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Abstract

Activated Random Walk (ARW) is an interacting particle system on the d-dimensional
lattice Zd. On a finite subset V ⊂ Zd it defines a Markov chain on {0, 1}V . We prove
that when V is a Euclidean ball intersected with Zd, the mixing time of the ARW
Markov chain is at most 1 + o(1) times the volume of the ball. The proof uses an exact
sampling algorithm for the stationary distribution, a coupling with internal DLA, and
an upper bound on the time when internal DLA fills the entire ball. We conjecture
cutoff at time ζ times the volume of the ball, where ζ < 1 is the limiting density of the
stationary state.
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1 Introduction: activated random walk

A key feature of many complex systems is the release of stress sudden bursts. An
example is the pressure between continental plates, released in earthquakes. Bak, Tang,
and Wiesenfeld called these “self-organized critical” (SOC) systems, and proposed a
mathematial model of them, the abelian sandpile [6, 9]. But the abelian sandpile is
non-universal: Even in the limit of large system size, its behavior depends delicately on
the underlying graph [26] and on the initial condition [10, 20].

One of the best candidates for a universal model of SOC is Activated Random Walk
(ARW) [31]. This is an interacting particle system with two species, active and sleeping.
Active particles perform random walks and fall asleep at a fixed rate λ. Sleeping particles
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Exact sampling and fast mixing of activated random walk

do not move, but become active when an active particle encounters them. To make
explicit the connection to SOC, sleeping particles represent stress in the system, and a
single active particle can cause a burst of activity by waking up many sleeping particles.

So far, one universality result has been proved for ARW: Rolla, Sidoravicius, and Zindy
[32] show that there is a critical mean ζc = ζc(λ, d) such that for any translation-invariant
and ergodic configuration s of active particles in Zd with mean ζ

P(s stabilizes) =

{
1, ζ < ζc

0, ζ > ζc.
(1.1)

Still missing is a rigorous connection between these infinite ARW systems and their
finite counterparts. For instance, we expect that the ARW stationary distribution µV on
a finite subset V ⊂ Zd has an infinite-volume limit µ, and that its mean equals ζc. We
also expect the microstructure of finite ARW clusters (such as the cluster of sleeping
particles formed by stabilizing n chips at the origin in Zd, studied in [28]) to converge to
µ as n→∞. These conjectures are detailed in [29].

Recent work has succeeded in showing that ζc is strictly between 0 and 1 on many
transitive graphs [34, 35, 13, 16, 12, 17], culminating in the proof by Asselah, Forien,
and Gaudillière that ζc < 1 on Zd for all dimensions d and all sleep rates λ [1]; that ζc is
continuous in the sleep rate [36], and tends to zero as the square root of the sleep rate
in dimension 1 [4]; and that ARW at sufficiently high density takes exponential time to
stabilize on a cycle [5]. Despite all this progress, very little is known about the behavior
of Activated Random Walk at criticality.

In this paper we examine ARW from a different perspective, by driving a finite ARW
system to a stationary state. We give an exact sampling algorithm for the stationary
state, and upper bound its mixing time (the time it takes to reach the stationary state
from an arbitrary intitial state). Fast mixing is evidence for universality in that the
system forgets its initial state quickly.

To see how mixing relates to universality, we can contrast ARW to the non-universal
abelian sandpile model. In contrast to (1.1), the abelian sandpile has an interval of
critical means [11], and the problem of whether a sandpile on Zd stabilizes almost surely
is not even known to be decidable [25]. The root cause of this non-universality is slow
mixing: For example, the sandpile mixing time on both the ball B(0, n) ∩ Zd and on
the torus Zdn is of order nd log n [14, 15]. This extra log factor is responsible for the
non-universality of the sandpile threshold state [24]. Our upper bounds (Corollaries 3.2
and 3.3), show that the extra log factor is not present for ARW, providing further evidence
for universality.

1.1 The ARW process

Let P be the transition matrix of a discrete time Markov chain on a finite state space
V ∪ {z}. Here z is an absorbing state (P (z, z) = 1) called the “sink”. Assume that
every v0 ∈ V can access the sink, in that there exists a path v0, v1, . . . , vk = z such that
P (vi−1, vi) > 0 for all i = 1, . . . , k.

Given P and a vector λ = (λv)v∈V with each λv ∈ [0,∞], we define the ARW process
for integer t ≥ 0 by

σt = S[σt−1 + δut ]. (1.2)

In words, the state σt at each discrete time step is obtained from the previous state σt−1

by adding a single active particle at ut and then stabilizing. Here

• σt takes values in the hypercube {0, s}V . The symbol s stands for “sleeping” and
will be explained below.
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Exact sampling and fast mixing of activated random walk

• u1, u2 . . . ∈ V is a (possibly random) sequence of vertices, called the driving
sequence;

• δv(w) = 1 if w = v and 0 otherwise;

• S is the stabilization operator for activated random walk with sleep rate λ

and base chain P , which we now define.

Following [30], consider the total ordering on N ∪ {s}

0 < s < 1 < 2 < . . . .

Extend addition to a commutative operation on N ∪ {s} by declaring

0 + s = s

and

n+ s = n+ 1

for all n 6= 0. In particular, s+ s = s+ 1 = 1 + s = 2. Note that if σ takes values in {0, s},
then σ + δv takes values in {0, s, 1, 2}.

An ARW configuration is a map

σ : V → N ∪ {s}.

If σ(v) = n ≥ 1 then we say there are n active particles at v; if σ(v) = s then we say
there is one sleeping particle at v; and if σ(v) = 0 then we say there are no particles
at v.

A configuration taking values in {0, s} is called a sleeping configuration. The
stabilization operator S takes an arbitrary configuration σ as input, and outputs a
sleeping configuration. If σ takes values in {0, s}, then we define S[σ] = σ. Otherwise,
we obtain S[σ] by a sequence of firings Fv of vertices with at least one active particle.
Firing vertex v is defined in two cases, depending whether there are at least two active
particles (σ(v) ≥ 2) or only one (σ(v) = 1).

• Suppose σ(v) ≥ 2. To fire v, move one particle from v to a random vertex drawn
from P (v, ·). Formally,

Fv[σ] = σ − δv + δw with probability P (v, w) for each w ∈ V ∪ {z}.

• Suppose σ(v) = 1. To fire v, put the particle at v to sleep with probability

qv :=
λv

1 + λv
.

Otherwise move the particle from v to a random neighbor drawn from P (v, ·).
Formally,

Fv[σ] =

{
σ − δv + sδv with probability qv

σ − δv + δw with probability (1− qv)P (v, w)

for each w ∈ V ∪ {z}.

The domain of σ is V , not V ∪ {z}; so in the case w = z the term δz is zero. This case
represents a particle falling into the sink, where it is removed from the system.

We make three remarks:
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1. Any ARW configuration σ reaches a sleeping configuration after some (random, but
almost surely finite) number of firings of active vertices.

This follows from our assumption in the very beginning, that V is finite and every
vertex can access the sink: If any particle is still active, then try to move it along a
path to the sink. If it falls asleep or strays from the chosen path, then pick another
active particle and try again. There is a positive number ε such that each such trial
has probability at least ε of depositing a particle in the sink. Since the number of
particles is finite and cannot increase, we reach a sleeping configuration after a
finite number of firings.

2. We define the stabilization S[σ] as the final, sleeping configuration of particles.
A crucial fact is that the stabilization does not depend on the order of firings. This
abelian property, which is proved for ARW in [31], also holds for a more general
class of particle systems, the abelian networks [7].

3. The case λv = ∞ for all v is of special interest. It is called internal DLA (IDLA).
Note that in this case qv = 1, so that each site v “absorbs” the first particle it
receives. So this process has a simple description: Each active particle moves
according to the Markov chain P , until reaching an unoccupied site or the sink,
where it remains forever. A fundamental quantity associated to IDLA is the time
when V becomes full:

Tfull = min
{
t : σt(v) > 0 for all v ∈ V

}
.

1.2 Plan of the paper

Our main goal is to upper bound the mixing time of the ARW process.
We will first give a method for exact sampling from its stationary distribution (Theo-

rem 2.1) and then show that the time Tfull for IDLA to fill V is a strong stationary time
for the ARW process (Theorem 2.5). To upper bound the mixing time, it therefore suffices
to upper bound Tfull. Despite the exponential size of its state space {0, s}V , we will prove
that the mixing time of the ARW process is not much larger than #V (Theorem 2.6).

These three theorems are proved in Section 2 for a general base chain P . Then
in Section 3, we examine the case that P is simple random walk on a Euclidean ball
intersected with the d-dimensional integer lattice Zd, with sink at the boundary of the
ball. We prove that with high probability

Tfull ≤ #V + (#V )α

for some α < 1 (Theorem 3.1).
After a brief discussion of lower bounds, we conclude with two conjectures in Sec-

tion 4.

1.3 Instructions; resampling; Abelian property

The purpose of this section is to spell out the meaning of the phrase “order of firings”
in the abelian property, so that we can give careful proofs of our main results.

Quench the randomness of ARW into a collection of instructions (ρn,v)n∈N, v∈V .
The instruction ρn,v dictates what will happen the nth time v is fired: a particle at v
either tries to fall asleep with probability λv/(1 + λv), or it steps to w with probability
P (v, w)/(1 +λv). We assume that each sequence (ρn,v)n∈N is independent and identically
distributed (i.i.d.), and that all ρn,v are independent.

Fix an ARW configuration σ, and let (v) = (v1, v2, . . . , vm) be a sequence of vertices to
be fired in order. We say that (v) is a legal execution for σ if Fvk−1

. . . Fv1 [σ](vk) ≥ 1 for
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all k = 1, . . . ,m. A legal execution is called complete for σ if Fvm · · · Fv1 [σ] is a sleeping
configuration. The odometer of an execution (v) is the function

f(w) = #{1 ≤ k ≤ m : vk = w},

which counts how many times each vertex w is fired. If (v) is any legal execution for σ
and (v′) is any complete execution for σ, then the odometer of (v) is less than or equal to
the odometer of (v′) (see [31] or [7, Lemma 3.4]). This inequality holds pointwise, both
in V and in the quenched instructions. In particular, any two legal complete executions
for σ have the same odometer. Therefore they use the same subset of the quenched
instructions, so they result in the same sleeping configuration S[σ]. Occasionally we will
write this as Sρ[σ] to make explicit the dependence on the instructions ρ.

Implicit in the definition of the ARW process is that new independent instructions are
used to stabilize at each time step. But if we wish to use the previous paragraph, then
the randomness for the entire chain should be expressed in terms of a single collection
of instructions ρ = (ρv,j)v∈V, j∈N. Our first order of business is to check that doing so
does not change the distribution of (σt)t∈N. For this purpose we will use a lemma from
[28].

For f : V → N, write Ff for the σ-field generated by the instructions ρf :=

(ρv,n)v∈V,n≤f(v) (the “past”), and write ρf := (ρv, k+1+f(v))v∈V, k∈N (the “future”).

Lemma 1.1 (Strong Markov Property For Quenched Instructions, [28, Proposition 4]). Let
F : V → N be a random function satisfying {F = f} ∈ Ff for all f : V → N. Then ρF has
the same distribution as ρ, and ρF is independent of ρF .

Now using a single collection of instructions ρ, let Ft(v) be the number of instructions
used at v during the first t time steps of the ARW process, let ρt = ρFt and let ρt = ρFt ;
formally, for each t ≥ 1 we define these inductively by

σt := Sρt−1 [σt−1 + δut ] (1.3)

and Ft := Ft−1 +Gt, where Gt is the odometer for stabilizing the right side.

Lemma 1.2 (Resampling Future Instructions). Assume the driving sequence u is inde-
pendent of the instructions ρ.

Let ρ̃1, ρ̃2, . . . be independent families of instructions with the same distribution as
ρ, and independent of u. Then (ut, Ft, σt)t∈N has the same distribution as (ut, F̃t, σ̃t)t∈N,
where

σ̃t = Sρ̃t [σ̃t−1 + δut ]

and F̃t − F̃t−1 is the odometer for stabilizing the right side.

Proof. Fix functions f1 ≤ · · · ≤ ft and ARW configurations τ1, . . . , τt. Let At and Ãt be
the events {Fs = fs, σs = τs, s = 1, . . . , t} and {F̃s = fs, σ̃s = τs, s = 1, . . . , t} respectively.

Write Pu for the law of u, and P for the law of (ρ, ρ̃1, ρ̃2, . . .). For any fixed driving
sequence u1, . . . , ut, writing ξs = τs−1 + δus we have

P(At) =

t∏
s=1

P(As|As−1) =

t∏
s=1

P
(
Sρs−1 [ξs] = τs, Fs = fs|As−1

)
=

t∏
s=1

P
(
Sρs−1 [ξs] = τs, Fs = fs

)
=

t∏
s=1

P
(
Sρ̃s [ξs] = τs, F̃s = fs

)
EJP 29 (2024), paper 184.
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=

t∏
s=1

P
(
Sρ̃s [ξs] = τs, F̃s = fs|Ãs−1

)
=

t∏
s=1

P(Ãs|Ãs−1) = P(Ãt).

In the second line we have used that the event As−1 depends only on the past ρs−1,
which is independent of the future ρs−1 by Lemma 1.1. In the third line we have used
that ρs−1 has the same distribution as ρ̃s, again by Lemma 1.1. In the fourth line we have
used that Ãs−1 depends only on the instructions ρ̃r for r ≤ s− 1, which are independent
of ρ̃s by hypothesis.

Now let B = {u1 = v1, . . . , ut = vt}. Since u is assumed independent of ρ and ρ̃, the
proof is finished by multiplying by 1B, taking Pu of both sides, and applying Fubini’s
theorem:

P(At ∩B) = Pu
(
P(At)1B

)
= Pu

(
P(Ãt)1B

)
= P(Ãt ∩B). .

As a consequence of Lemma 1.2, if the driving sequence u is an i.i.d. sequence then
the ARW process (1.3) is a time-homogeneous Markov chain. For general u, the ARW
process is not a Markov chain, but we will see that some techniques from the theory of
Markov chains, such as the use of a strong stationary time to bound the mixing time, can
still be applied. The reason we are interested in general driving is for future applications
when V is a subset of a larger system V ′, and the driving comes from particles entering
V as a result of stabilizing V ′\V .

In what follows we write SF := SρF .

Lemma 1.3 (Abelian Property). Let φ1, φ2 be ARW configurations, and let F be the
odometer for stabilizing φ1. Then

S[φ1 + φ2] = SF
[
S[φ1] + φ2

]
. (1.4)

Proof. Let (v) be a legal complete execution for φ1 with instructions ρ, and let (w) be
a legal complete execution for S[φ1] + φ2 with instructions ρF . Then the concatenaion
(v, w) is a legal complete execution for φ1 + φ2 with instructions ρ.

Our main use of the abelian property will be to stabilize the driving particles all at
once, instead of one at a time:

σt = S[σ0 + φt]

where

φt = δu1
+ . . .+ δut . (1.5)

This will allow us to couple the ARW and IDLA processes.

1.4 Coupling ARW and IDLA

Recall that ARW with infinite sleep rate is called IDLA. We write S∞ for IDLA stabi-
lization without allowing any particles to fall asleep. In other words, to perform S∞, we
let each active particle perform P -walk until reaching an unoccupied site or the sink z.
In particular, if φ is an all active configuration, then S∞[φ] is all active.

Every legal IDLA execution is also legal for ARW (since a particle moves in IDLA
only when another particle is present at the same site). One way to stabilize an ARW
configuration is therefore to perform IDLA first, and then complete the ARW stabilization:

S[φ] = SG
[
S∞[φ]

]
(1.6)
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where G is the odometer for IDLA. In particular, with φt given by (1.5), we have a
coupling between the IDLA process

ηt = S∞[σ0 + φt]

and the ARW process

σt = S[σ0 + φt] = SGt [ηt] (1.7)

where Gt is the odometer for IDLA-stabilizing σ0 + φt.
This coupling was used by Shellef [33] to prove nonfixation of certain infinite ARW

systems. We will use it to bound the mixing time of the ARW process.

2 Main results

Now we are ready to prove our exact sampling theorem for the ARW process σt =

S[σt−1 + δut ] with driving sequence u = (ut)t∈N. We make no assumption that u is i.i.d.
or even Markovian, but we will always assume that u is independent of the quenched
instructions.

2.1 Exact sampling

Write S̄ := Sρ̄, where ρ̄ is an independent copy of the instructions ρ used to define the
ARW process.

Theorem 2.1 (Exact sampling from the ARW stationary distribution). Let σ0 = S̄[1V ].
Then for any driving sequence u and all t ≥ 1,

σt
d
= σ0.

Proof. For any ARW configuration φ, consider stabilizing 1V + φ in two ways: If we first
move the extra particles φ, then they cannot fall asleep (as every v ∈ V contains an
active particle) so they all perform P -walk until reaching the sink. We can then stabilize
1V . The second way is to stabilize 1V , then add the extra particles φ, and stabilize again.
Using (1.6) and (1.4),

S̄G[1V ] = S̄[1V + φ] = S̄H
[
S̄[1V ] + φ

]
. (2.1)

where G is the odometer for IDLA-stabilizing 1V + φ to 1V , and H is the odometer for
ARW-stabilizing 1V . These equalities hold pointwise in ρ̄.

Now take φ = φt = δu1 + . . .+ δut . By the Strong Markov Property, in equation (2.1)

the left side
d
= σ0, and the right side

d
= S[σ0 + φt] = σt.

Theorem 2.1 identifies a stationary distribution for the ARW process. Next we give
a sufficient condition for the stationary distribution to be unique. Given v, w ∈ V we
say that v can access w if there exists j ≥ 0 such that P j(v, w) > 0. We say that a fixed
sequence v1, v2, . . . ∈ V is thorough if for all w ∈ V there exist infinitely many t such
that vt can access w. Note that if the base chain P is irreducible, then every v can access
every w, so every sequence is thorough.

Lemma 2.2. Let u be a random driving sequence, and let ηt be the IDLA-stabilization of
σ0 + δu1

+ . . .+ δut . Then P(ηt = 1V eventually) ≥ P(u is thorough).

Proof. Let At = {v ∈ V : ηt(v) = 1}. If At = V , then As = V for all s ≥ t. Otherwise, on
the event that u is thorough, it happens infinitely often that P -walk started at ut+1 and
stopped on exiting At has a positive probability to exit in V \At, in which case At+1 is
strictly larger than At. Hence P(At = V eventually) = 1.

EJP 29 (2024), paper 184.
Page 7/20

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1220
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exact sampling and fast mixing of activated random walk

We will be interested in random driving sequences u satisfying

P(u is thorough) = 1.

(Exercising our right to omit the phrase “almost surely,” we will call these simply
thorough.)

Let

R :=

{
σ ∈ {0, s}V

∣∣∣∣ σ(v) = 0 for all v such that λv = 0, and

σ(w) = s for all w such that λw =∞

}
.

Lemma 2.3 (Recurrent ARW Configurations). If the driving sequence is thorough, then

• An ARW configuration σ is recurrent if and only if σ ∈ R; and
• R is the unique communicating class of recurrent configurations.

Proof. We first check that if σ0 ∈ R, then σt ∈ R for all t. For each vertex v with λv = 0,
since σ0(v) = 0 and no particle will ever fall asleep at v, we have σt(v) = 0 for all t. For
each vertex v with λv =∞, since σ0(v) = s and the last particle left at v will always fall
asleep there, we have σt(v) = s for all t.

To finish the proof, we now show that if the driving sequence is thorough, then every
ARW configuration σ0 can access every τ ∈ R.

By Lemma 2.2 there exists T such that ηT = 1V , so σ0 +φT has a legal IDLA execution
to 1V . Now starting from 1V , for each site v such that τ(v) = 0, let the particle at v
perform P -walk to the sink. Each of these walks has positive probability to reach the sink
before the particle falls asleep (here we use that τ(v) = s for all v such that λv =∞, so
all such v are already occupied). Then let all remaining particles fall asleep immediately.
This last step succeeds with probability

∏ λv
1+λv

, where the product is over all v such
that τ(v) = s (here we use that τ(v) = 0 for all v such that λv = 0, so the product is > 0).
If any step fails, then repeat the whole procedure from the beginning.

In the case of i.i.d. driving, the ARW process is a Markov chain, so uniqueness of the
stationary distribution follows immediately from Lemma 2.3. The next lemma shows
uniqueness for more general driving. We write P for the law of the instructions, Pu for
the law of the driving sequence, and P = Pu × P for their joint law.

Lemma 2.4. If the driving sequence u is thorough, then the ARW process has a unique
stationary distribution, and the stationary distribution does not depend on u.

Proof. By Theorem 2.1 the configuration S̄[1V ] is stationary and does not depend on u.
To show uniqueness, let µ be any stationary distribution, and let σ0 ∼ µ. By stationar-

ity of µ, and the coupling (1.7), we have for all t and all ARW configurations ξ

µ(ξ) = P(σt = ξ) = P
(
SGt [ηt] = ξ

)
.

Now for a fixed driving sequence u, by the Strong Markov Property, the future instruc-
tions ρGt have the same distribution as ρ̄. Since ηt depends only on the past instructions
ρGt , we have (pointwise in u)

P
(
SGt [ηt] = ξ

)
= P

(
S̄[ηt] = ξ

)
≥ P

(
S̄[1V ] = ξ, ηt = 1V

)
= π(ξ)P(ηt = 1V )

where π is the distribution of S̄[1V ]. Taking Pu of both sides,

µ(ξ) ≥ π(ξ)P(ηt = 1V ).

Since u is thorough, by Lemma 2.2 the right side converges to π(ξ) as t→∞. Since both
µ and π sum to 1 we conclude that µ = π.
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In the case the stationary distribution of the ARW process is unique, we denote it by
π = πλ,P . We make a few remarks.

1. Theorem 2.1 gives a reasonably fast sampling algorithm for πλ,P : The time to
stabilize Sλ,P [1V ] is upper bounded by the time to stabilize S0,P [1V ], which is simply
the time for all particles to reach the sink z. Writing Tvz for the time for a P -walker
started at v to hit z, the time to generate a sample from πλ,P is therefore at most
the sum of independent hitting times∑

v∈V
Tvz.

2. The case when the driving sequence is constant, ut = v for all t ∈ N, is already
interesting. The ARW process (σt)t∈N depends on the choice of v, but its stationary
distribution does not. One way to see this directly is to define an operator Av that
adds one chip at v and then stabilizes. This Av is a stochastic matrix of size 2#V .
Then AvAw = AwAv by Lemma 1.3. The stationary distribution π is a left eigenvector
of both Av and Aw.

3. Despite the fast sampling algorithm, many properties of the stationary distribution
πλ,P remain mysterious. For example, in the special case that P is simple random
walk on a path {0, 1, . . . , L} with sink z = L, experiments indicate that πλ,P is
hyperuniform in that the variance of the number of sleeping particles grows
sublinearly with L. A number of other conjectures about πλ,P are discussed in [29].

2.2 Strong stationary time

Our next goal is to show that the time Tfull for IDLA to fill V is a strong stationary
time for the ARW process. In words, the ARW process is exactly stationary at time Tfull

and all later times.

Theorem 2.5 (Strong stationary time). Let P = Pσ0,u,λ,P be the law of the ARW process
(σt)t∈N with initial state σ0, thorough driving sequence u = (ut)t∈N, sleep rate vector λ,
and base chain P on state space V . For all ARW configurations σ0, ξ ∈ {0, s}V , and all
t ∈ N, we have

P(σt = ξ |Tfull ≤ t) = π(ξ) (2.2)

where π = πλ,P is the unique stationary distribution of the ARW process.

Proof. We will use the coupling (1.7) between the IDLA process ηt and the ARW process
σt = SGt [ηt]. For each fixed driving sequence u, the event

{Tfull ≤ t} = {ηt = 1V }

depends only on the past instructions ρGt , which are independent of the future instruc-
tions ρGt by the Strong Markov Property. So we have (pointwise in u)

P(σt = ξ, Tfull ≤ t) = P
(
SGt [1V ] = ξ, Tfull ≤ t

)
= P

(
SGt [1V ] = ξ

)
P(Tfull ≤ t).

Note that Gt depends on u, but the future instructions ρGt can be replaced with new
independent instructions ρ̄ by the Strong Markov Property, so P(SGt [1V ] = ξ) = P(S̄[1V ] =

ξ) does not depend on u, and equals π(ξ) by Theorem 2.1. So

P(σt = ξ, Tfull ≤ t) = π(ξ)P(Tfull ≤ t).

Recalling P = Pu × P, we obtain (2.2) by taking Pu of both sides.

Bristiel and Salez have refined Theorem 2.5 to show that the strong stationary time
Tfull is separation-optimal [8, Proposition 1].
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2.3 Upper bounds on mixing time

Let u be a thorough driving sequence. Given a fixed (deterministic) ARW configuration
σ0, write µt for the resulting distribution of the ARW process σt at time t, and for ε > 0 let

tmix(ARW, u, ε) = min
{
t : max

σ0

||µt − π||TV ≤ ε
}

where || · ||TV denotes the total variation distance between proability measures. Let

tfull(IDLA, u, ε) = min
{
t : P0,u,∞,P (Tfull > t) ≤ ε

}
be the first time that IDLA, started from the empty initial configuration, fills V with
probability ≥ 1− ε.
Theorem 2.6 (Upper bounds on mixing). For any base chain P , any thorough driving
sequence u, any sleep rate vector λ, and any ε > 0,

tmix(ARW, u, ε) ≤ tfull(IDLA, u, ε). (2.3)

If the driving sequence (ut)t∈N is independent with the uniform distribution on V , then

tmix(ARW, u, ε) ≤ #V log #V + log(1/ε)#V. (2.4)

Finally, if the driving sequence u is a permutation of V , then the ARW process is
exactly stationary at time #V , so

tmix(ARW, u, ε) ≤ #V.

Proof. For t ≥ tfull(IDLA, u, ε) we have by Theorem 2.5

µt(ξ) ≥ P(σt = ξ, t ≥ Tfull) = π(ξ)P(t ≥ Tfull) ≥ (1− ε)π(ξ).

Summing over ARW configurations ξ for which π(ξ) > µt(ξ) yields

||π − µt||TV =
∑
ξ

(
π(ξ)− µt(ξ)

)
+
≤ ε

∑
ξ

π(ξ) ≤ ε

which proves (2.3).
The inequality (2.4) follows from a standard coupon collector bound; see, for example,

[23, Prop. 2.4], which implies that for t > #V log #V + log(1/ε)#V we have

P(φt ≥ 1V ) ≥ 1− ε.

On the event φt ≥ 1V , letting all extra particles perform P -walk until reaching the sink
yields a legal execution from σ0 + φt to 1V , so the total variation distance between the
laws of S[σ0 + φt] and S[1V ] is at most ε.

Finally, if the driving sequence is a permutation of V , then for t = #V we have

φ#V = 1V , so σt = S[σ0 + 1V ]
d
= S[1V ] is exactly stationary by Theorem 2.1.

In the next section we will upper bound the right side of (2.3) when V is a discrete
ball in Zd.

3 Bounds for the fill time of IDLA

For r > 0 let Br = B(0, r) ∩ Zd = {x ∈ Zd : |x| < r} be the Euclidean ball of radius
r intersected with Zd, viewed as a graph with nearest-neighbor adjacencies. Here
|x| := (x2

1 + · · ·+ x2
d)

1/2 denotes the Euclidean norm. Collapse the boundary

∂Br =
{
y ∈ Zd \Br : |y − x| = 1 for some x ∈ Br

}
to a sink vertex.
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We consider IDLA driven by simple random walk on Br, in two different scenarios:
central driving in which all particles start at 0, and uniform driving in which each
particle starts at an independent random location in Br.

Theorem 3.1 (Upper bound for the fill time of IDLA).

Let Tfull be the time for IDLA with either central or uniform driving to fill Br, and let
N = #Br.

• In dimension d = 1, for any α > 1
2 there is a constant R = R(α) such that for all

r ≥ R
P
{
Tfull > N +Nα

}
≤ exp

{
−c1rα−

1
2

}
.

• In dimension d ≥ 2, let α = 1− 1
3d . Then for all sufficiently large r

P
{
Tfull > N +Nα

}
≤ exp

{
−c2r1/4

}
.

These two bounds are proved in Sections 3.2 and 3.3, respectively. The exponent 1
2

is optimal for d = 1, but 1− 1
3d is not optimal for d ≥ 2. Using methods of [2, 3, 18, 19],

it can be improved to 1 − 1
d + δ, at the cost of reducing r1/4 on the right side to rc for

c = c(d, δ) > 0; but we do not pursue this variation. The c1 and c2 above are absolute
constants; the proof will show that c1 = 1

266 and c2 = 1 suffice.
Combining Theorem 3.1 with the bound (2.3), we obtain an upper bound on the

mixing time of the ARW process.

Corollary 3.2 (Upper bound for ARW mixing on the ball).

Let u be either the central or uniform driving sequence on the ball Br, let λ be any
sleep rate vector, let P be the simple random walk on Br, and let N = #Br. Then for any
ε > 0, we have for sufficiently large r,

tmix(ARW, u, ε) ≤ N +N1− 1
3d .

An interesting question (see Conjecture 4.2) is whether the ARW process achieves
cutoff in total variation at an earlier time ζN for some ζ < 1.

By covering the torus Zdn with Euclidean balls, we obtain the following corollary,
proved in Section 3.4.

Corollary 3.3 (Upper bound for ARW mixing on the torus).

Let u be the uniform driving sequence on the discrete torus Zdn \ {z} with sink at z.
Let λ be any sleep rate vector, let P be the simple random walk on Zdn, and let N = nd.
Then for any ε > 0 we have for sufficiently large n

tmix(ARW, u, ε) ≤ N + d1/2N1− 1
3d .

3.1 Concentration inequalities

To prepare for the proof of Theorem 3.1 we recall three concentration inequalities.

1. Azuma-Hoeffding inequality. [23, Theorem A.10] Let St be a martingale with
bounded differences |St − St−1| ≤ bt. Then

P(St − S0 ≥ s) ≤ exp

(
− s2

2
∑t
i=1 b

2
i

)
. (3.1)

2. Bernstein inequality. [37, Theorem 2.8.4] Let X1, . . . , Xt be independent mean
zero random variables with |Xi| ≤ 1. Then

P(|X1 + . . .+Xt| ≥ s) ≤ 2 exp

(
− s2

2(
∑t
i=1 EX2

i + 1
3s)

)
.
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We will apply this inequality in the case Xi = Yi−EYi where the Yi are independent
Bernoulli random variables. Writing S = Y1 + . . . + Yt and µ = ES, we obtain for
s ≤ µ

P(|S − µ| ≥ s) ≤ 2 exp

(
− s

2

3µ

)
. (3.2)

3. Time to exit a ball. Consider a simple random walk in Zd starting at any point in
the ball Br. Let T be the first exit time of the walk from Br. Then for sufficiently
large t

P(T ≥ t) ≤ exp

(
− t

3(r + 1)2

)
. (3.3)

This follows from the fact (proved by optional stopping for the martingale ‖Wt‖2− t)
that ET ≤ (r + 1)2 regardless of where the simple random walk Wt starts. By
Markov’s inequality and the strong Markov property, P(T ≥ (k + 1)e(r + 1)2 |T ≥
ke(r+1)2) ≤ 1

e for all k ∈ N. Therefore P(T ≥ t) ≤ ( 1
e )bt/e(r+1)2c, which implies (3.3)

for sufficiently large t.

3.2 Upper bound in dimension 1

Consider IDLA with 2r+ n particles in the interval (−r, r), with particles killed if they
reach an endpoint r or −r. By the abelian property, we may assume all particles are
present at the beginning instead of being added one at a time. We stabilize IDLA in
discrete time steps where at each time step, one particle moves either left by 1 or right
by 1 with probability 1/2 each. For definiteness, we always move the leftmost active
particle (recall that a particle is active in IDLA if and only if there is at least one other
particle located at the same site). We keep track of the quantity

St =

2r+n∑
i=1

xi,t

where xi,t is the location of the ith particle after t time steps. This St is a martingale
with |St − St−1| ≤ 1; it measures the total left-right “imbalance” of the particles at time t.

Lemma 3.4. Fix ε > 0 and r
1
2 +ε ≤ n ≤ 2r. For IDLA with 2r + n particles in (−r, r) with

either central or uniform driving, there is a constant R = R(ε) such that for all r ≥ R

P{No particles reach r} ≤ exp

(
− n

33r1/2

)
. (3.4)

Proof. The total number of particles is 2r+n, and at most one particle can settle at each
site in (−r, r). So on the event B := {No particles reach r}, at least n particles exit at
−r. Each exiting particle contributes −r to the total imbalance ST , where T is the time
of stabilization of IDLA. If the interval (−r, r) is completely full at time T , then the total
contribution of the particles inside (−r, r) to ST is zero; moreover, every unoccupied site
in (−r, r) results in an additional particle exiting at −r, which can only make ST smaller.
Hence

B ⊂ {ST ≤ −nr}.

Now for any t ≥ 0,
P(B) ≤ P{T > t}+ P{T ≤ t,B} (3.5)

and since St = ST for all t ≥ T ,

{T ≤ t,B} ⊂ {T ≤ t, ST ≤ −nr}
= {T ≤ t, St ≤ −nr}
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⊂
{
St − S0 ≤

−nr
2

}
∪
{
S0 < −

nr

2

}
. (3.6)

We now make our choice of t = nr5/2. By Azuma-Hoeffding (3.1),

P

{
St − S0 ≤

−nr
2

}
≤ exp

(
− (nr/2)2

2t

)
≤ exp

(
− n

8r1/2

)
. (3.7)

With central driving, S0 = 0. With uniform driving, S0 is a sum of 2r + n ≤ 4r

independent random variables with the uniform distribution on (−r, r), so by Azuma-
Hoeffding

P

(
S0 < −

nr

2

)
≤ exp

(
−

( 1
2nr)

2

2(4r)r2

)
≤ exp

(
− n

32r1/2

)
(3.8)

for sufficiently large r. In the last inequality we have used that n ≥ r 1
2 +ε. Combining this

with (3.6), (3.7) and (3.8) yields P(T ≤ t,B) ≤ 2 exp(− n
32r1/2

).
Finally, to bound the first term of (3.5), since n ≤ 2r,

P{T > t} ≤
2r+n∑
i=1

P

{
Ti >

t

4r

}
where Ti is the total number of steps of taken by the ith particle during IDLA. By
the simple random walk estimate (3.3), the right side is at most 4r exp(− t

12r(r+1)2 ) ≤
1
2 exp(− n

13r1/2
) for sufficiently large r. Here we again use the lower bound n ≥ r1/2+ε.

Now we are ready to prove Theorem 3.1 in dimension 1. We perform IDLA with
N +Nα particles in the interval Br = (−r, r), where N = 2r − 1 is the size of Br.

Proof. Assume first that α ≤ 1, so that Lemma 3.4 applies with n = Nα. On the event
that IDLA with central driving does not fill Br, either −r or r receives no particles. By
Lemma 3.4 and symmetry, this event has probability ≤ 2 exp(− n

33r1/2
), which completes

the proof in the case of central driving.
Now consider uniform driving. On the event that IDLA with uniform driving does

not fill Br, there is some X ∈ Br not visited by any particles, so all particles leaving
(−r,X) must exit to the left and all particles leaving (X, r) must exit to the right. For
fixed x ∈ (−r, r) let I be the larger of the two intervals (−r, x) and (x, r). Let N1 be the
number of particles starting in I. Then N1 has the binomial (2r+n, p) distribution where
p = #I/(2r). Since #I ≥ r we have EN1 ≥ #I + n

2 . So by Azuma-Hoeffding,

P

{
N1 < #I +

n

4

}
≤ exp

(
− (n/4)2

2(2r + n)

)
≤ exp

(
− n2

128
r

)
.

On the complementary event {N1 ≥ #I + n
4 }, the probability that all N1 particles exit

I on one side is by Lemma 3.4 at most

exp

(
− n/4

33(#I/2)1/2

)
≤ exp

(
− n

132r1/2

)
since #I ≤ 2r. Taking a union bound over x ∈ (−r, r), the probability that IDLA with
2r + n particles does not fill (−r, r) is at most exp(− n

133r1/2
) for sufficiently large r.

For α > 1, we split the N +Nα initial particles into batches of size 2N , and do IDLA
independently for each batch. The number of batches is bN+Nα

2N c ≥ b 1
2N

α−1c > 1
2r
α−1

for sufficiently large r, so by independence,

P
{
Tfull > N +Nα

}
≤ exp

(
−r

1/2

133

) 1
2 r
α−1

= exp

(
− 1

266
rα−

1
2

)
.
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3.3 Upper bound in higher dimensions

To prove Theorem 3.1 in dimensions d ≥ 2 we will use the method of Lawler, Bramson,
and Griffeath [22]. In their shape theorem for IDLA, driving is from the origin and there
is no sink. Here we adapt their method to uniform driving with sink.

Fix d ≥ 2 and let Gr(y, z) be the expected number of visits to z by simple random
walk started at y before exiting the ball Br = {x ∈ Zd : |x| < r}. We recall [21, §1.5, 1.6]
that Gr is symmetric in y and z, and for all z ∈ Br

Gr(z, z) ≤ c1 log r (3.9)

for a constant c1 depending only on d. In the proof of Theorem 3.1, we will use the
following lower bound.

Lemma 3.5. There is a constant c2 > 0 depending only on d, such that for all z ∈ Br∑
y∈Br

Py(τz < τr) ≥ c2
r

log r
.

Proof. Recall that Gr(z, z)Py(τz < τr) = Gr(y, z) = Gr(z, y); the first equality follows
from the strong Markov property by noting that if the walk visits z before exiting Br,
then the number of visits to z before exiting Br has a geometric distribution with mean
Gr(z, z). Now by (3.9),

c1 log r
∑
y∈Br

Py(τz < τr) ≥
∑
y∈Br

Gr(z, y).

The right side equals the expected time Ezτr for simple random walk started at z to
exit Br. As a function of z, this expected time has discrete Laplacian −1 and vanishes
outside Br, so

Ezτr ≥ r2 − |z|2 ≥ r(r − |z|).

This completes the proof for all z ∈ Br−1. For z ∈ Br − Br−1 note that simple random
walk started at z has a constant probability of hitting Br−1 before exiting Br, so Ezτr is
at least a constant times r.

We will use the following Green function inequality to address the case of central
driving. It differs in two respects from [22, Lemma 3], in which the N1− 1

d term is absent
but z is restricted to the smaller ball B(1−ε)r.

Lemma 3.6. Fix r and let N = #Br. There is a constant C1 depending only on d, such
that (

N + C1N
1− 1

d

)
Gr(0, z) ≥

∑
y∈Br

Gr(y, z) for all z ∈ Br. (3.10)

Proof. By [27, Theorem 3.3], there are constants C0 and C2 depending only on d, and a
nonnegative function u (the “divisible sandpile odometer function”) on Zd such that

• u has discrete Laplacian 1−N0δ0 in Br, where N0 = N + C0N
1− 1

d .

• u ≤ C2 on ∂Br. (This is the last displayed equation in the proof of [27, Theo-
rem 3.3].)

The function
f(z) := N0Gr(0, z)−

∑
y∈Br

Gr(y, z).

also has discrete Laplacian 1 − N0δ0 in Br, and f vanishes on ∂Br. By the maximum
principle, f − u ≥ −C2 in Br. Now we’ll use the fact that Gr(0, z) ≥ C3N

−(1− 1
d ) in Br,
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for a constant C3 depending only on d. (This follows from [21, Prop. 1.5.9, 1.6.7] when
z ∈ Br−c for a suitable constant c; to extend to z ∈ Br \ Br−c, choose z′ ∈ Br−c with
|z − z′| < c and note that simple random walk started from z′ has a constant probability
to visit z before exiting Br). Letting C1 = C0 + C2

C3
we have(

N + C1N
1− 1

d

)
Gr(0, z)−

∑
y∈Br

Gr(y, z) ≥ f(z) +
C2

C3
N1− 1

dGr(0, z)

≥ u(z)− C2 + C2.

Since u ≥ 0, this completes the proof.

Proof of Theorem 3.1 in dimensions d ≥ 2. We consider first the case of uniform driving.
Perform IDLA starting with bN +Nαc particles at independent uniform locations in the
ball Br, where N = #Br. Denoting by Ar the resulting random subset of Br where
particles stabilize, we must show that P(Ar 6= Br) ≤ exp(− 1

4r
1/4) for sufficiently large r.

We modify the proof of the inner bound in [22] to account for killing at ∂Br and
uniform driving. For z ∈ Br, denote by Ez = {z 6∈ Ar} the event that no particle visits z
during IDLA. By a union bound over z, it suffices to show that for sufficiently large r

P(Ez) < exp
(
−2r1/4

)
for all z ∈ Br. (3.11)

Fix an arbitrary ordering of the particles, and define

τ iz = time of first visit to z by the ith particle in simple random walk;

τ ir = time of first exit of Br by the ith particle in simple random walk;

σi = stopping time of ith particle in the IDLA stabilization process;

M =

bN+Nαc∑
i=1

1{τ iz<τ ir};

L =

bN+Nαc∑
i=1

1{σi<τ iz<τ ir};

L̃ =
∑
y∈Br

1{τyz<τyr }.

Here τyz is first hitting time of z for a simple random walk started at y; and τyr is the first
exit time of Br for a simple random walk started at y.

Now we have for any a ∈ R,

P(Ez) = P(M − L = 0) ≤ P(M ≤ a) + P(L ≥ a)

≤ P(M ≤ a) + P(L̃ ≥ a). (3.12)

The last inequality follows from the observation that after IDLA stabilization, each vertex
can be occupied by at most one particle, so L̃ ≥ L.

Next we will show EM is substantially larger than EL̃. Since bN +Nαc particles are
dropped uniformly in Br, and N = #Br, we have:

EM =
bN +Nαc

N

∑
y∈Br

P
(
τyz < τyr

)
=

(
1 +
bNαc
N

)
µ, (3.13)

where µ = EL̃. By Lemma 3.5 we have µ ≥ c2
r

log r for all z ∈ Br. Now we make our

choice of exponent: α = 1− 1
3d , so that for sufficiently large r

bNαc
N

≥ c3rd(α−1) = c3r
− 1

3 ≥ c3µ−
1
3−ε (3.14)
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for any ε > 0 and r ≥ R(ε), where the constant c3 > 0 depends only on d. This implies

EM − EL̃ ≥ c3µ
2
3−ε.

Taking a = (EL̃+ EM)/2 we have

P(L̃ ≥ a) ≤ P

(
L̃− µ ≥ 1

2
c3µ

2
3−ε
)

By Bernstein’s inequality (3.2), the right side is at most 2 exp(− c23
12µ

1
3−2ε).

Likewise, since µ ≤ EM ≤ 2µ, we have by Bernstein’s inequality

P(M ≤ a) ≤ P

(
M − EM ≤ −1

4
c3(EM)

2
3−ε
)
≤ 2 exp

(
− c

2
3

48
µ

1
3−2ε

)
.

We conclude from (3.12) that for sufficiently small ε and sufficiently large r

P(Ez) ≤ exp
(
−2r1/4

)
(3.15)

which completes the proof in the case of uniform driving.
Now we adapt the proof to handle the case of central driving. Note driving enters

the proof only in equation (3.13). In the case of central driving, we have instead

EM =
⌊
N +Nα

⌋
P
(
τoz ≤ τor

)
so that

EM − µ =
1

Gr(z, z)

(⌊
N +Nα

⌋
Gr(o, z)−

∑
y∈Br

Gr(y, z)

)
. (3.16)

To complete the proof in this case, we use Lemma 3.6 to lower bound (3.16) for suffi-
ciently large r as follows:

EM − µ ≥
1
2bN

αc
N +Nα

EM.

Now applying (3.14) to lower bound the right side, we obtain for sufficiently large r

EM − µ ≥
(

1

4
c3µ
− 1

3−ε
)

EM ≥ 1

4
c3(EM)

2
3−ε.

The proof now proceeds as before: Again choosing a = (EL̃+ EM)/2, we have

P(M ≤ a) ≤ P

(
M − EM ≤ −1

8
c3(EM)

2
3−ε
)

P(L̃ ≥ a) ≤ P

(
L̃− EL̃ ≥ 1

8
c3(EM)

2
3−ε
)
.

By Bernstein’s inequality, since EM ≥ EL̃ = µ, both of these are upper bounded by

2 exp(− c23
192µ

1
3−2ε), which yields (3.15) as before.

3.4 Upper bound for the torus

Proof of Corollary 3.3. The case d = 1 is immediate from Theorem 3.1.
For d ≥ 2, we cover the torus Zdn \ {z} by Euclidean balls of radius of n/4, while

leaving the sink z uncovered. A simple but inefficient way to do this, which suffices for
our purpose, is to take all balls B(x, n/4) for x ∈ Zdn which do not contain z.

Now let B be one of the covering balls. By the abelian property, if IDLA with sink at
∂B fills B, then IDLA with sink at z also fills B.
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One can check that for all d ≥ 2 we have (#B/nd)1/3d ≥ 1.05d−1/2 for sufficiently
large n. When d = 2, this bound follows from the fact that #B ≥ 3(n/4)2 for sufficiently
large n (since π > 3). For general d, the bound follows from the formula for the volume
of the d-dimensional ball, along with the estimates kk/ek−1 ≤ k! ≤ (k + 1)k+1/ek.

Let n be large enough so that the bounds in Theorem 3.1 hold for r = n/4. Let
N = nd and α = 1− 1

3d . After dropping t = bN + d1/2Nαc particles uniformly at random
in Zdn \ {z}, the number of particles starting in B is a sum of t independent Bernoulli
random variables of mean #B/N . This sum has mean ≥ (#B) + 1.05(#B)α, so by
Bernstein’s inequality (3.2), the probability that B starts with less than (#B) + (#B)α

particles is at most 2 exp(−c(#B)2α−1), where c = 0.052

3 . For sufficiently large n, on the
event that B starts with at least (#B) + (#B)α particles, the probability that IDLA does
not fill B is at most exp(−c2(n/4)1/4), by Theorem 3.1.

By a union bound over the covering balls, the probability that IDLA does not fill
Zdn \ {z} is at most nd[2 exp(−c(#B)2α−1) + exp(−c2(n/4)1/4)]. Taking n large enough so
that this probability is < ε, we obtain from (2.3)

tmix(ARW, u, ε) ≤ tfull(IDLA, u, ε) ≤ t.

3.5 Lower bounds

In this section we state some lower bounds for the fill time of IDLA. The proofs are
straightforward, so we indicate only the main idea.

The first lower bound shows that the exponent α in Theorem 3.1 cannot be improved
to less than 1

2 in dimension d = 1 or 1− 1
d in dimensions d ≥ 2.

Proposition 3.7. For d ≥ 1, let Tfull be the time for IDLA to fill the ball Br ⊂ Zd, with
sink at Zd \ Br. Let N = #Br and let β = max{ 1

2 , 1 −
1
d}. The following holds for any

driving sequence u satisfying ut ∈ Br−2 for all t for d ≥ 2, and also for the uniform driving
sequence on Br for d ≥ 1: For all b > 0 there exists c > 0 such that for all sufficiently
large r

P
(
Tfull > N + bNβ

)
> c.

The proof idea for d = 1 is based on the observation that with some positive probability
(depending only on b) the left half interval (−r, 0) starts with more than r + 4bN1/2

particles. Conditioned on this event, with at least 1
2 probability, at least 2bN1/2 particles

exit (−r, 0) at −r, in which case there are not enough particles remaining to fill up
(−r, r).

The proof idea for d ≥ 2 is to split the IDLA stabilization into two stages: In stage
one, stabilize all particles starting inside Br−2, stopping them when they hit ∂Br−2;
and in stage two, finish the stabilization procedure. Let M be the number of particles
resting at ∂Br−2 at the end of stage one. If M is large (≥ CNβ), then with nonvanishing
probability, at least 2bNβ particles will exit Br in stage two. If M is small (< CNβ), then
with nonvanishing probability, Br \Br−2 will not fill up in stage two.

Next we observe that for general graphs, Tfull is not always upper bounded by
(1 + o(1))#V . The wired tree provides an example: Let V be the graph obtained from the
complete binary tree of depth n+ 1, by collapsing all 2n+1 leaves to a single sink vertex,
z. We show that on this graph, the fill time of IDLA has order #V log #V . Denote by B
the set of 2n neighbors of z, and let

T ′full = min{t : B ⊂ At}

be the first time IDLA contains B. Note Tfull ≥ T ′full.
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Proposition 3.8. For IDLA driven by simple random walk on the wired tree V , with
either central or uniform driving, we have that for any c < 1/4

P
(
T ′full > c#V log #V

)
→ 1

as n→∞.

The idea of the proof is to lower bound the time to collect 2n coupons corresponding
to the vertices of B. Each time a vertex of B joins the IDLA cluster, we collect a coupon.
The coupons are not independent, but there is a uniform upper bound on the probability
of collecting a new coupon. This uniform upper bound is derived by continuing the path
of a particle that joins the cluster until it hits z, so that the probability of collecting a new
coupon at time t+ 1 is at most the expected number of hits of B \At by simple random
walk before hitting z. For either central or uniform driving, this expected number of hits
equals 2(1− k

2n ), where k = (#At ∩ B) is the number of boundary vertices in the current
cluster. Since this upper bound depends on the cluster only via k, we can lower bound
T ′full by a sum of 2n independent geometric random variables as in the standard coupon
collector.

4 Conjectures

We conclude by stating two conjectures. While this paper was under review, Con-
jecture 4.1 has been proved by Bristiel and Salez [8, Proposition 1 and Corollary 2].
Regarding Conjecture 4.2, which remains open, the related inequality ζc < 1 has been
proved in all dimensions and for all sleep rates [1].

Conjecture 4.1 (Time for IDLA to fill a transitive graph).

Let V be a transitive graph with one vertex designated as sink. Then

Tfull

#V
→ 1 in probability as #V →∞.

Conjecture 4.2 (Cutoff for ARW at the stationary density).

Let u be the uniform driving sequence on Br = B(0, r) ∩ Zd. Let 0 < λ < ∞ be any
constant sleep rate, and let P be the simple random walk on Br with sink at Zd \ Br.
There exists a constant ζ = ζ(λ, d) < 1 such that

1. For any ε > 0,
tmix(ARW, u, ε)

#Br
→ ζ as r →∞.

2. Writing |S[1Br ]| for the number of particles in the ARW stationary state on Br, we
have

|S[1Br ]|
#Br

→ ζ in probability as r →∞.

3. ζ = ζc, the critical density for ARW stabilization in Zd.
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