
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 28 (2023), article no. 20, 1–12.
ISSN: 1083-6489 https://doi.org/10.1214/23-EJP916

The rate of escape of the most visited site of Brownian
motion
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Abstract

Let {Lzt } be the jointly continuous local times of a one-dimensional Brownian motion
and let L∗t = supz∈R L

z
t . Let Vt be any point z such that Lzt = L∗t , a most visited site of

Brownian motion. We prove that if γ > 1, then

lim inf
t→∞

|Vt|√
t/(log t)γ

= ∞, a.s.,

with an analogous result for simple random walk. This proves a conjecture of Lifshits
and Shi.
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1 Introduction

Let Sn be a simple random walk, let Nk
n =

∑n
j=0 1(Sj=k) be the number of visits by

the random walk to the point k by time n, and let N∗n = supk∈ZN
k
n . Let Un = {k ∈ Z :

Nk
n = N∗n}, the set of values k where Nk

n takes its maximum, and let Un be any element
of Un. We call Un the set of most visited sites of the random walk at time n. This concept
was introduced in [4], and was simultaneously and independently defined by [13], who
called Un a favorite point of the random walk. In [4] it was proved that Un is transient,
and in fact

lim inf
n→∞

|Un|√
n/(log n)γ

=∞ (1.1)

if γ > 11 and

lim inf
n→∞

|Un|√
n/(log n)γ

= 0 (1.2)

if γ < 1. It has been of considerable interest since that time to prove that there exists γ0
such that (1.1) holds if γ > γ0 and (1.2) holds if γ < γ0 and to find the value of γ0.
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One can state the analogous problem for Brownian motion, and [4] used Brownian
motion techniques and an invariance principle for local times to derive the results for
random walk from those of Brownian motion. Let {Lzt } be the jointly continuous local
times of a Brownian motion and let Vt(ω) be the set of values of z where the function
z → Lzt (ω) takes its maximum. We call Vt the set of most visited points or the set of
favorite points of Brownian motion at time t. In [4] it was proved that if Vt is any element
of Vt, then

lim inf
t→∞

|Vt|√
t/(log t)γ

=∞ (1.3)

if γ > 11 and

lim inf
t→∞

|Vt|√
t/(log t)γ

= 0 (1.4)

if γ < 1.

The bounds in (1.2) and (1.4) have been improved somewhat. Lifshits and Shi [20]
proved that the lim inf is 0 when γ = 1 as well as when γ < 1.

In [3] the most visited sites of symmetric stable processes of order α for α > 1 were
studied. As a by-product of the results there, the value of γ in (1.3) was improved from
11 to 9.

In Lifshits and Shi [20] it was asserted that the value of γ in (1.1) and (1.3) could be
any value larger than 1, or equivalently, that γ0 exists and is equal to 1. However, as Prof.
Shi kindly informed us, there is a subtle but serious error in the proof; see Remark 2.5
for details.

Marcus and Rosen [22] subsequently showed that γ in (1.3) could be any value larger
than 3.

In this paper we prove that the assertion of Lifshits and Shi is correct, that (1.1)
and (1.3) hold whenever γ > 1. See Theorems 2.1 and 2.2. Our method relies mainly on
the Ray-Knight theorems and a moving boundary estimate due to Novikov [23].

A few words about when Un and Vt consist of more than one point are in order.
Eisenbaum [10] and Leuridan [18] have shown that at any time t there are at most two
values where Lzt takes its maximum. Toth [27] has shown that for n sufficiently large,
depending on ω, there are at most 3 values of k which are most visited sites for Sn, and
more recently Ding and Shen [9] have shown that almost surely Un consists of 3 distinct
points infinitely often. It turns out that the values of the lim inf in (1.1)–(1.4) do not
depend on which value of the most visited site is chosen.

There are many results on the most visited sites of Brownian motion and of various
other processes. See [5], [8], [11], [12], [14], [16], [19], [21], [24], and [26] for some of
these.

In Section 2 we state our main theorems precisely and give some preliminaries.
Section 3 contains some estimates on local times and squared Bessel processes of
dimension 0. These are used in Section 4 to establish a lower bound on the supremum
of local time at certain random times, and in Section 5 we move from random times to
fixed times to obtain our result for Brownian motion. Finally in Section 6 we prove the
result for random walks.

2 Preliminaries

Let Wt be a one-dimensional Brownian motion and let {Lzt } be a jointly continuous
version of its local times. Let

L∗t = sup
z∈R

Lzt .
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We define the collection of most visited sites of W by

Vt = {x ∈ R : Lxt = L∗t }.

Let V st = inf{|x| : x ∈ Vt} and V `t = sup{|x| : x ∈ Vt}.
Our main theorem can be stated as follows.

Theorem 2.1. (1) If γ > 1, then

lim inf
t→∞

V st√
t/(log t)γ

=∞, a.s.

(2) If γ ≤ 1,

lim inf
t→∞

V `t√
t/(log t)γ

= 0, a.s.

We have the corresponding theorem for a simple random walk Sn. Let

Nk
n =

n∑
j=0

1(Sj=k),

the number of times Sj is equal to k up to time n. Let N∗n = maxk∈ZN
k
n and let

Ut = {k ∈ Z : Nk
n = N∗n}.

Let Ust = inf{|x| : x ∈ Nt} and U `t = sup{|x| : x ∈ Nt}.
Our second theorem is the following.

Theorem 2.2. (1) If γ > 1, then

lim inf
n→∞

Usn√
n/(log n)γ

=∞, a.s.

(2) If γ ≤ 1,

lim inf
n→∞

U `n√
n/(log n)γ

= 0, a.s.

A process Xt is called the square of a Bessel process of dimension 0 started at x ≥ 0,
denoted BES(0)2, if it is the unique solution to the stochastic differential equation

Xt = x+ 2
√
Xt dWt,

where Xt ≥ 0 a.s. for each t and W is a one-dimensional Brownian motion with filtration
{Ft}. When Xt hits 0, which it does almost surely, it then stays there forever. X has
a scaling property: for r > 0 and X is started at x, the process 1

rXt has the same law
as the process Xt/r started at x/r. If Yt is the nonnegative square root of Xt and x > 0,
then Y is the unique solution to the stochastic differential equation

Yt =
√
x+Wt −

1

2Yt
dt.

See [25] for details.
For any process ξt let

τa = τ ξa = inf{t > 0 : ξt = a}, (2.1)

the hitting time of a by the process ξt.
Let

Tr = T (r) = inf{t > 0 : L0
t ≥ r}, (2.2)

the inverse local time at 0.
The main preliminary result we need is the following version of a special case of the

Ray-Knight theorems. See [17], [22], and [25].
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Theorem 2.3. Suppose r > 0. The processes {LzTr , z ≥ 0} and {L−zTr , z ≥ 0} are each
BES(0)2 processes with time parameter z started at r and are independent of each
other.

We also need

Proposition 2.4. Let 0 < r < s. The processes {LzTs−L
z
Tr
, z ≥ 0} and {L−zTs −L

−z
Tr
, z ≥ 0}

are each BES(0)2 processes started at s − r, are independent of each other, and are
independent of the processes {LzTr , z ≥ 0} and {L−zTr , z ≥ 0}.

Proof. Since the local time at 0 of a Brownian motion increases only when the Brownian
motion is at 0, then WTr = 0 for all r > 0. Proposition 2.4 follows easily from this, the
strong Markov property applied at time Tr, and Theorem 2.3.

We use the letter c with or without subscripts to denote finite positive constants
whose exact value is unimportant and whose value may change from line to line.

Remark 2.5. The error in [20] is that inequality (2.12) of that paper need not hold. Let
a > 0. Note that supy>a

√
t L

y
t can be decreasing in t at some times because the supremum

is over decreasing sets. This can happen even when Wt > a
√
t. Similarly, supx<a

√
t L

x
t

can be increasing in t at some times even when Wt > a
√
t because the supremum is over

increasing sets.

3 Some estimates

Define

I+(t, h) = sup
0≤z≤h

Lzt .

Proposition 3.1. Let θ > 0. There exists a positive real number M depending on θ such
that

lim sup
t→∞

sups≤t[I
+(s,
√
t/(log t)θ)− L0

s]√
t log log t/(log t)θ/2

≤M, a.s.

Proof. Let An be the event

An =
{

sup
s≤2n+1

[I+(s, 2(n+1)/2/(log 2n)θ)− L0
s] ≥M

2n/2 log log 2n

(log 2n+1)θ/2

}
,

where M is a positive real to be chosen in a moment. By scaling, the probability of An is
the same as the probability of

Bn =
{

sup
s≤1

[I+(s, 1/(log 2n)θ)− L0
s] ≥M

2−1/2 log log 2n

(log 2n+1)θ/2

}
.

Lemma 5.2 of [4] says that if δ ≤ 1 and t ≥ 1, then

P(sup
s≤t

sup
0≤x,y≤1,|x−y|≤δ

|Lys − Lxs | ≥ λ) ≤ c1
δ
e−λ/c2δ

1/2t1/4 .

Applying this with t = 1, δ = 1/(log 2n)θ, x = 0, and

λ = 2−1/2M log log 2n/(log 2n+1)θ/2,

and recalling P(An) = P(Bn), we see that P(An) is summable provided we choose M
large enough. By the Borel-Cantelli lemma, P(An i.o.) = 0. If 2n ≤ t ≤ 2n+1 and t is large
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enough (depending on ω), then

sup
s≤t

[I+(s,
√
t/(log t)θ)− L0

s] ≤ sup
s≤2n+1

[I+(s, 2(n+1)/2/(log 2n)θ)− L0
s]

≤M 2n/2 log log 2n

(log 2n+1)θ/2

≤M
√
t log log t/(log t)θ/2.

The proposition follows.

Proposition 3.2. Let Xt be a BES(0)2 and let Px denote the law of X started at x. Then

P1(τ0 < τ1+a) =
a

1 + a
.

Proof. We know τ0 < ∞ a.s. Now X is a continuous martingale, hence a time change
of a Brownian motion, and thus the hitting probabilities are the same as those for a
Brownian motion.

The next two propositions show that in many respects a BES(0)2 is similar to a
Brownian motion as long as it is not too close to 0.

Proposition 3.3. For X a BES(0)2 and x > 0,

Px(inf
s≤t

Xs < x− λ) ≤ c1e−c2λ
2/xt.

Proof. Since X ≥ 0, there is nothing to prove unless λ ≤ x. By a scaling argument, it
suffices to suppose x = 1.

We start by writing

P1(τX1−λ ≤ t) ≤ P1(τX2 ≤ t) + P1(τX1−λ ≤ t, τX2 > t). (3.1)

To estimate the terms on the right hand side of (3.1) we use Doob’s inequality. Recalling
that dXt = 2

√
Xt dWt, we have d〈X〉t = 4Xt dt.

Suppose a > 0. Then

P1(τX2 ≤ t) = P1( sup
s≤t∧τX2

Xs ≥ 2) = P1( sup
s≤t∧τX2

a(Xs − 1) ≥ a)

≤ e−aE1 exp(a(Xt∧τX2 − 1)).

To bound the expectation,

E1 exp(a(Xt∧τX2 − 1))

= E1
[

exp(a(Xt∧τX2 − 1)− 1
2a

2〈X〉t∧τX2 ) exp( 1
2a

2〈X〉t∧τX2 )
]

≤ E1 exp(a(Xt∧τX2 − 1)− 1
2a

2〈X〉t∧τX2 )e4a
2t.

Setting a = 1/8t yields
P1(τX2 ≤ t) ≤ e−1/16t.

The second term of (3.1) is slightly more complicated, but quite similar. Let X̃t be Xt

stopped at time τX2 and use (2.1) to define τ X̃1−λ. Suppose a > 0 and write

P1(τX1−λ ≤ t, τX2 > t) ≤ P1( inf
s≤t∧τX̃1−λ

(X̃s − 1) ≤ −λ)

= P1( sup
s≤t∧τX̃1−λ

(−a(X̃s − 1)) ≥ aλ)

≤ e−aλE1 exp(a(−(X̃
t∧τX̃1−λ

− 1)))
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and the expectation on the last line is equal to

E1
[

exp(−a(X̃
t∧τX̃1−λ

− 1)− 1
2a

2〈X̃〉
t∧τX̃1−λ

) exp( 1
2a

2〈X̃〉
t∧τX̃1−λ

)
]
,

which is bounded by e4a
2t. Setting a = λ/8t we see the second term on the right of (3.1)

is bounded by e−λ
2/16t.

Combining the two estimates for the terms on the right hand side of (3.1) and recalling
that we are supposing λ ≤ 1 yields the proposition.

Another approach to the preceding proposition is to use the results of [6].

Proposition 3.4. Let R > 0, let Xt be a BES(0)2, and let g be a non-negative absolutely
continuous function on [0, R] with g(0) > 0. Let p > 1. Then

P1(Xt ≤ 1+g(t), 0 ≤ t ≤ R) (3.2)

≤ c1ec2(p)R
(g(0)√

R

)1/p2
exp

( 1

2(p− 1)p

∫ R

0

g′(s)2 ds
)

+ c3e
−c4/R.

Proof. By Novikov [23], Theorem 6,

P0(Wt ≤ g(t), 0 ≤ t ≤ R) (3.3)

≤ c1
(

Φ0

(g(0)√
R

))1/p
exp

( 1

2(p− 1)

∫ R

0

g′(s)2 ds
)
,

where W is a Brownian motion, Φ0(x) = 2Φ(x)− 1, and Φ(x) is the distribution function
of a standard normal random variable. Note Φ0(x) ≤ cx for x ≥ 0.

Let Z be the unique solution to

dZt = dWt − a(Zt) dt,

where a(x) = 1/2x for x ≥ 1/2 and a(x) = 1 for x < 1/2. Let Yt = X
1/2
t .

We start by writing

P1(Xt ≤ 1 + g(t), 0 ≤ t ≤ R) (3.4)

≤ P1(Xt ≤ 1 + g(t), 0 ≤ t ≤ R, τX1/4 > R) + P1(τX1/4 ≤ R).

The second term on the right is bounded by c1e−c2/R by Proposition 3.3. The first term
on the right is equal to

P1(Yt ≤ (1 + g(t))1/2, 0 ≤ t ≤ R, τY1/2 > R)

≤ P1(Yt ≤ 1 + 1
2g(t), 0 ≤ t ≤ R, τY1/2 > R)

= P1(Zt ≤ 1 + 1
2g(t), 0 ≤ t ≤ R, τZ1/2 > R)

≤ P1(B),

where
B = {Zt ≤ 1 + 1

2g(t), 0 ≤ t ≤ R}

and τZ1/2 is defined by (2.1); we use the fact that Zt = Yt for t < τY1/2.
Let

Mt = exp
(∫ t

0

a(Zs) dWs − 1
2

∫ t

0

a(Zs)
2 ds

)
.

Let Q be defined by dQ/dP1 = Mt on Ft. By the Girsanov theorem, Zt = Wt−
∫ t
0
a(Zs) ds

is a Brownian motion under Q.
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By Hölder’s inequality,

P1(B) = EQ[M−1R ;B] ≤ (EQM
−r
R )1/r(Q(B))1/p,

where r = p/(p− 1). We bound the second factor by (3.3).
It remains to bound

EQ[M−rR ] = E1
P[M1−r

R ]

= E1
P

[
exp

(
(1− r)

∫ R

0

a(Zs) dWs − 1−r
2

∫ R

0

a(Zs)
2 ds

)]
= E1

P

[
exp

(
(1− r)

∫ R

0

a(Zs) dWs − (1−r)2
2

∫ R

0

a(Zs)
2 ds

)
× exp

( (1− r)2 − (1− r)
2

∫ R

0

a(Zs)
2 ds

)]
≤ exp

(r2 − r
2

R
)
.

Combining our estimates yields the proposition.

4 Growth of local times

Suppose ε ∈ (0, 12 ) and 0 < δ ≤ 1
2 . Choose p > 1 close to 1 so that 1/p2 ≥ 1−ε. Choose

β ∈ (0, 12 ) small so that β2/4p(p− 1) < ε/2. Let

Ut = LtT1
− 1. (4.1)

Recall that here t is actually the space variable for local time. Set

g(t) =

{
4δ, t ≤ 16δ2/β2;

β
√
t, t > 16δ2/β2.

Let
A = {∃t ∈ [0, δε] : Ut ≥ g(t)}. (4.2)

Proposition 4.1.
P(Ac) ≤ c1δ1−2ε.

Proof. We estimate the right hand side of (3.2) with R = δε and g(0) = 4δ. Observe that
g′(t) is zero unless t > 16δ2/β2, in which case g′(t) = β/2

√
t. Hence

1

2p(p− 1)

∫ δε

0

g′(t)2 dt ≤ β2

8p(p− 1)

∫ 1

16δ2/β2

1

t
dt

=
β2

4p(p− 1)
log(1/δ) + c(p, β),

where c(p, β) depends on p and β, but not δ.
Therefore

P(Ac) ≤ c1(δ1−ε/2)1/p
2

(1/δ)β
2/4p(p−1) + c2e

−c3δ−ε ≤ c4δ1−2ε.

For s ∈ [0, 1] let
Xs
t = LtT (1+s) − L

t
T (1) − s. (4.3)

Let
Bs = {∃t ∈ [0, δε] : Xs

t ≤ − 1
4g(t)}. (4.4)

For U , an estimate involving a power of δ close to 1 is the best we can expect.
However the exponential estimate we obtain in the next proposition allows us to take
the supremum over a large number of values of s.
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Proposition 4.2. For s ∈ [0, δε]

P(Bs) ≤ c1 log(1/δ)e−c2/δ
ε

.

Proof. Let I0 = [0, 16δ2/β2]. Let M be the smallest positive integer such that 2M (16δ2/β2)

is larger than δε. For 1 ≤ m ≤M let

Im = [2m−1(16δ2/β2), 2m(16δ2/β2)].

For 0 ≤ m ≤M let
Cm = {∃t ∈ Im : Xs

t ≤ − 1
4g(t)}.

By Proposition 3.3, for 1 ≤ m ≤M ,

P(Cm) ≤ c1 exp
(
− c2

2m−1δ2

s2mδ2

)
.

Because s ≤ δε, this is bounded by c1e−c2δ
−ε

. Similarly

P(C0) ≤ c1 exp
(
− c2

δ2

sδ2

)
≤ c3e−c4δ

−ε
.

Since M ≤ c log(δε−2),

P(∪Mm=0Cm) ≤ c1 log(1/δ)e−c2δ
−ε
.

Observing that Bs ⊂ ∪Mm=0Cm completes the proof.

Proposition 4.3. There exists c such that

P(∃u ∈ [1, 1 + δε] : (L∗Tu − u) ≤ δ) ≤ cδ2−4ε.

c depends on ε but not δ.

Proof. Let J = [δε−1] + 1 and let 0 = s0 < s1 < · · · < sJ = δε be points of the interval
[0, δε] such that sj+1 − sj ≤ δ for all j. Let

Dj = {sup
t≥0

(Ut +X
sj
t ) ≤ 2δ}.

We know P(D0) ≤ 2δ by Proposition 3.2.
Suppose 1 ≤ j ≤ J . If ω ∈ A ∩Bcsj , then there exists t ∈ [0, δε] such that Ut(ω) ≥ g(t)

but X
sj
t (ω) ≥ − 1

4g(t). But then

Ut(ω) +X
sj
t (ω) ≥ g(t)− 1

4g(t) ≥ 3δ,

which implies ω /∈ Dj . Therefore Dj ⊂ Ac ∪Bsj . It follows that

∪Jj=1Dj ⊂ Ac ∪ (∪Jj=1Bsj ).

Using Propositions 4.1 and 4.2 and the fact that J ≤ cδε−1, we then have

P(∃j ≤ J : sup
t≥0

(Ut +X
sj
t ) ≤ 2δ) ≤ 2δ + c1δ

1−2ε + c2δ
ε−1 log(1/δ)e−c3δ

−ε

≤ c4δ1−2ε.

If supx≥0 L
x
T (1+sj)

− (1 + sj) ≤ 2δ, then supt≥0(Ut +X
sj
t ) ≤ 2δ, and so

P(∃j ≤ J : sup
x≥0

LxT (1+sj)
− (1 + sj) ≤ 2δ) ≤ c4δ1−2ε. (4.5)
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Let L+
t = supx>0 L

x
t and L−t = supx<0 L

x
t . If L∗T (1+sj)

− (1 + sj) ≤ 2δ, then

L+
T (1+sj)

− (1 + sj) ≤ 2δ and L−T (1+sj)
− (1 + sj) ≤ 2δ.

By independence, symmetry, and (4.5),

P(E) ≤ (c1δ
1−2ε)2 = c2δ

2−4ε,

where
E = {∃j ≤ J : L∗T (1+sj)

− (1 + sj) ≤ 2δ}.

If u ≤ δε and u ∈ [sj , sj+1], then

L∗T (1+u) − (1 + u) ≥ L∗T (1+sj)
− (1 + sj) + (sj − u)

≥ L∗T (1+sj)
− (1 + sj)− δ.

We conclude that on the event Ec

L∗T (1+u) − (1 + u) > 2δ − δ = δ.

Therefore
P(∃u ∈ [0, δε] : L∗T (1+u) − (1 + u) ≤ δ) ≤ cδ2−4ε.

Theorem 4.4. If γ > 1/2, then

lim inf
t→∞

L∗Tt − t
t/(log t)γ

=∞, a.s.

Proof. Let rK = 2K , a > 0, and
δK =

a

(log rK)γ
.

Divide [rK , rK+1] into [δ−εK ] + 1 equal subintervals. Each subinterval will have length less
than or equal to δεKrK . Let

FK = {∃t ∈ [rK , rK+1] : (L∗Tt − t) ≤ δKrK}.

Then by scaling, Proposition 4.3, and our bound on the number of subintervals,

P(FK) ≤ c1δ−εK δ2−4εK = c1δ
2−5ε
K .

If γ > 1
2 , choose ε small enough so that (2 − 5ε)γ > 1. By the Borel-Cantelli lemma,

P(FK i.o.) = 0. This implies

P
(
L∗Tt − t ≤

at

(log t)γ
i.o.
)

= 0.

Since a is arbitrary, the theorem follows.

5 From random times to fixed times

Now we derive our results for fixed times from Theorem 4.4. For values r where Tr is
approximately r2, the argument is straightforward, but for other values of r a different
argument is necessary to avoid an extraneous power of logarithm.

Let
I(t, h) = sup

|z|≤h
Lzt .
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Theorem 5.1. Let γ > 1. There exists ρ > 0 such that with probability one,

L∗t > I(t,
√
t/(log t)γ) +

c
√
t

(log t)ρ

for all t sufficiently large.

Proof. Without loss of generality assume γ ≤ 2. Choose 1/2 < b < γ/2 and then choose
a < γ such that γ/2− a/2 > b. Suppose

Tr− ≤ t ≤ Tr,

where Tr− = lims→r− Ts. Then L0
t = r.

Case 1. t ≤ r2(log r)a. By [15], for t sufficiently large (depending on ω),

r = L0
t ≤ c

√
t log log t,

so log r ≤ c log t. By Proposition 3.1 and symmetry, for sufficiently large t (also depending
on ω),

I(t,
√
t/(log t)γ)− L0

t ≤ c
√
t log log t

(log t)γ/2

≤ cr(log r)a/2 log log r

(log r)γ/2

= c
r log log r

(log r)γ/2−a/2
.

For r sufficiently large, for all s ∈ [r/2, r), by Theorem 4.4 we have

L∗Ts − s ≥
s

2(log s)b
.

Letting s increase up to r,

L∗t − r ≥ L∗Tr− − r ≥
r

2(log r)b

≥ I(t,
√
t/(log t)γ)− r + c

r

(log r)b

≥ I(t,
√
t/(log t)γ)− r + c

√
t

(log t)b+a/2

for t sufficiently large.
Case 2. t > r2(log r)a. Then

L0
t = r ≤ c1

√
t

(log t)a/2
.

By this, Proposition 3.1, and symmetry, there exists K > c1 such that

I(t,
√
t/(log t)γ) ≤ L0

t +K

√
t log log t

(log t)γ/2
≤ 2K

√
t

(log t)a/2

for t large. By Kesten’s law of the iterated logarithm (see [15] and also [7]), there exists
κ > 0 such that for t sufficiently large,

L∗t ≥ κ
√
t/(log log t)1/2

≥ 3K

√
t

(log t)a/2
≥ I(t,

√
t/(log t)γ) +K

√
t

(log t)a/2
.
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In either case,

L∗t ≥ I(t,
√
t/(log t)γ) + c

√
t

(log t)b+a/2
, (5.1)

and we may take ρ = b+ a/2.

Proof of Theorem 2.1. Theorem 2.1(2) is already known; see [20]. For (1), let γ > 1. For
large enough t,

L∗t > I(t,
√
t/(log t)γ),

which means that Lzt takes its maximum for z outside the interval

[−
√
t/(log t)γ ,

√
t/(log t)γ ].

Theorem 2.1(1) now follows.

6 Random walks

Proof of Theorem 2.2. (2) follows from [20], so we only consider (1). By the invariance
principle of [24] we can find a simple random walk Sn and a Brownian motion Wt such
that for each ε > 0,

sup
k∈Z
|Lkn −Nk

n | = o(n1/4+ε), a.s. (6.1)

If γ > 1 and Kn = maxk∈Z,|k|≤
√
n/(logn)γ N

k
n , by (6.1), Lemma 5.3 of [4], and Theo-

rem 5.1, there exists ρ > 0 such that

N∗n ≥ L∗n − cn1/4+ε

≥ I(n,
√
n/(log n)γ) + c1

√
n

(log n)ρ
− c2n1/4+ε

≥ Kn + c1

√
n

(log n)ρ
− 2c2n

1/4+ε

> Kn

for n sufficiently large. We conclude the most visited site of Sn must be larger in absolute
value than

√
n/(log n)γ for n large.
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