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Abstract

The paper deals with the fast-slow motions setups in the continuous time dXε(t)
dt

=
1
ε
σ(Xε(t))ξ(t/ε2) + b(Xε(t)), t ∈ [0, T ] and the discrete time XN ((n + 1)/N) =

XN (n/N) + N−1/2σ(XN (n/N))ξ(n) + N−1b(XN (n/N)), n = 0, 1, ..., [TN ] where σ

and b are smooth matrix and vector functions, respectively, ξ is a centered stationary
vector stochastic process and ε, 1/N are small parameters. We derive, first, esti-
mates in the strong invariance principles for sums SN (t) = N−1/2 ∑

0≤k<[Nt] ξ(k) and

iterated sums SijN (t) = N−1 ∑
0≤k<l<[Nt] ξi(k)ξj(l) together with the corresponding

results for integrals in the continuous time case which, in fact, yields almost sure
invariance principles for iterated sums and integrals of any order and, moreover,
implies laws of iterated logarithm for these objects. Then, relying on the rough paths
theory, we obtain strong almost sure approximations of processes Xε and XN by
corresponding diffusion processes Ξε and ΞN , respectively. Previous results for the
above setup dealt either with weak or moment diffusion approximations and not with
almost sure approximation which is the new and natural generalization of well known
works on strong invariance principles for sums of weakly dependent random variables.
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1 Introduction

The study of the asymptotic behavior as ε→ 0 of solutions Xε of systems of ordinary
differential equations having the form

dXε(t)

dt
=

1

ε
B(Xε(t), ξ(t/ε2)) + b(Xε(t), ξ(t/ε2)), t ∈ [0, T ] (1.1)
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Diffusion approximation

has already more than a half century history. Here B(·, ξ(s)) and b(·, ξ(s)) are (random)
smooth vector fields on Rd and ξ is a stationary process which is viewed as a fast motion
while Xε is considered as a slow motion. Assuming that

EB(x, ξ(0)) ≡ 0 (1.2)

for all x it was shown in a series of papers [30], [43] and [6] that Xε converges weakly
as ε → 0 to a diffusion process provided ξ is sufficiently fast mixing with respect to
σ-algebras generated by ξ itself. The latter condition is quite restrictive when ξ is
generated by a dynamical system, i.e. when ξ(t) = g ◦ F t where g is a vector function
and F t is a flow (continuous time dynamical system) preserving certain measure which
makes ξ a stationary process. In order to derive weak convergence of Xε to a diffusion
for ξ built by a sufficiently large class of observables g and dynamical systems other
approaches were developed recently based mainly on the rough paths theory (see
e.g. [33, 34, 1, 14, 13, 20]). All above mentioned results can be obtained both in
the continuous time setup (1.1) and in the discrete time setup given by the following
recurrence relation

Xε((n+ 1)ε2) = Xε(nε2) + εB(Xε(nε2), ξ(n)) + ε2b(Xε(nε2), ξ(n)) (1.3)

where 0 ≤ n < [T/ε2] and ξ(n), n ≥ 0 is a stationary sequence of random vectors. We

will study (1.3) for XN = X1/
√
N as N → ∞. The above results can be viewed as a

substantial generalization of the functional central limit theorem since when B(x, ζ) does
not depend on x and b ≡ 0 the process Xε weakly converges to the Brownian motion
(with a covariance matrix).

Motivated by strong invariance principle results for sums (see, for instance, [9], [36],
[17] and more recent [41] and [27]) the second author obtained in [31] and [32] certain
results on strong Lp diffusion approximations of solutions of (1.1) and (1.3) under the
condition (1.2). In this paper we are interested in strong diffusion approximation results
in a more traditional form saying that Xε (or XN ) can be redefined on a richer probability
space where there exists a diffusion process Ξε (or ΞN ) such that ε−δ sup0≤t≤T |Xε(t)−
Ξε(t)| (or Nδ max0≤n≤TN |XN (n/N) − ΞN (n/N)|) remains bounded almost surely (a.s.)
for all ε > 0 (or N ≥ 1) where δ > 0 does not depend on ε or N . All papers on almost sure
approximations (strong invariance principles) dealt before with sums (or integrals in
time) of random variables (or vectors), and so the limiting process was always a Brownian
motion while almost sure diffusion approximation results do not seem to appear before
in the literature. These results do not follow from [31] and [32] and, on the other hand,
our methods do not yield moment estimates from these papers.

Our methods rely on the rough paths theory [39], as exposed in [24, 22], and in
order to adapt the equations (1.1) and (1.3) to this setup we consider (as in [33, 14],
but see Remark 2.7) a more restricted situation assuming B(x, ξ(·)) = σ(x)ξ(·) where
ξ(k), k ≥ 0 is a φ-mixing sequence of random vectors, σ(x) is a smooth matrix function
and b(x, ξ(·)) = b(x) does not depend on the second variable. We obtain, first, strong
invariance principles for sums SN (t) = N−1/2

∑
0≤k<[Nt] ξ(k) and iterated sums SijN (t) =

N−1
∑

0≤k<l<[Nt] ξi(k)ξj(l) in p-variation rough path sense, which is a stronger result
than the standard strong invariance principle, and then, relying on a quantitative form of
the local Lipschitz property of the Itô-Lyons map for càdlàg rough differential equations
[25], in conjunction with a law of iterated logarithm type growth control for Brownian
rough paths, we obtain our estimates for strong diffusion approximations of processes
Xε and XN . This is in contrast to [33, 14] and subsequent works which “only” rely on
continuity of the Itô-Lyons map. Similar results will be derived here in the continuous
time setup (1.1) with B(x, ξ(·)) = σ(x)ξ(·) where ξ(t), t ≥ 0 is a vector stochastic process
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Diffusion approximation

constructed by a suspension procedure over a φ-mixing discrete time process. Again, we

obtain first strong invariance principles for integrals ε
∫ tε−2

0
ξ(s)ds and iterated integrals

ε2
∫ tε−2

0
ξj(s)ds

∫ s
0
ξi(u)du and then rely on the rough paths machinery.

In fact, rough paths theory yields an extension to almost sure invariance principles
for iterated sums and integrals from second to any order and as a byproduct of these
results for weakly dependent random vectors we obtain for these objects corresponding
laws of iterated logarithm. Almost sure diffusion approximations, strong invariance
principles for iterated sums and laws of iterated logarithms for them never appeared
before in the literature. We also note the current interest of iterated integrals and their
discrete counterparts from a data science / time-series perspective [5, 21, 16].

The structure of this paper is as follows. In the next section we describe our precise
setup and main results. In Sections 3 and 4 we prove the strong invariance principles in
appropriate variational norms for sums and iterated sums, respectively. In Section 5 we
obtain the strong invariance principles in the continuous time setup for integrals and
iterated integrals. In Section 6 we provide a brief introduction to rough paths theory
and show how together with the above strong invariance principles it yields our strong
diffusion approximations results. In Section 7 we obtain extensions to strong invariance
principles for iterated sums and integrals of any order which yields also laws of iterated
logarithm for these objects.

2 Preliminaries and main results

2.1 Discrete time case

We start with the discrete time setup which consists of a complete probability space
(Ω,F , P ), a stationary sequence of e-dimensional random vectors ξ(n), −∞ < n <∞ and
a two parameter family of countably generated σ-algebras Fm,n ⊂ F , −∞ ≤ m ≤ n ≤ ∞
such that Fmn ⊂ Fm′n′ ⊂ F if m′ ≤ m ≤ n ≤ n′ where Fm∞ = ∪n:n≥mFmn and
F−∞n = ∪m:m≤nFmn. We will measure the dependence between σ-algebras G and H by
the φ-coefficient defined by

φ(G,H) = sup{|P (Γ∩∆)
P (Γ) − P (∆)| : P (Γ) 6= 0, Γ ∈ G, ∆ ∈ H} (2.1)

= 1
2 sup{‖E(g|G)− Eg‖∞ : g is H-measurable and ‖g‖∞ = 1}

(see [8]) where ‖ · ‖∞ is the L∞-norm. For each n ≥ 0 we set also

φ(n) = sup
m
φ(F−∞,m,Fm+n,∞). (2.2)

If φ(n)→ 0 as n→∞ then the probability measure P is called φ-mixing with respect to
the family {Fmn}. Unlike [31], in order to ensure more applicability of our results to
dynamical systems, we do not assume that ξ(n) is Fnn-measurable and instead we will
work with the approximation coefficient

ρ(n) = sup
m
‖ξ(m)− E(ξ(m)|Fm−n,m+n)‖∞. (2.3)

To save notations we will still write Fmn, φ(n) and ρ(n) for F[m][n], φ([n]) and ρ([n]),
respectively, if m and n are not integers, where [·] denotes the integral part.

We will deal with the recurrence relation

XN (n+ 1/N) = XN (n/N) +
1√
N
σ(XN (n/N))ξ(n) +

1

N
b(XN (n/N)) (2.4)

and this definition is extended to all t ∈ [0, T ] by setting XN (t) = XN (n/N) whenever
n/N ≤ t < (n+ 1)/N . We will assume that

Eξ(0) = 0 (2.5)
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and that σ is a d× e matrix function and b is a d-dimensional vector function both defined
on Rd. To avoid excessive technicalities these coefficients and the process ξ are supposed
to satisfy the following uniform bounds

‖σ‖C3 , ‖b‖C3 ≤ L (2.6)

and
‖ξ(0)‖∞ ≤ L (2.7)

for some L ≥ 1, where ‖ · ‖C3 is a matrix or a vector function C3 norm and ‖ · ‖∞ is the
L∞ norm.

Introduce the e× e matrix ς = (ςij) where

ςij = lim
k→∞

1

k

k∑
m=0

k∑
n=0

ςij(n−m), and ςil(n−m) = E(ξi(m)ξl(n)) (2.8)

taking into account that the limit above will exist under conditions of our theorem below
(see (4.6)–(4.7) in Section 4 below). Define also

ci(x) =

e∑
j,l=1

d∑
k=1

∂σij(x)

∂xk
ς̂ljσkl(x), i = 1, ..., d (2.9)

where

ς̂jl = lim
k→∞

1

k

k∑
n=0

n−1∑
m=−k

ςjl(n−m) =

∞∑
n=1

E(ξj(0)ξl(n)) (2.10)

and the latter limit exists under our conditions (which follows from (4.6)–(4.7) below).
Let Ξ be the unique solution of the stochastic differential equation

dΞ(t) = σ(Ξ(t))dW (t) + (b(Ξ(t)) + c(Ξ(t)))dt (2.11)

where W is the e-dimensional Brownian motion with the covariance matrix ς (at the time
1). In what follows we will write A(u) = O(α(u)) a.s. for a family of random variables
A(u), u ∈ U ⊂ R and a nonrandom sequence α(u), u ∈ U ⊂ R if A(u)/α(u) is bounded
for all u ∈ U by an almost surely finite random variable.

Theorem 2.1. Suppose that XN is defined by (2.4), (2.5)–(2.7) hold true and assume
that

sup
n≥0

n4(φ(n) + ρ(n)) <∞. (2.12)

Then the stationary sequence of random vectors ξ(n), −∞ < n < ∞ can be redefined
preserving its distributions on a sufficiently rich probability space which contains also a
e-dimensional Brownian motionW with the covariance matrix ς (at the time 1) so that
for each T > 0 and ΞN solving (2.11) with W (t) = WN (t) = N−1/2W(Nt), 0 ≤ t ≤ T ,

sup
0≤t≤T

|XN (t)− ΞN (t)| = O(N−δ) a.s. for all N ≥ 1 (2.13)

where XN (0) = ΞN (0) and δ > 0 does not depend on N ≥ 1.

We stress that a sufficiently rich probability space has here a quite precise meaning
that one can define on it a sequence of independent uniformly didtributed on [0.1] random
variables which are independent of the sequence ξ(n), n ∈ Z (see Theorem 3.8 below).

Under certain additional conditions, which are always satisfied when d = 1 and
σ is bounded away from zero, the problem can be reduced to the strong invariance
principle for sums (cf. [32]) which is well known and this would imply then Theorem 2.1.
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Nevertheless, in the multidimensional case such reduction requires substantial additional
assumptions on σ (see [32]). For the proof of Theorem 2.1 we will follow, first, the strategy
appeared more than forty years ago in [9] leading to the strong (almost sure) invariance
principle in the supremum norm. Moreover, we extend this to estimates of the almost
sure invariance principles in a p-variation norm both for sums SN and iterated sums SN
given by

SN (t) = N−1/2
∑

0≤k<[Nt]

ξ(k) and S
ij
N (t) = N−1

∑
0≤k<l<[Nt]

ξi(k)ξj(l), (2.14)

where SN (0) = S
ij
N (0) = 0, and then rely on the local Lipschitz property of the Itô-

Lyons map for rough differential equations (see, for instance, [22]) together with the
growth estimates of the corresponding Lipschitz constant (see Theorem 6.1 in Section
6). Observe also that by (2.10),

lim
N→∞

ESijN (t) = tς̂ij .

As it is customary in the rough paths theory we use slightly different definitions for
processes denoted by usual letters and the ones denoted by blackboard letters. Namely,
for a process Q(t), t ≥ 0 we write Q(s, t) = Q(t)−Q(s) when t ≥ s. On the other hand, if
Q(t) =

∑
0≤k<l<[tN ] η(k)ζ(l) or Q(t) =

∫ t
0
η(u)dζ(u) (where η and ζ are one-dimensional

processes and when the latter integral makes sense) then

Q(s, t) =
∑

[sN ]≤k<l<[tN ]

η(k)ζ(l) and Q(s, t) =

∫ t

s

(η(u)− η(s))dζ(u),

respectively (see Section 6.1.1 for some recalls). These notations affect the following
definition of p-variation norms. For any path γ(t), t ∈ [0, T ] in a Euclidean space having
left and right limits and p ≥ 1 the p-variation norm of γ on an interval [U, V ], U < V is
given by

‖γ‖p,[U,V ] =
(

sup
P

∑
[s,t]∈P

|γ(s, t)|p
)1/p

(2.15)

where the supremum is taken over all partitions P = {U = t0 < t1 < ... < tn = V } of
[U, V ] and the sum is taken over the corresponding subintervals [ti, ti+1], i = 0, 1, ..., n− 1

of the partition while γ(s, t) is taken according to the definitions above depending on the
process under consideration. The main step in the proof of Theorem 2.1 is the following
result.

Theorem 2.2. Suppose that (2.12) holds true. Then the stationary sequence of random
vectors ξ(n), −∞ < n <∞ can be redefined preserving its distributions on a sufficiently
rich probability space which contains also a e-dimensional Brownian motionW with the
covariance matrix ς (at the time 1) so that for each T > 0 and WN (t) = N−1/2W(Nt), 0 ≤
t ≤ T ,

‖SN −WN‖p,[0,T ] = O(N−δ) a.s. (2.16)

and
max

1≤i,j≤d
‖SijN −W

ij
N‖ p2 ,[0,T ] = O(N−δ) a.s. (2.17)

where p ∈ (2, 3), δ > 0 does not depend on N ≥ 1 (and may be different from δ in (2.13)),
SN , SN are given by (2.14) and

W
ij
N (t) =

∫ t

0

W i
N (s)dW j

N (s) + t

∞∑
l=1

E(ξi(0)ξj(l)). (2.18)

EJP 29 (2024), paper 111.
Page 5/56

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1174
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diffusion approximation

Observe that the estimate (2.16) obtained in the p-variation norm is a stronger result
than the standard strong invariance principle considered in other papers such as [9],
[36], [17], [41] and [27]. The strong invariance principle for SN , i.e. an a.s. eventual
estimate of |SN −WN | in the supremum norm, is essentially well known but in [9] and
[36] it is proved assuming that the σ-algebras Fmn are generated by the random vectors
ξ(m), ..., ξ(n) themselves (which restricts applications) while in [41] and [27] this is
proved also under different from ours conditions. Thus, we cannot rely here on a direct
reference and will provide the proof of this part, as well. In fact, we will need not only
this result itself but also the specific construction of the Brownian motions WN emerging
there which is used in the proof of (2.17). The strong invariance principle for iterated
sums in the form (2.17) does not seem to appear in the literature before. Moreover, we
will see in Section 7 that the strong invariance principle for second order iterated sums
obtained in Theorem 2.2 implies strong invariance principles for multiple iterated sums
of any order which, in turn, yields laws of iterated logarithm for them relying on the
laws of iterated logarithm for multiple stochastic integrals

∫ t
0
dWi`(t`)

∫ t`
0
...
∫ t2

0
dWi1(t1)

(see [2]).

Corollary 2.3. Under the conditions of Theorem 2.2 for all ` ≥ 1 and 0 ≤ i1, ..., i` ≤ d,

P
{

lim sup
t→∞

∑
0≤k1<k2<...<k`<t ξi1(k1)ξi2(k2) · · · ξi`(k`)

(2t log log t)`/2
= di1,i2,...,i`

}
= 1

where 1 ≤ i1 ≤ i2 ≤ ... ≤ i` ≤ e and the constant di1,i2,...,i` can be computed from the
formula given in Corollary 7.10.

Important classes of processes satisfying our conditions come from dynamical systems.
Let F be a C2 Axiom A diffeomorphism (in particular, Anosov) in a neighborhood of
an attractor or let F be an expanding C2 endomorphism of a Riemannian manifold Ω

(see [7]), g be either a Hölder continuous vector function or a vector function which is
constant on elements of a Markov partition and let ξ(n) = ξ(n, ω) = g(Fnω). Here the
probability space is (Ω,B, P ) where P is a Gibbs invariant measure corresponding to
some Hölder continuous function and B is the Borel σ-field. In this setup the assumption
(2.6) on boundedness of ξ turns out to be quite natural. Let ζ be a finite Markov partition
for F then we can take Fkl to be the finite σ-algebra generated by the partition ∩li=kF iζ.
In fact, we can take here not only Hölder continuous g’s but also indicators of sets
from Fkl. The conditions of Theorems 2.1 and 2.2 allow all such functions since the
dependence of Hölder continuous functions on m-tails, i.e. on events measurable with
respect to F−∞,−m or Fm,∞, decays exponentially fast in m and the condition (2.12) is
even weaker than that. A related class of dynamical systems corresponds to F being
a topologically mixing subshift of finite type which means that F is the left shift on a
subspace Ω of the space of one (or two) sided sequences ω = (ωi, i ≥ 0), ωi = 1, ..., l0
such that ω ∈ Ω if πωiωi+1 = 1 for all i ≥ 0 where Π = (πij) is an l0 × l0 matrix with 0 and
1 entries and such that Πn for some n is a matrix with positive entries. Again, we have to
take in this case g to be Hölder continuous bounded functions on the sequence space
above, P to be a Gibbs invariant measure corresponding to some Hölder continuous
function and to define Fkl as the finite σ-algebra generated by cylinder sets with fixed
coordinates having numbers from k to l. The exponentially fast ψ-mixing, which is
stronger than φ-mixing required here, is well known in the above cases (see [7]). Among
other dynamical systems with exponentially fast ψ-mixing we can mention also the Gauss
map Fx = {1/x} (where {·} denotes the fractional part) of the unit interval with respect
to the Gauss measure G and more general transformations generated by f -expansions
(see [28]). Gibbs-Markov maps which are known to be exponentially fast φ-mixing (see,
for instance, [41]) can be also taken as F in Theorem 2.1 with ξ(n) = g ◦ Fn as above.
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2.2 Continuous time case

Here we start with a complete probability space (Ω,F , P ), a P -preserving invertible
transformation ϑ : Ω→ Ω and a two parameter family of countably generated σ-algebras
Fm,n ⊂ F , −∞ ≤ m ≤ n ≤ ∞ such that Fmn ⊂ Fm′n′ ⊂ F if m′ ≤ m ≤ n ≤ n′ where
Fm∞ = ∪n:n≥mFmn and F−∞n = ∪m:m≤nFmn. The setup includes also a (roof or ceiling)
function τ : Ω→ (0,∞) such that for some L̂ > 0,

L̂−1 ≤ τ ≤ L̂. (2.19)

Next, we consider the probability space (Ω̂, F̂ , P̂ ) such that Ω̂ = {ω̂ = (ω, t) : ω ∈ Ω, 0 ≤
t ≤ τ(ω)}, (ω, τ(ω)) = (ϑω, 0)}, F̂ is the restriction to Ω̂ of F × B[0,L̂], where B[0,L̂] is the

Borel σ-algebra on [0, L̂] completed by the Lebesgue zero sets, and for any Γ ∈ F̂ ,

P̂ (Γ) = τ̄−1

∫
IΓ(ω, t)dtdP (ω) where τ̄ =

∫
τdP = Eτ

and E denotes the expectation on the space (Ω,F , P ).
Finally, we introduce a vector valued stochastic process ξ(t) = ξ(t, (ω, s)), −∞ < t <

∞, 0 ≤ s ≤ τ(ω) on Ω̂ satisfying

ξ(t, (ω, s)) = ξ(t+ s, (ω, 0)) = ξ(0, (ω, t+ s)) if 0 ≤ t+ s < τ(ω) and

ξ(t, (ω, s)) = ξ(0, (ϑkω, u)) if t+ s = u+
∑k
j=0 τ(ϑjω) and 0 ≤ u < τ(ϑkω).

This construction is called in dynamical systems a suspension and it is a standard fact
that ξ is a stationary process on the probability space (Ω̂, F̂ , P̂ ) and in what follows we
will write also ξ(t, ω) for ξ(t, (ω, 0)).

We will assume that Xε(t) = Xε(t, ω) from (1.1) considered as a process on (Ω,F , P )

solves the equation

dXε(t)

dt
=

1

ε
σ(Xε(t))ξ(t/ε2) + b(Xε(t)), t ∈ [0, T ] (2.20)

where the matrix function σ and the process ξ satisfy (2.6). Set η(ω) =
∫ τ(ω)

0
ξ(s, ω)ds

and

ρ(n) = supm max
(
‖τ ◦ ϑm − E(τ ◦ ϑm|Fm−n,m+n)‖∞, (2.21)

‖ess sup0≤s≤τ(θmω) |ξ(0, (ϑmω, s))− E(ξ(0, (ϑmω, s))|Fm−n,m+n)|‖∞
)
.

Observe also that η(k) = η ◦ ϑk is a stationary sequence of random vectors.
Next, we consider a diffusion process Ξ solving the stochastic differential equation

dΞ(t) = σ(Ξ(t))dW (t) + (τ̄ b(Ξ(t)) + c(Ξ(t)))dt, (2.22)

with d-dimensional Brownian motion W having the covariance matrix ς = (ςij) at the
time 1 given by

ςij = lim
n→∞

1

n

n∑
k,l=0

E(ηi(k)ηj(l)) (2.23)

and with

ci(x) =
∑e
j,l=1

∑d
k=1

∂σij(x)
∂xk

(
ς̂lj +

∫ τ(ω)

0
ξj(s, ω)ds

∫ s
0
ξl(u, ω)du

)
σkl(x), (2.24)

ς̂ij = limn→∞
1
n

∑n
k=0

∑k−1
l=−nE(ηi(l)ηj(k)) =

∑∞
n=1E(ηi(0)ηj(n)).

The limits in (2.23) and (2.24) exist in view of estimates similar to (4.6)–(4.7) below.
Notice the difference in the definitions of c(x) in (2.9) and in (2.24) which is due to the
fact that c(x) is defined here in terms of the process η and not ξ. The following result
is a continuous time version of Theorem 2.1 which can be viewed also as a substantial
extension of [17].
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Theorem 2.4. Assume that Eη = E
∫ τ

0
ξ(t)dt = 0 and (2.6), (2.7) and (2.12) (for ρ defined

in (2.21)) hold true, as well. Then the stationary vector process ξ(t), −∞ < t <∞ can
be redefined preserving its distributions on a sufficiently rich probability space which
contains also a e-dimensional Brownian motionW with the covariance matrix ς (at the
time 1) so that for each T > 0 and Ξε solving (2.22) with W (t) = W ε(t) = εW(ε−2t), 0 ≤
t ≤ T ,

sup
0≤t≤T

|Xε(t)− Ξε(t/τ̄)| = O(εδ) a.s. (2.25)

where Xε(0) = Ξε(0) and δ > 0 does not depend on ε > 0.

We observe that if the stationary process ξ on the probability space (Ω̂, F̂ , P̂ ) would
be sufficiently fast mixing then the proof of Theorem 2.4 could proceed essentially in the
same way as in Theorem 2.1 and, in fact, the former could be derived from the latter
by discretizing time. But, in general, this is not the case in applications to dynamical
systems no matter what speed of decay of the coefficients φ and ρ on the base space
(Ω,F , P ) is assumed, and so substantial additional work is required here. The key step
in the proof of Theorem 2.4 is to obtain a continuous time version of Theorem 2.2 which
is the following result proved in Section 5. After that we will rely on rough paths theory
arguments of Section 6. Set

V ε(t) = ε

∫ tτ̄ε−2

0

ξ(s)ds, Vεij(t) = ε2

∫ tτ̄ε−2

0

ξj(s)ds

∫ s

0

ξi(u)du, i, j = 1, ..., d

and observe that in view of estimates in Section 5.3, more precisely (5.16),

lim
ε→0

EVεij(t) = t

∞∑
l=1

E(ηi(0)ηj(l)) + tE
(∫ τ(ω)

0

ξj(s, ω)ds

∫ s

0

ξi(u, ω)du
)
.

Theorem 2.5. Suppose that (2.12) and (2.19) hold true with ρ defined in (2.21). Then the
stationary vector process ξ(t), −∞ < t <∞ can be redefined preserving its distributions
on a sufficiently rich probability space which contains also a e-dimensional Brownian
motion W with the covariance matrix ς at the time 1 given by (2.23) so that for each
T > 0 and W ε(t) = εW(ε−2t), 0 ≤ t ≤ T ,

‖V ε −W ε‖p,[0,T ] = O(εδ) a.s. (2.26)

and
‖Vεij −Wε

ij‖p/2,[0,T ] = O(εδ) a.s. (2.27)

where p ∈ (2, 3), δ > 0 does not depend on ε, a.s. is taken simultaneously over ε ∈ (0, 1)

and

Wε
ij(t) =

∫ t

0

W ε
i (s)dW ε

j (s) + t

∞∑
l=1

E(ηi(0)ηj(l)) + tE
(∫ τ(ω)

0

ξj(s, ω)ds

∫ s

0

ξi(u, ω)du
)
.

Again, as explained in Section 7 the strong invariance principle (2.27) for second
order iterated integrals implies strong invariance principles for iterated integrals of
all orders. Taking this into account we can use Theorem 2.5 not only for the proof of
Theorem 2.4 but also can apply (2.27) and its extension to multiple iterated integrals in
order to obtain laws of iterated logarithm for iterated integrals of any order relying on
the laws of iterated logarithm for multiple stochastic integrals (see, for instance, [2]).

Corollary 2.6. Under the conditions of Theorem 2.5, for all ` ≥ 1,

P
{

lim sup
t→∞

∫ t
0
ξi`(t`)dt`

∫ t`
0
ξi`−1

(t`−1)dt`−1 · · ·
∫ t2

0
ξi1(t1)dt1

(2t log log t)`/2
= di1,i2,...,i`

}
= 1
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where 1 ≤ i1 ≤ i2 ≤ ... ≤ i` ≤ e and the constant di1,i2,...,i` can be computed from the
formula given in Corollary 7.13.

The main application to dynamical systems we have here in mind is a C2 Axiom A flow
F t near an attractor which using Markov partitions can be represented as a suspension
over an exponentially fast ψ-mixing transformation so that we can take ξ(t) = g ◦ F t for
a Hölder continuous function g and the probability P being a Gibbs invariant measure
constructed by a Hölder continuous potential on the base of the Markov partition (see,
for instance, [10]).

Remark 2.7. It is not clear how to extend our methods to derive Theorems 2.1 and 2.4
for the processes XN and Xε given by the general equations (1.3) and (1.1), respectively.
This would require, say in the discrete time case, to obtain estimates for strong (almost
sure) approximations for the sums SN (x, t) = N−1/2

∑
0≤k<[Nt]B(x, ξ(k)) and iterated

sums SijN (x, t) = N−1
∑

0≤k<l<[Nt]Bi(x, ξ(k))Bj(x, ξ(l)) in the supremum (even a Hölder)
in x norm. This, essentially, amounts to a strong invariance principle in a Banach space
which was proved for sums in [36] but only with logarithmic estimates which does not
seem to allow to extend it to iterated sums and to p-variation norms. If this were possible
then we could proceed relying on local Lipschitz continuity of the Banach space version
of the Itô-Lyons map for rough differential equations (see, for instance, Theorem 3.6 in
[13]; also [34, 1]).

Remark 2.8. Our results can be obtained assuming moment rather than uniform bounds,
namely, in place of ‖ξ‖∞ < ∞ we can assume that ‖ξ‖m < ∞ for some m big enough.
To do this it is helpful to replace the φ-mixing coefficient by more general dependence
coefficients between pairs of σ-algebras G,H ⊂ F defined by

$q,p(G,H) = sup{‖E(g|G)− Eg‖p : g is H−measurable and ‖g‖q ≤ 1}.

The proofs proceed then essentially in the same way estimating moments of conditional
expectations not by Lemma 3.1 below, as we do here, but by Corollary 3.6 from [35] and
relying on some related estimates from Section 3 there.

Remark 2.9. Our method in the proof of Theorem 2.5 can be slightly modified to extend
Theorem 2.2 to random vectors built by nonuniformly hyperbolic dynamical systems
modelled by Young towers which are discrete time suspensions assuming boundedness
of appropriate moments of the return time function.

3 Strong approximations for sums

3.1 General lemmas

First, we will formulate three general results which will be used throughout this
paper. The following lemma is well known (see, for instance, Corollary to Lemma 2.1 in
[30] or Lemma 1.3.10 in [29]).

Lemma 3.1. Let H(x, ω) be a bounded measurable function on the space (Rd×Ω, B×F),
where B is the Borel σ-algebra, such that for each x ∈ Rd the function H(x, ·) is
measurable with respect to a σ-algebra G ⊂ F . Let V be an Rd-valued random vector
measurable with respect to another σ-algebra H ⊂ F . Then with probability one,

|E(H(V, ω)|H)− h(V )| ≤ 2φ(G,H)‖H‖∞ (3.1)

where h(x) = EH(x, ·) and the φ-dependence coefficient was defined in (2.1). In partic-
ular (which is essentially an equivalent statement), let H(x1, x2), xi ∈ Rdi , i = 1, 2 be
a bounded Borel function and Vi be Rdi -valued Gi-measurable random vectors, i = 1, 2

where G1,G2 ⊂ F are sub σ-algebras. Then with probability one,

|E(H(V1, V2)|G1)− h(V1)| ≤ 2φ(G1,G2)‖H‖∞.
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We will employ several times the following general moment estimate which appeared
as Lemma 3.2.5 in [29] for random variables and was extended to random vectors in
Lemma 3.4 from [31].

Lemma 3.2. Let (Ω,F , P ) be a probability space with a filtration of σ-algebras Gj , j ≥ 1

and a sequence of random d-dimensional vectors ηj , j ≥ 1 such that ηj is Gj -measurable,
j = 1, 2, .... Suppose that for some integer M ≥ 1,

A2M = sup
i≥1

∑
j≥i

‖E(ηj |Gi)‖2M <∞

where ‖η‖p = (E|η|p)1/p and |η| is the Euclidean norm of a (random) vector η. Then for
any integer n ≥ 1,

E|
n∑
j=1

ηj |2M ≤ 3(2M)!dMA2M
2Mn

M . (3.2)

In order to obtain uniform moment estimates required by Theorem 2.1 we will need
the following general estimate which appeared as Lemma 3.7 in [31].

Lemma 3.3. Let η1, η2, ..., ηN be random d-dimensional vectors and H1 ⊂ H2 ⊂ ... ⊂ HN
be a filtration of σ-algebras such that ηm is Hm-measurable for each m = 1, 2, ..., N .
Assume also that E|ηm|2M <∞ for some M ≥ 1 and each m = 1, ..., n. Set Sm =

∑m
j=1 ηj .

Then

Emax1≤m≤n |Sm|2M ≤ 22M−1
(
( 2M

2M−1 )2ME|Sn|2M (3.3)

+Emax1≤m≤n−1 |
∑n
j=m+1E(ηj |Hm)|2M

)
≤ 22M−1A2M

2M (3(2M)!dMnM + n)

where A2M is the same as in Lemma 3.2.

The following result will be used for moment estimates of sums and iterated sums of
random variables, the latter part seems to be completely new.

Lemma 3.4. Let ζ(k), µ(k), k = 0, 1, ... be two sequences of random variables on a
probability space (Ω,F , P ) such that

Eζ(k) = Eµ(k) = 0 for all k ≥ 0, supk≥0E(|ζ(k)|2M + |µ(k)|2M ) <∞ and

|ζ(k)− E(ζ(k)|Fk−n,k+n)|, |µ(k)− E(µ(k)|Fk−n,k+n)| ≤ ρ(n)

where the probability P is φ-mixing with respect to the family of σ-algebras Fkl (as
described in Section 2) with φ and ρ ≥ 0 satisfying

∑∞
n=0 n(ρ(n) + φ(n)) <∞. Set

R(`,m, n) =
n∑

k=m

k−1∑
j=`(k)

(ζ(j)µ(k)− E(ζ(j)µ(k)))

where 0 ≤ m ≤ n are integers and 0 ≤ `(k) < k is an integer valued function (maybe
constant). Then

E max
m≤n<N

|R(`,m, n)|2M ≤ Cζ,µ1 (M)(N −m)M max
m≤k≤N

(k − `(k))M (3.4)

where Cζ,µ(M) > 0 does not depend on N, m or `. In fact, Cζ,µ(M) depends only on M,ρ

and φ while it does not depend on the sequences ζ(k) and µ(k) themselves. In particular,

E max
m≤n<N

|
n∑

k=m

µ(k)|2M ≤ C1,µ
1 (M)(N −m)M
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which is obtained simplifying the proof below just by disregarding the sequence ζ(j). If
ξ(k), k = 0, 1, ... is a sequence of random vectors with the components ξi(k), i = 1, ..., d

satisfying the conditions above, then

E max
m≤n<N

|
n∑

k=m

ξ(k)|2M ≤ Cξ1(M)(N −m)M

for Cξ1(M) = d2M−1
∑d
i=1 C

1,ξi
1 where | · | denotes the Euclidean norm in Rd.

Proof. Set
ζr(k) = E(ζ(k)|Fk−r,k+r) and µr(k) = E(µ(k)|Fk−r,k+r).

Then

ζ(k) = lim
i→∞

ζ2i(k) = ζ1(k) +

∞∑
r=1

(ζ2r (k)− ζ2r−1(k))

and

µ(k) = lim
i→∞

µ2i(k) = µ1(k) +

∞∑
r=1

(µ2r (k)− µ2r−1(k))

where convergence is in the L∞ sense since

‖ζ2r (k)− ζ2r−1(k)‖∞, ‖µ2r (k)− µ2r−1(k)‖∞ ≤ 2(ρ(2r) + ρ(2r−1)).

For q, r = 0, 1, ... denote

%q,r(j, k) = (ζ2q (j)− ζ2q−1(j))(µ2r (k)− µ2r−1(k))

−E
(
(ζ2q (j)− ζ2q−1(j))(µ2r (k)− µ2r−1(k))

)
andQq,r(k) =

∑k−1
j=`(k) %q,r(j, k) where we set for convenience ρ(2−1) = supk≥0(‖ζ(k)‖2M+

‖µ(k)‖2M ) and ζ2−1(j) = µ2−1(k) = 0 for all j, k ≥ 0. Then

R(`,m, n) =

∞∑
q,r=0

n∑
k=m

Qq,r(k).

Next, introduce Gm = Gq,rm = F−∞,m+max(2q,2r) and observe that Qq,r(k) is Gk-measurable.
We will apply Lemmas 3.2 and 3.3 to the sums R(`,m, n).

First, write
Qq,r(k) = Q(1)

q,r,n(k) +Q(2)
q,r,n(k) +Q(3)

q,r,n(k)

where

Q(1)
q,r,n(k) =

∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k

%q,r(j, k),

Q(2)
q,r,n(k) =

∑
k+n

2 −2 max(2q,2r)≤j< k+n
2 +2 max(2q,2r), j<k

%q,r(j, k),

and Q(3)
q,r,n(k) =

∑
k+n

2 +2 max(2q,2r)≤j<k

%q,r(j, k).

If k − n ≥ 4 max(2q, 2r) then k+n
2 −max(2q, 2r)− n−max(2q, 2r) ≥ 0 and we can write

‖E(Q
(1)
q,r(k)|Gn)‖2M ≤ 2‖E

(
E(µ2r (k)− µ2r−1(k)|F−∞, k+n2 −max(2q,2r))

×
∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k(ζ2q (j)− ζ2q−1(j))|Gn
)
‖2M

≤ 2‖E(µ2r (k)− µ2r−1(k)|F−∞, k+n2 −max(2q,2r))

×
∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k(ζ2q (j)− ζ2q−1(j))‖2M
≤ 8φ(k−n2 )(ρ(2r) + ρ(2r−1))‖

∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k(ζ2q (j)− ζ2q−1(j))‖2M
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where we use (2.1), (2.2) and that k − 2r − k+n
2 + max(2q, 2r) ≥ k−n

2 . If 0 ≤ k − n <

4 max(2q, 2r) then we estimate

‖E(Q
(1)
q,r(k)|Gn)‖2M

≤ 4(ρ(2r) + ρ(2r−1))‖
∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k(ζ2q (j)− ζ2q−1(j))‖2M .

In order to bound the 2M -moment norm of the last sum we will use Lemma 3.2 setting
Hi = F−∞,i+2q and relying on (2.1)-(2.2) we estimate for j ≥ i+ 2q+1,

‖E(ζ2q (j)− ζ2q−1(j)|Hi)‖2M ≤ 4(ρ(2q) + ρ(2q−1))φ(j − i− 2q+1).

For i ≤ j < i+ 2q+1 we use just the obvious estimate

‖E(ζ2q (j)− ζ2q−1(j)|Hi)‖2M ≤ 2(ρ(2q) + ρ(2q−1)).

Hence,

Aζ2M = sup
i≥0

∑
j≥i

‖E(ζ2q (j)− ζ2q−1(j)|Hi)‖2M ≤ 2(ρ(2q) + ρ(2q−1))(2q+1 + 2

∞∑
i=0

φ(i)),

and so by Lemma 3.2,

‖
∑
`(k)≤j< k+n

2 −2 max(2q,2r), j<k(ζ2q (j)− ζ2q−1(j))‖2M

≤ (3(2M)!)1/2M
√
dAζ2M maxm≤k≤n

√
k − `(k).

Next, by (2.1) and (2.2),

|E(Q
(2)
q,r,n(k)|Gn)| ≤

∑
k+n

2 −2 max(2q,2r)≤j< k+n
2 +2 max(2q,2r), j<k |E(%q,r(j, k)|Gn)|

≤ 64 max(2q, 2r)φ(k−n2 − 4 max(2q, 2r))(ρ(2r) + ρ(2r−1))(ρ(2q) + ρ(2q−1))

since each %q,r(j, k) here is F k+n
2 −3 max(2q,2r),∞-measurable, k+n

2 − 3 max(2q, 2r) − n −
max(2q, 2r) = k−n

2 − 4 max(2q, 2r) and we take here φ(x) = 1 for any x ≤ 0. Using again
(2.1) and (2.2) we have also

|E(Q
(3)
q,r,n(k)|Gn)| ≤

∑
k+n

2 +2 max(2q,2r)≤j<k |E(%q,r(j, k)|Gn)|

≤ 8(ρ(2r) + ρ(2r−1))(ρ(2q) + ρ(2q−1))(k − n)φ(k−n2 )

since each %q,r(j, k) here is F k+n
2 +max(2q,2r),∞-measurable and k+n

2 + max(2q, 2r) − n −
max(2q, 2r) = k−n

2 .
Hence, by Lemmas 3.2 and 3.3,

‖ max
m≤n≤N

|
n∑

k=m

Qq,r(k)|‖2M ≤ 2Aq,r2M

(
3(2M)!dM (N −m)M +N −m

)1/2M
where by the above

Aq,r2M = sup0≤n≤N
∑
k≥n ‖E(Qq,r(k)|Gn)‖2M

≤ 64(ρ(2r) + ρ(2r−1))(ρ(2q) + ρ(2q−1))

×
(
(3(2M)!)1/2M

√
d(
∑∞
i=0 φ(i) + max(2q, 2r))2 maxm≤j≤N

√
j − `(j)

+ max(2q, 2r)(4 max(2q, 2r) +
∑∞
i=0 φ(i)) +

∑∞
i=1 iφ(i)

)
.

This together with

‖ max
m≤n≤N

|R(`,m, n)|‖2M ≤
∞∑

q,r=0

‖ max
m≤n≤N

|
n∑

k=m

Qq,r(k)|‖2M

yields (3.4) completing the proof of the lemma.
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3.2 Characteristic functions estimates

Next, we will follow the same path as in [9] (see also [17] and references there) which
leads to strong approximation (almost sure invariance principle) theorem for sums of
weakly dependent random vectors. For each n ≥ 1 introduce the characteristic function

fn(w) = E exp(i〈w, n−1/2
n−1∑
k=0

ξ(k)〉), w ∈ Re

where 〈·, ·〉 denotes the inner product. In the same way as in Lemma 3.10 from [32] we
obtain

Lemma 3.5. For any n ≥ 1,

|fn(w)− exp(−1

2
〈ςw, w〉)| ≤ C2e

3n−℘ (3.5)

for all w ∈ Re with |w| ≤ n℘/2 where we can take ℘ ≤ 1
20 and a constant C2 > 0

independent of n and e.

Next, we follow [9] and [36] introducing blocks of high polynomial power length with
gaps between them. Set m0 = 0 and recursively nk = mk−1 + [kβ ], mk = nk + [kβ/4], k =

1, 2, ... where β > 0 is big and will be chosen later on. Now we define sums

Qk =
∑
mk−1≤j<nk E

(
ξ(j)|Fj− 1

3 [(k−1)β/4],j+ 1
3 [(k−1)β/4]

)
and Rk =

∑
nk≤j<mk ξ(j), k = 1, 2, ...

where the first sums play the role of blocks while the second ones are gaps whose total
contribution turns out to be negligible for our purposes. Set also `N (t) = max{k : mk ≤
Nt} and `N = `N (T ).

Lemma 3.6. With probability one for all N ≥ 1,

sup
0≤t≤T

|SN (t)−N−1/2
∑

1≤k≤`N (t)

Qk| = O(N−δ) (3.6)

provided δ > 0 is small and β > 0 is large enough.

Proof. Denote the left hand side of (3.6) by I, then

I ≤ sup
0≤t≤T

I1(t) + sup
0≤t≤T

I2(t) + sup
0≤t≤T

I3(t).

Here,

I1(t) = N−1/2
∣∣∑

1≤k≤`N (t)

(∑
mk−1≤j<nk(ξ(j) (3.7)

−E(ξ(j)|Fj− 1
3 [(k−1)β/4],j+ 1

3 [(k−1)β/4])
)∣∣

≤ N−1/2
∑

1≤k≤`N (t) k
βρ( 1

3 [(k − 1)β/4]) ≤ C3N
−( 1

2−
1

β+1 )

since

(
TN

2
)

1
β+1 − 2 ≤ `N ≤ (TN)

1
β+1 (3.8)

and by (2.12),

C3 = max
k≥1

(kβρ(
1

3
[(k − 1)β/4])) <∞.

It remains to estimate

I2(t) = N−1/2
∣∣∑

1≤k≤`N (t)

∑
nk≤j<mk ξ(j)

∣∣
and I3(t) = N−1/2

∣∣∑
m`N (t)≤j<[Nt] ξ(j)

∣∣.
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By (3.8) and Lemma 3.4 with C1(M) = Cξ1(M),

E sup0≤t≤T I
2M
2 (t) ≤ N−M

∑
0≤l≤`N E

∣∣∑
1≤k≤l

∑
nk≤j<mk ξ(j)

∣∣2M
≤ C1(M)N−M

∑
0≤l≤`N (

∑
1≤k≤l k

β/4)M ≤ C4(M)N−
1
4 (3− 7

β+1 )M+1

where C4(M) = C1(M)3( β4 +2)M+1. By the Chebyshev inequality

P{ sup
0≤t≤T

I2(t) > N−δ} ≤ N2MδE sup
0≤t≤T

I2M
2 (t). (3.9)

Choosing β > 0 big and δ > 0 small enough so that 7
β+1 + 8δ ≤ 1 and taking M ≥ 6 we

obtain that the right hand side of (3.9) is bounded by N−2, and so by the Borel-Cantelli
lemma

sup
0≤t≤T

I2(t) = O(N−δ) a.s. (3.10)

Next,

sup0≤t≤T I
2M
3 (t) = N−M max1≤k≤`N maxmk≤j<mk+1∧Nt |

∑
mk≤i≤j ξ(i)|

2M

≤ N−M
∑

1≤k≤`N
∑
mk≤j<mk+1

|
∑
mk≤i≤j ξ(i)|

2M .

By Lemma 3.4 with C1(M) = Cξ1(M),

E|
∑

mk≤i≤j

ξ(i)|2M ≤ C1(M)(j −mk + 1)M ,

and so by (3.8),

E sup
0≤t≤T

I2M
3 (t) ≤ C1(M)N−M

`N∑
k=1

(mk+1 −mk + 1)M+1 ≤ C5(M)N−
M
β+1 +1

where C5(M) = C1(M)3M+1. By the Chebyshev inequality

P{ sup
0≤t≤T

I3(t) > N−δ} ≤ N2MδE sup
0≤t≤T

I2M
3 (t). (3.11)

Choosing δ ≤ 1
4(β+1) and M ≥ 12(β + 1) we bound the right hand side of (3.11) by N−2

which together with the Borel-Cantelli lemma yields that

sup
0≤t≤T

I3(t) = O(N−δ) a.s. (3.12)

Finally, (3.6) follows from (3.7), (3.10) and (3.12).

Next, set

Gk = F−∞,nk+ 1
3 [kβ/4], (3.13)

and so Qk is Gk-measurable. The following result is a corollary of Lemmas 3.1 and 3.5.

Lemma 3.7. For any k ≥ 1,

|E(exp(i〈w, (nk −mk−1)−1/2Qk〉|Gk−1)− exp(− 1
2 〈ςw,w〉)| (3.14)

≤ 2φ( 1
3 [(k − 1)β/4]) + ρ( 1

3 [(k − 1)β/4]) + C2d
3[kβ ]−℘

for all w ∈ Re with |w| ≤ (nk −mk−1)℘/2.
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Proof. Set
Fk = exp(i〈w, (nk −mk−1)−1/2Qk〉).

Then by Lemma 3.1,

|E(Fk|Gk−1)− EFk| ≤ 2φ(
1

3
[(k − 1)β/4]).

Since |ei(a+b) − eib| ≤ |a|, we obtain from (2.3) taking into account the stationarity of
ξ(k)’s that,

|EFk − fnk−mk−1
(w)| ≤ |w|kβ/2ρ(

1

3
[(k − 1)β/4]),

and (3.14) follows from (3.5).

3.3 Strong approximations

We will rely on the following result which is a version of Theorem 1 in [9] with some
features taken from Theorem 4.6 in [17] (see also Theorem 3 in [42]).

Theorem 3.8. Let {Vk, k ≥ 1} be a sequence of random vectors with values in Re

defined on some probability space (Ω,F , P ) and such that Vk is measurable with respect
to Gk, k = 1, 2, ... where Gk, k ≥ 1 is a filtration of countably generated sub-σ-algebras of
F . Assume that the probability space is rich enough so that there exists on it a sequence
of uniformly distributed on [0, 1] independent random variables Uk, k ≥ 1 independent
of ∨k≥1Gk. Let G be a probability distribution on Re with the characteristic function g.
Suppose that for some nonnegative numbers νm, δm and Km ≥ 108d,

E
∣∣E(exp(i〈w, Vk〉)|Gk−1)− g(w)

∣∣ ≤ νk (3.15)

for all w ∈ Re with |w| ≤ Kk and

G{x : |x| ≥ 1

4
Kk} < δk. (3.16)

Then there exists a sequence {Wk, k ≥ 1} of Re-valued random vectors defined on
(Ω,F , P ) with the properties

(i) Wk is Gk ∨ σ{Uk}-measurable for each k ≥ 1;
(ii) each Wk, k ≥ 1 has the distribution G and Wk is independent of σ{U1, ..., Uk−1} ∨

Gk−1, and so also of W1, ...,Wk−1;

(iii) Let %k = 16K−1
k logKk + 2ν

1/2
k Kd

k + 2δ
1/2
k . Then

P{|Vk −Wk| ≥ %k} ≤ %k. (3.17)

In order to apply Theorem 3.8 we take Vk = (nk −mk−1)−1/2Qk, Gk given by (3.13)
and

g(w) = exp(−1

2
〈ςw,w〉)

so that G is the mean zero d-dimensional Gaussian distribution with the covariance
matrix ς. Relying on Lemma 3.7 we take ℘ = 1

20 ,

Kk = (nk −mk−1)℘/4d ≤ (nk −mk−1)℘/2 and νk = C6k
−β℘

for some C6 > 0 independent of k ≥ 1. By the Chebyshev inequality we have also

G{x : |x| ≥ Kk
4 } = P{|Ψ| ≥ 1

4 (nk −mk−1)℘/4d}
≤ 4d‖ς‖(nk −mk−1)−℘/2d ≤ C7k

−℘β/2d
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for some C7 > 0 which does not depend on k.
Now Theorem 3.8 provides us with random vectorsWk, k ≥ 1 satisfying the properties

(i)–(iii), in particular, the random vector Wk has the mean zero Gaussian distribution
with the covariance matrix ς, it is independent of W1, ...,Wk−1 and the property (iii) holds
true with

%k = 4
℘

d
(nk −mk−1)−℘/4d log(nk −mk−1) + 2C

1/2
6 k−β℘/4 + 2C

1/2
7 k−β℘/4d.

Next, we choose β > 160d which gives

%k ≤ C8k
−2 (3.18)

for all k ≥ 1 where C8 > 0 does not depend on k.
Next, let W (t), t ≥ 0 be a e-dimensional Brownian motion with the covariance matrix

ς at the time 1. Then the sequence of random vectors W̃k = (nk −mk−1)−1/2(W (nk)−
W (mk−1)), k = 1, 2, ... and Wk, k ≥ 1 have the same distributions. Moreover, we can
redefine the process ξ(n), −∞ < n < ∞ and choose a Brownian motion W (s), s ≥ 0

(with the covariance matrix ς at the time 1) preserving their distributions so that the joint
distribution of the sequences of pairs (Vk,Wk) and of (Ṽk, W̃k), where Ṽk is constructed
as Vk but using the redefined process ξ(n), will be the same. Indeed, by the Kolmogorov
extension theorem (see, for instance, [4]) such pair of processes exists if we impose
consistent restrictions on their joint finite dimensional distributions. But since the pair
of processes ξ(n), n ≥ 0 and Wk, k ≥ 1 satisfying the conditions of Theorem 3.8 exist as
asserted there, these conditions are consistent and the required pair of processes indeed
exists. A more precise justification of this relies on Lemma A1 from [9]. Namely, let R be
the joint distribution of the process ξ(n), −∞ < n < ∞ and of the sequence Wk, k ≥ 1

and let R̃ be the joint distribution of the sequence W̃k, k ≥ 1 and a e-dimensional
Brownian motion W (t), t ≥ 0 with the covariance matrix ς at the time 1. Since the
second marginal of R coincides with the first marginal of R̃, it follows by Lemma A1
of [9] that the process ξ and the sequence Wk, k ≥ 1 can be redefined on a richer
probability space where there exists a Brownian motion W (t), t ≥ 0 with the covariance
matrix ς (at the time 1) such that Wk = (nk − mk−1)−1/2(W (nk) −W (mk−1)), and so
from now on we will rely on this equality and assume that these Wk’s satisfy (3.17) with
%k satisfying (3.18). It follows by the Borel-Cantelli lemma that there exists a random
variable D = D(ω) <∞ a.s. such that

|Vk −Wk| ≤ Dk−2 a.s. (3.19)

Now we can obtain the following result.

Lemma 3.9. With probability one,

sup
0≤t≤T

|
∑

1≤k≤`N (t)

Qk −W (tN)| = O(N
1
2−δ) (3.20)

for some δ > 0 which does not depend on N .

Proof. We have

JN (t) = |
∑

1≤k≤`N (t)

Qk −W (tN)| ≤ J (1)
N (t) + |J (2)

N (t)|

where by (3.8) and (3.19),

J
(1)
N (t) =

∑
1≤k≤`N (t)

(nk −mk−1)1/2|Vk −Wk| ≤ D
∑

1≤k≤`N

[kβ ]1/2k−2 ≤ D2β/2N
1
2 (1− 3

β+1 )

(3.21)
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and
J

(2)
N (t) = W (tN)−W (m`N (t)) +

∑
1≤k≤`N (t)

(W (mk)−W (nk)).

Clearly, J (2)
N (t), t ≥ 0 is a martingale in t, and so

E sup0≤t≤T |J
(2)
N (t)|2M ≤ ( 2M

2M−1 )2ME|J (2)
N (T )|2M (3.22)

≤ ( 4M
2M−1 )2M (E|W (TN)−W (m`N )|2M + E|J (3)

N (T )|2M )

where J (3)
N (t) =

∑
1≤k≤`N (W (mk)−W (nk)). Now, by (3.8),

E|W (TN)−W (m`N )|2M ≤ ‖ς1/2‖2M (
∏M
j=1(2j − 1))(2`βN )M (3.23)

≤ ‖ς1/2‖2M
√

2M !2MN (1− 1
β+1 )M .

Next, J (3)
N (T ) is a sum of independent random vectors and we will estimate last term

in the right hand side of (3.22) relying on Lemma 3.2 with ηj = W (mj) −W (nj) and
Gj = σ{W (t), t ≤ mj} for j = 1, ..., `N . Then

A2M = sup
i≥1

∑
j≥i

‖E(ηj |Gi)‖2M = sup
i≥1
‖ηi‖2M ≤

√
2M(`N + 1)β/8,

and so by Lemma 3.2,

E|J (3)
N (T )|2M ≤ 3(2M)!(2M)M (`N + 1)M(1+ β

4 ) (3.24)

≤ 3(2M)!(2M)M2M(1+ β
4 )N

M
4 (1+ 3

β+1 ).

By (3.22)–(3.24) and the Chebyshev inequality

P{sup0≤t≤T |J
(2)
N (t)| ≥ N 1

2−δ} ≤ N−M(1−2δ)E sup0≤t≤T |J
(2)
N (t)|2M (3.25)

≤ C9(M)(N−M( 1
β+1−2δ) +N−M( 3

4−
1

β+1−2δ))

where C9(M) > 0 does not depend on N . Now choose β ≥ 2, δ < 1
4(β+1) and M ≥ 2(β+1)

then the right hand side of (3.25) forms a converging sequence, and so by the Borel-
Cantelli lemma

sup
0≤t≤T

|J (2)
N (t)| = O(N

1
2−δ) a.s.

which together with (3.21) completes the proof of Lemma 3.9.

Now combining Lemmas 3.6 and 3.9 we obtain that for some δ > 0 and all N ≥ 1,

sup
0≤t≤T

|SN (t)−WN (t)| = O(N−δ) a.s., (3.26)

where WN (t) = N−1/2W (tN) is another Brownian motion.

3.4 p-variation norm estimates

Thus, (2.16) is proved in the supremum norm and we will extend it next for the
p-variation norm. First, for any α ∈ (0, 1) and β ∈ (0, 1/2) (which has nothing to do with
β in the previous subsection) we estimate by Lemma 3.4 and the Chebyshev inequality

P
{

max[TN ]∧(k+Nα)≥l>k≥0
|SN (l/N)−SN (k/N)|
|(l−k)/N |

1
2
−β > 1

}
(3.27)

≤
∑

[TN ]∧(k+Nα)≥l>k≥0 P
{
|
∑
k≤j<l ξ(j)| > Nβ(l − k)

1
2−β

}
≤ N−2βM

∑
[TN ]∧(k+Nα)≥l>k≥0(l − k)−M+2βME|

∑
k≤j<l ξ(j)|2M

≤ Cξ1(M)TN1−2βM
∑
Nα≥j≥1 j

2βM ≤ 22βM+1Cξ1(M)TN−2βM(1−α)+1+α.

EJP 29 (2024), paper 111.
Page 17/56

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1174
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diffusion approximation

Next, we choose M ≥ 3+α
2β(1−α) which makes the right hand side of (3.27) a term in a

converging series. Hence, by the Borel–Cantelli lemma for any α ∈ (0, 1) and β ∈ (0, 1/2)

there exists a finite a.s. random variable CSα,β = CSα,β(ω) such that for all N ≥ 1,

|SN (l/N)− SN (k/N)| ≤ CSα,β
∣∣ l
N
− k

N

∣∣ 12−β if k +Nα ≥ l > k ≥ 0, l ≤ [TN ]. (3.28)

Next, define

ŴN (t) = WN (
[Nt]

N
) =

∑
0≤k<[Nt]

(WN (
k + 1

N
)−WN (

k

N
)).

Let 0 = t0 < t1 < ... < tm = T and observe that if [tiN ] = [ti+1N ] then

SN (ti+1) = SN (ti) and ŴN (ti+1) = ŴN (ti).

Hence, ∑
0≤i<m |SN (ti+1)− ŴN (ti+1)− SN (ti) + ŴN (ti)|p (3.29)

=
∑

0≤j<n |SN (
kj+1

N )−WN (
kj+1

N )− SN (
kj
N ) +WN (

kj
N )|p

≤ J (1)
N + 2p−1(J

(2)
N + J

(3)
N )

where

J
(1)
N =

∑
0≤j<n, kj+1−kj>Nα

|SN (
kj+1

N
)−WN (

kj+1

N
)− SN (

kj
N

) +WN (
kj
N

)|p,

J
(2)
N =

∑
0≤j<n, kj+1−kj≤Nα

|SN (
kj+1

N
)− SN (

kj
N

)|p,

J
(3)
N =

∑
0≤j<n, kj+1−kj≤Nα

|WN (
kj+1

N
)−WN (

kj
N

)|p,

kj = [tijN ] and 0 = ti0 < ti1 < ... < tin = T is the maximal subsequence of t0, t1, ..., tm
such that [tijN ] < [tij+1N ], j = 0, 1, ..., n− 1.

In order to estimate J (1)
N we use (3.26) and observe that there exist no more than

[TN1−α] intervals [kj , kj+1] such that kj+1 − kj > Nα which gives that

J
(1)
N ≤ C(1)N1−α−pδ (3.30)

for some a.s. finite random variable C(1) = C(1)(ω) > 0 which does not depend on N , n
or on the choice of t1, ..., tm and we choose α so close to 1 that 1− α− pδ < 0. In order
to estimate J (2)

N we use (3.28) and observe that
∑

0≤j<n |kj+1 − kj | ≤ TN which gives

J
(2)
N ≤ (CSα,β)pN−p(

1
2−β)

∑
0≤j<n, kj+1−kj≤Nα |kj+1 − kj |p(

1
2−β) (3.31)

≤ (CSα,β)pTN−(1−α)( p2−1−pβ)

where we use that
|kj+1 − kj |p(

1
2−β) ≤ Nα(p( 1

2−β)−1)|kj+1 − kj |

when |kj+1 − kj | ≤ Nα and assume that

0 < β <
1

2
− 1

p
(3.32)
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which is consistent since p > 2.

It remains to estimate J
(3)
N (which essentially is contained in the proof of Hölder

continuity of the Brownian motion). We start with the estimate similar to (3.27) relying
on the Chebyshev inequality and the standard moment estimates of Gaussian random
vectors,

P
{

max[TN ]∧(k+Nα)≥l>k≥0
|WN (l/N)−WN (k/N)|
|(l−k)/N |

1
2
−β > 1

}
(3.33)

≤
∑

[TN ]∧(k+Nα)≥l>k≥0 P
{ |WN (l/N)−WN (k/N)|

|(l−k)/N |
1
2
−β > 1

}
≤ C10(M)N−2βM(1−α)+1+α

where C10(M) > 0 does not depend on N ≥ 1. Choose again M ≥ 3+α
2β(1−α) which makes

the right hand side of (3.33) a term in a converging series. Again, by the Borel–Cantelli
lemma for any α ∈ (0, 1) and β ∈ (0, 1/2) there exists a finite a.s. random variable
Cα,β = Cα,β(ω) such that for all N ≥ 1,

|WN (l/N)−WN (k/N)| ≤ Cα,β
∣∣ l
N
− k

N

∣∣ 12−β if k +Nα ≥ l > k ≥ 0, l ≤ [TN ]. (3.34)

Proceeding as in (3.31) we obtain that

J
(3)
N ≤ Cpα,βTN

−(1−α)( p2−1−pβ) (3.35)

where we assume again (3.32). Finally, we conclude from (3.29)–(3.31) and (3.35) that

‖SN − ŴN‖p,[0,T ] = O(N−δ̃) a.s., (3.36)

where δ̃ = min(α+pδ−1, (1−α)(p2−1−pβ)) > 0, assuming (3.32) and choosing α > 1−pδ.
Next, set

W̄
ij
N (t) =

∫ t

0

W i
N (u)dW j

N (u)

and

Ŵ
ij
N (t) =

∑
0≤l<[Nt]

(W j
N (
l + 1

N
)−W j

N (
l

N
))W i

N (
l

N
).

The relation (2.16) from Theorem 2.2 follows from (3.36) and the following result which
will be used also in Sections 4 and 5.

Lemma 3.10. For all T > 0 and p ∈ (2, 3),

‖WN − ŴN‖p,[0,T ] = O(N−δ) a.s. as N ≥ 1 (3.37)

and

max
1≤i,j≤d

‖W̄ij
N − Ŵ

ij
N‖ p2 ,[0,T ] = O(N−δ) a.s. as N ≥ 1 (3.38)

for some δ > 0 which does not depend on N ≥ 1.

We postpone the proof of this result till the end of Section 6. Observe that Lemma 3.10
gives estimates for a version of the Euler–Maruyama rough paths approximation in p-
variation norms for a family of processes depending on a parameter which by itself
controls the step of approximations.
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4 Strong approximations for iterated sums

4.1 Estimates in the supremum norm

As in the previous section we will prove first the estimate (2.17) in the supremum
norm and then will extend it to the p/2-variation norm. Set mN = [N1−κ] with a small
κ > 0 which will be chosen later on, νN (l) = max{jmN : jmN < l} if l > mN and

Ri(k) = Ri(k,N) =

kmN−1∑
l=(k−1)mN

ξi(l) for k = 1, 2, ..., ιN (T )

where ιN (t) = [[Nt]m−1
N ]. For 1 ≤ i, j ≤ e define

U
ij
N (t) = N−1

ιN (t)mN−1∑
l=mN

ξj(l)

νN (l)∑
k=0

ξi(k) = N−1
∑

1<l≤ιN (t)

Rj(l)

(l−1)mN−1∑
k=0

ξi(k). (4.1)

Set also

S̄
ij
N (t) = S

ij
N (t)− t

∞∑
l=1

E(ξi(0)ξj(l)).

We will need the following result.

Lemma 4.1. For all i, j = 1, ..., e and N ≥ 1,

sup
0≤t≤T

|S̄ijN (t)−UijN (t)| = O(N−δ1) a.s. (4.2)

for some δ1 > 0 which does not depend on N .

Proof. First, we write

|S̄ijN (t)−UijN (t)| ≤ |I(1)
N (t)|+ |I(2)

N (t)|+ |I(3)
N (t)|+ |I(4)

N (t)| (4.3)

where

I(1)
N (t) = I1;ij

N (t) = N−1

ιN (t)mN−1∑
l=mN

l−1∑
k=νN (l)+1

(
ξj(l)ξi(k)− E(ξj(l)ξi(k))

)
,

I(2)
N (t) = I2;ij

N (t) = N−1

[Nt]−1∑
l=ιN (t)mN

l−1∑
k=0

(
ξj(l)ξi(k)− E(ξj(l)ξi(k))

)
,

I(3)
N (t) = I3;ij

N (t) = N−1
mN−1∑
l=1

l−1∑
k=0

(
ξj(l)ξi(k)− E(ξj(l)ξi(k))

)
and

I(4)
N (t) = I4;ij

N (t) = I4,1;ij
N (t)− I4,2;ij

N (t)

with

I4,1;ij
N (t) = N−1

[Nt]−1∑
l=1

l−1∑
k=0

E(ξj(l)ξi(k))− t
∞∑
l=1

E(ξi(0)ξj(l))

and

I4,2;ij
N (t) = N−1

ιN (t)mN−1∑
l=mN

νN (l)∑
k=0

E(ξj(l)ξi(k)).
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By Lemma 3.4,

E sup0≤t≤T |I
(1;i,j)
N (t)|2M = Emax0≤k<[TN ] |I

(1;i,j)
N (k/N)|2M (4.4)

≤ C11(M)TMN−Mκ, E sup0≤t≤T |I
(2;i,j)
N (t)|2M ≤ C11(M)TMN−Mκ

and E sup0≤t≤T |I
(3;i,j)
N (t)|2M ≤ C11(M)N−2Mκ

where C11(M) > 0 does not depend on N . Choosing δ1 and M such that δ1 <
1
2κ and

M ≥ 2(κ − 2δ1)−1 we use, first, the Chebyshev inequality and then the Borel–Cantelli
lemma to obtain that with probability one,

sup0≤t≤T |I
(1;i,j)
N (t)| = O(N−δ1), sup0≤t≤T |I

(2;i,j)
N (t)| = O(N−δ1) (4.5)

and sup0≤t≤T |I
(3;i,j)
N (t)| = O(N−2δ1).

It remains to estimate I(4;i,j)
N (t). By (2.3), (2.6) and Lemma 3.1,

|E(ξj(l)ξi(k))| ≤ 2Lρ(|k − l|/3) + |E
(
E(ξj(l)|Fl−[ 13 |k−l|],l+[ 13 |k−l|]

) (4.6)

×E(ξi(k)|Fk−[ 13 |k−l|],k+[ 13 |k−l|]
)
)
| ≤ 2L(Lφ(|k − l|/3) + ρ(|k − l|/3)).

By the stationarity
l−1∑
k=0

E(ξj(l)ξi(k)) =

l∑
n=1

E(ξj(n)ξi(0))

and by (2.12) and (4.6) the limit

Lij = lim
l→∞

l∑
n=1

E(ξj(n)ξi(0)) =

∞∑
n=1

E(ξj(n)ξi(0))

exists and, moreover,

|
l−1∑
k=0

E(ξj(l)ξi(k))− Lij | ≤ 2L

∞∑
n=l+1

(Lφ(n/3) + ρ(n/3)). (4.7)

It follows from (2.12) and (2.23) that

sup
0≤t≤T

|I(4,1;i,j)
N (t)| ≤ 2LN−1

∞∑
l=0

∞∑
n=l+1

(Lφ(n/3) + ρ(n/3)) +N−1|Lij | ≤ C12N
−1 (4.8)

for some C12 > 0 which does not depend on N .
Finally, by (4.6),

|
νN (l)∑
k=0

E(ξj(l)ξi(k))| ≤ 2L

∞∑
n=l−νN (l)

(Lφ(n/3) + ρ(n/3)),

and so by (2.12),

sup
0≤t≤T

|I(4,2;i,j)
N (t)| ≤ 2LTN−(1−κ)

mN∑
l=1

∞∑
n=l

(Lφ(n/3) + ρ(n/3)) ≤ C13N
−(1−κ) (4.9)

for some C13 > 0 which does not depend on N . The lemma now follows from (4.5), (4.8)
and (4.9) together with the Chebyshev inequality and the Borel–Cantelli lemma.
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Now set
SiN (t) = N−1/2

∑
0≤k<[Nt]

ξi(k), i = 1, ..., e

and observe that

U
ij
N (t) =

∑
2≤l≤ιN (t)

(
SjN
( lmN

N

)
− SjN

( (l − 1)mN

N

))
SiN
( (l − 1)mN

N

)
.

Define

V
ij
N (t) =

∑
2≤l≤ιN (t)

(
W j
N

( lmN

N

)
−W j

N

( (l − 1)mN

N

))
W i
N

( (l − 1)mN

N

)
where WN = (W 1

N , ...,W
e
N ) is the e-dimensional Brownian motion with the covariance

matrix ς (at the time 1) appearing in (2.16) which was constructed in Section 3. Then

sup0≤t≤T |U
ij
N (t)−VijN (t)| ≤

∑
2≤l≤ιN (T )

((∣∣SjN( lmNN )
−W j

N

(
lmN
N

)∣∣ (4.10)

+
∣∣SjN( (l−1)mN

N

)
−W j

N

( (l−1)mN
N

)∣∣)∣∣SiN( (l−1)mN
N

)∣∣
+
∣∣W j

N

(
lmN
N

)
−W j

N

( (l−1)mN
N

)∣∣∣∣SiN( (l−1)mN
N

)
−W i

N

( (l−1)mN
N

)∣∣).
By Lemma 3.4,

E max
2≤l≤ιN (T )

∣∣SiN( (l − 1)mN

N

)∣∣2M ≤ C14(M)TM (4.11)

for some C14(M) > 0 which does not depend on N . By the Chebyshev inequality for any
γ > 0,

P{ max
2≤l≤ιN (T )

∣∣SiN( (l − 1)mN

N

)∣∣ > Nγ} ≤ C14(M)TMN−2Mγ . (4.12)

Taking M ≥ γ−1 the right hand side of (4.12) becomes a term of a converging series and
by the Borel–Cantelli lemma we obtain that for any γ > 0,

max
2≤l≤ιN (T )

∣∣SiN( (l − 1)mN

N

)∣∣ = O(Nγ) a.s. (4.13)

Next, write

Emax2≤l≤ιN (T )

∣∣W j
N

(
lmN
N

)
−W j

N

( (l−1)mN
N

)∣∣2M
≤
∑

2≤l≤ιN (T )E
∣∣W j

N

(
lmN
N

)
−W j

N

( (l−1)mN
N

)∣∣2M .
Using the standard moment estimates for the Brownian motion and relying on the
Chebyshev inequality and the Borel–Cantelli lemma we obtain similarly to (4.12) and
(4.13) that for γ < κ/2,

max
2≤l≤ιN (T )

∣∣W j
N

( lmN

N

)
−W j

N

( (l − 1)mN

N

)∣∣ = O(N−γ) a.s. (4.14)

Now, combining (2.16), (4.10), (4.13) and (4.14) we obtain that

sup
0≤t≤T

|UijN (t)−VijN (t)| = O(N−δ2) a.s. (4.15)

where δ2 = δ − κ− γ and we choose κ and γ so small that δ2 > 0.
Next, observe that

sup0≤t≤T |
∫ t

0
W i
N (s)dW j

N (s)−VijN (t)| (4.16)

≤ sup0≤t≤T |J
(1;i,j)
N (t)|+ sup0≤t≤mNN−1 |J (2;i,j)

N (t)|+ sup0≤t≤T |J
(3;i,j)
N (t)|
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where

J
(1;i,j)
N (t) =

∑
2≤l≤ιN (t)

∫ lmNN
−1

(l−1)mNN−1

(
W i
N (s)−W i

N

( (l − 1)mN

N

))
dW j(s),

J
(2;i,j)
N (t) =

∫ t

0

W i
N (s)dW j

N (s) and J
(3;i,j)
N (t) =

∫ t

(ιN (t)∨1)mNN−1

W i
N (s)dW j

N (s).

By the standard (martingale) moment estimates for stochastic integrals (see, for instance,
[40], Section 1.7),

E sup
0≤t≤T

|J (1;i,j)
N (t)|2M ≤ C15(M,T )N−Mκ,

E sup
0≤t≤mNN−1

|J (2;i,j)
N (t)|2M ≤ C15(M,T )N−Mκ and

E sup0≤t≤T |J
(3;i,j)
N (t)|2M

≤
∑

2≤l≤ιN (T )E sup0≤u≤mN |
∫ ((l−1)mN+u)N−1

(l−1)mNN−1 W i
N (s)dW j

N (s)|2M

≤ C15(M,T )N−(M−1)κ

where C15(M,T ) > 0 does not depend on N . Taking δ3 <
1
2κ and M ≥ (2κ+ 1)(κ− 2δ3)−1

and employing the Chebyshev inequality together with the Borel–Cantelli lemma in the
same way as above, we conclude that

sup
0≤t≤T

|J (1;i,j)
N (t)|+ sup

0≤t≤T
|J (2;i,j)
N (t)|+ sup

0≤t≤T
|J (3;i,j)
N (t)| = O(N−δ3) a.s. (4.17)

This together with (4.2), (4.15) and (4.16) completes the proof of (2.17) in the supremum
norm.

4.2 p/2-variation norm estimates

Next, we extend the supremum norm estimate of Section 4.1 to the p/2-variation
norm estimate which will yield (2.17) of Theorem 2.2. First, we will derive certain Hölder
continuity type estimates for our sums. For 0 ≤ s < t ≤ T and i, j = 1, ..., e set

S̄
ij
N (s, t) = N−1

∑
[sN ]≤k<l<[Nt]

ξi(k)ξj(l)− (t− s)
∞∑
l=1

E(ξi(0)ξj(l)),

and so

S
ij
N (s, t) = S̄

ij
N (s, t) + (t− s)

∞∑
l=1

E(ξi(0)ξj(l)), (4.18)

recalling that by (2.12) and (4.6) the series in the right hand side of (4.18) converges
absolutely.

Lemma 4.2. There exists a finite a.s. random variable CSα,β > 0 which does not depend
on n,m or N such that∣∣S̄ijN (

m

N
,
n

N
))
∣∣ ≤ CSα,β | nN − m

N
|1−β provided m+Nα ≥ n > m ≥ 0, [TN ] > n. (4.19)

Proof. We will estimate S̄ijN (s, t) relying on Lemma 3.4. Set

µijkl = ξj(l)

l−1∑
r=k

ξi(r) and ΣijN (s, t) = N−1

[tN ]−1∑
l=[sN ]

(µij[sN ]l − Eµ
ij
[sN ]l).
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By (2.3), (2.6) and (4.6) for 0 ≤ m < n < [TN ],

∣∣S̄ijN (
m

N
,
n

N
)− ΣijN (

m

N
,
n

N
)
∣∣ ≤ (

n

N
− m

N
)

∞∑
l=1

|E(ξi(0)ξj(l))|. (4.20)

Next, for any α, β ∈ (0, 1) by the Chebyshev inequality

P = P
{

maxm+Nα≥n>m≥0, [TN ]>n
|ΣijN (mN ,

n
N )|

|(n−m)/N |1−β > 1} (4.21)

≤
∑
m+Nα≥n>m≥0, [TN ]>n P

{
|
∑
m≤r<n(µijmr − Eµijmr)| > Nβ(n−m)1−β}

≤ N−2βM
∑
m+Nα≥n>m≥0, [TN ]>n(n−m)−2M(1−β)

×E|
∑
m≤r<n(µijmr − Eµijmr)|2M .

By Lemma 3.4,

E|
∑

m≤r<n

(µijmr − Eµijmr)|2M ≤ C16(M)(n−m)2M (4.22)

for some C16(M) > 0 which does not depend on m,n or N . This together with (4.21)
yields that

P ≤ C17(M)N−2Mβ(1−α)+1+α (4.23)

where C17(M) = C16(M)22Mβ+1(2Mβ + 1)−1. For any α, β ∈ (0, 1) we pick up M ≥ 1

such that 2Mβ(1− α)− 1− α ≥ 2 which makes the right hand side of (4.23) a term of a
converging sequence. Thus, by the Borel–Cantelli lemma we conclude that there exists a
finite a.s. random variable CΣ

α,β = CΣ
α,β(ω) such that for all N ≥ 1,

|ΣijN (
m

N
,
n

N
))| ≤ CΣ

α,β |
n

N
− m

N
|1−β provided m+Nα ≥ n > m ≥ 0, [TN ] > n,

which together with (4.18) and (4.20) yields (4.19) for all N ≥ 1.

Next, we proceed similarly to Section 3.4. For 0 ≤ s < t ≤ T define

Ŵ
ij
N (s, t) =

∑
[Ns]≤l<[Nt]

(W j
N (
l + 1

N
)−W j

N (
l

N
))(W i

N (
l

N
)−W i

N (
[Ns]

N
))

and

W̄
ij
N (s, t) =

∫ t

s

(W i
N (u)−W i

N (s))dW j
N (u)

while Ŵij
N (0, t) and W̄

ij
N (0, t) will be denoted, as before, just by Ŵij

N (t) and W̄
ij
N (t),

respectively. Let 0 ≤ t0 < t1 < ... < tm = T and observe that if [tqN ] = [tq+1N ] then

Ŵ
ij
N (tq, tq+1) = 0 and |S̄ijN (tq, tq+1)| = Dij(tq+1 − tq) ≤ DijN

−1

where Dij = |
∑∞
l=1E(ξi(0)ξj(l))| <∞. Hence,∑

0≤q<m |S̄
ij
N (tq, tq+1)− Ŵij

N (tq, tq+1)|p/2 (4.24)

≤
∑

0≤r<n
∣∣S̄ijN (krN ,

kr+1

N )− Ŵij
N (krN ,

kr+1

N )|p/2

+J
(0)
N ≤ J (0)

N + J
(1)
N + 2p/2−1(J

(2)
N + J

(3)
N ),
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where

J
(0)
N = D

p/2
ij

∑
q:|tq+1−tq|<N−1

|tq+1 − tq|p/2 ≤ Dp/2
ij TN−( p2−1), (4.25)

J
(1)
N =

∑
0≤r<n,kr+1−kr>Nα

∣∣S̄ijN (
kr
N
,
kr+1

N
)− Ŵij

N (
kr
N
,
kr+1

N
)
∣∣p/2,

J
(2)
N =

∑
0≤r<n,kr+1−kr≤Nα

∣∣S̄ijN (
kr
N
,
kr+1

N
)
∣∣p/2 and,

J
(3)
N =

∑
0≤r<n,kr+1−kr≤Nα

∣∣Ŵij
N (
kr
N
,
kr+1

N
)|p/2,

kr = [tqrN ] and 0 = tq0 < tq1 < ... < tqm = T is the maximal subsequence of t0, t1, ..., tm
such that [tqrN ] < [tqr+1

N ], r = 0, 1, ...,m− 1.
Observe that

S̄
ij
N (s, t) = S̄

ij
N (t)− S̄ijN (s)− SiN (s)(SjN (t)− SjN (s)),

W̄
ij
N (s, t) = W̄

ij
N (t)− W̄ij

N (s)−W i
N (s)(W j

N (t)−W j
N (s))

and

Ŵ
ij
N (s, t) = Ŵ

ij
N (t)− Ŵij

N (s)−W i
N (

[Ns]

N
)(W j

N (
[Nt]

N
)−W j

N (
[Ns]

N
)).

In order to estimate J (1)
N we use (2.16) and (2.17) for the supremum norm proved in

Sections 3.3 and 4.1 together with Lemma 3.10 and observe that there exists no more
than [TN1−α] disjoint intervals (kr, kr+1) in [0, [TN ]] with the length exceeding Nα which
gives as in (3.30) that

J
(1)
N ≤ C18N

1−α−pδ/2(1 + sup
0≤t≤T

|SjN (t)|p/2 + sup
0≤t≤T

|W i
N (t)|p/2 + sup

0≤t≤T
|W j

N (t)|p/2) (4.26)

where C18 > 0 is an a.s. finite random variable which does not depend on N or on the
choice of t1, ..., tm. Using (2.16) we have

sup
0≤t≤T

|SjN (t)|p/2 ≤ 2p/2−1(C19N
−pδ/2 + sup

0≤t≤T
|W j

N (t)|p/2) whenever 1 ≤ j ≤ e (4.27)

where C19 > 0 is an a.s. finite random variable which does not depend on N . By the
standard martingale moment estimates for the Brownian motion for any M ≥ 1,

E sup
0≤t≤T

|W j
N (t)|pM ≤ C20(M,T ) <∞ whenever 1 ≤ j ≤ e,

where C20(M,T ) > 0 does not depend on N . Applying as above the Chebyshev inequality
and then the Borel–Cantelli lemma we see that for any γ > 0,

sup
0≤t≤T

|W j
N (t)| = O(Nγ) a.s.

This together with (4.26) and (4.27) gives

J
(1)
N = O(N1−α−pδ/2−pγ/2) (4.28)

where we choose α so close to 1 that 1− α− pδ/2 < 0.
By (4.19) we obtain similarly to (3.31) that

J
(2)
N ≤ CSα,βN−p(1−β)/2

∑
0≤j<n, kj+1−kj≤Nα |kj+1 − kj |p(1−β)/2 (4.29)

≤ CSα,βTN−(1−α)( p2−1−pβ/2)
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where we assume that

0 < β < 1− 2

p
(4.30)

which is consistent since p > 2.
In order to estimate J (3)

N we proceed in the same way as in (3.33)–(3.35) and (4.21)
writing

P
{

maxm+Nα≥n>m≥0, [TN ]>n
|
∑
m≤l<n(W j

N ( l+1
N )−W j

N ( lN ))(W i
N ( lN )−W i

N (mN ))|
|(n−m)/N |1−β (4.31)

> 1
}
≤ N2M(1−β)

∑
m+Nα≥n>m≥0, [TN ]>n(n−m)−2M(1−β)

×E
∣∣∑

m≤l<n(W j
N ( l+1

N )−W j
N ( l

N ))(W i
N ( l

N )−W i
N (mN ))

∣∣2M
≤ C21(M)N−2Mβ

∑
m+Nα≥n>m≥0, [TN ]>n(n−m)2Mβ

≤ C21(M)TN−2Mβ(1−α)+1+α

where C21(M) > 0 does not depend on N ≥ 1 and we rely on the Chebyshev inequality
and the standard moment estimates for the martingale Mn =

∑
m≤l<n(W j

N ( l+1
N ) −

W j
N ( l

N ))(W i
N ( l

N ) − W i
N (mN ) (see, for instance, [40]) or, alternatively, use Lemma 3.4.

Choosing M ≥ (3 + α)(2β(1− α))−1 we obtain in the right hand side of (4.31) a term of
a converging sequence and application of the Borel–Cantelli lemma provides us with a
finite a.s. random variable CWα,β > 0 such that for all N ≥ 1,

∣∣ ∫ n/N

m/N

(W i
N (u)−W i

N (m/N))dW j
N (u)

∣∣ ≤ CWα,β∣∣ nN − m

N

∣∣1−β (4.32)

whenever Nα ≥ n−m > 0, n < [TN ], m ≥ 0. In the same way as in (4.29) we have now

J
(3)
N ≤ CWα,βTN−(1−α)(p/2−1−pβ/2). (4.33)

Collecting (4.18), (4.24), (4.28), (4.29) and (4.30) we obtain (2.17) for some δ > 0 which
together with Lemma 3.10 completes the proof of Theorem 2.2.

5 Continuous time case: proof of Theorem 2.5

5.1 Basic estimates

First observe that by (2.6), (2.19) and (2.21),

|(η ◦ ϑm(ω)− E(η ◦ ϑm|Fm−n,m+n)(ω)| (5.1)

= |
∫ τ◦ϑm(ω)

0
ξ(s, ϑmω)ds− E(

∫ τ◦ϑm(ω)

0
ξ(s, ϑmω)ds|Fm−n,m+n)(ω)|

≤ 2L|τ ◦ ϑm(ω)− E(τ ◦ ϑm|Fm−n,m+n)(ω)|+ |
∫ E(τ◦ϑm(ω)|Fm−n,m+n)

0
(ξ(s, ϑmω)

−E(ξ(s, ϑmω)|Fm−n,m+n)(ω))ds| ≤ (2L+ L̂)ρ(n),

and so the sequence η(k), k ∈ Z satisfies the conditions of Theorem 2.1.
With a slight abuse of notations we set now for each t ∈ [0, T ],

Sε(t) = ε
∑

0≤k<[ε−2t]

η(k) and Sijε (t) = ε2
∑

0≤k<l<[ε−2t]

ηi(k)ηj(l).

In view of the assumptions of Theorem 2.4 we can apply Theorem 2.2 to S1/
√
N and

S1/
√
N to obtain

‖S1/
√
N −WN‖p,[0,T ] = O(N−δ) a.s. (5.2)
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and
max

0≤i,j≤d
‖Sij

1/
√
N
−Wij

N‖p/2,[0,T ] = O(N−δ) a.s. (5.3)

where WN = N−1/2W(Nt) and W is the universal Brownian motion constructed via
Theorem 3.8 for the sequence η(k), k ∈ Z in place of the sequence ξ(k), k ∈ Z considered
there. Here

W
ij
N (t) =

∫ t

0

W i
N (s)dW j

N (s) + t

∞∑
l=1

E(ηi(0)ηj(l)).

Next, set Nε = [ε−2]. Then, by (2.6) and (2.19),

|Sε(t)− S1/Nε(t)| ≤ |ε
√
Nε − 1|N−1

ε |
∑

0≤k<[Nεt]
η(k)| (5.4)

+ε|
∑

[Nεt]≤k<[ε−2t] η(k)| ≤ ε2|S1/
√
Nε

(t)|+ ε(T + 1)LL̂.

This together with (5.2) and the arguments similar to Section 3.4 yields easily that

‖Sε −W[ε−2]‖p,[0,T ] = O(εδ) a.s. (5.5)

for some δ > 0 where a.s. is simultaneously over ε ∈ (0, 1).
Next,

|Sijε (t)− Sij1/Nε(t)| ≤ |ε
2
√
Nε − 1|N−1

ε |
∑

0≤k<l<[Nεt]
ηi(k)ηj(l)| (5.6)

+ε2|
∑

[Nεt]≤l<[ε−2t] ηj(k)
∑l−1
k=0 ηi(k)|

≤ ε2|Sij
1/
√
Nε

(t)|+ εLL̂|
∑

[Nεt]≤l<[ε−2t] S
i
1/
√
Nε

((l − 1)ε2)|.

Relying on (5.2), (5.3) and the arguments similar to Section 4.2 we derive easily that

‖Sijε −W
ij
[ε−2]‖p/2,[0,T ] = O(εδ) a.s. (5.7)

for some δ > 0 where a.s. is simultaneously over ε ∈ (0, 1). In fact, employing the
standard moment estimates for the Brownian motion together with its Hölder continuity
and the Borel–Cantelli lemma we can replace W[ε−2](t) = [ε−2]−1/2W([ε−2]t) in (5.5) by

W ε(t) = εW(ε−2t) and Wij
[ε−2] in (5.7) by

W̃ε
ij(t) =

∫ t

0

W ε
i (s)dW ε

j (s) + t

∞∑
l=1

E(ηi(0)ηj(l)).

Hence, in addition to (5.5) and (5.7) we have also

‖Sε −W ε‖p,[0,T ] = O(εδ) a.s. (5.8)

and
‖Sijε − W̃ε

ij‖p/2,[0,T ] = O(εδ) a.s. (5.9)

5.2 A renewal type lemma

The following result will be used several times in this section and though it is
essentially known we will provide its self-contained proof for completeness.

Lemma 5.1. Let n(s) = n(s, ω) = 0 if τ(ω) > s and

n(s) = n(s, ω) = max{k :

k−1∑
j=0

τ ◦ ϑj(ω) ≤ s}.
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Then for any M ≥ 1 and s, t ≥ 0,

E|n(sτ̄)− s|2M ≤ K(M)sM and E sup
0≤s≤t

|n(sτ̄)− s|2M ≤ K(M)tM+1, (5.10)

where K(M) > 0 does not depend on s and t, and for any γ > 0,

|n(sτ̄)− s| = O(s
1
2 +γ) a.s. (5.11)

Proof. Observe first that without loss of generality it suffices to prove (5.10) and (5.11)
for s = k, k = 1, 2, ... since n(sτ̄)− n([s]τ̄) ≤ L̂2 in view of (2.19). Next,

m−ME|n(mτ̄)−m|2M ≤ 1 +

∞∑
k=1

P{|n(mτ̄)−m| > k1/2M
√
m}. (5.12)

Now we have the following events inclusions

{|n(mτ̄)−m| > k1/2M
√
m} ⊂ {

∑
0≤j≤m+k1/2M

√
m τ ◦ ϑj < mτ̄}

∪{
∑

0≤j≤m−k1/2M
√
m τ ◦ ϑj > mτ̄} ⊂ Γk ∪∆k

where

Γk = {
∑

0≤j≤m+k1/2M
√
m

(τ ◦ ϑj − τ̄) < −[k1/2M
√
m]τ̄}

and

∆k = {
∑

0≤j≤m−k1/2M
√
m

(τ ◦ ϑj − τ̄) > [k1/2M
√
m]τ̄}.

Next, by Lemma 3.4,

E(
∑

0≤j≤n−1

(τ ◦ ϑj − τ̄))6M ≤ Cτ1 (3M)n3M

where the index τ in Cτ1 means that we apply Lemma 3.4 for sums of τ ’s in place of ξ’s
there. Hence, by the Chebyshev inequality for k,m ≥ 1,

max(P (Γk), P (∆k)) ≤ Cτ1 (3M)(m+ k1/2M
√
m)3M [k1/2M

√
m]−6M τ̄−6M

≤ K̃(M)k−3/2

for some K̃(M) > 0 which does not depend on k and m. Summing in k ≥ 1 we obtain the
first estimate in (5.10) from (5.12). The second estimate in (5.10) follows by

E max
0≤m≤[t]+1

|n(mτ̄)−m|2M ≤
∑

0≤m≤[t]+1

E|n(mτ̄)−m|2M ≤ K(M)
∑

0≤m≤[t]+1

mM .

Finally, by (5.10) and the Chebyshev inequality,

P{|n(mτ̄)−m| > m
1
2 +γ} ≤ K(M)m−M(1+2γ)mM = K(M)m−2Mγ .

Choosing M ≥ γ−1 we obtain in the right hand side here a term of a converging sequence
and by the Borel–Cantelli lemma (5.11) follows.
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5.3 Proof of (2.26) and (2.27) in the supremum norm

Set
Uε(t) = ε

∑
0≤k<n(tτ̄ε−2)

η(k) and Uεij(t) = ε2
∑

0≤k<l<n(tτ̄ε−2)

ηi(k)ηj(l).

Then for M ≥ 1,

sup0≤t≤T |Sε(t)− Uε(t)|2M

= ε2M sup0≤t≤T |
∑

min([ε−2t],n(tτ̄ε−2))≤k<max([ε−2t],n(tτ̄ε−2)) η(k)|2M

≤ ε2M
∑

0≤m≤ε−2T sup0≤t≤T max0≤k≤|n(tτ̄ε−2)−ε−2t| |
∑k
l=0 η(l +m)|2M

≤ ε2M
∑

0≤m≤ε−2T max0≤k≤ε−3/2 |
∑k
l=0 η(l +m)|2M

+ε2M
∑

0≤m≤ε−2T max0≤k≤TL̂2ε−2 |
∑k
l=0 η(l +m)|2MIsup0≤t≤T |n(tτ̄ε−2)−ε−2t|>ε−3/2

since |n(tτ̄ε−2)− ε−2t| ≤ T L̂2ε−2. Applying Lemmas 3.3, 3.4 or Theorem B from [44] to
sums

∑k
l=0 η(l) and taking into account stationarity of the sequence η(l), l ≥ 0 we obtain

that

E max
0≤k≤ε−3/2

|
k∑
l=0

η(l +m)|2M ≤ C22(M)ε−3M/2

for some C22(M) > 0 which does not depend on ε > 0. Using, in addition, Lemma 5.1
together with the Cauchy-Schwarz and Chebyshev inequalities we derive that

E(max0≤k≤TL̂2ε−2 |
∑k
l=0 η(l +m)|2MIsup0≤t≤T |n(tτ̄ε−2)−ε−2t|>ε−3/2)

≤
(
Emax0≤k≤TL̂ε−2 |

∑k
l=0 η(l +m)|2(M+1)

) M
M+1

×
(
P{sup0≤t≤T |n(tτ̄ε−2)− ε−2t| > ε−3/2}

) 1
M+1

≤ C̃(M)(T L̂2ε−2 + 1)Mε3(M+1)(E sup0≤t≤T |n(tτ̄ε−2)− ε−2t|2(M+1)2)
1

M+1

≤ C23(M)ε−M

for some C̃(M), C23(M) > 0 which do not depend on ε ∈ (0, 1).
Hence,

sup
0≤t≤T

|Sε(t)− Uε(t)|2M ≤ C22(M)Tε
M
2 −2 + C23(M)εM−2,

and so by the Chebyshev inequality,

P{ sup
0≤t≤T

|Sε(t)− Uε(t)| ≥ ε1/8} ≤ (C22(M) + C23(M))Tε
M
4 −2.

Taking M ≥ 24 and ε = εn = n−1/2 we obtain by the Borel–Cantelli lemma that

sup
0≤t≤T

|Sεn(t)− Uεn(t)| = O(n−1/16) a.s.

When (n+ 1)−1/2 ≤ ε ≤ n−1/2 then

|Sε(t)− Sεn(t)| ≤ (2T + 1)Ln−1/2 and |Uε(t)− Uεn(t)| ≤ (2T + 1)LL̂n−1/2,

and so
sup

0≤t≤T
|Sε(t)− Uε(t)| = O(ε1/8) a.s. (5.13)

Next we estimate

sup
0≤t≤T

|Sijε (t)−Uεij(t)|2M ≤ 22M−1ε4M (I2M
ε,1 + I2M

ε,2 I
2M
ε,3 )
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where

Iε,1 = sup0≤t≤T |
∑

min([ε−2t],n(tτ̄ε−2))≤k<l<max([ε−2t],n(tτ̄ε−2)) ηi(k)ηj(l)|,
Iε,2 = |

∑
0≤k<min([ε−2T ],n(T τ̄ε−2)) ηi(k)| and

Iε,3 = sup0≤t≤T |
∑

min([ε−2t],n(tτ̄ε−2))≤l<max([ε−2t],n(tτ̄ε−2)) ηj(l)|.

Similarly to the above

I2M
ε,1 ≤

∑
0≤m≤ε−2T

∑
0≤n≤ε−3/2

J2M (m,n) +
∑

0≤m≤ε−2T

∑
0≤n≤LL̂Tε−2

J2M
ε (m,n)

where

J(m,n) =
∑

0≤k<l<n ηi(k +m)ηj(l +m) and

Jε(m,n) = J(m,n)Isup0≤t≤T |n(tτ̄ε−2)−ε−2t|>ε−3/2 .

By the stationarity of the sequence η(r), r = 0, 1, ...,

EJ2M (m,n) = EJ2M (0, n) ≤ 22M−1(EJ2M
1 (n) + EJ2M

2 (n))

where
J1(n) = J(0, n)− J2(n) and J2(n) =

∑
0≤k<l<n

E(ηi(k)ηj(l)).

By Lemma 3.4,
EJ2M

1 (n) ≤ C24(M)n2M

for some C24(M) > 0 which does not depend on n.
In view of the assumptions of Theorem 2.4 on the coefficients φ and ρ the estimates

(4.6) and (4.7) considered for the sequence η(r), r ≥ 0 (in place of ξ(r), r ≥ 0 there) hold
true, as well, which implies that

|J2(n)| ≤ C25n

for some C25 > 0 which does not depend on n. Now, by the Cauchy–Schwarz and
Chebyshev inequalities, similarly to the above,

EJ2M
ε (m,n) = E(J1(n) + J2(n))2MIsup0≤t≤T |n(tτ̄ε−2)−ε−2t|>ε−3/2

≤
(
E(J1(n) + J2(n))2(M+1))

M
M+1

(
P{sup0≤t≤T |n(tτ̄ε−2)− ε−2t| > ε−3/2}

) 1
M+1

≤ C26(M)n2MεM

for some C26(M) > 0 which does not depend on n and ε. Collecting the above inequalities
we obtain that,

ε4MEI2M
ε,1 ≤ C27(M)εM−4

for some C27(M) > 0 which does not depend on ε.
Next, relying on Lemma 3.4 considered for the sequence η(r), r ≥ 0 and taking into

account that n(T τ̄ε−2) ≤ T L̂2ε−2 we obtain that

EI2M
ε,2 ≤ C28ε

−2M

for some C28 > 0 which does not depend on ε. Since,

Iε,3 = ε−1 sup
0≤t≤T

|Sε(t)− Uε(t)|

we can use the estimates at the beginning of this subsection to obtain that

ε4ME(I2M
ε,2 I

2M
ε,3 ) ≤ C29ε

M
2 −2
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for some C29 > 0 which does not depend on ε > 0. Proceeding similarly to the above
with the Chebyshev inequality and the Borel–Cantelli lemma we arrive finally at

max
0≤i,j≤d

sup
0≤t≤T

|Sε(t)−Uεij(t)| = O(ε1/8) a.s. (5.14)

Next, we compare V ε with Uε and Vε with Uε with V ε and Vε defined before Theo-
rem 2.5. Clearly, by (2.6) and (2.19),

sup
0≤t≤T

|V ε(t)− Uε(t)| ≤ εLL̂. (5.15)

Next,

sup
0≤t≤T

|Vεij(t)− tEFij −Uεij(t)| ≤ sup
0≤t≤T

|J1(t)|+ sup
0≤t≤T

|J2(t)|+ sup
0≤t≤T

|J3(t)| (5.16)

where Fij(ω) =
∫ τ(ω)

0
ξj(s, ω)ds

∫ s
0
ξi(u, ω)du,

J1(t) = ε2

∫ tτ̄ε−2

σ(tτ̄ε−2)

ξj(s)

∫ s

0

ξi(u)duds, σ(s) = σ(s, ω) =

n(s)−1∑
j=0

τ ◦ ϑj(ω),

J2(t) = ε2(

∫ σ(tτ̄ε−2)

0

ξj(s)

∫ s

σ(s)

ξi(u)duds− n(tτ̄ε−2)EFij)

and J3(t) = (tEFij − ε2n(tτ̄ε−2)EFij).

Now, by (2.6) and (2.19),

|J1(t)| ≤ Lε2
∫ tτ̄ε−2

σ(tτ̄ε−2)
ds|
∫ s

0
ξi(u)du| (5.17)

≤ L2L̂ε2 + LL̂ε2|
∫ tτ̄ε−2

0
ξi(u)du| ≤ L2L̂ε2(1 + L̂) + LL̂ε2|

∑n(tτ̄ε−2)
k=0 ηi(k)|.

By (2.6), (2.19) and (5.11) for any γ > 0,

ε2
∣∣ n(tτ̄ε−2)∑

k=0

ηi(k)−
[tε−2]−1∑
k=0

ηi(k)
∣∣ = O(ε1−γ) a.s.

It follows that

sup
0≤t≤T

|J1(t)| ≤ C30ε
1−γ + LL̂ε2 max

1≤k≤[Tε−2]
|
k−1∑
l=0

ηi(l)| (5.18)

for some a.s. finite random variable C30 = C30(ω) > 0 which does not depend on ε.
Next, applying Lemma 3.4 to the sequence η(k), k ≥ 0 which is possible in view of

(5.1), we obtain

E max
1≤k≤[Tε−2]

|
k−1∑
l=0

ηi(l)|2M ≤
∑

1≤k≤[Tε−2]

E|
k−1∑
l=0

ηi(l)|2M ≤ Cη1 (M)TMε−2M

where Cη1 > 0 does not depend on ε. Hence, by the Chebyshev inequality

P{ε2 max
1≤k≤[Tε−2]

|
k−1∑
l=0

ηi(l)| > ε1−γ} ≤ Cη1 (M)TMεMγ . (5.19)

Taking ε = εn = 1√
n
, γ ∈ (0, 1), M ≥ 2/γ and applying the Borel-Cantelli lemma we

obtain that

n−1 max
1≤k≤[Tn]

|
k−1∑
l=0

ηi(l)| = O(n−
1
2 (1−γ)) a.s.

EJP 29 (2024), paper 111.
Page 31/56

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1174
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Diffusion approximation

If 1√
n
≤ ε ≤ 1√

n−1
then

ε2 max1≤k≤[Tε−2] |
∑k−1
l=0 ηi(l)|

≤ 1
n−1 max1≤k≤[Tn] |

∑k−1
l=0 ηi(l)| = O(n−

1
2 (1−γ)) = O(ε1−γ) a.s.,

and so

sup
0≤t≤T

|J1(t)| = O(ε1−γ) a.s. (5.20)

Next,

|J2(t)| = ε2|
n(tτ̄ε−2)∑
k=0

(Fij ◦ ϑk − EFij)| ≤ |J4(t)|+ 2(LL̂)2ε2|n(tτ̄ε−2)− [tε−2]| (5.21)

where

J4(t) = ε2

[tε−2]∑
k=0

(Fij ◦ ϑk − EFij).

Now observe that by (2.6), (2.19) and (2.21),

|Fij ◦ ϑk − E(Fij ◦ ϑk|Fk−n,k+n)| (5.22)

= |
∫ τ◦ϑk(ω)

0
ξj(s, ϑω)ds

∫ s
0
ξi(u, ϑ

kω)du

−E(
∫ τ◦ϑk(ω)

0
ξj(s, ϑω)ds

∫ s
0
ξi(u, ϑ

kω)du|Fk−n,k+n)|
≤ 2LL̂|τ ◦ ϑk(ω)− E(τ ◦ ϑk|Fk−n,k+n)(ω)|+Gij(E(τ ◦ ϑk|Fk−n,k+n)(ω), ω)

where

Gij(r, ω) = |
∫ r

0

∫ s
0

(
ξj(s, ϑ

kω)ξi(u, ϑ
kω)− E(ξj(s, ϑ

kω)ξi(u, ϑ
kω)|Fk−n,k+n)

)
dsdu|

≤ 2Lr2ρ(n).

Hence, the left hand side of (5.22) does not exceed 2LL̂ρ(n)(1 + L̂), and so we can apply
Lemma 3.4 with Fij ◦ ϑk’s in place of ξ(k)’s to obtain that

E sup0≤t≤T J
2M
4 (t) ≤ ε4MEmax1≤n<[Tε−2] |

∑n−1
k=0(Fij ◦ ϑk − EFij)|2M (5.23)

≤ ε2MCF1 (M)TM

where CF1 > 0 does not depend on ε. Arguing as for (5.20) we see that for any γ > 0,

sup
0≤t≤T

|J4(t)| = O(ε1−γ) a.s.

which together with (5.11) and (5.21) gives that for any γ > 0,

sup
0≤t≤T

|J2(t)| = O(ε1−γ) a.s. (5.24)

Estimating J3 by (5.11) we obtain that for any γ > 0,

sup
0≤t≤T

|J3(t)| ≤ |EFij | sup
0≤t≤T

|t− ε2n(tτ̄ε−2)| = O(ε1−γ) a.s. (5.25)

Finally, collecting (5.8), (5.9), (5.13), (5.14), (5.15), (5.18), (5.24) and (5.25) we obtain
(2.26) and (2.27) but only for the supremum norm.
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5.4 Completing the proof of Theorem 2.5

For 0 ≤ s < t set

V ε(s, t) = V ε(t)− V ε(s) = ε

∫ tτ̄ε−2

sτ̄ε−2

ξ(u)du,

Uε(s, t) = Uε(t)− Uε(s) = ε
∑
n(sτ̄ε−2)≤k<n(tτ̄ε−2) η(k)

and Û(s, t) = ε
∑

[sε−2]≤k<[tε−2] η(k).

First, observe that by (2.6) for any β ∈ (0, 1/2),

|V ε(s, t)| ≤ ε−1Lτ̄(t− s) ≤ Lτ̄(t− s) 1
2−βε−1(t− s) 1

2 +β = O((t− s) 1
2−β) (5.26)

provided
(t− s) = O(ε

2
1+2β ). (5.27)

Next, we are going to obtain Hölder type uniform estimates of |V ε(s, t)|(t− s)( 1
2−β)

similar to (5.26) for small t− s satisfying

s+ ε1−α ≥ t ≥ s+ ε2 > s ≥ 0 (5.28)

where α ∈ (0, 1) is close to 1 and it is chosen similarly to Section 3.4. Observe that by
(2.6) and (2.19),

|V ε(s, t)− V ε([sε−2]ε2, [tε−2]ε2)| ≤ 2εLL̂,

and so under (5.28),

|V ε(s, t)|
(t− s) 1

2−β
≤
√

2
|V ε([sε−2]ε2, [tε−2]ε2)|

([tε−2]− [sε−2])
1
2−βε1−2β

+ 2ε2βLL̂.

Hence,

sup0≤s<s+ε2≤t≤s+ε1−α, t≤T
|V ε(s,t)|

(t−s)
1
2
−β (5.29)

≤
√

2 max0≤k<l≤k+ε−(1+α), l≤Tε−2
|V ε(kε2, lε2)|

(l−k)
1
2
−βε1−2β

+ 2ε2βLL̂.

In order to estimate the moments of the right hand side of (5.29) we introduce

V̂ εkl(ω, u) = ε

∫ lτ̄

kτ̄

ξ(v, (ω, u))dv = ε

∫ lτ̄+u

kτ̄+u

ξ(v, (ω, 0))dv

and observe that by (2.6) and (2.19),

|V ε(kε2, lε2)− V̂ εkl(ω, u)| ≤ 2uLε ≤ 2LL̂ε. (5.30)

Since ξ is a stationary process on the probability space (Ω̂, F̂ , P̂ ) we see that∫
|V̂ εkl(ω, u)|2MdP̂ (ω, u) =

∫
|V̂ ε0l−k(ω, u)|2MdP̂ (ω, u),

and so by (5.30),

E|V ε(kε2, lε2)|2M ≤ 24M−2L̂2E|V ε(0, (l − k)ε2)|2M (5.31)

+24M−1(22M + 1)L̂(LL̂)2Mε2M .

By (5.15),
|V ε(0, (l − k)ε2)− Uε(0, (l − k)ε2)| ≤ 2εLL̂,
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and so

E|V ε(0, (l − k)ε2)|2M ≤ 22M−1E|Uε(0, (l − k)ε2)|2M + 24M−1(LL̂)2Mε2M . (5.32)

In order to estimate the right hand side of (5.32) we observe first that

|Uε(0, (l − k)ε2)− Ûε(0, (l − k)ε2)| ≤ εLL̂|n((l − k)τ̄)− (l − k)|,

and so

E|Uε(0, (l − k)ε2)|2M ≤ 22M−1E|Ûε(0, (l − k)ε2)|2M (5.33)

+22M−1(LL̂)2Mε2ME|n((l − k)τ̄)− (l − k)|2M .

By Lemma 3.4 applied to sums of η(k)’s we obtain that

E|Ûε(0, (l − k)ε2)|2M ≤ Cη1 (M)(l − k)Mε2M (5.34)

where Cη1 > 0 does not depend on ε, l and k. By (5.10) and (5.31)–(5.34),

E|V ε(kε2, lε2)|2M ≤ C31ε
2M (l − k)M (5.35)

for some C31 > 0 which does not depend on ε, k and l. Hence, by the Chebyshev
inequality

P
{

max0≤k<l≤k+ε−(1+α), l≤Tε−2
|V ε(kε2, lε2)|

(l−k)
1
2
−βε1−2β

> 1
}

(5.36)

≤
∑

0≤k<l≤k+ε−(1+α), l≤Tε−2 P
{ |V ε(kε2, lε2)|

(l−k)
1
2
−βε1−2β

> 1
}

≤
∑

0≤k<l≤k+ε−(1+α), l≤Tε−2 ε−2M(1−2β)(l − k)−M(1−2β)E|V ε(kε2, lε2)|2M

≤ C31ε
4βM

∑
0≤k<l≤k+ε−(1+α), l≤Tε−2(l − k)2βM ≤ C31Tε

2βM(1−α)−4.

Now, take ε = εN = 1√
N

and M ≥ 4β−1(1− α)−1, then the right hand side of (5.36) is
a term of a converging sequence, and so by the Borel–Cantelli lemma there exists an a.s.
finite random variable C32 > 0 which does not depend on ε, k and l and such that

|V ε(kε2, lε2)| ≤ C32(lε2 − kε2)
1
2−β

whenever ε−(1+α) ≥ l − k ≥ 1. Since for any 1√
N+1

≤ ε ≤ 1√
N

, we have N + 1 ≥ ε−2 ≥ N ,
and so

sup
0≤s<t≤T

|V ε(s, t)− V εN (s, t)| ≤ 2T L̂ε,

we conclude from here and from (5.29) that

|V ε(s, t)| ≤ Cα,β |t− s|
1
2−β (5.37)

whenever (5.28) holds true, where Cα,β > 0 is a a.s. finite random variable which does
not depend on s, t and ε. Taking into account (5.26) and (5.27) we conclude that (5.37)
holds true just under the condition |t− s| ≤ ε1−α.

Now we can complete the proof of (2.26) from Theorem 2.5. Set Nε = [ε−2] and define
Ŵ ε(t) = W ε(N−1

ε [Nεt]). Let 0 = t0 < t1 < ... < tm = T . Next, we proceed similarly to
(3.29)–(3.35) writing∑

0≤i<m

|V ε(ti, ti+1)− Ŵ ε(ti, ti+1)|p ≤ Jε1 + 2p−1(Jε2 + Jε3 )
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where for α ∈ (0, 1),

Jε1 =
∑

0≤i<m, ti+1−ti>N−(1−α)
ε

|V ε(ti, ti+1)− Ŵ ε(ti, ti+1)|p,

Jε2 =
∑

0≤i<m, ti+1−ti≤N−(1−α)
ε

|V ε(ti, ti+1)|p and

Jε3 =
∑

0≤i<m, ti+1−ti≤N−(1−α)
ε

|Ŵ ε(ti, ti+1)|p.

Taking into account that

|V ε(ti, ti+1)− V ε(N−1
ε [Nεti], N

−1
ε [Nεti+1])| ≤ 2ε(1− ε2)−1LL̂,

that there exists no more than [TN1−α
ε ] intervals [ti, ti+1] with ti+1 − ti > N

−(1−α)
ε and

relying on the supremum norm estimate in (2.26) we obtain that

Jε1 ≤ 22p−1T (LL̂)pεp−2(1−α)(1− ε2)−p

+2p−1
∑

0≤j<n,kj+1−kj>Nαε

∑
0≤j<n,kj+1−kj>Nαε

|V ε( kjNε ,
kj+1

Nε
)− Ŵ ε(

kj
Nε
,
kj+1

Nε
)|p

≤ 22p−1ε−2(1−α)((LL̂)pεp(1− ε2)−p +O(εpδ))

where kj = [tijNε] and 0 = ti0 < ti1 < ... < tin = T is the maximal subsequence of
t0, t1, ..., tm with [tij+1

Nε] > [tijNε].
Next, using (5.37) we obtain similarly to (3.31) that

Jε2 ≤ C
p
α,β

∑
0≤i<m, ti+1−ti≤N−(1−α)

ε
|ti+1 − ti|p(

1
2−β) (5.38)

≤ Cpα,βN
−(1−α)(p( 1

2−β)−1)
ε

∑
0≤i<m |ti+1 − ti| ≤ Cpα,βTε2(1−α)( p2−1−pβ).

Proceeding similarly to (3.33)–(3.35) for Ŵ ε we obtain also

Jε3 ≤ C̃
p
α,βTε

2(1−α)( p2−1−pβ)

where Cα,β , C̃α,β > 0 are a.s. finite random variables which do not depend on ε > 0 or
the choice of t1, ..., tm. Taking α so close to 1 that pδ > 2(1−α) and choosing β satisfying
(3.32) we obtain that

‖V ε − Ŵ ε‖p,[0,T ] = O(εδ̃) a.s.

for some δ̃ > 0 which does not depend on ε > 0. This together with Lemma 3.10
completes the proof of (2.26) from Theorem 2.5.

It remains to complete the proof of (2.27). For 0 ≤ s < t set

Vεij(s, t) = ε2
∫ tτ̄ε−2

sτ̄ε−2 ξj(v)dv
∫ v
sτ̄ε−2 ξi(u)du,

Uεij(s, t) = ε2
∑
n(sτ̄ε−2)≤k<l<n(tτ̄ε−2) ηi(k)ηj(l),

Ûεij(s, t) = ε2
∑

[sε−2]≤k<l<[tε−2] ηi(k)ηj(l) and

Ŵε
ij(s, t) =

∑
[Nεs]≤l<[Nεt]

(W ε
j ( l+1

Nε
)−W ε

j ( l
Nε

))(W ε
i ( l

Nε
)−W ε

i ( [Nεs]
Nε

))

while Ŵε
ij(0, t) equals Ŵε

ij(t) defined before Lemma 3.10. By (2.6) for any β ∈ (0, 1),

|Vεij(s, t)| ≤ ε−2L2τ̄2(t− s)2 ≤ L2τ̄2(t− s)1−βε−2(t− s)1+β = O((t− s)1−β) (5.39)

provided
(t− s) = O(ε

2
1+β ). (5.40)
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Next, we are going to obtain Hölder type estimates of |Vεij(s, t)|(t− s)−(1−β) similar
to (5.39) for t− s satisfying (5.28). Observe that by (2.6) and (2.19),

|Vεij(s, t)−V
ε
ij([sε

−2]ε2, [tε−2]ε2)| ≤ ε2(LL̂)2 + ε2L
∫ tε−2τ̄

[tε−2]τ̄
dv|
∫ v
sε−2τ̄

ξi(u)du|

+ε2|
∫ [tε−2]τ̄

[sε−2]τ̄
ξj(v)dv

∫ sε−2τ̄

[sε−2]τ̄
ξi(u)du|

≤ 4ε2(LL̂)2 + εLL̂(|V εi (s, t)|+ |V εj (s, t)|),

and so under (5.28),

|Vεij(s, t)|
(t− s)1−β ≤ 2

|Vεij([sε−2]ε2, [tε−2]ε2)|
([tε−2]− [sε−2])1−βε2(1−β)

+ 4(LL̂)2ε2β + LL̂εβ
|V εi (s, t)|+ |V εj (s, t)|

(t− s) 1
2 (1−β)

.

Hence,

sup0≤s<s+ε2≤t≤s+ε1−α, t≤T
|Vεij(s,t)|
(t−s)1−β (5.41)

≤ 2 max0≤k<l≤k+ε−(1+α), l≤Tε−2

|Vεij(kε
2, lε2)|

(l−k)1−βε2(1−β)
+ 4ε2βLL̂

+LL̂εβ sup0≤s<s+ε2≤t≤s+ε1−α, t≤T
|V εi (s,t)|+|V εj (s,t)|

(t−s)
1
2
(1−β) .

In order to estimate the moments of the right hand side of (5.41) we introduce

V̂
ε

ij(k, l)(ω, u) = ε2

∫ lτ̄

kτ̄

ξ(v, (ω, u))dv

∫ v

kτ̄

ξ(w, (ω, u))dw

and observe that by (2.6) and (2.19) similarly to the above,

|Vεij(kε2, lε2)− V̂
ε

ij(k, l)(ω, u)| ≤ 4ε2(LL̂)2 + εLL̂(|V εi (kε2, lε2)|+ |V εj (kε2, lε2)|). (5.42)

Again, we use the stationarity of the process ξ on the probability space (Ω̂, F̂ , P̂ ) to
obtain that ∫

|V̂
ε

ij(k, l)(ω, u)|2MdP̂ (ω, u) =

∫
|V̂

ε

ij(0, l − k)(ω, u)|2MdP̂ (ω, u),

and so by (5.42),

E|Vεij(kε2, lε2)|2M ≤ 24M−2L̂2E|Vεij(0, (l − k)ε2)|2M (5.43)

+26M−1(22M + 1)L̂(LL̂)2Mε4M

+24M−2ε2M (LL̂)2M (E|V εi (kε2, lε2)|2M + |V εj (kε2, lε2)|2M ).

Next, by (5.16), (5.17), (5.21) and (5.25),

|Vεij(0, (l − k)ε2)− ε2(l − k)EFij −Uεij(0, (l − k)ε2)| (5.44)

≤ (LL̂)2ε2(l − k) + L2L̂ε2(2 + L̂)

+4(LL̂)2ε2|n((l − k)τ̄)− (l − k)|+ ε2|
∑l−k−1
m=0 (Fij ◦ ϑm − EFij)|

where we took into account that |Fij | ≤ (LL̂)2. Also, we obtain easily by (2.6) that

|Uεij(0, (l − k)ε2)− Ûεij(0, (l − k)ε2)| (5.45)

≤ ε2L2|n((l − k)τ̄)− (l − k)|2 + ε2L|n((l − k)τ̄)− (l − k)||Ûε(0, (l − k)ε2)|.

By Lemma 3.4,
E|Ûεij(0, (l − k)ε2)|2M ≤ C33ε

4M (l − k)2M
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where C33 > 0 does not depend on l, k or ε. Combining this with (5.10), (5.23), (5.34),
(5.36) and (5.43)–(5.45) we obtain that

E|Vεij(kε2, lε2)|2M ≤ C34ε
4M (l − k)2M (5.46)

for some C34 > 0 which does not depend on ε, k or l. Hence, by the Chebyshev inequality

P
{

max0≤k<l≤k+ε−(1+α), l≤Tε−2

|Vεij(kε
2, lε2)|

(l−k)1−βε2(1−β)
> 1
}

(5.47)

≤
∑

0≤k<l≤k+ε−(1+α), l≤Tε−2 P
{ |Vεij(kε2, lε2)|

(l−k)1−βε2(1−β)
> 1
}

≤ C34ε
4M
∑

0≤k<l≤k+ε−(1+α), l≤Tε−2(l − k)2βM ≤ C34ε
2Mβ(1−α)−4

where α ∈ (0, 1) is close to 1 and it is chosen similarly to Section 4.2. Taking ε = εN = 1√
N

andM ≥ 3β−1(1−α)−1, using (5.39) when (5.40) is satisfied, relying on the Borel–Cantelli
lemma and arguing as for (5.37) we obtain that

|Vεij(s, t)| ≤ Cα,β |t− s|1−β (5.48)

whenever |t− s| ≤ ε1−α holds true, where Cα,β > 0 is another a.s. finite random variable
which does not depend on s, t and ε.

Let 0 = t0 < t1 < ... < tm = T and write∑
0≤q<m

|Vεij(tq, tq+1)− Ŵε
ij(tq, tq+1)|p/2 ≤ J ε1 + 2

p
2−1(J ε2 + J ε3 )

where for α ∈ (0, 1),

J ε1 =
∑

0≤q<m, ti+1−ti>N−(1−α)
ε

|Vεij(tq, tq+1)− Ŵε
ij(tq, tq+1)|p/2,

J ε2 =
∑

0≤q<m, tq+1−tq≤N−(1−α)
ε

|Vεij(tq, tq+1)|p/2 and

Jε3 =
∑

0≤q<m, tq+1−tq≤N−(1−α)
ε

|Ŵε
ij(tq, tq+1)|p/2.

Observe that

Vεij(s, t) = Vεij(t)−V
ε
ij(s)− V εi (s)(V εj (t)− V εj (s))

and

Ŵε
ij(s, t) = Ŵj(t)− Ŵε

ij(s)− Ŵ ε
i (s)(Ŵ ε

j (t)− Ŵ ε
j (s)).

We estimate J ε1 taking into account Lemma 3.10, the supremum norm estimates in (2.26)
and (2.27), the fact that there exist no more than [TN1−α

ε ] intervals [tq, tq+1] with length

exceeding N−(1−α)
ε and then proceed similarly to (4.26)–(4.28) obtaining that

J ε1 = O(εpδ+2(α−1))

where 1− α > 0 can be taken arbitrarily small and δ > 0 comes from Lemma 3.10 and
the supremum norm estimates of Theorem 2.5. Next, J ε2 is estimated using (5.48) taking
into account that

∑
0≤q<m |tq+1 − tq| = T and arguing similarly to (3.31) and (5.38).

Finally, J ε3 is estimated similarly to (3.33)–(3.35) and (4.31)–(4.33). This completes the
proof of (2.27). Now, Theorem 2.4 follows from Theorem 2.5 and the rough paths theory
arguments given in Section 6.4.2 below.
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6 Rough paths and diffusion approximation

We start this section with a review of some elements of rough path theory, pointing
whenever possible to [22]. Most results therein are formulated in Hölder spaces, the
extension to càdlàg p-variation spaces is found in [23, 25].

6.1 Review and local Lipschitz continuity of Itô-Lyons map

6.1.1 Rough paths

Consider a càdlàg path U : [0, T ]→ Re of finite p-variation on [0, T ], so that

‖U‖p,[0,T ] :=

sup
P

∑
[s,t]∈P

|U(s, t)|p
 1

p

<∞ (6.1)

with path increments U(s, t) := U(t) − U(s) ∈ Re, additive in the sense that U(s, t) +

U(t, u) = U(s, u). For p ∈ [1,∞) this defines a seminorm (it does not separate constants).
For p = 1, iterated Riemann–Stieltjes (RS) integration defines second order increments
U(s, t) ∈ Re ⊗Re, càdlàg in both variables,

Uij(s, t) :=

∫
(s,t]

(U i(r−)− U i(s))dU j(r), 1 ≤ i, j ≤ e. (6.2)

Such increments are non-additive; elementary (additivity) properties of the integral gives
Chen’s relation (cf. [22, Ch. 2])

U(s, t) + U(s, t)⊗ U(t, u) +U(t, u) = U(s, u), 0 ≤ s ≤ t ≤ u ≤ T, (6.3)

with tensor notation that relieves us from spelling out coordinates. Thanks to classical
works of Young (cf. [22, Ch. 4]) this extends to p ∈ [1, 2), such that1

‖U‖(p/2),[0,T ] =

sup
P

∑
[s,t]∈P

|U(s, t)|
p
2

 2
p

<∞. (6.4)

Let now p ∈ [2, 3). There is no more (Riemann–Stieltjes or Young) meaning to (6.2),
instead we consider U as part of what we mean by a path: by definition, a (level-2,
càdlàg) p-rough path (over Re, on [0, T ]) is a pair U = (U,U), càdlàg, where one imposes
the algebraic Chen relation (6.3) and the analytic regularity conditions (6.1), (6.4), so
that

‖U‖p,[0,T ] := ‖U‖p,[0,T ] + ‖U‖(p/2),[0,T ] <∞ . (6.5)

If U(0) is fixed, or upon identifying paths with identical increments, one can equivalently
regard U as 2-parameter (càdlàg) function (s, t) 7→ U(s, t) = (U(s, t),U(s, t)) ∈ Re⊕(Re⊗
Re) =: G, a (Lie)group equipped with multiplication (a,M)?(b,N) = (a+b,M+a⊗b+N),
inverse (a,M)−1 := (−a,−M+a⊗a), and identity (0, 0). Addivity of U and Chen’s relation
then take the appealing form

U(s, t) ?U(t, u) = U(s, u). (6.6)

From U(s, t) = U(0, s)−1 ?U(0, t) we see that t 7→ U(0, t) contains all information which
suggests an essentially equivalent definition of rough path as genuine G-valued càdlàg

1The spaces Re,Re ⊗Re are equipped with compatible norms, all denoted by | · |, compatible in the sense
that |v ⊗ w| ≤ |v||w| for all v, w ∈ Re.
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path t 7→ U(t), with induced group increments U(s, t) = (U(s, t),U(s, t)) = U(s)−1 ?U(t),
subject only to the regularity condition (6.5).

In many cases U arises from some sort of (possibly stochastic) integration of some
path (or process) U against itself, and hence scales like λ2 upon replacing U by λU . This
suggests a purely analytic dilation of rough paths, with pointwise definition

δλU(s, t) := (λU(s, t), λ2U(s, t)). (6.7)

The homogenous rough path norm

|||U|||p,[0,T ] := ‖U‖p,[0,T ] + ‖U‖1/2(p/2),[0,T ] <∞ . (6.8)

then has the desirable property |||δλU|||p,[0,T ] = λ|||U|||p,[0,T ], λ ≥ 0, and is often prefer-
able to its non-homogenous counterpart (6.5). The latter however gives rise to the
(inhomogenous) p-rough path distance2

‖U; Ũ‖p,[0,T ] := ‖U− Ũ‖p,[0,T ] := ‖U − Ũ‖p,[0,T ] + ‖U− Ũ‖(p/2),[0,T ], (6.9)

with respect to which the Itô-Lyons map turns out locally Lipschitz continuous. (At
occasions, its homogenous counterpart can also be useful.)

6.1.2 Semimartingales as rough paths

The main motivation for this construction comes from stochastic analysis. Indeed,
if U = U(t, ω) is càdlàg semimartingale, on Re, then a.s. its Itô lift UItô(t;ω) =

(U(t;ω),UItô(0, t;ω)), with increments U(s, t;ω) = U(t;ω)− U(s;ω) ∈ Re and

Uij;Itô(s, t;ω) =

(∫
(s,t]

(U i(r−)− U i(s))dU j(r)

)
(ω), 1 ≤ i, j ≤ e, (6.10)

has the correct p and p/2 variation regularity, any p > 2, and hence constitutes a p-rough
path, for any p ∈ (2, 3), over Re and on compact time horizon [0, T ]. The afore-mentioned
p-variation regularity of a semimartingale is classical (see [38, Thm. 1]; the argument
relies on representing a càdàg martingale as time-changed Brownian motion). In case
e = 1, this already gives (via Itô’s formula) the p/2 variation regularity of UItô; for the
general case of multidimensional càdlàg semimartingales see [12, 26], for the continuous
case see [24, Ch.14] and references therein.

6.2 Rough differential equations

Let b and σ1, ..., σe be vector fields on Rd, sufficiently smooth for all derivatives below
to exist. As is common in this context, we regard (σ1, ..., σe) as (d × e)-matrix valued
function σ : Rd → L(Re,Rd). By one of several equivalent definitions, e.g. [22, Ch.8.7],
it is said that Y solves the (càdlàg) rough differential equation (RDE)

dY = b(Y −)dt+ σ(Y −)dU

iff, for all 0 ≤ s < t ≤ T , and i = 1, ..., d one has3

Yt − Ys = b(Ys)(t− s) + σ(Ys)Us,t +Dσ(Ys)σ(Ys)Us,t +Rs,t , (6.11)

2The notation ‖U; Ũ‖p,[0,T ] is a gentle reminder of the non-linear nature of rough path spaces, as is evident
from Chen’s relation.

3In coordinates, (Dσ(Ys)σ(Ys)Us,t)i =
∑

1≤l,j≤e

∑
1≤k≤d ∂kσij(Ys)σkl(Ys)U

lj
s,t.
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with small remainder R, in the sense that

sup
P(ε)

∑
[s,t]∈P(ε)

|Rs,t| → 0 as ε→ 0,

with supremum taken over all partitions P(ε) of [0, T ], with mesh-size less than ε. This

definition first encodes that (Y, Y ′) = (Y, σ(Y )) ∈ D
p/2
U , is a controlled (càdlàg) rough

path, cf. [22, Ch.4]), [25], and “p/2”-remainder Y #
s,t = Dσ(Ys)σ(Ys)Us,t +Rs,t for which

‖Y #‖(p/2) <∞. As a consequence (of càdlàg rough integration theory [23]), we can sum
over [s, t] ∈ P, which is a partition of [0, u], and see that Y satisfies a bona fide rough
integral equation (RDE), for all u ∈ (0, T ],

Yu = Y0 +

∫
(0,u]

b(Y −s )ds+

∫
(0,u]

σ(Y −s )dU. (6.12)

Conversely, (6.11) is satisfied by every solution of this integral equation. We are inter-
ested in discrete-time approximations. Concerning the drift term this amounts to replace
ds by dAN with the step function ANs := [sN ]/N . We note that ∆N

s := s − AN (s) → 0,
uniformly, with the rate 1, i.e. ‖∆N‖∞ = O(N−1). We also have uniform 1-variation
bounds on compacts. By an easy interpolation argument (see e.g [24, Sec. 8.5]),
‖∆N‖q,[0,T ] ≤ ‖∆N‖1−1/q

∞ ‖∆N‖1/q1,[0,T ], we see that we have q-variation convergence with

the rate (1− 1/q) > 0, whenever q > 1. This motivates to consider extensions to more
general drift terms of the form

dY = b(Y −)dA+ σ(Y −)dU. (6.13)

with càdlàg t 7→ A(t) of finite q-variation. For q ≤ p/2 and bounded b, which suffices for
our purposes, the contribution of this drift term can be absorbed in Y #, hence can be
treated as a perturbation of the drift-free case. The following theorem gives (well-known)
conditions for well-posedness and a quantitative, local Lipschitz estimate for the solution
(a.k.a. Itô-Lyons) map, comparing Y to the solution of another RDE,

dỸ = b(Ỹ −)dÃ+ σ(Ỹ −)dŨ. (6.14)

6.1 Theorem. Let p ∈ [2, 3), q ∈ [1, p/2] and b, σ ∈ C3
b . Then there exist unique càdlàg

solutions to (6.13) and (6.14) with given initial data Y0 and Ỹ0. Moreover, the solution
map is locally Lipschitz in the precise sense

‖Y − Ỹ ‖p,[0,T ] ≤ CeC`
3{
‖A− Ã‖q,[0,T ] + ‖U− Ũ‖p,[0,T ] + |Y0 − Ỹ0|

}
for some C = C(p; b, σ), whenever

max{||A||q,[0,T ], ||Ã||q,[0,T ], |||U|||p,[0,T ], |||Ũ|||p,[0,T ]} ≤ `

Remark 6.1. (i) In our application p > 2 so we can take q > 1, as fits our needs. (ii) In a
setting of continuous geometric rough paths this estimate is found in [24, Thm 10.26].
The càdlàg extension is found in [25, Thm 3.9] but only written in the drift free case b ≡ 0.
The Lipschitz estimate for càdlàg RDEs with drift appears in [13], but without explicit
dependence on `. (ii) We have not pushed for optimal assumptions on b, σ. In the present
form, this gives us the convenience, used in the proof below, to reduce everything to the
drift-free case.

Proof. As noted before (6.11) we write (σ1, ..., σe)↔ σ, i.e. identify the noise vector fields
with the map Rd 3 y 7→ ((ξi) 7→

∑
i σi(y)ξi) ∈ L(Re,Rd). We can treat (6.13) and (6.14)

as (drift-free) RDEs with vector fields

(b, σ1, ..., σe)↔ σext,
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with σext(y) ∈ L(R1+e,Rd), driven by the Uext, the canonically defined rough path
associated to (A,U,U), with all “missing” iterated integrals (between A and components
of U ) canonically defined in the Young sense (see Section 4.1 in [22]). Moreover, standard
estimates for Young integrals imply

|||Uext|||p,[0,T ] ≤ c
(
||A||q,[0,T ] + |||U|||p,[0,T ]

)
,

for some constant c = c(p, q), as well as,

‖Uext − Ũext‖p,[0,T ] ≤ c `
(
‖A− Ã‖q,[0,T ] + ‖U− Ũ‖p,[0,T ]

)
. (6.15)

The claimed estimates then follow by applying [25, Thm 3.9].

We state a corollary for families of RDEs, indexed by N ∈ N, of the form

dYN = b(Y −N )dAN + σ(Y −N )dUN , dỸN = b(Ỹ −N )dÃN + σ(Ỹ −N )dŨN

with initial data YN (0) = Y (0) and ỸN (0) = Ỹ (0), respectively.

Corollary 6.2. Let p, q, b, σ be as in the previous theorem. Assume Y (0) = Ỹ (0) and let
there exist constants C and δ > 0 such that for all N ∈ N we have

‖AN − ÃN‖q;[0,T ] + ‖UN − ŨN‖p;[0,T ] ≤ CN−δ, (6.16)

as well as

‖AN‖q;[0,T ] + ‖ÃN‖q;[0,T ] ≤ C

and

|||ŨN |||p;[0,T ] ≤ C log log(N ∨ 3). (6.17)

Then, for any δ′ ∈ (0, δ), and some constant C ′ not dependent on N ,

sup
0≤t≤T

|YN (t)− ỸN (t)| ≤ C ′N−δ
′
.

Proof. Without loss of generality T = 1 and C ≥ 1. Apply Theorem 6.1 with U = UN , Ũ =

ŨN and

||ŨN |||p + |||UN − ŨN |||p ≤ C log log(N ∨ 3) + C =: `N

It is easy to see that, for every η > 0, and as N →∞,

C exp(C`3N ) = O(Nη).

In combination with ‖UN − ŨN‖p;[0,T ] = O(N−δ) the results follows.

A word on the assumptions of the previous corollary. With AN (s) := [sN ]/N and
ÃN (s) ≡ s, we already pointed out, as part of the motivation that led us to (6.13), an easy
interpolation argument that gives ‖AN − ÃN‖q;[0,T ] = O(N−(1−1/q)). More interestingly,
the iterated-logarithmic bound (6.17) precisely holds for families of rescaled Brownian
rough paths, as we will now see.
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6.3 Brownian rough paths with parameters (Σ,Γ)

6.3.1 Brownian rough paths

Consider a e-dimensional Brownian motion W = W(ω) with a given covariance Σ =

E[W(1)⊗W(1)] ∈ Re ⊗Re. Specializing (6.10) to the present situation, we have the Itô
Brownian rough path WItô = (W,WItô). For any Γ ∈ Re ⊗Re, we may then consider the
second level perturbation W = (W,W), with

W(s, t) = WItô(s, t) + Γ(t− s) =

∫ t

s

(W(r)−W(s))⊗ dW(r) + Γ(t− s). (6.18)

This yields a class of Brownian rough paths, with law determined by the parameters
(Σ,Γ). Such a Brownian rough paths is really a (Lie) group-valued Brownian motions
in the sense that t 7→ W(t) ∈ G has stationary and independent (group) increments,
with Brownian scaling valid in the sense that t 7→ δλW(t/λ2), λ > 0, is again a Brownian
rough path, equal in law to W. (Dilation δ was introduced in (6.7).) A familiar situation is
Γ = 1

2Σ, the resulting Brownian rough path is then precisely the Stratonovich Brownian
rough path, with

WStrato;ij(s, t) =

∫ t

s

(Wi(r)−Wi(s)) ◦ dWj(r) = WItô;ij(s, t) +
1

2
Σij(t− s).

If we furthermore specialize to Σ = Id, so that W is a standard Brownian motion, the
Brownian rough paths with parameters (Id, 0) (resp. (Id, 1

2 Id)) will be referred to as
standard Itô- (resp. Stratonovich) Brownian rough paths. See Chapter 4 in [22] for a
detailed discussion.

6.3.2 Differential equations driven by Brownian rough paths

Call Y = Y (ω) the solution to the rough differential equation driven by a typical realiza-
tion of the Brownian rough paths, that is

dY = b(Y )dt+ σ(Y )dW = b(Y )dt+ σ(Y )d(W,W).

It is well-known [22, Theorem 9.1] that this yields a solution to the Itô, resp. Stratonovich,
stochastic differential equation whenever W = WItô, resp. WStrato. (This extends
further to semimartingales, [24, Ch.14], [12].) For a general Brownian rough path,
with W(s, t) = WItô(s, t) + Γ(t − s) as given in (6.18), the very definition of a RDE
solution (6.11), with (Us,t,Us,t) replaced by (Ws,t,Ws,t) immediately shows that

dY = b(Y )dt+ σ(Y )d(W,W) = b̃(Y )dt+ σ(Y )d(W,WItô) (6.19)

with the drift vector field b̃ = b+ c determined for i = 1, .., d by

ci(y) = (Dσ(y)σ(y)Γ)i =
∑

1≤l,j≤e

∑
1≤k≤d

∂kσij(Ys)σkl(Ys)Γ
lj . (6.20)

The reason is simply that the defining second order term, part of the very definition (6.11),
expands as∑

1≤l,j≤e

∑
1≤k≤d

∂kσij(Ys)σkl(Ys)W
lj
s,t =

∑
1≤l,j≤e

∑
1≤k≤d

∂kσij(Ys)σkl(Ys)W
Itô,lj
s,t + ci(t− s).

Appealing again to [22, Theorem 9.1], we see that the (random) RDE solution to (6.19),
with deterministic initial data is a strong solution to the Itô SDE dY = b̃(Y )dt+ σ(Y )dB.
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6.3.3 Rescaling Brownian rough paths and LIL type estimates

Consider now a Brownian rough path W = (W,W) with parameters (Σ,Γ) and introduce

WN (t) = δN−1/2W(Nt)

for N ∈ N. With WN = (WN ,WN ) this means WN (t) = N−1/2W(Nt) and

WN (s, t) = N−1W(Ns,Nt) =

∫ t

s

(WN (r)−WN (s))⊗ dWN (r) + Γ(t− s)

so that each (WN ,WN ) is a Brownian rough path with the same parameters (Γ,Σ).

Proposition 6.3. For every T > 0, and p > 2,

|||WN |||p;[0,T ] ≤ CT (ω)
√

log log(N ∨ 3).

for some a.s. finite random variable CT , and all N ∈ N.

Proof. By assumption, WN is obtained by scaling from W = (W,W), a Brownian rough
path with parameters (Σ,Γ). It suffices to treat the case of standard Stratonovich
Brownian rough path, i.e. (Σ,Γ) = (Id, 1

2 Id)), as introduced in Section 6.3.1. Indeed, this

reduction is easily obtained from writingW =
√

ΣB in terms of a standard e-dimensional
Brownian motion B and

W(s, t) =

∫ t

s

W(s, r)⊗ ◦dW(r) + (Γ− 1
2 Id)(t− s)

so that, for some constant c = c(Σ,Γ, T ),

‖W‖(p/2),[0,T ] ≤ c(‖B‖(p/2),[0,T ] + 1)

where

B(s, t) =

∫ t

s

(B(r)−B(s))⊗ ◦dB(r).

We thus consider the case of the standard Stratonovich Brownian rough path from
here on. This allows to use directly the Strassen law established in p-variation rough
path topology [37] which states that, with iterated logarithm log2 = log ◦ log,

ZN := δ(2N log2N)−1/2W(N ·)

is a.s. relatively compact, in the space of geometric p-rough paths. The set of limit points
given the canonical lift of the Cameron–Martin unit ball, that is{

(H,H) : H : [0, T ]→ Re, absolutely continuous: H(0) = 0,

∫ T

0

|Ḣ(t)|2dt ≤ 1,

}
,

where it is understood in the above that H(s, t) =
∫ t
s
H(s, r)⊗ Ḣ(r)dr. Using in particular

Cauchy-Schwarz,

‖H‖p,[0,T ] ≤ ‖H‖1,[0,T ] =

∫ T

0

|Ḣ(t)|dt ≤
√
T
(∫ T

0

|Ḣ(t)|2dt
)1/2

;

also, the right-hand side of |H(s, t)|1/2 ≤ ‖H‖1,[s,t] ≤
√
|t− s|

√∫ t
s
|Ḣ(r)|2dr telescopes to

√
T
√∫ T

0
|Ḣ(t)|2dt upon summation over any partition of [0, T ], hence

‖H‖(p/2),[0,T ] ≤ ‖H‖(1/2),[0,T ] ≤ T
∫ T

0

|Ḣ(t)|2dt.
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Restricting to H in the Cameron–Martin unit ball,

|||H|||p,[0,T ] = ‖H‖p,[0,T ] + ‖H‖1/2(p/2),[0,T ] ≤ 2
√
T‖Ḣ‖L2 ≤ 2

√
T .

By Strassen’s law for the Brownian rough path [37], a.s. with N →∞,

inf
‖Ḣ‖L2≤1

|||ZN ; H|||p,[0,T ] → 0,

so we can pick (HN ) in the Cameron-Martin unit ball so that, a.s. |||ZN ; HN |||p → 0. But
then

|||ZN |||p,[0,T ] ≤ |||ZN ; HN |||p,[0,T ] + |||HN |||p,[0,T ] = O(1)

so that |||ZN |||p ≤ C(ω), for some a.s. finite random variable C(ω) = CT (ω). Now

|||ZN |||p,[0,T ] = (2 log2N)−1/2|||δN−1/2W(N.)|||p,[0,T ] = (2 log2N)−1/2|||WN |||p,[0,T ]

hence, absorbing 21/2 in the constant C(ω), we have

|||WN |||p,[0,T ] ≤ C(ω)(log2N)1/2.

Remark 6.4. Proposition 6.3 holds with integer N replaced by 1/ε, as a.s. estimate,
uniform over all ε ∈ (0, 1]. A suitable “continuous” formulation of the Strassen law for the
Brownian rough path is found in [24, Ex. 13.46], always in conjunction with Brownian
scaling and the remark that Hölder – refines p-variation (rough path) topology.

6.4 Diffusion approximations

6.4.1 Discrete dynamics and proof of Theorem 2.1

We rewrite (2.4) as

XN ((n+ 1)/N) = XN (n/N) + 1
N b(XN (n/N)) (6.21)

+σ(XN (n/N))(SN ((n+ 1)/N)− SN (n/N))

and further as a càdlàg differential equation. Specifically, we regard the rescaled partial
sum process SN as piecewise constant (càdlàg) process and also write tN := [tN ]/N so
that

dXN = b
(
X−N

)
dtN + σ(X−N )dSN .

This equation makes sense (equivalently) as Riemann-Stieltjes integral equations and as
(càdlàg) rough integral equation, written as

dXN = b
(
X−N

)
dtN + σ(X−N )dSN ,

where SN = (SN ,SN ) is the (pathwise) canonical lift of SN , a piecewise constant càdlàg
process. The assumptions of Theorem 2.1 guarantee, by Theorem 2.2, that

‖SN ; WN‖p,[0,T ] = O(N−δ) a.s.

where, in the terminology of Section 6.3.1, we have that WN = (WN ,WN ) is a Brownian
rough path, obtained by rescaling a universal Brownian rough path, with parame-
ters (Σ,Γ) identified in Theorem 2.2, with covariance Σ = ς from (2.8), and Γ = ς̂

from (2.8), (2.9), with components given by,

Γij = ς̂ij = lim
k→∞

1

k

k∑
n=0

n−1∑
m=−k

E(ξi(m)ξj(n)) = E
( ∞∑
l=1

ξi(0)ξj(l)
)
, i, j = 1, ..., e.
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With Section 6.3.2, we see that Proposition 6.3 applies to the family WN and we can
conclude with Corollary 6.2 that

sup
0≤t≤T

|XN (t)− ΞN (t)| = O(N−δ) a.s. as N ≥ 1

where ΞN is the unique solution of the rough differential equation

dΞN (t) = σ(ΞN (t))dWN (t) + b(ΞN (t))dt = σ(ΞN (t))dWItô
N (t) + b̃(ΞN (t))dt (6.22)

with b̃ = b+ c where thanks to (6.20), c = c(x) is given by

ci(x) =

e∑
j,l=1

d∑
k=1

∂σij(x)

∂xk
ς̂ljσkl(x), i = 1, ..., d.

By basic consistency results of stochastic and rough integration ([12], also [22, Ch. 5])
the (random) RDE solution ΞN is also the (unique) solution to the classical Itô stochastic
differential equations

dΞN (t) = σ(ΞN (t))dWN (t) + b̃(ΞN (t))dt.

6.4.2 Continuous dynamics and proof of Theorem 2.4

We recall from Theorem 2.5 the definition

V ε(t) = ε

∫ tτ̄ε−2

0

ξ(s)ds

where τ̄ ∈ (0,∞). Performing a deterministic time-change t→ t/τ̄ if necessary, we can
assume τ̄ = 1 and write (2.20) as

dXε(t) = b(Xε(t))dt+ σ(Xε(t))dV ε,

and further (equivalently) as rough integral equation

dXε(t) = b(Xε(t))dt+ σ(Xε(t))dVε, t ∈ [0, T ],

where Vε = (V ε,Vε) is the (pathwise) canonical lift of V ε, i.e. Vε(s, t) =
∫ t
s
(δV ε)(s, r)⊗

dV ε(r). Theorem 2.5 tells us precisely that

‖Vε; Wε‖p,[0,T ] = O(εδ) a.s.

for some δ > 0 a.s. taken simultaneously over ε ∈ (0, 1). By construction, preceding
equation (5.8), the family of Brownian rough paths {Wε : ε ∈ (0, 1)} is obtained by
rescaling a universal Brownian rough path. In the terminology of Section 6.3.1, we have
that Wε = (W ε,Wε) is a Brownian rough path (by construction, with parameters (Σ,Γ)

where the covariance Σ = ς is given by (2.23) and Γ comes from Theorem 2.5, i.e.

Γij = ς̂ij + E

∫ τ(ω)

0

ξj(s, ω)ds

∫ s

0

ξi(u, ω)du, i, j = 1, ..., d.

To describe the limiting dynamics consider, for each ε ∈ (0, 1), the unique solution to
the (random) rough differential equation

dΞε(t) = σ(Ξε(t))dWε(t) + b(Ξε(t))τ̄ dt = σ(Ξε(t))dWItô,ε(t) + b̃(Ξε(t))dt (6.23)
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with b̃ = bτ̄ + c where, thanks to (6.20),

ci(x) =

e∑
j,l=1

d∑
k=1

∂σij(x)

∂xk

(
Γlj
)
σkl(x).

The basic continuity result for RDEs, Theorem 6.1, applies a fortiori to continuous
p-variation rough paths, so that the arguments given in the càdàg setting in the previous
section, adapt immediately (cf. Remark 6.4) to the continuous setting. In particular, we
see

sup
0≤t≤T

|Xε(t)− Ξε(t/τ̄)| = O(εδ) a.s. (6.24)

We then remark that, by basic consistency results of stochastic and rough integration
([22, Ch. 5]), each process Ξε is also the (unique) solution to the classical Itô stochastic
differential equation

dΞε(t) = σ(Ξε(t))dW ε(t) + b̃(Ξε(t))dt

and we obtain (2.25).

6.5 Euler–Maruyama approximation of the Itô Brownian rough paths

We recall the setup. Let {WN : N ∈ N} be a family of Brownian motions defined on
the same probability space and WN = (WN ,WN ) be the corresponding Itô Brownian
rough paths. Set

ŴN (t) = WN ([tN ]/N), ŴN (s, t) =

∫
(s,t]

(ŴN (r−)− ŴN (s))⊗ dŴN (r)

so that (ŴN , ŴN ) is the canonical (càdlàg) rough path lift of piecewise constant approxi-
mations to WN . We now prove Lemma 3.10, restated here for the reader’s convenience.

Lemma 6.5. For any T > 0 and p > 2, there exists δ > 0 such that, almost surely,

‖WN − ŴN‖p,[0,T ] = O(N−δ), ‖WN − ŴN‖ p
2 ,[0,T ] = O(N−δ).

Proof. We proceed in four steps. (1) We first get an Lq-version, any q < ∞, of these
estimates in case p =∞ where we recall ‖X‖∞,[0,T ] = sup |X(t)−X(s)| with sup taken
over all (s, t) ∈ ∆T := {(s, t) : 0 ≤ s ≤ t ≤ T}. (2) Uniform (in N ) p-variation estimates,
any p > 2. (3) An interpolation argument gives us Lq-estimates in p′-variation, any p′ > 2.
(4) At last, the Borel-Cantelli lemma allows us to switch to a.s. convergence. (We insist
that all (WN ,WN ) had identical law, so that in the steps (1)-(3) we could have written
(W,W). In the step (4) however, this notation is fully justified.)

Step(1) Write t− := [Nt]/N, t+ = t− + 1/N so that ŴN (t) = WN (t−). Trivially,
ŴN = WN at times t ∈ DN := {ti ≡ i/N : 0 ≤ i ≤ NT}. For arbitrary times (s, t) ∈ ∆T

we use the Hölder modulus, with exponent α < 1/2, to see

sup
(s,t)∈∆T

|(WN (t)−WN (s))− (ŴN (t)− ŴN (s))| ≤ 2 sup
t∈[0,T ]

|WN (t)−WN (t−)|

≤ 2‖WN‖α;[0,T ](1/N)α.

By a classical result of Fernique (cf. below for a more general result with precise
reference) the law of ‖WN‖α;[0,T ] (independent of N ) enjoys Gaussian concentration,

in the sense that E(ec‖WN‖2α) < ∞, for some c = c(α, T ) > 0. By expanding exp(.) we
see that the Lq-norm of any r.v. with Gaussian concentration is finite, and in fact, for a
constant C = C(α, T ),4

‖‖WN − ŴN‖∞,[0,T ]‖Lq(Ω) ≤ C
√
q(1/N)α.

4Here and below we dependencies of constants w.r.t. q are made explicit when easy to do so, although this
is not required for this proof.
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For second level estimates, we first consider the case of partition points, i.e. (s, t) ∈
∆T,N := ∆T ∩D2

N . In this case,

WN (s, t)− ŴN (s, t) =

n−1∑
i=m

(WN )(ti, ti+1) =: S(n)− S(m)

noting that S(n) ≡
∑n−1
i=0 (WN )(ti, ti+1) defines a random walk with centred independent

increments, hence a discrete martingale. We then have

sup
(s,t)∈∆T,N

|WN (s, t)− ŴN (s, t)| ≤ max
1≤n<[NT ]

|S(n)| =: S?([NT ]).

To deal with non-partition points we focus on s− ≤ s < s+ ≤ t = t−. (The general case,
with t− ≤ t < t+, is treated in the same fashion.) With Chen’s relation, we have

(i) := WN (s, t)−WN (s+, t) = WN (s, s+) +WN (s, s+)⊗WN (s+, t)+

and hence (cf. footnote in Section 6.1.1 on compatibility of norms on Rd ⊗Rd and Rd),

|(i)| ≤ ‖WN‖2α,[0,T ](1/N)2α + ‖WN‖2α,[0,T ](1/N)α|t− s|α

Similarly, using the very defininition of (ŴN , ŴN ), we have

|(ii)| := |ŴN (s, t)− ŴN (s+, t)| = |ŴN (s, s+)⊗ ŴN (s+, t) + ŴN (s, s+)|
= |WN (s−, s+)⊗ ŴN (s+, t)|
≤ ‖WN‖2α,[0,T ](1/N)α|t− s|α

The terms (i), (ii) account for the difference between s and s+ ∈ DN . Similarly, one

accounts for the difference between t− ∈ DN and t with terms (̃i), (̃ii), with identical
estimate, so that

|WN (s, t)− ŴN (s, t)| ≤ |WN (s+, t)− ŴN (s+, t)|+ |(i)|+ |(ii)|+ |(̃i)|+ |(̃ii)|.

≤ S?([NT ]) + 2(‖WN‖2α,[0,T ]
1

N2α
+ 2‖WN‖2α,[0,T ]

Tα

Nα
).

Using Doob’s inequality, the fact that S([NT ]) is an element in the second Wiener-Ito
chaos (and integrability properties thereof, see e.g. Theorem D.8 in [24], and finally
independence of the WN (ti, ti+1), we can bound

‖S?([NT ])‖Lq ≤ q

q − 1
‖S([NT ])‖Lq . q‖S([NT ])‖L2

= q

∥∥∥∥∥∥
[NT ]−1∑
i=m

WN (ti, ti+1)

∥∥∥∥∥∥
L2

= q

√√√√[NT ]−1∑
i=0

(ti, ti+1)2 ≤ q
√
T + 1

N

On the other hand, Fernique estimate for Brownian rough paths, Corollary 13.14 in
[24], gives Gaussian concentration of |||WN |||α,[0,t] = ‖WN‖α,[0,T ] + ‖WN‖1/22α,[0,T ] which

implies a O(q)-bound for the Lq-norm of both ‖WN‖2α,[0,T ] and ‖W‖2α,[0,T ]. Putting it all
together, we see for some constant C which does not depend on N or q,

‖ sup
(s,t)∈∆T

|WN (s, t)− ŴN (s, t)|‖Lq ≤ C
q

Nα
.

Step(2) From Proposition 6.17 in [25] we can see that for some constant C = C(p, T )

but not dependent on q,

sup
N
‖‖ŴN‖p/2,[0,T ]‖Lq ≤ Cq <∞.
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(The corresponding first level estimate is trivial in view of the ω-wise estimate
supN ‖ŴN‖p,[0,T ] ≤ ‖W‖p,[0,T ] and Gaussian concentration of the right-hand side.)

Step(3) We proceed by interpolation, as e.g. in Lemma 5.2 in [25]. Let 2 < p < p′. In
what follows, we spell out the second level estimates (the first level estimates are similar
but easier),

‖WN − ŴN‖p′/2,[0,T ] ≤ ‖WN − ŴN‖1−p/p
′

∞,[0,T ]‖WN − ŴN‖p/p
′

p/2,[0,T ]

≤ ‖WN − ŴN‖1−p/p
′

∞,[0,T ] ×K
p/p′

N (ω)

with K
p/p′

N (ω) can be taken as 2p/p
′

times ‖WN‖p/p
′

p/2,[0,T ] + ‖ŴN‖p/p
′

p/2,[0,T ]. Let 1/q =

1/q′+ 1/q′′ and apply Hölder’s inequality to see, also setting r′ = q′(1− p/p′), r′′ = q′′p/p′

‖‖WN − ŴN‖p′/2,[0,T ]‖Lq(Ω) ≤ ‖‖WN − ŴN‖1−p/p
′

∞,[0,T ]‖Lq′‖K
p/p′‖Lq′′

= ‖‖WN − ŴN‖∞,[0,T ]‖
1−p/p′

Lr′
‖KN‖p/p

′

Lr′′
.

Thanks to step (2), we have bounds on ‖KN‖Lr′′ which are uniform in N and in fact such
that supN ‖KN‖Lr′′ ≤ Cr′′ for some constant C > 0 which does not depend on N and r′′.
But then

‖‖WN − ŴN‖p′/2,[0,T ]‖Lq(Ω) ≤ C̃(r′(1/N)η)1−p/p′(r′′)p/p
′

for another constant C̃ > 0 which does not depend on N , r′ and r′′. The precise choices
are not that important but we can take p = (p′ + 2)/2, q′ = q′′ = q/2. In the end,

‖‖WN − ŴN‖p′/2,[0,T ]‖Lq(Ω) ≤ C(p′)q(1/N)η
′

with η′ = η(1− p/p′) > 0.
Step(4) A Borel-Cantelli argument then leads to the a.s. estimates. Indeed, for any

ε ∈ (0, η′) pick q > 1/ε so that, from Chebyshev-Markov’s inequality,

P{Nη′−ε‖WN − ŴN‖p′/2,[0,T ] > 1} ≤ Nq(η′−ε)E(‖WN − ŴN‖qp′/2,[0,T ]) = O(N−qε).

Since qε > 1, this bound is summable in N and the Borel-Cantelli lemma tells us that
‖WN − ŴN‖p′/2,[0,T ] ≤ 1/Nη′−ε for all N > N0 for some N0 = N0(ω). The almost
convergence thus holds with rate δ = η′−ε > 0. (The first level estimates are similar.)

7 Rough paths and law of iterated logarithm for iterated sums
and integrals

The present section is devoted to higher order extensions of Theorem 2.2. In con-
junction with a higher-order Strassen law for Brownian rough paths, also shown below,
we arrive at a (functional) law of iterated logarithm for iterated sums. We rely here on
some higher-order concepts of rough paths. (Detailed references are given but without
a systematic review.)

7.1 Lyons’ extension for càdlàg rough paths

Let X = (X,X) be càdlàg p-rough path, p ∈ [2, 3). One defines inductively iterated
rough integrals

X̄`(s, t) =

∫
(s,t]

X̄`−1(s, r−)⊗ dX(r−) ∈ (Re)⊗`.

The entire stack Ext(X)(s, t) := X̄(s, t) = (1, X̄1(s, t), . . . , X̄`(s, t), . . .), with values in the
tensor series over Re, is known as Lyons’ extension of X. It is equivalently given as
X̄(s, t) = X̄−1(s)⊗ X̄(t), in terms of a linear rough differential equation

dX̄(t) = X̄(t−)⊗ dX(t), X̄(0) = 1.
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Example 7.1. If X(s, t) =
∫ t
s
(X(r−)−X(s))⊗ dX(r) for some càdlàg bounded variation

path X, then, for all levels ` > 1,

X̄`(s, t) =

∫
{s≤r1≤···≤r`≤t}

dX(r1−)⊗ · · · ⊗ dX(r`−) =:

∫
∆`
s,t

dX ⊗ . · · · ⊗ dX

(In case of a piecewise constant càdlàg path X, this becomes an iterated sum.)

Example 7.2. In case of (Itô, resp. Stratonovich) Brownian rough path, we have

W̄Itô;`(s, t) =

∫
∆`
s,t

dW ⊗ · · · ⊗ dW, W̄Strato;`(s, t) =

∫
∆`
s,t

◦dW ⊗ · · · ⊗ ◦dW

in the usual Itô- resp. Stratonovich sense.

Example 7.3. In case of a general Brownian rough path W = (W,W) with parameters
(Σ,Γ), we can understand its Lyons extension W̄ = Ext(W) elegantly as solution to the
Itô linear rough differential equation

dW̄(t) = W̄(t)⊗ dW (t) + W̄(t)⊗ Γdt, X̄(0) = 1,

followed by setting W̄(s, t) = W̄(s)−1 ⊗ W̄(t). Given any word w = (i1 · · · i`) ∈ {1, ..., e}`,
of length |w| = `, and writing ew = ei1···i` = ei1⊗· · ·⊗ei` , the components of W̄` ∈ (Re)⊗`

also admit explicit combinatorial expressions, namely

〈W̄(s, t), ew〉 = 〈W̄Itô(s, t), ew〉+
∑
v

cv〈W̄Itô(s, t), ev〉

with summation over all words v obtained from w by contracting one or more neighbour-
ing pairs (ij , ij+1) ∈ {1, ..., e}2 to a single letter 0, with the additional convention that
W0(t) = t. (That is, W̄Itô here should really be understood as the stack of iterated Itô
integrals of (1 + e)-dimensional time-space Brownian motion (W0,W ).) The constants cv
are multiplicative functions of Γ. For instance, if v is obtained by contracting, say, two
pairs, (ij , ij+1), (ik, ik+1), with 1 < j + 1 < k < `, then cv = Γij ,ij+1Γik,ik+1. This follows
in exactly the same way as [11, Prop. 22] and can be seen as algebraic renormalization
procedure for rough paths.

Theorem 7.4. Let X = (X,X), X̃ = (X̃, X̃) be càdlàg p-rough paths, p ∈ [2, 3), with

|||X|||p,[0,T ] ∨ |||X̃|||p,[0,T ] ≤ R ∈ [1,∞).

Then, for every ` ∈ N there exists c = O(R`), as R→∞, such that

‖Ext(X)` − Ext(X̃)`‖p/`,[0,T ] ≤ c(‖X − X̃‖p,[0,T ] + ‖X− X̃‖p/2,[0,T ]).

Proof. This is a variation of [39, Thm 2.2.2], see also [22, Ex 4.6], though what we
need is not a direct consequence of these statements (which are given in terms of
continuous control functions ω(s, t) resp. in a Hölder setting with ω(s, t) = t − s). We
only illustrate the case ` = 3, the general case being similar, giving a new argument
based on local Lipschitz of higher-oder rough integration. (The case ` > 3 goes along
the same lines, cf. [22, Sec 4.5].) Recall that the space of (first order) controlled rough
paths, V = (V, V ′) ∈ D

p/2
X , is Banach with norm5 ‖V‖X;p/2 ≡ ‖δV −V ′δX‖p/2 + ‖V ′‖p. For

a p-rough path X = (X,X) we have

V ×X 7→
(∫

(V, V ′)−d(X,X), V, V ′
)

=: (Z,Z ′, Z ′′) =: Z ∈ Dp/3
X

5Here and below, (δX)(s, t) = X(t)−X(s) denotes the increments of paths in a linear space. We also write,
accordingly, (δV − V ′δX)(s, t) = V (t)− V (s)− V ′(s)(X(t)−X(s)), (Z′′X)(s, t) = Z′′(s)X(s, t) and so on.
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where D
p/3
X , the space of second order controlled rough paths, is Banach with norm

‖Z‖X;p/3 := ‖δZ − Z ′δX − Z ′′X‖p/3 + ‖δZ ′ − Z ′′δX‖p/2 + ‖Z ′′‖p.

Given another rough path X̃, the generic (local) Lipschitz estimate for rough integration
gives

‖Z; Z̃‖X,X̃;p/3 ≡ ‖δZ − Z ′δX − Z ′′X− (Z̃ − Z̃ ′δX̃ − Z̃ ′′X̃)‖p/3
+ ‖δZ ′ − Z ′′δX − (Z̃ ′ − Z̃ ′′δX̃)‖p/2
+ ‖Z ′′ − Z̃ ′′‖p ≤ c(‖X − X̃‖p + ‖X− X̃‖p/2 + ‖V; Ṽ‖X,X̃;p/2)

where a constant c can be taken uniformly provided X, X̃ and V, Ṽ remain bounded
in their approriate (rough resp. controlled rough path) spaces, and ‖V; Ṽ‖X,X̄;p/2 ≡
‖V ′− Ṽ ′‖p + ‖δV −V ′δX − (Ṽ − Ṽ ′δX̃)‖p/2. We can now apply this with (V, V ′) = (X, X),

and (Ṽ , Ṽ ′) = (X̃, X̃), the crucial remark being that in this case

‖V; Ṽ‖X,X̃;p/2 = ‖X − X̃‖p + ‖X− X̃‖p/2.

A moment of reflection (and Chen’s relation) reveals that the p/3-variation component of
‖Z; Z̃‖X,X̃;p/3 is then nothing but the p/3-variation of the map

(s, t) 7→
∫ t

s

X(s, r−)⊗ dX(r)−
∫ t

s

X̃(s, r−)⊗ dX̃(r);

we thus see that, for ` = 3,

‖Ext(X)` − Ext(X̃)`‖p/`,[0,T ] ≤ c(‖X − X̃‖p + ‖X− X̃‖p/2).

The argument shows that c can be taken uniformly as X, X̃ remain in a bounded set,
such as a ball of radius R. To make the dependence on R explicit, we use scaling. Note
that Y := δ1/RX, and similar for Ỹ, are of (at most) unit size in the norm ||| · |||p,[0,T ].

Application of the above estimate, noting Ext(Y)` = (1/R)`Ext(X)`, similarly for Ỹ, and

‖Y − Ỹ ‖p + ‖Y − Ỹ‖p/2 = R−1‖X − X̃‖p +R−2‖X− X̃‖p/2 ≤ ‖X − X̃‖p + ‖X− X̃‖p/2,

using R ≥ 1, shows that c can be taken as O(R`).

7.2 The law of iterated logarithm for iterated sums

7.2.1 Almost sure invariance principle in rough paths metrics beyond level-2

Theorem 7.5. The conclusion of Theorem 2.2, with fixed p ∈ (2, 3), can be extended to
any level ` ∈ N. That is,

‖S`N −W
`

N‖p/`,[0,T ] = O(N−δ) a.s.

where S
`

N (s, t) is given by the rescaled `-fold iterated summation

S
`

N (s, t) = N−`/2
∑

[Ns]≤k1<···<k`<[Nt]

ξ(k1)⊗ · · · ⊗ ξ(k`) ∈ (Re)⊗`

and WN = (1,W
1

N ,W
2

N , . . .) can be given as the solution of a “drift-corrected” Itô
stochastic differential equation

dWN = WN ⊗ dWN + WN ⊗ Γdt, WN (0) = 1,

with associated increments WN (s, t) = WN (s)−1⊗WN (t), and driving Brownian motion
WN (t) = N−1/2W(Nt).
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Remark 7.6. Decomposing W̄`(s, t) =
∑
〈W̄(s, t), ew〉ew with sum over all words of

length |w| = `, we note that an explicit combinatorial expression of these coefficients, as
linear combinations of iterated Itô-integrals of time-space Brownian motion, was given
in Example 7.3.

Proof. By Theorem 2.2 the claimed estimate holds true for ` = 1, 2 so that a.s.

‖SN −WN‖p,[0,T ] + ‖SN −WN‖p/2,[0,T ] = O(N−δ).

Thanks to p ∈ (2, 3), we can appeal to Theorem 7.4, noting that the polynomial growth
c = c(R) therein is more than enough to allow us to proceed similarly to Section 6.4
(Proposition 6.3 and Corollary 6.2). It then suffices to recall that the Lyons extension
Ext(SN ,SN ) is precisely given by SN , as was pointed out in Example 7.1, and that the
description of WN = Ext(WN ,WN ) is given in Example 7.3.

7.2.2 Strassen’s functional LIL for Brownian rough paths

A (possibly degenerate) covariance matrix gives rise to a (possibly degenerate) in-
ner product structure, 〈ṽ, ṽ〉Σ−1 := 〈v, v〉 =

∑e
i=1 v

2
i when ṽ =

√
Σv and +∞ else.

Note that 〈v, v〉Σ−1 = 〈Σ−1v, v〉 in the non-degenerate case. An absolutely contin-
uous path H : [0, T ] → Re, with H(0) = 0, is called Cameron–Martin path if

‖H‖2H;[0,T ] :=
∫ T

0
〈Ḣ(t), Ḣ(t)〉Σ−1dt < ∞. Every such path lifts canonically to a rough

path (H,H) with H =
∫
δH ⊗ dH, i.e. H(s, t) =

∫ t
s
(H(r)−H(s))⊗ Ḣ(r)dr. We take T = 1

in what follows and also need the Cameron–Martin unit ball,

K := {H ∈ H : ‖H‖H;[0,1] <∞}.

Let now W = (W,W) be a Brownian rough path with parameters (Σ,Γ), with incre-
ments of its Lyons extension of the form

W̄(s, t) = (1,W̄1(s, t), . . . ,W̄`(s, t), . . .).

Set also

K` :=
{
H` : H ∈ K

}
, H`(s, t) =

∫
∆`
s,t

dH ⊗ . . .⊗ dH. (7.1)

Proposition 7.7. For any ` ∈ N and p > 2, as n→∞, a.s.

inf
H∈K

∥∥∥(2n log log n)−
`
2 W̄`(n·, n·)−H`

∥∥∥
p/`;[0,1]

→ 0,

and the set of limit points of the above sequence equals K`.

Remark 7.8. The same proof yields the same statement in stronger α`-Hölder sense,
α = 1/p ∈ (1/3, 1/2).

Proof. Strassen’s functional LIL for Brownian motion is a well-known consequence of
Schilder’s theorem. Typically formulated in∞-topology (e.g. [19]), extensions to iterated
stochastic integrals [2] and to α-Hölder topology [3] have appeared in the literature.
Similarly, a Schilder theorem for the Brownian rough path gives Strassen’s law in rough
path topology, as was first seen in the p-variation, then α-Hölder rough path topology,
see [37, 24] and references therein.

Since the afore-mentioned results only deal with standard Brownian motion B with
B =

∫
δB ⊗ ◦dB we quickly treat the case of a general W = (W,W), a Brownian rough

path with parameters (Σ,Γ). To this end, let σ =
√

Σ and note that

W = 〈σ,B(t)〉, W(s, t) =

〈
σ ⊗ σ,

∫
δB ⊗ dB

〉
+ Γ(t− s) = 〈σ ⊗ σ,B〉+ Γ̃(t− s),
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with Itô-Stratonovich corrected Γ̃ = Γ− Σ/2. The map

(B,B) 7→ (W,W) = W 7→ (W̄1, · · · ,W̄`) ≡ W̄≤`

is continuous between the appropriate rough path spaces, the contraction principle then
shows that

{(εW̄1, . . . , ε`W̄`) : ε > 0}

satisfies a LDP with speed ε2 in p-variation (or 1/p-Hölder) rough path topology, with
good rate function

I(H) =
1

2
‖H‖2H;[0,1]

whenever H =
(
H1, . . . ,H`

)
is the canonical lift of H, and +∞ else. Note that this

rate function depends on Σ but not on Γ. As in [37, 24], it then follows that Strassen’s
functional LIL holds in the stated higher order generality,∥∥∥(2n log log n)−

`
2 W̄`(n·, n·);K`

∥∥∥
p/`;[0,1]

→n→∞ 0,

together with the stated characterization of the limit points of this sequence. (We used
notation ‖x;A‖ = infy∈A ‖x− y‖.)

7.2.3 Strassen’s theorem for iterated sums

Consider

ξ̄
`
(m,n) :=

∑
m≤k1<···<k`<n

ξ(k1)⊗ · · · ⊗ ξ(k`)

and recall that K ⊂ H defines the unit Cameron–Martin ball.

Theorem 7.9. For any ` ∈ N and p > 2, as N →∞, a.s.

inf
H∈K

∥∥∥(2N log logN)−
`
2 ξ̄
`
([N ·], [N ·])−H`

∥∥∥
p/`;[0,1]

→ 0 (7.2)

and the set of limit points given by (7.1). In particular,

inf
H∈K

∣∣∣∣∣∣(2N log logN)−
`
2

∑
0≤k1<···<k`<N

ξ(k1)⊗ · · · ⊗ ξ(k`)−H`(0, 1)

∣∣∣∣∣∣→ 0, (7.3)

with set of limit points given by
{
H`(0, 1) : H ∈ K

}
.

Proof. (i) Recall S
`

N (s, t) = N−`/2ξ̄
`
([Ns], [Nt]) is precisely the Lyons lift of (SN ,SN ).

Recall also W
`

N (s, t) = N−`/2W
`
(Ns,Nt). Then S

`

N (·, ·) −W
`

N (·, ·) = O(N−δ) from
Theorem 7.5 above shows

ξ̄
`
([N ·], [N ·])−W

`
(N ·, N ·) = O(N `/2−δ),

always in p/`-variation sense on [0, 1], hence

(2N log logN)−
`
2 ξ̄
`
([N ·], [N ·])− (2N log logN)−

`
2 W

`
(N ·, N ·) = o(1)

and so the functional LIL for ξ̄
`
, as stated in (7.2), follows directly from the one for W

`

in Proposition 7.7 above. As for (7.3) it suffices to note that any variation norm on [0, 1]

dominates the increment over the unit interval.
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The following corollary can be seen as generalization of [2, Cor. 3.2] which dealt with
iterated Brownian integrals.

Corollary 7.10. Let A ∈ (Re)⊗` and define the tensor contraction X `N :=〈
A,
∑

0≤k1<···<k`<N ξ(k1)⊗ · · · ⊗ ξ(k`)
〉

with values in the reals. Then

P

(
lim sup
N→∞

X `N
(2N log logN)

`
2

= M

)
= 1

with

M = sup

{〈
A,

∫
∆`

0,1

dH ⊗ . . .⊗ dH

〉
: ‖H‖H;[0,T ] ≤ 1

}
. (7.4)

Proof. Immediate from (7.3) and accompanying description of the limit set.

7.3 The law of iterated logarithm for iterated integrals

The arguments of the last section immediately extend to the case of iterated integrals,
and in particular lead to a proof of Corollary 2.6. The analogue of Theorem 7.5 reads

Theorem 7.11. The conclusion of Theorem 2.5, with fixed p ∈ (2, 3), can be extended to
any level ` ∈ N. That is,

‖Vε

` −W
ε

`‖p/`,[0,T ] = O(N−δ) a.s.

where V
ε

` is given by the rescaled `-fold iterated integrals,

V
ε

`(s, t) = ε`
∫
{sτ̄ε−2≤r1≤···≤r`≤tτ̄ε−2}

ξ(r1)⊗ · · · ⊗ ξ(r`)dr1 · · · dr`

and WN = (1,W
1

N ,W
2

N , . . .) exactly as in Theorem 7.5, just with updated covariance

for the Brownian motion W
1

N = WN , namely the covariance given in Theorem 2.5, and
Γ = {Γij : 1 ≤ i, j ≤ e} given by

Γij =

∞∑
l=1

E(ηi(0)ηj(l)) + E
(∫ τ(ω)

0

ξj(s, ω)ds

∫ s

0

ξi(u, ω)du
)
.

Proof. Similar to Theorem 7.5: by Theorem 2.5 the claimed estimate holds true for
` = 1, 2 and thanks to p ∈ (2, 3), we can appeal to Theorem 7.4, noting that the Lyons
extension of V ε is precisely given by V

ε
= (V ε,Vε).

We can now deduce, as in the discrete case, a functional LIL for iterated integrals
from the corresponding statement for Brownian rough paths; Proposition 7.7. We set

ξ̄
`
(s, t) :=

∫
{s≤r1≤···≤r`≤t}

ξ(r1)⊗ · · · ⊗ ξ(r`)dr1 · · · dr` ∈ (Re)⊗`.

Theorem 7.12. For any ` ∈ N and p > 2, as N →∞, a.s.

inf
H∈K

∥∥∥(2N log logN)−
`
2 ξ̄
`
(τ̄N ·, τ̄N ·)−H`

∥∥∥
p/`;[0,1]

→ 0

and the set of limit points given by (7.1). In particular,

inf
H∈K

∣∣∣(2N log logN)−
`
2 ξ̄
`
(0, τ̄N)−H`(0, 1)

∣∣∣→ 0.

with set of limit points given by
{
H`(0, 1) : H ∈ K

}
.
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We have, as before,

Corollary 7.13. Let A ∈ (Re)⊗` and define the real-valued tensor contraction X `N :=〈
A, ξ̄

`
(0, N)

〉
. Then, with M given in (7.4),

P

(
lim sup
N→∞

X `N
(2N log logN)

`
2

= M/τ̄

)
= 1.

7.4 Remarks on iterated sums and integrals

Iterated integrals and sums of the type considered in Corollaries 7.10 and 7.13
are of interest in data science. Specifically, iterated integrals have given rise to a
popular feature set of machine learning applications, the lectures notes [15] constitute
an excellent source of information. Iterated sums, a.k.a. iterated-sums signatures are
a natural variant, specifically for feature extraction of time-series, see e.g. [5, 21, 16].
Strictly speaking, they allow for additional integer powers of the ξ’s. An extension of
Corollary 7.10 in this direction is not difficult, e.g. using results of [25], but this would
require an algebraic setup in terms of quasi-shuffle or Grossmann–Larson Hopf algebras
that would lead us too far astray.
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