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Quantitative propagation of chaos for mean field
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Abstract

We investigate propagation of chaos for mean field Markov Decision Process with
common noise (CMKV-MDP), and when the optimization is performed over randomized
open-loop controls on infinite horizon. We first state a rate of convergence of order
MY, where My is the mean rate of convergence in Wasserstein distance of the
empirical measure, and v € (0,1] is an explicit constant, in the limit of the value
functions of N-agent control problem with asymmetric open-loop controls, towards
the value function of CMKV-MDP. Furthermore, we show how to explicitly construct
(e + O(M7;))-optimal policies for the N-agent model from e-optimal policies for the
CMKV-MDP. Our approach relies on sharp comparison between the Bellman operators
in the N-agent problem and the CMKV-MDP, and fine coupling of empirical measures.
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1 Introduction

We consider a social planner problem with N cooperative agents in a mean-field
discrete time model with common noise over an infinite horizon. The controlled state
process X = (X ’3),»6[[1’ ~7 of the N-agent model is given by the dynamical random system

Xi — i7
{ 0 %o (1.1)

i i i LN R 0
t+1 = F(XtaawNZj:l5(Xg,a-g)a€t+175t+1)» teN.

Here, 7}, i € [1, N], are the initial states valued in a compact Polish space X with metric
d, (5@)16[[1, NJten+ is a family of mutually i.i.d. random variables on some probability space
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(Q, F,P), valued in some measurable space F, and representing idiosyncratic noises,
while (£¥)en+ is another family of i.i.d. random variables valued in some measurable
space E°, and representing the common noise (independent of idiosyncratic noise). The
control o' followed by agent i, is a process, valued in some compact Polish space A
with metric d4, and adapted with respect to the filtration (.7-"tN )tew generated by € =
((eDieq1, Ny 7)o~ @and also completed with a family of mutually i.i.d. uniform random
variables U = (U;)ie[[l, N],ten that are used for randomization of the controls. The mean-
field interaction between the agents is formalized via the state transition function F'
by the dependence upon the empirical measure of both state/action of all the other
agents: here F is a measurable function from X x A x P(X x A) x E x EY into X, where
P(X x A) is the space of probability measures on the product space X x A. The role of
this additional uniform random variable is to provide a natural way to associate to any
randomized feedback policy of the mean-field problem a policy for the N-agent MDP:
each agent 7 will randomize its actions according to this same mean-field policy but
with an agent-specific sequence of randomization variables (U} ). We also stress that
allowing the mean-field policy to be randomized is crucial, as the mean-field problem
over non-randomized feedback policies is not equivalent in general and has a strictly
smaller value function, and the randomized version of the mean-field problem is the limit
of the N-agent MDP (randomized or not randomized).

The objective of the social planner is to maximize over the set .A of AN-valued
(FN)ien-adapted processes a = (ai)ie[l’ N].ten @ criterion in the form

i=1t

VN (zo) = E[ﬁ Z 2 ﬂtf(Xivaé» N Z 5(Xg,a{))]’
t=0 j=1

where we set ¢y = (fﬂé)ie[u, N] EX N for the initial state of the N agent system. Here
B € (0,1) is a discount factor, and f is a bounded measurable real-valued function on
X x A x P(X x A). The value function for this optimization problem is defined on X" as

Vn (o) := sup Vi (zo), (1.2)
acA
and we notice that problem (1.1)-(1.2) is a standard Markov Decision Process (MDP)
with state space X'V, action space A", and (randomized) open-loop controls.
Let us now formulate the asymptotic mean-field problem when the number of agents
N goes to infinity. This consists formally in replacing empirical distributions by theoreti-
cal ones in the dynamic system and gain functions. The controlled state process X of
the representative agent is given by

X - ’
X ; i;? o 0 0 (1.3)
t+1 (Xt ’at’IP(Xt,at)7€t+1’€t+l)7 te]N,

where we have renamed the uniform random sequence (U} );en and the noise (g} )en by
(Up)tew and (g¢)¢ew, and the initial state & is a G-measurable random variable, with G a
o-algebra independent of (Uy)en, (¢¢)ien, (€9)ten+, with distribution law g € P(X) (the
set of probability measures on X’). The control process « is an A-valued process, adapted
with respect to the filtration generated by G, (U;)ien, (g¢)ten, (€9)ien+, denoted by a €
A. Here PY and E° represent the conditional probability and expectation knowing the
common noise Y, and then, given a random variable Y, we denote by IP?, or CO(Y) its
conditional law knowing £°. The McKean-Vlasov (or mean-field) control problem consists
in maximizing over randomized open-loop controls « in A the gain functional

V(&) = E[Zﬁtf(Xt’ah]P?X“@t))]'
t=0
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The value function to this optimization problem is defined on P(X) by

V(&) := sup V*(&), (1.4)
acA

and we recall from [18] that V' depends on &, only through its distribution (invariance
in law), and we denote by misuse of notation: V(i) = V(& ). Problem (1.3)-(1.4) is
called mean-field Markov Decision Process with common noise, or conditional McKean-
Vlasov Markov Decision Process (CMKV-MDP in short), with the peculiarity compared to
standard MDP coming from the dependence of the state transition on the conditional
distribution of the state/action. In view of propagation of chaos for particle systems
usually derived for mean-field diffusion process (see [20]), it is expected that CMKV-MDP
provides a mean-field approximation of the N-agent MDP model.

While the literature on mean-field control in continuous time, in particular the optimal
control of McKean-Vlasov equations, is quite important, see the monograph [7] for an
overview and related references, there are rather few papers devoted to the discrete
time framework. One of the first works is [13] which studies the convergence of large
interacting population process to a simple mean-field model when the state space is finite.
The paper [19] studies a discrete-time McKean-Vlasov control problem with feedback
controls on finite horizon, and derives the corresponding dynamic programming equation
which is explicitly solved in the linear quadratic case. In [8], the authors consider mean-
field control on infinite horizon with common noise with a discussion about connections
between closed-loop and open-loop policies, and propose ()-learning algorithms. Our
companion paper [18] deals with open-loop controls and highlights the role of randomized
controls with respect to standard Markov Decision Process (MDP). The value function
is characterized as a fixed point Bellman equation defined on the space of probability
measures, and existence of e-optimal randomized feedback controls is proved. The recent
paper [1] studies mean-field control with deterministic closed-loop policies through the
lens of MDP theory, and discusses the existence of optimal policies for the limiting
mean-field problem as well as for the N-agent problem.

Main contributions. In this paper, we establish a quantitative propagation of result
for the N-agent MDP towards the CMKV-MDP. Our contributions are twofold:

1. We show in Theorem 2.2 an explicit rate of convergence of the value functions
under some assumptions to be precised later: there exists some positive constant
C (depending on the data of the problem) such that for all = (a:i)l-e[[l, N EX N

1 N
Vv@) - V(5 Y o) < omj,
i=1

where M is the mean rate of convergence in Wasserstein distance of the empirical
measure (see [11]), and v € (0, 1] is an explicit constant depending on S and F.

2. We prove that any e-optimal randomized feedback policy for the CMKV-MDP (in-
cluding the case ¢ = 0, i.e., optimal randomized feedback policy whose existence is
shown) yields either an approximate optimal feedback control or an approximate
randomized feedback control for the N-agent MDP problem, in a constructive sense
to be precised later with an explicit rate of convergence, see Theorems 2.4 and 2.5.

While the first statement for convergence of value function is important in theory, the
second statement is particularly interesting in practice (but often less studied in the
literature) since it means that if the McKean-Vlasov MDP is simpler to solve than the
N-agent MDP (some examples and applications to targeted advertising are developed
in the PhD thesis [17]), then one can compute an almost optimal randomized feedback
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policy for the McKean-Vlasov MDP, and then use it in the N-agent MDP: this will guaranty
us to have an almost optimal control.

Related literature. The convergence of the N-individual problem to the limiting mean-
field control problem has been first investigated for diffusion-based models. It was
rigorously proved in [16] by tightness and martingale arguments for continuous-time
controlled McKean-Vlasov equations, see also [7] Vol. 2, sec. 6.1.3. This result has been
extended in [10] to the common noise case and when there is interaction via the joint
distribution of the state and control. The paper [12] proved by viscosity solutions method
via the characterization of the Hamilton-Jacobi-Bellman equation the convergence of
the value function towards the N-agent problem to the value function of the mean-field
control problem in the common noise case but without idiosyncratic noise, see also [21]
for the case with idiosyncratic noise. Rate of convergence of order 1/N has been stated
in [14] by Backward Stochastic Differential Equations techniques but under the strong
condition that there exists a smooth solution to the Master Bellman equation. The recent
papers [5], [6] removed this regularity assumption on the value function, and obtained
an algebraic rate of convergence of order N~7 for some constant v € (0, 1]. We mention
also in the continuous-time framework the paper [9] which derived a rate of convergence
of order N~/2 when the state space is finite, and the recent work [2] in the context of
regime-switching jump diffusions.

The convergence of the value function in the N-agent problem in a discrete-time
mean field framework has been studied in our companion paper [18]. However, it was
assumed there that each agent used the same open-loop policy, applied to her own
idiosyncratic noise and the common noise. In particular, agent’s controls cannot depend
upon other agent’s idiosyncratic noises, and they have symmetric (or exchangeable)
behaviours. This restriction was crucial for using propagation of chaos argument relying
on a pathwise comparison between the state and control processes in the N-individual
model and the McKean-Vlasov MDPs.

In this paper, we consider that the control of each agent can also depend upon
the idiosyncratic noises of all the population, and that they can do so in a completely
asymmetric way (i.e. each agent can use a different open-loop policy). This additional
flexibility and generality in the definition of controls prevents us from coupling controls
between the N-agent and the McKean-Vlasov MDPs in a one-to-one fashion as in [18]. In
order to overcome this difficulty, we adopt quite different arguments by coupling the
Bellman operators instead of the state/control process of the N-agent and CMKV MDPs.
More precisely, the strategy of the proof is the following:

Idea of the proof.

(i) We first derive the Bellman equation for the N-agent MDP, with arguments similar
to [18], i.e. we prove that Ty Vxy = Vi, where Ty is the operator defined by

TaW () := sup TaW(z), xe XV,

acAN

with

a 1< i il % i o0l S i 0

’]I‘NW(az):zﬁxf(:c ,a ’NZ 5(xj,aj))+5E[W((F(x ,a ,NZ 5(x:‘,a]‘)’51,51)ie[[1,N]])],
i=1 j=1 j=1

for & = (2%)iep1, vy € XV, a = (a");e1,n] € AY. This property is obtained by seeing
the N-agent MDP as a standard MDP on XV with actions space A% .

(ii) Then, we observe that the operators T? of the McKean-Vlasov MDP, derived in [18],
are, formally, the limits of T% when N — oo, for a € L%(X x [0,1], A) and a € AN
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well coupled. Inspired by this formal observation, we “compare” T%; to T* and
prove that they are indeed “close” in some sense, for NV large. A key point is that
T% is defined on L% (XY) (the set of bounded measurable functions on X%, valued
in R) while T is defined on LE(P(X)) (the set of bounded measurable functions
on P(X), valued in R). To compare both types of objects, we introduce a standard
way to associate to a function W e L7 (P(X)) the function W e L7 (X N by setting
W(z) = W (5 Xily 0)-

(iii) Once the proximity between T%; and T is established in a general sense, we prove
the proximity of the value functions Vi and V by seeing them as the unique fixed
points of the Bellman operators Tn = supyean T% and 7 = sup,croxx[o,1],4) T
following the intuition that if two contracting operators are close, their unique
fixed points should also be close.

(iv) Finally, we provide two procedures to build O(e + M};)-optimal policies for the
N-agent MDP from an e-optimal stationary randomized feedback policy for the
McKean-Vlasov MDP. The idea is to view, for each MDP, any e-optimal policy as a
policy satisfying the verification theorem, which is a property only linked to the
Bellman operator, again following the intuition that if two Bellman operators are
close, the policies satisfying their verification results should also be close.

Outline of the paper. The rest of the paper is organized as follows. We state the
assumptions and the main results in Section 2, while Section 3 is devoted to their proofs.
Finally, we give in Appendix A the proof of existence for optimal randomized feedback
policy, and put in Appendix B some results about the Bellman operator for the N-agent
MDP problem that are needed in the proof of our convergence results.

2 Main results

2.1 Notations and assumptions

The product space X x A is equipped with the metric d((x,a), (2',a’)) = d(z,z") +
da(a,a’), z,2" € X, a,a’ € A. Likewise, we shall endow X'V with the metric dy(z,z’) =

LN d@' ') for & = (z))ipnp 2 = (x’i)le[[l ny € XN, AN with the metric
dan(aa) =53 da(a,a?) fora=(a )w[[1 g = (df )HLN]] e AN, and (X x A)N
with the metric dy((x,a), (z',a")) = & Zl 1d((2%,a), (2'%,a'")) for x, 2’ € X and a,a’ €

x
AN When (), d) is a compact metric space, the set P of probablhty measures on Y is
equipped with the Wasserstein distance

Walpopl) o= int { ||ty ay) € TG )}

where II(u, 11') is the set of (coupling) probability measures on ) x ) with marginals p
and p’, and we recall the dual Kantorovich-Rubinstein representation

Walp, p') = sup f o(y) (1 — p')(dy), (2.1)

peLip1 JY

where Lip, is the set of Lipschitz functions on ) with Lipschitz constant bounded by 1.
Given & = (z');ep1,n] € XY, and a = (a’);ep1,vj € AV, we denote by

N N
1 1
= N Z (Sy € P(X), ,uN[a:,a] = N Z (S(xi7ai) € 'P(X X A),
i=1 =1
and we recall that

Wd(,u'N [:B, a]v NN["Blv al]) < dN((w’ a)a ($l’ a/))' (2.2)
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Given a random variable Y on (2, F,P), we denote by Py or £(Y) its distribution law.
We make the following standing assumptions on the state transition function F’ and
on the running reward function f.
(HFy;p) There exists K > 0, such that foralla,a’ € 4, e® € E°, z,2" € X, p, 1/ € P(X x A),

E[d(F(z,a,p e1,€), F(2',d', ' e1,€%)) ] < Kp(d((z,a), (2, a")) + Walu, 1))).

(Hfy;p) There exists Ky > 0, such that forall z,2’ € X, a,a’ € A, p, 1/ € P(X x A),

[f(@.a,p) = f(@',d' 1) < Ky (d((2,a), (2, a') + Walp, 1)

Remark 2.1. We stress the importance of making the regularity assumptions for F' in
expectation only. When X is finite, F' cannot be, strictly speaking, Lipschitz (or even
continuous) unless it is constant w.r.t. its mean-field argument (¢ and p’ in (HFlip)).
However, F' can be Lipschitz in expectation, e.g. once integrated w.r.t. the idiosyncratic
noise.

Given two measurable spaces E, F, we denote by L°(E; F) the set of measurable
functions from E into F, by L*(F) the set of bounded real-valued functions on F, and
L2(E) := L*(E) n L°(E;R).

Under Assumption (HFy;p), we define the constant

|In B ]

In@Rp) . e (0,1].

¥ = min [1

This constant was introduced in [18] where it is proved that the value function of the the
CMKV-MDP is v-Hoélder, see (3.2).

In the sequel, we denote by Ay (resp. A4 and Ay 4) the diameter of the compact
metric space X (resp. A and X x A), and define

My = sup  E[Wa(un,u)l, (2.3)
HEP (X xA)

where py is the empirical measure puy = ]1[ ij 10v,, (Yn)i<n<n are ii.d. random
variables with law . It is known that My —> 0, and we recall from [11], and [4] some
— 00

results about non asymptotic bounds for the mean rate of convergence in Wasserstein
distance of the empirical measure.

« If X x A c R?for some d € N*, then: My = O(N~2)ford =1, My = O(N~z log(1+
N)) ford =2, and My = O(N~) for d > 3.

e If for all § > 0, the smallest number of balls with radius J covering the compact
metric set X x A with diameter Ay 4 is smaller than O((%)q for 6 > 2, then
My = O(N—V9),

In the sequel C will denote a generic constant that depends only on the data of the
problem, namely Ay, Axx4, Kr and K¢, but independent of the discount factor §.

2.2 Convergence of value functions

Our first main result is to quantify the rate of convergence of the value function of
the N-agent MDP towards the value function of the CMKV-MDP.
Theorem 2.2. There exists some positive constant C' independent of 3 such that for all
Tr = (wl)ie[[l,N]] € XN,
C C

_WMXI < V(/J'N[w])_VN(w) < mMW
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Remark 2.3. A key point for proving such convergence rate is the Holder property of
the value function V. While this property is not trivial in the infinite horizon case as
V is defined as the fixed point equation of the Bellman operator, which explains why
we do not have in general the Lipschitz property but only the y-Holder property with
v < 1 depending on j3, the Lipschitz property of the value function in the finite horizon
case can be shown easily by backward induction of the dynamic programming from the
Lipschitz property of the terminal and running gain functions. Then, by following similar
arguments as in the infinite horizon case, one would obtain a rate of convergence for the
value function in the finite horizon problem of order O(My).

2.3 Approximate optimal policies

Our next results are to show how to obtain approximate optimal control for the N
agent MDP from e-optimal control for CKMV-MDP, and to quantify the accuracy of this
approximation.

First, let us recall from [18] the construction of an e-optimal control for CKMV-MDP.
The value function V is characterized as the unique fixed point in L¥ (P (X)) of the
Bellman equation V' = TV, where T is the Bellman operator defined on LX (P (X)) by

TW(p) := sup T*W (1),
acL0(X x[0,1];A)
with  T*W (i) i= B[ £(&a(6,U), £ (€, U) + BW (Phie a0 cieaeon e e) |
(2.4)

for any (&,U) ~ p®U([0,1]) (it is clear that the right-hand side in (2.4) does not depend
on the choice of such (§,U)). Then, for all e > 0, there exists a randomized feedback
policy a. € L°(P(X) x X x [0,1]; A), such that for all u € P(X):

Vip)—e < T*WIV(p),

and we say that a. is an e-optimal randomized feedback policy for CMKV-MDP. By
considering the randomized feedback control a¢ € A defined by

of = a.(P%,, X:,Up), teN, (2.5)

where (U;)ten is an i.i.d. sequence of random variables, U; ~ U([0, 1]), independent of &,
~ pp, and ¢, this yields an O(¢)-optimal control for V' (uo), namely

Vi) =15 < V(@)

Actually, we can even take € = 0, i.e., get optimal randomized feedback control. The proof
for the existence of an optimal randomized feedback policy is inspired by the paper [8],
which states the existence of an optimal policy in a closely related model, and is reported
in Appendix A. The role of the additional sequence of uniform random variables (U;); for
the randomization of controls is crucial in our discrete time mean-field setting. It has
been indeed shown in [18] that the value function over randomized feedback policies is
strictly greater than the value function over (non randomized) feedback policies, while it
is known that in the classical MDP setting (hence in particular for the N-agent MDP),
randomization of controls does not yield greater value. Moreover, this additional uniform
random variable provides a natural way to associate to any randomized feedback policy
of the mean-field problem a policy for the N-agent MDP.

We now provide two procedures to construct an approximate optimal control for the
N-agent MDP from an e-optimal randomized feedback policy for CMKV-MDP. The first
procedure gives a general approach for getting approximate feedback control for the
N-agent MDP.
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Theorem 2.4. Let a. be an e-optimal randomized feedback policy for CMKV-MDP. Then,
there exists a measurable function w® " from X" into A", called feedback policy for
the N-agent MDP such that

woeN(x) e argmin Wa (£ (&, ac(un[x], &2, U)), pn[z, a]), me€ XN, (2.6)

acAN

with (&2, U) ~ un[x] @U([0,1]). This yields a feedback control a“" e A defined by
afh = meN(X,), teN,

which is O(e + M}, )-optimal control for Vi (xo), namely:

VN(.’B()) — %[6 + M]’\Y[] < V]?e‘N(SC()).

Theorem 2.4 provides a generic way to obtain an O(e + M}, )-optimal feedback
policy for the N-agent MDP from an e-optimal randomized feedback policy a. for
CMKV-MDP simply by sending actions a = (ai)ie[[l, ~] to the population so that, once in
state x, the state-action pair («, a) is empirically distributed as closely as possible to
L(¢z, ac(pn[®], &, U)). However, the computation of this argmin in (2.6) can be difficult
in practice.

We propose a second approach which provides a more practical derivation of an
approximate optimal control for the N-agent MDP. It will use randomized feedback policy
for the N-agent model, defined as an element in LO(XN x [0, 1]V; AN).

Theorem 2.5. Let a. be an e-optimal randomized feedback policy for CMKV-MDEP, as-
sumed to satisfy the regularity condition

E[da(ac(n, 2, U),a(pa’, U)] < Kd(w,a'), Va,a'e X, pe P(X),  (@2.7)

(here U ~ U([0,1])) for some positive constant K. Consider the randomized feedback
policy in the N-agent model defined by?.

ﬂgf’N(wa u) = (ae(:uN[w]a xi’ ui))ie[[LN]]v

for & = (2)iep vy € XN, w = (u)iep,ny € [0,1]Y. Then, the randomized feedback
control a™%" e A defined as

re,N ae,N
oy = mret (X, Uy, tel,

where {U; = (U{);ep1,n],t € N} is a family of mutually i.i.d. uniform random variables
on [0,1], independent of G, & = ((})ie[1,n]+ €7 ) o~ IS @n O(e + MY;)-optimal control for
Vn (o), namely:

V(@) - ;o5 (14 K)e+ M) < Ve (ao).

Theorem 2.5 provides a simple and natural procedure to get an approximate policy for
the N-agent MDP: it corresponds to using an e-optimal randomized feedback policy a. of
the CMKV-MDP, but instead of inputting the theoretical state distribution of the McKean-
Vlasov MDP in its mean-field argument, we input the empirical state distribution of the
N-agent MDP, and instead of inputting the McKean-Vlasov state in its state argument,
we input the N-agent individual states, and moreover, we use a randomization by tossing
a coin at any time and for any agent. Notice that the validity of this procedure requires
the Lipschitz condition (2.7), which always holds true when the state space &’ is finite.
Indeed, in this case, the metric on X’ is the discrete distance d(z,x’) = 1,4,/, and (2.7) is
clearly satisfied with K = Ay4.

aThe subscript r in the policy 7, does not refer to time but to the fact that the policy is randomized.
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3 Proof of main results

This section is devoted to the proofs of Theorems 2.2, 2.4, and 2.5 about rate of
convergence in the propagation of chaos between the N-agent MDP and the limiting
conditional McKean-Vlasov MDP. Our approach relies on the Bellman operators of each
MDP. By proving their proximity (in a sense to be precised), we will be able to prove on
the one hand the proximity of their unique fixed points, hence the convergence of the
value functions, and on the other hand that almost optimal randomized feedback policies
are directly related to the Bellman operators via the verification result, which will give
the convergence of the approximate controls.

3.1 Comparing the Bellman operators
We first introduce the following useful measurable optimal permutation for the
coupling of empirical measures.

Definition 3.1 (Measurable optimal permutation). Let (), d) be a metric space. There
exists a measurable map o : (y,y') € (VN)? — o¥¥ € Sy (where Gy denotes the set of
permutations on [1, N|) such that for all (y,y') € (YV)2, we have

Wa(unlyl, un(y']) = dn(y, 9 ,.4); (3.1)

where we set y;y,y/ = (ylaly’y/)ie[[l,N]] fory' = (y/i)ie[[l,N]]-

Proof. It is a well known result (see [22]) that, given (y,y’) € (VV)?, there exists a
permutation 0¥¥ € Sy realizing an optimal coupling between uy[y], un[y'] € P(Y),
i.e., s.t. (3.1) holds. Let us check that this optimal permutation can be represented as
a measurable function of (y,y’) € (YV)2. Let n € [1,N!] — o™ € & be some bijection.
Notice that the function

N N!
¥,y € YV = (dv(¥,Y5n)) ey € R
is continuous, hence measurable. Furthermore, it is clear that the function

zeRM — min [argmin z"]

neN!
is measurable. Denoting by
nmin(ya y/) = min [argmin dN (ya y:;" )] ’
nenN!

it follows that the functiony,y’ € XY — oYY = gnmin(¥:¥') is a measurable representation
of the optimal permutation. O

We now study the “proximity” between the Bellman operator of the CMKV-MDP given
in (2.4), and the Bellman operator of the N-agent problem, viewed as a MDP with state
space X'”, action space A", noise sequence & = (&)en+ With &; := ((¢})iep1, N7 €7) valued
in EN x EY, state transition function

F(z,ae) = (F(sci,aam[x,aLei,eO))iEﬂlNﬂ, e = ((e)iepuny,€”) € EN x E,

and reward function

N
f(waa) = N Z f(xla azqu[wa a])a T = (xl)ieﬂl,N]h a= (al)iGHLN]]-
i=1
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The Bellman “operator” Ty : LL(XY) — L®(X") of the N-agent MDP is defined for any
W e LL(XN) by:

TaW () := sup TaW(z), xe XV,

ac AN

where
TaAW (z) := f(z,a) + BE[W (F(z,a,61))], zeXN, aecAl.

The characterization of the value function Vy and optimal controls for the N-agent MDP
via the Bellman operator 7y is stated in Appendix B.

We aim to quantify how “close” T%; and T® are when a and a are close in a sense
to be precised. Notice that the N-agent operator T% is defined on L% (X) while the
McKean-Vlasov operator T? is defined on L (P(X)). There is however a natural way to
compare them by means of an “unlifting” procedure. To any function W € L7 (P (X)), we
associate the unlifted function W € L% ©(XN) defined by

W () := W(un[z]), Veexl.
We recall from [18] that the value function V' of the CMKV-MDP is ~-Holder:

V() = V() < Ke(Walp )", Y, @' € PX), (3.2)
for some constant K, depending on K, § and Ay.

Lemma 3.2. There exists some positive constant C such that for all a € L°(X x [0,1]; 4),
ac AN, z e XV and (&,U) ~ un[z] @U([0,1]),

TV (@)~ TV (@) < C|(WalL(wra(e, U)), unlw,aD)” + M |-
Proof. For any a € L°(X x [0,1]; A), and a = (a’);e[1,n] € AV, we have

T2V (z) — T3,V ()

N
— B[ /(60 alée, 1), L(0s (60, 1)) 2 vl e, a) |

1
0
+ mE[V(]PF@m’a(sm,U>,z:<5m,a<§m,v>>,el,sa>>) Vg Z 5F(waaamw,a],ei,s‘f>)]- (3.3)

i=1

We write
N
B[ (6o, (G, U), £(6ar a(6e, UN)| - 3 D) £, [, 2])
1=1
= fA(['(fmv a(ﬁm, U)))_f(NN[wv a])?
where f(u) = § f(2/,d’, p)pu(da’, da’) for all p € P(X x A). Notice that for p, i’ € P(X x A),
we have
fo = o) = [ £ am- i) da) + (1 aom - f s )

N

KiWal(p, 1) + KWa(p, 1) = 2K Wa(p, 1),

from the Kantorovich-Rubinstein dual representation (2.1) and (Hflip). It follows that

N
‘E[f(fmva(fma U)7£(§w,a(§w,U)))] - % Z f(xivaivﬂN[w7a]) (3.4)

< QKde(ﬁ(fmv a(fmv U))?/J'N[ma a])
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Let us next focus on the second term in (3.3). As V' is y-Holder with constant factor K,,
we have

N

1
)E[V(PO F (6 (e V) Elearteo ) ~ V(T 2 5F<xaai,uw[m,aLez,s?))]‘
i=1

,
E[Wd( F(Eaa(Ea.U), £ (€ a(€a.U)).ch.69) [V Z5F(zi,ai,m[m,a],eg,eg))] ; (3.5)
=1

by Jensen’s inequality. Let (¢°, US)Z-E[[L ~7 be N ii.d. random variables, independent of €1,
such that (¢, U{) ~ un[x]®U([0,1]), i € [1, N]. For any i.i.d. random variables (&%);e[1,n]
such that

((f U0a51)ze[[11v]],51) ((5 U0751)ze[[1N]],5(1)) (3.6)
we have

1
[Wd( F(gmva(gm:U) ﬁ(ﬁm,a(fm U))7€1’€1) N

\\Mz

.0 Pletatplwalet o) |
N
0
< E[Wd(]PF(fw,a(sm,U),ﬁ(fw,a(gw,U)),e 9 Z F(€%,a(8",Ug):L (€= -a(62,U)), Eval))]

[ Z(SF(fl (€, U1 L(Ex,a(€x,U)),E 1 0)’N Z(SF(IZ at,un[x,al, 51 51):|

1
< My + E[Wd Z OF (¢, a(€4 Uf).£(Ew a(€nU)).21 200 77 Z OF(at,at ux[w.al, 53,50)]’ 3.7)
i=1

by definition of My in (2.3). Let us now consider the random permutation
o(€5a(€"U0))ien v (2",0ien1.81 defined in Definition 3.1 that we shall, to simplify nota-
tions, simply denote by o. Notice that as (£, a(¢%, Uj))iepi,n] L (€})iep1, v, We clearly
see that (5§)¢e[[1,N]] = (aﬁ”il)i)ie[[w]] satisfies the required condition (3.6). Therefore the

above relation applies to (£});ep1,n] = (sgf’fl)f)ie[[wﬂ. For such (&});cp1,n], we get

E )

N
1
P(E (68 Uf) £ (6w a(Ea ).t 4et) N ; et vttt )|

B
ST
M=

~
Il
—

I
=,
=

O (671 a(€” U) L (gm alEo ).} 20): N 5 w,ai,w[m,a],g;,gg))]

S
Il
fut

=2
1=
HMZ

E|d(F (" a(e™, UF' >,c<§w,a<§w,U>>,ei,s?>,F<xﬁai,uN[sc,a],si,ea)))]

N
=2l=
'MZ

-
Il
—

N
=
!
1=

-
Il
—

E[d((¢7,a(™, UF"). (2", ")) + Wa(£(e,a(6 V), [, a)) |

[
=
T
=
5

Z% (et 1L, a]) + Wa (£ (e a6, U)), pnle,a]) |

=1

< KF(MN+2E[ a(£(E (6w, U), il a]) ] ),

where the first inequality comes from (2.2), the second one is derived by conditioning
w.r.t. (€%, Uf)ieq1,ny,€7) and using the regularity in expectation of F in (HFy;p), the last
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equality holds true by definition of the permutation ¢ realizing the optimal coupling (3.1),
and the last inequality from the definition of M. Recalling (3.7), we then have

N
1
0
E[Wd (P (e e ). £ (e o0 1200 T 2 5F<wi,a%uw[w,a]7ei7e$>)]
i=1
< (1+KF)MN+2KFE[Wd(£(§z,a(§m,U)),,uN[m,a])]

which implies by (3.5)

1 N
]E[V(]POF(gw’a(gm1U)7£(£’a(§fU))’5176(1))) B V(N Z 6F(Ei7ai7MN[m7a]’8178?)):|

i=1

< 1@((1 + Kp)My + 2KpE[Wa(L(¢z, a(é, U)), uN[:vva])])T
Together with (3.4), and plugging into (3.3), we obtain finally
‘1?&17(@ - T@V(m)‘
< 2K7B|Wa(L(oa(ée, U)). px[a.a])
+ K. ((1 + Kp)My + 2K pB[Wa(L(En, 8. U)), v [, a])])7
< C{WalL(aralGe, U))pvle.a) + (WalL(Garaléo, U, ixlsal)) + M3}

(recall that v < 1), for some constant C' depending only on K,, Ky, Kr, where we also
use the fact that Wq(L(&x, a(€e, U)), un[x, a]) is bounded by a constant depending on
the diameter of the compact set X x A. This ends the proof. O

3.2 Proof of Theorem 2.2

Lemma 3.2 means that given a € L°(X x [0,1]; A), a € AV, and for x € X", the
Wasserstein distance between the distribution law of (&g,a(¢z,U)) (Where (&,,U) ~
pn[x] ®U([0,1])), and the empirical measure py[x,a] is small (and N large), then TV
~ T‘}VV It is thus natural to look for suitable choices of a € LO(X x [0,1]; A4), ae AN so
that the above Wasserstein distance is as small as possible. This is quantified in the
following result.

Lemma 3.3. Fixx € XV, Then, for any ae L°(X x [0,1]; A), there exists a* € AN such
that

Wd(ﬁ(gm,a(gm’U))7’[J,N[:1},aa]) < 2]\/[1\[7

where (&z,U) ~ un[x] ®U([0, 1]). Conversely, for any a € AV, there exists a® € L°(X x
[0,1]; A) such that

E(fccv aa(ﬁm, U)) = uN[m, a].

Proof. Fix a € L°(X x [0,1]; A). Let us consider & = ({');ep1,ny ii.d. with common
distribution py[], independent from Uy = (U§)seq1, vy i-i.d. ~ U([0,1]). We have

N

B[Wa (£(6ar 86, 0)): - D) 0 et )]
1 &
< E[Wd(ﬁ(€w7a(€:c7U))’ Z 4
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where we used the definition of My and (2.2) in the second inequality, and the definition
of 0% in the last inequality. It follows that

1 N
IP[Wd (E(gma a(gma U))7 N Z 6$L a(g"f’w U(l))) < QMN] g O,
i=1 "’ '

which implies that there exists a vector a € AV such that

Wa (L (- a(a, U)), pn[@.a]) < 2My.

On the other hand, given such an a € A", there clearly exists a® € L°(Xx x [0,1]; A) such
that £(£z,2%(§x,U)) = pun[z,a]: indeed, by considering (¢, &) ~ un[z, a], it suffices to
choose a? as a kernel for simulating the conditional distribution of & knowing £&. We then
have

Wd(‘c(gmaaa(fa:aU))’MN[w’a]) = 0. 0O

By combining the general comparison of Bellman operators in Lemma 3.2 with the
coupling result in Lemma 3.3, we can now prove the propagation of chaos of value
functions.

Proof of Theorem 2.2. From the fixed point equation for V' with Bellman operator T
in (2.4), we have

Vi) = TV(x)
= sup ToV (x) < sup T3, V() + CMy};
aeLo(X x[0,1];A) aeLo(X x[0,1];A)

< TwV(z) +CMY,

where we used Lemma 3.2 and Lemma 3.3 in the first inequality, and the definition of
Tw in the last one. Since Vy is a fixed point of Ty (see Proposition B.8), we then have:

(V-Vn)(x) < (TwV —TaVw)(z)+CMy,
and thus by definition of Ty,
(V-Va)(@) < B sup (V-Vn)@)+CMY,

x'exX N
which implies
- C 5

sup (V —Wa)(x) < ——My.

xe XN - 5
Likewise, by Lemma 3.2 and Lemma 3.3, we have

Vi) = TV(z) = sup  TaV(x) > sup T*V(z)
aeL%(Xx[0,1];A) ac AN

> sup T3 V(z)—CM}, = TaV(x) — CM7,
acAN
and using the fact that Vy is a fixed point of 7y, we obtain similarly
~ c
sup (Vy —V)(z) < ——Mj3,
swp (Ve = V)(@) < MR

which concludes the proof. O
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3.3 Proof of Theorem 2.4

We start with a general result estimating the efficiency of a feedback policy for the
N-agent MDP by “comparing” it to an e-optimal randomized feedback policy for the
CMKV- MDP.

Lemma 3.4. Let a. be an e-optimal randomized feedback policy for the CMKV-MDE and
ae AN, Then, there exists some positive constant C' (depending only on Ax« 4, 8, Kr,
Ky) such that for all z € XV,

TR Vn(z) > VN("?)—€_%[Wd(ﬁ(fmae(MN[*’”]vfwaU))aMN[waa])y+MX[]-

Proof. Fixx € XV, ae AV, and define a. € LO(X x [0,1]; A) by a.(z,u) = a.(un[z], 7, u)
for z € X, u € [0,1]. By Theorem 2.2 and the §S-contracting property of T4, we have

TRV (@) - TR (@) < BlVivle) - V@)lar < 12503,
and so
aVn(z) = TaV(x)-— %C’MX,.
Together with Lemma 3.2, this yields
WVn() > TV (@) - o [WalLE a6 D) nle.al) + 03] G9)

Denote by af the randomized feedback control associated via (2.5) to the randomized
feedback policy a.. Then, notice that the gain functional V* (¢) depends on ¢ only
through its law p = £(¢), and we set V* (u) = V' (¢) when ¢ ~ p. Since V > V*°, and
by the monotonicity of T?<, we have

T*V(un[z]) > TV (un[z]) = V' (unlz]) > Vipn[z]) —e

by recalling that V' is a fixed point of T?, and using the fact that a. is an e-optimal
randomized feedback policy for the CMKV-MDP. From Theorem 2.2, this implies that

ToV(z) > VN(w)—e—%MX,,

which proved the required result when combined with (3.8). O

Given a feedback policy w € L°(X"N; AN) for the N-agent problem, the associated
feedback control is the unique control a™ defined by af = w(X;), t € N. By misuse
of notation, we denote V¥ = V¢ . Let us then introduce the operator 7,7 on L% (XN),
defined by

TIW(z) = f(z, m(z)) + BE[W (F(z,7(x),e1))], zex™.

Proposition 3.5. Let a. be an e-optimal randomized feedback policy for the CMKV-MDEP,
and consider any feedback policy =« for the N-agent MDP. Then, the feedback control o™
is

O(e+ sup Wa(L(éz,ac(un(x], &, U)), ,uN[SC,ﬂ'(:E)])PY + M7;)-optimal for Vy (zo),

xzeX N

where (§z,U) ~ pn[z] @U([0,1]), namely

Viv(zo) = Cle + sup Wa(L(ée, ac(un(z] &, U)), un[z, w(@)])" + MY] < Vi (xo).

zeX N
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Proof. Fix x € XV, and let a = w(x) € AN. By definition, we have 77 Vy () = T% Vy(z).
By Lemma 3.4, we thus have

TK/TVN(:E) = VN(.’I}) — € — L[ sup Wd(£(£:mas(ﬂN[$]>£mvU))a,qu[xva])’y + MJA\/[]v

and we conclude by the verification result in Lemma B.7. O

Proposition 3.5 has an important implication: it means that a feedback policy 7 for
the N-agent MDP yields the best performance whenever it assigns for each state x the
action m(x) that achieves the minimum of

ac AV — Wd(£(§w7a€(,u,N[$],£m,U))7MN[iU,a])~

Let us check that one can choose a measurable version of this argmin.

Lemma 3.6. Leta e LO(P(X) x X x [0,1]; A). Then, there exists a measurable function
w*: XN — AN such that

7 (x) € &uﬁgminV\/d(ﬁ(fmct(/uLJ\f[:c],fw,U)),,u]\z[a:,a\])7 xexV.

ac AN

Proof. Notice that the function

h(z,a) = Wa(L(&,a(un[z] &, U)), un |z, a])

is such that for a € AV, h(-,a) is measurable, and for = € X”, h(z, ) is continuous. Since
AY is compact, h(z,.) attains its minimum at some 7*(x), and by classical measurable
selection theorem, see e.g. Theorem 4.1 in [23], the function z € XV — 7*(z) can be
chosen measurable. O

By Lemma 3.6, there exists a randomized feedback policy 7%V s.t.

Wd(ﬁ(fmyae(MN[w]7§m7U))vﬂN[waﬁaE’N]) = aierilfN Wd(ﬁ(gmaae(,U/N[m]ygmuU))7MN[waa])a
and the r.h.s. of the above equality is bounded by 2My from Lemma 3.3. Together with
Proposition 3.5, this proves Theorem 2.4.

3.4 Proof of Theorem 2.5

Given a randomized feedback policy 7, € LO(XY x [0,1]"; AY), the associated feed-
back control is the unique control a™ given by af" = 7,.(X;,U;), t € N, where {U, =
(U)ieqi,n],t € N} is a family of mutually i.i.d. uniform random variables on [0, 1], indepen-
dent of G, €. By misuse of notation, we denote Vi~ = V&" . For w, € LO(AN x[0,1]V; AN),
we introduce the operator 75" on L (X"), defined by

ToW(x) := E[f(z,m.(x,Uy)) + W (F(z, 7, (x,Uq),e1)], Yoei?,

where Ug = (U});eq1,n7 is a family of i.i.d. ~ ¢([0,1]), independent of G, e.
We adapt Proposition 3.5 to the case of randomized feedback policies.
Proposition 3.7. Let a. be an e-optimal randomized feedback policy for the CMKV-

MDE and consider any randomized feedback policy m, for the N-agent MDP. Then, the
feedback control o™ is

O(e + sup ]E[Wd (L(ée,ac(un(x], &, U)), pn[z, 7, (2, Uo)])]’y + My,)-optimal for Vi (zo),

xeX N
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namely

VN (:B()) —

IEYB(eJF il.}YpN E[Wd (ﬁ(fm, ae(ﬂN[w]v Ema U))a ,U'N[ajv ﬂ-r(ma UO)])]’YJFMX/) < Vlzfrr (:BO)

Here (¢2,U) ~ pn[x] @ U([0,1]), and Ug = (U)ieq,n] is a family of iid. ~ U([0,1]),
independent of .

Proof. Fix € XV, and let a = m,.(z,U,) be the random variable valued in AY. By
definition, we have 77" Vy(z) = E[T% Vy(z)|. By Lemma 3.4, we have

%VN(w) = VN(CU) —€— %[Wd(ﬁ(gwa aé(:uN[wam? U))’/“\f[a"ﬂ71-T($7Uvo)])V + MX[]

Taking the expectation, and by Jensen’s inequality, we then get

T3 Viv () 2 Vi (@) == 5 sup B[ Wal (6ol ], 0. V)i v, . Ua)| #013)

and we conclude by the verification result in Lemma B.7. O

Compared to Proposition 3.5, Proposition 3.7 means that with a randomized feedback
policy 7,., one can obtain a “good” performance whenever it produces empirical state-
action distributions that are close to the theoretical state-action distribution generated
by a. on average, i.e., that makes the quantity

B[ Wa (£(6: ac(un[2). €. 0)). pinle. (@, Uo)])

as small as possible. More precisely, if we can design a randomized policy 7, such that

E|Wa (£ (e ac(unle]. &0, ), pxlz,m (@ Un))) | < CMy,

then by Proposition 3.7, this will prove the statement of Theorem 2.5. The next result
shows how it can be achieved.

Lemma 3.8. Let a: P(X) x X x [0,1] — A be any (if it exists) randomized feedback
policy for the CMKV-MDP such that

E[da(a(p,z,U),a(p, 2", U))] < Kd(z,2'), YueP(X),z,2' €X, (3.9)

(here U ~ U|0,1])) for some positive constant K. Consider the randomized feedback
policy for the N-agent MDP defined by

o (@, u) = (a(ﬂN[m]vl’i,Ui)) = (Ii)ie[[l,N]] e XN, u= (ui)ie[[l,N]] e [0, 1]7.

ie[L,N]’
Then,

B[ Wa(£(6e alux[e]. &, U) pxle w2V (@, Uo)l) | < (2+K)My,
where (&, U) ~ pun[x] @U([0, 1]).

Proof. Fix x € XV, and set a,(v,u) = a(uy[z], z,u) for (z,u) € X x [0,1]. Let us consider
a family € = (£*);e1, v of NV ii.d. random variables such that £’ ~ uy[], and independent

EJP 28 (2023), paper 86. https://www.imstat.org/ejp
Page 16/24


https://doi.org/10.1214/23-EJP978
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Quantitative propagation of chaos for mean field Markov decision process

of Uy. Let us consider 0%, the optimal permutation defined in Definition 3.1 between &
and . We have

Wa (£ (6w, a(unla), &, ), pxlw, 72 (2, Uo)))
= Wa(£lar 06 U)o D Bt o0

N
< W £ xy dx cch S AT 6 I fEd .
d( (§ar 82 (82, U)) Ni; €75 aa(e7t ,Ug))
1 Y 1 Y
+ Wd(ﬁ ;1 5g”f’”,am(£”f’ U N ;1 Ot g a1,03))
X
< WalL(&s, U 0
d( (fm am(ﬁm )) Nl ] £ a0 (€7, U(aﬁ =) ))
&=
+dn (€7, 7N (€7 UY)), (2, 78N (2, U))),

where we set 5”“ = (gof’w)ie[[LN]], and use (2.2) in the last inequality. Taking the

expectation, we then obtain under condition (3.9)

Wa (L (82, alpun[z], o, )) p [z, w3 (@, Uo)])

< My+ {1+ K)E[dy(E )]
= My + (1+ K)E[Wy(un[€], unlz])] < 2+ K)My,
where we use (3.1) in the last equality. This concludes the proof. O

We now apply Lemma 3.8 with an e-optimal randomized feedback policy a. for the
CMKV-MDP, and combined with Proposition 3.7, this proves the required result in
Theorem 2.5.

A Existence of optimal randomized control for CMKV-MDP

Recall from Proposition 4.1 in [18] that the Bellman operator 7 of the CMKV-MDP is
written in the lifted form as

[TW) = sup{f(u.@) + BE[W (F(n,a. )]} peP(x), (A1)

acA

for W e L(P(X)), where A = P(X x A), F is the measurable function on P(X) x A x E°
— P(X) defined by

F(p,a,e’) = F(,-,p(u,a), ) » (p(u,a) ® L(e1)),

and f is the measurable function on P(X) x A defined by

Flua) = L f@.a.plis.@)p( @)(dr.da).

Here * is the pushforward measure notation, p is a measurable coupling projection from
P(X) x A into A: p(u, @) = p(, p(i, @)), satisfying pry » p(u, @) = p, and p(pu,a) = a if
pr; *» a = p (where pr; is the projection function on the first coordinate). Since f and
F depend upon a only through p(u, a), it is clear that the supremum in (A.1), for each
p € P(X), can be taken actually over the the subset I', := {a : (1, a) € '} € A, where
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I':={(u,a) e P(X) x A:pr; xa = p}is closed in P(X) x A from the continuity of @ —
pr; * a. Moreover, since V is continuous (see (3.2)), it is straightforward to prove that

(ma)eT — fua)+BE[V(F(n.a.e)]
- | taaadda) ¢ SE[V(EC ) s (0@ L)
XxA

is continuous and thus upper continuous on I'. Therefore, by [3], Proposition 7.33, there
exists a measurable function ¢ : P(X) — A whose graph is included in I" and such that

Flps o) + BE[V (F(p, 8(1),29)) ]

sup { F(u, @) + BE[V (F(s, a,=0) |},

ael’y,

= [TV](/IJ) = V(,LL), Ve P(X)7 (A.2)

where the last equality follows from the fixed point equation of V. By the universal
disintegration theorem (see [15], Corollary 1.26), there exists x : X x P(X x A) x P(X) —
P(A) such that for all @ € P(X x A), u € P(X) with pry x a = p, we have a = u®s(-, a, j1)
(where ® denotes the probability-kernel product). Furthermore, by Blackwell-Dubins
Lemma, there exists a measurable function p : P(A) x [0,1] — A such that for all
7w € P(A), if U denotes a uniform random variable, then p(w, U) ~ 7. We can then define
the randomized feedback policy

aO(/’L7xau) = P(“($>¢(M)7ﬂ),u)7
which satisfies by construction £(¢, ag(i, &, U)) = ¢(p) for (§,U) ~ p®U([0, 1]) so that

Fluo(w) = B[F(€ a0t € U), £ a0, 1)) ]
F,8(1),€9) = Plhie a0 (w6, 0),£ (6100 (1,6,0)) 1,20
Recalling notation in (2.4), and by (A.2), this shows that
TV (1) = V(p).

According to the verification result (Proposition 4.3 in [18]), this ensures that that the
randomized feedback control o € A defined by

of = ag(P%,, X:,Up), teN,
where (U;)ten is an i.i.d. sequence of random variables, U; ~ U([0, 1]), independent of &,
~ pp, and g, is an optimal control for V (ug).
B Bellman equation for the N-agent MDP

In this section, we study and rigorously state properties on the Bellman equation for
the N-agent problem, viewed as a MDP with state space X%, action space A", noise

sequence € = (&¢)wen+ With &, := ((€})iep1,n]-€7) valued in EN x E°, state transition
function
Fwae) = (F('a uyfzale,e®) . e=(()pnye)e BN x B,
i€[1,N] ’

and reward function

N
f(z, Z ' a’ s i, a]) €T = (xi)ie[[l,N]]y a= (ai)ieﬂl,N]]-
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With respect to standard framework of MDP, we pay a careful attention when dealing
with possibly continuous state/action spaces (X, A), and optimizing in general over
open-loop controls.

Let us consider the set V of sequences v = (v;)ien With vy a measurable function
from ([0,1]™)N into A", and v, a measurable function from ([0, 1]V)N x (EN x E%) into
AN for t e N*. For each v € V, we can associate a control process o € A given by

a;/ = Vt(U7 (Es)seﬂl,t]])a te IN7

(with the convention that aff = vo(U) when ¢ = 0), where U = (U});e1, 7 ten is a family
of mutually i.i.d. uniform random variables on [0, 1], independent of €, and conversely
any control «« € A can be represented as a” for some v € V. We call V the set of
randomized open-loop policies. By misuse of notation, we write V/ = Vﬁu.

Let us introduce the Bellman “operator” Ty : L2 (XN) — L®(X") defined for any W
e LL(XN) by:

[TvW](x) := sup T W (x), xe &,

acAN

where
AW (x) = f(z,a) + BE[W (F(z,a,e1))], zex™, acAV.

Notice that the sup can a priori lead to a non measurable function 75 . Because of this,
T is not an operator on L2 (XY) in the strict sense. To see Ty as an operator, we have
to find a subset in L (X™) that is preserved by Tx. The next result introduces such
subset.

Lemma B.1. Let M be the set in L% (X") defined by

M= {W e LR (XN) |W(z)—W ()| <2Kf2 B'min[(2Kp)'dy(z, 2'), Ax], Vo, 2 e XN},
t=0
(B.1)

Then M is a complete metric space under the | - | norm, and T%, for alla € AN, and Ty,
preserve M: T{y M c M, TyM < M.

Proof. It is clear that M is closed in L% (X"V), and is therefore a complete metric space
for | -|. Let W e M. Fix z, o' € XV, and a € AV. Let us start with two preliminary
estimations: under (Hfj;,), and recalling (2.2), we clearly have

|f(w,a) - f((l:/,a>| < ZdeN($7 w/)' (BZ)
Similarly, under (HFy;p), for €® € E°, we have
E[dN(F(w, a, (5i)ie[[1,N]] ) 60)7 F<$/7 a, (Ei)ie[[l,N]] ’ eo))] < 2I(Fd]\/'(ac’ x/)' (B.3)

Thus, denoting by X; = F(z,a, (¢});ep1,n, €°) and X = F(2/, a, (€});e1,n7], €°), We have,
by Jensen’s inequality and then (B.3),

18

B min [(2Kp)'E[dn (X1, X))], Ax]

0
E | > B min[(2Kp)'dy (X1, X)), Ax] | <
t=0

t=0

<

18

B'min [2Kp)"dy(z,2'), Ax]. (B.4)

-
|

0
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The definition of T%, combined with (B.2), the fact that W € M, and (B.4), implies that

o0
T W (z) — TR W (2')| < 2Kpdy(z,a') + 2K, Y. A min [(2Kp) " dy (. 2), Ax]
t=0

0
< 2Ky 2 B'min [(2Kp)'dy(z, @), Ax],
t=0
which shows that T3 W € M, i.e. T%; preserves M. Furthermore, we have

[TNW (x) — TwW (z")] < sup |[TaAW(x) — TAW (z')]

ac AN
0
< 2Kf Z ﬂt min [(QKF)th(.’B, w'), Ax],
t=0
which also shows that TyW € M. O
Lemma B.1 implies that by restricting 7y and T% to M, we can see 7y and T%
as operators on M, thatis, Ty : M — M and T% : M — M. However, the property

defining the functions in M (see (B.1)) is not very natural and practical. The following
result provides a more convenient property satisfied by all functions in M.

Lemma B.2. There exists K, € R such that any function W € M is ~v-Hélder with
constant factor K,, i.e.

W(z)—W()| < Kdy(z,z), Voo ex™.
Proof. We have

W(x) —W(z')] < 2K; Z B'min [(2Kp)'dy(x, @), Ax]| =: 2K;S(dn(z, ).

i=0
where S(m) = Zio Btmin[(2Kg)tm, Ax]. If 28K < 1, we clearly have
& m

and so W is 1-Holder. Let us now study the case 286K > 1. In this case, in particular,
2Kr > 1since B € (0,1), thus t — (2Kr)? is nondecreasing, and so

0 bt
S(m) < ZJ- B min [(2Kp)*m, Ax|ds
t=0
1 0 t+ 1 0
< fZJ £° min [(2KF)Sm,AX]ds = ff e*" % min [meSIH(2KF),AX]ds.
ﬁt:o t B Jo

Let t, = t,(m) be such that me!*"Kr) = Ay, ie. t, = %. Then,

A\

) t* o0
J eslnﬂmin [mesln(QKp)’AX]dS < mf esln(QKFﬂ)dS + AXf esln(ﬁ)ds
0 0 t*

. om [et* In(2KrB) _ 1] _ Ax
IH(QKFﬂ)
In(2K g 8)

_In(8) _
- (8™ -2 ()

Ax\ Tiks
- lmmeg 55 5™ - nar

. | 1n 8|
min | 1, msey
Cm [ I <2KF>] =Cm”,

N
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for some positive constant C' depending on Kr, 8 and Ay. This implies that W is
~v-Holder with a constant factor K, that is clearly independent of W € S. This concludes
the proof. O

The consequence of Lemmas B.1 and B.2 is that the set M < L% (X) is a closed set,
preserved by 7y and contains only functions that are y-Hélder with factor K,. We are
now able to get the existence of a unique fixed point to the Bellman operator 7Ty.

Proposition B.3. (i) The operator Ty is monotone increasing: for Wi, W, € LZ(XV),
if Wy < Wy, then TyW1 < TyWs. (ii) Furthermore, it is contracting on L,,O,OL(XN) with

Lipschitz factor 3, and admits a unique fixed point in L% (X", denoted by Vy;, hence
solution to:

Vi = TnVx.
Moreover, Vy; € M, and thus V} is y-Hélder with constant factor K.,.

Proof. (i) The monotonicity of 7y is clear. (ii) The [-contraction property of Ty is
obtained by standard arguments, which implies the uniqueness of a fixed point (but not
the existence). Let us prove the existence of a fixed point. As M is preserved by 7y,
and is closed for | - ||, and therefore complete (as a closed subset of the complete space
L% (xN)), by the Banach fixed point theorem, 7y admits a unique fixed point V3 in M.
By Lemma B.2, this implies that V3, is y-Holder with constant factor K,, and concludes
the proof. O

Remark B.4. Notice that the above arguments would not work if we considered, instead
of M, directly the set of y-Holder continuous functions. Indeed, while it is true that such
set is stabilized by 7Ty (it essentially follows from (B.2) and (B.3)), the set of v-Holder
continuous functions is not closed in L% (X") (and thus not a complete metric space):
there might indeed exist a converging sequence of y-Holder continuous functions with
multiplicative factors (in the Holder property) tending toward infinity, such that the limit
function is not y-Holder anymore.

As a consequence of Proposition B.3, we can show the following relation between the
value function Vy of the N-agent MDP, and the fixed point V}; of the Bellman operator
TN

Lemma B.5. Forall z € XV, we have Vy(z) < V3 ().
Proof. Forany ¢ € XN, v eV, we have
B[ f(@,v0(U) + 8V3 (F(z,vo(U), 1) |

= E[{f(@.vo(w) + BEIV (F(@.vo(w).e)l} |
E[T”O(U)VJ\*,(J;)] <TVi(x) = V(). (B.5)

For any (u,e) € ([0,1]V)N x (EN x E°), and for any v € V, we define *'° € V by
Uy (' (€l)senap) = Vi1 (u, e, (€)sepap)s (W, (€)seqrip) € ([0, 11V)N x (BN x E°)f, teN.

Standard Markov arguments imply the following flow property for randomized open-loop
policies:

V(@) = E[f@un@)+8vE " (Flz.vo©).e)
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Together with (B.5), we then get

Vi(@) - Vi@ > BE[Vi(F(@vU).e) —VE " (Flavo(U).e1))]
> 8 inf  {Vi(z) - V¥(=)}

e XN vey
Taking the infimum over € XV, v € V on the left hand side of the above inequality, and
since 8 < 1, this shows that V¥ (z) < V() for all v € V. We conclude that Vy < V3. O

We aim now to prove rigorously the equality Vy = VY, i.e., the value function Vy of
the N-agent MDP satisfies the Bellman fixed point equation: Vy = 75 Vy, and also to
show the existence of ¢-optimal (randomized) feedback control for V.

A feedback policy (resp. randomized feedback policy) is an element 7 € LO(XV; AN)
(resp. LO(XN x [0,1]%; AN)). The associated feedback control is the unique control o™
given by af = 7 (Xy), (resp. 7.(X;,Uy)), t € N, where {U; = (U});e[1,n7], t € IN} is a family
of mutually i.i.d. uniform random variables on [0, 1], independent of G, €. By misuse of
notation, we denote V¥ = V&~ . Given w € LO(XN; AN) (resp. LO(AN x [0,1]V; AN)), we
introduce the operator 7,7 on L% (X"), defined by

TIW(x) := f(z,w(x)) + BE[W(F(:B,F((L‘),&‘Q)], xexV,
resp.
TEW (x) := B[f(z,w(x,Uy)) + W (F(x,n(z,Up),e1)], VeeXV,

where Ug = (U{);eq1,n7 is a family of i.i.d. ~ ¢([0,1]), independent of G, e.
We have the basic and standard properties on the operator 7,7 :
Lemma B.6. Fix m € LO(XN; AN) (resp. L°(XN x [0,1]V; AM)).

(i) The operator T;F is 3-contracting on L% (X"), and VT is its unique fixed point.
(ii) Furthermore, it is monotone increasing: for Wy, Wy € L®(XN), if W1 < W3, then
TaWy < TFWas.
We state the standard verification type result for the N-individual MDP, by means of
the Bellman operator.

Lemma B.7 (Verification result). Fix ¢ > 0, and suppose that there exists an e-optimal
(randomized) feedback policy w¢ for V3 in the sense that

Vi< TRV +e

€

138

Then, o™ € A is <5-optimal for Vy, i.e, Vi > Vy — and we have Vy > V3 —

€
8-
Proof. Since V7" = T V¥, and recalling from Lemma B.5 that V3 > Vy > V', we
have for all x € AV,

(Vi = Vi) @)| < | T8 Vile) = TEVE @) + ¢ < BIVG = Vi +

where we used the [-contraction property of 75° in Lemma B.6. We deduce that
VX — V]’\;E | < ﬁ and then, Vy > VJZ,'E = V3 — ﬁ which combined with V3, > Vi,
concludes the proof. O

We finally conclude this section by showing the existence of an ¢-optimal (randomized)
feedback policy for N-agent MDP on XV, and obtain as a by-product the corresponding
Bellman fixed point equation for its value function.
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Proposition B.8. For all ¢ > 0, there exists a (randomized) feedback policy =€ that is
e-optimal for Vy;. Consequently, the control a™ e Ai and we have
VN = V3, which thus satisfies the Bellman fixed point equation.

Proof. We prove the result for e-optimal feedback policy (the case of e-optimal random-
ized feedback policy is dealt with similarly). Fix ¢ > 0, and given 1 > 0, consider a
quantizing grid M" = {x;,...,zx»} c XY, and an associated partition C)/, k = 1,..., N7,
of &Y, satisfying

C) ¢ B"(xy) := {:EE N dy(x,xp) < 77}, k=1,...,N,.

For any x, k = 1,..., N7, there exists aj, € AY such that
e €
Vi(xg) < T2V (k) + 3 (B.6)
From the partition C}, k = 1,..., N, of XN, associated to M", we construct the function

e XN — AN as follows: we define, for all € X'V,
m(x) = aj, whenze(C/, k=1,...,N".

Such function 7¢ is clearly measurable. Let us now check that such =€ yields an e-
optimal feedback policy for 1 small enough. For € X", we define 2" = x;, when x €
C]l, k=1,...,N,. Observe that dy(x, ") < n. We then write for any « € XN,

T3 Vid(@) = Vi) = (173 Vid@) = [T7 Vil@") + (173 Vil@”) - Vi (@)
+ (Vir(a") - Vi (@)
> (73 V(@) - T3 Vi) -

: (B.7)

Wl m

€
3
where we used (B.6) and the fact that |V (x7) — V3 (x)| < ¢/3 for n small enough by

uniform continuity of V¥ in Proposition B.3. Moreover, by observing that 7¢(z) = w*(z")
=: a, we have

(73 Vil(@) = B|f(@.2) + BV (F(z,a,2)],
T3 Vil(@") = E[f(@",a) + BV} (F(",a,21))|.

Under (HFy;p)-(Hfiip), and by using the y-Hoélder property of V3 with constant K, in
Proposition B.3, we then get

T8 Vi) = [Ty Val(z")]
2Kydy (w,2") + SK.E|E]
[

N

dN( El)zeﬂl NJ» )7F(x7]7aa (Ei)ie[[l,N]]v 5(1):|

N

oK pdy (") + BK, ]E[IE
< Cdy(z, ") < Cn.

dN( gl)ieﬂl,Nﬂae)aF(mnaaa (ei)ieﬂl,N]]a E_El:l

for some constant C. Therefore, |[T7F Vi](z) — [TF Vi](x")| < ¢/3, and, plugging
into (B.7), we obtain TJZ,TeV](,(a:) —Vi(x) = —¢ forall x e XN, which means that 7€ is
e-optimal for V3. The rest of the assertions in the Theorem follows from the verification
result in Lemma B.7. O
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