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Abstract

We show that the fluctuations of the largest eigenvalue of any generalized Wigner
matrix H converge to the Tracy–Widom laws at a rate nearly O(N−1/3), as the matrix
dimension N tends to infinity. We allow the variances of the entries of H to have
distinct values but of comparable sizes such that

∑
iE|hij |2 = 1. Our result improves

the previous rate O(N−2/9) by Bourgade [8] and the proof relies on the first long-
time Green function comparison theorem near the edges without the second moment
matching restriction.
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1 Introduction

In this paper we study quantitative statements of the edge universality for generalized
Wigner matrices. The edge universality for self-adjoint random matrix models states that
the appropriately centered largest eigenvalue λN fluctuates on scale N−2/3, with N the
matrix size, and the distributional convergence

lim
N→∞

P
(
N2/3(λN − E+) ≤ r

)
= TWβ(r), r ∈ R, (1.1)

holds with E+ being the centering. The universal limiting laws TWβ were identified
by Tracy and Widom [55, 56] who proved the above convergence with E+ = 2 for the
invariant Gaussian ensembles, GUE and GOE, with β = 2 for the complex Hermitian
respectively β = 1 for the real symmetric symmetry class. Using the integrability
structure of the Gaussian ensembles the convergence in (1.1) was quantified explicitly
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Quantitative Tracy–Widom laws of generalized Wigner matrices

by Johnstone and Ma in [30] as a Berry-Esseen type theorem: For any fixed r0 ∈ R, there
exists a constant C = C(r0) such that

sup
r>r0

∣∣∣PGβE
(
N2/3(λN − E+) < r

)
− TWβ(r)

∣∣∣ ≤ CN−2/3, (1.2)

for sufficiently large N , where E+ = 2 for the GUE, respectively E+ =
√

4− 2
N for

the GOE. Related asymptotic expansions of edge correlation kernels were obtained in
[12, 23, 44] and strong convergence results of edge kernel for β-ensembles with general
potentials were derived in [13, 14].

The edge universality, i.e., the extension of the convergence results in (1.1) to non-
invariant matrix ensembles, was established in many works over the last two decades,
e.g., for Wigner matrices [22, 40, 46, 52, 54] with deformations and generalizations [3,
9, 32, 37], for adjacency matrices of random graphs [5, 17, 26, 27, 28, 36, 39], for
band random matrices [51], and for sample covariance matrices [4, 15, 38, 45, 47, 57].
Yet results for effective convergence rates other than the invariant ensembles are still
scarce. The first quantitative estimate for generalized Wigner matrices was obtained
by Bourgade in [8] who established a convergence rate of order almost O(N−2/9). In
our recent work [48] we obtained the convergence rate almost O(N−1/3) for Wigner
matrices. The purpose of the present work is to establish the same convergence rate
for generalized Wigner matrices. Generalized Wigner matrices, introduced in [21], have
independent centered entries, up to the symmetry constraints, whose distributions may
be distinct with an inhomogeneous variance profile. More precisely, denoting the entries
by hij one has Ehij = 0 and E|hij |2 = Sij with S = (Sij) a doubly stochastic matrix. In
case Sij = 1/N one recovers the usual definition of Wigner matrices. We will assume that
the entries of S are uniformly bounded from below implying a spectral gap; see (2.5) later.
A theoretical motivation for studying this type of models is to extend the universality to
models beyond mean-field systems. On the methodological side, we aim to lift the second
moment matching restriction for comparisons in previous works, e.g., [17, 22, 40], to
prove edge universality. In applications generalized Wigner matrices arise as centered
adjacency matrices of balanced stochastic block models [6, 29, 41].

We derive our main convergence results using a Green function comparison strategy
tracing back to Erdős, Yau and Yin [21], see also the related four moment theorem of
Tao and Vu [53], for the bulk universality. There a four moment matching condition is
required and this restriction can be removed using a sophisticated dynamical approach
relying on the local relaxation of Dyson’s Brownian motion (DBM) [16] and related
subsequent works in [10, 20, 33, 34]. The Green function comparison approach to the
edge universality only requires second moment matching [22], while earlier works on
the edge universality use moment methods [46, 50, 52] or third moment matching [54].
Edge universality for generalized Wigner matrices was first proved in [9] by combining
local relaxation results of the DBM at the edges (see also [1, 8, 35]) and a short-time
Green function comparison to remove the small Gaussian convolution. Combining his
quantitative local relaxation estimates for the DBM with a Green function comparison for
short times, Bourgade [8] obtained the convergence rate O(N−2/9) to the Tracy–Widom
laws for generalized Wigner matrices.

In this paper, we use a long-time continuous Green function flow [37, 39] in combi-
nation with cumulant expansions for our Green function comparison on a much finer
spectral parameter scale (slightly above N−1) with an improved error estimate O(N−1/3).
The novelty of our method is to establish the first Green function comparison theorem
near the edges without the second moment matching restriction, which is new even for
Gaussian matrices. This comparison requires precise estimates on the contributions
from inhomogeneous variances of the matrix entries to the interpolating Green function
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flow that turn out to be considerably harder than those from the third and fourth order
moments considered in [22, 48]. To overcome this difficulty, we introduce a new expan-
sion mechanism for products of the Green function entries and the entries of the variance
profile matrix S. Performing the cumulant expansions iteratively in combination with
the spectral gap of S in (2.5) below and applying a Grönwall argument, we extend the
explicitly-computable estimates for the Gaussian invariant ensembles [30] to arbitrary
generalized Wigner matrices.

Organization of the paper: In Section 2, we state the quantitative Tracy–Widom
laws for generalized Wigner matrices which follow from our main technical result,
the Green function comparison in Theorem 2.7. In Section 3, we consider a special
case of Theorem 2.7 with F = id, i.e., Proposition 3.1. First, in Subsection 3.1 we
sketch the proof strategy for Proposition 3.1, and the formal proof is subsequently
presented in Subsection 3.2. The proof contains two main ingredients, Proposition 3.4
and Proposition 3.5, which are proved in Section 4 and Section 5 respectively. Finally, in
Section 6 we give the proof of Theorem 2.7 for a general function F by extending the
proof scheme of Proposition 3.1.

Notation: We will use the following definition on high-probability estimates from [18].

Definition 1.1. Let X ≡ X (N) and Y ≡ Y(N) be two sequences of nonnegative random
variables. We say Y stochastically dominates X if, for all (small) τ > 0 and (large) Γ > 0,

P
(
X (N) > NτY(N)

)
≤ N−Γ, (1.3)

for sufficiently large N ≥ N0(τ,Γ), and we write X ≺ Y or X = O≺(Y).

We often use the notation ≺ also for deterministic quantities, then (1.3) holds with
probability one. Properties of stochastic domination can be found in the following lemma.

Lemma 1.2 (Proposition 6.5 in [20]). 1. X ≺ Y and Y ≺ Z imply X ≺ Z;

2. If X1 ≺ Y1 and X2 ≺ Y2, then X1 +X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;

3. If X ≺ Y , EY ≥ N−c1 and |X| ≤ N c2 almost surely with some fixed exponents c1,
c2 > 0, then we have EX ≺ EY .

For any matrix A ∈ CN×N , the matrix norm induced by the Euclidean vector norm is
denoted by ‖A‖ := σmax(A), where σmax(A) denotes the largest singular value of A. We
denote the sup norm of the matrix by ‖A‖max := maxi,j |Aij |.

Throughout the paper, we use c and C to denote strictly positive constants that are
independent of N . Their values may change from line to line. For X,Y ∈ R, we write
X ∼ Y if there exist constants c, C > 0 such that c|Y | ≤ |X| ≤ C|Y | for large N . Finally,
we denote C+ := {z ∈ C : Im z > 0} and R+ := {x ∈ R : x ≥ 0}.

2 Main result

Let H = (hij)1≤i,j≤N be an N × N real symmetric (β = 1) or complex Hermitian
(β = 2) generalized Wigner matrix satisfying the following assumptions.

Assumption 2.1. 1. {hij |i ≤ j} are independent random variables with E[hij ] = 0.

2. Denoting the variance profile matrix by S = (Sij)1≤i,j≤N where Sij = E|hij |2, then
S satisfies the summation condition

N∑
i=1

Sij = 1, 1 ≤ j ≤ N. (2.1)

Moreover, there exist two strictly positive constants Cinf , Csup independent of N
such that

Cinf ≤ inf
i,j
{NSij} ≤ sup

i,j
{NSij} ≤ Csup. (2.2)
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For the complex case, we additionally assume that

E[(hij)
2] = 0, ∀ i 6= j. (2.3)

3. All moments of the entries of
√
NH are uniformly bounded, i.e., for any k ≥ 3,

there exists Ck independent of N such that for all 1 ≤ i, j ≤ N ,

E|
√
Nhij |k ≤ Ck. (2.4)

Note that the variance profile matrix S is a symmetric and doubly stochastic matrix
whose spectrum lies in [−1, 1]. More importantly, from the lower bound in (2.2), there is
a spectral gap in the spectrum of S, i.e., there exist constants c± ≥ Cinf > 0 such that

Spec(S) ⊂ [−1 + c−, 1− c+] ∪ {1}, (2.5)

where 1 is a simple eigenvalue. For a reference see Chapter 6.5 in [20].
In the homogeneous case Sij = 1/N , we recover the original definition of Wigner

matrices with the spectral gap c± = 1. The prominent Gaussian invariant ensembles are
special Wigner matrices with independent Gaussian entries, which we denote by GβE
for short. More precisely, for the Gaussian unitary ensemble (GUE, β = 2), one requires√
Nhij

d
= N(0, 1/2) + iN(0, 1/2) and

√
Nhii

d
= N(0, 1). For the Gaussian orthogonal

ensemble (GOE, β = 1), we assume
√
Nhij

d
= N(0, 1) (i 6= j) and

√
Nhii

d
= N(0, 2).

Our main result is a quantitative version of the Tracy–Widom laws for the largest
eigenvalue of generalized Wigner matrices satisfying Assumption 2.1.

Theorem 2.2. Let H be a real symmetric or complex Hermitian generalized Wigner
matrix satisfying Assumption 2.1 and denote its largest eigenvalue by λN . For any fixed
r0 ∈ R and any small ω > 0,

sup
r>r0

∣∣∣P(N2/3(λN − 2) < r
)
− TWβ(r)

∣∣∣ ≤ N− 1
3 +ω, (2.6)

for sufficiently large N ≥ N0(r0, ω). The corresponding statement holds true for the
smallest eigenvalue.

The proof of Theorem 2.2 is based on the Green function comparison method initiated
by Erdős, Yau and Yin [22] to prove non-quantitative Tracy–Widom laws for Wigner
matrices. Let

G(z) :=
1

H − z
, mN (z) :=

1

N
TrG(z), z = E + iη ∈ C+, (2.7)

denote the resolvent or Green function of the matrix H and mN its normalized trace.
The distribution of the rescaled largest eigenvalue can be linked to the expectation
(of smooth functions) of ImmN (z) for appropriately chosen spectral parameters z; see
Lemma 2.6 below. Hence Theorem 2.2 follows from the Green function comparison in
Theorem 2.7 with η chosen slightly above N−1. Before we give the formal statement, we
recall the local law for the Green function, which is a key tool in this paper.

2.1 Local law for the Green function

For a probability measure ν on R, denote by mν its Stieltjes transform, i.e.,

mν(z) :=

∫
R

dν(x)

x− z
, z = E + iη ∈ C+ . (2.8)

Note that mν : C+ → C+ is analytic and can be analytically continued to the real line
outside the support of ν. Moreover, mν satisfies limη↗∞ iηmν(iη) = −1. The Stieltjes
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transform of the semicircle law dµsc(x) := ρsc(x)dx = 1
2π

√
4− x21[−2,2]dx, denoted by

msc(z), is the unique analytic solution C+ → C+ to the equation

m2
sc(z) + zmsc(z) + 1 = 0. (2.9)

The Stieltjes transform msc has the following quantitative properties, for a reference,
see e.g., [20].

Lemma 2.3. The imaginary part of the Stieltjes transform of the semicircular law
satisfies

|Immsc(z)| ∼

{√
κ+ η, if E ∈ [−2, 2],
η√
κ+η

, otherwise,
(2.10)

uniformly in z ∈ {E + iη : |E| ≤ 5, 0 < η ≤ 10}, with κ := min{|E − 2|, |E + 2|}. Moreover,
|msc(z)| ≤ 1 holds on the same spectral domain.

Before we state the local law for the Green function of H, we introduce the following
spectral domain: For any given fixed ε > 0, let

S = S(ε) :=
{
z = E + iη : |E| ≤ 5, N−1+ε ≤ η ≤ 10

}
. (2.11)

Theorem 2.4 (Theorem 2.1 in [22], Theorem 2.12 in [7]). Let H be a generalized Wigner
matrix satisfying Assumption 2.1. The following estimates hold uniformly in z ∈ S,

max
i,j
|Gij(z)− δijmsc(z)| ≺

√
Immsc(z)

Nη
+

1

Nη
; |mN (z)−msc(z)| ≺

1

Nη
. (2.12)

As a corollary of Theorem 2.4, we have the following estimates on the eigenvalue
rigidity and eigenvector delocalization. Denote by (λj)

N
j=1 the eigenvalues of H arranged

in non-decreasing order. The corresponding eigenvectors are denoted by (uj)Nj=1. For
any E1 < E2 (E1, E2 ∈ R ∪ {±∞}) define the eigenvalue counting function by

N (E1, E2) := #{j : E1 ≤ λj ≤ E2} . (2.13)

We also define the classical location γj of the j-th eigenvalue λj by

j

N
=

∫ γj

−∞
dµsc(x). (2.14)

Theorem 2.5 (Theorem 2.2 in [22]). For any E1 < E2 and 1 ≤ j ≤ N , we have the
rigidity estimate for the eigenvalues∣∣∣N (E1, E2)−N

∫ E2

E1

dµsc(x)
∣∣∣ ≺ 1, |λj − γj | ≺ N−2/3

(
min{j,N − j + 1}

)−1/3

. (2.15)

For any deterministic unit vector v ∈ CN , we have the delocalization estimate for the
eigenvectors

|〈v,uj〉|2 ≺
1

N
, (2.16)

uniformly for any 1 ≤ j ≤ N .

2.2 Green function comparison theorem (GFT)

With the help of the local law of the Green function in Theorem 2.4 and the rigidity
estimates of the eigenvalues in Theorem 2.5, following [22] we can link the distribution
of the largest eigenvalue to a properly chosen observable in terms of the Green function
as follows.
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Lemma 2.6 (Lemma 2.5 in [48]). Fix a small ε > 0 and a large Γ > 2/3. We set

EL := 2 + 4N−2/3+ε.

For any |E − 2| ≤ N−2/3+ε and η ≤ N−2/3−ε, we have

E
[
F
(
N

∫ EL

E−l
ImmN (y + iη)dy

)]
−N−Γ ≤ P

(
λN < E

)
≤ E

[
F
(
N

∫ EL

E+l

ImmN (y + iη)dy
)]

+N−Γ, (2.17)

with l = N6εη, and F : R −→ R is a smooth cut-off function such that

F (x) = 1, if |x| ≤ 1/9; F (x) = 0, if |x| ≥ 2/9, (2.18)

and we assume that F (x) is non-increasing for x ≥ 0.

To prove the quantitative Tracy–Widom laws in Theorem 2.2, we establish the fol-
lowing GFT with an improved error term of size nearly N−1/3. Compared to previous
GFTs near the edges in e.g., [9, 22, 39, 48], we remove the second moment matching
restriction. In the meanwhile, the spectral resolution parameter η is chosen down to
slightly above N−1, much smaller than the typical eigenvalue spacing N−2/3.

Theorem 2.7 (Green function comparison theorem near the edges). Consider a gener-
alized Wigner matrix H satisfying Assumption 2.1. Let F be a smooth function with
uniformly bounded derivatives. Fix a small ε > 0, constants C1, C2 > 0, and choose E1, E2

and η such that 2 − C1N
−2/3 ≤ E1 < E2 ≤ 2 + C2N

−2/3+ε and N−1+ε ≤ η ≤ N−2/3−ε.
Then for any small τ > 0, we have∣∣∣(E− EGβE

)[
F
(
N

∫ E2

E1

ImmN (x+ iη)dx
)]∣∣∣ ≤ N− 1

3 +τ , (2.19)

for sufficiently large N ≥ N0(C1, C2, ε, τ). The results hold true for both the real symmet-
ric and complex Hermitian symmetry class. At the lower spectral edge the corresponding
results also holds true.

Theorem 2.2 is now obtained as follows. Using (2.17) and (2.19) together with the
corresponding estimates for the Gaussian ensembles in [30, Theorems 1 and 2], we
obtain

sup
r>r0

∣∣∣P(N2/3(λN − 2) < r
)
− TWβ(r)

∣∣∣ ≤ N− 1
3 +τ + CN

2
3 l, (2.20)

with l = N6εη, where the first error term is from the Green function comparison in (2.19)
and the second error term stems from the approximation for the distribution of the
largest eigenvalue in (2.17). We hence prove Theorem 2.2 by choosing η = N−1+ε with
a small fixed ε < ω/7. Detailed arguments can be found in [48, Theorem 1.3] to prove
quantitative Tracy–Widom laws for Wigner matrices; see also [8, Section 5].

Our convergence rate estimate thus depends on the approximation in (2.17) and
the comparison estimate in (2.19) which both give comparable contributions. Whether
the convergence rate can further be improved by including a spectral shift of the edge,
similar to the GOE in (1.2), remains an open question. Such a spectral shift would depend
on the spectral properties of the variance matrix S and the fourth order cumulants of the
matrix entries of H. Even for Gaussian matrices with inhomogeneous variance profiles
the optimal convergence rate is unknown.

We conclude this subsection with two comments on the assumed properties of the
variance matrix S in Assumption 2.1. The summation condition in (2.1) insures that the
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limiting eigenvalue distribution is given by the semicircle law. For non-doubly stochastic
variance matrices the limiting eigenvalue distribution is obtained via solutions to the
(vector) Dyson equation [2]. The edge universality for these type of models were obtained
in [3]. We expect that the methods in the present paper are sufficiently robust to also
derive quantitative Tracy–Widom laws for matrix models with such general variance
profiles. Second, the lower bound in (2.2) insures a spectral gap of order one in (2.5).
Random band matrices are a prominent class of matrix models for which the spectral gap
closes as N increases. For sufficiently large bandwidths the fluctuations of the extremal
eigenvalues are still given by the Tracy–Widom laws [52]. Establishing convergence
rates estimates for these models remains a challenging open problem.

2.3 Cumulant expansions

We end this section by recalling the following cumulant expansion formula which is
another key tool of this paper, see e.g., Lemma 3.1 in [24] for reference and Lemma 7.1
in there for the complex version.

Lemma 2.8. Let h be a real-valued random variable with finite moments. The p-th
cumulant of h is given by

c(p)(h) := (−i)p
dp

dtp

(
logEeith

)∣∣∣
t=0

. (2.21)

Let f : R −→ C be a smooth function that has bounded derivatives and denote by f (p) its
p-th derivative. Then for any fixed l ∈ N, we have

E
[
hf(h)

]
=

l∑
p+1=1

1

p!
c(p+1)(h)E[f (p)(h)] +Rl+1, (2.22)

where the error term satisfies

|Rl+1| ≤ ClE
[
|h|l+1

]
sup
|x|≤M

|f (l)(x)|+ ClE
[
|h|l+11|h|>M

]
sup
x∈R
|f (l)(x)|, (2.23)

with M > 0 being an arbitrary fixed cutoff.

The usefulness of cumulant expansions in random matrix theory was recognized
in [31] and has widely been used since, e.g., [11, 19, 24, 25, 39, 42]. Iterative cumulant
expansions due to unmatched indices [18, 22] were used in [25, 27, 39] and systematically
developed in [48, 49].

3 Special case of Theorem 2.7: F (x) = x and proof strategy

Before we give the proof of the Green function comparison in Theorem 2.7, we
consider the special case F (x) = x and obtain the following proposition. The proof of
Proposition 3.1 is then extended in Section 6 to prove Theorem 2.7 for a general F . In
fact, the improved estimate in (3.2) below turns out to be a key input in the proof of
Theorem 2.7 for a general F .

Proposition 3.1. Consider a generalized Wigner matrix satisfying Assumption 2.1. Fix
a small ε > 0 and constants C1, C2 > 0, define the domain of the spectral parameter z
near the upper edge as

Sedge =Sedge(ε, C1, C2)

:={z = E + iη ∈ S : −C1N
−2/3 ≤ E − 2 ≤ C2N

−2/3+ε, N−1+ε ≤ η ≤ N−2/3−ε},
(3.1)
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with S the spectral domain given in (2.11). Then there exists C > 0 depending on C1, C2

such that

E[ImmN (z)] ≤ CN−1/3, (3.2)

uniformly in z ∈ Sedge(ε, C1, C2), for sufficiently large N ≥ N0(C1, C2, ε).

We first claim the corresponding estimate for the Gaussian invariant ensembles
relying on the explicit formula for the eigenvalue statistics [43].

Lemma 3.2. Consider the Gaussian ensembles. Then there exists C ′ > 0 depending on
C1, C2 such that

EGβE[ImmN (z)] ≤ C ′N−1/3 (3.3)

uniformly in z ∈ Sedge(ε, C1, C2), for sufficiently large N ≥ N0(C1, C2, ε).

We remark that a slightly different estimate was obtained in [48, Lemma 5.4] for
z in a broader regime than (3.1). In fact, we can prove Lemma 3.2 using the uniform
convergence for the correlation kernel [13, Theorem 1.1] of Gaussian ensembles and
similar arguments in [49, Lemma 6.1] applied for Laguerre ensembles. We omit the
proof details for brevity.

Next, we extend the estimate for the Gaussian ensembles in Lemma 3.2 to generalized
Wigner matrices as stated in Proposition 3.1. Before we give the formal proof of
Proposition 3.1, we first outline the proof strategy which will also be used to prove
Theorem 2.7 for a general F .

3.1 Proof strategy

We consider a generalized Wigner matrix with a given variance profile matrix S

satisfying the conditions in (2.1) and (2.2). To compare this matrix ensemble with the
Gaussian invariant ensemble of the same symmetry class, we divide the comparison into
two steps.

3.1.1 Step one:

In the first step, we consider a generalized Wigner matrix with independent Gaussian
entries, denoted by WS , with the given variance profile matrix S. We perform the
comparison between the Gaussian matrix WS and the corresponding Gaussian invariant
ensemble GβE which is independent of WS , via the interpolating matrix flow

H(1)(t) = e−
t
2 GβE +

√
1− e−tWS , t ∈ R+.

The corresponding Green function and its normalized trace are denoted by G(1) =

G(1)(t, z) and m(1)
N (t, z). Though the variances of the matrix entries of H(1)(t) vary with

time in general, the good news is that these matrix entries remain Gaussian distributed.
Hence the higher (than the second) order cumulants vanish automatically. So this step
is mainly to estimate the contributions to the time derivative of E[m

(1)
N (t, z)] from the

inhomogeneous variances of the entries of WS . More precisely, taking the time derivative
of E[m

(1)
N (t, z)], we obtain

d

dt
E[Imm

(1)
N (t, z)] =

e−t

N

∑
v,a,b

(
Sab −

1

N

)
E
[
Im
(
G

(1)
vb G

(1)
bv G

(1)
aa +G(1)

vaG
(1)
ab G

(1)
bv

)
(t, z)

]
. (3.4)

Note that if Sab = N−1, then the right side will vanish trivially. With inhomogeneous
variances, using the local law in Theorem 2.4 and the Ward identity

N∑
j=1

|Gij |2 =
1

η
ImGii, (3.5)
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we can bound (3.4) by

d

dt
E[Imm

(1)
N (t, z)] = O≺

(e−tE[Imm
(1)
N (t, z)]

η

)
,

which is far from the target estimate leading to (3.2). Since the variances of the matrix
entries are only of size O(N−1), these second order terms in (3.4) are considerably
harder to estimate than the third and fourth order terms for non-Gaussian matrices,
which will be considered in Step two below.

If the row and column indices of the Green function entries in (3.4) were not related to
the index a (or b) appearing in the coefficient Sab, then these terms in (3.4) would vanish
trivially since S is a doubly stochastic matrix. Hence, splitting G(1)

aa = msc + (G
(1)
aa −msc)

from the local law in (2.12), we get

1

N

∑
v,a,b

(
Sab −

1

N

)
E
[
Im
(
G

(1)
vb G

(1)
bv G

(1)
aa

)]
=

1

N

∑
v,a,b

(
Sab −

1

N

)
ImE

[
mscG

(1)
vb G

(1)
bv +G

(1)
vb G

(1)
bv

(
G(1)
aa −msc

)]
=

1

N

∑
v,a,b

(
Sab −

1

N

)
ImE

[
G

(1)
vb G

(1)
bv

(
G(1)
aa −msc

)]
. (3.6)

Next, we can further decouple the index a on the right side of (3.6) using cumulant
expansions. In order to study such terms in general, we introduce in Subsection 4.1 an
abstract expansion mechanism for any term of the form in (4.31) below, a product of the
entries of the Green function G and the entries of the variance profile matrix S. When
we apply the cumulant expansions to such a term by expanding a Green function entry
with an index a, we obtain from the inhomogeneous variances an additional coefficient
factor Sak with k being a fresh summation index, see e.g., (4.45) below. As the result,
the leading term is then given by a product of Green function entries that are free of
the index a (i.e., with a being replaced by the fresh index k) with the coefficient SabSak.
Summing over a, the coefficient SabSak is then given by (S2)kb. For example, we have
(ignoring some irrelevant factor)

1

N

∑
v,a,b

(
Sab −

1

N

)
ImE

[
G

(1)
vb G

(1)
bv

(
G(1)
aa −msc

)]
=

1

N

∑
v,b,k

(
(S2)kb −

1

N

)
ImE

[
G

(1)
vb G

(1)
bv

(
G

(1)
kk −msc

)]
+ sub-leading terms. (3.7)

Note that the fresh index k plays the same role as the original index a and we can
further expand this leading term to get even higher powers of S. Using the spectral
property of S in (2.5), (Sk)ab tends to be very close to N−1 with sufficiently large
exponents k ∼ logN . Hence the leading term in (3.7) will almost vanish and we end up
with O(logN) subleading terms consisting of more off-diagonal Green function entries.
Iteratively expanding these subleading terms in combination with the generalized Ward
identity in (4.6)–(4.7) below, the second order terms in (3.4) can be bounded effectively
using E[Imm

(1)
N (t, z)], i.e.,∣∣∣dE[Imm

(1)
N (t, z)]

dt

∣∣∣ ≤ e−t
(
o(1)E[Imm

(1)
N (t, z)] + o

(
N−1/3

))
. (3.8)

Then using Grönwall’s inequality, we extend the estimate in (3.3) for the initial
Gaussian invariant ensemble to the terminal matrix ensemble WS , i.e., for any t ∈ R+,

E[Imm
(1)
N (t, z)] ≤ E[Imm

(1)
N (0, z)] exp

(
o(1)

∫ t

0

e−sds
)

+ o
(
N−

1
3

)
= O(N−1/3). (3.9)
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We remark that getting the o(1) factor in front of E[Imm
(1)
N (t, z)] in (3.8) is essential to

apply Grönwall’s inequality in (3.9).

3.1.2 Step two:

In the second step, we compare the Gaussian matrix WS considered in Step one with a
generic random matrix H with the same variance profile matrix S, via the interpolating
matrix flow

H(2)(t) = e−
t
2WS +

√
1− e−tH, t ∈ R+.

Since the first two moments of the matrix entries of both WS and H are the same, this
step is to estimate the contributions to the time derivative of E[Imm

(2)
N (t, z)] from higher

order (i.e., third and fourth order) moments of the matrix entries of H; see (5.2) below.
The proof of this step is in the same spirit of [48, Theorem 1.4] for Wigner matrices. The
only difference is that the variances of matrix entries are no longer identical and we
need to extend the arguments in [48] to the inhomogeneous cases.

More precisely, for the third order terms in (5.2) with the so-called unmatched
indices (see Definition 5.3), we adapt the expansion mechanism in [48, Section 6]
to generalized Wigner matrices with inhomogeneous variances. By performing the
expansions iteratively, we show that these third order terms with unmatched indices
can be bounded by O(N−1/2). Moreover, using the generalized Ward identity in (4.6)–

(4.7), the remaining fourth order terms in (5.2) can be bounded by o(1)E[Imm
(2)
N (t, z)]

effectively. Therefore, we obtain

∣∣∣dE[Imm
(2)
N (t, z)]

dt

∣∣∣ ≤ e−t
(
o(1)E[Imm

(1)
N (t, z)] +O

(
N−1/2

))
. (3.10)

Then using Grönwall’s inequality as in (3.9), we can extend the estimate for the initial
Gaussian matrix WS obtained in (3.9) to the generalized Wigner matrix H. This Grönwall
argument shortens our proof compared to the recursive comparison arguments used in
[48, Section 5].

3.2 Proof of Proposition 3.1

To present the proof, we will consider only real symmetric generalized Wigner
matrices for notational simplicity, though the real cases are theoretically heavier than
the complex cases.

Proof of Proposition 3.1. As explained in Section 3.1, the proof is divided into two steps.
In the first step, we perform the comparison between the GOE matrix estimated in

Lemma 3.2 and an independent generalized Wigner matrix WS with Gaussian entries
and a given variance profile matrix S satisfying (2.1) and (2.2). To accommodate the

1
1+δab

factor in the differentiation rule in (4.10) below for the real case, we instead

replace WS with a slightly different Gaussian matrix W S̃ whose variance profile matrix
is given by

(S̃)ab = (S)ab(1 + δab). (3.11)

We remark that in the complex case this step is not necessary. We claim that such
modifications on the variances of diagonal entries does not influence the statement in
Proposition 3.1.

Lemma 3.3. We will use EW
S

and EW
S̃

to denoted the corresponding expectation
for the Gaussian matrix with variance profile matrix S and S̃ respectively. Then
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EW
S̃

[ImmN (z)] = O(N−1/3) will imply∣∣EWS

[ImmN (z)]
∣∣ = O(N−1/3), (3.12)

and vice versa.

The proof of Lemma 3.3 is postponed to the appendix. We then consider the following
modified matrix interpolating flow

H(1)(t) := e−
t
2W +

√
1− e−tW S̃ , t ∈ R+, (3.13)

where W is the standard GOE matrix which is independent of W S̃ . The Green function of
H(1)(t) and its normalized trace are denoted by G(1) = G(1)(t, z) and m(1)

N (t, z). We will

use a Grönwall argument in Section 4 to show that E[Imm
(1)
N (t, z)] has a similar upper

bound as the initial Gaussian invariant ensemble in (3.3).

Proposition 3.4. There exists C > 0 depending on C1, C2 such that

E[Imm
(1)
N (t, z)] ≤ CN−1/3. (3.14)

uniformly in z ∈ Sedge(ε, C1, C2) in (3.1) and t ≥ 0, for sufficiently large N ≥ N ′0(C1, C2, ε).

In particular, we have EW
S̃

[ImmN (z)] = O(N−1/3), which will further imply that

EW
S

[ImmN (z)] = O(N−1/3). (3.15)

In the second step, we perform the comparison between the generalized Gaussian
matrix WS with the original variance profile S and an independent generalized Wigner
matrix H with the same variance profile via the interpolating flow

H(2)(t) := e−
t
2WS +

√
1− e−tH, t ∈ R+. (3.16)

Using a Grönwall argument, we will show in Section 5 that E[Imm
(2)
N (t, z)] has a similar

upper bound as the initial generalized Gaussian matrix WS estimated in (3.15).

Proposition 3.5. There exists C ′ > 0 depending on C1, C2 such that

E[Imm
(2)
N (t, z)] ≤ C ′N−1/3, (3.17)

uniformly in z ∈ Sedge(ε, C1, C2) in (3.1) and t ≥ 0, for sufficiently large N ≥ N ′0(C1, C2, ε).
In particular, for the generalized Wigner matrix H in (3.16), we have

EH [ImmN (z)] = O(N−1/3). (3.18)

Hence we finish the proof of Proposition 3.1

4 From GOE to Gaussian matrix with a variance profile: Proof of
Proposition 3.4

Given the matrix flow H(1)(t) in (3.13), in order to prove Proposition 3.4, it suffices to

prove the following lemma on the time derivative of E[m
(1)
N (t, z)].

Proposition 4.1. For any t ≥ 0 and z ∈ Sedge, we have

∣∣∣dE[Imm
(1)
N (t, z)]

dt

∣∣∣ ≺ e−t
(
N−ε/4E[Imm

(1)
N (t, z)] +N−1/3−ε/4

)
.
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Admitting Proposition 4.1, using Grönwall’s inequality in combination with the corre-
sponding estimate in Lemma 3.2 for the initial GOE matrix, we have

E[Imm
(1)
N (t, z)] ≤ CE[Imm

(1)
N (0, z)] +O≺(N−1/3−ε/4) = O(N−1/3), (4.1)

uniformly in z ∈ Sedge and t ∈ R+. Hence we have proved the first statement (3.14) of
Proposition 3.4.

Choose T0 := 10 logN . In view of the matrix flow in (3.13), one shows that G(1)(T0, z)

is very close to G(1)(∞, z) := (W S̃ − z)−1, i.e.,

‖G(1)(T0, z)−G(1)(∞, z)‖max ≤‖G(1)(T0, z)(W
S̃ −H(1)(T0))G(1)(∞, z)‖

≤N
η2
‖W S̃ −H(1)(T0))‖max ≺ N−2, (4.2)

where we used the inequality ‖A‖max ≤ ‖A‖ ≤ N‖A‖max, the second resolvent identity
and that ‖G(z)‖ ≤ 1

η . Combining (4.1) with (4.2), we have

ES̃ [ImmN (z)] = O(N−1/3).

Thus the second statement (3.15) of Proposition 3.4 follows directly from Lemma 3.3.
The remaining part of this section is devoted to proving Proposition 4.1. Throughout

the remaining part of this section, we often ignore the superscript (1) and the dependence
on t ∈ R+, z ∈ C+ and set

H(t) = H(1)(t); G = G(1)(t, z) =
1

H(1)(t)− z
; mN = m

(1)
N (t, z) =

1

N
TrG(1)(t, z). (4.3)

Since H(t) is real symmetric, the corresponding Green function satisfies

Gij = Gji, 1 ≤ i < j ≤ N. (4.4)

From the local law in Theorem 2.4 and Lemma 2.3, we obtain a similar local law for
G(t, z), i.e.,

max
i,j
|Gij(t, z)− δijmsc(z)| ≺ Ψ :=

1

Nη
, N−

1
3 +ε ≤ Ψ ≤ N−ε, (4.5)

uniformly in t ∈ R+ and z ∈ Sedge given in (3.1). Indeed, for any t ∈ [0, 10 logN ], the above
time-dependent local law follows from Theorem 2.4 and that G(t, z) is stochastically
Lipschitz continuous with time using a grid argument. For any large t ≥ 10 logN , the
time-dependent local law can be obtained using a standard matrix perturbation theory.
The estimates throughout this section hold uniformly for any t ∈ R+, z ∈ Sedge without
specific mentioning.

Using the spectral decomposition of H(t) and the analogous eigenvector delocaliza-
tion estimates in (2.16), we have the following estimate for the diagonal Green function
entries, i.e., for any 1 ≤ a ≤ N ,

ImGaa(t, z) =

N∑
j=1

η|〈ea,uj(t)〉|2

|λj(t)− z|2
≺ η

N

N∑
j=1

1

|λj(t)− z|2
= ImmN (t, z), (4.6)

where {λj(t)} are the eigenvalues ofH(t) and {uj(t)} are the corresponding eigenvectors.
As discussed below (4.5), the estimate in (4.6) holds true for any t ∈ R+ and z ∈ S given
in (2.11). Using Young’s inequality, the Ward identity in (3.5) and the estimate in (4.6),
for any 1 ≤ a, c ≤ N , we have the following generalized Ward identity,

1

N

N∑
b=1

|GabGbc(t, z)|2 ≺
ImmN (t, z)

Nη
. (4.7)
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We also remark that, since ‖G(z)‖ ≤ 1
η which implies that maxi,j |Gij(z)| ≤ N1−ε for any

z ∈ S, the condition in the third statement in Lemma 1.2 is always satisfied to estimate
the expectations of finite products of Green function entries without specific mentioning.

4.1 Proof of Proposition 4.1

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Recall the matrix flow H(1)(t) = (hab)1≤a,b≤N in (3.13), i.e.,

H(1)(t) = e−
t
2W +

√
1− e−tW S̃ , (S̃)ab = (S)ab(1 + δab), (4.8)

where W = (wab)1≤a,b≤N is the GOE matrix and W S̃ = (w
(s̃)
ab )1≤a,b≤N is an independent

real symmetric Gaussian matrix with the modified variance profile S̃.
Taking the time derivative of the expectation of Imm

(1)
N (t, z), we have

d

dt
E[Imm

(1)
N (t, z)] =

1

N

N∑
v=1

E
[
Im

dGvv
dt

]
= − 1

N

N∑
v=1

N∑
a,b=1

E
[
Im
(
GvaGbv

dhab
dt

)]
, (4.9)

where in the first step we interchanged the derivative and the expectation due to that
‖G(z)‖ ≤ 1

η , and in the second step we used (4.4) and the following differentiation rule
for the Green function entries

∂Gij
∂hab

= −GiaGbj +GibGaj
1 + δab

. (4.10)

From (4.8), we have

dhab
dt

= −e−
t
2

2
wab +

e−t

2
√

1− e−t
w

(s̃)
ab . (4.11)

Note that the k-th cumulants (k ≥ 2) of these Gaussian random variables are given by

c(2)(wab) =
1 + δab
N

, c(2)(w
(s̃)
ab ) = Sab(1 + δab), c(k)(wab) = c(k)(w

(s̃)
ab ) = 0, k ≥ 3.

(4.12)

Plugging (4.11) in (4.9), using the cumulant expansion formula in Lemma 2.8 on {wab}
and {w(s̃)

ab } respectively, we have

d

dt
E[Imm

(1)
N (t, z)] =− e−t

2

1

N

N∑
v,a,b=1

(
Sab −

1

N

)
(1 + δab)E

[∂Im (GvaGbv)

∂hab

]
=

e−t

N

∑
v,a,b

TabE
[
Im
(
GvbGbvGaa +GvaGabGbv

)]
, (4.13)

where we defined a new matrix T = (Tab)1≤a,b≤N

T := S −Π, (Π)ab :=
1

N
, 1 ≤ a, b ≤ N. (4.14)

Here we used the chain rule and (4.12) in the first step of (4.13), and in the second step
we used the differentiation rule in (4.10), (4.4) and that ∂/∂hab commutes with Im .

It is easy to check that T is a real symmetric matrix and commutes with S. Moreover,
for any k ≥ 1

T k = Sk −Π, TSk = T k+1. (4.15)

From the conditions in (2.1), (2.2) and the spectral property of the matrix S in (2.5), we
have
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Lemma 4.2. For any k ≥ 1, we have the following properties

N∑
b=1

(T k)ab = 0, ‖T k‖max ≤
C0

N
, (4.16)

where C0 = 2(Csup + 1) with Csup ≥ Cinf > 0 given in (2.2). Furthermore, there exists a
constant c0 with Cinf ≤ c0 ≤ 1 such that

‖T k‖max ≤ ‖T k‖ ≤ (1− c0)k. (4.17)

Using the summation property of the matrix T in (4.16), we then write (4.13) as

d

dt
E[Imm

(1)
N (t, z)] =e−t

1

N

∑
v,a,b

TabE
[
Im
(
GvbGbv(Gaa −msc) +GvaGabGbv

)]
. (4.18)

Note that if we replace the row and column index a (or the index b) in the product of
Green function entries in (4.18) with a fresh summation index, say k, then the resulting
term will vanish due to the summation property of Tab in (4.16). Such replacements can
be realized using cumulant expansions.

For example, we look at the first term on the left side of (4.18). We ignore the
imaginary part since it does not play an essential role here. Let

I1 :=
1

N

∑
v,a,b

TabE
[
GvbGbv(Gaa −msc)

]
= O≺(NΨ3), (4.19)

where the estimate follows naively from the local law in (4.5). We will next perform
cumulant expansions in Lemma 2.8 via the index a to improve the naive estimate to

I1 = O≺((logN)NΨ4). (4.20)

The corresponding expansions via the index b are similar but slightly more complicated.
Using the relation − 1

msc
= z+msc (see (2.9)), the resolvent identity zGaa = (HG)aa−1

and invoking cumulant expansions, we have

− 1

msc
I1 =

1

N

∑
v,a,b

TabE
[
GvbGbv

(∑
k

hakGka
)]

+
msc

N

∑
v,a,b

TabE
[
GvbGbv(Gaa −msc)

]
=

1

N

∑
v,a,b,k

Tab × c(2)
ak (t)E

[∂GkaGvbGbv
∂hak

]
+
msc

N

∑
v,a,b

TabE
[
GvbGbv(Gaa −msc)

]
,

(4.21)

where c(2)
ak (t) is the variance of the time dependent Gaussian entry hak, i.e.,

c
(2)
ak (t) = c(2)(hak) =

(e−t

N
+ (1− e−t)Sak

)
(1 + δak)

which follows from (4.12). In combination with the 1
1+δak

factor in the differentiation
rule in (4.10), we define a real symmetric time-dependent matrix, i.e.,

(S(t))ak :=
c
(2)
ak (t)

1 + δak
=

e−t

N
+ (1− e−t)Sak, 1 ≤ a, k ≤ N. (4.22)

It is easy to check that S(t) is a symmetric and doubly stochastic matrix. More precisely,
we have

S(t) = (1− e−t)T + Π, S(t)T = TS(t) = (1− e−t)T 2. (4.23)
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Using the differentiation rule in (4.10), we have from (4.21) that

− 1

msc
I1 =− 1

N

∑
v,a,b,k

Tab(S(t))kaE
[
GaaGkkGvbGbv

]
+
msc

N

∑
v,a,b

TabE
[
GvbGbv(Gaa −msc)

]
− 1

N

∑
v,a,b,k

Tab(S(t))kaE
[
GkaGkaGvbGbv +GkaGvaGkbGbv +GkaGvkGabGbv

+GkaGvbGbaGkv +GkaGvbGbkGav
]
, (4.24)

where the leading term on the right side is obtained from acting ∂/∂hak on Gka, and the
remaining terms from differentiating ∂/∂hak are presented on the last two lines. Each
term on the last two lines of (4.24) contains four off-diagonal Green function entries
which can be bounded by O≺(NΨ4) using the local law in (4.5). Since

∑
k(S(t))ka = 1

from (4.23), we observe a cancellation on the first line of (4.24), i.e.,

first line of the r.h.s. (4.24) = − 1

N

∑
v,a,b,k

Tab(S(t))kaE
[
Gaa(Gkk −msc)GvbGbv

]
= −msc

N

∑
v,a,b,k

Tab(S(t))kaE
[
(Gkk −msc)GvbGbv

]
− 1

N

∑
v,a,b,k

Tab(S(t))kaE
[
(Gaa −msc)(Gkk −msc)GvbGbv

]
, (4.25)

where the term on the last line can be bounded by O≺(NΨ4) using the local law in (4.5),
while the leading term can only be bounded by O≺(NΨ3) without any improvement.
However for such leading term in (4.25), we observe that the index a no longer shows up
in the Green function entries as the row or the column index. Using the second relation
in (4.23), we rewrite this leading term as

− msc

N

∑
v,a,b,k

Tab(S(t))kaE
[
(Gkk −msc)GvbGbv

]
=− msc

N

∑
v,b,k

(S(t)T )kbE
[
(Gkk −msc)GvbGbv

]
=− msc(1− e−t)

N

∑
v,b,a

(T 2)abE
[
(Gaa −msc)GvbGbv

]
, (4.26)

where we replaced the summation index k with the original index a without loss of
generality. Combining (4.25), (4.26) with (4.24) and multiplying −msc on both sides of
(4.24), we conclude that

I1 =
m2
sc(1− e−t)

N

∑
v,a,b

(T 2)abE
[
GvbGbv(Gaa −msc)

]
+O≺(NΨ4), (4.27)

where the last error term is from the terms on the last two lines of (4.24) and the last
line of (4.25) using the local law in (4.5). Note that the leading term on the right side of
(4.27) is the same as the original term I1 in (4.19) with the power of T increased to 2

up to a deterministic factor m2
sc(1− e−t). For this leading term we can repeat the above

expanding procedure to further increase the power of T , i.e., for any k ≥ 1,

1

N

∑
v,a,b

(T k)abE
[
GvbGbv(Gaa −msc)

]
=
m2
sc(1− e−t)

N

∑
v,a,b

(T k+1)abE
[
GvbGbv(Gaa −msc)

]
+O≺(NΨ4). (4.28)
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Note that the deterministic factor m2
sc(1− e−t) is not harmful in iterations since |msc| ≤ 1

and t ≥ 0. We stop the iterations until the power of T is increased to sufficiently large,
say

K := d− 10

log(1− c0)
logNe, (4.29)

with the constant 0 < c0 < 1 given in Lemma 4.2. From (4.17), we have

max
a,b

∣∣(TK)ab
∣∣ ≤ (1− c0)K ≤ N−10.

Thus we obtain that∣∣∣ 1

N

∑
v,a,b

(TK)abE
[
GvbGbv(Gaa −msc)

]∣∣∣ = O≺(N−8), (4.30)

where we used that |Gij | ≺ 1. Moreover, there are at most O(logN) subleading terms
consisting of four Green function entries generated in repeating (4.28), each of which
contributes O≺(NΨ4) using the local law in (4.5). In this way, we have improved the
estimate as claimed in (4.20).

We remark that each term that contributes O≺(NΨ4) generated in the above proce-
dure shares a similar structure as the example term I1 in (4.19). Hence as in (4.24), we
can apply cumulant expansions to these terms via the new summation index k instead
and improve the estimate iteratively. To see this, we introduce an abstract form of
averaged products of shifted Green function entries i.e., Gij − δijmsc and entries of the
matrix powers of T , which can be expanded as in (4.24).

4.2 Abstract form of products of Green function entries

We will use the general letters j1, j2, . . . to denote the summation indices e.g., v, a, b
in (4.19) that run from 1 to N . We use the letters xi, yi or wl to denote in general the row
and column index of a Green function entry Gxiyi or a shifted diagonal Green function
entry Gwlwl −msc, and each xi, yi, wl represents some summation index in j1, j2, . . .. We
use ≡ to denote such representation, e.g., we write xi ≡ j1 if the row index xi represents
the summation index j1.

In order to avoid confusion, we clarify that xi ≡ j1, yi ≡ j1 means that both xi and
yi represent the same summation index j1 and we write xi = yi and Gxiyi is a diagonal
entry. If xi and yi represent two distinct summation indices, e.g., xi ≡ j1 and yi ≡ j2,
then we say xi 6= yi and Gxiyi is an off-diagonal entry. We remark that the value of xi
could coincide with yi as the summation indices j1 and j2 run from 1 to N .

Definition 4.3. For any d ∈ N with d ≥ 2, we use Jd := (j1, j2, . . . , jd) to denote a set
of d ordered summation indices ranging from 1 to N . For any 2 ≤ m0 ≤ d, the first m0

summation indices j1, . . . , jm0
have the non-uniform weights from

∏m0−1
p=1 (T kp)jpjp+1

(kp ≥
1), and each of the remaining d−m0 indices jm0+1, . . . , jd has a uniform weight N−1 in
the summation.

We split the summation index set Jd into two disjoint subsets J (off)
d and J (diag)

d ,

with #J (off)
d = m1, #J (diag)

d = m2 and d = m1 + m2. We use
∏m1

i=1Gxiyi to denote a
product of m1 off-diagonal Green function entries, where each row and column index
xi, yi represents an element in J (off)

d with xi 6= yi, and each element in J (off)
d appears

exactly twice in {xi, yi}m1
i=1. Moreover, we use

∏m2

l=1

(
Gwlwl −msc

)
to denote a product of

m2 shifted diagonal Green function entries where each wl represents a different element
in J (diag)

d .
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Then we consider the abstract form of d (shifted) Green function entries

1

Nd−m0

∑
j1,j2,...,jd

m0−1∏
p=1

(T kp)jpjp+1

( m1∏
i=1

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)
(t, z)

)
, (4.31)

for any z ∈ Sedge given in (3.1) and t ≥ 0. The number d is referred to the degree of such
a term. A term of the form in (4.31) with degree d will be denoted by Pd ≡ Pd(t, z) in
general. The collection of all the terms of the form in (4.31) with degree d is denoted by
Pd ≡ Pd(t, z).

Below are some example terms of the form in (4.31):∑
a,b

E
[
(T 2)abGabGba

]
∈ P2;

1

N

∑
a,b,v

E
[
TabGvbGbv

(
Gaa −msc

)]
∈ P3;

1

N

∑
a,b,v

E
[
TabGvaGabGbv

]
∈ P3;

1

N2

∑
a,b,k,v

E
[
(T 4)abGkaGkaGvbGbv

]
∈ P4;

1

N

∑
a,b,k,v

E
[
Tab(T

2)kaGvbGbv
(
Gaa −msc)

(
Gkk −msc

)]
∈ P4, (4.32)

where the terms in P3 are indeed the target terms to be estimated in (4.18) with the
index v having a uniform weight in the summation.

Given a general term Pd of the form in (4.31), using the local law in (4.5) and the max
norm of the matrix T kp in (4.16), we obtain

|Pd| ≺
1

Nd−m0

(C0

N

)m0−1

(NΨ)m2

∑
J (off)
d

m1∏
i=1

|Gxiyi |,

with C0 given in (4.16). When all the m1 indices in J (off)
d have distinct values in the

summation, the product of Green function entries can be bounded by Ψm1 since xi
and yi represent different summation indices. If two indices in J (off)

d coincide in the
summation, then the resulting product of Green function entries may be bounded by
Ψm1−2 only, however we gain an additional N−1 from the index coincidence. Since
N−

1
3 +ε ≤ Ψ ≤ N−ε, the terms with index coincidences are much smaller. Using that

d = m1 +m2, 2 ≤ m0 ≤ d, we obtain a naive estimate for any Pd ∈ Pd, i.e.,

|Pd| ≺ N(C0Ψ)d � N
( 1

N ε/2

)d
. (4.33)

Moreover, if max1≤p≤m0−1{kp} ≥ K with K given in (4.29), using (4.17) in Lemma 4.2,
we have

|Pd| ≺
1

Nd−m0
(1− c0)K

(C0

N

)m0−2

(NΨ)m2

∑
J (off)
d

m1∏
i=1

|Gxiyi | ≺ (1− c0)KN2 ≤ N−8. (4.34)

Next we will apply cumulant expansions repeatedly in combination with (4.34) to
improve the naive estimate of Pd in (4.33). We first note that both the summation index
j1 and jm0 in (4.31) are special, since they appear only once in the non-uniform weight
function

∏m0−1
p=1 (T kp)jpjp+1 . If the product of Green function entries was independent

of the special summation index j1 or jm0 , then the resulting term vanishes due to
the summation property in (4.16). Such decoupling can be realized using cumulant
expansions via the index j1 or jm0 as in (4.24).

Now we introduce an expansion mechanism using either of the special index j1 or
jm0

. Since both the matrix T and S are symmetric and they commute, we choose j1
conventionally to perform cumulant expansions. We split the discussion into the following
two cases, whose proofs are postponed till the next subsection.
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(a) If the special summation index j1 appears in a shifted diagonal Green function
entry, i.e., Gj1j1 −msc, then we have

E[Pd] =
∑

Pd′∈Pd′ ,d′=d+1

E[Pd′ ] +O≺(N−8), (4.35)

where the first group of terms contains at most 4Kd terms of the form in (4.31),
denoted by Pd′ in general, with higher degrees d + 1 (i.e., each term consists of
d+ 1 shifted Green function entries) with possible factors msc and 1− e−t. The last
error O≺(N−8) is from (4.34) after iterative expansions.

(b) If the special summation index j1 appears in two different off-diagonal Green
function entries, say Gx1y1 and Gx2y2 with x1, x2 ≡ j1 and y1, y2 6≡ j1 from (4.4),
then we have

ImE[Pd] =
∑

Pd′′∈Pd′′ ,d′′=d+1

ImE[Pd′′ ] +O≺(N−8)

+O≺

(
K
(
(C0Ψ)d−3 ∧ 1

)(
E[ImmN ] + Immsc

))
1m1=2 +O≺(KN−

ε
2E[ImmN ]),

(4.36)

with m1 the number of off-diagonal Green function factors in the original Pd in
(4.31). Here the first group of terms on the right side of (4.36) contains at most
4Kd terms of the form in (4.31), denoted by Pd′′ in general, with higher degrees
d + 1. The first error term O(N−8) is from (4.34), and the errors on the last line
of (4.36) are from the cases with index coincidences; see the last term with δj1y1
in (4.53) later. To estimate such terms with index coincidences in general, it is
necessary to consider the imaginary part of Pd as discussed in (4.61) below.

We remark that the error O≺(N−8) in (4.35) and (4.36) can be made arbitrary small
N−C depending on where we stop our iterations, i.e., the choice of K given in (4.29).

Now we are ready to prove (4.18) by looking at

1

N

∑
v,a,b

TabE
[
Im
(
GvbGbv(Gaa −msc)

)]
∈ P3,

1

N

∑
v,a,b

TabE
[
Im
(
GvaGabGbv

)]
∈ P3.

(4.37)

For the first term in (4.37), using the first expansion in (4.35) via the index a, we obtain

1

N

∑
v,a,b

TabE
[
Im
(
GvbGbv(Gaa −msc)

)]
=
∑
Pd∈P4

ImE[Pd] +O≺(N−8), (4.38)

where the first group of terms consists of at most 12K terms of the form in (4.31) with
degrees four. Similarly, we use the second expansion in (4.36) to expand the second term
in (4.37) via the index a. Since the number of off-diagonal Green function entries, m1, is
three, we have

1

N

∑
v,a,b

TabE
[
Im
(
GvaGabGbv

)]
=
∑
Pd∈P4

ImE[Pd] +O≺(N−8) +O≺(KN−
ε
2E[ImmN ]),

(4.39)

where the last error is from the index coincidence i.e., v = a or b = a.
Next we improve the estimate of ImE[Pd] for d ≥ 4 using iterative expansions. For

a general term Pd of the form in (4.31) with degree d ≥ 4, combining with (4.35) and
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(4.36), we have

ImE[Pd] =
∑

Pd1∈Pd1 ,d1=d+1

ImE[Pd1 ] +O≺

(
KN−

ε
2

(
E[ImmN ] + Immsc

))
+O≺(N−8),

(4.40)

where the first group of terms is a linear combination of at most 4Kd terms with degrees
d+ 1, denoted by ImE[Pd1 ] in general for the first iteration step. We further expand each
resulting ImE[Pd1 ] and obtain from (4.40) that

ImE[Pd] =
∑

Pd2∈Pd2 ,d2=d+2

ImE[Pd2 ]

+O≺(4K2dN−
ε
2 )
(
E[ImmN ] + Immsc

)
+O≺(4KdN−8), (4.41)

where the first group of terms is a linear combination of at most (4K)2d(d+ 1) terms of
the form in (4.31) with degrees d+ 2, which are denoted by ImE[Pd2 ] in general for the
second step. Iterating the above process for D − d times, we then obtain that

ImE[Pd] =
∑

Pd′∈Pd′ ,d′=D

ImE[Pd′ ]

+O≺

(
(4KD)DN−

ε
2

)(
E[ImmN ] + Immsc

)
+O≺

(
(4KD)DN−8

)
, (4.42)

where the first group of terms contains at most (4KD)D terms, denoted by ImE[Pd′ ] in
general, of the form in (4.31) with degrees D. We now choose a sufficiently large but
fixed D depending only on ε such that D ≥ 4

ε . Using the naive estimate of Pd in (4.33),
the estimate of Immsc in (2.10) and that K = O(logN), for any d ≥ 4 we have,

ImE[Pd] =O≺

(
(4KD)D

(
N(C0Ψ)D +N−8

))
+O≺

(
(4KD)DN−

ε
2

)(
E[ImmN ] + Immsc

)
=O≺

(
N−

ε
4E[ImmN ]

)
+O≺(N−

1
3−

ε
4 ), (4.43)

uniformly for any t ∈ R+ and z ∈ Sedge.

Combining the improved estimates in (4.43) for d ≥ 4 with (4.38) and (4.39), we
hence prove the estimate in (4.18) and finish the proof of Proposition 4.1.

4.3 Proof of the expansions in (4.35) and (4.36)

We first prove the expansion in (4.35) in Case 1 and next show the expansion in (4.36)
in Case 2.

Case 1: index j1 appearing in Gj1j1 −msc. Given a term in (4.31), without loss of
generality, we may assume that w1 ≡ j1. Using the relation − 1

msc
= z + msc and the

resolvent identity zGj1j1 = (HG)j1j1 − 1, we have cf., (4.21),

− 1

msc
E[Pd] =E

[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1

∑
k

hj1kGkj1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]

+mscE
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1
Gj1j1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
.

(4.44)

Using the differentiation rule in (4.10) and the definition of Sj1k(t) given in (4.22), we
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apply cumulant expansions to the first line of (4.44) and obtain

− 1

msc
E[Pd]

=− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)E

[
Gj1j1Gkk

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]

− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)E

[
Gkj1Gkj1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]

+
1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)E

[
Gkj1

∂
∏m1

i=1Gxiyi
∏m2

l=2

(
Gwlwl −msc

)
∂hj1k

]

+mscE
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1Gj1j1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
=:A1 +A2 +A3 +A4, (4.45)

where the terms on the first two lines, i.e., A1 and A2 are from acting ∂/∂hj1k on Gkj1
using (4.10).

We first consider the term A2 on the second line above. Using the first relation in
(4.23), the term A2 can be split into two subterms, i.e.,

A2 =− (1− e−t)
1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Tkj1×

E
[
Gkj1Gkj1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
− 1

Nd−m0+1

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
E
[
Gkj1Gkj1

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
,

(4.46)

where the second subterm is clearly of the form in (4.31) with degree d+ 1, and after
properly renaming and rearranging the summation indices, the first subterm is also of
the form in (4.31) with degree d+ 1 and a factor 1− e−t.

We next look at the third line of (4.45), denoted by A3. Similarly as in (4.46), each
resulting term in A3 using the differentiation rule in (4.10) can be split into two subterms
of the form in (4.31) with degree d+ 1, since both the fresh index k and the index j1 do
not appear in {xi, yi}m1

i=1 ∪ {wl}
m2

l=2. Therefore, A2 +A3 is indeed a linear combination of
at most 4d− 2 terms of the form in (4.31) with higher degrees d+ 1.

Next, we observe a cancellation between the terms on the first and fourth line of
(4.45), denoted by A1 and A4 respectively. Since S(t) is doubly stochastic, A1 + A4 is
given by

− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Skj1(t)E

[
Gj1j1(Gkk −msc)

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
.

(4.47)

We further split this term into two terms using Gj1j1 = msc+
(
Gj1j1 −msc

)
. The resulting

term corresponding to Gj1j1 −msc has a higher degree d+ 1 and can be split into two
subterms of the form in (4.31) as in (4.46). Together with all the terms from A2 + A3,
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we obtain at most 4d terms of the form in (4.31) with higher degrees d+ 1, in general
denoted by ∑

Pd1∈Pd1 ,d1=d+1

E[Pd1 ], (4.48)

where the subscript 1 in d1 indicates the first step of expansion, and each term E[Pd1 ]

comes with possible factors msc and 1 − e−t. We often ignored these coefficients for
notational simplicity.

We next estimate the leading term corresponding to replacing Gj1j1 in (4.47) with
msc, i.e.,

− msc

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Skj1(t)E

[
(Gkk −msc)

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]

=− msc

Nd−m0

∑
k,j2,...,jd

(S(t)T k1)kj2

m0−1∏
p=2

(T kp)jpjp+1
×

E
[
(Gkk −msc)

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
=− msc(1− e−t)

Nd−m0

∑
j1,j2,...,jd

(T k1+1)j1j2

m0−1∏
p=2

(T kp)jpjp+1
×

E
[
(Gkk −msc)

m1∏
i=1

Gxiyi

m2∏
l=2

(
Gwlwl −msc

)]
(4.49)

where in the last step we used the second relation in (4.23) and replaced the index k
with the original j1. Compared to the original term Pd, the matrix power k1 has been
increased to k1 + 1. We denote this term by Pd(k1 → k1 + 1).

Combining (4.48) and (4.49) with (4.45) and multiplying −msc on both sides of (4.45),
we obtain

E[Pd] =m2
sc(1− e−t)E[Pd(k1 → k1 + 1)] +

∑
Pd1∈Pd1 ,d1=d+1

E[Pd1 ], (4.50)

where the second group of terms contains at most 4d terms of the form in (4.31) with
higher degrees d+ 1 with possible factors msc and 1− e−t. These deterministic factors
are not harmful, since |1− e−t| ≤ 1, |msc(z)| ≤ 1 uniformly in t ∈ R+ and z ∈ Sedge.

We continue to expand the leading term Pd(k1 → k1 + 1) in the same way and obtain
from (4.50) that

E[Pd] =m4
sc(1− e−t)2E[Pd(k1 → k1 + 2)] +

∑
Pd2∈Pd1 ,d2=d+1

E[Pd2 ], (4.51)

where the second group of terms contains at most 8d terms of the form in (4.31) with
higher degrees d + 1, together with the terms Pd1 from the first step in (4.50). These
terms are denoted by Pd2 in general for the second step of expansion. We iterate the
above process for K−k1 times until the matrix power k1 is increased to sufficiently large
K chosen in (4.29). Note that from (4.34), we have

E[Pd(k1 → K)] = O≺(N−8).

Hence we arrive at

E[Pd] =
∑

PdK−k1
∈PdK−k1 ,dK−k1=d+1

E[PdK−k1 ] +O≺(N−8), (4.52)
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where the first group of terms is a linear combination of at most 4(K − k1)d terms
generated in the iterations that are of the form in (4.31) with higher degrees d+ 1. This
proves the expansion in (4.35).

Case 2: index j1 appearing in two off-diagonal Green function entries. Given
a term in (4.31), without loss of generality, we may assume that x1, x2 ≡ j1 and y1, y2 6≡ j1
from (4.4). Using the relation − 1

msc
= z + msc and the resolvent identity zGj1y1 =

(HG)j1y1 − δj1y1 , we have

− 1

msc
E[Pd]

=E
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1

∑
k

hj1kGky1Gj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]

+mscE
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1
Gj1y1Gj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]

+ E
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1
δj1y1Gj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
=:B1 +B2 +B3. (4.53)

Applying cumulant expansions to B1, using the differentiation rule in (4.10) and the
definition of S(t) in (4.22), we have as in (4.45) that

B1 =− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)×

E
[
Gj1y1GkkGj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)×

E
[
Gky1Gj1j1Gky2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
+ remaining terms

=:B
(1)
1 +B

(2)
1 + remaining terms, (4.54)

where the first two leading terms B(1)
1 and B(2)

1 are from acting ∂
∂hj1k

on the off-diagonal

Green function entries Gky1 and Gj1y2 respectively, and all the remaining terms have
higher degrees d + 1 since the index j1 and k do not appear in {xi, yi}m1

i=3 ∪ {wl}
m2

l=1.
Moreover, each of these remaining terms can be split into two subterms of the form in
(4.31) as in (4.46).

Since S(t) is a doubly stochastic matrix, there is a cancellation between the first

leading term B
(1)
1 in (4.54) and the second term B2 in (4.53), i.e.,

B
(1)
1 +B2 =− 1

Nd−m0

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
Sj1k(t)×

E
[
Gj1y1(Gkk −msc)Gj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
, (4.55)
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where the resulting term can be further split into two subterms of the form in (4.31)
with higher degree d+ 1 as in (4.46).

We next look at the other leading term B
(2)
1 in (4.54). As explained below (4.47) and

in (4.49), using the second relation in (4.23), this term can be written as

B
(1)
2 =− msc(1− e−t)

Nd−m0

∑
j2,...,jd,k

(T k1+1)kj2

m0−1∏
p=2

(T kp)jpjp+1
×

E
[
Gky1Gky2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
− 1

Nd−m0+1

∑
j1,...,jd,k

m0−1∏
p=1

(T kp)jpjp+1
×

E
[
Gky1(Gj1j1 −msc)Gky2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
. (4.56)

Note that after replacing the fresh index k with the original j1, the leading term on the
right side of (4.56) is actually the original term Pd with the matrix power k1 increased to
k1 + 1, denoted by Pd(k1 → k1 + 1) up to a factor −msc(1− e−t). Moreover, the remaining
term on the last line of (4.56) can be split into two subterms of the form in (4.31) with
higher degree d+ 1 as in (4.46). The collection of all the terms of the form in (4.31) with
higher degrees d+ 1 from the remaining terms in (4.54), the term in (4.55) and the last
line of (4.56), is then in general denoted by∑

Pd1∈Pd1 ,d1=d+1

E[Pd1 ], (4.57)

where the sum contains at most 4d terms of the form in (4.31), and we ignored the
possible uniformly bounded factors msc and 1− e−t for notational simplicity.

To sum up, multiplying −msc on both sides of (4.53), we obtain

E[Pd] = m2
sc(1− e−t)E[Pd(k1 → k1 + 1)] +

∑
Pd1∈Pd1 ,d1=d+1

E[Pd1 ]−mscB3, (4.58)

where B3 is the last term with the index coincidence δj1y1 on the right side of (4.53). The
rest of this subsection is devoted to estimating B3, i.e.,

B3 = E
[ 1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1
δj1y1Gj1y2

m1∏
i=3

Gxiyi

m2∏
l=1

(
Gwlwl −msc

)]
.

We assume y1 represents the summation index jq (2 ≤ q ≤ d), i.e., y1 ≡ jq and then
δj1y1 = δj1jq . Using the local law in (4.5) and the max norm of T kp in (4.16), we have

|B3| ≺
1

Nd−m0

(C0

N

)m0−1

Ψm2

∑
j2,...,jd

∣∣Gjqy2 ∣∣ m1∏
i=3

∣∣Gxiyi∣∣. (4.59)

We split the discussion into three cases:

1. If m1 = 2 which implies that y1, y2 ≡ jq, then we have from (4.59)

|B3| ≺
1

Nd−m0

(C0

N

)m0−1

Ψm2

∑
j2,...,jd

∣∣Gjqjq ∣∣ ≺ (C0Ψ
)d−2

, (4.60)
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which is in general not enough to reach (4.36). However after taking the imaginary
part, we have

ImB3 =E
[ 1

Nd−m0

∑
j2,...,jd

m0−1∏
p=1

(T kp)jpjp+1Im
(
Gjqjq

m2∏
l=1

(Gwlwl −msc)
)]

≺

{
E[ImmN ], d = 2,(
C0Ψ

)d−3(
E[ImmN ] + Immsc

)
, d ≥ 3,

d = 2 +m2, (4.61)

where we used the local law in (4.5) and the estimate of ImGaa in (4.6). We remark
that the imaginary part is necessary for a general Pd, e.g., the first example term
of Pd in (4.32)

2. If m1 = 3, then there exists a different summation index than jq, say jq′ such that
y2 ≡ jq′ and

∏3
i=1Gxiyi = Gj1jqGj1jq′Gjqjq′ from (4.4). Using the generalized Ward

identity in (4.7) and that d = 3 +m2, we have

|B3| ≺
1

Nd−m0

(C0

N

)m0−1

Ψm2

∑
j2,...,jd

E
∣∣Gjqjq′ ∣∣2 ≺ (C0Ψ

)d−2
E[ImmN ]

≤N− ε2E[ImmN ]. (4.62)

3. If m1 ≥ 4, then there exists at least m1 − 2 off-diagonal Green function entries in
(4.59). Using the generalized Ward identity in (4.7) and that d = 4 +m2, we have

|B3| ≺
(
C0Ψ

)d−3
E[ImmN ] ≤ N− ε2E[ImmN ]. (4.63)

We now return to (4.58). Taking the imaginary part and using the estimates of B3 in
(4.60)–(4.63), we obtain

ImE[Pd] =(1− e−t)Im
(
m2
scE[Pd(k1 → k1 + 1)]

)
+

∑
Pd1∈Pd1 ,d1=d+1

ImE[Pd1 ]

+O≺

((
(C0Ψ)d−3 ∧ 1

)(
E[ImmN ] + Immsc

))
1m1=2 +O≺(N−

ε
2E[ImmN ]),

(4.64)

where the second group of terms contains at most 4d terms of the form in (4.31).
Iterating the above process for K−k1 times until the power k1 is raised to sufficiently

large K chosen in (4.29) and using the estimate in (4.34), we have

ImE[Pd] =
∑

PdK−k1
∈PdK−k1 ,dK−k1=d+1

ImE[PdK−k1 ] +O≺(N−8)

+O≺

(
K
(
(C0Ψ)d−3 ∧ 1

)(
E[ImmN ] + Immsc

))
1m1=2 +O≺(KN−

ε
2E[ImmN ]),

(4.65)

where the first group of terms contains at most 4(K − k1)d terms of the form in (4.31)
with higher degrees d+ 1, and the errors on the last line are from the term B3 in (4.54)
with the index coincidences. This proves the expansion in (4.36).

5 From Gaussian to Wigner with the same variance profile: Proof
of Proposition 3.5

In this section, we consider the matrix flow H(2)(t) given in (3.16) that interpolates
between the generalized Gaussian matrix WS studied in Section 4 and any generalized
Wigner matrix with the same variance profile matrix S. To prove Proposition 3.5, using
Grönwall’s inequality in combination with the estimate (3.15) for the initial matrix WS ,
it suffices to show
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Proposition 5.1. For any t ≥ 0 and z ∈ Sedge, we have

∣∣∣dE[Imm
(2)
N (t, z)]

dt

∣∣∣ ≺ e−t
(
N−εE[Imm

(2)
N (t, z)] +N−1/2

)
.

We remark that the proof of Proposition 5.1 is in the same spirit of [48] to compare
standard Wigner matrices with the corresponding Gaussian ensemble with the second
moment matching.

Proof of Proposition 5.1. Recall the matrix flow H(2)(t) = (hab)1≤a,b≤N in (3.16), i.e.,

H(2)(t) = e−
t
2WS +

√
1− e−tHS , (5.1)

where WS = (w
(s)
ab )1≤a,b≤N is a Gaussian matrix with the variance profile matrix S, and

HS = (h
(s)
ab )1≤a,b≤N is any generalized matrix which is independent from WS with the

same variance profile.
We remark that the local law in (4.5), the estimate of ImGaa in (4.6) and the gen-

eralized Ward identity in (4.7) also hold true for the resolvent of H(2)(t), denoted by
G(2)(t, z). For notational simplicity we often ignore in this section the superscript (2) and
the dependence on t ∈ R+, z ∈ C+ in G(2)(t, z).

Taking the time derivative of E[Imm
(2)
N (t, z)], using the differentiation rules in (4.10)

and cumulant expansions as in (4.9) and (4.13), we obtain

d

dt
E[Imm

(2)
N (t, z)] =− 1

N

N∑
v=1

N∑
a,b=1

E
[
Im
(

(GvaGbv)
(
− e−

t
2

2
w

(s)
ab +

e−t

2
√

1− e−t
h

(s)
ab

))]

=− e−t

2

1

N

4∑
k+1=3

1

k!

s
(k+1)
ab (t)

N
k+1
2

∑
v,a,b

E
[
Im

∂kGvaGbv
∂hkab

]
+O≺(

1√
N

), (5.2)

where s(k+1)
ab (t) is of the constant order and given by

s
(k+1)
ab (t) = (1− e−t)

k−1
2 c(k+1)(

√
Nh

(s)
ab ), k + 1 ≥ 3, (5.3)

with c(k+1)(
√
Nh

(s)
ab ) defined in (2.21). By direct computations, the second order terms

for k + 1 = 2 vanish in (5.2) since the variance of w(s)
ab coincides with the variance of

h
(s)
ab . The last error O≺(N−1/2) stems from truncating the expansions at the fourth order,

using the local law in (4.5) and the moment condition in (2.4).
It then suffices to estimate the third and fourth order term in (5.2), i.e.,

K3 :=
1

N
5
2

∑
v,a,b

s
(3)
ab (t)E

[
Im

∂2GvaGbv
∂h2

ab

]
; K4 :=

1

N3

∑
v,a,b

s
(4)
ab (t)E

[
Im

∂3GvaGbv
∂h3

ab

]
. (5.4)

We first look at the fourth order term K4. Using the differentiation rule in (4.10) and
(4.4), K4 can be written as a linear combination of the following terms:

1

N3

∑
v,a,b

s
(4)
ab (t)E

[
Im (GvaGaaGbbGbbGav)

]
;

1

N3

∑
v,a,b

s
(4)
ab (t)E

[
Im (GvaGaaGbbGabGbv)

]
;

1

N3

∑
v,a,b

s
(4)
ab (t)E

[
Im (GvaGabGabGbbGav)

]
;

1

N3

∑
v,a,b

s
(4)
ab (t)E

[
Im (GvaGabGabGabGbv)

]
.

(5.5)
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Using the local law in (4.5) and the generalized Ward identity in (4.6)–(4.7), we have

|K4| = O≺

(E[Imm
(2)
N (t, z)]

Nη

)
. (5.6)

We next estimate the third order term K3 in (5.4), which can be written into a linear
combination of the following terms:

√
N

N3

∑
v,a,b

s
(3)
ab (t)E

[
Im (GvaGaaGbbGbv)

]
;

√
N

N3

∑
v,a,b

s
(3)
ab (t)E

[
Im (GvaGbbGabGav)

]
;

√
N

N3

∑
v,a,b

s
(3)
ab (t)E

[
Im (GvaGabGabGbv)

]
. (5.7)

These third order terms cannot be estimated as in (5.6) since we are off by
√
N from

the third order cumulants. As observed in [48], these third order terms are the so-called
unmatched terms (up to a factor

√
N ) with unmatched indices a and b; see Definition 5.3

below.
We can extend the expansion mechanism introduced in [48, Section 6] to generalized

Wigner matrices with inhomogeneous variances. Due to the existence of unmatched
indices, each time we perform the expansions via an unmatched index, we gain one more
off-diagonal Green function entry in the leading terms, which will contribute additional
Ψ ≤ N−ε from the local law. By invoking the expansions iteratively for D times with
D > 0 being sufficiently large depending only on ε, we prove in Proposition 5.4 below that
these unmatched terms in (5.7) (without the factor

√
N ) can be bounded by O≺(N−1),

where the error N−1 is from the index coincidences, e.g., a = b.
Before we give the formal statement, we define the following abstract form of

averaged products of Green function entries and possible shifted diagonal Green function
factors Gvv −msc that will be generated in the expansions as explained later. We remark
that the abstract form below is slightly different than in [48, Definition 4.2] to adapt to
generalized Wigner matrices with inhomogeneous variances.

Definition 5.2. For any fixed m ∈ N, we use Im := {v1, . . . , vm} to denote a set of m

summation indices ranging from 1 to N which is split into two disjoint subsets I(1)
m1 and

I(2)
m2 with m1 + m2 = m. For any n1 ∈ N, we use

∏n1

i=1Gxiyi to denote a product of n1

(not necessarily off-diagonal) Green function entries, where each row and column index
xi, yi represents an element in the first subset I(1)

m1 . We also use
∏n2

l=1(Gwlwl −msc) to
denote a product of shifted diagonal Green function entries where each wl represents a
different element in I(2)

m1 . In particular, we have n2 = m2. Then we define

n := n1 + n2, d := #{1 ≤ i ≤ n1 : xi 6= yi}+ n2, (5.8)

where the number n is the total number of (shifted) Green function entries in the product,
and the number d (≤ n) is the number of off-diagonal Green function entries plus the
number of shifted diagonal Green function entries, which is also referred to the degree
of a term in (5.9) below. Then we define an averaged product of (shifted) Green function
entries of degree d, i.e.,

1

Nm

N∑
v1,...,vm=1

cv1,...,vm(t, z)

n1∏
i=1

Gxiyi(t, z)

n2∏
l=1

(Gwlwl −msc)(t, z)

= :
1

Nm

∑
Im

cIm

n1∏
i=1

Gxiyi

n2∏
l=1

(Gwlwl −msc), t ∈ R+, z ∈ C+, (5.9)
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where cIm ≡ cv1,...,vm(t, z) is a uniformly bounded and deterministic function. A term in
(5.9) of degree d is denoted by Qd ≡ Qd(t, z) in general. We use Qd ≡ Qd(t, z) to denote
the collection of the terms of the form in (5.9) of degree d.

For any Qd ∈ Qd, it is clear from the local law in (4.5) that

|Qd(t, z)| ≺ Ψd +N−1, (5.10)

uniformly in z ∈ Sedge given in (3.1) and t ≥ 0, where the last error N−1 is from the cases
when at least two summation indices coincide in the summation.

Next we follow [48, Definition 4.2] to define unmatched terms of the form in (5.9).
Due to (4.4) for the real case, we do not distinguish between the row and column
indices. The modifications for unmatched terms in the complex case can be found in [48,
Definition 4.2].

Definition 5.3 (Unmatched term, unmatched index). Let Qd be a general term of the
form in (5.9). For any summation index vj ∈ Im, let n(vj) be the number of appearances
of the index vj as the row or column index in the product of the (shifted) Green function

entries. In particular, for any vj ∈ I(1)
m1 ⊂ Im,

n(vj) := #{1 ≤ i ≤ n1 : xi ≡ vj}+ #{1 ≤ i ≤ n1 : yi ≡ vj}. (5.11)

If n(vj) is odd, then we say that the summation index vj is unmatched. Otherwise, vj
is matched. Moreover, for any summation index vj ∈ I(2)

m2 ⊂ Im, n(vj) = 2 hence vj is
matched.

If there exists at least one (equivalently two) unmatched summation index in I(1)
m1 ,

then we say Qd is an unmatched term, denoted by Qod in general. The collection of
unmatched terms of the form in (4.31) with degree d is denoted by Qod ⊂ Qd.

Following [48, Proposition 4.3], the proof of the proposition below is presented in the
appendix.

Proposition 5.4. Consider an unmatched term Qod ∈ Qod of the form in (4.31) with fixed
n ∈ N given in (5.8). Then we have

|E[Qod(t, z)]| = O≺
(
N−1

)
, (5.12)

uniformly in t ∈ R+ and z ∈ Sedge given in (3.1).

Note that the third order terms in (5.7) are unmatched terms of the form in (5.9) with
a factor

√
N , since n(a) = n(b) = 3. Therefore using Proposition 5.4, these third order

terms can be bounded by

|K3| = O≺(N−1/2). (5.13)

Combining (5.6) and (5.13) with (5.2), we have∣∣∣ d

dt
E[ImmN (t, z)]

∣∣∣ = e−t
(
O≺
(E[ImmN (t, z)]

Nη

)
+O≺

(
N−1/2

))
, (5.14)

uniformly in z ∈ Sedge and t ∈ R+. This proves Proposition 5.1.

6 Proof of Theorem 2.7

In this section, we extend the proof of Proposition 3.1 to prove Theorem 2.7 for a
general function F . The proof will follow the same strategy outlined in Subsection 3.1
and we will address only the modifications needed for a general F . More precisely, we
divide the proof into two steps:
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1. Given the matrix interpolating flow H(1) in (3.13), we iteratively use analogous
expansions in Section 4 for products of Green function entries of the form in (4.31)
with a general F , in combination with the spectral property of the variance matrix
S in (2.5) and the improved estimate of E[Imm

(1)
N (t, z)] in Proposition 3.4 to prove

that ∣∣∣(EWS

− EGβE
)[
F
(
N

∫ E2

E1

ImmN (y + iη)dy
)]∣∣∣ = O≺(N−1/3). (6.1)

2. Given the matrix interpolating flow H(2) in (3.16), we adapt the expansions of
Green function entries in Section 5 to estimate the third order (unmatched) terms
with a general F . Moreover, we use the generalized Ward identity in (4.6)–(4.7)
and the improved estimate of E[Imm

(2)
N (t, z)] in Proposition 3.5 to bound the fourth

order (matched) terms with a general F , i.e.,∣∣∣(EH − EWS)[
F
(
N

∫ E2

E1

ImmN (y + iη)dy
)]∣∣∣ = O≺(N−1/3). (6.2)

Combining (6.1) and (6.2), we hence finish the proof of Theorem 2.7.

6.1 Proof of the estimate in (6.1)

In the first step, we consider the modified matrix interpolating flow H(1) in (3.13). For
any E1, E2 such that 2− C1N

− 2
3 ≤ E1 < E2 ≤ 2 + C2N

−2/3+ε and N−1+ε ≤ η ≤ N−2/3−ε,
we define

X (1) = X (1)(t) := N

∫ E2

E1

Imm
(1)
N (t, x+ iη)dx, t ∈ R+. (6.3)

Taking the time derivative of E[F (X (1))] as the analogue of (4.9), we have

d

dt
E[F (X (1))] =−

N∑
a,b=1

E
[
F ′(X (1))

∫ E2

E1

dh
(1)
ab

dt
Im
( N∑
v=1

G(1)
vaG

(1)
bv (t, x+ iη)

)
dx
]

=−
N∑

a,b=1

E
[
F ′(X (1))

dh
(1)
ab

dt
∆Im

(
G

(1)
ba

)]
(6.4)

where we used that (G2)(z) = dG(z)
dz , and introduced the following short hand notation

∆Im : For any function P (t, z) : R+ × C+ → C+, we define

∆ImP := ImP (t, E2 + iη)− ImP (t, E1 + iη). (6.5)

In the following, we will omit the superscript (1) of G(1) and X (1) for notational simplicity.
Note that from (4.10), we have a new differentiation rule for a general F , i.e.,

∂X
∂hab

=− 2

1 + δab
Im

∫ E2

E1

(G2)ba(t, x+ iη)dx = − 2

1 + δab
∆ImGba. (6.6)

Performing cumulant expansions as in (4.13), we obtain from (6.4) that

d

dt
E[F (X (1))] =− e−t

2

∑
a,b

(
Sab −

1

N

)
(1 + δab)E

[∂F ′(X )∆ImGba
∂hab

]
=e−t

∑
a,b

TabE
[
F ′(X )∆Im

(
GaaGbb

)]
+ e−t

∑
a,b

TabE
[
F ′(X )∆Im

(
GabGba

)]
+ e−t

∑
a,b

TabE
[
F ′′(X )∆ImGab∆ImGba

]
, (6.7)
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where we used (4.10), (6.6) and that ∂/∂hab commutes with ∆Im in (6.5). Then it suffices
to prove ∣∣∣ d

dt
E[F (X (1)(t))]

∣∣∣ = e−tO≺(N−1/3). (6.8)

Integrating (6.8) over t ∈ [0, T0] with T0 = 10 logN and using (4.2), we obtain∣∣∣(EW S̃

− EGβE
)[
F
(
N

∫ E2

E1

ImmN (y + iη)dy
)]∣∣∣ = O≺(N−1/3). (6.9)

Similar to Lemma 3.3, the slight modifications on the variance profile matrix S in (3.11)
will not effect the estimate in (6.9) up to an error O≺(N−1/3), and we hence conclude
with (6.1).

The rest of this subsection is devoted to proving (6.8). Since the matrix T satisfies
the summation property in (4.16), the first term on the right side of (6.7) is then given by∑

a,b

TabE
[
F ′(X )∆Im

(
GaaGbb

)]
=
∑
a,b

TabE
[
F ′(X )∆Im

(
(Gaa −msc)(Gbb −msc)

)]
.

Thus all the second order terms in (6.7) can be written as terms of the form in (4.31)
with additional derivatives of F and the abbreviations ∆Im in front of the (shifted) Green
function entries. The naive size of these terms is O≺(NΨ2) and we next use iterative
expansions and the estimate in (3.14) to improve the upper bound to O≺(N−1/3).

To study these terms in general, we introduce the following abstract form analogues
to (4.31) for a general function F .

Definition 6.1 (General function F , cf., Definition 4.3). For any d ∈ N with d ≥ 2, we use
Jd := (j1, . . . , jd) to denote a set of d ordered summation indices ranging from 1 to N .
For any 2 ≤ m0 ≤ d, the first m0 summation indices j1, . . . , jm0

have the non-uniform
weights from

∏m0−1
p=1 (T kp)jpjp+1

, and each of the remaining d−m0 indices jm0+1, . . . , jd
has a uniform weight N−1 in the summation. Then we consider the abstract form of d
(shifted) Green function entries,

1

Nd−m0

∑
j1,...,jd

m0−1∏
p=1

(T kp)jpjp+1
×

E
[
F (α)(X )

α∏
q=1

∆Im
(

(msc)
cq

m
(q)
1∏

i=1

G
x
(q)
i y

(q)
i

m
(q)
2∏
l=1

(
G
w

(q)
l w

(q)
l

−msc

))]
, (6.10)

with {kp}, {cq} ∈ N, where F (α) is the α-th derivative of the smooth function F , each row

and column index of the (shifted) Green function entries x(q)
i , y(q)

i and w(q)
l represents an

element in Jd with x(q)
i 6= y

(q)
i , and each element in Jd appears exactly twice as the row

or column index. In particular, d =
∑α
q=1(m

(q)
1 +m

(q)
2 ). A term of the form in (6.10) with

degree d is in general denoted by P̃d ≡ P̃d(t, z). The collection of the terms in (6.10) with
degree d is denoted by P̃d ≡ P̃d(t, z).

We remark that the deterministic functions (msc)
cq in (6.10) cannot be moved outside

due to ∆Im defined in (6.5). Since the derivatives of F are uniformly bounded and that
|msc| ≤ 1, the naive sizes in (4.33) and (4.34) also hold true for any term P̃d of the form
in (6.10).

Given any term P̃d in (6.10), using the new differentiation rule in (6.6) to compute
∂F (α)(X )/∂hab, we extend the expansions in (4.35) and (4.36) to the cases with a
general F .
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(a) If the special index j1 appears in a (shifted) diagonal Green function entry, say
w

(1)
1 ≡ j1, then we have cf., (4.50),

E[P̃d] =(1− e−t)E[P̃d(k1 → k1 + 1, c1 → c1 + 2)] +
∑

P̃d1∈P̃d1 ,d1=d+1

E[P̃d1 ], (6.11)

where the leading term of degree d is obtained from the original term P̃d by
increasing the power of the matrix T k1 to k1 + 1 and increasing the power of the
function (msc)

c1 to c1 +2, the second group of terms contains at most 4(d+1) terms
of the form in (6.10) with higher degrees d+1 and possible factors 1−e−t. Iterating
(6.11) for K − k1 times with K given in (4.29), we obtain the analogue of (4.35),
i.e.,

E[P̃d] =
∑

P̃d′∈P̃d′ ,d′=d+1

E[P̃d′ ] +O≺(N−8), (6.12)

where the first group of terms contains at most 4K(d+1) terms of the form in (6.10)
with higher degrees d+ 1, and each term comes with a possible factor 1− e−t.

(b1) If the special index j1 appears in two different off-diagonal Green function entries
with the same superscript (q), say x(1)

1 , x
(1)
2 ≡ j1 and y

(1)
1 , y

(1)
2 6≡ j1, then we have

cf., (4.64),

E[P̃d] =(1− e−t)E[P̃d(k1 → k1 + 1, c1 → c1 + 2)]
)

+
∑

P̃d1∈P̃d1 ,
d1=d+1

E[P̃d1 ] +O≺(N−1/3),

(6.13)

where the last error O≺(N−1/3) is obtained from the cases with index coincidence

(see (4.61)–(4.63)) using the improved estimate of E[Imm
(1)
N (t, z)] in (3.14), the

second group of terms in (6.13) contains at most 4(d+ 1) terms of the form in (6.10)
with possible factors 1− e−t.

(b2) If the special index j1 appears in two off-diagonal Green function entries with
different superscripts (q), say x(1)

1 , x
(2)
1 ≡ j1 and y(1)

1 , y
(2)
2 6≡ j1, then we have similar

to (6.13),

E[P̃d] =(1− e−t)E[P̃d(k1 → k1 + 1, c1 → c1 + 1, c2 → c2 + 1)]
)

+
∑

P̃d1∈P̃d1 ,d1=d+1

E[P̃d1 ] +O≺(N−1/3). (6.14)

Iterating either of the expansions in (6.13) or (6.14) for K − k1 times with K given
in (4.29), we obtain the analogue of (4.36), i.e.,

E[P̃d] =
∑

P̃d′′∈P̃d′′ ,d′′=d+1

E[P̃d′′ ] +O≺(N−8) +O≺(KN−1/3), (6.15)

where the first group of terms contains at most 4K(d + 1) terms of the form in
(6.10) with higher degrees d + 1 and possible factors 1 − e−t, and the last error
O≺(KN−1/3) is from the cases with index coincidences using (3.14).

We omit the proof details since they are quite similar to Subsection 4.3 using addi-
tionally the new differentiation rule in (6.6). Now we go back to (6.7), whose right side
consists of three terms of the form in (6.10) with degree two. For a general term of the
form in (6.10) with degree at least two, denoted by P̃d, iterating the expansions in (6.12)
and (6.15) for D ≥ 4

ε times as in (4.40)–(4.43), we have

E[P̃d] =O≺
(
(8KD)D(NΨD +N−8)

)
+O≺

(
(8KD)DN−1/3

)
= O≺(N−1/3). (6.16)

We hence have proved the estimate in (6.8) and conclude with (6.1).
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6.2 Proof of the estimate in (6.2)

In the second step, recalling the matrix interpolating flow (3.16), we define as in (6.3)

X (2) = X (2)(t) := N

∫ E2

E1

Imm
(2)
N (t, x+ iη)dx. (6.17)

Taking the time derivative of E[F (X (2)(t))], using the differentiation rules in (4.10) and
(6.6), we have the analogue of (5.2), i.e.,

d

dt
E[F (X (2)(t))] =− e−t

2

4∑
k+1=3

1

k!

s
(k+1)
ab (t)

N
k+1
2

∑
a,b

E
[∂kF ′(X )∆ImGba

∂hkab

]
+O≺

( 1√
N

)
,

(6.18)

with s(k+1)
ab (t) given in (5.3), and we set G = G(2)(t, z), X = X (2) for notational simplicity.

Using the differentiation rules in (4.10) and (6.6), and that ∂/∂hab commutes with
∆Im in (6.5), the third order terms with k + 1 = 3 in (6.18) can be written as averaged
products of Green function entries of the form in (5.9) up to a factor

√
N , with additional

derivatives of F and the abbreviations ∆Im in front of the Green function entries, e.g.,
√
N

N2

∑
a,b

s
(3)
ab (t)E

[
F ′(X )∆Im (GaaGaaGab)

]
,

√
N

N2

∑
a,b

s
(3)
ab (t)E

[
F ′′(X )∆Im (Gab)∆Im (GaaGaa)

]
;

√
N

N2

∑
a,b

s
(3)
ab (t)E

[
F (3)(X )∆Im (Gab)∆Im (Gab)∆Im (Gab)

]
.

Since the index a and b appear three times in the product of Green function entries as the
row or column index, these third order terms are unmatched terms; see Definition 5.3.
The statement of Proposition 5.4 still holds true for such a general form and the proof
is quite similar using additionally the new differentiation rule in (6.6) for a general F .
Hence, the third order unmatched terms in (6.18) with additional factor

√
N can be

bounded by ∑
k+1=3

on r.h.s. of (6.18) = O≺(N−1/2).

By direct computations using (4.10) and (6.6), the fourth order terms with k + 1 = 4

in (6.18) are also averaged products of Green function entries with additional derivatives
of F and ∆Im in front, e.g.,

1

N2

∑
a,b

s
(4)
ab (t)E

[
F ′(X )∆Im (GaaGaaGbbGbb)

]
;

1

N2

∑
a,b

s
(4)
ab (t)E

[
F ′′(X )∆Im (GaaGbb)∆Im (GaaGbb)

]
;

1

N2

∑
a,b

s
(4)
ab (t)E

[
F (3)(X )∆Im (Gab)∆Im (Gab)∆Im (GaaGbb)

]
;

1

N2

∑
a,b

s
(4)
ab (t)E

[
F (4)(X )∆Im (Gab)∆Im (Gab)∆Im (Gab)∆Im (Gab)

]
.

Using the definition of ∆Im in (6.5), the estimate of ImGaa in (4.6), the generalized
Ward identity in (4.7), and that all derivatives of F are uniformly bounded, these fourth
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order terms can be bounded by∑
k+1=4

on r.h.s. of (6.18) = O≺ (E[ImmN (t, E1 + iη)] + E[ImmN (t, E2 + iη)]) .

Combining with the estimate of E[Imm
(2)
N (t, z)] in (3.17), we obtain∣∣∣ d

dt
E[F (X (1))]

∣∣∣ = e−tO≺(N−1/3), (6.19)

where the error is proportional to the fourth order cumulants of the normalized entries
of the generalized Wigner matrix H in (5.3). Integrating (6.19) over t ∈ [0, T0] with
T0 = 10 logN and using (4.2), we finish the proof of (6.2).

A Appendix

A.1 Proof of Lemma 3.3

We consider the interpolating flow between two independent Gaussian matrices with
variance profile matrix S̃ and S respectively, i.e.,

H̃(t) := e−
t
2W S̃ +

√
1− e−tWS , (S̃)ab = (S)ab(1 + δab).

We define the Green function of H̃(t) by G̃ = G̃(t, z) and its normalized trace by m̃N (t, z).
Taking the time derivative of E[Im m̃N (t, z)] and performing the cumulant expansions as
in (4.9)–(4.13), we obtain

d

dt
E[Im m̃N (t, z)] =− 1

N

N∑
v=1

∑
a,b

E
[
Im
(
G̃vaG̃bv

dh̃ab(t)

dt

)]

=− e−t

2

1

N

N∑
v=1

∑
a,b

(
Sab − S̃ab

)
E
[
Im

∂G̃vaG̃bv
∂hab

]
=e−t

1

N

∑
v,a

SaaE
[
Im
(
G̃vaG̃aaG̃av

)]
. (A.1)

We remark that the local law in (4.5) and the generalized Ward identity in (4.6)–(4.7)
also hold for the Green function G̃. Using that Saa = O(N−1), we obtain that

∣∣ d

dt
E[Im m̃N (t, z)]

∣∣ ≺ Ce−t
E[Im m̃N (t, z)]

Nη
. (A.2)

Using Grönwall’s inequality, we find that, for any t ∈ R+ and z ∈ Sedge in (3.1),

E[Im m̃N (t, z)] ≤ CE[Im m̃N (0, z)] = CES̃ [Im m̃N (z)]. (A.3)

We hence finish the proof of Lemma 3.3.

A.2 Proof of Proposition 5.4

Following [48, Proposition 4.3], in order to prove Proposition 5.4, we first introduce
the expansion mechanism of a given term of the form in (5.9) for generalized Wigner
matrices with inhomogeneous variances.

Given an unmatched term Qod in (5.9), let the index a ∈ I(1)
m1 to be an unmatched index

without loss of generality. The expansion via the index a is split into the following two
cases:
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Case 1: If there exists a diagonal factor Gaa in the first product of Green function
entries

∏n1

i=1Gxiyi , then we have

E[Qod] = E[Qod
(
Gaa → msc

)
] +

∑
Qo
d′′∈Q

o
d′′

d′′≥d+1

E[Qod′′ ] +
1√
N

∑
Qo
d′∈Q

o
d′ ;d
′≥d

E[Qod′ ] +O≺
(
N−1

)
,

(A.4)

where we replaced the diagonal Green function entry Gaa with msc for the leading term
which remains unmatched. The second group of terms contains at most 2n terms of the
form in (5.9) with higher degrees, denoted by Qod′′ in general, and the third group of
terms contains at most 4(n+ 1)2 terms denoted by Qod′ with an additional factor 1√

N
.

Case 2: If there is no diagonal factor Gaa in the first product of Green function
entries

∏n1

i=1Gxiyi , assuming that x1 ≡ a, y1 6≡ a without loss of generality, then we have

E[Qod] =m2
sc

∑
2≤i≤n1
xi≡a,yi 6≡a

E
[
Qod
(
x1, xi ≡ a→ j

)]
+m2

sc

∑
2≤i≤n1
xi 6≡a,yi≡a

E
[
Qod
(
x1, yi ≡ a→ j

)]

+
∑

Qo
d′′∈Q

o
d′′

d′′≥d+1

E[Qod′′ ] +
1√
N

∑
Qo
d′∈Q

o
d′

d′≥d

E[Qod′ ] +O≺(N−1), (A.5)

where we have replaced a pair of the index a from two distinct off-diagonal Green
function entries with the fresh index j for the leading terms, and the index a remains
unmatched. The first group of terms on the second line contains at most 2n terms of
the form in (5.9) with higher degrees, and the second group of terms contains at most
4(n+ 1)2 terms of the form in (5.9) with an additional factor 1√

N
.

Next we will sketch the proof of Proposition 5.4 by iteratively using these two type of
expansions above, and similar arguments can be found in [48, 49]. Given an unmatched
term Qod of the form in (5.9) with fixed n given in (5.8), since the index a is unmatched,
the number of appearances of the index a, i.e., n(a) defined in (5.11), is odd and n(a) ≤ n.

If n(a) = 1, since there is no Gaa factor, we perform the expansion in (A.5). There
will be no leading term of degree d in the first line of (A.5) and we obtain finitely many
unmatched terms with higher degrees at least d+ 1. Otherwise, if n(a) ≥ 3, performing
either the expansion in (A.4) or (A.5), the number of appearances of the index a in each
resulting leading term on the right side has been decreased by two. Thanks to a still
being unmatched, we can further expand these leading terms via the index a until the
number of appearances of a is reduced to one. Then we go back to the previous case
with n(a) = 1.

In this way, we have expanded the unmatched term E[Qod] into finitely many un-
matched terms of degrees at least d+ 1 with improved estimate from (5.10), i.e.,

E[Qod(t, z)] =
∑

Qo
d′∈Q

o
d′

d′≥d+1

E[Qod′(t, z)] +
1√
N

∑
Qo
d′′∈Q

o
d′′

d′′≥d

E[Qod′′(t, z)] +O≺
(
N−1

)
, (A.6)

where the number of unmatched terms on the right side above is bounded by (Cn)cn,
and the number of the Green function entries in each term is bounded by Cn for some
numerical constants C, c > 0.

Iterating the expansion process in (A.6) for D − d times with D > d sufficiently
large fixed later, the first group of terms on the right side of (A.6) contains at most(
(CDn)c

Dn
)D

terms with degrees at least D. Similarly the second group of terms with a
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factor 1√
N

on the right side of (A.6) contains at most
(
(CDn)c

Dn
)D

terms with degrees
at least D − 1. We hence obtain from the naive estimate in (5.10) that

|E[Qod(t, z)]| = O≺

(
ΨD +

ΨD−1

√
N

+
1

N

)
= O≺(ΨD +N−1), (A.7)

where the error O≺(N−1) is from the cases with index coincidences. Choosing D > 1
ε

sufficiently large depending only on ε > 0, we finish the proof of Proposition 5.4.
The rest of this subsection is devoted to proving the expansions in (A.4) and (A.5).

We start with proving the first expansion in (A.4). We may assume Gx1y1 = Gaa without
loss of generality. Using that − 1

msc
= z +msc and the definition of resolvent, we have

−E[Qod]

msc
=E
[ 1

Nm

∑
Im

cIm
(∑

j

hajGja − 1
) n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]

+mscE[Qd]

=− E
[ 1

Nm

∑
Im

cIm

n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]

+mscE[Qd]

+ E
[ 1

Nm

∑
Im

cIm

N∑
j=1

Saj
∂Gja

∏n1

i=2Gxiyi
∏n2

l=1(Gwlwl −msc)

∂haj

]

+ E
[ 1

Nm+ 3
2

∑
Im

cIm

N∑
j=1

c(3)(
√
Nhaj)

2!

∂2Gja
∏n1

i=2Gxiyi
∏n2

l=1(Gwlwl −msc)

∂h2
aj

]
+O≺(N−1), (A.8)

where c(3)(
√
Nhaj) is the third cumulant of the normalized entry

√
Nhaj which is of the

constant order, and the last error stems from the truncating the cumulant expansions at
the third order.

Using (4.10), the resulting terms in the last line above are of the form in (5.9) up
to a factor 1√

N
, with a new summation index set Im+1 = Im ∪ {j} and two more Green

function entries in the product, i.e., n′ = n + 2. Since j is a fresh index with n(j) = 3,
by direct computations using (4.10), they are 4n(n+ 1) unmatched terms of degrees at
least d. In general, we denote all of these terms together by

1√
N

∑
Qo
d′∈Q

o
d′ ;d
′≥d

E[Qod′ ]. (A.9)

Similarly, the resulting terms in the second last line of (A.8) are of the form in (5.9)
with Im+1 = Im ∪ {j} and n′ = n + 1. It is straightforward to check that n(j) = 2 for
the fresh index j and n(vj) remains the same for any original vj in Im (including the
index a). Hence the index a remains unmatched. Using the differentiation rule in (4.10),
we obtain 2n− 1 unmatched terms with higher degrees at least d+ 1, which are denoted
in general by ∑

Qo
d′′∈Q

o
d′′ ,d

′′≥d+1

E[Qod′′ ], (A.10)

except one leading term with degree d from taking ∂Gaj
∂hja

, i.e.,

E
[ 1

Nm

∑
Im

cIm

N∑
j=1

SajGjjGaa

n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]
. (A.11)
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Since
∑
j Saj = 1, there is a cancellation between this leading term and the second term

on the right side of (A.8), i.e., mscE[Qd], and we end up with an unmatched term with
higher degree d+ 1, i.e.,

E
[ 1

Nm

∑
Im,j

cImSaj(Gjj −msc)Gaa

n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]
. (A.12)

We note that the naive estimate in (5.10) still holds true and the additional factor
Saj = O(N−1) is not harmful in the iterative expansions. Therefore, multiplying −msc on
both sides of (A.8), we have proved the first expansion in (A.4).

Next, we continue to prove the second expansion in (A.5). Assuming there is no Gaa
factor in

∏n1

i=1Gxiyi , we choose to expand an off-diagonal Green function entry, say Gay1
with y1 6≡ a. Similarly to (A.8), we obtain that

−E[Qod]

msc
=E
[ 1

Nm

∑
Im

cIm
(∑

j

hajGjy1 − δay1
) n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]

+mscE[Qd]

=mscE[Qd] + E
[ 1

Nm

∑
Im

cIm

N∑
j=1

Saj
∂Gjy1

∏n1

i=2Gxiyi
∏n2

l=1(Gwlwl −msc)

∂haj

]
+

1√
N

∑
Qo
d′∈Q

o
d′ ;d
′≥d

E[Qod′ ] +O≺(N−1), (A.13)

where the third order terms are obtained similarly as in (A.9), and the error O≺(N−1) is
from truncating the cumulant expansions at the third order and the terms with the index
coincidence δay1 .

We next estimate the second group of terms on the right side of (A.13). Since j

is a fresh index, the resulting terms have higher degrees at least d + 1 denoted by
(A.10) in general, except the leading terms obtained from acting ∂

∂haj
on Gjy1 or another

off-diagonal Green function entry Gxiyi (2 ≤ i ≤ n1) with either xi ≡ a or yi ≡ a. The
leading term corresponding to ∂Gjy1/∂haj is given by

−E
[ 1

Nm

∑
Im

cIm

N∑
j=1

SajGjjGay1

n1∏
i=2

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]
,

which will be canceled with the first term mscE[Qd] on the right side of (A.13) as in
(A.12). For the remaining leading terms, e.g., we may assume that Gx2y2 = Gay2 with
y2 6≡ a, then the corresponding leading term is given by

−E
[ 1

Nm

∑
Im,j

SajcImGaaGjy1Gjy2

n1∏
i=3

Gxiyi

n2∏
l=1

(Gwlwl −msc)
]
. (A.14)

This term has a diagonal factor Gaa which can be expanded using the expansion (A.4)
proved in the Case 1. Then we replace one pair of the index a from Gay1 and Gay2 with
the fresh index j, up to a factor −msc. In general, we write these leading terms for short
as

−msc

∑
2≤i≤n1
xi≡a,yi 6≡a

E
[
Qd
(
x1, xi ≡ a→ j

)]
−msc

∑
2≤i≤n1
xi 6≡a,yi≡a

E
[
Qd
(
x1, yi ≡ a→ j

)]
. (A.15)

Multiplying −msc on both sides of (A.13), we have finished the proof of the second
expansion in (A.5).
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