,0(y)fN,j,k(x, y)e−(−1)

jNis(x)−(−1)kNis(y)ε(x− y)dxdy

= − i

N

∫
fN,1,2(x, x)χN,0(x)2

|s′(x)|
dx+

i

N

∫
fN,2,1(x, x)χN,0(x)2

|s′(x)|
dx+ EN , (7.8)

where EN is bounded by∑
j,k=1,2

4

N2

(∫ ∫
‖∇(χN,0(s−1(x))χN,0(s−1(y))f̄N,j,k(x, y))‖dxdy+

4

∫ ∣∣∣∣ ddx (χN,0(s−1(x))χN,0(s−1(x))f̄N,j,k(x, x))

∣∣∣∣ dx). (7.9)

As in the proof of Lemma 7.1, and recalling that ‖(x, y)‖ ≤ |x|+ |y|, we see that there is
C such that (7.9) is bounded by

CN−2
(∫

|χ′N,0(x)|dx
∫
|χN,0(y)|dy +

∫
|χN,0(x)|dx

∫
|χN,0(y)|dy

+

∫
|χ′N,0(x)||χN,0(x)|dx+

∫
|χN,0(x)|2dx

)
.

We further note that∫
|χ′N,0(x)||χN,0(x)|dx+

∫
|χN,0(x)|2dx

≤
(

sup
x
|χN,0(x)|

)(∫
|χ′N,0(x)|dx+

∫
|χN,0(x)|dx

)
.∫

|χ′N,0(x)||χN,0(x)|dx+

∫
|χN,0(x)|2dx

≤
(

sup
x
|χN,0(x)|

)(∫
|χ′N,0(x)|dx+

∫
|χN,0(x)|dx

)
.

All of these terms are O(1) by (7.1). Thus we see that we have that EN = O(N−2). As we
have that RN (x), R̄N (x) = O(Nγ−1) we have that

fN,j,k(x, y) =φ(x)ϕ(y)[T∞(x)]1j [T∞(y)]1ke
(−1)ji(narccos(x)+π(I(x<λ1)+I(x<λ2))α)

× e(−1)
ki(marccos(y)+π(I(y<λ1)+I(y<λ2)))α +O(Nγ−1). (7.10)

The remainder of the proof of (7.5) consists of inserting (7.10) into (7.8) and simplifying
the resulting expression identically to as in the proof of Lemma 6.2.

To establish (7.6), the entire proof works identically, except EN is now bounded by

CN−2
[ ∫
|χ′N,0,i(x)|dx

∫
|χN,0(x)|dx+

∫
|χ′N,0(x)|dx

∫
|χN,0,i(x)|dx

+

∫
|χN,0(x)|dx

∫
|χN,0,i(x)|dx+

(
sup
x
|χ′N,0,i(x)|

)∫
|χN,0(x)|dx(

sup
x
|χN,0(x)|

)(∫
|χ′N,0,i(x)|dx+

∫
|χN,0,i(x)|dx

)]
,

for some C > 0. Employing (7.1) and (7.2), and maintaining the order of the terms for
clarity, we see that for sufficiently large C, this expression is less than

C2N−2
[
Nγ + log(N) + log(N) +Nγ + (Nγ + 1)

]
.
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In particular, we see that EN = O(Nγ−2), which establishes (7.6).
In the case of (7.7), we have that EN is now bounded by

CN−2
[ ∫
|χ′N,0,i(x)|dx

∫
|χN,0,j(x)|dx+

∫
|χ′N,0,j(x)|dx

∫
|χN,0,i(x)|dx

+

∫
|χN,0,j(x)|dx

∫
|χN,0,i(x)|dx+

(
sup
x
|χN,0,j(x)|

)∫
|χ′N,0,i(x)|dx

+

(
sup
x
|χN,0,j(x)|

)(∫
|χ′N,0,i(x)|dx+

∫
|χN,0,i(x)|dx

)]
for some large C. Again employing (7.2), and possible enlarging C, we see this is further
less than

C2N−2
[
Nγ log(N) +Nγ log(N) + log(N)2 +N2γ + log(N)(Nγ + log(N))

]
.

From this we see that EN = O(N2γ−2), which establishes (7.7).

We now will focus on the modifications that need to be made in the region around λi.
We note that the preparatory Lemma 6.4 still holds as stated.

Lemma 7.3. Let φ and ϕ be smooth functions. Then for any i, j ∈ {0, 1, 2}, and fixed n
and m we have that∫

φ(x)χN,i(x)pN−n(x)wN (x)1/2dx = O(N−1), (7.11)

1

2

∫ ∫
φ(x)ϕ(y)χN,i(x)χN,j(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)χN,i(x)χN,j(x)

(1− x2)
sin((m− n)arccos(x))dx+O(Nγ−2). (7.12)

In addition, with r, t = 1, 2, such that i 6= r and j 6= t, we have that∫
φ(x)χN,i,r(x)pN−n(x)wN (x)1/2dx

= O(N−min(1,2(1−γ))), (7.13)∫ ∫
φ(x)ϕ(y)χN,i,r(x)χN,j(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(N−1), (7.14)∫ ∫
φ(x)ϕ(y)χN,i,r(x)χN,j,t(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(N−min(1,2(1−γ))). (7.15)

Proof. We begin with the proof of (7.11). We have already established the case of i = 0,
so we assume that i > 0, and denote λi = λ. We observe that proceeding identically to
Lemma 6.6 we have that there is C such that∣∣∣∣∣

∫ λ±δ

λ

φ(x)pN−n(x)χN,i(x)wN (x)1/2dx

∣∣∣∣∣
≤ N−1π1/2(f−1N,n,λ)′(0)(D(α+ 1/2, 1/2)|gN,1(λ)|+D(α− 1/2, 1/2)|gN,2(λ)|)

+
C

N2

∑
k=1,2

2∑
l=0

∣∣∣∣∫ ±∞
0

dl

dxl
((f−1N,n,λ)′(x)gN,k(f−1N,n,λ(x))χN,i(f

−1
N,n,λ(x)))

∣∣∣∣ dx, (7.16)
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where gN,k is defined as in the proof of Lemma 6.6. The first term on the right-hand side
is clearly O(N−1). Additionally, we may show, as before, that there is C, such that the
second term of the right-hand side of (7.16) may be bounded by

C2

N2

2∑
l=0

∫
|χ(l)
N,i(x)|dx = O(Nγ−2).

Together these bounds establish (7.11). The same argument may be used to establish
(7.13).

To show (7.12), we first observe that the case of i = j = 0 was established in
Lemma 7.2. In the case that i > 0 and j = 0, let us write χ̂(x) = χ(4x) and χ̂N,i(x) =

χ̂((x− λi)δ−1N ), so that supp(χ̂N,i) ∩ supp(χN,0) = ∅. Thus we see that∫ ∫
φ(x)ϕ(y)χ̂N,i(x)χN,0(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=

∫
φ(x)χ̂N,i(x)pN−n(x)wN (x)1/2dx

∫
ϕ(y)χN,0(y)pN−m(y)ε(λi − y)wN (y)1/2dy.

(7.17)

We note that as χ̂N,i clearly satisfies the bounds (7.1) and has a support contained within
that of χN,i, the above proof of (7.11) with χN,i replaced by χ̂N,i shows that∫

φ(x)χ̂N,i(x)pN−n(x)wN (x)1/2dx = O(N−1).

We also observe that while Lemma 7.1 does not formally apply to the second integral
on the right-hand side of (7.17), as the function φ(x)ε(λi − x) is N -dependant though
λi, this function (as well as its derivatives of up to any finite order) are still uniformly
bounded on the support of χN,0, so that the proof of Lemma 7.1 with φ(x) replaced by
φ(x)ε(λi − x) shows that for any c > 0 we also have that∫

ϕ(y)χN,0(y)pN−m(y)ε(λi − y)wN (y)1/2dy = O(N−c).

Together these results show that∫ ∫
φ(x)ϕ(y)χ̂N,i(x)χN,0(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy = O(N−2).

(7.18)
We also observe that supp(χN,i − χ̂N,i) ⊆ (λi − δ/2, λi − δ/32) ∪ (λi + δ/32, λi + δ/2), and
that χN,i− χ̂N,i satisfies the bounds (7.1). From this, we see that the proof of Lemma 7.2
with χN,0 replaced by χN,i − χ̂N,i establishes that

1

2

∫ ∫
φ(x)ϕ(y)(χN,i(x)− χ̂N,i(x))χN,0(y)

× pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)(χN,i(x)− χ̂N,i(x))χN,0(x)

(1− x2)
sin((m− n)arccos(x))dx+O(Nγ−2)

=
1

2πN

∫ 1

−1

φ(x)ϕ(x)χN,i(x)χN,0(x)

(1− x2)
sin((m− n)arccos(x))dx+O(Nγ−2) (7.19)

where in the last step we have used that χ̂N,i(x)χN,0(x) = 0. Combining (7.18) with
(7.19) establishes (7.12) in this case. The case of i = 0 and j > 0 of (7.12) follows
symmetrically, so we now assume that i, j > 0.
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We note that if additionally i 6= j, then (7.12) follows from (7.11) by employing the
disjointness of the support of χN,i and χN,j (6.1) to rewrite this as a product of single
integrals. Thus we assume that i = j and write, as before, λi = λ. As before, we
additionally note that by the proof of (7.11), we have that∫ ∫

φ(x)ϕ(y)χN,i(x)χN,i(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

=

∫ ∞
λ

∫ ∞
λ

φ(x)ϕ(y)χN,i(x)χN,i(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

+

∫ λ

−∞

∫ λ

−∞
φ(x)ϕ(y)χN,i(x)χN,i(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

(7.20)

up to a term of order O(Nγ−2). We will compute the asymptotics of the first integral
on the right-hand side, the other being identical. Proceeding as in Lemma 6.6 we may
rewrite this integral as the sum I + II + III with

I =
1

π

∑
k,l=1,2

∫ ∞
λ

[Jα(gN,n(x))]k

(∫ gN,m(x)

0

[Jα(z)]ldz

)
hN,k(x)lN,l(x)χN,i(x)2

g′N,m(x)
dx,

II =
1

π

∑
k,l=1,2

∫ ∞
λ

(∫ gN,n(x)

0

[Jα(z)]kdz

)(∫ gN,m(x)

0

[Jα(z)]ldz

)

× χN,i(x)hN,k(x)

g′N,n(x)

d

dx

(
χN,i(x)lN,l(x)

g′N,m(x)

)
dx,

III =
1

2π

∑
k,l=1,2

∫ ∞
λ

∫ ∞
λ

(∫ gN,n(x)

0

[Jα(z)]kdz

)(∫ gN,m(y)

0

[Jα(z)]ldz

)

× d

dx

(
χN,i(x)hN,k(x)

g′N,n(x)

)
d

dy

(
χN,i(y)lN,l(y)

g′N,m(y)

)
ε(x− y)dxdy,

where lN,k, hN,k are as in the proof of Lemma 6.6. We note that for any c ∈ N, we have

that l(c)N,k(x), h
(c)
N,k(x) = O(1), which when supplemented with the asymptotics of (6.17)

establish that there is C such that

|III| ≤ C

N2

∫ ∫ (
|χ′N,i(x)|+ |χN,i(x)|

) (
|χN,i(y)|+ |χ′N,i(y)|

)
dxdy,

which shows that III = O(N−2). Similarly

|II| ≤ C

N2

(
sup
x
|χN,i(x)|

)(∫
|χ′N,i(x)|dx+

∫
|χN,i(x)|dx

)
,

so that II = O(N−2). As before, we may write I as the sum of two terms

I ′ =−
∑

k,l=1,2

∫ ∞
λ

√
gN,n(x)Jα−(−1)k1/2(gN,n(x))Iα−(−1)l1/2,1/2(gN,m(x))

× hN,k(x)lN,l(x)χN,i(x)2

g′N,m(x)
dx,

II ′ =
∑

k,l=1,2

D(α− (−1)l1/2, 1/2)

∫ ∞
λ

Jα−(−1)k1/2(gN,n(x))
hN,k(x)lN,l(x)χN,i(x)2

g′N,m(x)
dx.
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Employing Lemma 6.7, we see that there is C such that

|II ′| ≤ C

N2
+

C

N3

2∑
l=0

∫ ∞
0

| d
l

dxl
(χN,i(x)2)|dx

≤C2

(
N−2 +N−3

(
sup
x
|χN,i(x)|

) 2∑
l=0

∫ ∞
0

|χ(l)
N,i(x)|dx

+N−3
(

sup
x
|χ′N,i(x)|

)∫ ∞
0

|χ′N,i(x)|dx
)

≤C3(N−2 +Nγ−3).

Employing the asymptotics (6.16) and (4.29), as in the proof of Lemma 6.6, we see that

I ′ =
1

Nπ

∑
k,l=1,2

∫ ∞
λ

[Iα(gN,n(x))]k[Iα−1(gN,m(x))]l
hN,k(x)lN,l(x)χN,i(x)2

f ′N,m,λ(x)
dx+O(N−2).

Now using the fact that RN (x), R̄N (x) = O(Nγ−1) for x ∈ (λ− δN , λ+ δN ), we derive that

I ′ =
1

π

∑
k,l=1,2

∫ ∞
λ

[Iα(gN,n(x))]k[Iα−1(gN,m(x))]lφ(x)ϕ(x)χN,i(x)2

× [TN,n,λ(x)]1k[TN,m,λ(x)]1l
f ′N,m,λ(x)

dx+O(Nγ−2).

The remainder of the proof of (7.12) now proceeds identically to that of Lemma 6.6.

To show (7.14) one proceeds identically to the case of (7.12) above, with the only
differences being that now the error in (7.20) is given by O(N−1−min(1,2(1−γ))), II, III =

O(Nγ−2) and II ′ = O(N−min(3−2γ,2)). The case of (7.15) is similar as well, with the
error in (7.19) now being given by O(N2(γ−1)), the error in (7.20) now being given
by O(N−2min(1,2(1−γ))), and with the new error bounds II, III = O(N2(γ−1)) and II ′ =

O(N−min(3(1−γ),2))

Now we will now discuss the remaining asymptotics which we need outside of
(λ2 − δ, λ1 + δ). As we will not need N -dependant partitions in this region, and as the
bound on the error term given in Proposition 4.16 is still of order O(N−1), we see that the
proofs given for Lemmas 6.1, 6.2, and 6.10, require no modifications on their respective
regions. Explicitly, together they imply the following result.

Lemma 7.4. Let φ and ϕ be smooth functions of subexponential growth, both vanishing
on (λ2 − δ, λ1 + δ). Then we have that for any fixed n and m that∫

φ(x)pN−k(x)wN (x)1/2dx = O(N−1/2).∫
J−1N (ϕpN−m)(x)φ(x)pN−n(x)wN (x)dx

=
1

2πN

[∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx

]
+

1

4N
[(−1)N−mφ(1)ϕ(−1)− (−1)N−nφ(−1)ϕ(1)] +O(N−7/6).

Combining this Lemma with the above results, we achieve the following.
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Lemma 7.5. Let φ and ϕ be smooth functions of subexponential growth. Then we have
that for any fixed n and m that∫

J−1N (ϕpN−m)(x)φ(x)pN−n(x)wN (x)dx

=
1

2πN

[∫ 1

−1

φ(x)ϕ(x)

(1− x2)
sin((m− n)arccos(x))dx

]
+

1

4N
[(−1)N−mφ(1)ϕ(−1)− (−1)N−nφ(−1)ϕ(1)] +O(N−min(2−γ,7/6)).

Proceeding as in the prior section, we see that this result implies that when N is even
that ∫

J−1N (pN )(x)pN−1(x)wN (x)dx = O(N−min(2−γ,7/6)),

which is the first result required by Proposition 2.13.
We will now begin discussing the required integrals involving `i and qi. A technicality

present in this case is that the term ci defined in Proposition 4.14 is now N -dependant
and diverging as |λ1 − λ2| → 0. To avoid confusion, we will use the notation ci,N
for the remainder of the section to emphasize this N -dependence. We also observe
that for i ∈ {1, 2}, both ci,N |λ1 − λ2|α and c−1i,N |λ1 − λ2|−α are uniformly bounded for
λ1, λ2 ∈ (−1 + ε, 1− ε).
Lemma 7.6. For φ a smooth function supported on (−1 + δ, 1 − δ), and any choice of
i ∈ 1, 2 and j ∈ {1, 2, 3}, we have that∫

φ(x)χN,j(x)`i(x)wN (x)1/2dx =c−1i,NO(Nγ−1),∫
φ(x)χN,j(x)qi(x)wN (x)1/2dx =ci,NO(1).

Proof. In sight of Proposition 4.17, and proceeding as in the proof of Lemma 6.13, we
are reduced to showing that∫

φ(x)χN,j,i(x)

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx = TN,λi(λi)

[
O(1)

0

]
+O(Nγ−1). (7.21)

We will actually show that the error is of order O(N−1), but as the error terms in
Proposition 4.17 are of order O(Nγ−1), this does not improve the result. Now in the case
that i 6= j, (7.21) follows from (7.13), and thus we will focus on the case of i = j, and
denote λ = λi and α = αi as before. Applying Proposition 4.17 we may write∫
φ(x)χN,i,i(x)

[
π1/2pN (x)

−iπ1/2pN−1(x)

]
wN (x)1/2dx =

∫
ξN (x)GN,2(x)

x

√
π|Nx|Jα−1/2(N |x|)dx

+

∫
ξN (x)GN,1(x)

x
ε(x)

√
π|Nx|Jα+1/2(N |x|)dx

,

where GN,i is defined as in the proof of Lemma 6.13, and ξN (x) = χN,i,i(f
−1
λ (x))x. If

we write the first integral on the right-hand side as I and the second as II, then by
Lemma 6.7 we have that

I = N−12π1/2D(α+ 1/2,−1/2)GN,1(0)ξN (0) + EN ,

where there is C such that

|EN | ≤
C

N2

2∑
l=0

∫
|χ(l)
N,i(x)|dx ≤ C2Nγ−2.
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Thus I = O(N−1). Proceeding similarly, one obtains that II = O(N−1).

As in (6.39), we see from the asymptotics provided in Proposition 4.17 that for
i ∈ {1, 2}, there are constants Ck,N , for k ∈ {1, 2, 3, 4}, such that

ci,N`i(x) = C1,N
pN (x)

x− λi
+ C2,N

pN−1(x)

x− λi
, (7.22)

c−1i,Nqi(x) = C3,N
pN (x)

x− λi
+ C4,N

pN−1(x)

x− λi
, (7.23)

and such that Ck,N = O(1) for k ∈ {1, 2, 3, 4}.
We recall the functions χ̂N,i introduced in the proof of Lemma 7.3, which are similar

to χN,i, but defined so that supp(χ̂N,i) ∩ supp(χN,0) = ∅. Proceeding as in the previous
section, we see that∫

J−1N `l(x)pN−1(x)wN (x)dx =

∫
(J−1N χN,l`l)(x)χ̂N,l(x)pN−1(x)wN (x)dx

+ c−1l,NO(N−min(1,(1−γ)−1/2)),∫
J−1N pN (x)qk(x)wN (x)dx =

∫
(J−1N χN,lpN )(x)χ̂N,k(x)qk(x)wN (x)dx+ ck,NO(N−1/2),∫

J−1N `l(x)qk(x)wN (x)dx =δk,l

∫
J−1N (χN,l`l)(x)χ̂N,k(x)qk(x)wN (x)dx

+ ck,Nc
−1
l,NO(N−min(1/2,2(1−γ))).

We observe that ck,Nc
−1
l,N = O(1). By these formulas, and (7.22-7.23), we see that to

establish the remaining cases of Proposition 2.13, it suffices to show the following.

Lemma 7.7. Let φ and ϕ be smooth. Then for any choice of i = 1, 2, and any n and m,
we have that∫ ∫

φ(x)ϕ(y)χN,i,i(x)χN,i(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(N−1 log(N)). (7.24)

Moreover, if |n−m| ≤ 1, then additionally∫ ∫
φ(x)ϕ(y)χN,i,i(x)χN,i,i(y)pN−n(x)pN−m(y)ε(x− y)wN (x)1/2wN (y)1/2dxdy

= O(Nγ−1 log(N)). (7.25)

Proof. We begin with the proof of (7.24). We may proceed identically to the proof of
(6.41) to write the left-hand side of (7.24) as the sum I + II where

I =
1

π

∑
k,l=1,2

∫
[Jα(gN,m(x))]lIk(gN,n(x))

hN,k(x)lN,l(x)gN,n(x)χN,i(x)2

g′N,n(x)(x− λ)
dx,

II =− 1

2π

∑
k,l=1,2

∫ ∫
[Jα(gN,m(x))]lIk(gN,n(y))χN,i(y)lN,l(y)

× d

dx

(
χN,i(x)hN,k(x)gN,n(x)

g′N,n(x)(x− λ)

)
ε(x− y)dxdy,

with notation as in the proof of Lemma 6.14. As |χN,j(x)| is bounded, and as the integrand
of I remains of order O(min(N |x|−1, 1)), we see that I = O(N−1 log(N)), as before. In
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addition, we see there is C such that

|II| ≤ 1

2π

∑
k,l=1,2

∫
|χN,i(y)Ik(gN,n(y))lN,l(y)|dy

×
∫ ∣∣∣∣∣[Jα(gN,m(x))]l

d

dx

(
χN,i(x)hN,k(x)gN,n(x)

g′N,n(x)(x− λ)

)∣∣∣∣∣ dx
≤C
N

∫
min(|y|−1, N)dy

∫
(|χN,i(x)|+ |χ′N,i(x)|)dx = O(N−1 log(N)).

This completes the proof of (7.24).
We now discuss the proof of (7.25). The proof of (7.25) may also be reduced, by

modifying the proof of (6.42) as above, to showing that for k, l = 1, 2,∫ ∫
χN,i(x− λ)χN,i(y − λ)

xy
[Jα(Nx)]k[Jα(Ny)]lε(x− y)dxdy = O(Nγ−1 log(N)). (7.26)

On the other hand, we may rescale the left-hand side of (7.26) to become∫ ∫
χ(x)χ(y)

xy
[Jα(NδNx)]k[Jα(NδNy)]lε(x− y)dxdy.

This coincides with a rescaled case of (6.44), which we have already shown to be of order

O(δ−1N N−1 log(δ−1N N−1)),

and thus is further of order O(Nγ−1 log(N)). This completes the proof of (7.26).
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