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Abstract

We first show that the discounted cost, cost up to an exit time, and ergodic cost involv-
ing controlled non-degenerate diffusions are continuous on the space of stationary
control policies when the policies are given a topology introduced by Borkar [V. S.
Borkar, A topology for Markov controls, Applied Mathematics and Optimization 20
(1989), 55–62]. The same applies for finite horizon problems when the control policies
are Markov and the topology is revised to include time also as a parameter. We then es-
tablish that finite action/piecewise constant stationary policies are dense in the space
of stationary Markov policies under this topology and the same holds for continuous
policies. Using the above mentioned continuity and denseness results we establish
that finite action/piecewise constant policies approximate optimal stationary policies
with arbitrary precision. This gives rise to the applicability of many numerical methods
such as policy iteration and stochastic learning methods for discounted cost, cost up
to an exit time, and ergodic cost optimal control problems in continuous-time. For
the finite-horizon setup, we establish additionally near optimality of time-discretized
policies by an analogous argument. We thus present a unified and concise approach
for approximations directly applicable under several commonly adopted cost criteria.
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Near optimality of quantized policies

1 Introduction

In this paper, we study regularity properties of induced cost (under several criteria)
on a controlled diffusion process with respect to a control topology defined by Borkar
[15], and implications of these properties on existence and, in particular, approximations
for optimal controlled diffusions. We will arrive at very general approximation results
for optimal control policies by quantized (finite action / piecewise constant) stationary
control policies for a general class of controlled diffusions in the whole space Rd as well
as time-discretizations for the criteria with finite horizons.

Such a problem is of significant practical consequence, and accordingly has been
studied extensively in a variety of setups. Due to its wide range of applications in
domains that spans from mathematical finance, large deviations and robust control,
vehicle and mobile robot control and several other fields, the stochastic optimal control
problems for controlled diffusions have been studied extensively in literature see, e.g.,
[14, 40] (finite horizon cost) [13, 12] (discounted cost) [2, 3, 18, 17, 19, 5] (ergodic
cost) and references therein. Typically, there are two main approaches to deal with
these problems. The first one is the Bellman’s Dynamic Programming Principal (DPP).
The DPP approach allows one to characterize the value function of the optimal control
problem as the unique solution of the associated Hamilton-Jacobi-Bellman (HJB) equation
[14, 40, 5, 37, 38]. The second one is Pontryagin maximum principal (in the stochastic
framework) [41].

For numerical methods as well as learning theoretic methods, it is imperative to
arrive at rigorous approximation results.

In the continuous-time literature, most of the approximation results are build on
time-discretization and mainly focused on finite horizon or discounted cost criteria see,
e.g., [35, 31, 32, 27, 29, 7, 8], though the ergodic control and control up to an exit time
criteria have also been studied [35, 34].

For finite horizon criteria, a commonly adopted approach of approximating controlled
diffusions by a sequence of discrete time Markov chain via weak convergence methods
was studied by Kushner and Kushner and Dupuis, see [35, 31, 32]. These works deal with
numerical procedures to construct near optimal control policies for controlled diffusion
models by approximating the space of (open-loop adapted) relaxed control policies
with those that are piece-wise constant, and by considering the weak convergence of
approximating probability measures on the path space to the measure on the continuous-
time limit. It is shown in [35, 31, 32] that if the constructed controlled Markov chain
satisfies a certain “consistency” condition at the discrete-time sampling instants, then
the state process and the corresponding value function asymptotically approximates the
continuous time state process and the associated value function. This approach has been
referred to as the weak convergence approach.

In an alternative program, building on finite difference approximations for Bellman’s
equations utilizing their regularity properties, Krylov [27, 29] established the conver-
gence rate of for such approximation techniques, where finite difference approximations
are studied to arrive at stability results. In particular, some estimates for the error
bound of the finite-difference approximation schemes in the problem of finding viscosity
or probabilistic solutions to degenerate Bellman’s equations are established. The proof
technique is based on mean value theorems for stochastic integrals (as in [30]), obtained
on the basis of elementary properties of the associated Bellman’s equations. Also, for
controlled non-degenerate diffusion processes, it is shown in [28] that using policies
which are constant on intervals of length h2, one can approximate the value function
with errors of order h

1
3 . In [7, 8] Barles et. al. improved the error bounds obtained in

[27, 29, 28].
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Near optimality of quantized policies

Borkar [15, 14], for the finite-horizon cost case pursued an alternative approach to
show continuity (when only stationary state feedback policies are considered for finite
horizon problems) in his newly introduced topology; he studied the dependence of the
strategic measures (on the path space) on the control policy, via regularity properties
of generator functions. Additionally, Borkar [15] did not study the implications in
approximations.

Instead of the approaches adopted in the aforementioned studies, in this paper,
utilizing regularity results of the associated Poisson equations via PDE theory, we arrive
at continuity results under a relatively weaker set of assumptions on the diffusion
coefficients (with the exception of Krylov’s method, which is tailored for finite horizon
problems). Our approach allows one to arrive at a unification of approximation methods
for finite horizon criterion, infinite discounted criterion, control up to an exit time, and
ergodic cost criterion problems. Accordingly, our primary approach is to utilize the
regularity properties of the partial differential equations directly, first via uniqueness of
solutions, and then via regularity properties of the solutions to establish consistency of
optimality equations satisfied by the limits of solutions (as policies converge). We will
see that one can obtain rather concise, direct, and general results.

Additionally, our results can be used to present weaker conditions under which the
weak convergence methods can be applicable or when discretized approximations can be
shown to be near optimal: For example it will be a consequence of our analysis that for
many of the criteria one can utilize piece-wise continuous or continuous control policies
for near optimality, which implies [35, Assumption A2.3, p. 322] used for approximations
under ergodic cost criteria (where invariant measures under sampled chains can be
shown to converge to the invariant measure of a continuous-time limit as discretization
gets finer). Furthermore, we do not impose uniform boundedness conditions on the drift
term or (uniform) Lipschitz continuity conditions, a common assumption in [35, 31, 32,
27, 29].

As noted above, the study of the finite action/piecewise constant approximation
problem plays important role in computing near optimal policies and learning algorithms
for controlled diffusions in Rd. As it is pointed out in [42, 25], piecewise constant policies
are also useful in numerical methods for solving HJB equations. The computational
advantage comes from the fact that over the intervals in which the policy is constant,
we have to only solve linear PDEs. In the continuous time setup learning problems
become much more involved due to the complex structure of the dynamics and the
optimality equation. One common approach to overcome these difficulties is to construct
simpler models by discretizing time, space and action spaces which approximates the
original continuous time model. In a recent work [9], the authors studied an approximate
Q-learning algorithm for controlled diffusion models by discretizing the time, space
and action spaces. Under mild assumptions, they produced a learning algorithm which
converges to some approximately optimal control policy for a discounted cost problem.
They assumed that the discretization is uniform in time but the discretization in state
and action can be non-uniform. Similar learning algorithm for controlled diffusions
is proposed in [39], this result is based on the finite difference and finite element
approximations (as in [35]). Thus, if one can establish that learning a control model
with finitely many control actions is sufficient for approximate optimality, then it will be
easier to produce efficient learning algorithms for the original model.

In the literature of discrete time Markov decision processes (MDPs), various tech-
niques are available to address the approximation problems, e.g., approximate dynamic
programming, approximate value or policy iteration, approximate linear programming,
simulation based techniques, neuro-dynamic programming (or reinforcement learning),
state aggregation, etc. (see [11, 44, 22, 45] and the references therein). For discrete
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Near optimality of quantized policies

time controlled models near optimality of quantized policies has been studied extensively
in the literature see, e.g., [26, 47, 46, 48, 45]. In [47, 46], authors studied the finite
state, finite action approximation (respectively) of fully observed MDPs with Borel state
and action spaces, for both discounted and average costs criteria. In the compact state
space case explicit rate of convergence is also established in [47]. Later, these results
have been extended to partially observed Markov decision process setup in [26, 48], also
see the references therein. Recently, [6, Section 4] established the denseness of the
performance of deterministic policies with finite action spaces, among the performance
values attained by the set of all randomized stationary policies.

Contributions and main results

In this manuscript our main goal is to study the following approximation problem: for
a general class of controlled diffusions in Rd under what conditions one can approximate
the optimal control policies for both finite/infinite horizon cost criteria by policies with
finite actions/ piecewise constant/continuous policies? While the time discretization
approximation results for finite horizon problems, studied extensively by Krylov [27, 29,
28] (for degenerate diffusions), we will discuss this (for the non-degenerate case) as an
application of our results.

In order to address these questions, we first show that both finite horizon and infinite
horizon (discounted/ergodic) costs are continuous as a function of control policies
under Borkar topology [15]. We establish these results by exploiting the existence and
uniqueness results of the associated Poisson equations (see, Theorem 6.1 (finite horizon),
Theorem 3.1 (discounted), Theorem 3.2 (control up to an exit time), Theorem 3.5, 3.8
(ergodic)). The analysis of ergodic cost case is relatively more involved. One of the
major issues in analyzing the ergodic cost criteria under the near-monotone hypothesis
is the non-uniqueness/restricted uniqueness of the solution of the associated HJB/Poisson
equation (see, [5, Example 3.8.3], [3]). In [5, Example 3.8.3], [3] it is shown that under
near-monotone hypothesis the associated HJB/Poisson equation may admit uncountably
many solutions. In this paper, we have shown that under the near-monotone hypothesis,
the associated Poisson equation admits a unique solution in the space of compatible
solution pairs (see, [3, Definition 1.1]). Continuity results obtained in the paper will be
also useful in establishing the existence of optimal policies of the corresponding optimal
control problems.

Next, utilizing Lusin’s theorem and Tietze’s extension theorem we show that under
the Borkar topology, quantized (finite actions/ piecewise constant) stationary policies
are dense in the space of stationary Markov policies (see, Section 4). Also, following the
analogous proof technique, we establish the denseness of space of continuous stationary
polices in the space of stationary policies (see Theorem 4.3).

Following and briefly modifying the proof technique of the denseness of stationary
policies, including time also as a parameter we establish that piecewise constant Markov
policies are dense in the space of Markov policies under the Borkar topology (see,
Theorem 6.2).

Then, using our continuity and denseness results, we deduce that for both finite
and infinite horizon cost criteria, the optimal control policies can be approximated
by quantized (finite actions/ piecewise constant) policies with arbitrary precision (see,
Theorem 6.3 (finite horizon), Theorem 5.2 (control up to an exit time), Theorem 5.3, 5.4
(infinite horizon)).

The remaining part of the paper is organized as follows. In Section 2 we provide
the problem formulation. The continuity of the discounted cost/cost up to an exit time
as a function of control policy are proved in Section 3.1. A similar continuity result for
ergodic cost is presented in Section 3.2, where we establish these results under two
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Near optimality of quantized policies

types of conditions; stability or near-monotonicity. Section 4 is devoted to establish the
denseness of finite action/piecewise constant or continuous stationary policies under
Borkar topology. Then using the denseness and continuity results we establish near
optimality of finite models for cost up to an exit time and discounted/ ergodic cost
criteria in Section 5. Finally, in Section 6, we analyze the denseness of piecewise
constant Markov policies under the Borkar topology and then exploiting the denseness
result we prove the near optimality of continuous or piecewise constant Markov policies
for the finite horizon cost criterion.

Notation:

• For any set A ⊂ Rd, by τ(A) we denote first exit time of the process {Xt} from the
set A ⊂ Rd, defined by

τ(A) := inf {t > 0 : Xt 6∈ A} .

• Br denotes the open ball of radius r in Rd, centered at the origin,

• τr, τ̆r denote the first exist time from Br, Bcr respectively, i.e., τr := τ(Br), and
τ̆r := τ(Bcr).

• By TrS we denote the trace of a square matrix S.

• For any domain D ⊂ Rd, the space Ck(D) (C∞(D)), k ≥ 0, denotes the class of all
real-valued functions on D whose partial derivatives up to and including order k
(of any order) exist and are continuous.

• Ckc (D) denotes the subset of Ck(D), 0 ≤ k ≤ ∞, consisting of functions that have
compact support. This denotes the space of test functions.

• Cb(R
d) denotes the class of bounded continuous functions on Rd.

• Ck0 (D), denotes the subspace of Ck(D), 0 ≤ k < ∞, consisting of functions that
vanish in Dc.

• Ck,r(D), denotes the class of functions whose partial derivatives up to order k are
Hölder continuous of order r.

• Lp(D), p ∈ [1,∞), denotes the Banach space of (equivalence classes of) measurable
functions f satisfying

∫
D|f(x)|p dx <∞.

• Wk,p(D), k ≥ 0, p ≥ 1 denotes the standard Sobolev space of functions on D
whose weak derivatives up to order k are in Lp(D), equipped with its natural norm
(see, [1]).

• If X (Q) is a space of real-valued functions on Q, Xloc(Q) consists of all functions f
such that fϕ ∈ X (Q) for every ϕ ∈ C∞c (Q). In a similar fashion, we define W

k,p
loc (D).

• For µ > 0, let eµ(x) = e−µ
√

1+|x|2 , x ∈ Rd. Then f ∈ Lp,µ((0, T ) × Rd) if
feµ ∈ Lp((0, T ) × Rd). Similarly, W1,2,p,µ((0, T ) × Rd) = {f ∈ Lp,µ((0, T ) × Rd) |
f, ∂f∂t ,

∂f
∂xi

, ∂2f
∂xi∂xj

∈ Lp,µ((0, T )×Rd)} with natural norm (see [10])

‖f‖W1,2,p,µ =‖∂f
∂t
‖Lp,µ((0,T )×Rd) + ‖f‖Lp,µ((0,T )×Rd)

+
∑
i

‖ ∂f
∂xi
‖Lp,µ((0,T )×Rd) +

∑
i,j

‖ ∂2f

∂xi∂xj
‖Lp,µ((0,T )×Rd) .

Also, we use the following convention ‖f‖W1,2,p,µ = ‖f‖1,2,p,µ.
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Near optimality of quantized policies

2 The Borkar topology on control policies, cost criteria, and the
problem statement

Let U be a compact metric space and V = P(U) be the space of probability measures
on U with topology of weak convergence. Let

b : Rd ×U→ Rd,

σ : Rd → Rd×d, σ = [σij(·)]1≤i,j≤d,
be given functions. We consider a stochastic optimal control problem whose state is
evolving according to a controlled diffusion process given by the solution of the following
stochastic differential equation (SDE)

dXt = b(Xt, Ut)dt+ σ(Xt)dWt , X0 = x ∈ Rd. (2.1)

Where

• W is a d-dimensional standard Wiener process, defined on a complete probability
space (Ω,F,P).

• We extend the drift term b : Rd ×V→ Rd as follows:

b(x, v) =

∫
U

b(x, ζ)v(dζ),

for v ∈ V.
• U is a V valued adapted process satisfying following non-anticipativity condition:

for s < t , Wt −Ws is independent of

Fs := the completion of σ(X0, Ur,Wr : r ≤ s) relative to (F,P) .

The process U is called an admissible control, and the set of all admissible controls is
denoted by U (see, [18]). By a Markov control we mean an admissible control of the
form Ut = v(t,Xt) for some Borel measurable function v : R+ ×Rd → V. The space of all
Markov controls is denoted by Um. If the function v is independent of t, i.e., Ut = v(Xt)

then U or by an abuse of notation v itself is called a stationary Markov control. The set
of all stationary Markov controls is denoted by Usm.

To ensure existence and uniqueness of strong solutions of (2.1), we impose the
following assumptions on the drift b and the diffusion matrix σ.

(A1) Local Lipschitz continuity: The function σ =
[
σij
]
: Rd → Rd×d, b : Rd ×U → Rd

are locally Lipschitz continuous in x (uniformly with respect to the other variables
for b). In other words, for some constant CR > 0 depending on R > 0, we have

|b(x, ζ)− b(y, ζ)|2 + ‖σ(x)− σ(y)‖2 ≤ CR |x− y|2

for all x, y ∈ BR and ζ ∈ U, where ‖σ‖ :=
√

Tr(σσT). Also, we are assuming that b
is jointly continuous in (x, ζ).

(A2) Affine growth condition: b and σ satisfy a global growth condition of the form

sup
ζ∈U
〈b(x, ζ), x〉+ + ‖σ(x)‖2 ≤ C0

(
1 + |x|2

)
∀x ∈ Rd,

for some constant C0 > 0.

(A3) Nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij(x)zizj ≥ C−1
R |z|

2 ∀x ∈ BR ,

and for all z = (z1, . . . , zd)
T ∈ Rd, where a := 1

2σσ
T.
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Near optimality of quantized policies

2.1 The Borkar topology on control policies

We now introduce the Borkar topology on stationary or Markov controls [15]

• Topology of Stationary Policies: From [5, Section 2.4], we have that the set Usm is
metrizable with compact metric.

Definition 2.1 (Borkar topology of stationary Markov policies). A sequence vn → v

in Usm if and only if

lim
n→∞

∫
Rd
f(x)

∫
U

g(x, ζ)vn(x)(dζ)dx =

∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx (2.2)

for all f ∈L1(Rd)∩L2(Rd) and g ∈Cb(Rd×U) (for more details, see [5, Lemma 2.4.1],
[15]).

• Topology of Markov Policies: In the proof of [15, Theorem 3.1, Lemma 3.1], re-
placing An by Ân = An × [0, n] and following the arguments as in the proof of [15,
Theorem 3.1, Lemma 3.1], we have the following topology on the space of Markov
policies Um.

Definition 2.2 (Borkar topology of Markov policies). A sequence vn → v in Um if
and only if

lim
n→∞

∫ ∞
0

∫
Rd
f(t, x)

∫
U

g(x, t, ζ)vn(t, x)(dζ)dxdt

=

∫ ∞
0

∫
Rd
f(t, x)

∫
U

g(x, t, ζ)v(x, t)(dζ)dxdt

(2.3)

for all f ∈ L1(Rd × [0,∞)) ∩ L2(Rd × [0,∞)) and g ∈ Cb(Rd × [0,∞)×U).

It is well known that under the hypotheses (A1)–(A3), for any admissible control (2.1)
has a unique weak solution [5, Theorem 2.2.11], and under any stationary Markov
strategy (2.1) has a unique strong solution which is a strong Feller (therefore strong
Markov) process [5, Theorem 2.2.12].

Remark 2.3. If we replace σ(x) by σ(x, ζ), in the relaxed control framework if σ(·, v(·)) is
Lipschitz continuous for v ∈ Usm then (2.1) admits unique strong solution. But in general
stationary policies v ∈ Usm are just measurable functions, and existence of suitable strong
solutions in our setting is more intricate (see, [5, Remarks 2.3.2], [16]). However, under
stationary Markov policies one can prove the existence of weak solutions which may
not be unique [49], [5, Remarks 2.3.2] (note though that uniqueness is established for
d = 1, 2 in [49, pp. 192–194] under some conditions). The existence of a suitable strong
solution under stationary Markov policies is essential to obtain stochastic representation
of the solutions of the associated HJB equations (by applying the Itô-Krylov formula).

2.2 Cost criteria

Let c : Rd × U → R+ be the running cost function. We assume that c is bounded,
jointly continuous in (x, ζ) and locally Lipschitz continuous in its first argument uniformly
with respect to ζ ∈ U. We extend c : Rd ×V→ R+ as follows: for v ∈ V

c(x, v) :=

∫
U

c(x, ζ)v(dζ) .

In this article, we consider the problem of minimizing finite horizon cost, α-discounted
cost and ergodic cost, respectively:
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2.2.1 Finite horizon cost

For U ∈ U, the associated finite horizon cost is given by

JT (x, U) = EUx

[∫ T

0

c(Xs, Us)ds+H(XT )

]
, (2.4)

and the optimal value is defined as

J ∗T (x) := inf
U∈U
JT (x, U) . (2.5)

Then a policy U∗ ∈ U is said to be optimal if we have

JT (x, U∗) = J ∗T (x) . (2.6)

2.2.2 Discounted cost criterion

For U ∈ U, the associated α-discounted cost is given by

J Uα (x, c) := EUx

[∫ ∞
0

e−αsc(Xs, Us)ds

]
, x ∈ Rd , (2.7)

where α > 0 is the discount factor and X(·) is the solution of (2.1) corresponding to
U ∈ U and EUx is the expectation with respect to the law of the process X(·) with initial
condition x. The controller tries to minimize (2.7) over his/her admissible policies U.
Thus, a policy U∗ ∈ U is said to be optimal if for all x ∈ Rd

J U
∗

α (x, c) = inf
U∈U
J Uα (x, c) ( =: Vα(x)) , (2.8)

where Vα(x) is called the optimal value.

2.2.3 Ergodic cost criterion

For U ∈ U, the associated ergodic cost is given by

Ex(c, U) = lim sup
T→∞

1

T
EUx

[∫ T

0

c(Xs, Us)ds

]
, (2.9)

and the optimal value is defined as

E∗(c) := inf
x∈Rd

inf
U∈U

Ex(c, U) . (2.10)

Then a policy U∗ ∈ U is said to be optimal if we have

Ex(c, U∗) = E∗(c) . (2.11)

2.2.4 Control up to an exit time

For each U ∈ U the associated cost is given as

Ĵ Ue (x) := EUx

[∫ τ(O)

0

e−
∫ t
0
δ(Xs,Us)dsc(Xt, Ut)dt+ e−

∫ τ(O)
0 δ(Xs,Us)dsh(Xτ(O))

]
, x ∈ Rd ,

where O ⊂ Rd is a smooth bounded domain, τ(O) := inf{t ≥ 0 : Xt /∈ O}, δ(·, ·) : Ō×U→
[0,∞) is the discount function and h : Ō → R+ is the terminal cost function. The optimal
value is defined as

Ĵ ∗e (x) = inf
U∈U
Ĵ Ue (x).

We assume that δ ∈ C(Ō ×U), h ∈W2,p(O).
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2.3 Problems studied

The main purpose of this manuscript will be to address the following problems:

• Continuity of finite and infinite horizon costs. Suppose {vn}n∈N is a sequence
of control policies which converge to another control policy v in some sense (in
particular, under Borkar topology, see Subsection 2.1). Does this imply that

• for finite horizon cost: JT (x, vn)→ JT (x, v) ?
• for discounted cost: J vnα (x, c)→ J vα (x, c) ?
• for ergodic cost: Ex(c, vn)→ Ex(c, v) ?
• for cost up to an exit time: Ĵ vne (x)→ Ĵ ve (x) ?

• Near optimality of quantized policies. For any given ε > 0, whether it is
possible to construct a quantized (finite action/ piecewise constant) policy vε such
that

• for finite horizon cost: JT (x, vε) ≤ J ∗T (x) + ε ?
• for discounted cost: J vεα (x, c) ≤ Vα(x) + ε ?
• for ergodic cost: Ex(c, vε) ≤ E∗(c) + ε ?
• for cost up to an exit time: Ĵ vεe (x) ≤ Ĵ ∗e (x) + ε ?

In this manuscript, we have shown that under a mild set of assumptions the answers to
the above mentioned questions are affirmative. For the finite horizon case, we also study
the time-discretization approximations as a further implication of our analysis.

Let us introduce a parametric family of elliptic operators, which will be useful in our
analysis. With ζ ∈ U treated as a parameter, we define a family of operators Lζ mapping
C2(Rd) to C(Rd) by

Lζf(x) := Tr
(
a(x)∇2f(x)

)
+ b(x, ζ) · ∇f(x) , (2.12)

where f ∈ C2(Rd) ∩ Cb(Rd) and for v ∈ V we extend Lζ as follows:

Lvf(x) :=

∫
U

Lζf(x)v(dζ) . (2.13)

Also, for each v ∈ Usm, we define

Lvf(x) := Tr(a∇2f(x)) + b(x, v(x)) · ∇f(x) . (2.14)

3 Continuity of expect cost under various criteria in control poli-
cies under the Borkar topology

3.1 Continuity for discounted cost/cost up to an exit time

Since the proof techniques are almost similar, in this section, we analyze the conti-
nuity of both discounted cost as well as the cost up to an exit time with respect to the
policies in the space of stationary policies under the Borkar topology (see Definition 2.1),
i.e., we show that the maps v → J vα and v → Ĵ ve are continuous on Usm.

3.1.1 Continuity of discounted cost

Now we prove the continuity of the discounted cost as a function of the control policies.

Theorem 3.1. Suppose Assumptions (A1)-(A3) hold. Then the map v 7→ J vα (x, c) from
Usm to R is continuous.
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Near optimality of quantized policies

Proof. Let {vn}n be a sequence in Usm such that vn → v in Usm. It is known that J vnα (x, c)

is a solution to the Poisson’s equation (see, [5, Lemma A.3.7])

LvnJ vnα (x, c)− αJ vnα (x, c) = −c(x, vn(x)) . (3.1)

Now by standard elliptic p.d.e. estimates as in [24, Theorem 9.11], for any p ≥ d+ 1 and
R > 0, we deduce that

‖J vnα (x, c)‖W2,p(BR) ≤ κ1

(
‖J vnα (x, c)‖Lp(B2R) + ‖c(x, vn(x))‖Lp(B2R)

)
, (3.2)

for some positive constant κ1 which is independent of n. Since

‖c‖∞ := sup
(x,u)∈Rd×U

c(x, u) ≤M < ∞ , and J vnα (x, c) ≤ ‖c‖∞
α

,

from (3.1) we obtain

‖J vnα (x, c)‖W2,p(BR) ≤ κ1M

(
|B2R|

1
p

α
+ |B2R|

1
p

)
. (3.3)

We know that for 1 < p < ∞, the space W2,p(BR) is reflexive and separable, hence,
as a corollary of Banach Alaoglu theorem, we have that every bounded sequence in
W2,p(BR) has a weakly convergent subsequence (see, [20, Theorem 3.18.]). Also, we
know that for p ≥ d+ 1 the space W2,p(BR) is compactly embedded in C1,β(B̄R), where
β < 1− d

p (see [5, Theorem A.2.15 (2b)]), which implies that every weakly convergent

sequence in W2,p(BR) will converge strongly in C1,β(B̄R). Thus, in view of estimate (3.3),
by a standard diagonalization argument and Banach Alaoglu theorem, we can extract a
subsequence {V nkα } such that for some V ∗α ∈W

2,p
loc(Rd){

J vnkα (x, c)→ V ∗α in W
2,p
loc(Rd) (weakly)

J vnkα (x, c)→ V ∗α in C1,β
loc (Rd) (strongly) .

(3.4)

In the following we will show that V ∗α = J vα (x, c). Note that

b(x, vnk(x)) · ∇J vnkα (x, c)− b(x, v(x)) · ∇V ∗α (x) =b(x, vnk(x)) · ∇
(
J vnkα (x, c)− V ∗α

)
(x)

+ (b(x, vnk(x))− b(x, v(x))) · ∇V ∗α (x) .

Since J vnkα (x, c) → V ∗α in C1,β
loc (Rd) and b is locally bounded, on any compact set

b(x, vnk(x)) · ∇
(
J vnkα (x, c)− V ∗α

)
(x) → 0 strongly. Also, since ∇V ∗α ∈ C

0,β
loc (Rd), in view

of the topology of Usm, for any φ ∈ C∞c (Rd) we have

lim
n→∞

∫
Rd
b(x, vnk(x)) · ∇V ∗α (x)φ(x)dx =

∫
Rd
b(x, v(x)) · ∇V ∗α (x)φ(x)dx .

Hence, as k →∞, we obtain

b(x, vnk(x)) · ∇J vnkα (x, c) + c(x, vnk(x))→ b(x, v(x)) · ∇V ∗α (x) + c(x, v(x)) weakly . (3.5)

Now, multiplying by a test function φ ∈ C∞c (Rd), from (3.1), it follows that∫
Rd

Tr
(
a(x)∇2J vnkα (x, c)

)
φ(x)dx+

∫
Rd
{b(x, vnk(x)) · ∇J vnkα (x, c)+c(x, vnk(x))}φ(x)dx

= α

∫
Rd
J vnkα (x, c)φ(x)dx .
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Near optimality of quantized policies

Hence, using (3.4), (3.5), and letting k →∞ (in the sense of distributions), we obtain∫
Rd

Tr
(
a(x)∇2V ∗α (x)

)
φ(x)dx+

∫
Rd
{b(x, v(x)) · ∇V ∗α (x) + c(x, v(x))}φ(x)dx

= α

∫
Rd
V ∗α (x)φ(x)dx .

(3.6)

Since φ ∈ C∞c (Rd) is arbitrary and V ∗α ∈W
2,p
loc(Rd) from (3.6), we deduce that the function

V ∗α ∈W
2,p
loc(Rd) ∩ Cb(Rd) satisfies

Tr
(
a(x)∇2V ∗α (x)

)
+ b(x, v(x)) · ∇V ∗α (x) + c(x, v(x)) = αV ∗α (x) . (3.7)

Let X be the solution of the SDE (2.1) corresponding to v. Now applying Itô-Krylov
formula, we obtain the following

Evx
[
e−αTV ∗α (XT )

]
− V ∗α (x)

= Evx

[∫ T

0

e−αs{Tr
(
a(Xs)∇2V ∗α (Xs)

)
+ b(Xs, v(Xs)) · ∇V ∗α (Xs)− αV ∗α (Xs))}ds

]
.

Hence, by (3.7), we get

Evx
[
e−αTV ∗α (XT )

]
− V ∗α (x) = −Evx

[∫ T

0

e−αsc(Xs, v(Xs))ds

]
. (3.8)

Since V ∗α is bounded and

Evx
[
e−αTV ∗α (XT )

]
= e−αT Evx [V ∗α (XT )] ,

letting T →∞, it follows that

lim
T→∞

Evx
[
e−αTV ∗α (XT )

]
= 0 .

Thus, letting T →∞ by monotone convergence theorem, from (3.8), we obtain

V ∗α (x) = Evx

[∫ ∞
0

e−αsc(Xs, v(Xs))ds

]
= J vα (x, c) . (3.9)

This completes the proof.

3.1.2 Continuity of cost up to an exit time

Following the proof technique of Theorem 3.1, now we show that the cost up to an exit
time (defined in Subsection 2.2.4) is continuous as a function of the control policies.

Theorem 3.2. Suppose Assumptions (A1)-(A3) hold. Then the map v 7→ Ĵ ve (x) from Usm

to R is continuous.

Proof. Let {vn}n be a sequence in Usm such that vn → v in Usm. From [24, Theorem 9.15],
it follows that there exist a unique function ψn(x) ∈ W2,p(O) satisfying the following
Poisson’s equation

Lvnψn(x)− δ(x, vn(x))ψn(x) + c(x, vn(x)) = 0 with ψn = h on ∂O . (3.10)

Applying Itô-Krylov formula, one can show that ψn(x) = Ĵ vne (x) (this stochastic repre-
sentation also ensures the uniqueness of the solution of (3.10)).
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Near optimality of quantized policies

Now following the argument as in Theorem 3.1, by standard elliptic p.d.e. estimates
[24, Theorem 9.11], we deduce that there exists ψ(x) ∈ W2,p(O) such that ψn → ψ

weakly in W2,p(O). Thus, closely following the proof of Theorem 3.1, letting n → ∞,
from (3.10) it follows that

Lvψ(x)− δ(x, v(x))ψ(x) + c(x, v(x)) = 0 with ψ = h on ∂O . (3.11)

Again, by Itô-Krylov formula, using (3.11) we deduce that ψ(x) = Ĵ ve (x). This completes
the proof of the theorem.

3.2 Continuity for ergodic cost

In this section we study the continuity of the ergodic costs with respect to policies
under Borkar topology in the space of stationary Markov policies. We will study this
problem under two sets of assumptions: the first is so called near-monotonicity assump-
tion on the running cost function and other one is Lyapunov stability assumption on the
system. Our proof strategies will be slightly different under these two setups: In the
former we will build on regularity properties of invariant probability measures, in the
latter we will build more directly on regularity properties of solutions to HJB equations.

3.2.1 Under a near-monotonicity assumption

We assume that the running cost function c is near-monotone with respect to E∗(c), i.e.,

(A4) It holds that

lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ) > E∗(c) . (3.12)

This condition penalizes the escape of probability mass to infinity. Since our running cost
c is bounded it is easy to see that E∗(c) ≤ ‖c‖∞. It is known that under (3.12), optimal
control exists in the space of stable stationary Markov controls (see, [5, Theorem 3.4.5]).

Remark 3.3. It may seem difficult at first to verify (3.12) unless E∗(c) is known. However
there are important cases where (3.12) always holds, e.g.,

• When infζ∈U c(x, ζ) is inf-compact (i.e., the sub-level sets {x : infζ∈U c(x, ζ) ≤ k},
k ∈ R, are either empty or compact sets) and E∗(c) is finite, then (3.12) holds
trivially.

• It is easy to see that if there exits v ∈ Usm such that

lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ) > c(x, v(x)) for all x ∈ Rd , (3.13)

then (3.12) holds. For example, in dimension d = 1, let U = {0, 1} and c(x, ζ) =
x2

1+x2 + ζ then for suitable choice of v ∈ Usm, (3.13) holds.

First, we prove that for each stable stationary Markov policy v ∈ Usm the associated
Poisson’s equation admits a unique solution in a certain function space. This uniqueness
result will be useful in establishing the continuity and near optimality of quantized
policies. For the following supporting result, we closely follow [5].

Theorem 3.4. Suppose that Assumptions (A1) - (A4) hold. Let v ∈ Usm be a stable control
with unique invariant measure ηv, such that

lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ) > inf
x∈Rd

Ex(c, v) . (3.14)
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Near optimality of quantized policies

Then, there exists a unique pair (V v, ρv) ∈ W
2,p
loc(Rd) × R, 1 < p < ∞, with V v(0) = 0,

infRd V
v > −∞ and ρv =

∫
Rd

∫
U
c(x, u)v(x)(du)ηv(dx), satisfying

ρv = [LvV
v(x) + c(x, v(x))] (3.15)

Moreover, we have

(i) ρv = infRd Ex(c, v).

(ii) for all x ∈ Rd

V v(x) = lim
r↓0
Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρv) dt

]
. (3.16)

Proof. Since c is bounded, we have (ρv := )
∫
Rd

∫
U
c(x, u)v(x)(du)ηv(dx) ≤ ‖c‖∞. In view

of (3.14), by writing ρv = α
∫
Jvα(x, c)ηv(dx) from [5, Lemma 3.6.1], we have

inf
κ(ρv)

J vα (x, c) = inf
Rd
J vα (x, c) ≤ ρv

α
, (3.17)

where κ(ρv) := {x ∈ Rd | minζ∈U c(x, ζ) ≤ ρv} and J vα (x, c) is the α-discounted cost
defined as in (2.7). As earlier, we have that J vα (x, c) is a solution to the Poisson’s
equation (see, [5, Lemma A.3.7])

LvJ vα (x, c)− αJ vα (x, c) = −c(x, v(x)) . (3.18)

Since x→ minζ∈U c(x, ζ) is continuous, we have κ(ρv) is closed and (3.14) implies that it
is bounded. Therefore κ(ρv) is compact and hence for some R0 > 0, we have κ(ρv) ⊂ BR0 .
This gives us infBR0

J vα (x, c) = infRd J vα (x, c).
Thus, following the arguments as in [5, Lemma 3.6.3], we deduce that for each

R > R0 there exist constants C̃2(R), C̃2(R, p) depending only on d,R0 such that(
osc
B2R

J vα (x, c) :=

)
sup
B2R

J vα (x, c)− inf
B2R

J vα (x, c) ≤ C̃2(R)

(
1 + α inf

BR0

J vα (x, c)

)
, (3.19)

‖J vα (·, c)− J vα (0, c)‖W2,p(BR) ≤ C̃2(R, p)

(
1 + α inf

BR0

J vα (x, c)

)
. (3.20)

Hence, by following the arguments as in [5, Lemma 3.6.6], we conclude that there exists
(V v, ρ̃v) ∈W

2,p
loc(Rd)×R such that along a subsequence (as α→ 0), J vα (·, c)− J vα (0, c)→

V v(·) and αJ vα (0, c)→ ρ̃v and the pair (V v, ρ̃v) satisfies

LvV
v(x) + c(x, v(x)) = ρ̃v . (3.21)

We will show that the subsequential limits are unique.
From (3.17), we get ρ̃v ≤ ρv. Now, in view of estimates (3.17) and (3.20), it is easy to

see that
‖V v‖W2,p(BR) ≤ C̃2(R, p) (1 +M) . (3.22)

Also, for each x ∈ Rd, we have

V v(x) = lim
α→0

(J vα (x, c)− J vα (0, c))

≥ lim inf
α→0

(
J vα (x, c)− inf

Rd
J vα (x, c) + inf

Rd
J vα (x, c)− J vα (0, c)

)
≥ − lim sup

α→∞

(
J vα (0, c)− inf

Rd
J vα (x, c)

)
+ lim inf

α→∞

(
J vα (x, c)− inf

Rd
J vα (x, c)

)
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Near optimality of quantized policies

≥ − lim sup
α→∞

(
J vα (0, c)− inf

BR0

J vα (x, c)

)
+ lim inf

α→∞

(
J vα (x, c)− inf

Rd
J vα (x, c)

)
≥ − lim sup

α→∞

(
osc
BR0

J vα (x, c)

)
;

(
since J vα (x, c)− inf

Rd
J vα (x, c) ≥ 0

)
, (3.23)

where in the third inequality we have used the fact that infBR0
J vα (x, c) = infRd J vα (x, c).

Thus, from (3.19), we deduce that

V v ≥ −C̃2(R0) (1 +M) . (3.24)

This shows that infRd V
v > −∞.

Now, applying Itô-Krylov formula and using (3.21) we obtain

Evx [V v (XT∧τR)]− V v(x) = Evx

[∫ T∧τR

0

(ρ̃v − c(Xt, v(Xt))) dt

]
.

This implies

inf
y∈Rd

V v(y)− V v(x) ≤ Evx

[∫ T∧τR

0

(ρ̃v − c(Xt, v(Xt))) dt

]
.

Since v is stable, letting R→∞, we get

inf
y∈Rd

V v(y)− V v(x) ≤ Evx

[∫ T

0

(ρ̃v − c(Xt, v(Xt))) dt

]
.

Now dividing both sides of the above inequality by T and letting T →∞, it follows that

lim sup
T→∞

1

T
Evx

[∫ T

0

c(Xt, v(Xt))dt

]
≤ ρ̃v .

Thus, ρv ≤ ρ̃v. This indeed implies that ρv = ρ̃v. The representation (3.16) of V v follows
by closely mimicking the argument of [5, Lemma 3.6.9]. Therefore, we have a solution
pair (V v, ρv) to (3.15) satisfying (i) and (ii).

Next we want to prove that the solution pair is unique. To this end, let (V̂ v, ρ̂v) ∈
W

2,p
loc(Rd)×R, 1 < p <∞, with V̂ v(0) = 0, infRd V̂

v > −∞ and
ρ̂v =

∫
Rd

∫
U
c(x, u)v(x)(du)ηv(dx), satisfying

ρ̂v =
[
LvV̂

v(x) + c(x, v(x))
]

(3.25)

Since V̂ v is bounded from below, applying Itô-Krylov formula and using (3.25) we get

lim sup
T→∞

1

T
Evx

[∫ T

0

c(Xt, v(Xt))dt

]
≤ ρ̂v (3.26)

Hence, from (3.26), it follows that

ρ̂v =

∫
Rd

∫
U

c(x, u)v(x)(du)ηv(dx) ≤ lim sup
T→∞

1

T
Evx

[∫ T

0

c(Xt, v(Xt))dt

]
≤ ρ̂v (3.27)

This implies that ρ̂v = ρv. Now, applying Itô-Krylov formula and using (3.25), we obtain

V̂ v(x) = Evx

[∫ τ̆r∧τR

0

(c(Xt, v(Xt))− ρ̂v) dt+ V̂ v (Xτ̆r∧τR)

]
. (3.28)
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Since v is stable and V̂ v is bounded from below, for all x ∈ Rd we obtain

lim inf
R→∞

Evx

[
V̂ v (XτR)1{τ̆r≥τR}

]
≥ lim inf

R→∞

(
inf
Rd
V̂ v
)
Px (τ̆r ≥ τR) = 0 .

In the above we have used the fact that τR →∞ as R→∞ and Evx [τ̆r] <∞.
Again, since v is stable we have Evx [τ̆r] <∞ (see [5, Theorem 2.6.10]). Hence, letting

R→∞ by Fatou’s lemma from (3.28), it follows that

V̂ v(x) ≥ Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̂v) dt+ V̂ v (Xτ̆r )

]

≥ Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̂v) dt

]
+ inf

Br
V̂ v .

Since V̂ v(0) = 0, letting r → 0, we deduce that

V̂ v(x) ≥ lim sup
r↓0

Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̂v) dt

]
. (3.29)

From (3.16) and (3.29), it is easy to see that V v − V̂ v ≤ 0 in Rd. On the other hand

by (3.15) and (3.25) one has Lv

(
V v − V̂ v

)
(x) ≥ 0 in Rd. Hence, applying the strong

maximum principle [24, Theorem 9.6], one has V v = V̂ v. This proves uniqueness.

Now we prove the continuity of ergodic cost under near-monotonicity assumption on
the running cost function.

Theorem 3.5. Suppose that Assumptions (A1)-(A4) hold. Let {vn}n be a sequence of
stable policies such that vn → v in Usm and {ηvn}n tight. If

sup
n

inf
x∈Rd

Ex(c, vn) < lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ),

then we have the following

inf
Rd

Ex(c, vn)→ inf
Rd

Ex(c, v) as n→∞ . (3.30)

Proof. From Theorem 3.4, we know that for each n ∈ N there exists (V vn , ρvn) ∈
W

2,p
loc(Rd)×R, 1 < p <∞, with V vn(0) = 0 and infRd V

vn > −∞, satisfying

ρvn = LvnV
vn(x) + c(x, vn(x)) , (3.31)

where ρvn =
∫
Rd

∫
U
c(x, u)vn(x)(du)ηvn(dx) = infRd Ex(c, vn). Now from [4, Lemma 4.4],

since we impose tightness apriori, we deduce that ηvn → ηv in total variation topology.
Hence the associated densities ϕvn → ϕ in L1(Rd) (see the proof of [5, Lemma 3.2.5]).
Note that∫

Rd

∫
U

c(x, ζ)vn(x)(dζ)ηvn(dx) −
∫
Rd

∫
U

c(x, ζ)v(x)(dζ)ηv(dx)

=

(∫
Rd

∫
U

c(x, ζ)vn(x)(dζ)ϕvn(x)dx−
∫
Rd

∫
U

c(x, ζ)vn(x)(dζ)ϕ(x)dx

)
+

(∫
Rd

∫
U

c(x, ζ)vn(x)(dζ)ϕ(x)dx−
∫
Rd

∫
U

c(x, ζ)v(x)(dζ)ϕ(x)dx

)
(3.32)

Since c is bounded, the first term of the right hand side converges to zero since
ϕvn → ϕ in L1(Rd) and the second term converges to zero by the convergence of
vn → v (see Definition 2.1). Hence, it follows that

∫
Rd

∫
U
c(x, u)vn(x)(du)ηvn(dx) →∫

Rd

∫
U
c(x, u)v(x)(du)ηv(dx). Thus, in view of Theorem 3.4, we obtain infRd Ex(c, vn) →

infRd Ex(c, v) as n→∞. This completes the proof.
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Remark 3.6. The tightness assumption is not superfluous. In view of [3], we know
that the map v 7→ infRd Ex(c, v) in general may not be continuous on Usm under near-
monotone cost criterion (of the form, (3.30)). The reason is the following: for each n ∈ N
let (V vn , ρvn) be the unique compatible solution pair (see, [3, Definition 1.1]) of the
equation (3.31), if (V vn , ρvn) converge to a solution pair (V̄ , ρ̄) of the limiting equation
of (3.31) as n→∞, the solution pair (V̄ , ρ̄) may not necessarily be compatible (see, [3]).
One sufficient condition which ensure this continuity is the tightness of the space of
corresponding invariant measures {ηvn : n ∈ N}.

3.2.2 Under Lyapunov stability

In this section we study the continuity of ergodic cost criterion under Lyapunov stability
assumption. We assume the following Lyapunov stability condition on the dynamics.

(A5) There exists a positive constant Ĉ0, and a pair of inf-compact functions (V, h) ∈
C2(Rd)×C(Rd×U) (i.e., the sub-level sets {V ≤ k} , {h ≤ k} are compact or empty
sets in Rd, Rd ×U respectively for each k ∈ R) such that

LζV(x) ≤ Ĉ0 − h(x, ζ) for all (x, ζ) ∈ Rd ×U , (3.33)

where h (> 0) is locally Lipschitz continuous in its first argument uniformly with
respect to the second and V > 1.

A function f ∈ O(V) if f ≤ Ĉ1V for some positive constant Ĉ1 and f ∈ o(V) if lim sup
|x|→∞

|f |
V

= 0.

Now following [5, Lemma 3.7.8], we want to prove that a certain equation admits a
unique solution in some suitable function space. This uniqueness result is crucial to
obtain continuity of the map v → Ex(c, v) on Usm.

Theorem 3.7. Suppose that Assumptions (A1)-(A3) and (A5) hold. Then for each v ∈ Usm

there exists a unique solution pair (V̂ v, ρ̂v) ∈W
2,p
loc(Rd)∩ o(V)×R for any p > 1 satisfying

ρ̂v = LvV̂
v(x) + c(x, v(x)) with V̂ v(0) = 0 . (3.34)

Furthermore, we have

(i) ρ̂v = Ex(c, v)

(ii) for all x ∈ Rd, we have

V̂ v(x) = lim
r↓0
Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− Ex(c, v)) dt

]
. (3.35)

Proof. Existence of a solution pair (V̂ v, ρ̂v) ∈W
2,p
loc(Rd)∩ o(V)×R for any p > 1 satisfying

(i) and (ii) follows from [5, Lemma 3.7.8]. Also, it is known that along a subsequence
αJ vα (0, c)→ ρ̂v and J vα (x, c)− J vα (0, c)→ V̂ v uniformly over compact subsets of Rd (see
[5, Lemma 3.7.8 (i)]).

Next we show that the sub-sequential limits are unique. This indeed imply the
uniqueness of the solutions. Let (V̄ v, ρ̄v) ∈W

2,p
loc(Rd)∩o(V)×R for any p > 1 be any other

solution pair of (3.34) with V̄ v(0) = 0. Thus, by Itô-Krylov formula, for R > 0 we obtain

Evx
[
V̄ v(XT∧τR)

]
− V̄ v(x) = Evx

[∫ T∧τR

0

LvV̄
v(Xs)ds

]

= Evx

[∫ T∧τR

0

(ρ̄v − c(Xs, v(Xs))) ds

]
. (3.36)

EJP 29 (2024), paper 37.
Page 16/32

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1093
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Near optimality of quantized policies

Note that ∫ T∧τR

0

(ρ̄v − c(Xs, v(Xs))) ds =

∫ T∧τR

0

ρ̄v −
∫ T∧τR

0

c(Xs, v(Xs))ds

Thus, letting R→∞ by monotone convergence theorem, we get

lim
R→∞

Evx

[∫ T∧τR

0

(ρ̄v − c(Xs, v(Xs))) ds

]
= Evx

[∫ T

0

(ρ̄v − c(Xs, v(Xs))) ds

]
.

Since V̄ v ∈ o(V), in view of [5, Lemma 3.7.2 (ii)], letting R→∞, we deduce that

Evx
[
V̄ v(XT )

]
− V̄ v(x) = Evx

[∫ T

0

(ρ̄v − c(Xs, v(Xs))) ds

]
. (3.37)

Also, from [5, Lemma 3.7.2 (ii)], we have

lim
T→∞

Evx
[
V̄ v(XT )

]
T

= 0 .

Hence, dividing both sides of (3.37) by T and letting T →∞, we obtain

ρ̄v = lim sup
T→∞

1

T
Evx

[∫ T

0

(c(Xs, v(Xs))) ds

]
.

This implies that ρ̄v = ρ̂v. Again, applying Itô-Krylov formula and using (3.34), we have

V̄ v(x) = Evx

[∫ τ̆r∧τR

0

(c(Xt, v(Xt))− ρ̄v) dt+ V̄ v (Xτ̆r∧τR)

]
. (3.38)

Also, from (3.33), by Itô-Krylov formula it follows that

Evx [V (Xτ̆r∧τR)]− V(x) = Evx

[∫ τ̆r∧τR

0

LvV(Xt)dt

]
≤ Evx

[∫ τ̆r∧τR

0

(
Ĉ0 − h(Xt, v(Xt))

)
dt

]
.

This gives us the following (since h(x, ζ) > 0)

Evx
[
V (XτR)1{τ̆r≥τR}

]
≤ Ĉ0E

v
x [τ̆r] + V(x) for all r < |x| < R.

Now, it is easy to see that

− sup
∂BR

|V̂ v|
V

(
Ĉ0E

v
x [τ̆r] + V(x)

)
≤ Evx

[
V̂ v (XτR)1{τ̆r≥τR}

]
≤ sup
∂BR

|V̂ v|
V

(
Ĉ0E

v
x [τ̆r] + V(x)

)
.

Since V̄ v ∈ o(V), from the above estimate, we get

lim inf
R→∞

Evx

[
V̂ v (XτR)1{τ̆r≥τR}

]
= 0 .

Thus, letting R→∞ by Fatou’s lemma from (3.38), it follows that

V̄ v(x) ≥ Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̄v) dt+ V̄ v (Xτ̆r )

]

≥ Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̄v) dt

]
+ inf

Br
V̄ v .
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Near optimality of quantized policies

Since V̄ v(0) = 0, letting r → 0, we deduce that

V̄ v(x) ≥ lim sup
r↓0

Evx

[∫ τ̆r

0

(c(Xt, v(Xt))− ρ̄v) dt

]
. (3.39)

Since ρ̂v = ρ̄v, from (3.35) and (3.39), it follows that V̂ v − V̄ v ≤ 0 in Rd. Also, since

(V̂ v, ρ̂v) and (V̄ v, ρ̄v) are two solution pairs of (3.34), we have Lv

(
V̂ v − V̄ v

)
(x) = 0 in

Rd. Hence, by strong maximum principle [24, Theorem 9.6], one has V̂ v = V̄ v. This
proves uniqueness

Next we prove that the map v → infRd Ex(c, v) is continuous on Usm under the Borkar
topology.

Theorem 3.8. Suppose that Assumptions (A1)-(A3) and (A5) hold. Let {vn}n be a
sequence of policies in Usm such that vn → v in Usm. Then we have

inf
Rd

Ex(c, vn)→ inf
Rd

Ex(c, v) as n→∞ . (3.40)

Proof. From Theorem 3.7, we know that for each n ∈ N there exists unique solution pair
(V̂ vn , ρ̂vn) ∈W

2,p
loc(Rd) ∩ o(V)×R for any p > 1 satisfying

ρ̂vn = Lvn V̂
vn(x) + c(x, vn(x)) with V̂ vn(0) = 0 , (3.41)

where

(i) ρ̂vn = Ex(c, vn)

(ii) for all x ∈ Rd, we have

V̂ vn(x) = lim
r↓0
Evnx

[∫ τ̆r

0

(c(Xt, vn(Xt))− Ex(c, vn)) dt

]
.

In view of (3.33), it is easy to see that, each v ∈ Usm is stable and infv∈Usm ηv(BR) > 0 for
anyR > 0 (see, [5, Lemma 3.3.4] and [5, Lemma 3.2.4(b)]). Thus, from [5, Theorem 3.7.4],
it follows that

‖J vnα (·, c)− J vnα (0, c)‖W2,p(BR) ≤
Ĉ2(R, p)

ηvn(B2R)

(
ρ̂vn

ηvn(B2R)
+ sup

B4R×U
c(x, ζ)

)
, (3.42)

where the positive constant Ĉ2(R, p) depends only on R and p. Since the running cost
is bounded we have ‖c‖∞ ≤ M for some positive constant M . Thus, we have ρ̂vn ≤ M .
Hence from (3.42), we deduce that

‖J vnα (·, c)− J vnα (0, c)‖W2,p(BR) ≤
MĈ2(R, p)

infn ηvn(B2R)

(
1

infn ηvn(B2R)
+ 1

)
.

This implies that
‖V̂ vn‖W2,p(BR) ≤ Ĉ3(R, p) , (3.43)

where Ĉ3(R, p) is a positive constant which depends only on R and p. Hence, by a
standard diagonalization argument and Banach Alaoglu theorem (see, (3.4)), one can
extract a subsequence {V̂ vnk } such that for some V̂ ∗ ∈W

2,p
loc(Rd) we have{

V̂ vnk → V̂ ∗ in W
2,p
loc(Rd) (weakly)

V̂ vnk → V̂ ∗ in C1,β
loc (Rd) (strongly) .

(3.44)
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Near optimality of quantized policies

Also, since ρ̂vn ≤M , along a further subsequence ρ̂vnk → ρ̂∗ (without loss of generality
denoting by the same sequence). Now, by similar argument as in Theorem 3.1, multi-
plying by test function on the both sides of (3.41) and letting k → ∞, we deduce that
(V̂ ∗, ρ̂∗) ∈W

2,p
loc(Rd)×R satisfies

ρ̂∗ = LvV̂
∗(x) + c(x, v(x)) . (3.45)

Since V̂ vn(0) = 0 for each n, we get V̂ ∗(0) = 0

Next we want to show that V̂ ∗ ∈ o(V). Following the proof of [5, Lemma 3.7.8] (see,
eq.(3.7.47) or eq.(3.7.50)), it is easy to see that

V̂ vn(x) ≤ Evnx

[∫ τ̆r

0

(c(Xt, vn(Xt))− Ex(c, vn)) dt+ V̂ vn(Xτ̆r )

]
.

This gives us the following estimate

|V̂ vn(x)| ≤ M sup
n
Evnx

[∫ τ̆r

0

(c(Xt, vn(Xt)) + 1) dt+ sup
Br

|V̂ vn |

]
. (3.46)

We know that, for d < p <∞, the space W2,p(BR) is compactly embedded in C1,β(B̄R),
where β < 1 − d

p (see [5, Theorem A.2.15 (2b)]). Thus, from (3.43), we obtain

sup
n

sup
Br

|V̂ vn | < M̂ for some positive constant M̂ . Therefore, in view of [5, Lemma 3.7.2

(i)], form (3.46), we deduce that V̂ ∗ ∈ o(V). Since the pair (V̂ ∗, ρ̂∗) ∈W
2,p
loc(Rd)∩ o(V)×R

satisfies (3.45), by uniqueness of solution of (3.45) (see, Theorem 3.7) it follows that
(V̂ ∗, ρ̂∗) ≡ (V̂ v, ρ̂v). This completes the proof of the theorem.

4 Denseness of finite action/piecewise constant stationary poli-
cies

4.1 Denseness of policies with finite actions

Let dU be the metric on the action space U. Since U is compact, we have U is totally
bounded. Thus, one can find a sequence of finite grids {{ζn,i}kni=1}n≥1 such that

min
i=1,2,...,kn

d(ζ, ζn,i) <
1

n
for all ζ ∈ U .

Let Λn := {ζn,1, ζn,2, . . . , ζn,kn} and define a function Qn : U→ Λn by

Qn(ζ) = arg min
ζn,i∈Λn

d(ζ, ζn,i) ,

where ties are broken so that Qn is measurable. The function Qn is often known as
nearest neighborhood quantizer (see, [47]).

For each n the function Qn induces a partition {Un,i}kni=1 of the action space U given
by

Un,i = {ζ ∈ U : Qn(ζ) = ζn,i} .

By triangle inequality, it follows that diam(Un,i) := supζ1,ζ2∈Un,i dU(ζ1, ζ2) < 2
n . Now, for

each v ∈ Usm define a sequence of policies with finite actions as follows:

vn(ζn,i|x) = v(Q−1
n (ζn,i)|x) = v(Un,i|x) . (4.1)

In the next lemma we prove that the space of stationary policies with finite actions are
dense in Usm with respect to the Borkar topology (see, Definition 2.1).
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Near optimality of quantized policies

Lemma 4.1. For each v ∈ Usm there exists a sequence of policies {vn}n (defined as
in (4.1)) with finite actions, satisfying

lim
n→∞

∫
Rd
f(x)

∫
U

g(x, ζ)vn(x)(dζ)dx =

∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx (4.2)

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd ×U)

Proof. Let f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd ×U). Then from the construction of the
sequence {vn}n, it is easy to see that

|
∫
Rd
f(x)

∫
U

g(x, u)vn(x)(du)dx−
∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx|

≤
∫
Rd
|f(x)|

kn∑
i=1

∫
Un,i

|g(x, ζn,i)− g(x, ζ)|v(x)(dζ)dx .

Since g ∈ Cb(Rd ×U) and diam(Un,i) <
2
n , it follows that

|f(x)|
kn∑
i=1

∫
Un,i

|g(x, ζn,i)− g(x, ζ)|v(x)(dζ)→ 0 for all x ∈ Rd .

As we know that g is bounded, for some positive constant M1 we have |g| ≤ M1. Thus,
we deduce that

|f(x)|
kn∑
i=1

∫
Un,i

|g(x, ζn,i)− g(x, ζ)|v(x)(dζ) ≤ 2M1|f(x)| for all x ∈ Rd .

Since f ∈ L1(Rd) ∩ L2(Rd), by dominated convergence theorem, we obtain

lim
n→∞

∫
Rd
f(x)

∫
U

g(x, u)vn(x)(du)dx =

∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx .

This completes the proof of the lemma.

4.2 Denseness of piecewise constant policies

Let dP be the Prokhorov metric on V. Since (U, dU) is separable (being a compact met-
ric space) thus convergence in (V, dP) is equivalent to weak convergence of probability
measures.

Theorem 4.2. For each v ∈ Usm there exists a sequence of piecewise constant policies
{vm}m in Usm such that

lim
m→∞

∫
Rd
f(x)

∫
U

g(x, ζ)vm(x)(dζ)dx =

∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx (4.3)

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd ×U)

Proof. Let B0 = ∅ and define Dn = Bn \ Bn−1 for n ∈ N. Thus it is easy to see
that Rd = ∪∞n=1Dn. Since each v ∈ Usm is a measurable map v : Rd → V, it follows
that v̂n := v|Dn : Dn → V is a measurable map. Hence, by Lusin’s theorem (see
[21, Theorem 7.5.2]), for any εn > 0 there exists a compact set Kεn

n ⊂ Dn and a
continuous function v̂εnn : Kεn

n → V such that (the Lebesgue measure of the set Dn \Kεn
n )

|(Dn \ Kεn
n )| < εn and v̂n ≡ v̂εnn on Kεn

n . Again, Tietze’s extension theorem (see [23,
Theorem 4.1]) there exists a continuous function ṽεnn : Dn → V such that ṽεnn ≡ v̂εnn
on Kεn

n .
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Step1 Therefore for any f̂ ∈ L1(Rd) ∩ L2(Rd) and ĝ ∈ C(U), we have

|
∫
Dn

f̂(x)

∫
U

ĝ(ζ)v̂n(x)(dζ)dx−
∫
Dn

f̂(x)

∫
U

ĝ(ζ)ṽεnn (x)(dζ)dx|

≤ |
∫
Dn\Kεn

n

f̂(x)

∫
U

ĝ(ζ)v̂n(x)(dζ)dx−
∫
Dn\Kεn

n

f̂(x)

∫
U

ĝ(ζ)ṽεnn (x)(dζ)dx|

≤ |
∫
Dn\Kεn

n

f̂(x)

∫
U

ĝ(ζ)v̂n(x)(dζ)dx|+ |
∫
Dn\Kε

n

f̂(x)

∫
U

ĝ(ζ)ṽεnn (x)(dζ)dx|

≤ ‖ĝ‖∞
∫
Dn\Kεn

n

|f̂(x)|dx+ ‖ĝ‖∞
∫
Dn\Kεn

n

|f̂(x)|dx

≤ 2‖ĝ‖∞‖f̂‖L2(Rd)

√
|(Dn \Kεn

n )| ≤ 2
√
εn‖ĝ‖∞‖f̂‖L2(Rd) (by Hölder’s inequality) .

(4.4)

Now, since (V, dP) is compact, for each m ∈ N there exists a finite set Λ̂m =

{µm,1, µm,2, . . . , µm,km} such that

inf
µm,i∈Λ̂m

dP(µ, µm,i) <
1

m
for any µ ∈ V .

Let Q̂m : V→ Λ̂m be defined as

Q̂m(µ) = arg min
µm,i∈Λ̂m

dP(µ, µm,i) .

Ties are broken so that Q̂m is a measurable map. Hence, it induces a partition
{Ûm,i}kmi=1 of the space V which is given by

Ûm,i = {µ ∈ V : Q̂m(µ) = µm,i} .

By triangle inequality it is easy to see that

diam(Ûm,i) := sup
µ1,µ2

dP(µ1, µ2) <
2

m
.

Now, for v ∈ Usm define Dm
n,i = (ṽεnn )−1(Ûm,i). This implies that Dn = ∪kmi=1D

m
n,i.

Define

v̂εnn,m(x) :=

km∑
i=1

µm,i1{Dmn,i}(x) for all x ∈ Dn and m ∈ N .

Therefore, we deduce that

|
∫
Dn

f̂(x)

∫
U

ĝ(ζ)ṽεnn (x)(dζ)dx−
∫
Dn

f̂(x)

∫
U

ĝ(ζ)v̂εnn,m(x)(dζ)dx|

≤
km∑
i=1

|
∫
Dmn,i

f̂(x)

∫
U

ĝ(ζ)ṽεnn (x)(dζ)dx−
∫
Dmn,i

f̂(x)

∫
U

ĝ(ζ)µm,i(dζ)dx|

≤
km∑
i=1

∫
Dmn,i

|f̂(x)||
∫
U

ĝ(ζ)ṽεnn (x)(dζ)−
∫
U

ĝ(ζ)µm,i(dζ)|dx

≤ ‖f̂‖L1(Rd)εn (for large enough m) . (4.5)

If we choose εn = min{
εn‖f̂‖L2(Rd)

‖ĝ‖∞
4 ,

εn‖f̂‖L1(Rd)

2 }, combining (4.4), (4.5), there

exists M̄0 > 0 (depending on f̂ , ĝ and εn) such that

|
∫
Dn

f̂(x)

∫
U

ĝ(ζ)v̂n(x)(dζ)dx−
∫
Dn

f̂(x)

∫
U

ĝ(ζ)v̂εnn,m(x)(dζ)dx| ≤ εn , (4.6)

for all m ≥ M̄0.
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Step2 Let ε > 0 be a small number. Now define

v̄εm :=

∞∑
n=1

v̂εnn,m for m ∈ N . (4.7)

Since f̂ ∈ L1(Rd) there exists N0 ∈ N such that
∫
BcN0

|f̂(x)|dx < ε
4‖ĝ‖∞

|
∫
Rd
f̂(x)

∫
U

ĝ(ζ)v(x)(dζ)dx−
∫
Rd
f̂(x)

∫
U

ĝ(ζ)v̄εm(x)(dζ)dx|

≤ |
∫
BcN0

f̂(x)

∫
U

ĝ(ζ)(v(x)− v̄εm(x))(dζ)dx|

+ |
∫
BN0

f̂(x)

∫
U

ĝ(ζ)(v(x)− v̄εm(x))(dζ)dx|

≤ ε

2
+ |
∫
BN0

f̂(x)

∫
U

ĝ(ζ)(v(x)− v̄εm(x))(dζ)dx|

Now, choose εi > 0 for i = 1, . . . , N0 such that
∑N0

i=1 εi <
ε
2 . Thus, in view of (4.6)

there exists Mi > 0 such that for each i = 1, . . . , N0

|
∫
Di

f̂(x)

∫
U

ĝ(ζ)v̂i(x)(dζ)dx−
∫
Di

f̂(x)

∫
U

ĝ(ζ)v̂εii,m(x)(dζ)dx| ≤ εi ,

for all m ≥Mi. Hence, for m ≥ max{Mi, i = 1, . . . , N0}, we get

|
∫
BN0

f̂(x)

∫
U

ĝ(ζ)(v(x)− v̄εm(x))(dζ)dx|

≤
N0∑
i=1

|
∫
Di

f̂(x)

∫
U

ĝ(ζ)(v̂i(x)− v̂εii,m(x))(dζ)dx| ≤
N0∑
i=1

εi <
ε

2
.

(4.8)

Therefore, for each ε > 0 we deduce that there exists a positive constant M̂0 (=
max{Mi, i = 1, . . . , N0}) such that for m ≥ M̂0 (where M̂0 depends on f̂ , ĝ, ε)

|
∫
Rd
f̂(x)

∫
U

ĝ(ζ)v(x)(dζ)dx−
∫
Rd
f̂(x)

∫
U

ĝ(ζ)v̄εm(x)(dζ)dx| ≤ ε . (4.9)

Step3 Let {f̂k}k∈N and {hj}j∈N be countable dense set in L1(Rd) and C(U) respectively.
Thus (4.9) holds true for each f̂k and hj .

Let f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd × U). Since f ∈ L1(Rd) for ε > 0 there
exists N1 ∈ N such that

∫
BcN1

|f(x)|dx ≤ ε
4‖g‖∞ . This implies

|
∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx−
∫
Rd
f(x)

∫
U

g(x, ζ)v̄εm(x)(dζ)dx|

≤ |
∫
BcN1

f(x)

∫
U

g(x, ζ)(v(x)− v̄εm(x))(dζ)dx|

+ |
∫
BN1

f(x)

∫
U

g(x, ζ)(v(x)− v̄εm(x))(dζ)dx|

≤ ε

2
+ |
∫
BN1

f(x)

∫
U

g(x, ζ)(v(x)− v̄εm(x))(dζ)dx| . (4.10)
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It is well known that in Cb(B̄N1
×U) the functions of the form {

∑m
i ri(x)pi(ζ)}m∈N

forms an algebra which contains constants, where ri ∈ C(B̄N1
) and pi ∈ C(U).

Thus by Stone-Weierstrass theorem there exists m̂ (large enough) such that

sup
BN1

×U
|g(x, ζ)−

m̂∑
i

ri(x)pi(ζ)| ≤ ε

24‖f‖L1(Rd)

. (4.11)

Since pi ∈ C(U) we can find hj(i) ∈ C(U) such that

sup
ζ∈U
|pi(ζ)− hj(i)(ζ)| ≤ ε

24‖f‖L1(Rd)‖ri‖∞
. (4.12)

Also, since fri ∈ L1(Rd) there exists f̂k(i) such that∫
BN1

|f(x)ri(x)− f̂k(i)(x)|dx ≤ ε

24‖f‖L1(Rd)‖hi‖∞
. (4.13)

Now, using (4.11), (4.12), (4.13) we have the following

|
∫
BN1

f(x)

∫
U

g(x, ζ)v(x)−
∫
BN1

f(x)

∫
U

g(x, ζ)v̄εm(x))(dζ)dx|

≤ |
∫
BN1

f(x)

∫
U

g(x, ζ)v(x)(dζ)dx−
∫
BN1

f(x)

∫
U

m̂∑
i

ri(x)pi(ζ)v(x)(dζ)dx|

+

m̂∑
i=1

|
∫
BN1

f(x)

∫
U

ri(x)pi(ζ)v(x)(dζ)dx−
∫
BN1

f(x)

∫
U

ri(x)hj(i)(ζ)v(x)(dζ)dx|

+

m̂∑
i=1

|
∫
BN1

f(x)

∫
U

ri(x)hj(i)(ζ)v(x)(dζ)dx−
∫
BN1

f̂k(i)(x)

∫
U

hj(i)(ζ)v(x)(dζ)dx|

+

m̂∑
i=1

|
∫
BN1

f̂k(i)(x)

∫
U

hj(i)(ζ)v(x)(dζ)dx−
∫
BN1

f̂k(i)(x)

∫
U

hj(i)(ζ)v̄εm(x)(dζ)dx|

+

m̂∑
i=1

|
∫
BN1

f(x)

∫
U

ri(x)hj(i)(ζ)v̄εm(x)(dζ)dx−
∫
BN1

f̂k(i)(x)

∫
U

hj(i)(ζ)v̄εm(x)(dζ)dx|

+

m̂∑
i=1

|
∫
BN1

f(x)

∫
U

ri(x)pi(ζ)v̄εm(x)(dζ)dx−
∫
BN1

f(x)

∫
U

ri(x)hj(i)(ζ)v̄εm(x)(dζ)dx|

+ |
∫
BN1

f(x)

∫
U

g(x, ζ)v̄εm(x)(dζ)dx−
∫
BN1

f(x)

∫
U

m̂∑
i

ri(x)pi(ζ)v̄εm(x)(dζ)dx|

≤ ε

4
+

N1∑
l=1

m̂∑
i=1

|
∫
Dl

f̂k(i)(x)

∫
U

hj(i)(ζ)v(x)(dζ)dx−
∫
Dl

f̂k(i)(x)

∫
U

hj(i)(ζ)v̄εll,m(x)(dζ)dx|

(4.14)

Now, choose εl,i for l = 1, . . . , N1 and i = 1, . . . , m̂ in such a way that
∑N1

l=1

∑m̂
i=1 εl,i ≤

ε
4 . Thus, in view of (4.6) there exists M̂2 := max{M l

k(i),j(i) : i = 1, . . . , m̂; l =

1, . . . , N1} (where M l
k(i),j(i) ∈ N is the constant obtained as in (4.6) for i =

1, . . . , m̂; l = 1, . . . , N1). Therefore, from (4.10) and (4.14), we conclude that

|
∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx−
∫
Rd
f(x)

∫
U

g(x, ζ)v̄εm(x)(dζ)dx| ≤ ε , (4.15)

for all m ≥ M̂2. This completes the proof of the theorem.
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4.3 Denseness of continuous policies

Following the discussions above, one can show that the space of continuous stationary
policies are also dense in the space of stationary policies under Borkar topology. This is
a useful result as continuity allows for many approximation results to be invoked with
little effort (see e.g. [35, Assumption A2.3, p. 322] where convergence properties of
invariant measures corresponding to time-discretizations are facilitated).

Theorem 4.3. For each v ∈ Usm there exists a sequence of continuous policies {vm}m in
Usm such that

lim
m→∞

∫
Rd
f(x)

∫
U

g(x, ζ)vm(x)(dζ)dx =

∫
Rd
f(x)

∫
U

g(x, ζ)v(x)(dζ)dx (4.16)

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd ×U)

Proof. As earlier we have {fi}i∈N is a countable dense set in L1(Rd). Now for each i ∈ N,
define a finite measure νi on (Rd,B(Rd)), given by

νi(A) =

∫
A

|fi(x)|dx ∀ A ∈ B(Rd) .

Let v ∈ Usm. Then, as in the proof of Theorem 4.2, by successive application of Lusin’s the-
orem (see [21, Theorem 7.5.2]) and Tietze’s extension theorem (see [23, Theorem 4.1]),
for any εi > 0 there exists a closed set Ki ∈ Rd and a continuous function vi : Rd → V

such that vi ≡ v on Ki and νi(Rd \Ki) < εi. Hence, for any g ∈ Cb(Rd ×U), we have

|
∫
Rd
fi(x)

∫
U

g(x, ζ)v(x)(dζ)dx−
∫
Rd
fi(x)

∫
U

g(x, ζ)vi(x)(dζ)dx|

≤ |
∫
Rd\Ki

fi(x)

∫
U

g(x, ζ)v(x)(dζ)dx−
∫
Rd\Ki

fi(x)

∫
U

g(x, ζ)vi(x)(dζ)dx|

≤ 2‖g‖∞
∫
Rd\Ki

|fi(x)|dx

= 2‖g‖∞νi(Rd \Ki) ≤ 2‖g‖∞εi .

Since {fi}i∈N is dense in L1(Rd), by choosing εi appropriately, we obtain our result.

5 Near optimality of finite models for controlled diffusions

First we prove the near optimality of quantized policies for the α-discounted cost.

Theorem 5.1. Suppose Assumptions (A1)-(A3) hold. Then for each ε > 0 there exists a
policy v∗ε ∈ Usm with finite actions and piecewise constant policies v̄∗ε ∈ Usm such that

J v
∗
ε

α (x, c) ≤ inf
U∈U
J Uα (x, c) + ε and J v̄

∗
ε

α (x, c) ≤ inf
U∈U
J Uα (x, c) + ε for all x ∈ Rd . (5.1)

Proof. From [5, Theorem 3.5.6], it follows that there exists v∗ ∈ Usm such that J v∗α (x, c) =

infU∈U J Uα (x, c) for all x ∈ Rd. Since the map v 7→ J vα (x, c) is continuous on Usm (see, The-
orem 3.1) and the space of quatized stationary policies are dense in Usm (see, Lemma 4.1),
it follows that for each ε > 0 there exists a quatized policy v∗ε ∈ Usm satisfying (5.1).
Similarly, since the peicewise constant policies are dense in Usm (see, Theorem 4.2), we
conclude that for any ε > 0 there exists v̄∗ε ∈ Usm which satisfies (5.1). This completes
the proof.

We now show that for the cost up to an exit time, the quantized (finite action/
piecewise constant) policies are near optimal.
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Theorem 5.2. Suppose Assumptions (A1)-(A3) hold. Then for each ε > 0 there exists a
policy v∗ε ∈ Usm with finite actions and piecewise constant policies v̄∗ε ∈ Usm such that

Ĵ v
∗
ε

e (x) ≤ inf
U∈U
Ĵ Ue (x) + ε and Ĵ v̄

∗
ε

e (x) ≤ inf
U∈U
Ĵ Ue (x) + ε for all x ∈ Rd . (5.2)

Proof. From [16, p. 229], we know that there exists v∗ ∈ Usm such that Ĵ v∗e (x) =

infU∈U Ĵ Ue (x). Now form the continuity of the map v → Ĵ ve (x) (see Theorem 3.2) and
the density results (see Section 4), it is easy to see that for any given ε > 0 there
exists policies v∗ε ∈ Usm with finite actions and piecewise constant policies v̄∗ε ∈ Usm

satisfying (5.2). This completes the proof of the theorem.

Next we prove the near optimality of the quantized policies for the ergodic cost under
near-monotonicity assumption on the running cost. Let

Θv := {vn | vn is the quantized policy defined as in (4.1) corresponding to v}

and

Θ̄v := {v̄n | v̄n is the quantized policy defined as in (4.7) corresponding to v} .

In order to establish our result we are assuming that the invariant measures set

Γv∗ := {ηv∗n | ηv∗n is the invariant measure corresponding to v∗n ∈ Θv∗}

and
Γ̄v∗ := {ηv̄∗n | ηv̄∗n is the invariant measure corresponding to v̄∗n ∈ Θ̄v∗}

are tight, where v∗ ∈ Usm is an ergodic optimal control. The sufficient condition which
assures the required tightness is the following: if there exists a non-negative inf-compact
function f ∈ C2(Rd) such that

Lv∗nf(x) ≤ κ0 − f(x) and Lv̄∗nf(x) ≤ κ0 − f(x)

for some constant κ0 > 0.

Theorem 5.3. Suppose that Assumptions (A1) - (A4) hold. Also, suppose that corre-
sponding to the optimal policy v∗ ∈ Usm, the following set of invariant measures Γv∗ and
Γ̄v∗ are tight and the running cost c is near monotone with respect to supv∗n∈Θv∗

Ex(c, v∗n)

and supv̄∗n∈Θ̄v∗
Ex(c, v̄∗n), that is,

sup
v∗n∈Θv∗

inf
x∈Rd

Ex(c, v∗n) < lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ) and sup
v̄∗n∈Θ̄v∗

inf
x∈Rd

Ex(c, v̄∗n) < lim inf
‖x‖→∞

inf
ζ∈U

c(x, ζ).

Then for any given ε > 0 there exists a policy vε ∈ Usm with finite actions and a piecewise
constant policy v̄ε ∈ Usm such that

Ex(c, vε) ≤ E∗(c) + ε and Ex(c, v̄ε) ≤ E∗(c) + ε . (5.3)

Proof. From [5, Theorem 3.6.10], we know there exits a stable v∗ ∈ Usm such that
Ex(c, v∗) = E∗(c). Since, by our assumption, the set of invariant measures Γv∗ and Γ̄v∗

are tight. Thus by the continuity result (see Theorem 3.5) and the density results (see
Lemma 4.1, Theorem 4.2), we deduce that for each ε > 0 there exists vε ∈ Usm with finite
actions and piecewise constant policy v̄ε ∈ Usm such that (5.3) holds. This completes the
proof.

Now for the ergodic cost criterion, under the Lyapunov type stability assumption we
prove near optimality of quantized policies.
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Theorem 5.4. Suppose that assumptions (A1) - (A3) and (A5) hold. Then for any given
ε > 0 there exists a quantized policy vε ∈ Usm with finite actions and a piecewise constant
policy v̄∗ε ∈ Usm such that

Ex(c, vε) ≤ E∗(c) + ε and Ex(c, v̄ε) ≤ E∗(c) + ε . (5.4)

Proof. From [5, Theorem 3.7.14], we know that there exists v∗ ∈ Usm such that Ex(c, v∗) =

E∗(c). Now, since the space of quantized polices and piecewise constant policies are
dense in Usm (see, Lemma 4.1 and Theorem 4.2) and the map v → infRd Ex(c, v) is
continuous on Usm (see, Theorem 3.8). For any given ε > 0, one can find a quantized
policy vε ∈ Usm with finite actions and a piecewise constant policy v̄∗ε ∈ Usm such that (5.4)
holds.

Remark 5.5. In view of the continuity (see Section 3.1, Section 3.2) and the denseness
(see Theorem 4.3) results, we have the near optimality of continuous stationary policies.

6 Finite horizon cost: time discretization of Markov policies and
near optimality of piecewise constant policies

Recall (2.4) as our cost criterion for the finite horizon setup. We will present three
results in this section, where the ultimate goal is to arrive at near optimality of piecewise
constant policies. While this approximation problem is a well-studied problem [35, 33,
43], our proof method is rather direct and appears to be new. Under uniform Lipschitz
continuity and uniform boundedness assumptions on the diffusion coefficients and
running cost function, in [35, 33, 43] the authors have established similar approximation
results using numerical procedures.

Continuity of finite horizon cost on Markov policies under the Borkar topology

For simplicity, in this subsection we are assuming that a, b, c are uniformly bounded
(it is possible to relax these boundedness assumptions). In particular we are assuming
that

(B1) The functions a, b, c are are uniformly bounded, i.e.,

sup
(x,ζ)∈Rd×U

[
|b(x, ζ)|+ ‖a(x)‖+

d∑
i

‖ ∂a
∂xi

(x)‖+ |c(x, ζ)|

]
≤ K .

for some positive constant K. Moreover, H ∈W2,p,µ(Rd) ∩ L∞(Rd), p ≥ 2.

In view of [10, Theorem 3.3, p. 235], the optimality equation (or, the HJB equation)

∂ψ

∂t
+ inf
ζ∈U

[Lζψ + c(x, ζ)] = 0

ψ(T, x) = H(x)

admits a unique solution ψ ∈ W1,2,p,µ((0, T ) × Rd) ∩ L∞((0, T ) × Rd), p ≥ 2. Thus, by
Itô-Krylov formula (see the verification results as in [40, Theorem 3.5.2]), we know
the existence of an optimal Markov policy, that is, there exists v∗ ∈ Um such that
JT (x, v∗) = J ∗T (x).

In the following theorem, we show that the finite horizon cost is continuous in Um

with respect to the Borkar topology (see Definition 2.2).

Theorem 6.1. Suppose Assumptions (A1), (A3) and (B1) hold. Then the map v 7→ JT (x, v)

from Um to R is continuous.
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Proof. Let vn be a sequence in Um such that vn → v in Um, for some v ∈ Um. From
[10, Theorem 3.3, p. 235], we have that for each n ∈ N there exists a unique solution
ψn ∈W1,2,p,µ((0, T )×Rd) ∩ L∞((0, T )×Rd), p ≥ 2 to the following Poisson equation

∂ψn
∂t

+ [Lvnψn + c(x, vn(t, x))] = 0

ψn(T, x) = H(x) . (6.1)

By Itô-Krylov formula, we deduce that

ψn(t, x) = Evnx

[∫ T

t

c(Xs, vn(s,Xs))ds+H(XT )

]
(6.2)

This gives us
‖ψn‖∞ ≤ T‖c‖∞ + ‖H‖∞ . (6.3)

Rewriting (6.1), we get

∂ψn
∂t

+ Lvnψn + λ0ψn = λ0ψn − c(x, vn(t, x))

ψn(T, x) = H(x) ,

for some fixed λ0 > 0. Thus, by parabolic pde estimate [10, eq. (3.8), p. 234], we deduce
that

‖ψn‖W1,2,p,µ ≤ κ1‖λ0ψn − c(x, vn(t, x))‖Lp,µ . (6.4)

Hence, from (6.3), (6.4), it follows that ‖ψn‖W1,2,p,µ ≤ κ2 for some positive constant κ2

(independent of n). Since W1,2,p,µ((0, T )×Rd) is a reflexive Banach space, as a corollary
of Banach Alaoglu theorem, there exists ψ∗ ∈ W1,2,p,µ((0, T ) × Rd) such that along a
subsequence (without loss of generality denoting by same sequence){

ψn → ψ∗ in W1,2,p,µ((0, T )×Rd) (weakly)

ψn → ψ∗ in W0,1,p,µ((0, T )×Rd) (strongly) .
(6.5)

Since vn → v in Um, multiplying both sides of the (6.1) by test function φ ∈ C∞c ((0, T )×Rd)
and integrating, we get∫ T

0

∫
Rd

∂ψn
∂t

φ(t, x)dtdx+

∫ T

0

∫
Rd

Tr
(
a(x)∇2ψn

)
φ(t, x)dtdx

+

∫ T

0

∫
Rd
{b(x, vn(t, x)) · ∇ψn + c(x, vn(t, x))}φ(t, x)dtdx = 0 .

(6.6)

In view of (6.5), letting n→∞, from (6.6) we obtain that∫ T

0

∫
Rd

∂ψ∗

∂t
φ(t, x)dtdx+

∫ T

0

∫
Rd

Tr
(
a(x)∇2ψ∗

)
φ(t, x)dtdx

+

∫ T

0

∫
Rd
{b(x, v(t, x)) · ∇ψ∗ + c(x, v(t, x))}φ(t, x)dtdx = 0 .

This implies that ψ∗ ∈W1,2,p,µ((0, T )×Rd) satisfies

∂ψ∗

∂t
+ [Lvψ

∗ + c(x, v(t, x))] = 0

ψ(T, x) = H(x) . (6.7)
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Again, by Itô-Krylov formula, it follows that

ψ∗(t, x) = Evx

[∫ T

t

c(Xs, v(s,Xs))ds+H(XT )

]
. (6.8)

Therefore, from (6.2) and (6.8), we conclude that v 7→ JT (x, v) from Um toR is continuous.

6.1 Time discretization of Markov policies

Following, and briefly modifying, our approach so far involving stationary policies, in
this section we show that piece-wise constant Markov policies are dense in the space of
Markov policies Um. Also, using this result we deduce the near optimality of piece-wise
constant Markov policies.

Theorem 6.2. For any v ∈ Um there exists a sequence of piecewise constant policies
{vm}m such that

lim
m→∞

∫ ∞
0

∫
Rd
f(x, t)

∫
U

g(x, t, ζ)vm(x, t)(dζ)dxdt

=

∫ ∞
0

∫
Rd
f(x, t)

∫
U

g(x, t, ζ)v(x, t)(dζ)dxdt

(6.9)

for all f ∈ L1(Rd × [0,∞)) ∩ L2(Rd × [0,∞)) and g ∈ Cb(Rd × [0,∞)×U).

Proof. Let B̂0 = ∅ and B̂n = Bn × [0, n). Then, define D̂n = B̂n \ B̂n−1 for n ∈ N. Now,
it is clear that Rd × [0,∞) = ∪∞n=1D̂n. Since v̄n := v|D̂n : D̂n → V is a measurable map.
As in Theorem 4.2, by Lusin’s theorem and Tietze’s extension theorem, for any εn > 0

there exists a compact set K̂εn
n ⊂ D̂n and a continuous function v̄εnn : D̂n → V such that

v̄εnn ≡ v̄n on K̂εn
n and |(D̂n \ K̂εn

n )| < εn.
Also, as in Theorem 4.2, since (V, dP) is compact, for each m ∈ N there exists a

finite set Λ̂m = {µm,1, µm,2, . . . , µm,km} and a quantizer Q̂m : V → Λ̂m which induces a

partition {Ûm,i}kmi=1 of the space V.

Now, for any v ∈ Um define D̂m
n,i = (v̄εnn )−1(Ûm,i). It is easy to see that D̂n = ∪kmi=1D̂

m
n,i.

Define

v̄εnn,m(x, t) :=

km∑
i=1

µm,i1{D̂mn,i}
(x) for all (x, t) ∈ D̂n and m ∈ N .

Hence, as in the proof of Theorem 4.2 (see Step 1), for any f̂ ∈ L1(Rd× [0,∞))∩L2(Rd×
[0,∞)), ĝ ∈ Cb(U), there exists a positive constant M̄0 (depending on f̂ , ĝ and εn) such
that

|
∫
D̂n

f̂(x, t)

∫
U

ĝ(ζ)v̄n(x, t)(dζ)dxdt−
∫
D̂n

f̂(x, t)

∫
U

ĝ(ζ)v̄εnn,m(x, t)(dζ)dxdt| ≤ εn , (6.10)

for all m ≥ M̄0.
Now, for any given ε > 0, define

ṽεm :=

∞∑
n=1

v̄εnn,m for m ∈ N . (6.11)

Since f̂ ∈ L1(Rd × [0,∞)) there exists N0 ∈ N such that
∫
B̂cN0

|f̂(x, t)|dxdt < ε
4‖ĝ‖∞ . Then

closely mimicking the argument of Theorem 4.2 (see Step 2), we have that for each ε > 0
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there exists a positive constant M̂0 (depending on f̂ , ĝ, ε) such that for all m ≥ M̂0

|
∫

[0,∞)

∫
Rd
f̂(x, t)

∫
U

ĝ(ζ)v(x, t)(dζ)dxdt−
∫

[0,∞)

∫
Rd
f̂(x, t)

∫
U

ĝ(ζ)ṽεm(x, t)(dζ)dxdt| ≤ ε .

(6.12)
Let {f̂k}k∈N and {hj}j∈N be countable dense set in L1(Rd × [0,∞)) and C(U) respec-

tively. Suppose that f ∈ L1(Rd×[0,∞))∩L2(Rd×[0,∞)) and g ∈ Cb(Rd×[0,∞)×U). Since
f ∈ L1(Rd × [0,∞)), for given ε > 0 there exists N1 ∈ N such that

∫
B̂cN1

|f(x, t)|dxdt ≤
ε

4‖g‖∞ . We know that in Cb(
¯̂
BN1

× U) the functions of the form {
∑m
i ri(x, t)pi(ζ)}m∈N

forms an algebra which contains constants, where ri ∈ C(
¯̂
BN1

) and pi ∈ C(U). Thus by
Stone-Weierstrass theorem there exists m̂ (large enough) such that

sup
B̂N1

×U
|g(x, t, ζ)−

m̂∑
i

ri(x, t)pi(ζ)| ≤ ε

24‖f‖L1(Rd×[0,∞))

. (6.13)

Since pi ∈ C(U) one can choose hj(i) ∈ C(U) such that

sup
ζ∈U
|pi(ζ)− hj(i)(ζ)| ≤ ε

24‖f‖L1(Rd×[0,∞))‖ri‖∞
. (6.14)

Also, since fri ∈ L1(Rd × [0,∞)) there exists f̂k(i) such that∫
B̂N1

|f(x, t)ri(x, t)− f̂k(i)(x, t)|dxdt ≤ ε

24‖f‖L1(Rd×[0,∞))‖hi‖∞
. (6.15)

Thus, in view of (6.13), (6.14), (6.15), following the steps of Theorem 4.2 (see Step 3) we
conclude that

|
∫ ∞

0

∫
Rd
f(x, t)

∫
U

g(x, t, ζ)v(x, t)(dζ)dxdt−
∫ ∞

0

∫
Rd
f(x, t)

∫
U

g(x, t, ζ)v̄εm(x, t)(dζ)dxdt| ≤ ε ,

for all m ≥ M̂1, for some positive constant M̂1. This completes the proof of the theorem.

Near optimality of piecewise constant policies for finite horizon cost

Now, from Theorem 6.2 and Theorem 6.1, we have the following near-optimality
results.

Theorem 6.3. Suppose that assumptions (A1),(A3) and (B1) hold. Then for any given
ε > 0 there exists a piecewise constant policy v̄∗ε ∈ Um such that

JT (x, v̄∗ε ) ≤ J ∗T (x) + ε for all x ∈ Rd . (6.16)

Proof. From our previous discussion, we know that there exists v∗ ∈ Um such that
JT (x, v∗) = J ∗T (x). Since the space of piecewise constant policies are dense in Um (see
Theorem 6.2) and the map v 7→ JT (x, v) is continuous on Um (see Theorem 6.1), for any
given ε > 0, one can find a piecewise constant policy v̄∗ε ∈ Um such that (6.16) holds.

Remark 6.4. In view of the existence results as in [36, Chapter 4], in obtaining the near
optimality of piecewise constant Markov policies for finite horizon costs, one can relax
the uniform boundedness assumption (B1), in particular, under (A1)-(A3) we can deduce
similar results. Which extends the results of [35, 33, 43] to a more general control model,
where the drift term b and the diffusion matrix σ are allowed to be unbounded.
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Conclusion

We studied regularity properties of induced cost (under several criteria) on a con-
trolled diffusion process with respect to a control policy space defined by Borkar [15].
We then studied implications of these properties on existence and, in particular, approxi-
mations for optimal controlled diffusions. Via such a unified approach, we arrived at very
general approximation results for optimal control policies by quantized (finite action /
piecewise constant) stationary control policies for a general class of controlled diffusions
in the whole space Rd as well as time-discretizations for the criteria with finite horizons.
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