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Abstract

We investigate propagation of chaos for mean field Markov Decision Process with
common noise (CMKV-MDP), and when the optimization is performed over randomized
open-loop controls on infinite horizon. We first state a rate of convergence of order
Mγ
N , where MN is the mean rate of convergence in Wasserstein distance of the

empirical measure, and γ P p0, 1s is an explicit constant, in the limit of the value
functions of N -agent control problem with asymmetric open-loop controls, towards
the value function of CMKV-MDP. Furthermore, we show how to explicitly construct
pε `OpMγ

N qq-optimal policies for the N -agent model from ε-optimal policies for the
CMKV-MDP. Our approach relies on sharp comparison between the Bellman operators
in the N -agent problem and the CMKV-MDP, and fine coupling of empirical measures.
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1 Introduction

We consider a social planner problem with N cooperative agents in a mean-field
discrete time model with common noise over an infinite horizon. The controlled state
process X “ pXiqiPJ1,NK of the N -agent model is given by the dynamical random system

#

Xi
0 “ xi0,

Xi
t`1 “ F pXi

t , α
i
t,

1
N

řN
j“1 δpXjt ,α

j
tq
, εit`1, ε

0
t`1q, t P N.

(1.1)

Here, xi0, i P J1, NK, are the initial states valued in a compact Polish space X with metric
d, pεitqiPJ1,NKtPN‹ is a family of mutually i.i.d. random variables on some probability space
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Quantitative propagation of chaos for mean field Markov decision process

pΩ,F ,Pq, valued in some measurable space E, and representing idiosyncratic noises,
while pε0

t qtPN‹ is another family of i.i.d. random variables valued in some measurable
space E0, and representing the common noise (independent of idiosyncratic noise). The
control αi followed by agent i, is a process, valued in some compact Polish space A

with metric dA, and adapted with respect to the filtration pFN
t qtPN generated by ε “

`

pεitqiPJ1,NK, ε
0
t

˘

tPN‹
and also completed with a family of mutually i.i.d. uniform random

variables U “ pU it qiPJ1,NK,tPN that are used for randomization of the controls. The mean-
field interaction between the agents is formalized via the state transition function F

by the dependence upon the empirical measure of both state/action of all the other
agents: here F is a measurable function from X ˆAˆPpX ˆAq ˆE ˆE0 into X , where
PpX ˆAq is the space of probability measures on the product space X ˆA. The role of
this additional uniform random variable is to provide a natural way to associate to any
randomized feedback policy of the mean-field problem a policy for the N -agent MDP:
each agent i will randomize its actions according to this same mean-field policy but
with an agent-specific sequence of randomization variables pU it qtPN. We also stress that
allowing the mean-field policy to be randomized is crucial, as the mean-field problem
over non-randomized feedback policies is not equivalent in general and has a strictly
smaller value function, and the randomized version of the mean-field problem is the limit
of the N -agent MDP (randomized or not randomized).

The objective of the social planner is to maximize over the set A of AN -valued
pFN

t qtPN-adapted processes α “ pαitqiPJ1,NK,tPN a criterion in the form

V αN px0q :“ E
” 1

N

N
ÿ

i“1

8
ÿ

t“0

βtf
`

Xi
t , α

i
t,

1

N

N
ÿ

j“1

δ
pXjt ,α

j
tq

˘

ı

,

where we set x0 “ px
i
0qiPJ1,NK P XN for the initial state of the N agent system. Here

β P p0, 1q is a discount factor, and f is a bounded measurable real-valued function on
X ˆAˆPpX ˆAq. The value function for this optimization problem is defined on XN as

VN px0q :“ sup
αPA

V αN px0q, (1.2)

and we notice that problem (1.1)–(1.2) is a standard Markov Decision Process (MDP)
with state space XN , action space AN , and (randomized) open-loop controls.

Let us now formulate the asymptotic mean-field problem when the number of agents
N goes to infinity. This consists formally in replacing empirical distributions by theoreti-
cal ones in the dynamic system and gain functions. The controlled state process X of
the representative agent is given by

#

X0 “ ξ0,

Xt`1 “ F pXα
t , αt,P

0
pXt,αtq

, εt`1, ε
0
t`1q, t P N,

(1.3)

where we have renamed the uniform random sequence pU1
t qtPN and the noise pε1

t qtPN by
pUtqtPN and pεtqtPN, and the initial state ξ0 is a G-measurable random variable, with G a
σ-algebra independent of pUtqtPN, pεtqtPN, pε0

t qtPN‹ , with distribution law µ0 P PpX q (the
set of probability measures on X ). The control process α is an A-valued process, adapted
with respect to the filtration generated by G, pUtqtPN, pεtqtPN, pε0

t qtPN‹ , denoted by α P
A. Here P0 and E0 represent the conditional probability and expectation knowing the
common noise ε0, and then, given a random variable Y , we denote by P0

Y or L0pY q its
conditional law knowing ε0. The McKean-Vlasov (or mean-field) control problem consists
in maximizing over randomized open-loop controls α in A the gain functional

V αpξ0q :“ E
”

8
ÿ

t“0

βtf
`

Xt, αt,P
0
pXt,αtq

˘

ı

.
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Quantitative propagation of chaos for mean field Markov decision process

The value function to this optimization problem is defined on PpX q by

V pξ0q :“ sup
αPA

V αpξ0q, (1.4)

and we recall from [18] that V depends on ξ0 only through its distribution (invariance
in law), and we denote by misuse of notation: V pµ0q “ V pξ0q. Problem (1.3)-(1.4) is
called mean-field Markov Decision Process with common noise, or conditional McKean-
Vlasov Markov Decision Process (CMKV-MDP in short), with the peculiarity compared to
standard MDP coming from the dependence of the state transition on the conditional
distribution of the state/action. In view of propagation of chaos for particle systems
usually derived for mean-field diffusion process (see [20]), it is expected that CMKV-MDP
provides a mean-field approximation of the N -agent MDP model.

While the literature on mean-field control in continuous time, in particular the optimal
control of McKean-Vlasov equations, is quite important, see the monograph [7] for an
overview and related references, there are rather few papers devoted to the discrete
time framework. One of the first works is [13] which studies the convergence of large
interacting population process to a simple mean-field model when the state space is finite.
The paper [19] studies a discrete-time McKean-Vlasov control problem with feedback
controls on finite horizon, and derives the corresponding dynamic programming equation
which is explicitly solved in the linear quadratic case. In [8], the authors consider mean-
field control on infinite horizon with common noise with a discussion about connections
between closed-loop and open-loop policies, and propose Q-learning algorithms. Our
companion paper [18] deals with open-loop controls and highlights the role of randomized
controls with respect to standard Markov Decision Process (MDP). The value function
is characterized as a fixed point Bellman equation defined on the space of probability
measures, and existence of ε-optimal randomized feedback controls is proved. The recent
paper [1] studies mean-field control with deterministic closed-loop policies through the
lens of MDP theory, and discusses the existence of optimal policies for the limiting
mean-field problem as well as for the N -agent problem.

Main contributions. In this paper, we establish a quantitative propagation of result
for the N -agent MDP towards the CMKV-MDP. Our contributions are twofold:

1. We show in Theorem 2.2 an explicit rate of convergence of the value functions
under some assumptions to be precised later: there exists some positive constant
C (depending on the data of the problem) such that for all x “ pxiqiPJ1,NK P XN ,

ˇ

ˇ

ˇ
VN pxq ´ V

` 1

N

N
ÿ

i“1

δxi
˘

ˇ

ˇ

ˇ
ď CMγ

N ,

where MN is the mean rate of convergence in Wasserstein distance of the empirical
measure (see [11]), and γ P p0, 1s is an explicit constant depending on β and F .

2. We prove that any ε-optimal randomized feedback policy for the CMKV-MDP (in-
cluding the case ε “ 0, i.e., optimal randomized feedback policy whose existence is
shown) yields either an approximate optimal feedback control or an approximate
randomized feedback control for the N -agent MDP problem, in a constructive sense
to be precised later with an explicit rate of convergence, see Theorems 2.4 and 2.5.

While the first statement for convergence of value function is important in theory, the
second statement is particularly interesting in practice (but often less studied in the
literature) since it means that if the McKean-Vlasov MDP is simpler to solve than the
N -agent MDP (some examples and applications to targeted advertising are developed
in the PhD thesis [17]), then one can compute an almost optimal randomized feedback
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policy for the McKean-Vlasov MDP, and then use it in the N -agent MDP: this will guaranty
us to have an almost optimal control.

Related literature. The convergence of the N -individual problem to the limiting mean-
field control problem has been first investigated for diffusion-based models. It was
rigorously proved in [16] by tightness and martingale arguments for continuous-time
controlled McKean-Vlasov equations, see also [7] Vol. 2, sec. 6.1.3. This result has been
extended in [10] to the common noise case and when there is interaction via the joint
distribution of the state and control. The paper [12] proved by viscosity solutions method
via the characterization of the Hamilton-Jacobi-Bellman equation the convergence of
the value function towards the N -agent problem to the value function of the mean-field
control problem in the common noise case but without idiosyncratic noise, see also [21]
for the case with idiosyncratic noise. Rate of convergence of order 1{N has been stated
in [14] by Backward Stochastic Differential Equations techniques but under the strong
condition that there exists a smooth solution to the Master Bellman equation. The recent
papers [5], [6] removed this regularity assumption on the value function, and obtained
an algebraic rate of convergence of order N´γ for some constant γ P p0, 1s. We mention
also in the continuous-time framework the paper [9] which derived a rate of convergence
of order N´1{2 when the state space is finite, and the recent work [2] in the context of
regime-switching jump diffusions.

The convergence of the value function in the N -agent problem in a discrete-time
mean field framework has been studied in our companion paper [18]. However, it was
assumed there that each agent used the same open-loop policy, applied to her own
idiosyncratic noise and the common noise. In particular, agent’s controls cannot depend
upon other agent’s idiosyncratic noises, and they have symmetric (or exchangeable)
behaviours. This restriction was crucial for using propagation of chaos argument relying
on a pathwise comparison between the state and control processes in the N -individual
model and the McKean-Vlasov MDPs.

In this paper, we consider that the control of each agent can also depend upon
the idiosyncratic noises of all the population, and that they can do so in a completely
asymmetric way (i.e. each agent can use a different open-loop policy). This additional
flexibility and generality in the definition of controls prevents us from coupling controls
between the N -agent and the McKean-Vlasov MDPs in a one-to-one fashion as in [18]. In
order to overcome this difficulty, we adopt quite different arguments by coupling the
Bellman operators instead of the state/control process of the N -agent and CMKV MDPs.
More precisely, the strategy of the proof is the following:

Idea of the proof.

(i) We first derive the Bellman equation for the N -agent MDP, with arguments similar
to [18], i.e. we prove that TNVN “ VN , where TN is the operator defined by

TNW pxq :“ sup
aPAN

Ta
NW pxq, x P XN ,

with

Ta
NW pxq :“

1

N

N
ÿ

i“1

fpxi, ai,
1

N

N
ÿ

j“1

δpxj ,ajqq`βE
“

W
`

pF pxi, ai,
1

N

N
ÿ

j“1

δpxj ,ajq, ε
i
1, ε

0
1qiPJ1,NK

‰̆

,

for x “ pxiqiPJ1,NK P XN , a “ paiqiPJ1,NK P A
N . This property is obtained by seeing

the N -agent MDP as a standard MDP on XN with actions space AN .

(ii) Then, we observe that the operators Ta of the McKean-Vlasov MDP, derived in [18],
are, formally, the limits of Ta

N when N Ñ 8, for a P L0pX ˆ r0, 1s, Aq and a P AN
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well coupled. Inspired by this formal observation, we “compare” Ta
N to Ta and

prove that they are indeed “close” in some sense, for N large. A key point is that
Ta
N is defined on L8mpXN q (the set of bounded measurable functions on XN , valued

in R) while Ta is defined on L8mpPpX qq (the set of bounded measurable functions
on PpX q, valued in R). To compare both types of objects, we introduce a standard
way to associate to a function W P L8mpPpX qq the function |W P L8mpXN q by setting
|W pxq “W

`

1
N

řN
i“1 δxi

˘

.

(iii) Once the proximity between Ta
N and Ta is established in a general sense, we prove

the proximity of the value functions VN and V by seeing them as the unique fixed
points of the Bellman operators TN “ supaPAN T

a
N and T “ supaPL0pXˆr0,1s,AqT

a,
following the intuition that if two contracting operators are close, their unique
fixed points should also be close.

(iv) Finally, we provide two procedures to build Opε `Mγ
N q-optimal policies for the

N -agent MDP from an ε-optimal stationary randomized feedback policy for the
McKean-Vlasov MDP. The idea is to view, for each MDP, any ε-optimal policy as a
policy satisfying the verification theorem, which is a property only linked to the
Bellman operator, again following the intuition that if two Bellman operators are
close, the policies satisfying their verification results should also be close.

Outline of the paper. The rest of the paper is organized as follows. We state the
assumptions and the main results in Section 2, while Section 3 is devoted to their proofs.
Finally, we give in Appendix A the proof of existence for optimal randomized feedback
policy, and put in Appendix B some results about the Bellman operator for the N -agent
MDP problem that are needed in the proof of our convergence results.

2 Main results

2.1 Notations and assumptions

The product space X ˆ A is equipped with the metric dppx, aq, px1, a1qq “ dpx, x1q `

dApa, a
1q, x, x1 P X , a, a1 P A. Likewise, we shall endow XN with the metric dN px,x1q “

1
N

řN
i“1 dpx

i, x1 iq for x “ pxiqiPJ1,NK,x
1 “ px1 iqiPJ1,NK P XN , AN with the metric

dA,N pa,a
1q “ 1

N

řN
i“1 dApa

i, a1 iq for a “ paiqiPJ1,NK,a
1 “ pa1 iqiPJ1,NK P A

N , and pX ˆ AqN

with the metric dN ppx,aq, px
1,a1qq “ 1

N

řN
i“1 dppxi, aiq, px1 i, a1 iqq for x,x1 P X and a,a1 P

AN . When pY, dq is a compact metric space, the set PpYq of probability measures on Y is
equipped with the Wasserstein distance

Wdpµ, µ
1q :“ inf

!

ż

Y2

dpy, y1qµpdy,dy1q : µ P Πpµ, µ1q
)

,

where Πpµ, µ1q is the set of (coupling) probability measures on Y ˆ Y with marginals µ
and µ1, and we recall the dual Kantorovich-Rubinstein representation

Wdpµ, µ
1q “ sup

φPLip1

ż

Y
φpyqpµ´ µ1qpdyq, (2.1)

where Lip1 is the set of Lipschitz functions on Y with Lipschitz constant bounded by 1.
Given x “ pxiqiPJ1,NK P XN , and a “ paiqiPJ1,NK P A

N , we denote by

µN rxs :“
1

N

N
ÿ

i“1

δxi P PpX q, µN rx,as :“
1

N

N
ÿ

i“1

δpxi,aiq P PpX ˆAq,

and we recall that

WdpµN rx,as, µN rx
1,a1sq ď dN ppx,aq, px

1,a1qq. (2.2)
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Given a random variable Y on pΩ,F ,Pq, we denote by PY or LpY q its distribution law.
We make the following standing assumptions on the state transition function F and

on the running reward function f .
pHFlipq There exists KF ą 0, such that for all a, a1 P A, e0 P E0, x, x1 P X , µ, µ1 P PpXˆAq,

E
“

d
`

F px, a, µ, ε1
1, e

0q, F px1, a1, µ1, ε1
1, e

0q
˘‰

ď KF

`

dppx, aq, px1, a1qq `Wdpµ, µ
1q
˘

q.

pHflipq There exists Kf ą 0, such that for all x, x1 P X , a, a1 P A, µ, µ1 P PpX ˆAq,

|fpx, a, µq ´ fpx1, a1, µ1q| ď Kf

`

dppx, aq, px1, a1qq `Wdpµ, µ
1q
˘

.

Remark 2.1. We stress the importance of making the regularity assumptions for F in
expectation only. When X is finite, F cannot be, strictly speaking, Lipschitz (or even
continuous) unless it is constant w.r.t. its mean-field argument (µ and µ1 in pHFlipq).
However, F can be Lipschitz in expectation, e.g. once integrated w.r.t. the idiosyncratic
noise.

Given two measurable spaces E,F , we denote by L0pE;F q the set of measurable
functions from E into F , by L8pEq the set of bounded real-valued functions on E, and
L8mpEq :“ L8pEq X L0pE;Rq.

Under Assumption pHFlipq, we define the constant

γ :“ min
“

1,
| lnβ|

lnp2KF q`

‰

P p0, 1s.

This constant was introduced in [18] where it is proved that the value function of the the
CMKV-MDP is γ-Hölder, see (3.2).

In the sequel, we denote by ∆X (resp. ∆A and ∆XˆA) the diameter of the compact
metric space X (resp. A and X ˆA), and define

MN :“ sup
µPPpXˆAq

ErWdpµN , µqs, (2.3)

where µN is the empirical measure µN “ 1
N

řN
n“1 δYn , pYnq1ďnďN are i.i.d. random

variables with law µ. It is known that MN Ñ
NÑ8

0, and we recall from [11], and [4] some

results about non asymptotic bounds for the mean rate of convergence in Wasserstein
distance of the empirical measure.

• If XˆA Ă Rd for some d P N‹, then: MN “ OpN´ 1
2 q for d “ 1, MN “ OpN´ 1

2 logp1`

Nqq for d “ 2, and MN “ OpN´ 1
d q for d ě 3.

• If for all δ ą 0, the smallest number of balls with radius δ covering the compact

metric set X ˆA with diameter ∆XˆA is smaller than O
´

`∆XˆA
δ

˘θ
¯

for θ ą 2, then

MN “ OpN´1{θq.

In the sequel C will denote a generic constant that depends only on the data of the
problem, namely ∆X , ∆XˆA, KF and Kf , but independent of the discount factor β.

2.2 Convergence of value functions

Our first main result is to quantify the rate of convergence of the value function of
the N -agent MDP towards the value function of the CMKV-MDP.

Theorem 2.2. There exists some positive constant C independent of β such that for all
x “ pxiqiPJ1,NK P XN ,

´
C

1` β
Mγ
N ď V

`

µN rxs
˘

´ VN pxq ď
C

1´ β
Mγ
N .
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Remark 2.3. A key point for proving such convergence rate is the Hölder property of
the value function V . While this property is not trivial in the infinite horizon case as
V is defined as the fixed point equation of the Bellman operator, which explains why
we do not have in general the Lipschitz property but only the γ-Hölder property with
γ ď 1 depending on β, the Lipschitz property of the value function in the finite horizon
case can be shown easily by backward induction of the dynamic programming from the
Lipschitz property of the terminal and running gain functions. Then, by following similar
arguments as in the infinite horizon case, one would obtain a rate of convergence for the
value function in the finite horizon problem of order OpMN q.

2.3 Approximate optimal policies

Our next results are to show how to obtain approximate optimal control for the N
agent MDP from ε-optimal control for CKMV-MDP, and to quantify the accuracy of this
approximation.

First, let us recall from [18] the construction of an ε-optimal control for CKMV-MDP.
The value function V is characterized as the unique fixed point in L8mpPpX qq of the
Bellman equation V “ T V , where T is the Bellman operator defined on L8mpPpX qq by

TW pµq :“ sup
aPL0pXˆr0,1s;Aq

TaW pµq,

with TaW pµq :“ E
”

fpξ, apξ, Uq,Lpξ, apξ, Uqqq ` βW
`

P0
F pξ,apξ,Uq,Lpξ,apξ,Uqq,ε1,ε01q

˘

ı

,

(2.4)

for any pξ, Uq „ µb Upr0, 1sq (it is clear that the right-hand side in (2.4) does not depend
on the choice of such pξ, Uq). Then, for all ε ą 0, there exists a randomized feedback
policy aε P L

0pPpX q ˆ X ˆ r0, 1s;Aq, such that for all µ P PpX q:

V pµq ´ ε ď Taεpµ,.qV pµq,

and we say that aε is an ε-optimal randomized feedback policy for CMKV-MDP. By
considering the randomized feedback control αε P A defined by

αεt “ aεpP
0
Xt , Xt, Utq, t P N, (2.5)

where pUtqtPN is an i.i.d. sequence of random variables, Ut „ Upr0, 1sq, independent of ξ0
„ µ0, and ε, this yields an Opεq-optimal control for V pµ0q, namely

V pµ0q ´
ε

1´ β
ď V α

ε

pξ0q.

Actually, we can even take ε “ 0, i.e., get optimal randomized feedback control. The proof
for the existence of an optimal randomized feedback policy is inspired by the paper [8],
which states the existence of an optimal policy in a closely related model, and is reported
in Appendix A. The role of the additional sequence of uniform random variables pUtqt for
the randomization of controls is crucial in our discrete time mean-field setting. It has
been indeed shown in [18] that the value function over randomized feedback policies is
strictly greater than the value function over (non randomized) feedback policies, while it
is known that in the classical MDP setting (hence in particular for the N -agent MDP),
randomization of controls does not yield greater value. Moreover, this additional uniform
random variable provides a natural way to associate to any randomized feedback policy
of the mean-field problem a policy for the N -agent MDP.

We now provide two procedures to construct an approximate optimal control for the
N -agent MDP from an ε-optimal randomized feedback policy for CMKV-MDP. The first
procedure gives a general approach for getting approximate feedback control for the
N -agent MDP.
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Theorem 2.4. Let aε be an ε-optimal randomized feedback policy for CMKV-MDP. Then,
there exists a measurable function πaε,N from XN into AN , called feedback policy for
the N -agent MDP, such that

πaε,N pxq P argmin
aPAN

Wd

`

L
`

ξx, aεpµN rxs, ξx, Uq
˘

, µN rx,as
˘

, x P XN , (2.6)

with pξx, Uq „ µN rxs b Upr0, 1sq. This yields a feedback control αε,N P A defined by

αε,Nt “ πaε,N pXtq, t P N,

which is Opε`Mγ
N q-optimal control for VN px0q, namely:

VN px0q ´
C

1´ β

“

ε`Mγ
N s ď V α

ε,N

N px0q.

Theorem 2.4 provides a generic way to obtain an Opε ` Mγ
N q-optimal feedback

policy for the N -agent MDP from an ε-optimal randomized feedback policy aε for
CMKV-MDP, simply by sending actions a “ paiqiPJ1,NK to the population so that, once in
state x, the state-action pair px,aq is empirically distributed as closely as possible to
L
`

ξx, aεpµN rxs, ξx, Uq
˘

. However, the computation of this argmin in (2.6) can be difficult
in practice.

We propose a second approach which provides a more practical derivation of an
approximate optimal control for the N -agent MDP. It will use randomized feedback policy
for the N -agent model, defined as an element in L0pXN ˆ r0, 1sN ;AN q.

Theorem 2.5. Let aε be an ε-optimal randomized feedback policy for CMKV-MDP, as-
sumed to satisfy the regularity condition

ErdApaεpµ, x, Uq, aεpµ, x
1, Uqqs ď Kdpx, x1q, @x, x1 P X , µ P PpX q, (2.7)

(here U „ Upr0, 1sq) for some positive constant K. Consider the randomized feedback
policy in the N -agent model defined bya.

πaε,N
r px,uq :“

`

aεpµN rxs, x
i, uiq

˘

iPJ1,NK,

for x “ pxiqiPJ1,NK P XN , u “ puiqiPJ1,NK P r0, 1s
N . Then, the randomized feedback

control αr,ε,N P A defined as

αr,ε,Nt “ πaε,N
r pXt,U tq, t P N,

where tU t “ pU
i
t qiPJ1,NK, t P Nu is a family of mutually i.i.d. uniform random variables

on r0, 1s, independent of G, ε “
`

pεitqiPJ1,NK, ε
0
t

˘

tPN‹
, is an Opε`Mγ

N q-optimal control for
VN px0q, namely:

VN px0q ´
C

1´ β
p1`Kqpε`Mγ

N q ď V α
r,ε,N

N px0q.

Theorem 2.5 provides a simple and natural procedure to get an approximate policy for
the N -agent MDP: it corresponds to using an ε-optimal randomized feedback policy aε of
the CMKV-MDP, but instead of inputting the theoretical state distribution of the McKean-
Vlasov MDP in its mean-field argument, we input the empirical state distribution of the
N -agent MDP, and instead of inputting the McKean-Vlasov state in its state argument,
we input the N -agent individual states, and moreover, we use a randomization by tossing
a coin at any time and for any agent. Notice that the validity of this procedure requires
the Lipschitz condition (2.7), which always holds true when the state space X is finite.
Indeed, in this case, the metric on X is the discrete distance dpx, x1q “ 1x‰x1 , and (2.7) is
clearly satisfied with K “ ∆A.

aThe subscript r in the policy πr does not refer to time but to the fact that the policy is randomized.
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3 Proof of main results

This section is devoted to the proofs of Theorems 2.2, 2.4, and 2.5 about rate of
convergence in the propagation of chaos between the N -agent MDP and the limiting
conditional McKean-Vlasov MDP. Our approach relies on the Bellman operators of each
MDP. By proving their proximity (in a sense to be precised), we will be able to prove on
the one hand the proximity of their unique fixed points, hence the convergence of the
value functions, and on the other hand that almost optimal randomized feedback policies
are directly related to the Bellman operators via the verification result, which will give
the convergence of the approximate controls.

3.1 Comparing the Bellman operators

We first introduce the following useful measurable optimal permutation for the
coupling of empirical measures.

Definition 3.1 (Measurable optimal permutation). Let pY, dq be a metric space. There
exists a measurable map σ : py,y1q P pYN q2 Ñ σy,y

1

P SN (where SN denotes the set of
permutations on J1, NK) such that for all py,y1q P pYN q2, we have

Wd

`

µN rys, µN ry
1s
˘

“ dN py,y
1

σy,y1
q, (3.1)

where we set y1
σy,y1

“ py1σ
y,y1

i qiPJ1,NK for y1 “ py1 iqiPJ1,NK.

Proof. It is a well known result (see [22]) that, given py,y1q P pYN q2, there exists a
permutation σy,y

1

P SN realizing an optimal coupling between µN rys, µN ry1s P PpYq,
i.e., s.t. (3.1) holds. Let us check that this optimal permutation can be represented as
a measurable function of py,y1q P pYN q2. Let n P J1, N !K ÞÑ σn P SN be some bijection.
Notice that the function

y,y1 P YN ÞÑ
`

dN py,y
1
σnq

˘

nPJ1,N !K P R
N !

is continuous, hence measurable. Furthermore, it is clear that the function

z P RN ! ÞÑ min
“

argmin
nPN !

zn
‰

is measurable. Denoting by

nminpy,y
1q :“ min

“

argmin
nPN !

dN py,y
1
σnq

‰

,

it follows that the function y,y1 P XN ÞÑ σy,y
1

“ σnminpy,y
1
q is a measurable representation

of the optimal permutation.

We now study the “proximity” between the Bellman operator of the CMKV-MDP given
in (2.4), and the Bellman operator of the N -agent problem, viewed as a MDP with state
space XN , action space AN , noise sequence ε “ pεtqtPN‹ with εt :“ ppεitqiPJ1,NK, ε

0
t q valued

in EN ˆ E0, state transition function

F px,a, eq :“
´

F pxi, ai, µN rx,as, e
i, e0q

¯

iPJ1,NK
, e “ ppeiqiPJ1,NK, e

0q P EN ˆ E0,

and reward function

fpx,aq “
1

N

N
ÿ

i“1

f
`

xi, ai, µN rx,as
˘

, x “ pxiqiPJ1,NK, a “ paiqiPJ1,NK.
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The Bellman “operator” TN : L8mpXN q Ñ L8pXN q of the N -agent MDP is defined for any
W P L8mpXN q by:

TNW pxq :“ sup
aPAN

Ta
NW pxq, x P XN ,

where

Ta
NW pxq :“ fpx,aq ` βE

“

W
`

F px,a, ε1q
˘‰

, x P XN , a P AN .

The characterization of the value function VN and optimal controls for the N -agent MDP
via the Bellman operator TN is stated in Appendix B.

We aim to quantify how “close” Ta
N and Ta are when a and a are close in a sense

to be precised. Notice that the N -agent operator Ta
N is defined on L8mpXN q while the

McKean-Vlasov operator Ta is defined on L8mpPpX qq. There is however a natural way to
compare them by means of an “unlifting” procedure. To any function W P L8mpPpX qq, we
associate the unlifted function |W P L8mpXN q defined by

|W pxq :“W pµN rxsq, @x P XN .

We recall from [18] that the value function V of the CMKV-MDP is γ-Hölder:

|V pµq ´ V pµ1q| ď K‹
`

Wdpµ, µ
1q
˘γ
, @µ, µ1 P PpX q, (3.2)

for some constant K‹ depending on KF , β and ∆X .

Lemma 3.2. There exists some positive constant C such that for all a P L0pX ˆ r0, 1s;Aq,
a P AN , x P XN and pξx, Uq „ µN rxs b Upr0, 1sq,

|~TaV pxq ´Ta
N
qV pxq| ď C

”

`

WdpLpξx, apξx, Uqq, µN rx,asq
˘γ
`Mγ

N

ı

.

Proof. For any a P L0pX ˆ r0, 1s;Aq, and a “ paiqiPJ1,NK P A
N , we have

~TaV pxq ´Ta
N
qV pxq

“ E
”

fpξx, apξx, Uq,Lpξx, apξx, Uqqq ´
1

N

N
ÿ

i“1

fpxi, ai, µN rx,asq
ı

` βE
”

V
`

P0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,ε1,ε01q

˘

´ V
` 1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

. (3.3)

We write

E
”

fpξx, apξx, Uq,Lpξx, apξx, Uqqq
ı

´
1

N

N
ÿ

i“1

fpxi,ai, µN rx,asq

“ f̂pLpξx, apξx, Uqqq´f̂pµN rx,asq,

where f̂pµq “
ş

fpx1, a1, µqµpdx1,da1q for all µ P PpX ˆAq. Notice that for µ, µ1 P PpX ˆAq,
we have

f̂pµq ´ f̂pµ1q “

ż

fpx1, a1, µqpµ´ µ1qpdx1,da1q `

ż

pfpx1, a1, µq ´ fpx1, a1, µ1qqµ1pdx1,da1q

ď KfWdpµ, µ
1q `KfWdpµ, µ

1q “ 2KfWdpµ, µ
1q,

from the Kantorovich-Rubinstein dual representation (2.1) and pHflipq. It follows that

ˇ

ˇ

ˇ
E
”

f
`

ξx, apξx, Uq,Lpξx, apξx, Uqq
˘

ı

´
1

N

N
ÿ

i“1

fpxi, ai, µN rx,asq
ˇ

ˇ

ˇ
(3.4)

ď 2KfWdpLpξx, apξx, Uqq, µN rx,asq.
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Let us next focus on the second term in (3.3). As V is γ-Hölder with constant factor K‹,
we have

ˇ

ˇ

ˇ
E
”

V
`

P0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,ε1,ε01q

˘

´ V
` 1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı
ˇ

ˇ

ˇ

ď K‹E
”

WdpP
0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi1,ε01q

,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ıγ

, (3.5)

by Jensen’s inequality. Let pξi, U i0qiPJ1,NK be N i.i.d. random variables, independent of ε1,
such that pξi, U i0q „ µN rxsbUpr0, 1sq, i P J1, NK. For any i.i.d. random variables pε̃i1qiPJ1,NK
such that

ppξi, U i0, ε̃
i
1qiPJ1,NK, ε

0
1q

d
“ ppξi, U i0, ε

i
1qiPJ1,NK, ε

0
1q, (3.6)

we have

E
”

Wd

`

P0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi1,ε01q

,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

ď E
”

Wd

`

P0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi1,ε01q

,
1

N

N
ÿ

i“1

δF pξi,apξi,Ui0q,Lpξx,apξx,Uqq,ε̃i1,ε01q
˘

ı

` E
”

Wd

` 1

N

N
ÿ

i“1

δF pξi,apξi,Ui0q,Lpξx,apξx,Uqq,ε̃i1,ε01q,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01

˘

ı

ď MN ` E
”

Wd

` 1

N

N
ÿ

i“1

δF pξi,apξi,Ui0q,Lpξx,apξx,Uqq,ε̃i1,ε01q,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01

˘

ı

, (3.7)

by definition of MN in (2.3). Let us now consider the random permutation
σpξ

i,apξi,Ui0qqiPJ1,NK,px
i,aiqiPJ1,NK defined in Definition 3.1 that we shall, to simplify nota-

tions, simply denote by σ. Notice that as pξi, apξi, U i0qqiPJ1,NK KK pε
i
1qiPJ1,NK, we clearly

see that pε̃i1qiPJ1,NK :“ pε
pσ´1

qi
1 qiPJ1,NK satisfies the required condition (3.6). Therefore the

above relation applies to pε̃i1qiPJ1,NK “ pε
pσ´1

qi
1 qiPJ1,NK. For such pε̃i1qiPJ1,NK, we get

E
”

Wd

` 1

N

N
ÿ

i“1

δ
F pξi,apξi,Ui0q,Lpξx,apξx,Uqq,ε

pσ´1qi
1 ,ε01q

,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

“ E
”

Wd

` 1

N

N
ÿ

i“1

δF pξσi ,apξσi ,Uσi0 q,Lpξx,apξx,Uqq,εi1,ε01q
,

1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

ď
1

N

N
ÿ

i“1

E
”

d
`

F pξσi , apξσi , Uσi0 q,Lpξx, apξx, Uqq, εi1, ε0
1q, F px

i, ai, µN rx,as, ε
i
1, ε

0
1q
˘

ı

ď KF
1

N

N
ÿ

i“1

E
”

d
`

pξσi , apξσi , Uσi0 qq, px
i, aiq

˘

`Wd

`

Lpξx, apξx, Uqq, µN rx,as
˘

ı

“ KFErWdp
1

N

N
ÿ

i“1

δpξi,apξi,Ui0qq, µN rx,asq `Wd

`

Lpξx, apξx, Uqq, µN rx,as
˘

ı

ď KF

´

MN ` 2E
“

WdpLpξx, apξx, Uqq, µN rx,as
˘‰

¯

,

where the first inequality comes from (2.2), the second one is derived by conditioning
w.r.t. ppξi, U i0qiPJ1,NK, ε

0
1q and using the regularity in expectation of F in pHFlipq, the last
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equality holds true by definition of the permutation σ realizing the optimal coupling (3.1),
and the last inequality from the definition of MN . Recalling (3.7), we then have

E
”

Wd

`

P0
F pξx,apξx,Uq,Lpξx,apξx,Uqq,εi1,ε01q

,
1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

ď p1`KF qMN ` 2KFE
“

WdpLpξx, apξx, Uqq, µN rx,as
˘‰

which implies by (3.5)

E
”

V
`

P0
F pξx,apξx,Uq,Lpξ,apξ,Uqq,ε1,ε01q

˘

´ V
` 1

N

N
ÿ

i“1

δF pxi,ai,µN rx,as,εi1,ε01q
˘

ı

ď K‹

´

p1`KF qMN ` 2KFE
“

WdpLpξx, apξx, Uqq, µN rx,as
˘‰

¯γ

.

Together with (3.4), and plugging into (3.3), we obtain finally
ˇ

ˇ

ˇ

~TaV pxq ´Ta
N
qV pxq

ˇ

ˇ

ˇ

ď 2KfE
”

WdpLpξx, apξx, Uqq, µN rx,asq
ı

` K‹

´

p1`KF qMN ` 2KFE
“

WdpLpξx, apξx, Uqq, µN rx,as
˘‰

¯γ

ď C
!

WdpLpξx, apξx, Uqq, µN rx,asq `
´

WdpLpξx, apξx, Uqq, µN rx,asq
¯γ

`Mγ
N

)

(recall that γ ď 1), for some constant C depending only on K‹, Kf , KF , where we also
use the fact that WdpLpξx, apξx, Uqq, µN rx,asq is bounded by a constant depending on
the diameter of the compact set X ˆA. This ends the proof.

3.2 Proof of Theorem 2.2

Lemma 3.2 means that given a P L0pX ˆ r0, 1s;Aq, a P AN , and for x P XN , the
Wasserstein distance between the distribution law of pξx, apξx, Uqq (where pξx, Uq „
µN rxs b Upr0, 1sq), and the empirical measure µN rx,as is small (and N large), then TaV
» Ta

N
qV . It is thus natural to look for suitable choices of a P L0pX ˆ r0, 1s;Aq, a P AN so

that the above Wasserstein distance is as small as possible. This is quantified in the
following result.

Lemma 3.3. Fix x P XN . Then, for any a P L0pX ˆ r0, 1s;Aq, there exists aa P AN such
that

Wd

`

Lpξx, apξx, Uqq, µN rx,aas
˘

ď 2MN ,

where pξx, Uq „ µN rxs b Upr0, 1sq. Conversely, for any a P AN , there exists aa P L0pX ˆ
r0, 1s;Aq such that

Lpξx, aapξx, Uqq “ µN rx,as.

Proof. Fix a P L0pX ˆ r0, 1s;Aq. Let us consider ξ “ pξiqiPJ1,NK i.i.d. with common
distribution µN rxs, independent from U0 “ pU

i
0qiPJ1,NK i.i.d. „ Upr0, 1sq. We have

E
“

Wd

`

Lpξx, apξx, Uqq,
1

N

N
ÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui0q

˘‰

ď E
“

Wd

`

Lpξx, apξx, Uqq,
1

N

N
ÿ

i“1

δ
ξσ
ξ,x
i ,apξσ

ξ,x
i ,Ui0q

˘
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` Wdp
1

N

N
ÿ

i“1

δ
ξσ
ξ,x
i ,apξσ

ξ,x
i ,Ui0q

,
1

N

N
ÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui0q

˘‰

ď MN ` Er
1

N

N
ÿ

i“1

dpξσ
ξ,x
i , xiqs ď 2MN ,

where we used the definition of MN and (2.2) in the second inequality, and the definition
of σξ,x in the last inequality. It follows that

P
“

Wd

`

Lpξx, apξx, Uqq,
1

N

N
ÿ

i“1

δ
xi,apξσ

ξ,x
i ,Ui0q

˘

ď 2MN

‰

ą 0,

which implies that there exists a vector a P AN such that

Wd

`

Lpξx, apξx, Uqq, µN rx,as
˘

ď 2MN .

On the other hand, given such an a P AN , there clearly exists aa P L0pX ˆ r0, 1s;Aq such
that Lpξx, aapξx, Uqq “ µN rx,as: indeed, by considering pξ̃, α̃q „ µN rx,as, it suffices to
choose aa as a kernel for simulating the conditional distribution of α̃ knowing ξ̃. We then
have

Wd

`

Lpξx, aapξx, Uqq, µN rx,as
˘

“ 0.

By combining the general comparison of Bellman operators in Lemma 3.2 with the
coupling result in Lemma 3.3, we can now prove the propagation of chaos of value
functions.

Proof of Theorem 2.2. From the fixed point equation for V with Bellman operator T
in (2.4), we have

qV pxq “ }T V pxq
“ sup

aPL0pXˆr0,1s;Aq
~TaV pxq ď sup

aPL0pXˆr0,1s;Aq
Taa

N
qV pxq ` CMγ

N

ď TN qV pxq ` CMγ
N ,

where we used Lemma 3.2 and Lemma 3.3 in the first inequality, and the definition of
TN in the last one. Since VN is a fixed point of TN (see Proposition B.8), we then have:

pqV ´ VN qpxq ď pTN qV ´ TNVN qpxq ` CMγ
N ,

and thus by definition of TN ,

pqV ´ VN qpxq ď β sup
x1PXN

pqV ´ VN qpx
1q ` CMγ

N ,

which implies

sup
xPXN

pqV ´ VN qpxq ď
C

1´ β
Mγ
N .

Likewise, by Lemma 3.2 and Lemma 3.3, we have

qV pxq “ }T V pxq “ sup
aPL0pXˆr0,1s;Aq

~TaV pxq ě sup
aPAN

­TaaV pxq

ě sup
aPAN

Ta
N
qV pxq ´ CMγ

N “ TN qV pxq ´ CMγ
N ,

and using the fact that VN is a fixed point of TN , we obtain similarly

sup
xPXN

pVN ´ qV qpxq ď
C

1` β
Mγ
N ,

which concludes the proof.
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3.3 Proof of Theorem 2.4

We start with a general result estimating the efficiency of a feedback policy for the
N -agent MDP by “comparing” it to an ε-optimal randomized feedback policy for the
CMKV- MDP.

Lemma 3.4. Let aε be an ε-optimal randomized feedback policy for the CMKV-MDP, and
a P AN . Then, there exists some positive constant C (depending only on ∆XˆA, β, KF ,
Kf ) such that for all x P XN ,

Ta
NVN pxq ě VN pxq ´ ε´

C

1´ β

“

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,as
˘γ
`Mγ

N

‰

.

Proof. Fix x P XN , a P AN , and define aε P L
0pX ˆ r0, 1s;Aq by aεpx, uq “ aεpµN rxs, x, uq

for x P X , u P r0, 1s. By Theorem 2.2 and the β-contracting property of Ta
N , we have

|Ta
NVN pxq ´T

a
N
qV pxq| ď β}VN pxq ´ qV pxq}XN ď

β

1´ β
CMγ

N ,

and so

Ta
NVN pxq ě Ta

N
qV pxq ´

β

1´ β
CMγ

N .

Together with Lemma 3.2, this yields

Ta
NVN pxq ě

­TaεV pxq ´
C

1´ β

“

Wd

`

Lpξ, aεpξ, Uqq, µN rx,as
˘γ
`Mγ

N

‰

. (3.8)

Denote by αε the randomized feedback control associated via (2.5) to the randomized
feedback policy aε. Then, notice that the gain functional V α

ε

pξq depends on ξ only
through its law µ “ Lpξq, and we set V α

ε

pµq “ V α
ε

pξq when ξ „ µ. Since V ě V α
ε

, and
by the monotonicity of Taε , we have

TaεV pµN rxsq ě TaεV α
ε

pµN rxsq “ V α
ε

pµN rxsq ě V pµN rxsq ´ ε

by recalling that V α
ε

is a fixed point of Taε , and using the fact that aε is an ε-optimal
randomized feedback policy for the CMKV-MDP. From Theorem 2.2, this implies that

­TaεV pxq ě VN pxq ´ ε´
C

1´ β
Mγ
N ,

which proved the required result when combined with (3.8).

Given a feedback policy π P L0pXN ;AN q for the N -agent problem, the associated
feedback control is the unique control απ defined by απt “ πpXtq, t P N. By misuse
of notation, we denote V πN “ V α

π

N . Let us then introduce the operator T πN on L8mpXN q,
defined by

T πNW pxq “ fpx,πpxqq ` βE
“

W
`

F px,πpxq, ε1q
˘‰

, x P XN .

Proposition 3.5. Let aε be an ε-optimal randomized feedback policy for the CMKV-MDP,
and consider any feedback policy π for the N -agent MDP. Then, the feedback control απ

is

Opε` sup
xPXN

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πpxqs
˘γ
`Mγ

N q-optimal for VN px0q,

where pξx, Uq „ µN rxs b Upr0, 1sq, namely

VN px0q ´ C
“

ε` sup
xPXN

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πpxqs
˘γ
`Mγ

N

‰

ď V πN px0q.
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Proof. Fix x P XN , and let a “ πpxq P AN . By definition, we have T πN VN pxq “ Ta
NVN pxq.

By Lemma 3.4, we thus have

T πN VN pxq ě VN pxq ´ ε´
C

1´ β

“

sup
xPXN

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,as
˘γ
`Mγ

N

‰

,

and we conclude by the verification result in Lemma B.7.

Proposition 3.5 has an important implication: it means that a feedback policy π for
the N -agent MDP yields the best performance whenever it assigns for each state x the
action πpxq that achieves the minimum of

a P AN ÞÑ Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,as
˘

.

Let us check that one can choose a measurable version of this argmin.

Lemma 3.6. Let a P L0pPpX q ˆ X ˆ r0, 1s;Aq. Then, there exists a measurable function
π‹: XN Ñ AN such that

π‹pxq P argmin
aPAN

Wd

`

Lpξx, apµN rxs, ξx, Uqq, µN rx,as
˘

, x P XN .

Proof. Notice that the function

hpx,aq :“ Wd

`

Lpξx, apµN rxs, ξx, Uqq, µN rx,as
˘

is such that for a P AN , hp¨,aq is measurable, and for x P XN , hpx, ¨q is continuous. Since
AN is compact, hpx, .q attains its minimum at some π‹pxq, and by classical measurable
selection theorem, see e.g. Theorem 4.1 in [23], the function x P XN ÞÑ π˚pxq can be
chosen measurable.

By Lemma 3.6, there exists a randomized feedback policy πaε,N s.t.

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πaε,N s
˘

“ inf
aPAN

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,as
˘

,

and the r.h.s. of the above equality is bounded by 2MN from Lemma 3.3. Together with
Proposition 3.5, this proves Theorem 2.4.

3.4 Proof of Theorem 2.5

Given a randomized feedback policy πr P L0pXN ˆ r0, 1sN ;AN q, the associated feed-
back control is the unique control απr given by απrt “ πrpXt,U tq, t P N, where tU t “

pU it qiPJ1,NK, t P Nu is a family of mutually i.i.d. uniform random variables on r0, 1s, indepen-
dent of G, ε. By misuse of notation, we denote V πrN “ V α

πr

N . For πr P L0pXNˆr0, 1sN ;AN q,
we introduce the operator T πrN on L8mpXN q, defined by

T πrN W pxq :“ Erfpx,πrpx,U0qq ` βW pF px,πrpx,U0q, ε1qs, @x P XN ,

where U0 “ pU
i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq, independent of G, ε.

We adapt Proposition 3.5 to the case of randomized feedback policies.

Proposition 3.7. Let aε be an ε-optimal randomized feedback policy for the CMKV-
MDP, and consider any randomized feedback policy πr for the N -agent MDP. Then, the
feedback control απr is

Opε` sup
xPXN

E
”

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘

ıγ

`Mγ
N q-optimal for VN px0q,
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namely

VN px0q´
C

1´β

´

ε` sup
xPXN

E
”

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘

ıγ

`Mγ
N

¯

ďV πrN px0q.

Here pξx, Uq „ µN rxs b Upr0, 1sq, and U0 “ pU
i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq,

independent of ε.

Proof. Fix x P XN , and let a “ πrpx,U0q be the random variable valued in AN . By
definition, we have T πrN VN pxq “ E

“

Ta
NVN pxq

‰

. By Lemma 3.4, we have

Ta
NVN pxq ě VN pxq ´ ε´

C

1´ β

“

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘γ
`Mγ

N

‰

.

Taking the expectation, and by Jensen’s inequality, we then get

T πrN VN pxqěVN pxq´ε´
C

1´β

´

sup
xPXN

E
”

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘

ıγ

`Mγ
N

¯

,

and we conclude by the verification result in Lemma B.7.

Compared to Proposition 3.5, Proposition 3.7 means that with a randomized feedback
policy πr, one can obtain a “good” performance whenever it produces empirical state-
action distributions that are close to the theoretical state-action distribution generated
by aε on average, i.e., that makes the quantity

E
”

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘

ı

as small as possible. More precisely, if we can design a randomized policy πr such that

E
”

Wd

`

Lpξx, aεpµN rxs, ξx, Uqq, µN rx,πrpx,U0qs
˘

ı

ď CMN ,

then by Proposition 3.7, this will prove the statement of Theorem 2.5. The next result
shows how it can be achieved.

Lemma 3.8. Let a: PpX q ˆ X ˆ r0, 1s Ñ A be any (if it exists) randomized feedback
policy for the CMKV-MDP such that

ErdApapµ, x, Uq, apµ, x
1, Uqqs ď Kdpx, x1q, @µ P PpX q, x, x1 P X , (3.9)

(here U „ Ur0, 1sq) for some positive constant K. Consider the randomized feedback
policy for the N -agent MDP defined by

πa,N
r px,uq “

´

apµN rxs, x
i, uiq

¯

iPJ1,NK
, x “ pxiqiPJ1,NK P XN , u “ puiqiPJ1,NK P r0, 1s

N .

Then,

E
”

Wd

`

Lpξx, apµN rxs, ξx, Uqq, µN rx,πa,N
r px,U0qs

˘

ı

ď p2`KqMN ,

where pξx, Uq „ µN rxs b Upr0, 1sq.

Proof. Fix x P XN , and set axpx, uq “ apµN rxs, x, uq for px, uq P X ˆr0, 1s. Let us consider
a family ξ “ pξiqiPJ1,NK of N i.i.d. random variables such that ξi „ µN rxs, and independent
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of U0. Let us consider σξ,x, the optimal permutation defined in Definition 3.1 between ξ
and x. We have

Wd

`

Lpξx, apµN rxs, ξx, Uqq, µN rx,πa,N
r px,U0qs

˘

“ Wd

`

Lpξx, axpξx, Uqq,
1

N

N
ÿ

i“1

δxi,axpxi,Ui0q
˘

ď Wd

`

Lpξx, axpξx, Uqq,
1

N

N
ÿ

i“1

δ
ξσ
ξ,x
i ,axpξ

σ
ξ,x
i ,Ui0q

˘

` Wd

` 1

N

N
ÿ

i“1

δ
ξσ
ξ,x
i ,axpξ

σ
ξ,x
i ,Ui0q

,
1

N

N
ÿ

i“1

δxi,axpxi,Ui0q
˘

ď Wd

`

Lpξx, axpξx, Uqq,
1

N

N
ÿ

i“1

δ
ξi,axpξi,U

pσξ,xq
´1
i

0 q

˘

` dN
`

pξσ
ξ,x

,πa,N
r pξσ

ξ,x

,U0qq, px,π
a,N
r px,U0qq

˘

,

where we set ξσ
ξ,x

“ pξσ
ξ,x
i qiPJ1,NK, and use (2.2) in the last inequality. Taking the

expectation, we then obtain under condition (3.9)

Wd

`

Lpξx, apµN rxs, ξx, Uqq, µN rx,πa,N
r px,U0qs

˘

ď MN ` p1`KqErdN pξ
σξ,x ,xqs

“ MN ` p1`KqE
“

Wd

`

µN rξs, µN rxs
˘‰

ď p2`KqMN ,

where we use (3.1) in the last equality. This concludes the proof.

We now apply Lemma 3.8 with an ε-optimal randomized feedback policy aε for the
CMKV-MDP, and combined with Proposition 3.7, this proves the required result in
Theorem 2.5.

A Existence of optimal randomized control for CMKV-MDP

Recall from Proposition 4.1 in [18] that the Bellman operator T of the CMKV-MDP is
written in the lifted form as

rTW spµq “ sup
aPA

!

f̃pµ,aq ` βE
“

W
`

F̃ pµ,a, ε0
1q
˘‰

)

, µ P PpX q, (A.1)

for W P L8mpPpX qq, where A “ PpX ˆAq, F̃ is the measurable function on PpX qˆAˆE0

Ñ PpX q defined by

F̃ pµ,a, e0q “ F p¨, ¨,ppµ,aq, ¨, e0q ‹
`

ppµ,aq b Lpε1q
˘

,

and f̃ is the measurable function on PpX q ˆA defined by

f̃pµ,aq “

ż

XˆA
fpx, a,ppµ,aqqppµ,aqpdx, daq.

Here ‹ is the pushforward measure notation, p is a measurable coupling projection from
PpX q ˆA into A: ppµ,aq “ ppµ,ppµ,aqq, satisfying pr1 ‹ ppµ,aq “ µ, and ppµ,aq “ a if
pr1 ‹ a “ µ (where pr1 is the projection function on the first coordinate). Since f̃ and
F̃ depend upon a only through ppµ,aq, it is clear that the supremum in (A.1), for each
µ P PpX q, can be taken actually over the the subset Γµ :“ ta : pµ,aq P Γu Ă A, where
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Γ :“ tpµ,aq P PpX q ˆA : pr1 ‹ a “ µu is closed in PpX q ˆA from the continuity of a ÞÑ
pr1 ‹ a. Moreover, since V is continuous (see (3.2)), it is straightforward to prove that

pµ,aq P Γ ÞÑ f̃pµ,aq ` βE
”

V
`

F̃ pµ,a, ε0
1q
˘

ı

“

ż

XˆA
fpx, a,aqapdx, daq ` βE

”

V
`

F p¨, ¨, µ, ¨, e0q ‹
`

ab Lpε1q
˘˘

ı

is continuous and thus upper continuous on Γ. Therefore, by [3], Proposition 7.33, there
exists a measurable function φ : PpX q Ñ A whose graph is included in Γ and such that

f̃pµ, φpµqq ` βE
“

V
`

F̃ pµ, φpµq, ε0
1q
˘‰

“ sup
aPΓµ

!

f̃pµ,aq ` βE
“

V
`

F̃ pµ,a, ε0
1q
˘‰

)

,

“ rT V spµq “ V pµq, @µ P PpX q, (A.2)

where the last equality follows from the fixed point equation of V . By the universal
disintegration theorem (see [15], Corollary 1.26), there exists κ : X ˆPpX ˆAqˆPpX q Ñ
PpAq such that for all a P PpX ˆAq, µ P PpX q with pr1 ‹ a “ µ, we have a “ µb̂κp¨,a, µq

(where b̂ denotes the probability-kernel product). Furthermore, by Blackwell-Dubins
Lemma, there exists a measurable function ρ : PpAq ˆ r0, 1s Ñ A such that for all
π P PpAq, if U denotes a uniform random variable, then ρpπ, Uq „ π. We can then define
the randomized feedback policy

a0pµ, x, uq “ ρpκpx, φpµq, µq, uq,

which satisfies by construction Lpξ, a0pµ, ξ, Uqq “ φpµq for pξ, Uq „ µb Upr0, 1sq so that

f̃pµ, φpµqq “ E
”

f
`

ξ, a0pµ, ξ, Uq,Lpξ, a0pµ, ξ, Uqq
˘

ı

F̃ pµ, φpµq, ε0
1q “ P0

F pξ,a0pµ,ξ,Uq,Lpξ,a0pµ,ξ,Uqq,ε1,ε01q
.

Recalling notation in (2.4), and by (A.2), this shows that

Ta0pµ,.qV pµq “ V pµq.

According to the verification result (Proposition 4.3 in [18]), this ensures that that the
randomized feedback control α0 P A defined by

α0
t “ a0pP

0
Xt , Xt, Utq, t P N,

where pUtqtPN is an i.i.d. sequence of random variables, Ut „ Upr0, 1sq, independent of ξ0
„ µ0, and ε, is an optimal control for V pµ0q.

B Bellman equation for the N-agent MDP

In this section, we study and rigorously state properties on the Bellman equation for
the N -agent problem, viewed as a MDP with state space XN , action space AN , noise
sequence ε “ pεtqtPN‹ with εt :“ ppεitqiPJ1,NK, ε

0
t q valued in EN ˆ E0, state transition

function

F px,a, eq :“
´

F pxi, ai, µN rx,as, e
i, e0q

¯

iPJ1,NK
, e “ ppeiqiPJ1,NK, e

0q P EN ˆ E0,

and reward function

fpx,aq “
1

N

N
ÿ

i“1

f
`

xi, ai, µN rx,as
˘

, x “ pxiqiPJ1,NK, a “ paiqiPJ1,NK.
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With respect to standard framework of MDP, we pay a careful attention when dealing
with possibly continuous state/action spaces pX , Aq, and optimizing in general over
open-loop controls.

Let us consider the set V of sequences ν “ pνtqtPN with ν0 a measurable function
from pr0, 1sN qN into AN , and νt a measurable function from pr0, 1sN qN ˆ pEN ˆE0qt into
AN for t P N‹. For each ν P V, we can associate a control process αν P A given by

ανt :“ νtpU , pεsqsPJ1,tKq, t P N,

(with the convention that αν0 “ ν0pUq when t “ 0), where U “ pU it qiPJ1,NK,tPN is a family
of mutually i.i.d. uniform random variables on r0, 1s, independent of ε, and conversely
any control α P A can be represented as αν for some ν P V. We call V the set of
randomized open-loop policies. By misuse of notation, we write V νN “ V α

ν

N .
Let us introduce the Bellman “operator” TN : L8mpXN q Ñ L8pXN q defined for any W

P L8mpXN q by:

rTNW spxq :“ sup
aPAN

Ta
NW pxq, x P XN .

where

Ta
NW pxq :“ fpx,aq ` βE

“

W
`

F px,a, ε1q
˘‰

, x P XN , a P AN .

Notice that the sup can a priori lead to a non measurable function TNW . Because of this,
TN is not an operator on L8mpXN q in the strict sense. To see TN as an operator, we have
to find a subset in L8mpXN q that is preserved by TN . The next result introduces such
subset.

Lemma B.1. Let M be the set in L8mpXN q defined by

M :“
!

W P L8mpXN q :
ˇ

ˇW pxq´W px1q
ˇ

ˇď2Kf

8
ÿ

t“0

βtmin
“

p2KF q
tdN px,x

1q,∆X
‰

, @x,x1 PXNu.

(B.1)

Then M is a complete metric space under the } ¨ } norm, and Ta
N , for all a P AN , and TN ,

preserve M: Ta
NM ĂM, TNM ĂM.

Proof. It is clear that M is closed in L8mpXN q, and is therefore a complete metric space
for } ¨ }. Let W P M. Fix x,x1 P XN , and a P AN . Let us start with two preliminary
estimations: under (Hflip), and recalling (2.2), we clearly have

|fpx,aq ´ fpx1,aq| ď 2KfdN px,x
1q. (B.2)

Similarly, under (HFlip), for e0 P E0, we have

ErdN pF px,a, pε
i
1qiPJ1,NK, e

0q,F px1,a, pεi1qiPJ1,NK, e
0qqs ď 2KFdN px,x

1q. (B.3)

Thus, denoting by X1 “ F px,a, pε
i
1qiPJ1,NK, e

0q and X1
1 “ F px

1,a, pεi1qiPJ1,NK, e
0q, we have,

by Jensen’s inequality and then (B.3),

E

«

8
ÿ

t“0

βt min
“

p2KF q
tdN pX1,X

1
1q,∆X

‰

ff

ď

8
ÿ

t“0

βt min
“

p2KF q
tErdN pX1,X

1
1qs,∆X

‰

ď

8
ÿ

t“0

βt min
“

p2KF q
t`1dN px,x

1q,∆X
‰

. (B.4)
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The definition of Ta
N combined with (B.2), the fact that W PM, and (B.4), implies that

|Ta
NW pxq ´T

a
NW px

1q| ď 2KfdN px,x
1q ` β2Kf

8
ÿ

t“0

βt min
“

p2KF q
t`1dN px,x

1q,∆X
‰

ď 2Kf

8
ÿ

t“0

βt min
“

p2KF q
tdN px,x

1q,∆X
‰

,

which shows that Ta
NW PM, i.e. Ta

N preserves M. Furthermore, we have

|TNW pxq ´ TNW px1q| ď sup
aPAN

|Ta
NW pxq ´T

a
NW px

1q|

ď 2Kf

8
ÿ

t“0

βt min
“

p2KF q
tdN px,x

1q,∆X
‰

,

which also shows that TNW PM.

Lemma B.1 implies that by restricting TN and Ta
N to M, we can see TN and Ta

N

as operators on M, that is, TN : M Ñ M and Ta
N : M Ñ M. However, the property

defining the functions in M (see (B.1)) is not very natural and practical. The following
result provides a more convenient property satisfied by all functions in M.

Lemma B.2. There exists K‹ P R such that any function W P M is γ-Hölder with
constant factor K‹, i.e.

ˇ

ˇW pxq ´W px1q
ˇ

ˇ ď K‹dN px,x
1qγ , @x,x1 P XN .

Proof. We have

|W pxq ´W px1q| ď 2Kf

8
ÿ

t“0

βt min
“

p2KF q
tdN px,x

1q,∆X
‰

“: 2KfSpdN px,x
1qq.

where Spmq “
ř8

t“0 β
t minrp2KF q

tm,∆X s. If 2βKF ă 1, we clearly have

Spmq ď m
8
ÿ

t“0

pβ2KF q
t “

m

1´ β2KF
,

and so W is 1-Hölder. Let us now study the case 2βKF ą 1. In this case, in particular,
2KF ą 1 since β P p0, 1q, thus t ÞÑ p2KF q

t is nondecreasing, and so

Spmq ď
8
ÿ

t“0

ż t`1

t

βt min
“

p2KF q
sm,∆X

‰

ds

ď
1

β

8
ÿ

t“0

ż t`1

t

βs min
“

p2KF q
sm,∆X

‰

ds “
1

β

ż 8

0

es ln β min
“

mes lnp2KF q,∆X
‰

ds.

Let t‹ “ t‹pmq be such that met‹ lnp2KF q “ ∆X , i.e. t‹ “
lnp∆X {mq
lnp2KF q

. Then,

ż 8

0

es ln β min
“

mes lnp2KF q,∆X
‰

ds ď m

ż t‹

0

es lnp2KF βqds`∆X

ż 8

t‹
es lnpβqds

“
m

lnp2KFβq

”

et‹ lnp2KF βq ´ 1
ı

´
∆X

lnβ
elnpβqt‹

“
m

lnp2KFβq

”´∆X

m

¯

lnp2KF βq

lnp2KF q

´ 1
ı

´
∆X

lnβ

ˆ

∆X

m

˙

lnpβq
lnp2KF q

“ ∆X

´ 1

lnp2KFβq
´

1

lnβ

¯´∆X

m

¯

lnpβq
lnp2KF q

´
m

lnp2KFβq

ď Cm
min

“

1,
| ln β|

lnp2KF q

‰

“ Cmγ ,
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for some positive constant C depending on KF , β and ∆X . This implies that W is
γ-Hölder with a constant factor K‹ that is clearly independent of W P S. This concludes
the proof.

The consequence of Lemmas B.1 and B.2 is that the set M Ă L8mpX q is a closed set,
preserved by TN and contains only functions that are γ-Hölder with factor K‹. We are
now able to get the existence of a unique fixed point to the Bellman operator TN .

Proposition B.3. (i) The operator TN is monotone increasing: for W1,W2 P L
8
mpXN q,

if W1 ď W2, then TNW1 ď TNW2. (ii) Furthermore, it is contracting on L8mpXN q with
Lipschitz factor β, and admits a unique fixed point in L8mpXN q, denoted by V ‹N , hence
solution to:

V ‹N “ TNV ‹N .

Moreover, V ‹N PM, and thus V ‹N is γ-Hölder with constant factor K‹.

Proof. (i) The monotonicity of TN is clear. (ii) The β-contraction property of TN is
obtained by standard arguments, which implies the uniqueness of a fixed point (but not
the existence). Let us prove the existence of a fixed point. As M is preserved by TN ,
and is closed for } ¨ }, and therefore complete (as a closed subset of the complete space
L8mpXN q), by the Banach fixed point theorem, TN admits a unique fixed point V ‹N in M.
By Lemma B.2, this implies that V ‹N is γ-Hölder with constant factor K‹, and concludes
the proof.

Remark B.4. Notice that the above arguments would not work if we considered, instead
of M, directly the set of γ-Hölder continuous functions. Indeed, while it is true that such
set is stabilized by TN (it essentially follows from (B.2) and (B.3)), the set of γ-Hölder
continuous functions is not closed in L8mpXN q (and thus not a complete metric space):
there might indeed exist a converging sequence of γ-Hölder continuous functions with
multiplicative factors (in the Hölder property) tending toward infinity, such that the limit
function is not γ-Hölder anymore.

As a consequence of Proposition B.3, we can show the following relation between the
value function VN of the N -agent MDP, and the fixed point V ‹N of the Bellman operator
TN .

Lemma B.5. For all x P XN , we have VN pxq ď V ‹N pxq.

Proof. For any x P XN , ν P V, we have

E
”

fpx,ν0pUqq ` βV
‹
N

`

F px,ν0pUq, ε1q
˘

ı

“ E
”!

fpx,ν0puqq ` βErV
‹
N pF px,ν0puq, ε1qqs

)

u:“U

ı

“ E
”

Tν0pUqV ‹N pxq
ı

ď T V ‹N pxq “ V ‹N pxq. (B.5)

For any pu, eq P pr0, 1sN qN ˆ pEN ˆ E0q, and for any ν P V, we define ~νu,e P V by

~νu,et pu1, pe1sqsPJ1,tKq :“νt`1pu, e, pe
1
sqsPJ1,tKq, pu1, pe1sqsPJ1,tKqPpr0, 1s

N qNˆpENˆE0qt, tPN.

Standard Markov arguments imply the following flow property for randomized open-loop
policies:

V νN pxq “ E
”

fpx,ν0pUqq ` βV
~νU,ε1
N pF px,ν0pUq, εqq

ı

.
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Together with (B.5), we then get

V ‹N pxq ´ V
ν
N pxq ě βE

”

V ‹N pF px,ν0pUq, ε1q ´ V
~νU,ε1
N pF px,ν0pUq, ε1qq

ı

ě β inf
xPXN ,νPV

 

V ‹N pxq ´ V
ν
N pxq

(

.

Taking the infimum over x P XN ,ν P V on the left hand side of the above inequality, and
since β ă 1, this shows that V νN pxq ď V ‹N pxq for all ν P V . We conclude that VN ď V ‹N .

We aim now to prove rigorously the equality VN “ V ‹N , i.e., the value function VN of
the N -agent MDP satisfies the Bellman fixed point equation: VN “ TNVN , and also to
show the existence of ε-optimal (randomized) feedback control for VN .

A feedback policy (resp. randomized feedback policy) is an element π P L0pXN ;AN q

(resp. L0pXN ˆ r0, 1sN ;AN q). The associated feedback control is the unique control απ

given by απt “ πpXtq, (resp. πrpXt,U tq), t P N, where tU t “ pU
i
t qiPJ1,NK, t P Nu is a family

of mutually i.i.d. uniform random variables on r0, 1s, independent of G, ε. By misuse of
notation, we denote V πN “ V α

π

N . Given π P L0pXN ;AN q (resp. L0pXN ˆ r0, 1sN ;AN q), we
introduce the operator T πN on L8mpXN q, defined by

T πNW pxq :“ fpx,πpxqq ` βE
“

W
`

F px,πpxq, ε1q
˘‰

, x P XN ,

resp.

T πNW pxq :“ Erfpx,πpx,U0qq ` βW pF px,πpx,U0q, ε1qs, @x P XN ,

where U0 “ pU
i
0qiPJ1,NK is a family of i.i.d. „ Upr0, 1sq, independent of G, ε.

We have the basic and standard properties on the operator T πN :

Lemma B.6. Fix π P L0pXN ;AN q (resp. L0pXN ˆ r0, 1sN ;AN q).

(i) The operator T πN is β-contracting on L8mpXN q, and V πN is its unique fixed point.

(ii) Furthermore, it is monotone increasing: for W1,W2 P L
8pXN q, if W1 ď W2, then

T πNW1 ď T πNW2.

We state the standard verification type result for the N -individual MDP, by means of
the Bellman operator.

Lemma B.7 (Verification result). Fix ε ě 0, and suppose that there exists an ε-optimal
(randomized) feedback policy πε for V ‹N in the sense that

V ‹N ď T π
ε

N V ‹N ` ε.

Then, απ
ε

P A is ε
1´β -optimal for VN , i.e., V π

ε

N ě VN ´
ε

1´β , and we have VN ě V ‹N ´
ε

1´β .

Proof. Since V π
ε

N “ T πεN V π
ε

N , and recalling from Lemma B.5 that V ‹N ě VN ě V π
ε

N , we
have for all x P XN ,

ˇ

ˇ

ˇ
pV ‹N ´ V

πε

N qpxq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
T π

ε

N V ‹N pxq ´ T π
ε

N V π
ε

N pxq
ˇ

ˇ

ˇ
` ε ď β}V ‹N ´ V

πε

N } ` ε,

where we used the β-contraction property of T πεN in Lemma B.6. We deduce that
}V ‹N ´ V π

ε

N } ď ε
1´β , and then, VN ě V π

ε

N ě V ‹N ´
ε

1´β , which combined with V ‹N ě VN ,
concludes the proof.

We finally conclude this section by showing the existence of an ε-optimal (randomized)
feedback policy for N -agent MDP on XN , and obtain as a by-product the corresponding
Bellman fixed point equation for its value function.
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Proposition B.8. For all ε ą 0, there exists a (randomized) feedback policy πε that is
ε-optimal for V ‹N . Consequently, the control απ

ε

P A is ε
1´β -optimal for VN , and we have

VN “ V ‹N , which thus satisfies the Bellman fixed point equation.

Proof. We prove the result for ε-optimal feedback policy (the case of ε-optimal random-
ized feedback policy is dealt with similarly). Fix ε ą 0, and given η ą 0, consider a
quantizing grid Mη “ tx1, . . . ,xNηu Ă XN , and an associated partition Cηk , k “ 1, . . . , Nη,
of XN , satisfying

Cηk Ă Bηpxkq :“
!

x P XN : dN px,xkq ď η
)

, k “ 1, . . . , Nη.

For any xk, k “ 1, . . . , Nη, there exists aεk P A
N such that

V ‹N pxkq ď T
aεkV ‹N pxkq `

ε

3
. (B.6)

From the partition Cηk , k “ 1, . . . , Nη of XN , associated to Mη, we construct the function
πε: XN Ñ AN as follows: we define, for all x P XN ,

πεpxq “ aεk, when x P Cηk , k “ 1, . . . , Nη.

Such function πε is clearly measurable. Let us now check that such πε yields an ε-
optimal feedback policy for η small enough. For x P XN , we define xη “ xk, when x P
Cηk , k “ 1, . . . , Nη. Observe that dN px,xηq ď η. We then write for any x P XN ,

rT π
ε

N V ‹N spxq ´ V
‹
N pxq “

´

rT π
ε

N V ‹N spxq ´ rT π
ε

N V ‹N spx
ηq

¯

`

´

rT π
ε

N V ‹N spx
ηq ´ V ‹N px

ηq

¯

`
`

V ‹N px
ηq ´ V ‹N pxq

˘

ě

´

rT π
ε

N V ‹N spxq ´ rT π
ε

N V ‹N spx
ηq

¯

´
ε

3
´
ε

3
, (B.7)

where we used (B.6) and the fact that |V ‹N px
ηq ´ V ‹N pxq| ď ε{3 for η small enough by

uniform continuity of V ‹N in Proposition B.3. Moreover, by observing that πεpxq “ πεpxηq
“: a, we have

rT π
ε

N V ‹N spxq “ E
”

fpx,aq ` βV ‹N pF px,a, ε1qq

ı

,

rT π
ε

N V ‹N spx
ηq “ E

”

fpxη,aq ` βV ‹N pF px
η,a, ε1qq

ı

.

Under pHFlipq-pHflipq, and by using the γ-Hölder property of V ‹N with constant K‹ in
Proposition B.3, we then get

ˇ

ˇrT π
ε

N V ‹N spxq ´ rT
πε
N V ‹N spx

ηq
ˇ

ˇ

ď 2KfdN px,x
ηq ` βK‹E

”

E
“

dN
`

F px,a, pεi1qiPJ1,NK, eq,F pxη,a, pε
i
1qiPJ1,NK, eq

˘γ‰

e:“ε01

ı

ď 2KfdN px,x
ηq ` βK‹E

”

E
“

dN
`

F px,a, pεi1qiPJ1,NK, eq,F px
η,a, pεi1qiPJ1,NK, eq

˘‰

e:“ε01

ıγ

ď CdN px,x
ηqγ ď Cηγ .

for some constant C. Therefore,
ˇ

ˇrT πεN V ‹N spxq ´ rT π
ε

N V ‹N spx
ηq
ˇ

ˇ ď ε{3, and, plugging
into (B.7), we obtain T πεN V ‹N pxq ´ V ‹N pxq ě ´ε, for all x P XN , which means that πε is
ε-optimal for V ‹N . The rest of the assertions in the Theorem follows from the verification
result in Lemma B.7.
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