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Abstract

We show that the stationary measure for the totally asymmetric simple exclusion
process on a segment with open boundaries is given by a marginal of a two-line
measure with a simple and explicit description. We use this representation to analyze
asymptotic fluctuations of the height function near the triple point for a larger set
of parameters than was previously studied. As a second application, we determine a
single expression for the rate function in the large deviation principle for the height
function in the fan and in the shock region. We then discuss how this expression
relates to the expressions for the rate function available in the literature.
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1 Introduction

A totally asymmetric simple exclusion process (TASEP) with open boundaries is a
continuous-time finite-state Markov process that models the movement of particles along
the N sites {1, . . . , N} from the left reservoir to the right reservoir. The particles cannot
occupy the same site, and can move only to the nearest site on the right at rate 1. The
particles arrive at the first location, if empty, at rate α > 0 and leave the system from the
N -th site, if occupied, at rate β > 0. For a description of the infinitesimal generator of
this Markov process, we refer to e.g. [23, Section 3]. We will be interested solely in the
stationary measure of this process.

The stationary measure for open TASEP has been studied for a long time, with
explicit expressions available in [25] and [20]. In this paper we establish a two-line
representation for this stationary measure in terms of a pair of weighted random walks.
We remark that there are numerous other representations for the stationary measure
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Figure 1: Totaly Asymmetric Simple Exclusion process with boundary parameters α, β.

of TASEP; a representation in [24, Section 5.2] does not separate the “two lines”, but
it covers a more general ASEP. Integral representation of the probability generating
function [8, 26] is useful in studying Laplace transformations of limiting fluctuations.
Ref. [21, Section 3.2] represents the stationary measure of a sequential TASEP as a
marginal of a “two-layer” configuration that has a different form than ours.

The Gibbs measure (or line ensemble) representations have been valuable in study-
ing integrable probabilistic models on full or half-space and have been extended to
time-homogeneous models on an interval with two-sided boundary conditions in [1].
Barraquand, Corwin, and Yang [1, Theorem 1.3] establish that stationary measures for
the free-energy increment process of geometric last passage percolation on a diagonal
strip are described as marginals of explicitly defined two-layer Gibbs measures. They fur-
ther pose the question of obtaining an explicit description of the open TASEP stationary
measure from its implicit connection to the stationary solution of the exponential large
passage percolation recurrence. This paper proposes an alternative approach implicitly
based on the matrix method [14]. We demonstrate that a representation akin to their
two-layer Gibbs measure holds for the stationary measure of the TASEP. We then use
this representation to analyze asymptotic fluctuations of particle density for a larger set
of parameters than was previously studied, and to prove the large deviations principle
with a single expression for the rate function valid for all α, β ∈ (0, 1).

We now introduce configuration spaces and probability measures that will facilitate
canonical representations of the random variables that we need. We begin with the
stationary measure of TASEP which defines a (discrete) probability measure PTASEP on
the configuration space Ω = Ω(N) = {0, 1}N . (We will omit the superscript N when it is
fixed in an argument and clearly recognizable from the context.) We assign probability
PTASEP(τ ) to a sequence τ = (τ1, . . . , τN ) ∈ Ω that encodes the occupied and empty
sites, where τj ∈ {0, 1} is the occupation indicator of the j-th site. It will be convenient
to parameterize PTASEP using

a =
1− α

α
, b =

1− β

β
. (1.1)

Formula (1.1) makes sense for all α, β > 0, and then PTASEP is determined by a, b > −1

in formula (2.1), but in this paper we will only consider α, β ∈ (0, 1), so that a, b > 0.
The steady state height function HN is defined by

HN (k) = τ1 + · · ·+ τk, k = 0, 1, . . . , N. (1.2)

The invariant law PTASEP is uniquely determined by the law P(N)
H induced by HN on the

configuration space

S := {s = (sj)0≤j≤N : s0 = 0, sj − sj−1 ∈ {0, 1}, 1 ≤ j ≤ N} .

Indeed,
P

(N)
H (s) = PTASEP(τ )
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with unique τ such that s = HN (τ ), asHN : Ω → S is a bijection. Instead of determining

PTASEP, we will therefore determine P(N)
H as a marginal law of the top line of the two-line

ensemble on the configuration space S × S.
Denote by Prw, the uniform law on S × S defined by two independent random walks

with i. i. d. Bernoulli increments Pr(ξ = 0) = Pr(ξ = 1) = 1/2,

Prw(s1, s2) = Pr(S1 = s1) Pr(S2 = s2) = 1/4N , s1, s2 ∈ S.

The two-line ensemble (TLE) is the probability measure PTLE on S×S, defined as follows:

PTLE (s1, s2) =
1

Ca,b

bs1(N)−s2(N)

(ab)min0≤j≤N{s1(j)−s2(j)}
Prw(s1, s2), (1.3)

where Ca,b is the normalization constant and s1, s2 ∈ S(N). We will write ETLE for the

expected value with respect to PTLE. Of course, PTLE = P
(N)
TLE depends on N .

The two canonical coordinate mappings S1,S2 : S × S → S given by

S1(s1, s2) = s1, S2(s1, s2) = s2, (1.4)

give a canonical realization on (S × S,Prw) of the pair of independent Bernoulli random
walks S1,S2 and at the same time they give a realization of the two-line ensemble on
(S × S,PTLE).

Our main result is the following TASEP analog of [1, Theorem 1.3].

Theorem 1.1. For a, b > 0, the marginal law of random sequence S1 given by (1.4)
under measure PTLE is the (unique) law of the steady state height function HN of the
TASEP with parameters α, β given by (1.1). That is, for s ∈ S,

PH(s) =
∑
s′∈S

PTLE(s, s
′). (1.5)

Remark 1.2. As pointed out to us by an anonymous reviewer, Theorem 1.1 in fact holds
for a, b ≥ 0, i.e., for α, β ∈ (0, 1]. The only change that is required is to rewrite (1.3) as
an expression in a, b with non-negative exponents:

1

Ca,b
bs1(N)−s2(N)−min0≤j≤N{s1(j)−s2(j)}amax0≤j≤N{s2(j)−s1(j)}Prw(s1, s2).

Then the identities that we establish in the proof for a, b > 0 extend to a, b ≥ 0 by
continuity.

The proof of Theorem 1.1 appears in Section 2. In Section 3 we give two applications
which show how Theorem 1.1 allows to deduce asymptotic of the height function of
TASEP from well known asymptotic properties of random walks. In Theorem 3.1 we
use Theorem 1.1 and Donsker’s theorem to obtain convergence of the fluctuations of
TASEP to the process conjectured to be a stationary measure of a KPZ fixed point on an
interval in the full range of parameters. To our knowledge, previously available results
of this form, see [7, Theorem 1.5], required that the sum u + v of the parameters in
(3.2) be non-negative. (On the other hand, the more general five-parameter ASEP was
covered.) In Theorem 3.4 we show that in the case of TASEP the large deviation principle
for the height function is a consequence of Theorem 1.1, Mogulskii’s theorem, and the
contraction principle. The large deviation principle for the height function of a more
general ASEP has been analyzed in [16], but besides the simplicity of the proof, a slight
novelty here is the unified proof and an expression for the rate function, which works for
all α, β ∈ (0, 1), i.e., for all a, b > 0, in the so called fan region ab < 1 and in the shock
region ab > 1. Since the relation of our rate function to formulas [16, (1.7), (3.3), and
(1.11)] is not obvious, we discuss this topic in Section 4.
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2 Proof of Theorem 1.1

For ab < 1, Theorem 1.1 can be deduced from [3, Section 2.3] used with q = 0.
The general case can then be obtained by analytic continuation as discussed in [1,
Remark 1.9]. Our more direct proof is based on induction on the size N = 1, 2, . . . of
the system and relies on a recursion for the invariant probabilities. Recursions for the
invariant probabilities of a more general open asymmetric simple exclusion process
(ASEP) appear in [23], [11], and [13]. Here, we will use a recursion that arises directly
from the celebrated matrix method developed in [20]. This recursion appears under the
name basic weight equations in [6, Theorem 1] and it has already been used for similar
purposes in [24, Section 2.2]. Specified to TASEP, the basic weight equations say that
the unique stationary measure of TASEP under reparameterization (1.1) is given by

PTASEP(τ ) =
1

Za,b
pN (τ ), τ ∈ Ω(N), (2.1)

where {pN (τ )} satisfy the recursion that determines the un-normalized steady state
weights pN uniquely in terms of the steady state weights pN−1 for a TASEP on Ω(N−1).
With the initial conditions

p1(0) = 1 + a, p1(1) = 1 + b, (2.2)

for N ≥ 2 the recursion is:

pN (0, τ2, . . . , τN ) = (1 + a)pN−1(τ2, . . . , τN ), (2.3)

pN (τ1, . . . , τN−1, 1) = (1 + b)pN−1(τ1, . . . , τN−1). (2.4)

pN (τ1, . . . , τn−1, 1, 0, τn+2, . . . , τN ) = pN−1(τ1, . . . , τn−1, 1, τn+2, . . . , τN )

+ pN−1(τ1, . . . , τn−1, 0, τn+2, . . . , τN ), (2.5)

1 ≤ n ≤ N − 1.

2.1 The key identity and the proof of Theorem 1.1

We introduce a family of functions fN : Ω(N) → (0,∞) that we will use to prove (1.5).
For τ = (τ1, . . . , τN ) ∈ Ω(N) and ξ = (ξ1, . . . , ξN ) ∈ Ω(N), let

s1(k) =

k∑
j=1

τj , s2(k) =

k∑
j=1

ξj (2.6)

with s1(0) := 0 and s2(0) := 0. Formula (2.6) defines a pair of bijections Ω(N) → S and
throughout this proof we will treat s1 = s1(τ ) as a function of τ and s2 = s2(ξ) as a
function of ξ.

With the above convention, we introduce

fN (τ ) = fN (τ1, . . . , τN ) =
∑

(ξ1,...,ξN )∈Ω(N)

bs1(N)−s2(N)

(ab)min0≤j≤N{s1(j)−s2(j)}
. (2.7)

Theorem 1.1 is a consequence of the following identity:

Lemma 2.1. For (τ1, . . . , τN ) ∈ Ω(N) and N ≥ 1, we have

fN (τ1, . . . , τN ) = pN (τ1, . . . , τN ), (2.8)

with pN (τ ) from representation (2.1).
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Proof. It is clear that (2.8) holds for N = 1. Indeed, in this case (2.7) is the sum of two
terms corresponding to ξ1 = 0 and ξ1 = 1:

f1(0) =
b0

(ab)0
+

b−1

(ab)−1
= 1 + a,

f1(1) =
b1

(ab)0
+

b0

(ab)0
= b+ 1,

matching the initial conditions (2.2).
Next, we show that fN satisfies the same three recursions as pN for N ≥ 2. Through-

out this proof, for k = 0, . . . , N we consider partial sums s1 ∈ S(N) and s̃1 ∈ S(N−1) that
depend on τ1, . . . , τn and partial sums s2 ∈ S(N) and s̃2 ∈ S(N−1) that depend on the
auxiliary {0, 1}-valued variables ξ1, . . . , ξn that appear under the sum in (2.7). In one
place in the last part of the proof, the sequence s̃1 will be an explicit function of both
sequences τ and ξ. We express fN in terms of s1, s2 ∈ S(N) and relate it to fN−1 written
in terms of s̃1, s̃2 ∈ S(N−1).

First, we verify that

fN (0, τ2, . . . , τN ) = (1 + a)fN−1(τ2, . . . , τN ).

To see this, we define s̃1(k) =
∑k

j=1 τj+1 and s̃2(k) =
∑k

j=1 ξj+1 so that s1(N) = s̃1(N−1),
s2(N) = ξ1+ s̃2(N − 1) and min0≤j≤N {s1(j)− s2(j)} = −ξ1+min0≤j≤N−1 {s̃1(j)− s̃2(j)}.
Then (2.7) gives

fN (0, τ2, . . . , τN ) =
∑

(ξ1,ξ2,...,ξN )∈{0,1}N

b−ξ1

(ab)−ξ1
· bs̃1(N−1)−s̃2(N−1)

(ab)min0≤j≤N−1{s̃1(j)−s̃2(j)}

=
∑

ξ1∈{0,1}

aξ1
∑

(ξ2,...,ξN )∈{0,1}N−1

bs̃1(N)−s̃2(N)

(ab)min0≤j≤N−1{s̃1(j)−s̃2(j)}

= (1 + a)fN−1(τ2, . . . , τN ).

Next, by a similar argument we verify that

fN (τ1, . . . , τN−1, 1) = (1 + b)fN−1(τ1, . . . , τN−1).

In this case, we introduce s̃1(k) =
∑k

j=1 τj and s̃2(k) =
∑k

j=1 ξj so that s1(N) = s̃1(N −
1) + 1, s2(N) = s̃2(N − 1) + ξN . We note that

s1(N)− s2(N) = s̃1(N − 1)− s̃2(N − 1) + 1− ξN ≥ s̃1(N − 1)− s̃2(N − 1),

so in this case min1≤j≤N{s1(j)− s2(j)} = min1≤j≤N−1{s̃1(j)− s̃2(j)}. Thus (2.7) gives

fN (τ1, . . . , τN−1, 1) =
∑

ξN∈{0,1}

∑
ξ1,...,ξN−1∈{0,1}N−1

b1−ξN
bs̃1(N−1)−s̃2(N−1)

(ab)min1≤j≤N−1{s̃1(j)−s̃2(j)}

=
∑

ξN∈{0,1}

b1−ξN
∑

ξ1,...,ξN−1∈{0,1}N−1

bs̃1(N−1)−s̃2(N−1)

(ab)min1≤j≤N−1{s̃1(j)−s̃2(j)}

= (1 + b)fN−1(τ1, . . . , τN−1).

Finally, we verify that for a fixed 1 ≤ n ≤ N − 1 we have

fN (τ1, . . . , τn−1, 1, 0, τn+2, . . . , τN ) = fN−1(τ1, . . . , τn−1, 1, τn+2, . . . , τN )

+ fN−1(τ1, . . . , τn−1, 0, τn+2, . . . , τN ). (2.9)

EJP 29 (2024), paper 199.
Page 5/24

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1253
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Two-line representation of stationary measure for open TASEP

Here for k ≤ n − 1 we let s̃1(k) = s1(k) and s̃2(k) = s2(k). For n ≤ k ≤ N − 1 we set
s̃2(k) = s2(n − 1) +

∑k
j=n ξj+1, skipping over ξn. On the other hand, for n ≤ k ≤ N − 1

we let s̃1(k) = s1(n− 1) + (1− ξn) +
∑k

j=n+1 τj+1. (This is one place in the proof where
s̃1 depends on both τ and ξ.) Note that putting this choice of s̃1 into expression (2.7)
leads to the formula for fN−1(τ1, . . . , τn−1, 1− ξn, τn+2, . . . , τN ).

It is clear that

s1(N)− s2(N) =

n−1∑
j=1

τj + 1 + 0 +

N∑
j=n+2

τj

−

n−1∑
j=1

ξj + ξn +

N∑
j=n+1

ξj


=

n−1∑
j=1

τj + (1− ξn) +

N−1∑
j=n+1

τj+1

−

n−1∑
j=1

ξj +

N−1∑
j=n

ξj+1

 = s̃1(N − 1)− s̃2(N − 1).

(2.10)

The same calculation shows that s1(k)−s2(k) = s̃1(k−1)−s̃2(k−1) for k = n+1, . . . , N .
Since s1(k)− s2(k) = s̃1(k)− s̃2(k) for 0 ≤ k ≤ n− 1, and by the same rewrite as in (2.10)
we get

s1(n)− s2(n) = 1− ξn + s1(n− 1)− s2(n− 1) ≥ s1(n− 1)− s2(n− 1),

we see that s1(n)− s2(n) does not contribute to the minimum. This shows that the two
minima are the same,

min
0≤k≤N

{s1(k)− s2(k)} = min
0≤k≤n−1

{s1(k)− s2(k)} ∧ min
n+1≤k≤N

{s1(k)− s2(k)}

= min
0≤k≤n−1

{s̃1(k)− s̃2(k)} ∧ min
n+1≤k≤N

{s̃1(k − 1)− s̃2(k − 1)} = min
0≤k≤N−1

{s̃1(k)− s̃2(k)}.

Therefore summing in (2.7) over ξ1, . . . , ξn−1, ξn+1, . . . , ξN ∈ {0, 1} and isolating the
sum over ξn ∈ {0, 1} we get

fN (τ1, . . . , τn−1, 1, 0, τn+2, . . . , τN ) =
∑

ξn∈{0,1}

fN−1(τ1, . . . , τn−1, 1− ξn, τn+2, . . . , τN ),

which establishes (2.9).
Since fN (τ1, . . . , τN ) and pN (τ1, . . . , τN ) satisfy the same recursion with respect to N

and the same initial conditions at N = 1, this ends the proof.

Proof of Theorem 1.1. For s1, s2 ∈ S, denote

gN (s1, s2) =
bs1(N)−s2(N)

(ab)min0≤j≤N{s1(j)−s2(j)}
, (2.11)

and let ĝN (τ , ξ) denote the same expression treated as a function of τ , ξ ∈ Ω(N) under
the bijection (2.6). (That is, we apply (2.11) to s1 which is the height function of τ and
to s2, which is the height function of ξ.) In this notation, (2.7) becomes

fN (τ ) =
∑

ξ∈Ω(N)

ĝN (τ , ξ). (2.12)

Since Prw is a uniform law on S × S, formula (1.3) can be written as

PTLE(s1, s2) =
1

Za,b
gN (s1, s2),
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where Za,b is the same normalizing constant as in (2.1). Indeed, the normalizing constant
is ∑

s1,s2∈S
gN (s1, s2) =

∑
τ ,ξ∈ΩT

ĝN (τ , ξ) =
∑

τ∈ΩT

fN (τ ) =
∑

τ∈ΩT

pN (τ ) = Za,b,

where we used (2.12) and Lemma 2.1.
Thus, writing τ = τ (s1) and ξ = ξ(s2) for the inverse of bijection (2.6), we have

∑
s2∈S

PTLE(s1, s2) =
1

Za,b

∑
s2∈S

gN (s1, s2) =
1

Za,b

∑
ξ∈Ω

ĝN (τ (s1), ξ)

=
1

Za,b
fN (τ (s1)) =

1

Za,b
pN (τ (s1)) = PTASEP(τ (s1)) = PH(s1),

proving (1.5).

3 Applications

In this section, we use Theorem 1.1 to refine and extend existing results concerning
the asymptotic behavior of the height function in steady state. Our two theorems draw in-
spiration and build upon the foundational works of [12] where non-Gaussian fluctuations
were identified, and [16] which described the rate function for large deviations.

3.1 Stationary measure of the conjectural KPZ fixed point on a segment

Barraquand and Le Doussal [2] introduced process B +X, where B,X are indepen-
dent processes, B is the Brownian motion of variance 1/2, and the law of X is given by
the Radon-Nikodym derivative

dPX

dPB
(ω) =

1

K(u, v)
exp

(
(u+ v) min

0≤x≤1
ω(x)− vω(1)

)
, ω ∈ C[0, 1]. (3.1)

They proposed this process as the stationary measure of the conjectural KPZ fixed point
on the interval [0, 1] with boundary parameters u, v ∈ R, and predicted that the process
B +X should arise as a scaling limit of stationary measures of all models in the KPZ
universality class on an interval.

This prediction is supported by the limit theorem established in [7], which demon-
strated that the process B +X describes the asymptotic behavior of the fluctuations
of the height function of ASEP with parameters that vary with the size of the system
according to formula (3.2) under condition u+ v > 0. In this paper, we extend the above
limit theorem to all real values of u and v, removing the positivity constraint u+ v > 0 for
TASEP. This, to our knowledge, constitutes the first confirmation of the prediction in [2]
that encompasses the entire range of real parameters u and v. A recent preprint [27]
uses our result in combination with analytic techniques to extend Theorem 3.1 to the
general ASEP.

Recall that the height function is defined by (1.2).

Theorem 3.1. Consider a sequence of TASEPs indexed by N on the segments {1, . . . , N}
for all N ∈ N, with parameters α = α(N) → 1/2, β = β(N) → 1/2 as N → ∞ at the rates
given by relation (1.1) with

a = aN = e−u/
√
N , b = bN = e−v/

√
N . (3.2)

Then {
1√
N

(2HN (bxNc)− bNxc)
}

x∈[0,1]

⇒ {Bx +Xx}x∈[0,1] as N → ∞,
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1

1 a

b

ab = 1

a = b > 1

(0, 0)

HD

LDMC

ρ̄ = 1
2

ρ̄ = b
1+b

> 1
2

ρ̄ = 1
1+a

< 1
2

Figure 2: For fixed a, b, limiting particle density ρ̄ := lim
N→∞

1
N (τ1 + · · · + τN ) varies by

region of the phase diagram for the open TASEP. These are the maximal current region,
marked as MC, the low density region, marked as LD, and the high density region,
marked as HD. Hyperbola ab = 1 separates the fan region from the shock region ab > 1.
(These regions were identified in [11, Fig. 3].) Parameters aN , bN of the TASEP in
Theorem 3.1 vary with system size N and converge to the triple point (a, b) = (1, 1),
where the regionsMC, LD, and HD meet.

where the convergence is in Skorokhod’s space D[0, 1] of càdlàg functions, processes
B,X are independent processes on [0, 1] with continuous trajectories, B is a Brownian
motion of variance 1/2, and the law of X is given by (3.1).

We remark that a linear interpolation of the height function similar to the one that
appears in Theorem 3.4 leads to the same conclusion under weak convergence in the
space C[0, 1] with the supremum norm.

Proof. Consider the coordinate processes S1,S2 defined on the probability space (S(N)×
S(N),PTLE) by (1.4). We shall determine the limit of the process

W
(N)
1 :=

1√
N

{2S1(bxNc)− bxNc}x∈[0,1] . (3.3)

We will establish a more general claim that under measure PTLE, we have joint conver-
gence of the pair of processes:

1√
N

(
{S1(bxNc) + S2(bxNc)− bxNc}x∈[0,1], {S1(bxNc)− S2(bxNc)}x∈[0,1]

)
⇒
(
{Bx}x∈[0,1], {Xx}x∈[0,1]

)
as N → ∞, (3.4)

where B,X are independent processes from the conclusion of the theorem. Noting that
the process (3.3) is the sum of the processes on the left hand side of (3.4), this will end
the proof.

Fix a bounded continuous function Φ : D([0, 1];R2) → R and write

W
(N)
± := 1

2 (W
(N)
1 ±W

(N)
2 )

for the two processes on the left hand side of (3.4), where W
(N)
2 is defined as in (3.3)

with S2 in place of S1. Our goal is to prove that

lim
N→∞

ETLE

[
Φ(W

(N)
+ ,W

(N)
− )

]
= E[Φ(B,X)]. (3.5)
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Two-line representation of stationary measure for open TASEP

Following the approach in [9, Proposition 1.3], we use Donsker’s theorem. Since
Varrw(S1(N)) = N/4, by Donsker’s theorem, under probability measure Prw, we have

(W
(N)
1 ,W

(N)
2 ) ⇒ (W1,W2), as N → ∞,

where W1,W2 are independent Wiener processes and convergence is in D([0, 1];R2).
Thus

(W
(N)
+ ,W

(N)
− ) ⇒ (B,B′) := (W1 +W2,W1 −W2)/2,

where B,B′ are independent Brownian motions of variance 1/2. Using the Radon-
Nikodym density (1.3) and (3.2), we get

ETLE

[
Φ(W

(N)
+ ,W

(N)
− )

]
=

1

Zu,v(N)
Erw

[
Φ(W

(N)
+ ,W

(N)
− )

× exp

(
u+ v√
N

min
0≤j≤N

(S1(j)− S2(j))−
v√
N

(S1(N)− S2(N))

)]
=

1

Zu,v(N)
Erw

[
Φ(W

(N)
+ ,W

(N)
− )e(u+v)min0≤x≤1 W

(N)
− (x)−vW

(N)
− (1)

]
=

1

Zu,v(N)
Erw

[
Φ(W

(N)
+ ,W

(N)
− )E(W (N)

− )
]
,

where
E(f) = e(u+v)min0≤x≤1 f(x)−vf(1).

Noting that Φ is bounded and by (A.1) and Remark A.2

sup
N
Erw

[
E2(W

(N)
− )

]
<∞,

we see that the sequence of real valued random variables{
Φ(W

(N)
+ ,W

(N)
− )E(W (N)

− )
}
N=1,2,...

is uniformly integrable with respect to Prw. Uniform integrability and weak convergence
imply convergence of expectations ([5, Theorem 3.5]), so Donsker’s theorem implies that

lim
N→∞

Erw

[
Φ(W

(N)
+ ,W

(N)
− )E(W (N)

− )
]
= EB,B′ [Φ(B,B′)E(B′)] ,

where EB,B′ denotes integration with respect to the law of (B,B′) on C[0, 1] × C[0, 1].
Using this with Φ ≡ 1, we see that the normalizing constants also converge,

lim
N→∞

Zu,v(N) = lim
N→∞

Erw

[
E(W (N)

− )
]
= EB,B′ [E(B′)] = K(u, v).

Thus

lim
N→∞

ETLE

[
Φ(W

(N)
+ ,W

(N)
− )

]
=

limN→∞Erw

[
Φ(W

(N)
+ ,W

(N)
− )E(W (N)

− )
]

limN→∞ Zu,v(N)

=
1

K(u, v)
EB,B′ [Φ(B,B′)E(B′)] =

∫
C[0,1]

(∫
C[0,1]

Φ(b, b′)
E(b′)
K(u, v)

PB(db
′)

)
PB(db)

=

∫
C[0,1]

(∫
C[0,1]

Φ(b, x)PX(dx)

)
PB(db) = EB,X [Φ(B,X)] ,

where we used independence of the Brownian motions B,B′ and (3.1). (Here, EB,X

denotes integration with respect to the (product) law of (B,X) on C[0, 1]× C[0, 1].) This
establishes (3.5) and ends the proof.
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Two-line representation of stationary measure for open TASEP

3.2 Large deviations

Large deviations for the height function process {HN (bNxc)}x∈[0,1] of ASEP have
been discussed in Refs. [17] and [16], with the height function interpreted as particle
density profile. (There are also nice expositions in [18, Section 5], [19, Section 16].) In
this section, we use Theorem 1.1 to deduce large deviations for the height function of the
TASEP directly from Mogulskii’s theorem [10, Theorem 5.1.2]. In Section 4 we show how
to recover formulas discovered in [16], and we determine the additive normalization.

Let (X, d) be a complete separable metric space. Consider a sequence of probability
spaces (Ω(N),P(N)) and a family of random variables XN : Ω(N) → X, N = 1, 2, . . . .
A standard statement of the large deviation principle in Varadhan’s sense involves a
family of Borel subsets A of X, their interiors int(A) and closures cl(A) and specifies
asymptotics of probabilities in terms of a rate function I by the following upper/lower
bounds:

− inf
x∈int(A)

I(x) ≤ lim inf
N→∞

1

N
logP(N)(XN ∈ A)

≤ lim sup
N→∞

1

N
logP(N)(XN ∈ A) ≤ − inf

x∈cl(A)
I(x).

It will be more convenient to use an equivalent definition which we now recall; see
[10, Theorem 4.4.13]. (Compare also [22, Definitions 1.1.1 and 1.2.2].)

Definition 3.2. Let (X, d) be a complete separable metric space. The sequence {XN}
satisfies the large deviation principle (LDP), if there exists a lower semicontinuous
function I : X→ [0,∞], called the rate function, such that

(i) for every bounded continuous function Φ : X→ R,

lim
N→∞

1

N
logEN [exp(NΦ(XN ))] = sup

x∈X
{Φ(x)− I(x)}, (3.6)

where EN [·] =
∫
Ω(N)(·)dPN denotes the expected value.

(ii) I has compact level sets, I−1[0, w] is a compact subset of X for every w ≥ 0.

To prove the LDP for the height function, we consider the sequence {XN} of X =

C([0, 1],R2)-valued random variables defined on probability spaces Ω(N) = (S(N) ×
S(N),P

(N)
TLE) obtained by linear interpolation between the points

(
k
N ,

S1(k)
N

)
, k = 0, . . . , N ,

in the first component and the points
(

k
N ,

S2(k)
N

)
, k = 0, . . . , N , in the second component.

By Theorem 1.1, the first component of XN then has the same law as the continuous

interpolation of the height function (1.2) based on the points
(

k
N ,

HN (k)
N

)
, k = 0, . . . , N .

To introduce the rate function, we need additional notation. Let

h(x) =

{
x log x+ (1− x) log(1− x) 0 ≤ x ≤ 1,

∞ x < 0 or x > 1.

Denote byAC0 the set of absolutely continuous functions f ∈ C[0, 1] such that f(0) = 0.
Let

K(a, b) = log(ρ̄(1− ρ̄)), (3.7)

where

ρ̄ = ρ̄(a, b) =


1

1+a a > 1, a < b,
1
2 a ≤ 1, b ≤ 1,
b

1+b b > 1, b > a,

(3.8)
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denotes the limiting particle density, as indicated on the phase diagram in Fig. 2.
(Notation log(ρ̄(1− ρ̄)) was introduced in [16].)

Theorem 3.3. If a, b > 0, then the sequence {XN} satisfies the large deviation principle

with respect to the probability measures P(N)
TLE with the rate function

I(f1, f2) =

∫ 1

0

(h(f ′1(x)) + h(f ′2(x))) dx

+ log(ab) min
0≤x≤1

(f1(x)− f2(x))− (f1(1)− f2(1)) log b−K(a, b) (3.9)

if functions f1, f2 ∈ AC0; we let I = ∞ for all other f1, f2 ∈ C[0, 1].

Since h = ∞ outside of [0, 1], it is clear that expression (3.9) can only be finite for
f1, f2 ∈ AC0 with the derivatives in [0, 1] for almost all x. In particular, as a consequence
of the Arzelà-Ascoli theorem, I(·) is lower semicontinuous and has compact level sets.

Proof. By a theorem of Mogulskii, see [10, Theorem 5.1.2], XN satisfies the LDP with
respect to the law Prw of two independent Bernoulli(1/2) random walk paths. The rate
function for two independent components with Bernoulli(1/2) increments becomes

Irw(f1, f2) = log 4 +

∫ 1

0

(h(f ′1(x)) + h(f ′2(x))) dx =

∫ 1

0

(
h(f ′1(x)| 12 ) + h(f ′2(x)| 12 )

)
dx,

where f1, f2 ∈ AC0, see [10, Exercise 2.2.23], and

h(x|y) = x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
, x, y ∈ (0, 1). (3.10)

In order to use (3.6), we need to fix a bounded continuous function Φ : C([0, 1],R2) →
R and compute

lim
N→∞

1

N
logETLE

[
eNΦ(XN )

]
= lim

N→∞

1

N
logErw

[
eNΦ(XN )g(XN )N

]
, (3.11)

where g is given by (2.11). To proceed, we introduce a version of g that acts on pairs of
continuous functions fj ∈ AC0 by

g̃(f1, f2) :=
bf1(1)−f2(1)

(ab)min0≤x≤1(f1(x)−f2(x))
.

It is clear that g̃(NXN ) = g(S1,S2), where Sk = (0, Sk(1), . . . , Sk(N)) are the sums from
(1.4) and that g̃(NXN ) = g̃(XN )N = exp(N log g̃(XN )). To compute the limit (3.11), we
use Varadhan’s lemma with respect to Prw. According to Varadhan’s lemma [10, Theorem
4.3.1], if Ψ : C([0, 1],R2) → R is a continuous function such that

lim sup
N→∞

1

N
logErw

[
eγNΨ(XN )

]
<∞ for some γ > 1, (3.12)

then

lim
N→∞

1

N
logErw

[
eNΨ(XN )

]
= sup

f1,f2

{Ψ(f1, f2)− Irw(f1, f2)}.

We apply this to a continuous but unbounded function Ψ : C([0, 1],R2) → R given by

Ψ(f1, f2) = Φ(f1, f2) + log g̃(f1, f2)

= Φ(f1, f2) + log(b)(f1(1)− f2(1))− log(ab) min
0≤x≤1

(f1(x)− f2(x)).
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To verify that (3.12) holds with γ = 2, we note that by the Cauchy-Schwartz inequality

Erw

[
e2NΨ(XN )

]
= Erw

[
e2NΦ(XN )g2(S1,S2)

]
≤ eN |Φ‖∞Erw

[
g2(S1,S2)

]
≤ eN |Φ‖∞

(
Erw

[
(ab)−4min0≤j≤N{S1(j)−S2(j)}

])1/2 (
Erw

[
b4(S1(N)−S2(N))

])1/2
.

Inequality (A.1), see Remark A.2, shows that (3.12) holds. From Varadhan’s lemma [10,
Theorem 4.3.1] we get

lim
N→∞

1

N
logErw

[
eNΦ(XN )g̃(XN )N

]
= sup

f1,f2∈C[0,1]

{Φ(f1, f2) + log g̃(f1, f2)− Irw(f1, f2)}

= sup
f1,f2∈C[0,1]

{
Φ(f1, f2)−

(
Irw(f1, f2)

+ log(ab) min
0≤x≤1

(f1(x)− f2(x))− (f1(1)− f2(1)) log b
)}
.

Using this with Φ ≡ 0 we see that the normalizing constants in (1.3) satisfy

lim
N→∞

1

N
logCa,b(N) = −K0(a, b),

where K0(a, b) is given by the same variational expression

K0(a, b) = inf
f1,f2∈AC0

{∫ 1

0

(
h(f ′1(x)| 12 ) + h(f ′2(x)| 12 )

)
dx

+ log(ab) min
0≤x≤1

(f1(x)− f2(x))− (f1(1)− f2(1)) log b
}
. (3.13)

Thus

lim
N→∞

1

N
logETLE

[
eNΦ(XN )

]
= lim

N→∞

1

N
logErw

[
eNΦ(XN )g̃(XN )N

]
− lim

N→∞

1

N
logCa,b(N)

= sup
f1,f2∈C[0,1]

{
Φ(f1, f2)

−
(
Irw(f1, f2) + log(ab) min

0≤x≤1
(f1(x)− f2(x))− (f1(1)− f2(1)) log b−K0(a, b)

)}
.

This proves LDP with the rate function that depends on K0(a, b). To conclude the
proof, it remains to verify that expression (3.13) for K0(a, b) simplifies to the expression
K(a, b) = log(ρ̄(1 − ρ̄)) given in (3.7). We postpone this part of the proof until Section
4, where as part of the proof of Proposition 4.1, we will obtain formula (3.7) for ab ≥ 1,
and then as part of the proof of Proposition 4.6 we will establish that (3.7) holds also for
ab ≤ 1.

It is clear that the continuous linear interpolation H̃N of the step function forming
the height function {HN (bNxc)}x∈[0,1] has the same law as the first component of the
vector NXN (x). By contraction principle (see e.g. [10, Theorem 4.2.1] or [22, Theorem
1.3.2]), this implies the following LDP.

Theorem 3.4. If a, b > 0 then the sequence of linear interpolations { 1
N H̃N} of the height

function of a TASEP on {1, . . . , N} satisfies the large deviation principle with the rate
function

I(f) = inf
g∈AC0

{∫ 1

0

(h(f ′(x)) + h(g′(x)))dx

+ log(ab) min
0≤x≤1

(f(x)− g(x))− log(b)(f(1)− g(1))
}
− log(ρ̄(1− ρ̄)) (3.14)

if f ∈ AC0, and I(f) = ∞ otherwise. Here ρ̄ is given by (3.8).
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1

0 1
N

2
N

N−1
N

1

ρ̄(a, b)

1
N

H̃N (1)

Figure 3: Continuous interpolation XN is a pair of piecewise-linear lines. The first
component 1

N H̃N of XN is marked as the thick black line and the second component

of XN marked in blue. Note that 1
N H̃N (1) = 1

N

∑N
j=1 τj → ρ̄, see Fig. 2, except on the

coexistence line with a = b > 1. (The dashed line represents the most likely trajectory of
the random curve x 7→ 1

N H̃N (x) for large N .)

Proof. To obtain (3.14), we apply the contraction principle to the first coordinate map-
ping, with (3.9) applied to f1 = f , f2 = g. Anticipating subsequent developments we
wrote (3.7) for K0(a, b).

A version of this result for a more general ASEP appears in [16], with the rate function
rewritten in different and more explicit forms for ab ≤ 1 and ab > 1, which are discussed
in Section 4. The main novelty in Theorem 3.4 is that its proof and the expression for
the rate function do not distinguish between the shock and the fan region. (This has
been anticipated in [4, Formula (3.56)].) On the other hand, additional nontrivial work is
needed to recover the formulas that appear in [16].

We remark that Ref. [4, Section 3.6] uses a two layer representation [21] to obtain a
version of Theorem 3.4 for the case a = b = 0, which is not covered by our results. Ref.
[4] also discusses the corresponding version of Proposition 4.2.

4 Comparison with previous large deviation results

In this section we discuss previous LDP results for ASEP, specialized to the case of
TASEP. With some additional work these results can be obtained from Theorem 3.4, and
the derivations identify constant K0(a, b) given by the variational formula (3.13) in the
proof as a simpler expression (3.7) based on the phase diagram.

Converted to our notation, the LDP in Ref. [16, (1.11)] gives the following rate
function for the shock region of TASEP:
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Proposition 4.1. If ab ≥ 1 then the rate function (3.14) is

I(f) = min
0≤y≤1

{∫ y

0

(
f ′(x) log af ′(x)

1+a + (1− f ′(x)) log 1−f ′(x)
1+a

)
dx

+

∫ 1

y

(
f ′(x) log f ′(x)

1+b + (1− f ′(x)) log (1−f ′(x))b
1+b

)
dx
}
−K(a, b), (4.1)

where

K(a, b) = logmin

{
a

(1 + a)2
,

b

(1 + b)2

}
= log

a ∨ b

(1 + a ∨ b)2
. (4.2)

Although this result is known, we provide a separate proof based on Theorem 3.4.
This allows us to complete part of the postponed proof of Theorem 3.4, where we need
to show that K0(a, b) = K(a, b) = log ρ̄(1− ρ̄) for ab ≥ 1. To accomplish this goal, we use
(3.14) with K0(a, b) given by (3.13). (Then the fact that K0(a, b) = log ρ̄(1− ρ̄) for ab ≥ 1

will follow from (4.2).)

Proof of Proposition 4.1. With log(ab) ≥ 0, we write (3.14) as

I(f) = −K0(a, b) +

∫ 1

0

h(f ′(x))dx

+ inf
g

min
0≤y≤1

{∫ 1

0

h(g′(x))dx+ log(ab)(f(y)− g(y))− log(b)(f(1)− g(1))
}

= −K0(a, b) +

∫ 1

0

h(f ′(x))dx+ min
0≤y≤1

{
f(y) log(ab)− f(1) log b

+ inf
g1∈AC0[0,y]

{∫ y

0

h(g′1(x))dx− log(ab)g1(y)
}

+ inf
g2∈AC[y,1]:g2(y)=g1(y)

{∫ 1

y

h(g′2(x))dx+ log(b)g2(1)
}}
,

where we split g into g1 = g|[0,y], g2 = g|[y,1] for 0 < y < 1, with (omitted) minor changes

for y = 0 or y = 1. Since infg
∫ b

a
h(g′(x))dx is attained on linear functions, denoting by

F = g1(y) = g2(y) and G = g2(1) the values of g2 at the endpoints of interval [y, 1], the
optimal (linear) functions are g̃1(x) = Fx/y and

g̃2(x) =
(G− F )(x− y)

1− y
+ F.

Optimizing over all possible choices of F ≤ G we get

inf
g1

∫ y

0

h(g′1(x))dx− log(ab)g1(y) + inf
g2

∫ 1

y

h(g′2(x))dx+ log(b)g2(1)

= min
F∈[0,y]

min
G∈[F,F+1−y]

{yh(F/y)− log(ab)F + (1− y)h(G−F
1−y ) +G log b}

= y log
1

1 + a
+ (1− y) log

(
b

1 + b

)
,

as the minimum over F,G is attained at

F =
ay

1 + a
, G = F +

1− y

1 + b
.
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We get

I(f) = −K0(a, b) +

∫ 1

0

h(f ′(x))dx

+ min
y∈[0,1]

{
f(y) log a+ y log 1

1+a + (1− y) log b
1+b − (f(1)− f(y)) log b.

}
= −K0(a, b) + min

y∈[0,1]

{∫ y

0

h(f ′(x))dx+ f(y) log a+ y log 1
1+a

+

∫ 1

y

h(f ′(x))dx+ (1− y) log b
1+b − (f(1)− f(y)) log b

}
.

To end the proof, we note that the two integrals under the minimum in (4.1) match the
two integrals in the expression above:∫ y

0

(
f ′(x) log af ′(x)

1+a + (1− f ′(x)) log 1−f ′(x)
1+a

)
dx =

∫ y

0

h(f ′(x))dx

+ f(y) log a+ y log 1
1+a

and∫ 1

y

(
f ′(x) log f ′(x)

1+b + (1− f ′(x)) log (1−f ′(x))b
1+b

)
dx =

∫ 1

y

h(f ′(x))dx

+ (f(1)− f(y)) log 1
1+b + (1− y) log b

1+b − (f(1)− f(y)) log b
1+b

=

∫ 1

y

h(f ′(x))dx+ (1− y) log b
1+b − (f(1)− f(y)) log b.

The additive normalization constant K0(a, b) can now be determined from the condition
that inff I(f) = 0. To do so, we repeat the previous calculation again. Denoting by
F = f(y) and G = f(1), we switch the order of the infima, and use the extremal property
of linear functions again:

K0(a, b) = min
y∈[0,1]

inf
f

{∫ y

0

h(f ′(x))dx+

∫ 1

y

h(f ′(x))dx

+ f(y) log a+ y log 1
1+a + (1− y) log b

1+b − (f(1)− f(y)) log b.
}

= min
y∈[0,1]

inf
F∈[0,y],G∈[F,F+1−y]

{
yh(F/y) + (1− y)h(G−F

1−y ) + F log a

+ y log 1
1+a + (1− y) log b

1+b − (G− F ) log b
}
.

The infimum is attained at F = y
1+a , G = F + b

1+b (1− y). Therefore,

K0(a, b) = min
y∈[0,1]

{
y log

a

(1 + a)2
log
(a
b

)
− 2y log(1 + a) + 2(y − 1) log(1 + b) + log(b)

}
= min

y∈[0,1]

{
y log

(
a

(1 + a)2

)
− (1− y) log

(
b

(1 + b)2

)}
and (4.2) follows. This establishes (3.7) for ab ≥ 1.

For the fan region of TASEP, the LDP in [16, (1.7), (3.3), (3.6)] gives the rate function
which we recalculated as follows.
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Two-line representation of stationary measure for open TASEP

Proposition 4.2. If ab < 1 then for f ∈ AC0 with 0 ≤ f ′ ≤ 1 the rate function (3.14) is

I(f) =
∫ 1

0

h(f ′(x))dx+

∫ 1

0

(f̃ ′(x) logG∗(x) + (1− f̃ ′) log(1−G∗(x)))dx−K(a, b), (4.3)

where G∗(x) =
(
f̃ ′(x) ∨ a

1+a

)
∧ 1

1+b , and f̃ is the convex envelope of f , i.e., the largest

convex function below f . The normalizing constant is

K(a, b) = sup
b

1+b≤ρ≤ 1
1+a

log ρ(1− ρ) =


log a

(1+a)2 a > 1,

−2 log 2 a, b ≤ 1,

log b
(1+b)2 b > 1.

(4.4)

We verify that this result follows from Theorem 3.4. As previously, to avoid circular
reasoning we use (3.14) with K0(a, b) given by (3.13), without identification K0(a, b) =
log ρ̄(1− ρ̄). The identification will follow for ab < 1 once we establish (4.4) in the proof
of Proposition 4.6 below.

The proof is more substantial and requires additional lemmas, so we put it as a
separate section.

4.1 Proof of Proposition 4.2

In the proof, f ∈ AC0 with 0 ≤ f ′ ≤ 1 is fixed and f̃ is its convex envelope. Since f̃ is
convex, f̃ ′ is nondecreasing, and for definiteness, we take f̃ ′ right-continuous. We write
(3.14) as I(f) =

∫ 1

0
h(f ′(x))dx−K(a, b) + infg J

∗(f, g), where

J∗(f, g) =

∫ 1

0

h(g′(x))dx+ log(ab) min
0≤x≤1

(f(x)− g(x))− log(b)(f(1)− g(1)). (4.5)

Similarly, we write (4.3) as I(f) =
∫ 1

0
h(f ′(x))dx−K(a, b) + J∗(f̃ , G∗), where

J∗(f,G) =

∫ 1

0

[f ′(x) logG(x) + (1− f ′(x)) log(1−G(x))] dx. (4.6)

(One can verify that J∗(f̃ , G∗) = J∗(f,G∗), see the proof of [16, (A.5)], and it is the latter
expression that appears in the rate function [16, (3.3)].) We want to prove that

J∗(f̃ , G∗) = inf
g∈AC0

J∗(f, g). (4.7)

We first verify that

Lemma 4.3.
inf

g∈AC0

J∗(f, g) = inf
g∈AC0

J∗(f̃ , g). (4.8)

Proof. For any g the inequality J∗(f, g) ≤ J∗(f̃ , g) is trivial because f ≥ f̃ , somin(f−g) ≥
min(f̃ − g), log(ab) < 0, and f(1) = f̃(1).

For the converse inequality, consider the set U = {f > f̃}. This set is open and
therefore is a disjoint union of open intervals, say U =

⋃
Jk. On each of these intervals,

f̃ is linear. Define a function G as follows: G(x) = g′(x) for x 6∈ U and

G(x) =
g(wk)− g(uk)

wk − uk
for x ∈ Jk = (uk, wk).

Then
∫
Jk
G = g(wk)− g(uk). Define g̃(x) =

∫ x

0
G. We have

g̃(x) =

∫
[0,x]\U

g′(x) +
∑
k

I{wk<x}(g(wk)− g(uk)) + I{x∈Jk}(x− uk)
g(wk)− g(uk)

wk − uk
,
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thus g̃ is linear on each Jk and g̃ = g on [0, 1] \ U . Then f̃ − g̃ is also linear on Jk, and

min
Jk

(f̃ − g̃) = min(f̃(uk)− g̃(uk), f̃(wk)− g̃(wk))

= min(f(uk)− g(uk), f(wk)− g(wk)) ≥ min
[0,1]

(f − g).

Thus, min[0,1](f̃ − g̃) ≥ min[0,1](f − g). From convexity of h, we have∫
Jk

h(g′) ≥ |Jk|h
( 1

|Jk|

∫
Jk

g′
)
= |Jk|h

(g(wk)− g(uk)

wk − uk

)
=

∫
Jk

h(g̃′).

Thus ∫ 1

0

h(g′) ≥
∫ 1

0

h(g̃′).

Therefore, we obtain J∗(f, g) ≥ J∗(f̃ , g̃), completing the proof of (4.8).

Clearly, a
1+a <

1
1+b . For clarity, we write G∗ in expanded form

G∗(x) =



a
1+a f̃ ′(x) < a

1+a ,

f̃ ′(x) a
1+a ≤ f̃ ′(x) < 1

1+b ,

1
1+b f̃ ′(x) ≥ 1

1+b ,

(4.9)

and we note that G∗ is nondecreasing and right-continuous.
We can now relate the functionals J∗ and J∗.

Lemma 4.4. Let g∗(x) =
∫ x

0
G∗. Then

J∗(f̃ , g∗) = J∗(f̃ , G∗). (4.10)

Proof. With the convention inf ∅ = 1 and sup ∅ = 0, let

x1 = inf

{
x ≥ 0 : f̃ ′(x) ≥ a

1 + a

}
, x2 = sup

{
x ≤ 1 : f̃ ′(x) <

1

1 + b

}
(4.11)

be the largest interval [x1, x2) on which G∗ = f̃ ′. Under this convention, we have
x1 = x2 = 1 when f̃ ′ < a/(1 + a) on [0, 1] and x1 = x2 = 0 when f̃ ′ ≥ 1/(1 + b) on [0,1]. It
is also possible that G∗ jumps from its lowest to its largest value at some x∗ in which
case we have x1 = x2 = x∗.

From (4.11) we see that f̃ ′ < G∗ = g′∗ on [0, x1), f̃ ′ = G∗ = g′∗ on [x1, x2), and
f̃ ′ > G∗ = g′∗ on (x2, 1]. Then f̃ − g∗ decreases on [0, x1), is constant on [x1, x2], and
increases on (x2, 1]. Thus the minimal value of f̃ − g∗ is attained on the entire interval
[x1, x2].

Identity (4.10) now follows by direct calculation. We have

J∗(f̃ , G∗) =

∫ x1

0

(
f̃ ′ log

a

1 + a
+ (1− f̃ ′) log

1

1 + a

)
+

∫ x2

x1

h(f̃ ′)

+

∫ 1

x2

(
f̃ ′ log

1

1 + b
+ (1− f̃ ′) log

b

1 + b

)
= x1 log

1

1 + a
+ f̃(x1) log a+

∫ x2

x1

h(f̃ ′) + (1− x2) log
b

1 + b
− (f̃(1)− f̃(x2)) log b.

(4.12)
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On the other hand, since the minimum of f̃ − g∗ is attained at all points of [x1, x2], we get

log(ab)min
[0,1]

(f̃ − g∗)− (f̃(1)− g∗(1)) log b

= (f̃(x1)− g∗(x1)) log a− (f̃(1)− f̃(x2)) log b+ (g∗(1)− g∗(x2)) log b. (4.13)

Since g∗(x1) = x1
a

1+a and g∗(1)− g∗(x2) = (1− x2)
1

1+b ,∫ 1

0

h(g′∗) =

∫ x1

0

h

(
a

1 + a

)
+

∫ x2

x1

h(f̃ ′) +

∫ 1

x2

h

(
1

1 + b

)
= x1 log

1

1 + a
+ x1

a

1 + a
log a+

∫ x2

x1

h(f̃ ′)− (1− x2)
1

1 + b
log b+ (1− x2) log

b

1 + b

= x1 log
1

1 + a
+ g∗(x1) log a+

∫ x2

x1

h(f̃ ′)− (g∗(1)− g∗(x2)) log b+ (1− x2) log
b

1 + b
.

(4.14)

Combining (4.13) and (4.14), we get

J∗(f̃ , g∗) = x1 log
1

1 + a
+ f̃(x1) log a+

∫ x2

x1

h(f̃ ′) + (1− x2) log
b

1 + b
− (f̃(1)− f̃(x2)) log b

which ends the proof by (4.12).

With (4.8) and (4.10) at hand, to complete the proof of (4.7), we need to show that
for any g ∈ AC0 the following inequality holds:

J∗(f̃ , g) ≥ J∗(f̃ , g∗), (4.15)

hence, by (4.8), the infimum infg J
∗(f, g) = infg J

∗(f̃ , g) is attained at g∗.
To prove (4.15), we fix g ∈ AC0 and consider the function

F(τ) = J∗(f̃ , τg + (1− τ)g∗), τ ∈ [0, 1].

Note that this function is convex because the functional J∗(f̃ , · ) is convex. We claim
that the right-derivative ∂+F(0) ≥ 0. When this is proved, the convexity implies that F is
increasing on [0, 1], and therefore

J∗(f̃ , g) = F(1) ≥ F(0) = J∗(f̃ , g∗).

We need the following technical lemma.

Lemma 4.5. Let φ and ψ be continuous functions on [0, 1]. Let A = {x ∈ [0, 1] : φ(x) =

min
[0,1]

φ}. Then

min
[0,1]

(φ− τψ) = min
[0,1]

φ− τ ·max
A

ψ + o(τ) as τ → 0+.

Proof. First, the set A is closed and therefore ψ reaches the maximum on it, say, at z.
Then for τ ≥ 0 we have

min
[0,1]

(φ− τψ) ≤ φ(z)− τψ(z) = min
[0,1]

φ− τ ·max
A

ψ.

To prove the converse estimate, let us fix any ε1 > 0 and using the continuity of ψ find
δ > 0 such that maxAδ

ψ ≤ maxA ψ+ ε1, where Aδ = {y ∈ [0, 1] : dist(y,A) < δ}. Then use
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continuity of φ to find ε2 > 0 such that min[0,1]\Aδ
φ > minA φ+ ε2. For a small positive τ

we have

min
[0,1]\Aδ

(φ− τψ) ≥ min
A
φ+ ε2 − τ max

[0,1]
ψ ≥ min

[0,1]
φ− τ max

A
ψ;

min
Aδ

(φ− τψ) ≥ min
A
φ− τ max

Aδ

ψ ≥ min
[0,1]

φ− τ max
A

ψ − τε1.

Combining these inequalities, we obtain

lim inf
τ→0+

min[0,1](φ− τψ)−min[0,1] φ

τ
≥ −max

A
ψ − ε1.

Tending ε1 to zero, we finish the proof.

Proof of Proposition 4.2. We apply Lemma 4.5 with φ = f̃ − g∗ and ψ = g − g∗ to obtain

min
[0,1]

(f̃−(τg+(1−τ)g∗)) = min
[0,1]

(f̃−g∗−τ(g−g∗)) = min
[0,1]

(f̃−g∗)−τ max
A

(g−g∗)+o(τ), τ → 0+,

where A = {x ∈ [0, 1] : f̃(x) − g∗(x) = min
[0,1]

(f̃ − g∗)} = [x1, x2]. We use this formula to

calculate the right derivative of F at 0:

∂+F(0) =

∫ 1

0
(g′ − g′∗) log

( g′∗
1− g′∗

)
− log(ab) max

[x1,x2]
(g − g∗) + (g(1)− g∗(1)) log b

=

∫ 1

0
(g′ − g′∗) log

( bg′∗
1− g′∗

)
− log(ab) max

[x1,x2]
(g − g∗)

=

∫ x1

0
(g′ − g′∗) log

( b a
a+1

1− a
a+1

)
+

∫ x2

x1

(g′ − g′∗) log
( bg′∗
1− g′∗

)
+

∫ 1

x2

(g′ − g′∗) log
( b 1

b+1

1− 1
b+1

)
− log(ab) max

[x1,x2]
(g − g∗)

= log(ab)

∫ x1

0
(g′ − g′∗) +

∫ x2

x1

(g′ − g′∗) log
( bg′∗
1− g′∗

)
− log(ab) max

[x1,x2]
(g − g∗)

=

∫ x2

x1

(g′ − g′∗) log
( bg′∗
1− g′∗

)
− log(ab)

(
max

[x1,x2]
(g − g∗)−

(
g(x1)− g∗(x1)

))
. (4.16)

If x1 = x2, this gives ∂+F(0) = 0. If x1 < x2, we proceed as follows.

Consider the function Φ = log
(

bg′
∗

1−g′
∗

)
on [x1, x2]. It is a nondecreasing right-

continuous function with values Φ(x1) ≥ log(ab) and Φ(x2) ≤ 0. Write Φ(x) − Φ(x1) =

µ([x1, x]), where µ is a non-negative measure of total mass µ([x1, x2]) ∈ [0,− log(ab)] on
Borel subsets of [x1, x2].

Write ψ = g′ − g′∗ and Ψ(x) =
∫ x

x1
ψ = g(x)− g∗(x)− (g(x1)− g∗(x1)).

Since Φ(x)− Φ(x1) = µ([x1, x]) for x ∈ [x1, x2] and Ψ(x1) = 0, Fubini’ theorem gives

L :=

∫ x2

x1

ψΦ =

∫ x2

x1

ψ(x)

(
Φ(x1) +

∫
[x1,x2]

1t≤xdµ(t)

)
dx

= Ψ(x2)Φ(x1) +

∫
[x1,x2]

∫ x2

t

ψ(x)dxdµ(t)

= Ψ(x2)Φ(x1) +

∫
[x1,x2]

(Ψ(x2)−Ψ(t))dµ(t) = Ψ(x2)Φ(x2)−
∫
[x1,x2]

Ψ(t)dµ(t).

Since Φ(x2) ≤ 0, we get Ψ(x2)Φ(x2) ≥ Φ(x2)max[x1,x2] Ψ, therefore

L = Ψ(x2)Φ(x2)−
∫
[x1,x2]

Ψ(z) dµ(z) ≥ (Φ(x2)− µ([x1, x2])) max
[x1,x2]

Ψ.
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Thus ∫ x2

x1

ψΦ ≥ Φ(x1) max
[x1,x2]

Ψ.

Returning back to (4.16), we see that sincemax[x1,x2] Ψ ≥ Ψ(x1) = 0, and Φ(x1) ≥ log(ab),
we have

∂+F(0) =

∫ x2

x1

ψΦ− log(ab) max
[x1,x2]

Ψ ≥ (Φ(x1)− log(ab)) max
[x1,x2]

Ψ ≥ 0.

This proves (4.15). To prove (4.7), we combine (4.8), (4.10), and (4.15). This concludes
the proof of Proposition 4.2.

4.2 Large deviations for the mean particle density

The mean particle density is

1

N

N∑
j=1

τj =
1
NHN (N) = 1

N H̃N (1).

The following proposition, recalculated from [16, formula (3.12)], gives explicit formula
for the rate function of the mean particle density in the fan region of TASEP. An equivalent
result with a different proof appeared in [8, Theorem 7].

Proposition 4.6. If ab ≤ 1, then the mean particle density 1
NHN (N) satisfies the large

deviation principle with the rate function

I(r) = −K(a, b) +


h(r| 1

1+a ) + log a
(1+a)2 0 ≤ r < a

1+a ,

2h(r| 12 ) + log 1
4

a
1+a ≤ r ≤ 1

1+b ,

h(r| b
1+b ) + log b

(1+b)2
1

1+b < r ≤ 1,

(4.17)

with K(a, b) given by (4.4) and entropy h( · | · ) given by (3.10).

Although the result is known, we re-derive formula (4.17) from (3.9) for the special
case of TASEP, as the argument establishes (4.4), and hence we will conclude the
derivation of formula (3.7) for ab ≤ 1.

Proof of Proposition 4.6. We use (3.9) and contraction principle. To avoid circular rea-
soning, we use (3.9) with K0(a, b) given by (3.13). (In fact, we leave K0(a, b) as a free
parameter to be determined at the end of the proof.)

Through the proof, we fix r ∈ [0, 1]. We write I(r) as the infimum over m ∈ [0, 1] and
over all functions f1, f2 ∈ AC0 such that f1(1) = r, f2(1) = m. The first step is to show
that optimal f1, f2 are linear. To do so we note that since ab ≤ 1, we have

log(ab) min
y∈[0,1]

{f1(y)− f2(y)} ≥ log(ab)min{0, (r −m)}

with equality on linear functions. Therefore, the expression log(ab)miny{f1(y)− f2(y)}
can only decrease if we replace f1, f2 with a pair of linear functions f(x) = rx and
g(x) = mx. In view of convexity of h, this replacement also decreases the integral in
(3.9). This shows that the optimal functions f1, f2 are indeed linear, f(x) = rx and
g(x) = mx. We get

I(r) = −K0(a, b) + h(r) + min
m∈[0,1]

{
h(m) + max

y∈[0,1]
{y log(ab)(r −m)− log b(r −m)}

}
.

The maximum over y ∈ [0, 1] is attained at the end points of [0, 1] and since log(ab) ≤ 0, it
is either (r −m) log a or (m− r) log b depending on whether m ≥ r or m < r. (Recall that
r ∈ [0, 1] is fixed.)
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In the first case, the infimum over m ≥ r is attained at

m =

{
a

1+a if r < a
1+a ,

r if r ≥ a
1+a ,

and gives

I1(r) = −K0(a, b) +

{
h(r) + r log a− log(1 + a) r < a

1+a ,

2h(r) r ≥ a
1+a ,

with K0(a, b) given by (3.13). Note that

h(r) + r log a− log(1 + a) = h(r| 1
1+a ) + log a

(1+a)2 .

In the second case, the minimum over m ≤ r is attained at

m =

{
1

1+b if r > 1
1+b ,

r if r ≤ 1
1+b ,

and gives

I2(r) = −K0(a, b) +

{
h(r)− r log(b) + log b

b+1 r > 1
1+b ,

2h(r) r ≤ 1
1+b .

Note that
h(r)− r log(b) + log b

b+1 = h(r| b
1+b ) + log b

(1+b)2 .

Also, note that h(r) = h(r| 12 )− log 2. Since we are interested in overall minimum over all
m ∈ [0, 1], up to the additive normalizing constant K0(a, b), the resulting rate function is

I(r) = min{I1(r), I2(r)} = −K0(a, b) +


h(r| 1

1+a ) + log a
(1+a)2 0 ≤ r < a

1+a ,

h(r| b
1+b ) + log b

(1+b)2
1

1+b < r ≤ 1,

2h(r|2)− log 4 ortherwise,

in agreement with (4.17).
The additive normalization constant K0(a, b) can now be determined from the condi-

tion that infr∈[0,1] I(r) = 0. This gives (4.4) as follows:

K0(a, b) = inf
r∈[0,1]


h(r| 1

1+a ) + log a
(1+a)2 0 ≤ r < a

1+a ,

h(r| b
1+b ) + log b

(1+b)2
1

1+b < r ≤ 1,

2h(r| 12 )− log 4 a
1+a ≤ r ≤ 1

1+b .

Thus K0(a, b) = log(ρ̄(1 − ρ̄)), matching (4.4). We note that this establishes (3.7) for
ab ≤ 1.

The LDP for the mean particle density in the shock region follows from Proposition
4.1 by the contraction principle. The following proposition, recalculated from [16, (B.8)],
gives an explicit formula for the rate function.

Proposition 4.7. If ab > 1, then the mean particle density 1
NHN (N) satisfies the large

deviation principle with the rate function

I(r) =


h(r| 1

1+a ) + log a
(1+a)2 −K(a, b) 0 ≤ r ≤ 1

1+b ,

r log a
b + log b

(1+a)(1+b) −K(a, b) 1
1+b ≤ r ≤ a

1+a ,

h(r| b
1+b ) + log b

(1+b)2 −K(a, b) a
1+a ≤ r ≤ 1,

(4.18)

with I = ∞ for r 6∈ [0, 1].
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Proof. The proof of this formula appears in [16, Section 3.6 and Appendix B, Case 2] and
is omitted.

We remark that on the coexistence line a = b > 1, the rate function is zero on the
entire interval [1/(1 + a), a/(1 + a)]. This is consistent with [26, Theorem 1.6] which
implies that mean particle density 1

NHN (N) converges in distribution to the uniform law
on this interval. (Shocks on the coexistence line for open ASEP were also described in
[15, 20, 25].)

A Integrability lemma

The Lévy-Ottaviani maximal inequality and tail integration give the following bound:

Lemma A.1. For c > 0, we have

Erw

[
c−min0≤j≤N (S1(j)−S2(j))

]
≤ 1 + 2Erw

[
c|S1(N)−S2(N)|

]
, (A.1)

where Erw is expectation with respect to the law of the two independent Bernoulli(1/2)
random walks.

Proof. Recall that for sums of independent symmetric random variables {S1(j)− S2(j)},
the Lévy-Ottaviani maximal inequality says that

Prw

(
max

1≤j≤N
|S1(j)− S2(j)| > t

)
≤ 2Prw (|S1(N)− S2(N)| > t) , t ≥ 0.

Since
0 ≤ − min

0≤j≤N
(S1(j)− S2(j)) ≤ max

1≤j≤N
|S1(j)− S2(j)|,

we see that if c ≤ 1 then the left hand side of (A.1) is bounded by 1. And if c > 1, then by
the above bound and tail integration, we have

Erw

[
c−min0≤j≤N (S1(j)−S2(j))

]
≤ Erw

[
cmax1≤j≤N |S1(j)−S2(j)|

]
= 1 + log(c)

∫ ∞

0

ctPrw

(
max

1≤j≤N
|S1(j)− S2(j)| > t

)
dt

≤ 1 + 2 log(c)

∫ ∞

0

ctPrw (|S1(N)− S2(N)| > t) dt

< 2

(
1 + log(c)

∫ ∞

0

ctPrw (|S1(N)− S2(N)| > t) dt

)
= 2Erw

[
c|S1(N)−S2(N)|

]
.

Remark A.2. Note that elementary inequalities e|x| ≤ ex + e−x and 1 + cosh(x) ≤ 2ex
2/2

together with independence give

Erw

[
eλ|S1(N)−S2(N)|

]
≤ Erw

[
eλ(S1(N)−S2(N))

]
+ Erw

[
eλ(S2(N)−S1(N))

]
= 2

(
1 + cosh(λ)

2

)N

≤ 2eλ
2N/2.

In particular, using this with λ = 2/
√
N we get a bound

sup
N
Erw

[
E2(W

(N)
− )

]
<∞
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that is used in the proof of Theorem 3.1, and using this bound with λ = −8 log(ab) and
λ = 8 log b, we get a bound

sup
N

1

N
logErw

[
e4N log g̃(XN )

]
= sup

N

1

N
logErw

[
e4 log g(S1,S2)

]
≤ sup

N

1

2N
logErw

[
(ab)−8min0≤j≤N{S1(j)−S2(j)}

]
+ sup

N

1

2N
logErw

[
b8(S1(N)−S2(N))

]
≤ sup

N

1

2N
log
(
1 + 2Erw

[
c|S1(N)−S2(N)|

])
+ sup

N

1

2N
logErw

[
b8(S1(N)−S2(N))

]
<∞,

which is used in the proof of Theorem 3.3.

References

[1] Guillaume Barraquand, Ivan Corwin, and Zongrui Yang, Stationary measures for integrable
polymers on a strip, Invent. Math. 237 (2024), no. 3, 1567–1641, https://arxiv.org/pdf/2306.
05983. MR4777093

[2] Guillaume Barraquand and Pierre Le Doussal, Steady state of the KPZ equation on an interval
and Liouville quantum mechanics, Europhysics Letters 137 (2022), no. 6, 61003, ArXiv
preprint with Supplementary material: https://arxiv.org/abs/2105.15178.

[3] Guillaume Barraquand and Pierre Le Doussal, Stationary measures of the KPZ equation on
an interval from Enaud-Derrida’s matrix product ansatz representation, J. Phys. A 56 (2023),
no. 14, Paper No. 144003, 14 pp. MR4562516

[4] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Stochastic interacting
particle systems out of equilibrium, J. Stat. Mech. Theory Exp. (2007), no. 7, P07014, 35 pp.
MR2335695

[5] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Proba-
bility and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999, A
Wiley-Interscience Publication. MR1700749

[6] Richard Brak, Sylvie Corteel, John Essam, Robert Parviainen, and Andrew Rechnitzer, A
combinatorial derivation of the PASEP stationary state, Electron. J. Combin. 13 (2006), no. 1,
Research Paper 108, 23 pp. MR2274323

[7] Włodek Bryc, Yizao Wang, and Jacek Wesołowski, From the asymmetric simple exclusion
processes to the stationary measures of the KPZ fixed point on an interval, Ann. Inst.
Henri Poincaré Probab. Stat. 59 (2023), no. 4, 2257–2284, https://arxiv.org/abs/2202.11869.
MR4663522

[8] Włodek Bryc and Jacek Wesołowski, Asymmetric simple exclusion process with open
boundaries and quadratic harnesses, J. Stat. Phys. 167 (2017), no. 2, 383–415, http:
//arxiv.org/abs/1511.01163. MR3626634

[9] Włodzimierz Bryc and Yizao Wang, Fluctuations of random Motzkin paths II, ALEA Lat. Am. J.
Probab. Math. Stat. 21 (2024), no. 1, 73–94, http://arxiv.org/abs/2304.12975. MR4703770

[10] Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, second ed., Ap-
plications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. MR1619036

[11] B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmet-
ric exclusion model with open boundaries, J. Statist. Phys. 69 (1992), no. 3-4, 667–687.
MR1193854

[12] B. Derrida, C. Enaud, and J. L. Lebowitz, The asymmetric exclusion process and Brownian
excursions, J. Statist. Phys. 115 (2004), no. 1-2, 365–382. MR2070099

[13] B. Derrida and M. R. Evans, Exact correlation functions in an asymmetric exclusion model
with open boundaries, J. Physique I 3 (1993), no. 2, 311–322. MR1215845

[14] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1d asymmetric exclusion
model using a matrix formulation, J. Phys. A 26 (1993), no. 7, 1493–1517. MR1219679

EJP 29 (2024), paper 199.
Page 23/24

https://www.imstat.org/ejp

https://arxiv.org/pdf/2306.05983
https://arxiv.org/pdf/2306.05983
https://mathscinet.ams.org/mathscinet-getitem?mr=4777093
https://arxiv.org/abs/2105.15178
https://mathscinet.ams.org/mathscinet-getitem?mr=4562516
https://mathscinet.ams.org/mathscinet-getitem?mr=2335695
https://mathscinet.ams.org/mathscinet-getitem?mr=1700749
https://mathscinet.ams.org/mathscinet-getitem?mr=2274323
https://arxiv.org/abs/2202.11869
https://mathscinet.ams.org/mathscinet-getitem?mr=4663522
http://arxiv.org/abs/1511.01163
http://arxiv.org/abs/1511.01163
https://mathscinet.ams.org/mathscinet-getitem?mr=3626634
http://arxiv.org/abs/2304.12975
https://mathscinet.ams.org/mathscinet-getitem?mr=4703770
https://mathscinet.ams.org/mathscinet-getitem?mr=1619036
https://mathscinet.ams.org/mathscinet-getitem?mr=1193854
https://mathscinet.ams.org/mathscinet-getitem?mr=2070099
https://mathscinet.ams.org/mathscinet-getitem?mr=1215845
https://mathscinet.ams.org/mathscinet-getitem?mr=1219679
https://doi.org/10.1214/24-EJP1253
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Two-line representation of stationary measure for open TASEP

[15] B. Derrida, J. L. Lebowitz, and E. R. Speer, Shock profiles for the asymmetric simple exclusion
process in one dimension, J. Statist. Phys. 89 (1997), no. 1-2, 135–167, Dedicated to Bernard
Jancovici. MR1492490

[16] B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large deviation functional of a stationary
open driven diffusive system: the asymmetric exclusion process, J. Statist. Phys. 110 (2003),
no. 3-6, 775–810, Special issue in honor of Michael E. Fisher’s 70th birthday (Piscataway, NJ,
2001). MR1964689

[17] B Derrida, JL Lebowitz, and ER Speer, Exact free energy functional for a driven diffusive
open stationary nonequilibrium system, Physical Review Letters 89 (2002), no. 3, 030601.

[18] Bernard Derrida, Matrix ansatz and large deviations of the density in exclusion processes,
International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 367–382.
MR2275686

[19] Bernard Derrida, Non-equilibrium steady states: fluctuations and large deviations of the
density and of the current, J. Stat. Mech. Theory Exp. 2007 (2007), no. 7, P07023, 45 pp.
MR2335699

[20] Bernard Derrida, Martin R. Evans, Vincent Hakim, and Vincent Pasquier, Exact solution of
a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26 (1993), no. 7,
1493–1517. MR1219679

[21] Enrica Duchi and Gilles Schaeffer, A combinatorial approach to jumping particles, J. Combin.
Theory Ser. A 110 (2005), no. 1, 1–29. MR2128962

[22] Paul Dupuis and Richard S. Ellis, A weak convergence approach to the theory of large
deviations, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley &
Sons, Inc., New York, 1997, A Wiley-Interscience Publication. MR1431744

[23] Thomas M. Liggett, Ergodic theorems for the asymmetric simple exclusion process, Trans.
Amer. Math. Soc. 213 (1975), 237–261. MR410986

[24] Evita Nestoridi and Dominik Schmid, Approximating the stationary distribution of the
ASEP with open boundaries, Comm. Math. Phys. 405 (2024), no. 8, Paper No. 176, 64 pp.
MR4777077

[25] Gunter Schütz and Eytan Domany, Phase transitions in an exactly soluble one-dimensional
exclusion process, Journal of Statistical Physics 72 (1993), no. 1-2, 277–296.

[26] Yizao Wang, Jacek Wesołowski, and Zongrui Yang, Askey-Wilson signed measures and
open ASEP in the shock region, Int. Math. Res. Not. IMRN (2024), no. 15, 11104–11134.
MR4782793

[27] Yizao Wang and Zongrui Yang, From asymmetric simple exclusion processes with open
boundaries to stationary measures of open KPZ fixed point: the shock region, 2024, https:
//arxiv.org/abs/2406.09252.

Acknowledgments. This research benefited from discussions with Guillaume Bar-
raquand, Ivan Corwin, and Yizao Wang.

EJP 29 (2024), paper 199.
Page 24/24

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1492490
https://mathscinet.ams.org/mathscinet-getitem?mr=1964689
https://mathscinet.ams.org/mathscinet-getitem?mr=2275686
https://mathscinet.ams.org/mathscinet-getitem?mr=2335699
https://mathscinet.ams.org/mathscinet-getitem?mr=1219679
https://mathscinet.ams.org/mathscinet-getitem?mr=2128962
https://mathscinet.ams.org/mathscinet-getitem?mr=1431744
https://mathscinet.ams.org/mathscinet-getitem?mr=410986
https://mathscinet.ams.org/mathscinet-getitem?mr=4777077
https://mathscinet.ams.org/mathscinet-getitem?mr=4782793
https://arxiv.org/abs/2406.09252
https://arxiv.org/abs/2406.09252
https://doi.org/10.1214/24-EJP1253
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Proof of Theorem 1.1
	The key identity and the proof of Theorem 1.1

	Applications
	Stationary measure of the conjectural KPZ fixed point on a segment
	Large deviations

	Comparison with previous large deviation results
	Proof of Proposition 4.2
	Large deviations for the mean particle density

	Integrability lemma
	References

