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Abstract

The central limit theorem (CLT) is one of the most fundamental results in probability;
and establishing its rate of convergence has been a key question since the 1940s. For
independent random variables, a series of recent works established optimal error
bounds under the Wasserstein-p distance (with p ≥ 1). In this paper, we extend
those results to locally dependent random variables, which include m-dependent
random fields and U-statistics. Under conditions on the moments and the dependency
neighborhoods, we derive optimal rates in the CLT for the Wasserstein-p distance. Our
proofs rely on approximating the empirical average of dependent observations by the
empirical average of i.i.d. random variables. To do so, we expand the Stein equation
to arbitrary orders by adapting the Stein’s dependency neighborhood method. Finally
we illustrate the applicability of our results by obtaining efficient tail bounds.
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1 Introduction

The central limit theorem (CLT) is one of the most fundamental theorems in probability
theory. Initially formulated for independent and identically distributed random variables,
it has since then been generalized to triangular arrays [18], martingales [28], U-statistics
[23], locally dependent random variables [24, 21, 34], and mixing random fields [37, 9].
Let (In) be an increasing sequence of subsets I1 ⊆ I2 ⊆ · · · ⊆ I, whose sizes increase
to infinity |In| → ∞. Set (Xi)i∈I to be (dependent) centered random variables. Under
certain conditions on the moments of (Xi) and on its dependence structure, the CLT
states that the scaled sum is asymptotically normal, i.e.,

Wn := σ−1
n

∑
i∈In

Xi
d−→ N (0, 1),
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Wasserstein-p bounds in CLT under local dependence

where we write σ2
n = Var

(∑
i∈In Xi

)
. Starting with the work of Berry and Esseen in 1940s,

there is a long history of quantifying how far Wn is from being normally distributed.
One of the most important metrics to do so is the Wasserstein-p distance originated in
optimal transport theory [44]. For two probability measures ν and µ over the real line R,
we denote by Γ(ν, µ) the set of all couplings of ν and µ, and the Wasserstein-p distance
between ν and µ is defined as

Wp(ν, µ) := inf
γ∈Γ(ν,µ)

(
E(X,Y )∼γ [|X − Y |p]

)1/p

.

When the observations (Xi) are independent, [1, 15] established that for p = 1 the
convergence rate for the CLT is O

(
|In|−

1
2

)
. Extending such results to p > 1 remained for

a while an open question. The first bounds for p > 1 obtained by [6] dating back to the
1970s were sub-optimal in terms of the sample size |In| as they decrease at a slower rate

of O
(
|In|−

1
2 + 1

p
)
. [36] obtained that, for 1 ≤ p ≤ 2, the Wasserstein distance converges

at the optimal rate O
(
|In|−

1
2

)
under some additional necessary moment conditions, and

they conjectured that such a rate would be extendable to arbitrary p ≥ 1. This was
recently proven to be true by [8, 10] using a series of methods including the Edgeworth
expansion and the exchangeable pair method. They showed that if maxi ‖Xi‖p+2 < ∞
and if Var(X1) = Var(Xi) = 1, then there is a constant Kp <∞ such that

Wp

(
L(Wn),N (0, 1)

)
≤
Kp‖X1‖1+2/p

p+2√
|In|

,

where L( · ) designates the distribution of the given random variable. It is however crucial
to note that these rates were obtained under the key assumption of independence of the
(Xi). In this paper, we aim to generalize this beyond the assumption of independence
which is restrictive for many applications.

An important class of dependent observations (Xi) are locally dependent random
variables. Intuitively, we say that (Xi) are locally dependent if for every finite group
of random variables (Xi)i∈J , where J ⊂ I, there exists a subset N(J) ⊂ I such that
(Xi)i∈J is independent from (Xi)i∈I\N(J). The subset N(J) is often called the dependency
neighborhood of J . Examples of such random variables include m-dependent random
fields, U-statistics, and subgraph count statistics in the Erdős–Rényi random graphs.
Under general conditions on the sizes of the dependency neighborhoods the central
limit theorem is known to hold and its rate of convergence in Wasserstein-1 distance
was established by [3, 5]. This was extended to Wasserstein-2 bounds by [16] by relating
it to Zolotarev’s metrics and cleverly exploiting Stein’s method. Drawing inspiration
from [10], sub-optimal rates were also achieved in [17] for arbitrary p ≥ 1 under more
technical conditions. Nevertheless, an optimal rate bound for general Wasserstein-p
distances (p ≥ 1) remains unknown. This is the gap that we fill in this paper. We
consider locally dependent (not necessarily identically distributed) random variables
(Xi), and consider the empirical average Wn := σ−1

n

∑
i∈In Xi where σ2

n :=
∑
i∈In Xi. For

all p ≥ 1 we obtain bounds for theWp distanceWp(L(Wn),N (0, 1)). We do so under the
assumption that the variances (σn) are nondegenerate, and under moment conditions
and on the sizes of dependency neighborhoods. Notably if the size of the dependency
neighborhoods is uniformly bounded we obtain bounds that decrease at the optimal rate
(see Theorem 3.4)

Wp(L(Wn),N (0, 1)) = O
( 1√
|In|

)
.

We further generalize our results to triangular arrays where the random variables
(
X (n)

i

)
are allowed to change with n. Finally, we demonstrate how those bounds can be exploited
to obtain non-uniform Berry–Esseen type bounds that have polynomial decay.
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Wasserstein-p bounds in CLT under local dependence

The key idea of our proofs is to approximate the empirical average Wn by an empirical
average Vn of i.i.d. random variables for which Wasserstein’s bounds are already known.
To do this we establish an Edgeworth-type expansion of the Stein equation in terms of
the cumulants of the Wn. Indeed, in Lemma 8.7 we prove that if h is a function smooth
enough (made precise later) and Z ∼ N is a standard random variable then

E[h(Wn)]− E[h(Z)] = E[f ′h(Wn)−Wnfh(Wn)]

=
∑

(r,s1:r)∈Γ(dpe−1)

(−1)r
r∏
j=1

κsj+2(Wn)

(sj + 1)!
N
[ r∏
j=1

(∂sj+1Θ) h
]

+ Remainders,
(1.1)

where fh is the solution of the Stein equation eq. (8.2) and where (κj(Wn)) designates
the cumulants of Wn (the other notations will be made explicit in the next few sections).
This generalizes a similar well-known result for i.i.d. observations established in [4]. To
guarantee that our choice of Vn is a good approximation of Wn we utilize this expansion
and exploit the Hamburger moment problem to choose Vn to be such that its first dpe+ 1

cumulants match the ones of Wn.

1.1 Related literature

[1, 15] established that the convergence rate in the central limit theorem is O
(
|In|−

1
2

)
in terms of the Wasserstein-1 distance. Since then it has been tightened and generalized
to dependent observations. Notably, the Stein’s method offers a series of powerful
techniques for obtaining Wasserstein-1 bounds in the dependence setting. See [38] for a
survey of those methods. [3, 5] obtained Wasserstein-1 bounds under local dependence
conditions.

[6] proposed a rate of O
(
|In|−

1
2 + 1

p
)

for the Wasserstein-p distance under the hypothe-
sis that the random variables have finite exponential moments. [39] obtained a similar
rate but only required the existence of p-th moments. [35, 36] showed that in order
to obtain a convergence rate of O

(
|In|−

1
2

)
, it is necessary to require finite (p+2)-th

moments of the random variables. They also obtained the optimal rate for 1 ≤ p ≤ 2 and
conjectured that a similar rate should be valid for any arbitrary p > 2. This conjecture
was demonstrated to be true by [8, 10]. Those two papers took different approaches. [8]
used an Edgeworth expansion argument. [10], on the other hand, used the Ornstein-
Uhlenbeck interpolation combined with a Stein exchangeable pair argument and their
methods further applied to multivariate settings. Previous to that, [27] had already
obtained the optimal rate for the Wasserstein-p distance using the Ornstein-Uhlenbeck
interpolation but needed significantly stronger assumptions on the distribution of the
random variables by requiring the existence of a Stein kernel. Moreover, for the special
case p = 2, the celebrated HWI inequality [32] and Talagrand quadratic transport in-
equality [42] can help obtain Wasserstein-2 bounds by relating it to the Kullback-Leibler
divergence.

Contrary to the independent case, much less is known for the general Wasserstein-p
distance for dependent data. [16] adapted the Stein’s method to obtain Wasserstein-2
bounds for locally dependent variables. [17] modified the approach of [10] and obtained a
sub-optimal rateO

(
|In|−

1
2 log |In|

)
for the Wasserstein-p distance under local dependence.

Our results propose significant extensions to both of those results by generalizing the
optimal rate to arbitrary p ≥ 1.

Our proofs also rely on the Stein’s method and a result of [36] that allows to upper
the Wasserstein-p distance by an integral probability metric [45]. As those metrics
are defined as the supremum of expected differences over a certain class of functions,
the Stein’s method lends itself nicely to this problem. The Stein’s method was first
introduced in [41] as a new method to obtain a Berry–Esseen bound and prove the

EJP 28 (2023), paper 117.
Page 3/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1009
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wasserstein-p bounds in CLT under local dependence

central limit theorem for weakly dependent data. It has since then become one of the
most popular and powerful tools to prove asymptotic normality for dependent data, and
different adaptations of it have been proposed, notably the dependency neighborhoods,
the exchangeable pairs, the zero-bias coupling, and the size-bias coupling [38]. In
addition to being used to prove the central limit theorem, it has also been adapted to
obtain limit theorems with the Poisson distribution [12] or the exponential distribution
[11, 33]. Moreover, it has been used for comparing different univariate distributions
[29]. Our use of the Stein’s method is closely related to the dependency neighborhood
method described in [38].

1.2 Paper outline

In Section 2 we clarify some notations that we use throughout the paper. Then
we present our results under two different local dependence conditions in Section 3.
In Section 4 and Section 5 we respectively apply our results to m-dependent random
fields and to U-statistics. In Section 6 we apply our results to obtain non-uniform Berry–
Esseen bounds with polynomial decay. In Section 7, we make an overview of our proof
techniques. In Section 8 we present the main lemmas (notably Lemmas 8.7 and 8.8) and
use them to prove the main result Theorem 3.1. Those lemmas and additional results
are proved in Sections 9 to 11.

2 General notations

Notations concerning integers and sets In this paper, we will write dxe to denote
the smallest integer that is bigger or equal to x and bxc denotes the largest integer
smaller or equal to x. We use N to denote the set of non-negative integers and let N+

be the set of positive integers. For any n ∈ N+, denote [n] := {` ∈ N+ : 1 ≤ ` ≤ n}.
Moreover, for a finite set B we denote by |B| its cardinality.

Notations for sequences Given a sequence (xi) we will shorthand x1:` = (x1, . . . , x`)

and similarly for any subset B ⊆ N+ we denote xB := (xi)i∈B.

Notations for functions For any real valued functions f( · ), g( · ) : N+ → R, we write
f(n) . g(n) or f(n) = O(g(n)) if there exists some constant C (with dependencies that
are fixed in the contexts) and an integer N > 0 such that the inequality f(n) ≤ Cg(n)

holds for all n ≥ N . We further write f(n) � g(n) as shorthand for f(n) . g(n) and
g(n) . f(n).

Notations for probability distributions For a random variable X we write by L(X)

the distribution of X.

3 Main theorems

Let p ≥ 1 be a positive real number, we write ω := p + 1 − dpe ∈ [0, 1]. We choose I
to be an infinite index set and (In)∞n=1 to be an increasing sequence of finite subsets of
I1 ⊆ I2 ⊆ · · · ( I that satisfy |In|

n→∞−−−−→∞.

Let
(
X (n)

i

)
i∈In

be a triangular array of random variables, each row indexed by i ∈ In
(n = 1, 2, . . .), we define Wn to be the following empirical average

Wn := σ−1
n

∑
i∈In

X (n)

i , with σ2
n := Var

(∑
i∈In

X (n)

i

)
.
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Wasserstein-p bounds in CLT under local dependence

Under the hypothesis that the random variables
(
X (n)

i

)
are locally dependent we will, in

this section, bound the Wasserstein-p distance between Wn and its normal limit. The
bound we obtain depends on the size of the index set In, the moments of the random
variables and the structure of local dependence in question.

To formally state our conditions on the dependency structure of (X
(n)
i ), we first define

the notion of dependency neighborhoods similarly as in [38].
Given random variables (Yi)i∈I and given J ⊆ I, we say that N(J) ⊂ I is a depen-

dency neighborhood of J if {Yj : j /∈ N(J)} is independent of {Yj : j ∈ J}. To state
our theorem, we impose that such dependency neighborhoods can be defined for

(
X (n)

i

)
.

More formally, we assume that there is a sequence (Nn(i1:q))q of subsets of In that satisfy
the following conditions:

[LD-1]: For each i1 ∈ In, the subset Nn(i1) ⊆ In is such that
{
X (n)

j : j /∈ Nn(i1)
}

is

independent of X (n)

i1
.

[LD-q] (q ≥ 2): For each i1 ∈ In, i2 ∈ Nn(i1), . . . , iq ∈ Nn(i1:(q−1)), the subset Nn(i1:q) ⊂
In is such that

{
X (n)

j : j /∈ Nn(i1:q)
}

is independent of
(
X (n)

i1
, . . . , X (n)

iq

)
.

We remark that the sequence of subsets (Nn(i1:q))q is increasing, i.e., Nn(i1:(q−1)) ⊆
Nn(i1:q) in q; and that the neighborhoods Nn(i1:q) are allowed to be different for different
values of n–which reflects the triangular array structure of our problem. The condition
of dependency neighborhoods here generalizes the one in [38] and was also adopted
in [16], inspired by [5, 13]. [5] obtained a Wasserstein-1 bound under “decomposable”
conditions similar to [LD-1] and [LD-2], and [13] showed a Berry–Esseen type result
under slightly stronger assumptions for local dependence, while finally [16] obtained a
Wasserstein-2 bound.

In order to define the remainder terms that will appear in our bounds, we introduce
the following notions. Given t ∈ N+, and ` ∈ N+ such that t ≥ 2, we say that the tuple
(η1, η2, . . . , η`) is an integer composition of t if and only if η1:` are positive integers such
that η1 + η2 + · · ·+ η` = t. We denote by C(t) the set of all possible integer compositions

C(t) :=
{
`, η1:` ∈ N+ :

∑`
j=1 ηj = t

}
.

Moreover, for any random variables (Yi)
t
i=1, we define the order-t compositional

expectation with respect to η1:` as

[η1, . . . , η`] . (Y1, . . . , Yt) := E
[
Y1 · · ·Yη1

]
E
[
Yη1+1 · · ·Yη1+η2

]
· · · E

[
Yη1+···+η`−1+1 · · ·Yt

]
.

(3.1)
Note that if η` = 1, the last expectation reduces to E[Yt]. For any positive integer k and
real value ω ∈ (0, 1], we define

Rk,ω,n :=
∑

(`,η1:`)∈C∗(k+2)

∑
i1∈In

∑
i2∈Nn(i1)

· · ·
∑

ik+1∈Nn(i1:k)

[η1, . . . , η`] .

∣∣X (n)

i1

∣∣, . . . , ∣∣X (n)

ik+1

∣∣,
 ∑
ik+2∈Nn(i1:(k+1))

∣∣X (n)

ik+2

∣∣ω ,

(3.2)

where C∗(k + 2) is given by

C∗(t) :=
{

(`, η1:`) ∈ C(t) : ηj ≥ 2 for 1 ≤ j ≤ `− 1,
}
⊆ C(t).

The terms (Rk,ω,n) are remainder terms that appear in our bound of the Wasserstein-p
distance between Wn and its normal limit.
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Theorem 3.1. Let
(
X (n)

i

)
i∈In

be a triangular array of mean zero random variables and

suppose that they satisfy [LD-1] to [LD-(dpe+1)]. Let σ2
n := Var

(∑
i∈In X

(n)

i

)
and define

Wn := σ−1
n

∑
i∈In X

(n)

i . Further suppose for any j ∈ N+ such that j ≤ dpe−1, it holds that

Rj,1,n
n→∞−→ 0 as n→∞. Then there exists an integer N ∈ N+ such that for all n ≥ N , we

have the following Wasserstein bounds:

Wp(L(Wn),N (0, 1)) ≤ Cp

dpe−1∑
j=1

R
1/j
j,1,n +

dpe∑
j=1

R
1/(j+ω−1)
j,ω,n

 , (3.3)

where ω = p+ 1− dpe and Cp is a constant that only depends on p.

Remark 3.2. We note that the condition that the remainder terms Rj,1,n shrink to 0 for
all j ≤ dpe − 1 impose an implicit constraint on the size of the sets Nn(i1:q).

In particular, for p = 1, 2 we have

W1(L(Wn),N (0, 1)) ≤ C1R1,1,n, (3.4)

W2(L(Wn),N (0, 1)) ≤ C2

(
R1,1,n +R

1/2
2,1,n

)
. (3.5)

where the remainders are given by

R1,1,n =σ−3
n

∑
i∈In

∑
j∈Nn(i)

∑
k∈Nn(i,j)

(
E
[∣∣X (n)

i X (n)

j X (n)

k

∣∣]+ E
[∣∣X (n)

i X (n)

j

∣∣] E[∣∣X (n)

k

∣∣]),
R2,1,n =σ−4

n

∑
i∈In

∑
j∈Nn(i)

∑
k∈Nn(i,j)

∑
`∈Nn(i,j,k)

(
E
[∣∣X (n)

i X (n)

j X (n)

k X (n)

`

∣∣]
+ E

[∣∣X (n)

i X (n)

j X (n)

k

∣∣] E[∣∣X (n)

`

∣∣]+ E
[∣∣X (n)

i X (n)

j

∣∣] E[∣∣X (n)

k X (n)

`

∣∣]).
Note that (3.4) was proven by [5] and (3.5) is a corollary of Theorem 2.1, [16]. The

bound (3.3) with an integer p was also proposed as a conjecture in [16]. As p grows,
the right-hand side of (3.3) becomes more and more complicated, which suggests the
necessity of new assumptions in order to obtain a simplified result. We further remark
that the choice of Nn(i1:q) might not be unique (even if we require that it has the smallest
cardinality among all possible index sets that fulfill the assumption [LD-q]). Therefore, to
be able to obtain more interpretable upper-bounds for the remainder terms (Rj,ω,n), we
impose a slightly stronger assumption on the dependence structure:

[LD*]: We suppose that there exists a graph Gn = (Vn, En), with Vn := In being the
vertex set and En being the edge set, such that for any two disjoint subsets
J1, J2 ⊆ In if there is no edge between J1 and J2, then

{
X (n)

j : j ∈ J1

}
is independent

of
{
X (n)

j : j ∈ J2

}
.

Introduced by [34] the graph Gn defined above is known as the dependency graph
and was later adopted in [25, 3, 38]. Please refer to [19] for a detailed discussion.

If [LD*] is satisfied, for any subset J ⊆ In, we define Nn(J) to be the set of vertices
in the neighborhood of J ⊆ In in the graph G. To be precise, this is

Nn(J) := J ∪ {i ∈ In : e(i, j) ∈ En for some j ∈ J},

where e(i, j) denotes an edge between the vertices i and j. To simplify the notations,
we further denote Nn(J) by Nn(i1:q) if J = {i1, . . . , iq} for any 1 ≤ q ≤ dpe + 1. Then
(Nn(i1:q)) not only satisfies [LD-1] to [LD-(dpe+1)], but has the following properties as
well:
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(a) Nn(i1:q) = Nn
(
iπ(1), . . . , iπ(q)

)
for any permutation π on {1, . . . , q};

(b) iq ∈ Nn(i1:(q−1))⇔ i1 ∈ Nn(i2:q).

We point out that by definition of the dependency graph even if
{
X (n)

j : j ∈ J1

}
is

independent of
{
X (n)

j : j ∈ J2

}
, there can still be edges between the vertex sets J1 and

J2. In fact, there might not exist Gn such that there is no edge between J1 and J2 as
long as

{
X (n)

j : j ∈ J1

}
is independent of

{
X (n)

j : j ∈ J2

}
since pairwise independence

does not imply joint dependence.
The condition [LD*] provides us with a tractable bound on Rk,ω,n, which is applicable

in most of the commonly encountered settings, including m-dependent random fields
and U-statistics.

Proposition 3.3. Given M ∈ N+ and real number ω ∈ (0, 1], suppose that
(
X (n)

i

)
i∈In

satisfies [LD*] and that the cardinality of Nn(i1:(k+1)) is upper-bounded by M <∞ for
any i1, . . . , ik+1 ∈ In. Then there exists a constant Ck+ω only depending on k + ω such
that

Rk,ω,n ≤ Ck+ωM
k+ω

∑
i∈In

σ−(k+1+ω)
n E

[∣∣X (n)

i

∣∣k+1+ω]
.

We remark that the upper bound on (Rk,ω,n) depends on the moments of the random
variables

(
X (n)

i

)
and the maximum size of the dependency neighborhoods. The results

of Proposition 3.3 can be used to propose a more interpretable upper bound for the
Wasserstein-p distance.

Theorem 3.4. Suppose that
(
X (n)

i

)
is a triangular array of mean zero random variables

satisfying [LD*], and that the cardinality of index set Nn
(
i1:(dpe+1)

)
is upper-bounded by

Mn <∞ for any i1, . . . , idpe+1 ∈ In. Furthermore, assume that

M1+ω
n σ−(ω+2)

n

∑
i∈In

E
[∣∣X (n)

i

∣∣ω+2]→ 0, Mp+1
n σ−(p+2)

n

∑
i∈In

E
[∣∣X (n)

i

∣∣p+2]→ 0.

Then there is N such that for all n ≥ N we have

Wp(L(Wn),N (0, 1))

≤Cp
(
M1+ω
n σ−(ω+2)

n

∑
i∈In

E
[∣∣X (n)

i

∣∣ω+2])1/ω

+ Cp

(
Mp+1
n σ−(p+2)

n

∑
i∈In

E
[∣∣X (n)

i

∣∣p+2])1/p

,

(3.6)
for some constant Cp that only depends on p.

We notably remark that if the moments are nicely behaved in the sense that

B1 := sup
i∈In,n∈N+

√
|In| · ‖X (n)

i ‖p+2

σn
<∞,

and that the size of the dependency neighborhood are universally bounded, i.e.,

B2 := sup
i1:(dpe+1)∈In,n∈N+

∣∣Nn(i1:(dpe+1))
∣∣ <∞,

then there is a constant Kp that only depends on B1, B2 and p ≥ 1 such that for n large
enough we have

Wp(L(Wn),N (0, 1)) ≤ Kp√
|In|

.

The rate of convergence matches the known rate for independent random variables
(see [8]).
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4 Results for m-dependent random fields

Let d ∈ N+ be a positive integer, in this section, we study d-dimensional random
fields.

Definition 4.1 (m-Dependent Random Field). A random field (Xi)i∈T on T ⊆ Zd is m-
dependent if and only if for any subsets U1, U2 ⊆ Zd, the random variables (Xi1)i1∈U1∩T
and (Xi2)i2∈U2∩T are independent whenever ‖i1 − i2‖ > m for all i1 ∈ U1 and i2 ∈ U2.

Here ‖·‖ denotes the maximum norm on Zd, that is ‖z‖ = max1≤j≤d|zj | for z =

(z1, . . . , zd).

Now we consider an increasing sequence T1 ⊆ T2 ⊆ · · · of finite subsets of Zd that
satisfy |Tn|

n→∞−−−−→∞. We have the following result as a corollary of Theorem 3.4.

Corollary 4.2. Let p ∈ N+ and m ∈ N+ be positives integer. Suppose that
(
X (n)

i

)
is

a triangular array where each row is an m-dependent random field indexed by finite

subsets Tn ⊆ Zd such that |Tn|
n→∞−−−−→ ∞. Let σ2

n := Var
(∑

i∈Tn X
(n)

i

)
and define Wn :=

σ−1
n

∑
i∈Tn X

(n)

i . Further suppose that E
[
X (n)

i

]
= 0 for any i ∈ Tn and that the following

conditions hold:

• Moment condition: σ−(p+2)
n

∑
i∈Tn E

[∣∣X (n)

i

∣∣p+2]→ 0 as n→∞;

• Non-degeneracy condition: lim supn σ
−2
n

∑
i∈Tn E

[∣∣X (n)

i

∣∣2] ≤ M < ∞ for some
M ≥ 1.

Then for n large enough, we have

Wp(L(Wn),N (0, 1)) ≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

(∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])1/p

, (4.1)

where Cp,d only depends on p and d.
In particular, for a triangular array of m-dependent stationary random fields, sup-

pose that we have supnE
[∣∣X (n)

i

∣∣p+2]
< ∞, and that the non-degeneracy condition

lim infn σ
2
n/|Tn| > 0 holds. Then we have

Wp(L(Wn),N (0, 1)) = O(|Tn|−1/2).

5 Application to U-statistics

Definition 5.1 (U-Statistic). Let (Xi)
n
i=1 be a sequence of i.i.d. random variables. Fix

m ∈ N+ such that m ≥ 2. Let h : Rm → R be a fixed Borel-measurable function. The
Hoeffding U-statistic is defined as∑

1≤i1≤···≤im≤n

h
(
Xi1 , . . . , Xim

)
.

Corollary 5.2. Given p ≥ 1, suppose that the U-statistic of an i.i.d. sequence (Xi)
n
i=1

induced by a symmetric function h : Rm → R satisfies the following conditions

• Mean zero: E
[
h(X1, . . . , Xm)

]
= 0;

• Moment condition: E
[∣∣h(X1, . . . , Xm)

∣∣p+2]
<∞;

• Non-degeneracy condition: E[g(X1)2] > 0, where g(x) := E
[
h(X1, . . . , Xm)

∣∣ X1 =

x
]
.
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If we let

Wn :=
1

σn

∑
1≤i1≤···≤im≤n

h
(
Xi1 , . . . , Xim

)
,

where

σ2
n := Var

 ∑
1≤i1≤···≤im≤n

h
(
Xi1 , . . . , Xim

) ,

the following Wasserstein bound holds:

Wp(L(Wn),N (0, 1)) = O(n−1/2).

6 Application to non-uniform berry–Esseen bounds

In this section, we show a specific application of our results to non-uniform Berry–
Esseen bounds with polynomial decay of any order. Mirroring the classical literature,
[13] established Berry–Esseen bounds for locally dependent random variables. Notably,
their Theorem 2.4 showed that if the random variables (X

(n)
i ) satisfy some boundedness

condition on the dependency neighborhoods, then there is a constant C > 0 such that

sup
t

∣∣P(Wn ≥ t)− Φc(t)
∣∣ ≤ C∑

i∈In

∥∥X(n)
i

∥∥3

3
/σ3

n,

where Φc(t) := P(Z ≥ t) with Z ∼ N (0, 1). This extends the classical Berry–Esseen
bound to locally dependent random variables, and can potentially be used to construct
Kolmogorov–Smirnov tests under local dependence in nonparametric inference. However,
one of the drawbacks of this inequality is that it does not depend on t. One would imagine
that for large t we could find tighter bounds for

∣∣P(Wn ≥ t)−Φc(t)
∣∣. Non-uniform Berry–

Esseen bounds establish this. Notably [13] (Theorem 2.5) showed that under the above
conditions, there exists some universal constant C ′ such that

∣∣P(Wn ≥ t)− Φc(t)
∣∣ ≤ C ′

1 + |t|3
∑
i∈In

∥∥X(n)
i

∥∥3

3
/σ3

n, ∀t ∈ R.

This bound does decrease as |t| increases and does so at a rate of |t|−3. However one
would expect that this rate could be tightened if additional assumptions were made about
the moments of

(
X

(n)
i

)
. If the random variables admit some exponential moments then

[30] demonstrated that locally dependent random variables admit moderate deviation
inequalities. In this section, we show how Wp bound can help us obtain bounds that
decrease polynomially fast in t at a small price in its dependence on |In|, and do so
without assuming infinite moments.

Theorem 6.1. We assume that the conditions of Theorem 3.4 are satisfied. There is a
constant C > 0 such that for all β > 0 and t > 0 satisfying

(
√

2πp)
1
p+1

(
1−
√

2β log t

t

)
t1−

β
p+1 ≥ Wp(L(Wn),N (0, 1)),

we have

−C
t
ϕ

(
t

(
1− 1

p+ 1

))
≤ P(Wn ≥ t)− Φc(t)

Wp(L(Wn),N (0, 1))1− 1
p+1

≤ C

t1+β
(

1− 1
p+1

) ,
where ϕ is the density function of N (0, 1).

EJP 28 (2023), paper 117.
Page 9/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1009
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wasserstein-p bounds in CLT under local dependence

We can see from this result that the quantity |P(Wn ≥ t)−Φc(t)| decays in both t and
n. Notably given any p, r ≥ 1 assuming that the (p+ 2)-th moments of Xi’s and the depen-
dency neighborhoods are bounded in the sense that supn∈N+,i1:(p+1)∈In

∣∣Nn(i1:(p+1))
∣∣ <∞,

we have |P(Wn ≥ t)− Φc(t)| = o
(
t−r|In|−

p
2(p+1)

)
for t and n large enough. In particular,

for p ∈ N+ Theorems 3.4 and 6.1 imply the uniform Berry–Esseen bound by taking the
supremum over t:

sup
t∈R
|P(Wn ≥ t)− Φc(t)| ≤ C

(∑
i∈In

∥∥X(n)
i

∥∥3

3
/σ3

n +
∑
i∈In

∥∥X(n)
i

∥∥1+2/p

p+2
/σ1+2/p

n

)
.

Note that it recovers the uniform Berry–Esseen bound in [13] with p = 1.

7 Overview of the proofs

The key idea of our proofs is to approximate the sum of weakly dependent random
variables

(
X (n)

i

)
i∈In

by the empirical average of qn i.i.d. random variables ξ(n)

1 , . . . , ξ(n)
qn

which we denote Vn := 1√
qn

∑qn
i=1 ξ

(n)

i . More specifically we aim for the Wasserstein-p

distance between them Wp(L(Wn),L(Vn)) to be as small as possible. To establish the
desired result we then exploit the triangle inequality that guarantees that

Wp(L(Wn),N (0, 1)) ≤ Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1)),

and we use previously known bounds forWp(L(Vn),N (0, 1)) (Lemma 8.6).
To be able to show that such random variables ξ(n)

1 , . . . , ξ(n)
qn exist, we first show

(Lemma 8.8) that as long as the third and higher-order cumulants of Wn decay then there
exist integers (qn) and i.i.d. random variables such that the first k (k ∈ N+) cumulants of

Vn :=
1
√
qn

qn∑
i=1

ξ(n)

i

matches those of Wn for n large enough. The decay of the cumulants can be proven to
hold by exploiting the local dependence assumptions (see Corollary 9.6).

As a reminder, our goal is to establish that the Wasserstein distanceWp(L(Vn),L(Wn))

is small. We relate this to the cumulants thanks to the fact that the Wasserstein-p distance
can be upper-bounded by integral probability metrics (Lemma 8.4) and the well-known
Stein equation. Indeed for i.i.d. random variables

(
ξ(n)

i

)qn
i=1

, [4] showed that the following
approximation holds (restated in Lemma 8.5)

E[h(Vn)]−Nh = E[f ′h(Vn)− Vnfh(Vn)]

=
∑

(r,s1:r)∈Γ(dpe−1)

(−1)r
r∏
j=1

κsj+2(Vn)

(sj + 1)!
N
[ r∏
j=1

(∂sj+1Θ) h
]

+ Remainders,
(7.1)

where fh is the solution of the Stein equation (8.2) and κj( · ) denotes the j-th cumulant
of a random variable. (All the other notations in (7.1) will be made clear in Section 8.) We
show that we can obtain similar expansions for E[f ′(Wn)−Wnf(Wn)] (see Lemma 8.7):

E[h(Wn)]−Nh = E[f ′h(Wn)−Wnfh(Wn)]

=
∑

(r,s1:r)∈Γ(dpe−1)

(−1)r
r∏
j=1

κsj+2(Wn)

(sj + 1)!
N
[ r∏
j=1

(∂sj+1Θ) h
]

+ Remainders.
(7.2)

As mentioned in the previous paragraph, qn and ξ(n)

i can be chosen to be such that
κj(Vn) = κj(Wn) for j = 1, . . . , dpe+ 1. Thus, by taking the difference of (7.1) and (1.1),
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we get an upper bound on
∣∣E[h(Wn)]−E[h(Vn)]

∣∣ for a large class of function h. As shown
in Lemma 8.4, this allows us to obtain an upper bound of the Wasserstein-p distance
between L(Wn) and L(Vn) for a general p ≥ 1. The desired result is therefore implied by
the triangle inequality of the Wasserstein-p distance

Wp(L(Wn),N (0, 1)) ≤ Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1)),

and the already known Wasserstein-p bounds for i.i.d. random variables (Lemma 8.6).
To be able to show that (1.1) holds, we develop new techniques to obtain such

expansions, which will be carefully elaborated and discussed in Section 9.

8 Adapting Stein’s method for Wasserstein-p bounds

In this section, we provide the proofs of Theorems 3.1 and 3.4 using Stein’s method.
We first introduce some background definitions and lemmas before showing the proofs
of the main theorems.

8.1 Preliminaries and notations

Definition 8.1 (Hölder Space). For any k ∈ N and real number ω ∈ (0, 1], the Hölder
space Ck,ω(R) is defined as the class of k-times continuously differentiable functions
f : R→ R such that the k-times derivative of f is ω-Hölder continuous, i.e.,

|f |k,ω := sup
x 6=y∈R

|∂kf(x)− ∂kf(y)|
|x− y|ω

<∞,

where ∂ denotes the differential operator. Here ω is called the Hölder exponent and
|f |k,ω is called the Hölder coefficient.

Using the notions of Hölder spaces, we define the Zolotarev’s ideal metrics, which
are related to the Wasserstein-p distances via Lemma 8.4.

Definition 8.2 (Zolotarev Distance). Suppose µ and ν are two probability distributions
on R. For any p > 0 and ω := p+ 1− dpe ∈ (0, 1], the Zolotarev-p distance between µ and
ν is defined by

Zp(µ, ν) := sup
f∈Λp

(∫
R

f(x) dµ(x)−
∫
R

f(x) dν(x)

)
,

where Λp := {f ∈ Cdpe−1,ω(R) : |f |dpe−1,ω ≤ 1}
We will see in Lemma 8.4 how the Zolotarev distance can be used to obtainWp(·, ·)

rates. To bound Zp( · , · ) we rely on the Stein’s method which was introduced by [41] in
order to prove the central limit theorem for dependent data. It has been widely adapted
to all kinds of normal approximation problems. See [38] for a detailed exposition.

Stein equation and its solutions

Let Z ∼ N (0, 1) be a standard normal random variable. For any measurable function
h : R → R, if h(Z) ∈ L1(R), we write Nh := E[h(Z)]. Thus, h(Z) ∈ L1(R) if and only if
N|h| <∞. Moreover, we define fh( · ) by

fh(w) :=

∫ w

−∞
e(w2−t2)/2(h(t)−Nh) dt = −

∫ ∞
w

e(w2−t2)/2(h(t)−Nh) dt. (8.1)

We remark that fh(·) is a solution of the Stein equation meaning that it satisfies

f ′h(w)− wfh(w) = h(w)−Nh, ∀w ∈ R. (8.2)
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Bounding
∣∣∣E(f ′h(Wn)−Wnfh(Wn))

∣∣∣ therefore allows to control
∣∣∣E(h(Wn))−Nh

∣∣∣. If we do

this for a large class of functions h we can therefore upper-bound the Zolotarev distance
between L(Wn) and a normal distribution. This is the key idea behind the Stein’s method.
For notational convenience, we denote by Θ the operator that maps h to fh for any h
such that N|h| <∞, i.e.,

Θh = fh.

Note that Θh( · ) is a function. If h ∈ Λp, then we see in Lemma 8.3 that Θh can be
bounded.

Lemma 8.3 (Part of Lemma 6 of [4]). For any p > 0, let h ∈ Λp be as defined in
Definition 8.2. Then Θh = fh in (8.1) is a solution to (8.2). Moreover, Θh ∈ Cdpe−1,ω(R)∩
Cdpe,ω(R) and the Hölder coefficients |Θh|dpe−1,ω and |Θh|dpe,ω are bounded by some
constant only depending on p.

8.2 Key lemmas

First, we present an important result that states that the Wasserstein-p distance can
be controlled in terms of the Zolotarev distance.

Lemma 8.4 (Theorem 3.1 of [36]). For any p ≥ 1, there exists a positive constant Cp,
such that for any pair of distributions µ, ν on R with finite absolute moments of order p
such that

Wp(µ, ν) ≤ Cp
(
Zp(µ, ν)

)1/p
.

In particular,W1(µ, ν) = Z1(µ, ν) by Kantorovich–Rubinstein duality.

In the next two lemmas, we present already-known results for the normal approxima-
tion of sums of independent random variables. Firstly Lemma 8.5 provides an expansion
for the difference between E[h(Sn)], where Sn is an empirical average and Nh. This
lemma will allow us to relate the Zolotarev distance to the cummulants.

Lemma 8.5 (Theorem 1 of [4]). For any p > 0, let h ∈ Λp and Sn :=
∑n
i=1Xi where

{X1, . . . , Xn} are independent, with E[Xi] = 0 and E[S2
n] = 1. Then it follows that

E[h(Sn)]−Nh =∑
(r,s1:r)∈Γ(dpe−1)

(−1)r
r∏
j=1

κsj+2(Sn)

(sj + 1)!
N
[ r∏
j=1

(∂sj+1Θ) h
]

+O
( n∑
i=1

E[|Xi|p+2]

)
,

(8.3)

where the first sum is over Γ(dpe − 1) :=
{
r, s1:r ∈ N+ :

∑r
j=1 sj ≤ dpe − 1

}
.

Note that there is a slight abuse of notation in (8.3). The last
∏

indicates the
composition of the operators in the parentheses rather than the product.

Secondly Lemma 8.5 gives an upper bound on the Wasserstein distance between the
distribution of this empirical average Sn, and the standard normal distribution. This
lemma will guarantee that if an approximation of Wn by a sum of independent random
variables Vn can be obtained then Vn is approximately normally distributed.

Lemma 8.6 (Theorem 1.1 of [8]). For any p ≥ 1, let Sn :=
∑n
i=1Xi where {X1, . . . , Xn}

are independent and satisfy that E[Xi] = 0 and E[S2
n] = 1. Then it follows that

Wp(L(Sn),N (0, 1)) ≤ Cp
( n∑
i=1

E[|Xi|p+2]

)1/p

, (8.4)

where Cp continuously depends on p.

We now introduce two new lemmas crucial in the proof of Theorem 3.1. They will
be proven in Section 9 and Section 10. The first lemma generalizes Lemma 8.6 to the
dependent setting.
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Lemma 8.7 (Local Expansion). Suppose that
(
X (n)

i

)
i∈In

is a triangular array of random
variables with dependency neighborhoods satisfying the local dependence conditions
[LD-1] to [LD-(dpe+1)]. Let Wn :=

∑
i∈In X

(n)

i with E
[
X (n)

i

]
= 0, E[W 2

n ] = 1. Then for any
p > 0 and h ∈ Λp, we have

E[h(Wn)]−Nh =
∑

(r,s1:r)∈Γ(dpe−1)

(−1)r
r∏
j=1

κsj+2(Wn)

(sj + 1)!
N
[ r∏
j=1

(∂sj+1Θ) h
]

+O
(dpe−1∑

j=1

R
p/j
j,1,n +

dpe∑
j=1

R
p/(j+ω−1)
j,ω,n

)
,

(8.5)

where the first sum is over Γ(dpe − 1) :=
{
r, s1:r ∈ N+ :

∑r
j=1 sj ≤ dpe − 1

}
.

We can see that Lemmas 8.5 and 8.7 look quite similar to one another with the
only differences being the dependence structures of

(
X (n)

i

)
and the remainder terms

in the expansions. This similarity inspires the proof of Theorem 3.1. To illustrate this,
imagine that there would exist some i.i.d. random variables

(
ξ(n)

i

)qn
i=1

and a large sample

size qn such that the first dpe+1 cumulants of Vn := q
−1/2
n

∑qn
i=1 ξ

(n)

i match with those of
Wn, then the expansion (8.5) and in (8.3) would be almost identical, and the difference
between those would be controlled by the remainder terms (Rj,1,n) and (Rj,ω,n). If those
remainder terms are small then we could exploit the asymptotic normality of Vn to obtain
the asymptotic normality of Wn. We show that such a sequence exists when |In| is large.

Lemma 8.8 (Cumulant Matching). Let p ≥ 1 and k := dpe. If p > 1, let
(
u(n)

j

)k−1

j=1
be a

sequence of real numbers. Suppose that for any j = 1, . . . , k − 1, we have u(n)

j → 0 as
n → ∞. Then there exist constants Cp, C ′p only depending on p and a positive value

N > 0 (that might depend on
(
u(n)

j

)
) such that for any n > N , there exists qn ∈ N+ and a

random variable ξ(n) such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κj+2(ξ(n)) = q
j/2
n u(n)

j for j = 1, . . . , k − 1;

(c) Either max1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣ = 0 or max1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣ ≥ Cp > 0;

(d) E[|ξ(n)|p+2] ≤ C ′p.

Furthermore, qn can be chosen to be such that qn →∞ as |I| → ∞.

We note that the condition that u(n)

j → 0 as n → ∞ is crucial. Lemma 8.8 is an
asymptotic statement in the sense that for a given n ≤ N , qn and ξ(n) might not exist.

Intuitively, Lemma 8.8a and Lemma 8.8b determines the cumulants of ξ(n) and
relates them to the cumulants of Wn. Lemma 8.8c requires that the maximum
max1≤j≤k

∣∣κj+2(ξ(n))
∣∣ is either 0 or bounded away from 0 as n grows. And Lemma 8.8d

indicates that the (p+2)-th absolute moment is upper-bounded.

8.3 Proof of Theorem 3.1

The proof of Theorem 3.1 works in three stages:

1. Using Lemma 8.8 we find a sequence of i.i.d. random variables
(
ξ(n)

`

)
`

and a sample
size qn such that the first k+1 cumulants of Wn match the first k+1 cumulants of
Vn := q

−1/2
n

∑qn
i=1 ξ

(n)

i ;

2. Using Lemma 8.4 we remark that we can bound the Wasserstein distance between
the distributions of Wn and an empirical average, Vn, of i.i.d. observations in terms
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of
∣∣E[h(Wn)] − E[h(Vn)]

∣∣ for a large class of functions h. We do so by exploiting
Lemmas 8.5 and 8.7;

3. We remark that Lemma 8.6 provides us with the bound on the Wasserstein distance
between the distribution of Vn and the standard normal.

Then Theorem 3.1 follows from the triangle inequality of the Wasserstein metric:

Wp(Wn,N (0, 1)) ≤ Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1)).

Proof of Theorem 3.1. Without loss of generality, we assume σn = 1 and denote Wn :=∑
i∈In X

(n)

i .
Firstly, we remark that according to Corollary 9.6, for all 1 ≤ j ≤ k − 1 we have∣∣κj+2(Wn)

∣∣ . Rj,1,n. Moreover, by assumption we have Rj,1,n → 0 as n→∞. Therefore,∣∣κj+2(Wn)
∣∣→ 0 as n→∞ and the assumptions of Lemma 8.8 hold, which implies that

there exist constants Cp and C ′p such that for any n large enough there are positive
integers (qn) and random variables (ξ(n)) such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κj+2(ξ(n)) = q
j/2
n κj+2(Wn) for j = 1, . . . , k − 1;

(c) Either max1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣ = 0 or max1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣ ≥ Cp > 0;

(d) E[|ξ(n)|p+2] ≤ C ′p.

Furthermore, we know that (qn) satisfies that qn →∞ as n→∞.
As presented in the proof sketch we will use this to bound the distance between the

distribution of Wn to the one of an empirical average of at least qn i.i.d. random variables.
Note that when max1≤j≤k−1 |κj+2(ξ(n))| > 0 then we can obtain (by combining items (b)
and (c)) a lower bound on qn which will be crucial in our arguments as it will allow
us to control the distance between this empirical average and its normal limit. When
κ3(Wn) = · · · = κk+1(Wn) = 0, such a lower bound on qn cannot be obtained in a similar
way. Thus, we introduce an alternative sequence (q̃n) by setting q̃n := |In|2(p+1)/p ∨ qn if
κ3(Wn) = · · · = κk+1(Wn) = 0, and q̃n := qn otherwise. We remark that the sequence (q̃n)

still respects q̃n →∞ as n→∞.
Let ξ(n)

1 , . . . , ξ(n)

q̃n
be i.i.d. copies of ξ(n). Define Vn := q̃

−1/2
n

∑q̃n
i=1 ξ

(n)

i .By construction,
for any j ∈ N+ such that j ≤ k − 1 = dpe − 1 we have

κj+2(Vn)
(∗)
= q̃−(j+2)/2

n

q̃n∑
i=1

κj+2(ξ(n)

i ) = q̃−j/2n κj+2(ξ(n)) = κj+2(Wn).

Here in (∗) we have used the fact that cumulants are cumulative for independent random
variables, which is directly implied by their definition. For more details on this, please
refer to [31].

Thus, by Lemma 8.5 and Lemma 8.7, for any h ∈ Λp we have

∣∣E[h(Wn)]− E[h(Vn)]
∣∣ . k−1∑

j=1

R
p/j
j,1,n +

k∑
j=1

R
p/(j+ω−1)
j,ω,n + q̃−(p+2)/2

n

q̃n∑
i=1

E
[∣∣ξ(n)

i

∣∣p+2]
. (8.6)

To be able to have this upper bound not depend on ξ(n)

i we will upper-bound

q̃−(p+2)/2
n

q̃n∑
i=1

E[|ξ(n)

i |
p+2]
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in terms of the remainders (Rj,1,n) and (Rj,ω,n). To do so we use the lower bounds on
(q̃n) implied by the specific form we chose.

If max1≤j≤k−1

∣∣κj+2(Wn)
∣∣ > 0, item (c) implies that

Cp ≤ max
1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣ (∗)

= max
1≤j≤k−1

{
q̃j/2n

∣∣κj+2(Wn)
∣∣} (∗∗)

. max
1≤j≤k−1

{
q̃j/2n Rj,1,n

}
.

where to get (∗) we used item (b) and to get (∗∗) we used Corollary 9.6. Thus, the
following holds

q̃−p/2n = (q̃−j0/2n )p/j0 . R
p/j0
j0,1,n

≤
k−1∑
j=1

R
p/j
j,1,n,

where j0 is the integer satisfying that
∣∣κj0+2(ξ(n))

∣∣ = max1≤j≤k−1

∣∣κj+2(ξ(n))
∣∣.

On the other hand, if κj+2(Wn) = 0 for all 1 ≤ j ≤ k − 1, then by definitions we have

q̃n ≥ |In|2(p+1)/p, and therefore, q̃−p/2n ≤ |In|−(p+1). Moreover, by Hölder’s inequality we
know that the following holds∑

i∈In

E
[∣∣X (n)

i

∣∣2] ≤ |In|p/(p+2)
(∑
i∈In

E
[∣∣X (n)

i

∣∣p+2])2/(p+2)

. (8.7)

and (∑
i∈In

X (n)

i

)2

≤ |In|
∑
i∈In

∣∣X (n)

i

∣∣2. (8.8)

Since E
[(∑

i∈In X
(n)

i

)2]
= σ2

n = 1, we have

q̃−p/2n ≤|In|−(p+1)
(
E
[(∑

i∈I
X (n)

i

)2])(p+2)/2

(∗)
≤|In|−p/2

(∑
i∈I
E
[∣∣X (n)

i

∣∣2])(p+2)/2

(∗∗)
≤
∑
i∈In

E
[∣∣X (n)

i

∣∣p+2] ≤ Rk,ω,n,
where to obtain (∗) we used (8.8) and to obtain (∗∗) we used (8.7).

Thus, using item (d) and the fact that ξ(n)

1 , . . . , ξ(n)

q̃n
are i.i.d., we obtain

q̃−(p+2)/2
n

q̃n∑
i=1

E
[∣∣ξ(n)

i

∣∣p+2] ≤ C ′pq̃−p/2n .
k−1∑
j=1

R
p/j
j,1,n +

k∑
j=1

R
p/(j+ω−1)
j,ω,n . (8.9)

Therefore, by combining this with (8.6) we obtain that there is a constant K > 0 that
does not depend on h such that

∣∣E[h(Wn)]− E[h(Vn)]
∣∣ ≤ K( k∑

j=1

R
p/j
j,1,n +

k+1∑
j=1

R
p/(j+ω−1)
j,ω,n

)
.

By taking supremum over h ∈ Λp and by Lemma 8.4 we obtain that

Wp(L(Wn),L(Vn)) . sup
h∈Λp

∣∣E[h(Wn)]− E[h(Vn)]
∣∣1/p . k−1∑

j=1

R
1/j
j,1,n +

k∑
j=1

R
1/(j+ω−1)
j,ω,n .
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Moreover, by combining Lemma 8.6 and (8.9) we have

Wp(L(Vn),N (0, 1)) .
(
q̃−(p+2)/2
n

q̃n∑
i=1

E
[∣∣ξ(n)

i

∣∣p+2])1/p

.
k−1∑
j=1

R
1/j
j,1,n +

k∑
j=1

R
1/(j+ω−1)
j,ω,n .

Therefore, as the Wasserstein distanceWp satisfies the triangle inequality we conclude
that

Wp(L(Wn),N (0, 1)) ≤Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1))

.
k−1∑
j=1

R
1/j
j,1,n +

k∑
j=1

R
1/(j+ω−1)
j,ω,n .

9 Proof of Lemma 8.7

For ease of notation, when there is no ambiguity we will drop the dependence on n in
our notation and write W , N(·), σ, Xi, I and Rj,ω for respectively Wn, Nn(·), σn, X (n)

i , In
and Rj,ω,n.

9.1 Example and roadmap

Given the form of expression in Lemma 8.7, it is natural to consider performing
induction on dpe. In fact, [4] used a similar induction idea to prove Lemma 8.5, the
analogous result to Lemma 8.7 for independent variables. As [16] suggested, the key of
each inductive step is the following expansion of E[Wf(W )].

Proposition 9.1 (Expansion of E[Wf(W )]). Denote by κj(W ) the j-th cumulant of W .
Given k ∈ N+ and real number ω ∈ (0, 1], for any f ∈ Ck,ω(R), we have

E[Wf(W )] =

k∑
j=1

κj+1(W )

j!
E[∂jf(W )] +O(|f |k,ωRk,ω). (9.1)

The case k = ω = 1 is a well-known result in the literature of Stein’s method (for
example see [5, 38]). The case k = 2, ω = 1 was first proven by [16], and they also
conjectured that it was true for any positive integer k with ω = 1. Inspired by [16]’s
method, we confirm that this conjecture is correct by proving Proposition 9.1.

To help better understand the intuition behind our proof for the general settings,
let’s first consider the simplest case with k = ω = 1. Given a positive integer m,
suppose that (Xi)

n
i=1 is an m-dependent random sequence (the special case of d = 1 in

Definition 4.1). We let W :=
∑n
i=1Xi and require that E[X1] = 0 and E[W 2] = 1. For

simplicity, we further assume f ∈ C2(R) ∩ C1,1(R) meaning that f ′′ is a continuous and
bounded function.

For any indexes i, j ∈ [n] (by convention [n] := {1, 2, . . . , n}), we write

N(i) = {` ∈ [n] : |`− i| ≤ m}, N(i, j) := {` ∈ [n] : |`− i| ≤ m or |`− j| ≤ m}.

Denote Wi,m :=
∑
j /∈N(i)Xj and Wi,j,m :=

∑
`/∈N(i,j)X`. The idea is that for each i, we

split W into two parts, Wi,m and W −Wi,m. The former is independent of Xi while the
latter is the sum of Xj ’s in the neighborhood of Xi and will converge to 0 when n grows
to∞. Thus, we perform the Taylor expansion for f(W ) around Wi,m.

We have

E
[
Wf(W )− f ′(W )

]
(9.2)

=

n∑
i=1

E
[
Xi

(
f(W )− f(Wi,m)− f ′(Wi,m)(W −Wi,m)

)]
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+

n∑
i=1

E[Xif(Wi,m)] +

n∑
i=1

E
[
Xi(W −Wi,m)f ′(Wi,m)

]
− E[f ′(W )]

=

n∑
i=1

E
[
Xi

(
f(W )− f(Wi,m)− f ′(Wi,m)(W −Wi,m)

)]
+

n∑
i=1

E[Xi] E[f(Wi,m)] +

n∑
i=1

∑
j∈N(i)

E
[
XiXjf

′(Wi,m)
]
− E[f ′(W )]

=

n∑
i=1

E
[
Xi

(
f(W )− f(Wi,m)− f ′(Wi,m)(W −Wi,m)

)]
+
( n∑
i=1

∑
j∈N(i)

E
[
XiXjf

′(Wi,m)
]
− E[f ′(W )]

)
=: E1 + E2.

By assumption, ‖f ′′‖ is bounded and we have

|E1| =
∣∣∣∣ n∑
i=1

E
[
Xi

(
f(W )− f(Wi,m)− f ′(Wi,m)(W −Wi,m)

)]∣∣∣∣ (9.3)

≤‖f
′′‖

2

n∑
i=1

E
[∣∣Xi(W −Wi,m)2

∣∣] =
‖f ′′‖

2

n∑
i=1

E
[
|Xi|

( ∑
j∈N(i)

Xj

)2]

=
‖f ′′‖

2

n∑
i=1

∑
j∈N(i)

∑
`∈N(i)

E[|XiXjX`|] ≤
‖f ′′‖

2

n∑
i=1

∑
j∈N(i)

∑
`∈N(i,j)

E[|XiXjX`|].

Now we bound E2.

E2 =

n∑
i=1

∑
j∈N(i)

E
[
XiXjf

′(Wi,m)
]
− E[f ′(W )] (9.4)

=

n∑
i=1

∑
j∈N(i)

E
[
XiXj

(
f ′(Wi,m)− f ′(Wi,j,m)

)]
+

n∑
i=1

∑
j∈N(i)

E
[
XiXjf

′(Wi,j,m)
]
− E[f ′(W )]

(∗)
=

n∑
i=1

∑
j∈N(i)

E
[
XiXj

(
f ′(Wi,m)− f ′(Wi,j,m)

)]
+

n∑
i=1

∑
j∈N(i)

E[XiXj ] E[f ′(Wi,j,m)]− E[f ′(W )]

(∗∗)
=

n∑
i=1

∑
j∈N(i)

E
[
XiXj

(
f ′(Wi,m)− f ′(Wi,j,m)

)]
+

n∑
i=1

∑
j∈N(i)

E[XiXj ] E
[
f ′(Wi,j,m)− f ′(W )

]
=(t1) + (t2),

where to obtain (∗) we have used the fact that Wi,j,m is independent of (Xi, Xj) in the
second equation and to obtain (∗∗) we have assumed hat E(W 2) = 1.
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The first term (t1), can be upper-bounded by the mean value theorem as

∣∣∣∣ n∑
i=1

∑
j∈N(i)

E
[
XiXj

(
f ′(Wi,m)− f ′(Wi,j,m)

)]∣∣∣∣
≤

n∑
i=1

∑
j∈N(i)

‖f ′′‖ E
[∣∣XiXj(Wi,m −Wi,j,m)

∣∣]
≤‖f ′′‖

n∑
i=1

∑
j∈N(i)

∑
`∈N(i,j)

E[|XiXjX`|].

By another application of the mean-value theorem, we remark that the second term
(t2), is controlled by

∣∣∣∣ n∑
i=1

∑
j∈N(i)

E[XiXj ] E
[
f ′(Wi,j,m)− f ′(W )

]∣∣∣∣
≤

n∑
i=1

∑
j∈N(i)

‖f ′′‖ E[|XiXj |] E
[∣∣Wi,j,m −W

∣∣]
≤‖f ′′‖

n∑
i=1

∑
j∈N(i)

∑
`∈N(i,j)

E[|XiXj |] E[|X`|].

Thus, ∣∣E[Wf(W )− f ′(W )
]∣∣

≤‖f ′′‖
n∑
i=1

∑
j∈N(i)

∑
`∈N(i,j)

(
3

2
E[|XiXjX`|] + E[|XiXj |] E[|X`|]

)

≤3‖f ′′‖
2

R1,1.

This gives us a bound that matches with (9.1).

For k ≥ 2, we would like to carry out the expansion in the same spirit. However, it
would be too tedious to write out every sum in the process. Thus, in Section 9.2, we
introduce the terms called S-sums, T -sums, and R-sums, which serve as useful tools in
tracking different quantities when we approximate E[f ′(W )−Wf(W )] with respect to
locally dependent random variables. Instead of performing the expansion to get (9.1)
for E[Wf(W )], we first do it for any T -sum and use induction to prove a more general
result for the existence of such expansions (see Theorem 9.3). In the general situation of
T -sums, the cumulants are replaced by other constants that only depend on the specific
T -sum in consideration and the joint distribution of (Xi)i∈I . Finally, we prove that in
particular, those constants for E[Wf(W )] are precisely the cumulants of W . This will be
done by direct calculation when f is a polynomial and then extended to more general f ’s
by applying Lemma 9.5.

9.2 Notations and definitions

As in Section 3, given an integer k ≥ 1, suppose (Xi)i∈I is a class of mean zero
random variables indexed by I that satisfy the local dependence assumptions [LD-1] to
[LD-k]. Without loss of generality, we always assume that σ2 := Var

(∑
i∈I Xi

)
= 1. We

denote W := σ−1
∑
i∈I Xi =

∑
i∈I Xi.
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S-sums

Fix k ∈ N+ and t1, . . . , tk ∈ Z be integers such that |tj | ≤ j − 1 for any j ∈ [k]. We set
t1 = 0. Let z =

∣∣{j : tj > 0}
∣∣ be the number of indexes j for which tj is strictly positive.

If z ≥ 1, we write {j : tj > 0} = {q1, . . . , qz}. Without loss of generality, we suppose that
the sequence 2 ≤ q1 < · · · < qz ≤ k is increasing. We further let q0 := 1 and qz+1 := k + 1.
We define an order-k S-sum with respect to the sequence t1:k as

S[t1, . . . , tk] :=
∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

[q1 − q0, . . . , qz+1 − qz] .
(
Xi1 , . . . , Xik

)
(9.5)

=
∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xiq0

· · ·Xiq1−1

]
E
[
Xiq1

· · ·Xiq2−1

]
· · · E

[
Xiqz

· · ·Xiqz+1−1

]
,

where N1 := I, and for j ∈ N+ such that j ≥ 2, we let

Nj :=

{
N(i1:|tj |) = N(i1, . . . , i|tj |) if tj 6= 0

∅ if tj = 0
.

Note that Nj depends on tj and the sequence i1:(j−1). For ease of notation, we do not
explicitly write out the dependencies on i1:(j−1) when there is no ambiguity. Further note
that if any tj , that is not t1, is null then Nj = ∅ therefore, the S-sum S[t1, . . . , tk] = 0.

By definition all S-sums are deterministic quantities, the value of which only depends
on t1:k, and the joint distribution of (Xi)i∈I . We also remark that the signs of tj ’s
determine how an S-sum factorizes into different expectations. Notably if z = 0 (meaning
that all the tj are negative) then the T -sum is

Tf,s[t1, . . . , tk] =
∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xi1 · · ·Xik∂

k−1f
(
Wi.[k − s]

)]
.

Since by assumption, Xi’s are centered random variables, the S-sum vanishes if qj+1 =

qj + 1 for some 0 ≤ j ≤ z:

S[t1, . . . , tk] =
∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xiq0

· · ·Xiq1−1

]
·

E
[
Xiq1

· · ·Xiq2−1

]
· · ·E[Xiqj

] · · · E
[
Xiqz

· · ·Xiqz+1−1

]
= 0.

(9.6)

Furthermore, the absolute value of tj ’s influences the range of running indexes. The
bigger |tj | is the larger the set Nj is. The largest possible index set for ij+1 is N(i1:(j−1)),
which corresponds to the case |tj | = j − 1. On the other hand, if tj = 0, the sum is over
an empty set and vanishes. In particular, if we require that the S-sum is not always zero,
then t2 is always taken to be −1 and i2 ∈ N(i1).

T -sums

For any function f ∈ Ck−1(R) and integer s ∈ N such that s ≤ k, the order-k T -sum,
with respect to the sequence t1:k, is defined as

Tf,s[t1, . . . , tk] :=∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

[q1 − q0, . . . , qz+1 − qz] .
(
Xi1 , . . . , Xik−1

, Xik∂
k−1f

(
Wi.[k − s]

))

=



∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xi1 · · ·Xik∂

k−1f
(
Wi.[k − s]

)]
if z = 0

∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xiq0

· · ·Xiq1−1

]
· · · E

[
Xiq(z−1)

· · ·Xiqz−1

]
·

E
[
Xiqz

· · ·Xik∂
k−1f

(
Wi.[k − s]

)] if z ≥ 1,

(9.7)
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where N1:k, z, q0:(z+1) are defined as in the definition of S-sums and Wi.[j] is defined as

Wi.[j] :=

{
W if j = 0∑
i∈I\N(i1:j)

Xi if 1 ≤ j ≤ k
.

Note that the bigger s is, the larger the set I\N(i1:(k−s)) is, which means that
Wi.[k − s] is the sum of more Xi’s. Again we remark that the values of T -sums can
depend on the values of s and the sequences t1:k. In particular, if s = 0, then we have
Wi.[k − s] = Wi.[k] =

∑
i∈I\N(i1:k)Xi, which implies that Wi.[k − s] is independent of

Xi1 , . . . , Xik by the assumption [LD-k]. Thus, we have

E
[
Xiqz

· · ·Xik∂
k−1f

(
Wi.[k − s]

)]
= E[Xiqz

· · ·Xik ] E
[
∂k−1f

(
Wi.[k − s]

)]
.

By definitions (9.5) and (9.7) we get

Tf,0[t1, . . . , tk] = S[t1, . . . , tk] E[∂k−1f(Wi.[k])]. (9.8)

This equation will be useful in our discussion later. In general if z > 0 then

Tf,s[t1, . . . , tk] =S[t1, . . . , tqz−1]
∑

iqz∈Nqz

∑
iqz+1∈Nqz+1

· · ·
∑
ik∈Nk

E
[
Xiqz · · ·Xik∂

k−1f
(
Wi.[k − s]

)]
.

R-sums

For k ≥ 2 and given a real number ω ∈ (0, 1], we further define an order-k R-sum with
respect to the sequence t1:k as

Rω[t1, . . . , tk] :=∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik−1∈Nk−1

[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik−1

|,
( ∑
ik∈Nk

|Xik |
)ω)

=



∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xi1 · · ·Xik−1

( ∑
ik∈Nk

|Xik |
)ω]

if z = 0

∑
i1∈N1

∑
i2∈N2

· · ·
∑
ik∈Nk

E
[
Xiq0

· · ·Xiq1−1

]
· · · E

[
Xiq(z−1)

· · ·Xiqz−1

]
·

E

[
Xiqz

· · ·Xik−1

( ∑
ik∈Nk

|Xik |
)ω] if z ≥ 1.

(9.9)

We again remark that if z ≥ 1 then

Rω[t1, . . . , tk] =R1[t1, . . . , tqz−1]
∑

iqz∈Nqz

∑
iqz+1∈Nqz+1

· · ·
∑
ik∈Nk

E

[
Xiqz

· · ·Xik−1

( ∑
ik∈Nk

|Xik |
)ω]

.

We call ω the exponent of the R-sum. If ω = 1, the only difference between an R-sum
and an S-sum is that the Xij ’s in (9.5) are replaced by |Xij |’s in (9.9). Thus, an S-sum is
always upper-bounded by the corresponding compositional 1-sum, i.e.,∣∣S[t1, . . . , tk]

∣∣ ≤ R1[t1, . . . , tk]. (9.10)
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Another important observation is that we can compare the values of R-sums with
respect to two different sequences t1, . . . , tk and t′1, . . . , t

′
k in certain situations. In specific,

if for any j ∈ [k] we have that if tj and t′j are of the same sign and |tj | ≤ |t′j |, then

Rω[t1, . . . , tk] ≤ Rω[t′1, . . . , t
′
k]. (9.11)

In fact, the sequences (tj) and (t′j) having the same sign indicates that {j : tj > 0} = {j :

t′j > 0}. Thus, we can write

Rω[t′1, . . . , t
′
k] =

∑
i1∈N ′1

∑
i2∈N ′2

· · ·
∑

ik−1∈N ′k−1

[q1 − q0, . . . , qz+1 − qz].

(
|Xi1 |, . . . , |Xik−1

|,
( ∑
ik∈N ′k

|Xik |
)ω)

,
(9.12)

where we note that N ′1 = I = N1 and for j = 2, . . . , k we have

N ′j = N(i1, . . . , i|t′j |) ⊇ N(i1, . . . , i|tj |) = Nj .

By comparing (9.9) with (9.12), we obtain (9.11).

Re-expression of the remainder terms Rk,ω

Using the notion of R-sums, we rewrite the Rk,ω in Section 3 as

Rk,ω :=
∑

(`,η1:`)∈C∗(k+2)

∑
i1∈N ′1

∑
i2∈N ′2

· · ·
∑

ik+1∈N ′k+1

[η1, . . . , η`] .

(
|Xi1 |, . . . , |Xik+1

|,
( ∑
ik+2∈N ′k+2

|Xik+2
|
)ω)

=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, . . . , tk+2],

(9.13)

where N ′1 := I and N ′j := N(i1:(j−1)) for j ≥ 2. C∗(k + 2) andM1,k+2 are given by

C∗(k + 2) =

{
`, η1:` ∈ N+ : ηj ≥ 2 ∀j ∈ [`− 1],

∑̀
j=1

ηj = k + 2

}
,

and
M1,k+2 :=

{
t1:(k+2) : tj+1 = ±j & tj ∧ tj+1 < 0 ∀1 ≤ j ≤ k + 1

}
.

Note that tj ∧ tj+1 < 0 for any j ∈ [k + 1] means that there is at least one −1 in any two
consecutive signs, which corresponds to the requirement that ηj ≥ 2 for j ∈ [` − 1] in
(9.13).

9.3 Proofs of Proposition 9.1 and Lemma 8.7

In this section, we carry out the local expansion technique and prove Proposition 9.1
and Lemma 8.7.

Firstly, we establish the following lemma, which will be crucial in the inductive step
of proving the main theorem.

Lemma 9.2. Fix k ∈ N+. For any s ∈ [k] ∪ {0} and f ∈ Ck,ω(R), we have∣∣∣Tf,s[t1, . . . , tk+1]− S[t1, . . . , tk+1] E[∂kf(W )]
∣∣∣

≤|f |k,ω
(
−(I(tk+1 < 0) · Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1)Rω[t1, . . . , tk+1,−(k + 1)]

)
.

(9.14)
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Given any ` ∈ [k] and s ∈ [`] ∪ {0}, we further have∣∣∣∣Tf,s[t1, . . . , t`]− S[t1, . . . , t`] E[∂`−1f(W )] (9.15)

− I(s ≥ 1) ·
k−`+1∑
j=1

j∑
h=0

(−1)h
1

h!(j − h)!
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

− (I(t` < 0)

k−`+1∑
j=1

1

j!
Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸

(j−1) times

]

∣∣∣∣
≤ |f |k,ω

(k − `+ 1)!

(
−I(t` < 0) · Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸

(k−`+1) times

]

+ I(s ≥ 1) · Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸
(k−`+2) times

]
)
.

Proof. Firstly, we remark that the definition of Hölder continuity implies that∣∣∂kf(y)− ∂kf(x)
∣∣ ≤ |f |k,ω|y − x|ω, (9.16)

where ω is the Hölder exponent of f and |f |k,ω is the Hölder constant (see Definition 8.1).
Let z =

∣∣{j ∈ [k + 1] : tj > 0}
∣∣ be the number of positive indexes (tj). If z ≥ 1, we write

{j ∈ [k + 1] : tj > 0} = {q1, . . . , qz}. Without loss of generality, we suppose that the
sequence 2 ≤ q1 < · · · < qz ≤ k + 1 is increasing. We further let q0 := 1 and qz+1 := k + 2.
Applying (9.16) we have∣∣∣E[Xiqz

· · ·Xik+1
∂kf

(
Wi.[k + 1− s]

)]
− E

[
Xiqz

· · ·Xik+1
∂kf

(
Wi.[k + 1]

)]∣∣∣ (9.17)

≤|f |k,ωE
[∣∣Xiqz

· · ·Xik+1

∣∣ · ∣∣Wi.[k + 1− s]−Wi.[k + 1]
∣∣ω]

≤|f |k,ωE
[∣∣Xiqz

· · ·Xik+1

∣∣ · ∣∣∣ ∑
i∈N(i1:(k+1))\N(i1:(k+1−s))

Xi

∣∣∣ω]

≤|f |k,ωE
[∣∣Xiqz

· · ·Xik+1

∣∣ · ∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω],
where in the last inequality we have used the fact that N(i1:(k+1))\N(i1:(k+1−s)) ⊆
N(i1:(k+1)). If z = 0, this directly implies that∣∣∣Tf,s[t1, . . . , tk+1]− Tf,0[t1, . . . , tk+1]

∣∣∣ ≤ I(s ≥ 1) · |f |k,ωRω[t1, . . . , tk+1,−(k + 1)]. (9.18)

If z ≥ 1, by definition (9.7) we have for s ≥ 1∣∣∣Tf,s[t1, . . . , tk+1]− Tf,0[t1, . . . , tk+1]
∣∣∣

=

∣∣∣∣ ∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik+1∈Nk+1

E
[
Xiq0

· · ·Xiq1−1

]
· · · E

[
Xiqz−1

· · ·Xiqz−1

]
·

E
[
Xiqz

· · ·Xik+1

(
∂kf(Wi.[k + 1− s])− ∂kf(Wi.[k + 1])

)]∣∣∣∣
≤
∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik+1∈Nk+1

E
[∣∣Xiq0

· · ·Xiq1−1

∣∣] · · · E[∣∣Xiqz−1
· · ·Xiqz−1

∣∣]·
∣∣∣E[Xiqz

· · ·Xik+1
∂kf(Wi.[k + 1− s])− ∂kf(Wi.[k + 1])

]∣∣∣
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(9.17)
≤ |f |k,ω

∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik+1∈Nk+1

E
[∣∣Xiq0

· · ·Xiq1−1

∣∣] · · · E[∣∣Xiqz−1
· · ·Xiqz−1

∣∣] ·
E

[∣∣Xiqz
· · ·Xik+1

∣∣ · ∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω]
=|f |k,ωRω[t1, . . . , tk+1,−(k + 1)].

Here the last equality is due to the definition (9.9). Thus, (9.18) is proven for both z = 0

and z ≥ 1. Next we show that∣∣∣S[t1, . . . , tk+1]
(
E[∂kf(W )]− E[∂kf(Wi.[k + 1])]

)∣∣∣
≤− I(tk+1 < 0)|f |k,ωRω[t1, . . . , tk+1, k + 1].

(9.19)

In this goal, we first note that if tk+1 ≥ 0, by definition (9.5) we know that qz = k + 1 and
therefore, according to (9.6) we know that

S[t1, . . . , tk+1] = 0,

and so (9.19) holds. Otherwise, we note that we have∣∣∣E[∂kf(W )]− E[∂kf(Wi.[k + 1]
)]∣∣∣ ≤ |f |k,ωE[∣∣Wi.[k + 1− s]−Wi.[k + 1]

∣∣ω]
≤|f |k,ωE

[∣∣∣ ∑
i∈N(i1:(k+1))\N(i1:(k+1−s))

Xi

∣∣∣ω] ≤ |f |k,ωE[∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω]. (9.20)

This implies that ∣∣∣S[t1, . . . , tk+1]
(
E[∂kf(W )]− E[∂kf(Wi.[k + 1])]

)∣∣∣
≤
∣∣∣S[t1, . . . , tk+1]

∣∣∣ · ∣∣∣E[∂kf(W )]− E[∂kf(Wi.[k + 1]
)]∣∣∣

(∗)
≤|f |k,ωR1[t1, . . . , tk+1] E

[∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω]
=|f |k,ω

∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik+1∈Nk+1

[q1 − q0, . . . , qz+1 − qz].

(
|Xi1 |, . . . , |Xik+1

|
)
· E
[∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω]
=|f |k,ω

∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik+1∈Nk+1

[q1 − q0, . . . , qz+1 − qz, 1].

(
|Xi1 |, . . . , |Xik+1

|,
( ∑
ik+2∈N(i1:(k+1))

|Xik+2
|
)ω)

=|f |k,ωRω[t1, . . . , tk+1, k + 1],

where (∗) is due to (9.10) and (9.20). Taking the difference of (9.18) and (9.19), we
obtain (9.14) by applying the equation (9.8).

For ` ≤ k, we apply the Taylor expansion with remainders taking the integral form
and obtain that

∂`−1f(y)− ∂`−1f(x) =

m−∑̀
j=1

1

j!
(y − x)j∂`−1+jf(x) (9.21)
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+
1

(k − `+ 1)!
(y − x)k−`+1

∫ 1

0

(k − `+ 1)vk−`∂kf(vx+ (1− v)y) dv

(∗)
=

k−`+1∑
j=1

1

j!
(y − x)j∂`−1+jf(x)

+
1

(k − `+ 1)!
(y − x)k−`+1

∫ 1

0

(k − `+ 1)vk−`
(
∂kf(vx+ (1− v)y)− ∂kf(x)

)
dv,

where to obtain (∗) we added and subtracted (y−x)k−`+1

(k−`+1)! ∂
kf(x). Moreover, using the fact

that ∂kf(·) is assumed to be Hölder continuous we obtain that∣∣∂kf(vx+ (1− v)y)− ∂kf(x)
∣∣ ≤ |f |k,ω(1− v)ω |y − x|ω ≤ |f |k,ω|y − x|ω. (9.22)

Therefore, as
∫ 1

0
(k − `+ 1)vk−` dv = 1, by combining (9.22) with (9.21) we get that∣∣∣∣∂`−1f(y)− ∂`−1f(x)−

k−`+1∑
j=1

1

j!
(y − x)j∂`−1+jf(x)

∣∣∣∣ ≤ |f |k,ω
(k − `+ 1)!

|y − x|k−`+1+ω. (9.23)

We prove that the following inequality holds:∣∣∣∣Tf,s[t1, . . . , t`]− Tf,0[t1, . . . , t`]

− I(s ≥ 1) ·
k−`+1∑
j=1

j∑
h=0

(−1)h
1

h!(j − h)!
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

∣∣∣∣
≤I(s ≥ 1) · |f |k,ω

(k − `+ 1)!
Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸

(k−`+2) times

].

(9.24)

First, let’s establish (9.24). Let z =
∣∣{j ∈ [`] : tj > 0}

∣∣. If z ≥ 1, we write {j ∈
[`] : tj > 0} = {q1, . . . , qz}. Without loss of generality, we suppose that the sequence
2 ≤ q1 < · · · < qz ≤ ` is increasing. We further let q0 := 1 and qz+1 := ` + 1. Applying
(9.23) we have∣∣∣∣E[Xiqz

· · ·Xi`∂
`−1f

(
Wi.[`− s]

)]
− E

[
Xiqz

· · ·Xi`∂
`−1f

(
Wi.[`]

)]
−
k−`+1∑
j=1

1

j!
E
[
Xiqz

· · ·Xi`(Wi.[`− s]−Wi.[`])
j∂`−1+jf(Wi.[`])

]∣∣∣∣
≤ |f |k,ω

(k − `+ 1)!
E
[∣∣Xiqz

· · ·Xi`

∣∣ · ∣∣Wi.[`− s]−Wi.[`]
∣∣k−`+1+ω]

.

(9.25)

For convenience let

E1 :=
∑

iqz∈Nqz

· · ·
∑
i`∈N`

E
[
Xiqz

· · ·Xi`∂
`−1f

(
Wi.[`− s]

)]
− E

[
Xiqz

· · ·Xi`∂
`−1f

(
Wi.[`]

)]
,

E2,j :=
∑

iqz∈Nqz

· · ·
∑
i`∈N`

E
[
Xiqz

· · ·Xi`(Wi.[`− s]−Wi.[`])
j∂`−1+jf(Wi.[`])

]
,

E3 :=
∑

iqz∈Nqz

· · ·
∑
i`∈N`

E
[∣∣Xiqz · · ·Xi`

∣∣ · ∣∣Wi.[`− s]−Wi.[`]
∣∣k−`+1+ω]

.

Then (9.25) reduces to∣∣E1 −
∑k−`+1
j=1 E2,j/j!

∣∣ ≤ |f |k,ωE3/(k − `+ 1)!. (9.26)
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Then we observe that by definition of Wi.[·] we have

E
[
Xiqz

· · ·Xi`(Wi.[`− s]−Wi.[`])
j∂`−1+jf(Wi.[`])

]
=E

[
Xiqz

· · ·Xi`

( ∑
i∈N(i1:`)

Xi −
∑

i∈N(i1:`−s)

Xi

)j
∂`−1+jf(Wi.[`])

]

=

j∑
h=0

(−1)h
(
j

h

)
E

[
Xiqz

· · ·Xi`

( ∑
i∈N(i1:`−s)

Xi

)h( ∑
i∈N(i1:`)

Xi

)j−h
∂`−1+jf(Wi.[`])

]
,

(9.27)

and that

E
[∣∣Xiqz

· · ·Xi`

∣∣ · ∣∣Wi.[`− s]−Wi.[`]
∣∣k−`+1+ω]

(9.28)

≤E
[∣∣Xiqz

· · ·Xik+1

∣∣ · ∣∣∣ ∑
i∈N(i1:(k+1))\N(i1:(k+1−s))

Xi

∣∣∣k−`+1+ω
]

≤E
[∣∣Xiqz

· · ·Xik+1

∣∣ · ∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣k−`+1+ω
]

≤E
[∣∣Xiqz · · ·Xik+1

∣∣ · ( ∑
i∈N(i1:(k+1))

|Xi|
)k−`+1

·
∣∣∣ ∑
i∈N(i1:(k+1))

Xi

∣∣∣ω].
If z = 0, we take the sum of (9.27) or (9.28) over iqz ∈ Nqz , . . . , i` ∈ N`. By definition
(9.7) and (9.9) we have

E1 = Tf,s[t1, . . . , t`]− Tf,0[t1, . . . , t`],

E2,j =

j∑
h=0

(−1)h
(
j

h

)
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

],

E3 ≤ Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸
(k−`+1) times

].

(9.29)

Combining (9.29) and (9.26), we have for s ≥ 1∣∣∣∣Tf,s[t1, . . . , t`]− Tf,0[t1, . . . , t`]

−
k−`+1∑
j=1

j∑
h=0

(−1)h
1

h!(j − h)!
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

∣∣∣∣
(9.29)

=
∣∣E1 −

k−`+1∑
j=1

E2,j/j!
∣∣ (9.26)
≤ |f |k,ωE3/(k − `+ 1)!

(9.29)
≤ |f |k,ω

(k − `+ 1)!
Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸

(k−`+2) times

].

Thus, (9.24) holds for z = 0.
If z ≥ 1, similar to (9.28) we have

S[t1, . . . , tqz−1] · E1 = Tf,s[t1, . . . , t`]− Tf,0[t1, . . . , t`],

S[t1, . . . , tqz−1] · E2,j =

j∑
h=0

(−1)h
(
j

h

)
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

],

R1[t1, . . . , tqz−1] · E3 ≤ Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸
(k−`+2) times

].

(9.30)
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Combining (9.30) and (9.26) we get for s ≥ 1∣∣∣∣Tf,s[t1, . . . , t`]− Tf,0[t1, . . . , t`]

−
k−`+1∑
j=1

j∑
h=0

(−1)h
1

h!(j − h)!
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

∣∣∣∣
(9.30)

=
∣∣S[t1, . . . , tqz−1]

∣∣ · ∣∣E1 −
k−`+1∑
j=1

E2,j/j!
∣∣ (9.10)
≤ R1[t1, . . . , tqz−1] ·

∣∣E1 −
k−`+1∑
j=1

E2,j/j!
∣∣

(9.26)
≤ R1[t1, . . . , tqz−1] · |f |k,ωE3/(k − `+ 1)!

(9.30)
≤ |f |k,ω

(k − `+ 1)!
Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸

(k−`+2) times

].

Thus, we have shown (9.24) for both z = 0 and z ≥ 1.

Next we prove that the following inequality holds:∣∣∣∣S[t1, . . . , t`]
(
E[∂`−1f(W )]− E[∂`−1f(Wi.[`])]

)
− I(t` < 0) ·

k−`+1∑
j=1

1

j!
Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸

(j−1) times

]

∣∣∣∣
≤I(t` < 0) · |f |k,ω

(k − `+ 1)!
Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸

(k−`+1) times

].

(9.31)

For (9.31), we apply (9.23) again and get that∣∣∣∣E[∂kf(W )
]
− E

[
∂kf(Wi.[`])

]
−
k−`+1∑
j=1

1

j!
E
[
(Wi. −Wi.[`])

j∂`−1+jf(Wi.[`])
]∣∣∣∣ ≤ |f |k,ω

(k − `+ 1)!
E
[∣∣W −Wi.[`]

∣∣k−`+1+ω]
.

(9.32)
For convenience let

E4 := E[∂`−1f(W )]− E[∂`−1f(Wi.[`])],

E5,j := E
[
(Wi. −Wi.[`])

j∂`−1+jf(Wi.[`])
]
,

E6 := E
[∣∣W −Wi.[`]

∣∣k−`+1+ω]
.

Then (9.32) reduces to∣∣E4 −
∑k−`+1
j=1 E5,j/j!

∣∣ ≤ |f |k,ωE6/(k − `+ 1)!. (9.33)

We first note that if t` ≥ 0 then S[t1, . . . , t`] = 0 therefore, (9.31) holds. Moreover, similar
to (9.30), we have for t` < 0

S[t1, . . . , t`] · E4 = S[t1, . . . , t`]
(
E[∂`−1f(W )]− E[∂`−1f(Wi.[`])]

)
,

S[t1, . . . , t`] · E5,j = Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸
(j−1) times

],

R1[t1, . . . , t`] · E6 ≤ Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸
(k−`+1) times

].

(9.34)
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Combining (9.34) and (9.33), we have∣∣∣∣S[t1, . . . , t`]
(
E[∂`−1f(W )]− E[∂`−1f(Wi.[`])]

)
−
k−`+1∑
j=1

1

j!
Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸

(j−1) times

]

∣∣∣∣
(9.34)

=
∣∣S[t1, . . . , t`]

∣∣ · ∣∣E4 −
k−`+1∑
j=1

E5,j/j!
∣∣ (9.10)
≤ R1[t1, . . . , t`] ·

∣∣E4 −
k−`+1∑
j=1

E5,j/j!
∣∣

(9.33)
≤ R1[t1, . . . , t`] · |f |k,ωE6/(k − `+ 1)!

(9.34)
≤ |f |k,ω

(k − `+ 1)!
Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸

(k−`+1) times

].

Therefore, we have established both (9.24) and (9.31). Taking their difference and
applying (9.8), we obtain (9.15).

Equipped with the tools in Lemma 9.2, we approximate any T -sum Tf,s[t1, . . . , t`] by
order-j S-sums (j = `, . . . , k + 1) with remainder terms being order-(k + 2) R-sums.

Theorem 9.3. Fix k ∈ N+. For any ` ∈ [k + 1], s ∈ [`] ∪ {0}, and t1, . . . , t` ∈ Z such that
|tj | ≤ j − 1 for any j ∈ [`], there exist Q`, . . . , Qk+1 (which depend on s and t1:` and
the joint distribution of (Xi)i∈I) and a constant Ck,` (Ck,` ≤ 4k−`+1) such that for any
f ∈ Ck,ω(R), we have∣∣∣∣Tf,s[t1, . . . , t`]− k+1∑

j=`

QjE[∂j−1f(W )]

∣∣∣∣ ≤ Ck,`|f |k,ωRk,ω. (9.35)

Note that by (9.13) Rk,ω is given as

Rk,ω =
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, . . . , tk+2],

where
M1,k+2 :=

{
t1:(k+2) : tj+1 = ±j & tj ∧ tj+1 < 0 ∀1 ≤ j ≤ k + 1

}
.

Proof. If there exists an integer 2 ≤ j ≤ ` such that tj = 0 or there exists j ∈ [`− 1] such
that tj and tj+1 are both positive, then Tf,s[t1, . . . , t`] = 0 by definition and the theorem
already holds by setting Qj = · · · = Qk+1 = 0.

Otherwise, we claim:

Claim 9.4. Let Tf,s[t1, . . . , t`] be a T -sum. For any j = `+ 1, . . . , k + 1, let

E`+1,j :=
{
t(`+1):j : |th+1| ≤ h & th ∧ th+1 ∀` ≤ h ≤ j − 1

}
.

For all j = ` + 1, . . . , k + 1, ν ∈ [j] ∪ {0}, and (t`+1, . . . , tj) ∈ E`,j , there are coefficients
aj,ν,t(`+1):j

(additionally depending on s) such that if we write

Qj =
∑

t(l+1):j∈E`,j

j∑
ν=0

aj,ν,t(`+1):j
Tf,ν [t1, . . . , t`, t`+1, . . . , tj ], (9.36)

then the following holds∣∣∣∣Tf,s[t1, . . . , t`]− k+1∑
j=`

QjE[∂j−1f(W )]

∣∣∣∣
≤4k−`+1|f |k,ω

∑
t(`+1):(k+2)∈M`,k+1

Rω
[
t1, . . . , t`, . . . , tk+2

]
,

(9.37)
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where

M`+1,k+2 :=
{
t(`+1):(k+2) : tj+1 = ±j & tj ∧ tj+1 < 0 ∀` ≤ j ≤ k + 1

}
.

We establish this claim by performing induction on ` with ` taking the value k +

1, k, . . . , 1 in turn.
For ` = k + 1, by (9.14) we have∣∣∣Tf,s[t1, . . . , tk+1]− S[t1, . . . , tk+1] E[∂kf(W )]

∣∣∣
≤|f |k,ω

(
I(tk+1 < 0) · Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

)
.

If there exists j ∈ [k] such that tj and tj+1 are both positive, then Tf,s[t1, . . . , tk+1] = 0

and the claim holds with all aj,ν,t`:(k+1)
= 0. Otherwise, for all j ≤ k either tj is negative

or tj+1 is negative for j ∈ [k]. If tk+1 < 0, then we have

I(tk+1 < 0) · Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

=Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

(∗)
≤Rω[0, sgn(t2), 2 sgn(t3), . . . , k · sgn(tk+1), k + 1]

+Rω[0, sgn(t2), 2 sgn(t3), . . . , k · sgn(tk+1),−(k + 1)]

≤
∑

tk+2=±(k+1):
tk+1∧tk+2<0

Rω
[
t1, . . . , tk+1, tk+2

]
,

where (∗) is a consequence of (9.11) and sgn(x) = 0, 1, or − 1 denotes the sign of a real
number x.

Further note that if tk+1 > 0, then I(tk+1 < 0) = 0 and we get

I(tk+1 < 0) · Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

=I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

(∗)
≤Rω[0, sgn(t2), 2 sgn(t3), . . . , k · sgn(tk+1),−(k + 1)]

≤
∑

tk+2=±(k+1):
tk+1∧tk+2<0

Rω
[
t1, . . . , tk+1, tk+2

]
,

where (∗) is a consequence of (9.11). Thus, we have shown that∣∣∣Tf,s[t1, . . . , tk+1]− S[t1, . . . , tk+1] E[∂kf(W )]
∣∣∣

≤|f |k,ω
(
I(tk+1 < 0) · Rω[t1, . . . , tk+1, k + 1] + I(s ≥ 1) · Rω[t1, . . . , tk+1,−(k + 1)]

)
≤|f |k,ω

∑
tk+2=±(k+1):
tk+1∧tk+2<0

Rω
[
t1, . . . , tk+1, tk+2

]
.

Now suppose the claim holds for `+ 1 and consider the case of `. By (9.15) we have∣∣∣∣Tf,s[t1, . . . , t`]− S[t1, . . . , t`] E[∂`−1f(W )]

− I(s ≥ 1) ·
k−`+1∑
j=1

j∑
h=0

(−1)h
1

h!(j − h)!
Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

+ I(t` < 0)

k−`+1∑
j=1

1

j!
Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸

(j−1) times

]

∣∣∣∣
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≤ |f |k,ω
(k − `+ 1)!

(
I(t` < 0) · Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸

(k−`+1) times

]

+ I(s ≥ 1) · Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸
(k−`+2) times

]
)
.

Note that Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸
h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

] and Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸
(j−1) times

] are T -

sums of order at least ` + j (j ≥ 1). Therefore, we can apply inductive hypothesis on
them. In specific, the remainder term (R-sums) in the expansion of

Tf,j [t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸
h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

]

is given by this

4k−`−j+1|f |k,ω
∑

t(`+j+1):(k+2)∈M`+j+1,k+2

Rω
[
t1, . . . , t`, s− `, . . . , s− `︸ ︷︷ ︸

h times

,−`, . . . ,−`︸ ︷︷ ︸
(j−h) times

, t`+j+1, . . . , tk+2

]
(9.11)
≤ 4k−`−j+1|f |k,ω

∑
t(`+j+1):(k+2)∈M`+j+1,k+2

Rω
[
t1, . . . , t`,−`,−(`+ 1), . . . ,−(`+ j − 1), t`+j+1, . . . , tk+2

]
≤ 4k−`−j+1|f |k,ω

∑
t(`+2):(k+2)∈M`+2,k+2

Rω
[
t1, . . . , t`,−`, t`+2, . . . , tk+2

]
=: 4k−`−j+1|f |k,ω · U1.

Similarly, the remainder term in the expansion of Tf,j [t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸
(j−1) times

] is given by

4k−`−j+1|f |k,ω
∑

t(`+j+1):(k+2)∈M`+j+1,k+2

Rω
[
t1, . . . , t`, `,−`, . . . ,−`︸ ︷︷ ︸

(j−1) times

, t`+j+1, . . . , tk+2

]
≤4k−`−j+1|f |k,ω

∑
t(`+2):(k+2)∈M`+2,k+2

Rω
[
t1, . . . , t`, `, t`+2, . . . , tk+2

]
=: 4k−`−j+1|f |k,ω · U2.

Note that U1 + I(t` < 0) · U2 is controlled by

U1 + I(t` < 0) · U2 (9.38)

=
∑

t(`+2):(k+2)∈M`+2,k+2

Rω
[
t1, . . . , t`,−`, t`+2, . . . , tk+2

]
+ I(t` < 0) ·

∑
t(`+2):(k+2)∈M`+2,k+2

Rω
[
t1, . . . , t`, `, t`+2, . . . , tk+2

]
≤

∑
t(`+1):(k+2)∈M`+1,k+2

Rω
[
t1, . . . , t`, t`+1, . . . , tk+2

]
.

As we mentioned above, by inductive hypothesis we have that there exist coefficients
Qj satisfying (9.36) such that∣∣∣∣Tf,s[t1, . . . , t`]− k+1∑

j=`

Qj E[∂j−1f(W )]

∣∣∣∣
≤
k−`+1∑
j=1

j∑
h=0

1

h!(j − h)!
4k−`−j+1|f |k,ω · U1 + I(t` < 0)

k−`+1∑
j=1

1

j!
4k−`−j+1|f |k,ω · U2

+
|f |k,ω

(k − `+ 1)!

(
I(t` < 0) · Rω[t1, . . . , t`, `, −`, . . . ,−`︸ ︷︷ ︸

(k−`+1) times

] +Rω[t1, . . . , t`, −`, . . . ,−`︸ ︷︷ ︸
(k−`+2) times

]
)
.
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Noting that
∑j
h=0 1/(h!(j − h)!) = 2j/j!, we have∣∣∣∣Tf,s[t1, . . . , t`]− k+1∑

j=`

Qj E[∂j−1f(W )]

∣∣∣∣
≤

k−`+1∑
j=1

2j · 4k−`−j+1

j!
|f |k,ω ·

(
U1 + I(t` < 0) · U2

)
+

|f |k,ω
(k − `+ 1)!

(
I(t` < 0) · U2 + U1

)
≤
(
1 +

∑k−`+1
j=1 22k−2`−j+2

)
|f |k,ω

(
U1 + I(t` < 0) · U2

)
≤ 4k−`+1|f |k,ω

(
U1 + I(t` < 0) · U2

)
(9.38)
≤ 4k−`+1|f |k,ω

∑
t(`+1):(k+2)∈M`+1,k+2

Rω
[
t1, . . . , t`, t`+1, . . . , tk+2

]
.

Thus, we have shown (9.37).
Finally, we note that for all t1:` ∈M1,` and then by (9.11) we have∑

t(`+1):(k+1)∈M`+1,k+2

Rω
[
t1, . . . , t`, . . . , tk+2

]
≤

∑
t(`+1):(k+2)∈M`+1,k+2

Rω
[
0, sgn(t2), 2 sgn(t3), . . . , (`− 1) sgn(t`), t`+1, . . . , tk+2

]
≤

∑
t1:(k+2)∈M1,k+2

Rω[t1, t2, . . . , tk+2] = Rk,ω.

We remark that if f is a polynomial of degree at most k, then the Hölder constant
|f |k,ω = 0 and hence the remainder Ck,`|f |k,ωRk,ω vanishes.

For any T -sum, we have established the existence of expansions in Theorem 9.3.
Next we show the uniqueness of such expansions.

Lemma 9.5 (Uniqueness). Under the same settings as Theorem 9.3, suppose that there
exist two sets of coefficients Q`, . . . , Qk+1 and Q′`, . . . , Q

′
k+1 only depending on s and t1:`,

and the joint distribution of (Xi)i∈I such that for any polynomial f of degree at most `,
we have

Tf,s[t1, . . . , t`] = Q`E[∂`−1f(W )] + · · ·+Qk+1E[∂kf(W )]

= Q′`E[∂`−1f(W )] + · · ·+Q′k+1E[∂kf(W )].

Then Qj = Q′j for any j = `, . . . , k + 1.

Proof. We prove this lemma by contradiction.
Let j be the smallest number such that Qj 6= Q′j . Since the coefficients Q`, . . . , Qk+1

do not depend on f , we can choose f(x) = cxj−1 such that ∂j−1f(x) = c(j − 1)! 6= 0.
But Qj+1E[∂jf(W )] = · · · = Qk+1E[∂kf(W )] = 0, which implies cQj = cQ′j . This is a
contradiction. Therefore, Qj = Q′j for any j = `, . . . , k + 1.

Proof of Proposition 9.1. Applying Theorem 9.3 with ` = 1, and s = t1 = t2 = 0, we have
for any f ∈ Ck,ω(R),

E[Wf(W )] =
∑
i1∈I

E[Xi1f(W )] = Tf,0[0] =

k+1∑
j=1

QjE[∂j−1f(W )] +O(|f |k,ωRk,ω),
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for some Q1, . . . , Qk+1 that only depend on the distribution of (Xi)i∈I and where Rk,ω is
defined in (9.13). Suppose that f is a polynomial of degree at most k, then we observe
that f ∈ Ck,ω(R) and |f |k,ω = 0. Thus, this implies that

Tf,0[0] = E[Wf(W )] =

k+1∑
j=1

QjE[∂j−1f(W )]. (9.39)

On the other hand, for any random variable, the moments (µj)j≥0 and cumulants (κj)j≥0,
provided that they exist, are connected through the following relations [40]:

µn =

n∑
j=1

(
n− 1

j − 1

)
κjµn−j . (9.40)

Using this we will obtain a similar expansion to (9.39) by using the cumulants (κj). In
this goal, we first remark that if f(x) = xj where j ≤ k, then by using (9.40) we obtain
that

E[Wf(W )] = µj+1(W ) =

j+1∑
h=1

(
j

h− 1

)
κh(W )µj+1−h(W )

=

j∑
h=0

(
j

h

)
κh+1(W )µj−h(W ) =

k∑
h=0

κh+1(W )

h!
E[∂hf(W )].

Moreover, we remark that this can be generalized to arbitrary polynomials f of degree
k. Indeed, any polynomial f of degree k can be written as f(x) =

∑k
j=0 ajx

j for certain
coefficients (aj). By the linearity of expectations, we know that

E[Wf(W )] =

k∑
j=0

κj+1(W )

j!
E[∂jf(W )].

Compare this to (9.39) and apply Lemma 9.5. We conclude that Qj = κj(W )/(j − 1)! for
any j ∈ [k + 1]. In particular, Q1 = 0 = κ1(W ).

Next we upper-bound the cumulants of W using Rk,1.

Corollary 9.6 (Bounds for Cumulants). For any k ∈ N+, there exists a constant Ck that
only depends on k such that

∣∣κk+2(W )
∣∣ ≤ CkRk,1.

Proof. Let f(x) = xk+1/(k + 1)!. We remark that f ∈ Λk+1 where Λk+1 := {f ∈ Ck,1(R) :

|f |k,1 ≤ 1}. Moreover, by using Proposition 9.1 we have

E[Wf(W )] =

k∑
j=1

κj+1(W )

j!
E[∂jf(W )] +O(Rk,1).

Here the constant dropped from the big O analysis is controlled by 4k. On the other
hand, by (9.40) we have

E[Wf(W )] =
1

(k + 1)!
µk+2(W )

=

k+1∑
j=1

(
k + 1

j

)
κj+1(W )µk+1−j(W )

=

k∑
j=1

κj+1(W )

j!
E[∂jf(W )] +

κk+2(W )

(k + 1)!
.

Thus, there exists Ck such that
∣∣κk+2(W )

∣∣ ≤ CkRk,1.

Finally, we are able to prove Lemma 8.7 based on Proposition 9.1 and Corollary 9.6.
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Proof of Lemma 8.7. We perform induction on k := dpe. We start with k = 1. In this
goal, we first remark that by Lemma 8.3, we have f = Θh ∈ C1,ω(R) and that |f |1,ω is
bounded by a constant. Moreover, as f = Θh is the solution to the Stein equation (8.2).
By Proposition 9.1 we obtain that

E[h(W )]−Nh = E[f ′(W )]− E[Wf(W )] = O(R1,ω).

Therefore, the desired result is established for 1. Suppose that the proposition holds for
1, . . . , k − 1, we want to prove that it will also hold for k. Let f = Θh, then by Lemma 8.3
we know that f ∈ Ck,ω(R) and that |f |k,ω is bounded by some constant that only depends
on k, ω. Thus, by Proposition 9.1, we have

E[Wf(W )] =

k∑
j=1

κj+1(W )

j!
E[∂jf(W )] +O(Rk,ω).

Hence we have the following expansion of the Stein equation

E[h(W )]−Nh = E[f ′(W )]− E[Wf(W )] (9.41)

=−
k∑
j=2

κj+1(W )

j!
E[∂jf(W )] +O(Rk,ω)

=−
k−1∑
j=1

κj+2(W )

(j + 1)!
E[∂j+1Θh(W )] +O(Rk,ω).

Noting that ∂j+1Θh ∈ Ck−j−1,ω(R) and |∂j+1Θh|k−j−1,ω is bounded by a constant only
depending on k, ω, then by inductive hypothesis we obtain that

E[∂j+1Θh(W )]−N [∂j+1Θh] (9.42)

=
∑

(r,s1:r)∈Γ(k−j−1)

(−1)r
r∏
`=1

κs`+2(W )

(s` + 1)!
N
[ r∏
`=1

(∂s`+1Θ) ◦ ∂j+1Θ h
]

+O
(k−j−1∑

`=1

R
(k−j−1+ω)/`
`,1 +

k−j∑
`=1

R
(k−j−1+ω)/(`+ω−1)
`,ω

)
,

where we denoted Γ(k − j − 1) :=
{
r, s1:r ∈ N+ :

∑r
`=1 s` ≤ k − j − 1

}
.

By Corollary 9.6 and Young’s inequality, we have

|κj+2(W )R
k−j+ω−1
`+ω−1

`,ω | . Rj,1R
k−j+ω−1
`+ω−1

`,ω ≤ j

k + ω − 1
R
k+ω−1

j

j,1 +
k − j + ω − 1

k + ω − 1
R
k+ω−1
`+ω−1

`,ω ,

|κj+2(W )R
k−j+ω−1

`

`,1 | . Rj,1R
k−j+ω−1

`

`,1 ≤ j

k + ω − 1
R
k+ω−1

j

j,1 +
k − j + ω − 1

k + ω − 1
R
k+ω−1

`

`,1 .

(9.43)

Thus, we derive that

E[h(W )]−Nh

(9.41)
= −

k−1∑
j=1

κj+2(W )

(j + 1)!
E[∂j+1Θh(W )] +O(Rk,ω)
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(9.42)
= −

k−1∑
j=1

κj+2(W )

(j + 1)!
N [∂j+1Θh] +

k−1∑
j=1

κj+2(W )

(j + 1)!
·

∑
(r,s1:r)∈Γ(k−j−1)

(−1)r
r∏
`=1

κs`+2(W )

(s` + 1)!
N
[ r∏
`=1

(∂s`+1Θ) ◦ ∂j+1Θ h
]

+O
(
Rk,ω +

k−1∑
j=1

|κj+2(W )|
k−j−1∑
`=1

R
(k+ω−j−1)/`
`,1

+

k−1∑
j=1

|κj+2(W )|
k−j∑
`=1

R
(k+ω−j−1)/(`+ω−1)
`,ω

)
(9.43)

= −
k−1∑
j=1

κj+2(W )

(j + 1)!
N [∂j+1Θh] +

k−1∑
j=1

κj+2(W )

(j + 1)!
·

∑
(r,s1:r)∈Γ(k−j−1)

(−1)r
r∏
`=1

κs`+2(W )

(s` + 1)!
N
[ r∏
`=1

(∂s`+1Θ) ◦ ∂j+1Θ h
]

+O
(
Rk,ω +

k−1∑
j=1

R
(k+ω−1)/j
j,1 +

k−1∑
j=1

k−j−1∑
`=1

R
(k+ω−1)/`
`,1

+

k−1∑
j=1

k−j∑
`=1

R
(k+ω−1)/(`+ω−1)
`,ω

)

=
∑

(r,s1:r)∈Γ(k−1)

(−1)r
r∏
`=1

κs`+2(W )

(s` + 1)!
N
[ r∏
`=1

(∂s`+1Θ) h
]

+O
(k−1∑
`=1

R
(k+ω−1)/`
`,1 +

k∑
`=1

R
(k+ω−1)/(`+ω−1)
`,ω

)
.

Therefore, the desired property was established by induction.

10 Proof of Lemma 8.8

In Lemma 8.8, we would like to find a random variable with a given sequence of real
numbers as its cumulants. Constructing a random variable from its cumulants can be
difficult in practice. However, there is a rich literature on establishing the existence of a
random variable given the moment sequence. And it is well-known that the moments
can be recovered from the cumulants, and vice versa. The explicit expression between
moments µn and cumulants κn is achieved by using the Bell polynomials, i.e.,

µn = Bn(κ1, . . . , κn) =

n∑
j=1

Bn,j(κ1, . . . , κn−j+1), (10.1)

κn =

n∑
j=1

(−1)j−1(j − 1)!Bn,j(µ1, . . . , µn−j+1), (10.2)

where Bn and Bn,j are the exponential Bell polynomial defined by

Bn(x1, . . . , xn) :=

n∑
j=1

Bn,j(x1, x2, . . . , xn−j+1),

Bn,j(x1, x2, . . . , xn−j+1) :=
∑ n!

i1!i2! · · · in−j+1!

(x1

1!

)i1(x2

2!

)i2
· · ·
( xn−j+1

(n− j + 1)!

)in−j+1

.

(10.3)

EJP 28 (2023), paper 117.
Page 33/47

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1009
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wasserstein-p bounds in CLT under local dependence

The sum here is taken over all sequences i1, . . . , in−j+1 of non-negative integers such
that the following two conditions are satisfied:

i1 + i2 + · · ·+ in−j+1 = j,

i1 + 2i2 + · · ·+ (n− j + 1)in−j+1 = n.

In mathematics, the classical moment problem is formulated as follows: Given a
sequence (µi)i≥0, does there exist a random variable defined on a given interval such
that µj = E[Xj ] for any non-negative integer j? There are three essentially different
types of (closed) intervals. Either two end-points are finite, one end-point is finite, or
no end-points are finite, which corresponds to the Hamburger, Hausdorff, and Stieltjes
moment problem respectively. See [2, 7] or [43] for a detailed discussion. For our
purpose, there is no restriction on the support of random variables. Thus, the following
lemma for the Hamburger moment problem is all we need.

Lemma 10.1. The Hamburger moment problem is solvable, i.e., (µj)j≥0 is a sequence
of moments if and only if µ0 = 1 and the corresponding Hankel kernel

H =


µ0 µ1 µ2 · · ·
µ1 µ2 µ3 · · ·
µ2 µ3 µ4 · · ·
...

...
...

. . .

 (10.4)

is positive definite, i.e., ∑
j,k≥0

µj+kcjck ≥ 0

for every real sequence (cj)j≥0 with finite support, i.e., cj = 0 except for finitely many j’s.

If we define the (j+1)-th upper-left determinant of a Hankel matrix by

Hj(x0, x1, . . . , x2j) :=

∣∣∣∣∣∣∣∣∣
x0 x1 · · · xj
x1 x2 · · · xj+1

...
...

. . .
...

xj xj+1 · · · x2j

∣∣∣∣∣∣∣∣∣ , (10.5)

by Sylvester’s criterion in linear algebra [20], the positive-definite condition above is
equivalent to Hj(µ0, . . . , µ2j) > 0 for any j ∈ N+.

In order to prove Lemma 8.8, we construct a Hankel matrix from given values of
cumulants and ensure that the upper-left determinants of (10.4) are all positive. Then by
Lemma 10.1, there exists a random variable that has matched moments with the ones in
(10.4) and hence it also has the required cumulants by (10.2).

For convenience, we write

Lj(x1, . . . , x2j) := Hj(1, B1(x1), B2(x1, x2), . . . , B2j(x1, . . . , x2j)).

Taking x1 = 0, from the definitions (10.3) and (10.5), there is an expansion

Lj(0, x2, . . . , x2j) = Hj(1, 0, B2(0, x2), . . . , B2j(0, x2, . . . , x2j)) =
∑

a
(j)
t2,...,t2jx

t2
2 · · ·x

t2j
2j ,

(10.6)

where the sum is taken over

t2 + t3 + · · ·+ t2j ≥ j,
2t2 + 3t3 + · · ·+ (2j)t2j = j(j + 1).

(10.7)
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To illustrate, set B0 = 1. By (10.5) each term in Lj(x1, . . . , x2j) = Hj(B0, B1, . . . , B2j)

is a product of the form
∏j+1
s=1B`s (coefficients omitted) such that

∑j+1
s=1 `s = j(j + 1).

Note that by (10.3) each monomial M in B`(x1, . . . , x`) satisfies that

degx1
(M) + degx2

(M) + · · ·+ degx2j
(M) ≥ 1 for ` ≥ 1,

degx1
(M) + 2 degx2

(M) + · · ·+ (2j) degx2j
(M) = `.

Thus, each monomial a(j)
t1,...,t2jx

t1
1 · · ·x

t2j
2j in Lj(x1, . . . , x2j) satisfies that

t1 + t2 + · · ·+ t2j ≥
∣∣{s ∈ [j + 1] : `s ≥ 1}

∣∣ ≥ j,
t1 + 2t2 + · · ·+ (2j)t2j =

∑j+1
s=1 `s = j(j + 1).

Now if we take x1 = 0, then t1 = 0 holds for all remaining terms, and (10.7) follows.
We further define in the following way a sequence of univariate polynomials which

will be essential in our construction in Lemma 8.8, by setting

Pj(x) := Lj(0, 1, x, x
2, x3, . . . , x2j−2).

Firstly, we present a lemma on the properties of Pj(x).

Lemma 10.2. Pj(x) is a polynomial of degree at most j(j − 1) with only even-degree
terms and if we write

Pj(x) =

j(j−1)/2∑
`=0

b
(j)
2` x

2`,

we have b(j)0 = a
(j)
j(j+1)/2,0,...,0 ≥ 2 for any j ≥ 2, j ∈ N+.

Proof. Note that by applying (10.6) we obtain that

Pj(x) = Lj(0, 1, x, . . . , x
2j−2) =

∑
a

(j)
t2,...,t2jx

t3+2t4+···+(2j−2)t2j , (10.8)

where the sum is taken over

t2 + t3 + · · ·+ t2j ≥ j,
2t2 + 3t3 + · · ·+ (2j)t2j = j(j + 1).

The degree of each term in (10.8) is

t3 + 2t4 + · · ·+ (2j − 2)t2j

=(2t2 + 3t3 + · · ·+ (2j)t2j)− 2(t2 + t3 + · · ·+ t2j)

=j(j + 1)− 2(t2 + t3 + · · ·+ t2j).

This is even and no greater than j(j − 1) since t2 + t3 + · · ·+ t2j ≥ j.
Then we show the constant term b

(j)
0 ≥ 2. Consider a standard normal random

variable ξ ∼ N (0, 1). Then κj(ξ) = 0 for all j ≥ 1, j 6= 2, and κ2(ξ) = 1, which is
straightforward by checking that the moment generating function of ξ is exp(t2/2). By
Lemma 10.1, we have

b
(j)
0 = Pj(0) = Lj(0, 1, 0, . . . , 0)

=Lj(κ1(ξ), κ2(ξ), . . . , κ2j(ξ))

=Hj(µ0(ξ), µ1(ξ), . . . , µ2j(ξ)) > 0.

Since µ2`(ξ) = (2`− 1)!! and µ2`−1(ξ) = 0 are integers for ` ∈ N+, b(j)0 is also an integer.
Checking Leibniz formula of the determinant for the Hankel matrix Hj [26], we observe
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that there is an even number of terms and that each term is odd. In specific, the
determinant for the Hankel matrix is given by

b
(j)
0 = Hj(µ0(ξ), µ1(ξ), . . . , µ2j(ξ)) =

∑
τ∈Sj

sgn(τ)

j∏
i=1

µτ(i)+i−2(ξ),

where by abuse of notation sgn is the sign function of permutations in the j-th permutation
group Sj , which returns +1 and −1 for even and odd permutations, respectively. Since
µ2`(ξ) = (2`− 1)!! and µ2`−1(ξ) = 0 for all ` ∈ N+, we have

sgn(τ)

j∏
i=1

µτ(i)+i−2(ξ)

{
is odd if τ(i) + i is even ∀i = 1, . . . , j

= 0 otherwise
.

Noting that the number of permutations τ that satisfies τ(i) + i is even for all i = 1, . . . , j

is (j!)2, which is even when j ≥ 2, we conclude that b(j)0 is even, and thus, it should be at
least 2.

As we have explained at the beginning of this section, we would like to construct a
‘moment’ sequence such that the corresponding Hankel kernel is positive definite. The
following lemma offers one single step in the construction.

Lemma 10.3. Suppose there is some constant C such that |µ`| ≤ C for ` = 1, . . . , 2j + 1

and Hj(µ0, . . . , µ2j) ≥ 1. Then there exists C ′ only depending on j and C such that

Hj+1(µ0, . . . , µ2j , µ2j+1, C
′) ≥ 1.

Proof. Let C ′ = (j + 1)(j + 1)!Cj+2 + 1. Then by the Laplace expansion [26] of the
determinant, we have

Hj+1(µ0, . . . , µ2j , µ2j+1, C
′) =C ′Hj(µ0, . . . , µ2j) +

j∑
`=0

(−1)j+1+`µj+1+`Aj+2,`+1

≥C ′ − (j + 1)C · (j + 1)!Cj+1 ≥ 1,

where Aj+2,`+1 is the determinant of the (j+1)× (j+1) submatrix obtained by deleting
the (j+2)-th row and (`+1)-th column of

A =


µ0 µ1 · · · µj+1

µ1 µ2 · · · µj+2

...
...

. . .
...

µj+1 µj+2 · · · C ′

 .

Now we prove Lemma 8.8.

Proof of Lemma 8.8. The key of the proof will be to use Lemma 10.1. To do so we need
to postulate an infinite sequence that will be our candidates for of potential moments and
check that the conditions of Lemma 10.1 hold. We remark that as we already know what
we want the first k+1 cumulants to be, we already know what the candidates are for
the first k+1 moments; and we only to find adequate proposal for the (k+2)-th moment
onward. We will do so by iteratively using Lemma 10.3.

In this goal, we remark that since by Lemma 10.2 we know that b(j)0 ≥ 2. Therefore,
we can choose a small enough constant 0 < Cp < 1 only depending on k = dpe such that

b
(j)
0 −

j(j−1)/2∑
`=1

∑
2t2+2t3+···+2t2j=j(j+1)−2`

2t2+3t3+···+2jt2j=j(j+1)

|a(j)
t2,...,t2j |C

2`
p ≥ 1, (10.9)
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for any integer j = 1, . . . , dk/2e. Given an index set In, if u(n)

j = 0 for all j = 1, . . . , k − 1,
let ξ(n) ∼ N (0, 1) and qn � |In|. Then qn and ξ(n) satisfy all the requirements since
κj(ξ

(n)) = 0 for all j ∈ N+, j 6= 2 and κ2(ξ(n)) = 1, which is straightforward by checking
that the momemt generating function of ξ(n) is exp(t2/2).

Otherwise, let

qn :=
⌊

min
1≤j≤k−1,u(n)

j 6=0

{
C2
p |u

(n)

j |
−2/j

}⌋
, (10.10)

where bxc denotes the largest integer not exceeding x. Since by assumption, for any
j = 1, . . . , k − 1, u(n)

j → 0 as n → ∞, then we know that there exists N > 0 such that
(i) qn ≥ 1 for any n > N and (ii) qn → ∞ as n → ∞. We note that by definition
min1≤j≤k−1,u(n)

j 6=0

{
C2
p |u

(n)

j |−2/j
}
< qn + 1, which implies

max
1≤j≤k−1

{
qj/2n |u

(n)

j |
}
> Cjp

(
qn/(qn + 1)

)j/2
> Cpp/2

p/2. (10.11)

On the other hand, (10.10) also implies that C2
p |u

(n)

j |−2/j ≥ qn. Thus, qj/2n |u(n)

j | ≤ Cjp.

Now let κ̃j+2 := q
j/2
n u(n)

j . We remark that |κ̃j+2| ≤ Cjp and |κ̃j+2| ≥ Cpp/2
p/2. We write

µ̃j+2 := Bj+2(0, κ̃2, . . . , κ̃j+2) for j = 1, . . . , k−1. Those will be our candidates for the first
k+1 moments. Moreover, if k is odd, we also propose a candidate for (k+2)-th moment
by setting µ̃k+2 := 0.

For j = 1, . . . , dk/2e by (10.6) we have

Hj(1, 0, µ̃2, µ̃3, . . . , µ̃2j) = Lj(0, κ̃2, κ̃3, . . . , κ̃2j)

=
∑

2t2+3t3+···+2jt2j=j(j+1)

a
(j)
t2,...,t2j κ̃

t2
2 · · · κ̃

t2j
2j

=

j(j−1)/2∑
`=0

∑
2t2+2t3+···+2t2j=j(j+1)−2`

2t2+3t3+···+2jt2j=j(j+1)

a
(j)
t2,...,t2j κ̃

t2
2 · · · κ̃

t2j
2j

(a)

≥ b(j)0 −
j(j−1)/2∑
`=1

∑
2t2+2t3+···+2t2j=j(j+1)−2`

2t2+3t3+···+2jt2j=j(j+1)

∣∣a(j)
t2,...,t2j κ̃

t2
2 · · · κ̃

t2j
2j

∣∣
(b)

≥b(j)0 −
j(j−1)/2∑
`=1

∑
2t2+2t3+···+2t2j=j(j+1)−2`

2t2+3t3+···+2jt2j=j(j+1)

|a(j)
t2,...,t2j |C

2`
p

(c)

≥ 1,

where to get (a) we used the definition of b(j)0 , and where to obtain (b) we used the fact
that |κ̃j+2| ≤ Cjp, and where to get (c) we used (10.9). Moreover, as |κ̃j+2| ≤ Cjp, then we
know that there exists some constant C ′p such that |µ̃j+2| = |Bj+2(0, κ̃2, . . . , κ̃j+2)| ≤ C ′p
for any integer j = 1, . . . , 2dk/2e − 1. Therefore, by Lemma 10.3, there exists C ′′p
depending on k = dpe and C ′p such that

Hdk/2e+1(1, 0, µ̃2, . . . , µ̃2dk/2e+1, C
′′
p ) ≥ 1.

Let µ̃2dk/2e+2 := C ′′p . Applying Lemma 10.3 repeatedly, we get a sequence (µ̃j)j≥1 such
that µ̃0 = 1 and Hj(µ̃0, µ̃1, . . . , µ̃2j) ≥ 1 > 0 for any j ∈ N+. The sequence (µ̃j) is then our
candidate for the moments and we remark that they satisfy the conditions of Lemma 10.1.
Therefore, by Lemma 10.1, we conclude that there exists ξ(n) such that µj(ξ(n)) = µ̃j
for any j ∈ N+. As the first k+1 moments uniquely define the first k+1 cumulants of a

random variable we have κj+2(ξ(n)) = κ̃j+2 = q
j/2
n u(n)

j for all j = 1, . . . , k − 1. Thus, the
qn and ξ(n) that we have constructed meet the requirements of Lemmas 8.8a and 8.8b.
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Moreover, (10.11) implies that Lemma 8.8c is also satisfied. Lastly, to show Lemma 8.8d
we note that

E[|ξ(n)|p+2] = ‖ξ(n)‖p+2
p+2

(∗)
≤ ‖ξ(n)‖p+2

2dk/2e+2

=
(
µ2dk/2e+2(ξ(n))

)(p+2)/(2dk/2e+2)

≤(C ′′p )(p+2)/(2dk/2e+2).

Here (∗) is due to the fact that k = dpe ≥ p.

11 Proofs of other results

In this section, we provide the proofs of all the other results.

11.1 Proof of Proposition 3.3

For ease of notation, in this section we will drop the dependence on n in our notation
and write W , N( · ), σ, Xi, I and Rj,ω for respectively Wn, Nn( · ), σn, X (n)

i , In and Rj,ω,n.
Before we prove the bounds for Rk,ω, we note that Rk,ω can be defined without

assuming local dependence [LD*]. Thus, we first aim to generalize this concept, which
makes the result derived in Proposition 11.1 also applicable in general dependent
situations. Let (Xi)i∈I be a class of mean zero random variables indexed by I. For any
graph G (not necessarily the dependency graph) with the vertex set I and a subset J ⊆ I,
we define N(J) to be vertex set of the neighborhood of J . As in Section 9, we assume
Var

(∑
i∈I Xi

)
= 1, without loss of generality. Let W =

∑
i∈I Xi.

We extend the notation of R-sums defined in (9.9) to this general setting. Given an
integer k ∈ N+ such that k ≥ 2, for any t1:k ∈ Z such that |tj | ≤ j − 1 for any j ∈ [k],
let z =

∣∣{j : tj > 0}
∣∣. If z ≥ 1, we write {j : tj > 0} = {q1, . . . , qz}, where the sequence

2 ≤ q1 < · · · < qz ≤ k is taken to be increasing. We further let q0 := 1 and qz+1 := k + 1.
Then we could still define the R-sums by

Rω[t1, t2, . . . , tk] :=∑
i1∈N1

∑
i2∈N2

· · ·
∑

ik−1∈Nk−1

[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik−1

|,
( ∑
ik∈Nk

|Xik |
)ω)

,

where N1 := I, and for 2 ≤ j ≤ k

Nj :=

{
N(i1:|tj |) = N(i1, . . . , i|tj |) if tj 6= 0

∅ if tj = 0
.

Now the remainder term Rk,ω is defined as

Rk,ω :=
∑

(`,η1:`)∈C∗(k+2)

∑
i1∈N ′1

∑
i2∈N ′2

· · ·
∑

ik+1∈N ′k+1

(11.1)

[η1, . . . , η`] .

(
|Xi1 |, . . . , |Xik+1

|,
( ∑
ik+2∈N ′k+2

|Xik+2
|
)ω)

=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, . . . , tk+2],

where N ′1 := I and N ′j := N(i1:(j−1)) for j ≥ 2. C∗(k + 2) andM1,k+2 are given by

C∗(k + 2) =
{
`, η1:` ∈ N+ : ηj ≥ 2 ∀j ∈ [`− 1],

∑̀
j=1

ηj = k + 2
}
,
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and

M1,k+2 :=
{
t1:(k+2) : tj+1 = ±j & tj ∧ tj+1 < 0 ∀1 ≤ j ≤ k + 1

}
.

Note that the expressions of R-sums and Rk,ω have the same forms as those in
Section 9.2, but here we do not impose the assumption of the local dependence of (Xi)i∈I
anymore as N(i1:q)’s are defined directly from the graph structure we constructed on I.
The main goal of this section is to prove the following proposition.

Proposition 11.1. Fix k ∈ N+ such that k ≥ 2 and real number ω ∈ (0, 1]. Let N(J) be
defined as above and suppose the cardinality of N(J) is upper-bounded by M for any
|J | ≤ k. Then there exists a constant Ck+ω only depending on k + ω such that

Rω[t1, t2, . . . , tk] ≤ Ck+ωM
k−2+ω

∑
i∈I
E[|Xi|k−1+ω].

Before proving Proposition 11.1, we need the following two lemmas. Lemma 11.2
helps us change the order of summation inRω[t1, . . . , tk] and Lemma 11.3 is a generalized
version of Young’s inequality, which allows us to bound the expectations of products by
sums of moments.

Lemma 11.2. Fix k ∈ N+ such that k ≥ 2. For any J ⊆ I, let N(J) be defined as above.
Suppose (i1, . . . , ik) is a tuple such that i1 ∈ I, i2 ∈ N(i1), . . . , ik ∈ N(i1:(k−1)). Then
for any 1 ≤ h ≤ k, there exists a permutation π on [k] such that π(1) = h, iπ(1) ∈ I,
iπ(2) ∈ N

(
iπ(1)

)
, . . . , iπ(k) ∈ N

(
iπ(1), . . . , iπ(k−1)

)
.

Proof. We perform induction on k.

Firstly, suppose that k = 2, then we remark that i2 ∈ N(i1)⇔ i1 ∈ N(i2). For h = 1,
we can choose π to be the identity and the desired identity holds. For h = 2, we let
π(1) := 2 and π(2) := 1 and remark than once again the desired result holds.

Suppose that the proposition is true for 2, . . . , k−1. We want to prove that it holds for k.
If h < k, consider the tuple (i1, . . . , ih). By inductive hypothesis, there is a permutation
π̃ on {1, 2, . . . , h} such that π̃(1) = h, iπ̃(2) ∈ N

(
iπ̃(1)

)
, . . . , iπ̃(h) ∈ N

(
iπ̃(1), . . . , iπ̃(q−1)

)
.

Define

π(j) :=

{
π̃(j) if 1 ≤ j ≤ h
j if h+ 1 ≤ j ≤ k

.

Then π satisfies the requirements in the lemma.

Now suppose h = k. ik ∈ N(i1:(k−1)) indicates that ik is a neighbor of {i1, . . . , ik−1}.
Then there exists 1 ≤ ` ≤ k − 1 such that there is an edge between ik and i` in the graph
G = (I, E). Thus, ih ∈ N(i`).

By inductive hypothesis, there is a permutation π̃ on [`] such that π̃(1) = `, iπ̃(2) ∈
N
(
iπ̃(1)

)
, . . . , iπ̃(`) ∈ N

(
iπ̃(1), . . . , iπ̃(`−1)

)
.

Define

π(j) :=


k if j = 1

π̃(j − 1) if 2 ≤ j ≤ `+ 1

j − 1 if `+ 2 ≤ j ≤ k
.

Then π(1) = h = k. Moreover, we have iπ(2) = i` ∈ N(ik) = N
(
iπ(1)

)
, and note that for all

j = 3, . . . , ` we have iπ(j+1) = iπ̃(j) ∈ N
(
iπ̃(1), . . . , iπ̃(j−1)

)
= N

(
iπ(1), . . . , iπ(j)

)
. Finally, for

all j ≥ ` + 1 we have iπ(j+1) = ij ∈ N(i1:(j−1)) ⊆ N
(
i1, . . . , ij−1, ik

)
= N

(
iπ(1), . . . , iπ(j)

)
.

Thus, the lemma holds for k as well. By induction, the proof is complete.

Also, we need a generalization of Young’s inequality.
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Lemma 11.3. Given t ∈ N+, let Y1, . . . , Yt be a sequence of random variables, and real
numbers p1, . . . , pt > 1 satisfy that 1/p1 + · · ·+ 1/pt = 1. Then for any (`, η1:`) ∈ C(t) :=

{`, η1:` ∈ N+ :
∑`
j=1 ηj = t}, we have that

[η1, . . . , η`] . (|Y1|, . . . , |Yt|) ≤
1

p1
E[|Y1|p1 ] + · · ·+ 1

pt
E[|Yt|pt ]. (11.2)

Proof. First, we prove

E[|Y1 · · ·Yt|] ≤
1

p1
E[|Y1|p1 ] + · · ·+ 1

pt
E[|Yt|pt ], (11.3)

E[|Y1|] · · ·E[|Yt|] ≤
1

p1
E[|Y1|p1 ] + · · ·+ 1

pt
E[|Yt|pt ]. (11.4)

In this goal, note that Young’s inequality is stated as follows: For any a1, . . . , at ≥ 0, and
p1, . . . , pt > 1 such that 1/p1 + · · ·+ 1/pt = 1, we have

a1 · · · at ≤
1

p1
ap11 + · · ·+ 1

pt
aptt .

Thus, by Young’s inequality we know that

|Y1 · · ·Yt| ≤
1

p1
|Y1|p1 + · · ·+ 1

pt
|Yt|pt .

Taking the expectation, we have

E[|Y1 · · ·Yt|] ≤
1

p1
E[|Y1|p1 ] + · · ·+ 1

pt
E[|Yt|pt ].

Again by Young’s inequality, we obtain that

E[|Y1|] · · ·E[|Yt|] ≤
1

p1
E[|Y1|]p1 + · · ·+ 1

pt
E[|Yt|]pt .

By Jensen’s inequality, E[|Yi|]pi ≤ E[|Yi|pi ] for i ∈ [t]. This implies that

E[|Y1|] · · ·E[|Yt|] ≤
1

p1
E[|Y1|p1 ] + · · ·+ 1

pt
E[|Yt|pt ].

Finally, we prove (11.2). Let 1/qj :=
∑ηj
i=ηj−1+1 1/pi for 1 ≤ j ≤ k.

[η1, . . . , η`] . (|Y1|, . . . , |Yk|)
= E

[∣∣Y1 · · ·Yη1
∣∣] E[∣∣Yη1+1 · · ·Yη2

∣∣] · · · E[∣∣Yη1+···+η`−1+1 · · ·Yk
∣∣]

(11.4)
≤ 1

q1
E
[∣∣Y1 · · ·Yη1

∣∣q1]+ · · ·+ 1

qk
E
[∣∣Yη1+···+η`−1+1 · · ·Yk

∣∣qk]
(11.3)
≤ 1

p1
E[|Y1|p1 ] + · · ·+ 1

pη1
E[|Yη1 |pη1 ] + · · ·

+
1

pη1+···+η`−1+1
E[|Yk+1−u` |

pη1+···+η`−1+1 ] + · · ·+ 1

pk
E[|Yk|pk ].

Now we are ready to prove Proposition 11.1.

Proof of Proposition 11.1. By (9.11), we only need to prove that the following inequality
holds for any k ∈ N+:

Rω[0,±1, . . . ,±k] .Mk−1+ω
∑
i∈I
E[|Xi|k+ω].
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Once again we write z :=
∣∣{j : tj > 0}

∣∣. If z ≥ 1, we write {j : tj > 0} = {q1, . . . , qz},
where 2 ≤ q1 < · · · < qz ≤ k is increasing. Further let q0 := 1 and qz+1 := k + 1.

Noticing that
1

k + ω
+ · · ·+ 1

k + ω︸ ︷︷ ︸
k times

+
ω

k + ω
= 1,

we apply Lemma 11.3 and obtain that

[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik |,

(
1

M

∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)ω) (11.5)

.E[|Xi1 |k+ω] + · · · + E[|Xik |k+ω] + E

[(
1

M

∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)k+ω]
.

Now by Jensen’s inequality and the fact that
∣∣N(i1:k)

∣∣ ≤M , we get that

E

[(
1

M

∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)k+ω]
≤ 1

M

∑
ik+1∈N(i1:k)

E[|Xik+1
|k+ω].

Moreover, we remark that

Mω[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik |,

(
1

M

∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)ω)

=[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik |,

( ∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)ω) (11.6)

Thus, this implies that

Rω[0,±1, . . . ,±k] (11.7)

=
∑
i1∈I
· · ·

∑
ik∈N(i1:(k−1))

[q1 − q0, . . . , qz+1 − qz] .
(
|Xi1 |, . . . , |Xik |,

( ∑
ik+1∈N(i1:k)

∣∣Xik+1

∣∣)ω)

.Mω
∑
i1∈I
· · ·

∑
ik∈N(i1:(k−1))

(
E[|Xi1 |k+ω] + · · ·+ E[|Xik |k+ω] +

1

M

∑
ik+1∈N(i1:k)

E[|Xik+1
|k+ω]

)
.

Since the cardinality of N(i1), . . . , N(i1:k) are bounded by M , for j = 1 we have∑
i1∈I

∑
i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|Xij |k+ω] ≤Mk−1
∑
i∈I
E[|Xi|k+ω]. (11.8)

Now we bound ∑
i1∈I

∑
i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|Xij |k+ω],

where j = 2, . . . , k.
By Lemma 11.2, for any tuple (i1, . . . , ik) in the summation, there exists a permutation

π such that π(1) = j, iπ(2) ∈ N
(
iπ(1)

)
, . . . , iπ(k) ∈ N

(
iπ(1), . . . , iπ(k−1)

)
. Let φj be a map

that sends (i1, . . . , ik) to
(
iπ(1), . . . , iπ(k)

)
. Then no more than (k − 1)! tuples are mapped

to the same destination since (i1, . . . , ik) is a permutation of
(
iπ(1), . . . , iπ(k)

)
and ij is

fixed to be iπ(1). Thus, we obtain that∑
i1∈I

∑
i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|Xij |k+ω]
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≤(k − 1)!
∑

π:π(1)=j

∑
iπ(1)∈I

∑
iπ(2)∈N(iπ(1))

· · ·
∑

iπ(k)∈N(iπ(1),...,iπ(k−1))

E[|Xiπ(1)
|k+ω]

≤(k − 1)!
∑

π:π(1)=j

∑
i1∈I

∑
i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|Xij |k+ω]

≤((k − 1)!)2Mk−1
∑
i∈I
E[|Xi|k+ω] .Mk−1

∑
i∈I
E[|Xi|k+ω]. (11.9)

Similarly,∑
i1∈I

∑
i2∈N(i1)

· · ·
∑

ik+1∈N(i1:k)

E[|Xik+1
|k+ω] .Mk

∑
i∈I
E[|Xi|k+ω]. (11.10)

Substituting (11.8), (11.9), and (11.10) into (11.7), we conclude

Rω[t1, t2, . . . , tk] ≤Rω
[
0, sgn(t2), 2 · sgn(t3), . . . , (k − 1) sgn(tk−1)

]
.Mk−2+ω

∑
i∈I
E[|Xi|k−1+ω].

Proof of Proposition 3.3. By Proposition 11.1, we have

Rk,ω
(11.1)

=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, . . . , tk+2] .
∑

t1:(k+2)∈M1,k+2

Mk+ω
∑
i∈I
E[|Xi|k+1+ω].

Noting that |M1,k+2| < 2k+1 [22], we conclude that

Rk,ω .Mk+ω
∑
i∈I
E[|Xi|k+1+ω].

11.2 Proof of Theorem 3.4

The proof of Theorem 3.4 relies on Theorem 3.1 and Proposition 3.3.

Proof of Theorem 3.4. Let k := dpe. Then p = k + ω − 1. Without loss of generality, we
assume σn = 1. By Proposition 3.3,

Rj,ω,n .M j+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣j+1+ω]
.

If we let q1 = (k − 1)/(k − j) and q2 = (k − 1)/(j − 1), then 1/q1 + 1/q2 = 1 and
(2 + ω)/q1 + (k + 1 + ω)/q2 = j + 1 + ω. Thus,∣∣X (n)

i

∣∣j+1+ω
=
∣∣X (n)

i

∣∣(2+ω)/q1 ·
∣∣X (n)

i

∣∣(k+1+ω)/q2
.

By Hölder’s inequality,

M j+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣j+1+ω]
≤
(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω])1/q1(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω])1/q2

=
(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω])(k−j)/(k−1)(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω])(j−1)/(k−1)

.

Since
ω(k − j)

(k − 1)(j + ω − 1)
+

(j − 1)(k + ω − 1)

(k − 1)(j + ω − 1)
= 1,
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by Young’s inequality (See Lemma 11.3 for details), we get(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω]) k−j
(k−1)(j+ω−1)

(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω]) j−1
(k−1)(j+ω−1)

≤ ω(k − j)
(k − 1)(j + ω − 1)

(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω])1/ω

+
(j − 1)(k + ω − 1)

(k − 1)(j + ω − 1)

(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω])1/(k+ω−1)

.

Thus, we have

R
1/(j+ω−1)
j,ω,n .

(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω])1/ω

+
(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω])1/(k+ω−1)

.

Similarly, we derive that

R
1/j
j,1,n .

(
M j+1
n

∑
i∈In

E
[∣∣X (n)

i

∣∣j+2])1/j

≤
(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω]) k+ω−j−1
kj

(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω]) j−ω
(k−1)j

.
(
M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣2+ω])1/ω

+
(
Mk+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣k+1+ω])1/(k+ω−1)

.

Since by assumption M1+ω
n

∑
i∈In E

[∣∣X (n)

i

∣∣ω+2]→ 0 and Mk+ω
n

∑
i∈In E

[∣∣X (n)

i

∣∣p+2]→ 0 as
n→∞, we have that Rj,1,n → 0 as n→∞. Therefore, by Theorem 3.1 and noting the
fact that p = k + ω − 1, we conclude

Wp(L(Wn),N (0, 1))

≤Cp
((

M1+ω
n

∑
i∈In

E
[∣∣X (n)

i

∣∣ω+2])1/ω

+
(
Mp+1
n

∑
i∈In

E
[∣∣X (n)

i

∣∣p+2])1/p
)
,

where Cp only depends on p.

11.3 Proofs of Corollaries 4.2 and 5.2

Proof of Corollary 4.2. Define the graph (Tn, En) to be such that there is an edge be-
tween i1, i2 ∈ Tn if and only if ‖i1 − i2‖ ≤ m. From the definition of the m-dependent
random field,

(
X (n)

i

)
i∈Tn

satisfies [LD*]. We will therefore apply Theorem 3.4 to obtain

the desired result. We remark that j ∈ Nn
(
i1:(dpe+1)

)
only if there is ` ∈ [dpe + 1] such

that ‖i` − j‖ ≤ m, which directly implies that
∣∣Nn(i1:(dpe+1)

)∣∣ ≤ (2m+ 1)d(dpe+ 1).
Moreover, by Hölder’s inequality, we have

∑
i∈Tn

E
[∣∣X (n)

i

∣∣ω+2] ≤(∑
i∈Tn

E
[∣∣X (n)

i

∣∣2])(p−ω)/p(∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])ω/p
(a)

≤M (p−ω)/pσ2(p−ω)/p

(∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])ω/p
.

Here (a) is due to the non-degeneracy condition. And this directly implies that

m(1+ω)d/ω

(
σ−(ω+2)
n

∑
i∈Tn

E
[∣∣X (n)

i

∣∣ω+2])1/ω
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≤m
(1+ω)d
ω M

p−ω
pω

(
σ−(p+2)
n

∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])1/p

→ 0 as n→∞.

Therefore, by Theorem 3.4, there exists Cp,d > 0 such that for n large enough we have

Wp(L(Wn),N (0, 1)) ≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

(∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])1/p

.

Moreover, if
(
X (n)

i

)
is in addition assumed to be stationary, then by assumption there

is a constant K such that lim infn→∞ σ2
n/|Tn| ≥ K. Therefore, we get that

σ−(p+2)
n

∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2] � |Tn|−(p+2)/2 · |Tn| = |Tn|−p/2 → 0,

and

Wp(L(Wn),N (0, 1)) ≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

(∑
i∈Tn

E
[∣∣X (n)

i

∣∣p+2])1/p

= O(|Tn|−1/2).

Proof of Corollary 5.2. Consider the index set In = {i = (i1, . . . , im) : 1 ≤ i1 ≤ · · · ≤
im ≤ n} ⊆ Zm. For each i ∈ In, let ξi := h(Xi1 , . . . , Xim). Then Wn = σ−1

n

∑
i∈I ξi.

Let (In, En) be the graph such that there is an edge between i, j ∈ In if and only if
{i1, . . . , im} ∩ {j1, . . . , jm} 6= ∅.

Then we remark that the conditions [LD*] holds. Moreover, note that j is in
Nn(i1:(dpe+1)) only if there is ` ∈ [dpe + 1] and k1, k2 ∈ [m] such that jk1 = (i`)k2 , where
(i`)k2 denotes the k2-th component of the vector i`. This directly implies that the cardi-
nality of the dependency neighborhoods are bounded by nm−

(
n−m(dpe+ 1)

)m � nm−1.
Moreover, the non-degeneracy condition of the U-statistic implies that σ2

n � n2m−1 [14].
Applying Theorem 3.4, we get that

Wp(L(Wn),N (0, 1))

.
(
nm(nm−1)1+ω 1

σω+2
n

E
[∣∣h(X1, . . . , Xm)

∣∣ω+2])1/ω

+
(
nm(nm−1)p+1 1

σp+2
n

E
[∣∣h(X1, . . . , Xm)

∣∣p+2])1/p

.n−1/2
(
E
[∣∣h(X1, . . . , Xm)

∣∣ω+2])1/ω

+ n−1/2
(
E
[∣∣h(X1, . . . , Xm)

∣∣p+2])1/p

≤n−1/2
∥∥h(X1, . . . , Xm)

∥∥(ω+2)/ω

p+2
+ n−1/2

∥∥h(X1, . . . , Xm)
∥∥(p+2)/p

p+2
.

By the moment condition,
∥∥h(X1, . . . , Xm)

∥∥
p+2

<∞. Thus, we conclude

Wp(L(Wn),N (0, 1)) = O(n−1/2).

11.4 Proof of Theorem 6.1

Proof. For ease of notation we write ωp :=Wp(L(Wn),N (0, 1)). Choose ρ ∈ (0, 1). Then
remark that for all ε > 0 there is G ∼ N (0, 1) such that ‖G−Wn‖p ≤ Wp(L(Wn),N (0, 1))+

ε. Therefore, by the union bound we have

P
(
Wn ≥ t

)
= P

(
Wn −G+G ≥ t

)
≤ P

(
Wn −G ≥ (1− ρ)t

)
+ P

(
G ≥ ρt

)
(a)

≤ Φc(ρt) +
‖Wn −G‖pp
((1− ρ)t)p
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≤ Φc(ρt) +

(
ωp + ε

)p
((1− ρ)t)p

where to obtain (a) we have used Markov’s inequality. Now as this holds for any arbitrary
choice of ε > 0 we conclude that

P
(
Wn ≥ t

)
≤ Φc(ρt) +

ωpp
((1− ρ)t)p

.

Define the function gt : x 7→ (1− x)p+1e−
(xt)2

2 , then we can remark that gt : [0, 1]→ [0, 1]

is a bijection. Choose ρ∗t := g−1
t

(√
2πpωpp
tp+1

)
. Moreover, we obtain that

P
(
Wn ≥ t

)
≤ Φc(ρ∗t t) + ϕ(ρ∗t t)(1− ρ∗t )t

ωpp
tp+1(1− ρ∗t )p+1ϕ(ρ∗t t)

(11.11)

(a)

≤ Φc(t) + (1− ρ∗t )tϕ(ρ∗t t)
(
1 +

1

p

)
≤ Φc(t) +

p
1
p+1ω

1− 1
p+1

p

t
ϕ
(
ρ∗t t
(

1− 1

p+ 1

))(
1 +

1

p

)
where to obtain (a) we used the fact that Φc(ρ∗t t) ≤ Φc(t) + (1− ρ∗t )t supx∈[ρ∗t t,t]

ϕ(x).

Suppose that t ≥ 1 and satisfies 1−
√

2β log t
t ≤ 1. Define

x :=

√
2β log t

t
,

we notice that x ∈ [0, 1]. We remark that if

ωp ≤ (
√

2πp)
1
p+1

(
1−
√

2β log t

t

)
t1−

β
p+1 ,

then we have g−1
t (x) ≥

√
2πpωpp
tp+1 . Therefore as g−1

t (·) is a decreasing function we have that
x ≤ ρ∗t which implies that

P(Wn ≥ t) ≤ Φc(t) +
1

t1+β
(

1− 1
p+1

) p 1
p+1ω

1− 1
p+1

p

(
1 +

1

p

)
.

Moreover, similarly we can remark that

P(G ≥ (1 + ρ)t) ≤ P(Wn ≥ t) + P(G−Wn ≥ ρt)

≤ P(Wn ≥ t) +

(
ωp + ε)p

ρptp
.

Therefore, as this holds for any arbitrary ε > 0 we obtain that

Φc((1 + ρ)t) ≤ P(Wn ≥ t) +
ωpp
ρptp

.

Moreover, we can definite g̃t : x 7→ e−(1+x)2t2xp+1 then choose ρ̃∗t := g̃−1
t

(√
2πpωpp
tp+1

)
. We

similarly obtain that

P(Wn ≥ t) ≥ Φc(t)− p
1
p+1ω

1− 1
p+1

p

t
ϕ
(
t
(

1− 1

p+ 1

))(
1 +

1

p

)
.
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