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Abstract

The existence and non-uniqueness of stationary distributions for distribution depen-
dent stochastic differential equations with regular coefficients and singular coefficients
are investigated. The existence of several stationary distributions is referred to as
the phase transition. Our criterion on the existence and the non-uniqueness allow
the drift to be in the non-gradient case and the noise to be multiplicative and depend
on the law of the solution. By using our criterion, McKean-Vlasov stochastic equa-
tions in double-wells landscape with the quadratic interaction and the non-quadratic
interaction driven by distribution dependent multiplicative noise are investigated.
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1 Introduction

When investigating the propagation of chaos for interacting diffusions, McKean [20]
introduced a nonlinear stochastic differential equation (SDE) whose coefficients depend
on the own law of the solution. This SDE is referred as the McKean(-Vlasov) SDE,
established from systems of interacting diffusions by passing to the mean field limit. The
associated empirical measure converges in the weak sense to a probability measure with
density, and the density satisfies a nonlinear parabolic partial differential equation (PDE)
called McKean-Vlasov equation in the literature, see e.g. [22]. Let P be the space of
probability measures on Rd equipped with the weak topology, {Wt}t≥0 be a d-dimensional
Brownian motion on a complete filtration probability space (Ω,F , {Ft}t≥0,P), and let
Lη be the law of the random variable η. We consider the SDE on Rd of the following
form

dXt = b(Xt,LXt)dt+ σ(Xt,LXt)dWt, (1.1)
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Stationary distributions of DDSDEs

where the coefficients

b : Rd ×P → Rd, σ : Rd ×P → Rd ⊗Rd

are measurable. By setting

b(x, µ) = −∇V (x)−∇F ∗ µ(x), (1.2)

we get the McKean-Vlasov SDE with differentiable confining potential V and interaction
potential F , where ∗ stands for the convolution on Rd:

f ∗ µ(x) =

∫
Rd
f(x− y)µ(dy), f ∈ B(Rd).

Solutions to (1.1) in strong and weak sense are extensively studied by many works, see
e.g. [16, 17, 21, 28, 33] and references therein. In this paper, we aim to find stationary
distributions to (1.1), i.e. µ ∈ P so that for LX0

= µ, there is a solution Xt such that
LXt ≡ µ for all t ≥ 0. This solution is called the stationary solution. When b and σ are
independent of the law of the solution, the stationary probability measure is the invariant
probability measure of the associated classical SDE.

The existence of several stationary distributions to McKean-Vlasov SDEs can occur for
the non-convex confining potential. This phenomenon is referred to as phase transition.
[6] established for the first time the phase transition for the equation with a particular
double-well confinement and Curie-Weiss interaction on the line. Let d = 1, and let b(x, µ)

satisfy (1.2) with

V (x) =
x4

4
− 1

2
x2, F (x) =

α

2
x2, (1.3)

and let σ(x) ≡ σ0 for some σ0 > 0. Then, Dawson proved in [6] that for fixed α > 0, there
exists σc > 0 so that (1.1) has a unique stationary distribution if σ0 > σc and has three
stationary distributions if 0 < σ0 < σc. For a classical SDE, if the drift is dissipative at
infinity and the noise is non-degenerate, then the associated Markov process is ergodic,
see [11] for example. As we see from [6], −∇V is dissipative at infinity, but the interaction
potential F leads to the non-uniqueness of stationary distributions. Despite [6], there are
many works studying the phase transition for McKean-Vlasov equations. [23] provided a
criteria for McKean-Vlasov equations with an unphysical assumption that the interaction
potential is an odd function. Equations with multi-wells confinement on the whole space
were investigated extensively by Tugaut et al. in [10, 14, 15, 24, 25, 26, 27]. In [2, 5],
quantitative analyses for continuous and discontinuous phase transition were provided
for McKean-Vlasov equations on the torus with V ≡ 0, and in [8], the diffusive-mean
field limit was investigated for a mean field system with periodic potentials when the
associated constrained system on the torus undergoes a phase transition. The phase
transition is also studied for nonlinear Markov jump processes, see e.g. [3, 12].

According to the papers mentioned above and references therein, the phase transition
is investigated under the assumption that b is of the gradient form like (1.2) and the
noise is additive. However, in this paper, we give sufficient conditions for the existence
and non-uniqueness of stationary distributions to (1.1), which allow the drift to be in
the non-gradient case and the noise to be multiplicative and depend on the law of the
solution, see Theorem 2.2, Theorem 2.5 and Theorem 3.1 for details. Moreover, our
conditions on the non-uniqueness of stationary distributions can also deal with equations
in double-wells landscape considered in [6, 26]. If the drift term is of the gradient form
and σ = σ0I for some σ0 ∈ R, the stationary distributions are of an explicit formulation:

µ(dx) =
exp

{
− 2
σ2

0
(V (x) + F ∗ µ(x))

}
∫
Rd

exp
{
− 2
σ2

0
(V (x) + F ∗ µ(x))

}
dx

dx. (1.4)
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Stationary distributions of DDSDEs

Then the phase transition can be investigated by this explicit formulation and the fixed
point theorem for multi-well confinement V and even polynomial interaction F (see
e.g. [6, 10, 26]), or combining it with the free energy functional associated with the
McKean-Vlasov equation (see [2, 5, 9, 25, 27] for instance):

E V,F (µ) :=
σ2
0

2
Ent(µ|µVσ0

) +
1

2
µ(F ∗ µ),

where µVσ0
(dx) = Z0 exp{−2σ−20 V (x)}dx is a probability measure with the normalizing

constant Z0 and Ent(µ|µVσ0
) is the classical relative entropy. However, for (1.1), the

explicit formulation as (1.4) for stationary measures is usually not available, and the
free energy functional E V,F may be not available or less explicit even it exists. Hence,
we used different methods to establish the existence and non-uniqueness of stationary
distributions for (1.1).

Instead of (1.4), we establish a mapping T on P whose fixed points are stationary
distributions of (1.1). By freezing LXt ≡ µ ∈P, we get from (1.1) that

dXµ
t = b(Xµ

t , µ)dt+ σ(Xµ
t , µ)dWt. (1.5)

Denote by Xµ,x
t the solution to (1.5) with Xµ,x

0 = x, and define Pµt f(x) = Ef(Xµ,x
t ) the

associated linear Markov semigroup to (1.5). Then we take advantage of the ergodic
theory for linear Markov semigroups, see e.g. [3, 13, 31], to establish T . Indeed,
if Pµt has a unique invariant probability measure, then we let the value of T at µ
(denoted by Tµ) be the invariant probability measure of Pµt . The existence of stationary
measures to (1.1) is then reformulated as the existence of fixed points of T . Here,
we apply the Schauder fixed point theorem to T , instead of the contractive-mapping
principle. In fact, the existence of stationary distributions for (1.1) has been investigated
by establishing exponential contraction of the transition probability measure in the
Wasserstein (quasi-)distance, see e.g. [28, 29]. The exponential contraction can lead
to a contractive mapping which implies the existence and uniqueness of stationary
distributions. However, the contracting-mapping principle implies the existence and
uniqueness at once time. This excludes equations with several invariant measures.

To investigate the non-uniqueness, we establish a general condition on the drift
(see Theorem 3.1, Corollary 3.2 and Corollary 3.3 below) which implies that (1.1) has a
stationary distribution concentrated around a point a ∈ Rd. If our condition is satisfied
for different a1, a2 ∈ Rd far enough from each other, then (1.1) has at least two stationary
distributions. We use the Schauder fixed point theorem again. By using our condition,
we can investigate equations considered in [6, 26] with additive noise replaced by
multiplicative noise, see Example 3.5–Example 3.7.

This paper is structured as follows. Section 2 is devoted to the existence of stationary
distributions for regular SDEs and singular SDEs. Results on the non-uniqueness and
concrete examples are presented in Section 3.

2 Existence of stationary distributions

2.1 Main results

For µ ∈P and a measurable function f , we denote by µ(f) the integral
∫
Rd
f(x)µ(dx).

Let

Pr = {µ ∈P | ‖µ‖r := (µ(| · |r)) 1
r <∞},

Pr
M = {µ ∈P | ‖µ‖r ≤M}, r > 0,M > 0.
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Stationary distributions of DDSDEs

Denote by ‖ · ‖ the operator norm of a matrix and ‖ · ‖HS the Hilbert-Schmidt norm. For
any measurable matrix-value function f on Rd ×P, we denote

‖f‖∞ = sup
x∈Rd,µ∈P

‖f(x, µ)‖HS .

Regular SDEs We first consider (1.1) with the coefficients b and σ are regular. Assume
that b and σ satisfy following hypothesis.

(H1) There exist constants r1 ≥ 0, r2 ≥ r1, r3 > 0, C1 > 0, and nonnegative C2, C3 such
that for any µ ∈P1+r2

2〈b(x, µ), x〉+ (1 + r2 − r1)‖σ(x, µ)‖2HS
≤ −C1|x|1+r1 + C2 + C3‖µ‖r31+r2 . (2.1)

(H2) For every n ∈ N and µ ∈P1+r2 , there exists Kn > 0 such that

|b(x, µ)− b(y, µ)|+ ‖σ(x, µ)− σ(y, µ)‖HS ≤ Kn|x− y|, |x| ∨ |y| ≤ n. (2.2)

There exists a locally bounded function C4 : [0,+∞)→ [0,+∞) such that

|b(x, µ)| ≤ C4(‖µ‖1+r2)(1 + |x|r1), x ∈ Rd, µ ∈P1+r2 . (2.3)

When r1 < 1, we also assume that for any µ ∈P1+r2

sup
x∈Rd

‖σ(x, µ)‖2HS
1 + |x|2r1

< +∞. (2.4)

(H3) For each n ≥ 1 and M > 0, and µm, µ ∈P1+r2
M with µm

w−→ µ, there is

lim
m→+∞

sup
|x|≤n

(|b(x, µ)− b(x, µm)|+ ‖σ(x, µ)− σ(x, µm)‖HS) = 0. (2.5)

Remark 2.1. Fix µ ∈ P1+r2 . The condition (H1) and inequality (2.2) yield (1.5) has a
unique non-explosive strong solution, see e.g. [19, Theorem 3.1].

For a linear Markov semigroup, it is a general approach that verifying a Lyapunov
condition to establish the existence of the invariant probability measures, see e.g. [18].
The condition (H1) comes from the Lyapunov function |x|2+r2−r1 indeed, see the proof of
Lemma 2.8 below.

The following condition was used in [28] to prove the existence of stationary distribu-
tions

2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(x, µ)− σ(y, ν)‖2HS ≤ C1W2(µ, ν)2 − C2|x− y|2.

When C2 > C1, the existence and uniqueness and Wasserstein contraction for (1.1) was
established. This condition is stronger than (H1) and excludes (1.3).

In (2.6) below or more generally for a symmetric matrix A ∈ Rd ⊗Rd and λ ∈ R, the
inequality A ≥ λ means that

〈Av, v〉 ≥ λ|v|2, v ∈ Rd.

The inequality A > λ is defined similarly. Then we have the following theorem.

Theorem 2.2. Assume (H1)–(H3) and that σ is non-degenerate on Rd ×P1+r2 :

σ(x, µ)σ∗(x, µ) > 0, x ∈ Rd, µ ∈P1+r2 . (2.6)

If r2 > 0, r3 ≤ 1 + r1, and C1 > C3 when r3 = 1 + r1, then (1.1) has a stationary
distribution.
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Stationary distributions of DDSDEs

Remark 2.3. The non-uniqueness of the steady solution to the aggregation equation with
a degenerate and nonlinear second order term was considered in [9]. The aggregation
equation in [9] is also associated with a distribution dependent SDE whose the noise is
multiplicative and depends on the law of the solution, but it can not be covered by our
conditions.

Set b(x, µ) = −∇V (x) − ∇F ∗ µ for some twice continuous differential functions
V and F . Then we have the following corollary which will be used in discussing the
non-uniqueness of stationary distributions.

Corollary 2.4. Assume that σ is non-degenerate, bounded on Rd ×P and satisfies (H2)
and (H3), and that V , F are twice continuous differential functions with non-negative
constants α0, α1, α2, α3 and γ0 ∈ [0, 3) such that

|∇V (x)| ≤ α0(1 + |x|3), (2.7)

|∇F (x)| ≤ α1 + α2|x|3, (2.8)

‖∇2F (x)‖ ≤ α3(1 + |x|γ0), x ∈ Rd. (2.9)

Suppose that there exist constants β0, β1, and β2 > 0, β3 ≥ 0 such that

∇2V (x) +∇2F (x− y) ≥ β0 − 2β1|x|+ 3β2|x|2 − β3|y|2, x, y ∈ Rd, (2.10)

and α2 + β3 < β2. Then (1.1) has a stationary distribution in P4.

Proofs of Theorem 2.2 and Corollary 2.4 are given in Subsection 2.2. Concrete
examples can be found in Section 3.

Singular SDEs We investigate the existence of stationary distributions for distribution
dependent SDEs with singular coefficients by using the Zvonkin transformation intro-
duced in [34]. Well-posedness results for (1.1) have been established by [16] recently.
While only stationary distributions are consider in this paper, we use weaker conditions
on the coefficients, see (H4) and (H5) below.

We denote by Lp the usual Lp-space on Rd and by ‖ · ‖p the Lp-norm. For (θ, p) ∈
[0, 2]× (1,+∞), we define Hθ,p = (1−∆)−

θ
2 (Lp) to be the usual Bessel potential space

with norm
‖f‖θ,p = ‖(1−∆)

θ
2 f‖p,

where ∆ is the Laplace operator on Rd and 1 is the identity operator. Let χ ∈ C∞c (Rd)

with 1[|x|≤1] ≤ χ ≤ 1[|x|≤2]. We define

χr(x) = χ

(
x

r

)
, χzr(x) = χ

(
x− z
r

)
, r > 0, x, z ∈ Rd.

Denote by H̃θ,p the localized Hθ,p-space introduced in [30]:

H̃θ,p :=

{
f ∈ Hθ,p

loc (Rd) | ‖f‖H̃θ,p := sup
z
‖χzrf‖θ,p <∞

}
.

In particular, we denote L̃p = H̃0,p. Fixing a probability measure µ, we consider (1.5) of
the following form

dXµ
t = b0(Xµ

t , µ)dt+ b1(Xµ
t , µ)dt+ σ(Xµ

t , µ)dWt. (2.11)

The drift term b0 is regular and satisfies (H1)–(H3), and b1 is singular satisfying the
following hypothesis, where the constant r2 is the constant from (H1).
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(H4) There exists p > d such that

κ0 := sup
µ∈P1+r2

‖b1(·, µ)‖L̃p <∞.

For every n ≥ 1 and M ≥ 1,

lim
ν
w−→µ in P

1+r2
M

‖(b1(·, µ)− b1(·, ν))1[|·|≤n]‖Lp = 0. (2.12)

We assume that σ satisfies

(H5) For every µ ∈P1+r2 , σ(·, µ) is uniformly continuous on Rd and ∇σ(·, µ) ∈ L̃p, and
there are positive constants λ1, λ2 such that

λ1 ≤ (σσ∗)(x, µ) ≤ λ2, x ∈ Rd, µ ∈P1+r2 . (2.13)

Then we have the following theorem, whose proof is presented in Subsection 2.3.

Theorem 2.5. Assume that b0 satisfies (H1)–(H3) (set σ ≡ 0 there) and satisfies a
condition stronger than (2.3): there are positive constants C5, C6 such that

|b0(x, µ)| ≤ C5(1 + |x|r1) + C6‖µ‖
r3r1
1+r1
1+r2

, x ∈ Rd, µ ∈P1+r2 , (2.14)

where r1, r2, r3 are constants from (H1). Assume that b1 satisfies (H4), and σ satisfies
(H3) (set b ≡ 0 there) and (H5). If r2 > 0, r3 ≤ 1 + r1, and C1 > C3 when r3 = 1 + r1,
then (2.11) has a stationary distribution.

Throughout the following proofs, notations r1, r2, r3, C1, C2, C3, C5, C6 and C4 are
always used to denote the constants and the function in (H1), (H2) and (2.14).

2.2 Proof of Theorem 2.2 and Corollary 2.4

To prove Theorem 2.2, we prove firstly that Pµt has a unique invariant probability
measure for every µ ∈ P1+r2 , see Lemma 2.7 below. We denote by Tµ the invariant
probability measure of Pµt . Then there is a well-defined mapping on P1+r2 :

T : µ ∈P1+r2 7→ Tµ.

Secondly, we prove that T has an invariant set in P1+r2 , which is nonempty, convex and
compact in the topology of weak convergence, see Lemma 2.8. Finally, we apply the
Schauder fixed point theorem to T and the existence of stationary distributions for (1.1)
is established. We remark here that the Schauder fixed point theorem is available
although P1 is not a Banach space. The space P1 equipped with the Kantorovich-
Rubinstein-Wasserstein distance (W -distance for short) is a complete metric space (see
e.g. [3, Theorem 5.4]):

W (µ, ν) := inf
π∈C (µ,ν)

∫
Rd×Rd

|x− y|π(dx, dy), µ, ν ∈P1,

where C (µ, ν) consists of all the couplings of µ and ν. Let M1 be the set of all finite
signed measures on Rd with |µ|(| · |) <∞, and let

‖µ‖KR = |µ(Rd)|+ sup
h∈Lip(Rd),h(0)=0

∫
Rd
h(x)µ(dx), µ ∈M1.

Then (M1, ‖ · ‖KR) is a normed space. Moreover,

‖µ− ν‖KR = W (µ, ν), µ, ν ∈P1,
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see [1, Corollary 5.4]. This, together with the fact that (P1,W ) is a complete metric
space, yields that the Schauder fixed point theorem (see e.g. [7, Theorem 8.8]) is
available on a nonempty, convex and compact subset of (P1,W ).

Lemma 2.7 indicates that T is well-defined. Moreover, we also establish the so called
V -uniformly exponential ergodicity (see [13, 31]) for Pµt :

Definition 2.6. Let V : Rd → [1,+∞) be measurable and ν be an invariant probability
measure of Pµt . The Markov semigroup Pµt is V -uniformly exponential ergodic, if there
exist C > 0 and γ > 0 such that

sup
‖f‖V ≤1

|Pµt f(x)− ν(f)| ≤ CV (x)e−γt, x ∈ Rd,

where ‖f‖V := supx∈Rd |f(x)/V (x)|.
Lemma 2.7. Assume that (H1) holds. Fix µ ∈ P1+r2 . Let Xµ

t be the solution of (1.5)
and Pµt the associated Markov semigroup. Then

(1) Pµt has an invariant probability measure.

(2) If (2.2) and (2.3) hold and σ(·, µ) satisfies (2.6), then Pµt has a unique invariant
probability measure.

(3) If (H2) holds and σ(·, µ) satisfies (2.6), then Pµt is V -uniformly exponential ergodic
with

V (x) =


eδ(1+|Xt|

2)
1−r1

2 , if r1 < 1,

1 + |x|, if r1 = 1,

1, if r1 > 1,

where the constant δ > 0 depends on µ and C1, C2, C3, r1, r2, C4.

Proof. (1) By (H1) and the Itô formula, we have that

d|Xµ,x
t |2 = 2〈b(Xµ,x

t , µ), Xt〉dt+ 2〈Xµ,x
t , σ(Xµ,x

t , µ)dWt〉+ ‖σ(Xµ,x
t , µ)‖2HSdt

≤
(
−C1|Xµ,x

t |1+r1 + C2 + C3‖µ‖r31+r2
)

dt+ 2〈Xµ,x
t , σ(Xµ,x

t , µ)dWt〉. (2.15)

Writing (2.15) in integral form and taking expectation, we find that there are positive
constants C̃1, C̃2 such that for all s ≥ 0

E

∫ s

0

|Xµ,x
t |1+r1dt+ E|Xµ,x

s |2 ≤ C̃1|x|2 + C̃2

(
1 + ‖µ‖r31+r2

)
s.

Thus

sup
s≥1

(
1

s

∫ s

0

Pµ,∗t δx
(
| · |1+r1

)
dt

)
= sup

s≥1

(
1

s

∫ s

0

E|Xµ,x
t |1+r1dt

)
≤ C1|x|2 + C̃2

(
1 + ‖µ‖r31+r2

)
< +∞. (2.16)

Since | · |1+r1 has is a compact function, i.e. the level set {x | |x|1+r1 ≤ c} is compact
for every c > 0, (2.16) implies the tightness of {s−1

∫ s
0
Pµ,∗t δxdt}s≥1. This concludes the

proof of the first statement.
(2) Since (2.2), σ(·, µ) is continuous. Let χ ∈ C2

c (Rd) with 1[|x|≤1] ≤ χ(x) ≤ 1[|x|≤2].
Then for each m ≥ 1,

σm(x) := σ(χ(x/m)x, µ), x ∈ Rd

is Lipschitz, bounded and non-degenerate onRd. Due to (2.2) again, bm(·) := b(·, µ)χ(·/m)

is bounded and belongs to Lp(Rd) for any p > 0. Combining these with (2.1) and (2.3),
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one has that assumptions of [31, Lemma 7.3] hold. Thus, Pµt has the strong Feller
property and irreducibility due to [31, Lemma 7.3]. Hence, Pµt has a unique invariant
probability measure.

(3) One can see that (H1), (2.2) and (2.3) also implies that assumptions of [31,
Theorem 7.4] hold. Thus, for r1 ≥ 1, Pµt is V -uniformly exponential ergodic with V

defined as above. For r1 ∈ [0, 1), it follows from (H1) and (2.4) that there exist positive
constants C̄1, C̄2, C̄3 depending on µ(| · |1+r2) such that

2〈x, b(x, µ)〉+ ‖σ(x, µ)‖2HS ≤ −C̄1(1 + |x|2)
1+r1

2 + C̄2,

‖σ(x, µ)‖2HS ≤ C̄3(1 + |x|2)r1 , x ∈ Rd.

Then we have by the Itô formula that

d
(
1 + |Xµ,x

t |2
) 1−r1

2 ≤ −

(
(1− r1)C̄1

2
− C̄2(1− r1)

2(1 + |Xµ,x
t |2)

1+r1
2

+
(1− r21)|σ∗(Xµ,x

t )Xt|2

2(1 + |Xµ,x
t |2)

3+r1
2

)
dt

+
(1− r1)〈Xµ,x

t , σ(Xµ,x
t )dWt〉

(1 + |Xµ,x
t |2)

1+r1
2

, x ∈ Rd.

Let

δ =
C̄1

2C̄3(1 + r1)
, Ĉ2 =

δC̄2(1− r1)

2
sup

1≤u≤( 4C̄2
C1

)
1

1+r1

u−(1+r1)eδu
1−r1

,

and let V (x) = eδ(1+|x|
2)

1−r1
2 . Then

dV (Xµ,x
t )− δ(1− r1)V (Xµ,x

t )〈Xµ
t , σ(Xµ,x

t )dWt〉
(1 + |Xµ,x

t |2)
1+r1

2

≤ −δV (Xµ
t )

(
C̄1(1− r1)

2
− C̄2(1− r1)

2(1 + |Xµ,x
t |2)

1+r1
2

− δ(1− r1)2|σ∗(Xµ
t )Xµ,x

t |2

2(1 + |Xµ,x
t |2)1+r1

)
dt

≤ −δV (Xµ
t )

(
C̄1(1− r1)

2
− δ(1− r1)2C̄3

2
− C̄2(1− r1)

2(1 + |Xµ,x
t |2)

1+r1
2

)
dt

≤ δV (Xµ,x
t )

(
− C̄1(1− r1)

4
+

C̄2(1− r1)

2(1 + |Xµ,x
t |2)

1+r1
2

1
[
4C̄2
C̄1
≤(1+|Xµ,xt |2)

1+r1
2 ]

)
dt

+ sup
4C̄2
C̄1
≥(1+|x|2)

1+r1
2

(
C̄2(1− r1)V (x)

2(1 + |x|2)
1+r1

2

)
dt

≤ − C̄1(1− r1)δ

8
V (Xµ,x

t )dt+ Ĉ2dt.

Hence,

Eeδ(1+|X
µ,x
t |2)

1−r1
2 ≤ e−

C̄1(1−r1)δt
8 eδ(1+|x|

2)
1−r1

2 +
8Ĉ2

C̄1(1− r1)δ
, t ≥ 0, x ∈ Rd.

Combining this with the strong Feller property and irreducibility of Pµt , we can prove
that Pµt is V -uniformly exponential ergodic by following line by line of the proof of [13,
Theorem 2.5], and we omit the details here.

Next, we prove that P1+r2
M is an invariant subset of T for large M when T is well-

defined on P1+r2 .
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Lemma 2.8. Assume that (H1) holds and for each µ ∈P1+r2 , Pµt has a unique invariant
probability measure Tµ. Then there exists M0 > 0 such that for all M ≥ M0, T maps
P1+r2
M into P1+r2

M .

Proof. Let q = 1 + r2−r1
2 . Then

q ≥ 1, q − 1 =
r2 − r1

2
, 2q + r1 − 1 = 1 + r2. (2.17)

It follows from the Itô formula, (2.1) and 2q − 1 = 1 + r2 − r1 that

d|Xµ,x
t |2q ≤ q|X

µ,x
t |2(q−1)

(
2〈b(Xµ,x

t , µ), Xµ,x
t 〉+ (2q − 1)‖σ(Xµ,x

t , µ)‖2HS
)

dt

+ 2q|Xµ,x
t |2(q−1)〈X

µ,x
t , σ(Xµ,x

t , µ)dWt〉
≤ q|Xµ,x

t |r2−r1
(
−C1|Xµ,x

t |1+r1 + C2 + C3‖µ‖r31+r2
)

dt

+ 2q|Xµ,x
t |r2−r1〈X

µ,x
t , σ(Xµ,x

t , µ)dWt〉
≤ −qC1|Xµ,x

t |1+r2 + q
(
C2 + C3‖µ‖r31+r2

)
|Xµ,x

t |r2−r1dt

+ 2q|Xµ,x
t |r2−r1〈X

µ,x
t , σ(Xµ,x

t , µ)dWt〉. (2.18)

Since 0 ≤ r2 − r1 < 1 + r2, it follows from the Hölder inequality that

|Xµ,x
t |r2−r1 ≤

1 + r1
1 + r2

+
r2 − r1
1 + r2

|Xµ,x
t |1+r2 .

Then writing (2.18) in integral form, putting this into (2.18), and taking the expectation,
we find that there are positive constants C̃1, C̃2 such that

E

(
|Xµ,x

s |2+r2−r1 +

∫ s

0

|Xµ,x
t |1+r2dt

)
≤ C̃1|x|2+r2−r1 + C̃2s, s ≥ 0. (2.19)

Since that Pµt has a unique invariant probability measure, it follows from (2.16) that
there exists a sequence tn ↑ +∞ such that as n→ +∞,

νn :=
1

tn

∫ tn

0

Pµ,∗s δ0ds
w−→ Tµ. (2.20)

Thus

lim
n→+∞

νn(| · |1+r2 ∧N) = Tµ(| · |1+r2 ∧N), N ≥ 1,

which, together with (2.19), yields that

Tµ(| · |1+r2 ∧N) ≤ C̃2, N ≥ 1.

By Fatou’s lemma, Tµ(| · |1+r2) <∞. It follows from (2.19) that supn≥1 νn(| · |1+r2) < +∞.
Combining this with the fact that r2 − r1 < 1 + r2 and (2.20), we have that

lim
n→+∞

νn(| · |r2−r1) = Tµ(| · |r2−r1).

Writing (2.18) in integral form, setting x = 0 and taking expectations, we find that

C1νn(| · |1+r2 ∧N) ≤ C1νn(| · |1+r2) ≤ C2νn(| · |r2−r1) + C3‖µ‖r31+r2νn(| · |r2−r1).

Taking n→ +∞ and N → +∞, we arrive at

Tµ(| · |1+r2) ≤ C2

C1
Tµ(| · |r2−r1) +

C3

C1
‖µ‖r31+r2Tµ(| · |r2−r1).
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Then the Jensen inequality yields that

Tµ(| · |1+r2) ≤ C2

C1
‖Tµ‖r2−r11+r2

+
C3

C1
‖µ‖r31+r2‖Tµ‖

r2−r1
1+r2

. (2.21)

Since 1 + r1 > 0, we derive from (2.21) that (even Tµ(| · |1+r2) = 0)

‖Tµ‖1+r11+r2
≤ C2

C1
+
C3

C1
‖µ‖r31+r2 , (2.22)

If r3 = 1 + r1, then for

M ≥
(

C2

C1 − C3

) 1
r3

=: M0,

we have that

C2

C1
+
C3

C1
Mr3 ≤M1+r1 . (2.23)

Consequently, ‖Tµ‖1+r2 ≤M for all ‖µ‖1+r2 ≤M .
If r3 < 1 + r1, then it is easy to see that there exists M0 depending on Ci (i = 1, 2, 3)

and r1, r3 such that (2.23) holds for each M ≥ M0. Hence, for every µ ∈ P1+r2
M , we

derive from (2.22) that

‖Tµ‖1+r11+r2
≤ C2

C1
+
C3

C1
Mr3 ≤M1+r1 .

Therefore, we prove that Tµ ∈P1+r2
M for every M ≥M0.

Combining Lemma 2.7 with Lemma 2.8, we arrive at that under the assumption of
Theorem 2.2, T is well-defined and maps P1+r2

M into itself. It is clear that P1+r2
M is a

convex and weak compact set in P1 if r2 > 0. Next, we prove that T is weak continuous
in P1+r2

M .

Lemma 2.9. Under the assumption of Theorem 2.2, T is weak continuous in P1+r2
M .

Proof. For all f ∈ Bb(R
d) and t > 0, we have that

|Tµ(f)− Tν(f)| = |Tµ(f)− Tν(P νt f)|
≤ |Tν(Tµ(f))− Tν(Pµt f)|+ |Tν(Pµt f)− Tν(P νt f)|
≤ Tν (|Tµ(f)− Pµt f |) + Tν (|Pµt f − P νt f |) . (2.24)

By (3) of Lemma 2.7, there are positive constants γ and C depending on µ such that

|Tµ(f)− Pµt f(x)| ≤ CV (x)e−γt, x ∈ Rd.

Then for any µ, ν ∈P1+r2
M and each m > 0, we have by Lemma 2.7 that

Tν (|Tµ(f)− Pµt f |) ≤ Tν
(
CV (·)e−γt1[|·|≤m] + ‖f‖∞1[|·|>m]

)
≤ C

(
sup
|x|≤m

V (x)

)
e−γt + ‖f‖∞Tν(| · | > m)

≤ C

(
sup
|x|≤m

V (x)

)
e−γt +

‖f‖∞
m
‖Tν‖1+r2

≤ C

(
sup
|x|≤m

V (x)

)
e−γt +

‖f‖∞M
m

.
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Consequently,

lim
t→+∞

sup
ν∈P

1+r2
M

Tν (|Tµ(f)− Pµt f |) = 0.

Hence, for each ε > 0, we choose tε > 0 such that

sup
ν∈P

1+r2
M

Tν
(∣∣Tµ(f)− Pµtεf

∣∣) < ε. (2.25)

We remark here that tε depends on µ,M, ‖f‖∞ and is independent of ν ∈ P1+r2
M and

x ∈ Rd.
Let

τn(x) = inf{ t > 0 | |Xµ,x
t | ∨ |X

ν,x
t | ≥ n}.

For every f ∈ Cb(Rd) ∩ Lip(Rd), we have that

Tν
(∣∣Pµtεf − P νtεf ∣∣) ≤ ∫

Rd
E
∣∣f(Xµ,x

tε )− f(Xν,x
tε )

∣∣ Tν(dx)

≤
∫
Rd
E
(∣∣f(Xµ,x

tε )− f(Xν,x
tε )

∣∣1[tε<τn(x)]

)
Tν(dx)

+

∫
Rd
E
(∣∣f(Xµ,x

tε )− f(Xν,x
tε )

∣∣ 1[tε≥τn(x)]
)
Tν(dx)

≤ ‖∇f‖∞
∫
|x|≤n2

E
(∣∣Xµ,x

tε −X
ν,x
tε

∣∣1[tε<τn(x)]

)
Tν(dx)

+ 2‖f‖∞Tν(| · | ≥ n

2
) + 2‖f‖∞Tν (P(tε ≥ τn(·)))

≤ ‖∇f‖∞
∫
|x|≤n2

E
(∣∣∣Xµ,x

tε∧τn(x) −X
ν,x
tε∧τn(x)

∣∣∣) Tν(dx)

+
4

n
‖f‖∞‖Tν‖1+r2

+ 2‖f‖∞
∫
Rd
P

(
sup

s∈[0,tε]
|Xµ,x

s | ∨ |Xν,x
s | ≥ n

)
Tν(dx)

=: I1,n + I2,n + I3,n. (2.26)

For I2,n. Due to Lemma 2.7 and ν ∈P1+r2
M , we have that ‖Tν‖1+r2 ≤M . Then

lim
n→+∞

sup
ν∈P

1+r2
M

I2,n = 0. (2.27)

For I3,n. For every η ∈P1+r2 and s ≥ 0, we derive from the Itô formula and (H1) that

|Xη,x
s |2 + C1

∫ s

0

|Xη,x
t |1+r1dt ≤ |x|2 +

(
C2 + C3‖µ‖r31+r2

)
s

+ 2

∫ s

0

〈Xη,x
t , σ(Xη,x

t , η)dWt〉. (2.28)

It follows from (H1), (2.3) of (H2) and the Hölder inequality that

‖σ(x, η)‖2HS ≤ C4(‖η‖1+r2)(1 + |x|r1)|x| − C1|x|1+r1 + C2 + C3‖η‖1+r2
≤
(
C4(‖η‖1+r2) + (1 + r1)−1 − C1

)
|x|1+r1

+
r1

1 + r1
C4(‖η‖1+r2) + C2 + C3‖η‖1+r2

≡ C̄5(‖η‖1+r2)|x|1+r1 + C̄6(‖η‖1+r2), η ∈P1+r2 .
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It is clear C̄5, C̄6 are locally bounded functions. Then, by the B-D-G inequality and the
Hölder inequality, we derive from (2.28) that for every T > 0

E sup
s∈[0,T ]

|Xη,x
s |2 ≤ |x|2 +

(
C2 + C3‖η‖r31+r2

)
T + E

(∫ T

0

|Xη,x
t |2‖σ∗(X

η,x
t , η)‖2dt

) 1
2

≤ |x|2 +
(
C2 + C3‖η‖r31+r2

)
T +

1

2
E sup
s∈[0,T ]

|Xη,x
s |2

+
1

2
E

∫ T

0

(
C̄5(‖η‖1+r2)|Xη,x

t |1+r1 + C̄6(‖η‖1+r2)
)

dt.

This, together with the expectation of (2.28), implies that

E sup
s∈[0,T ]

|Xη,x
s |2 ≤ 2

(
|x|2 +

(
C2 + C3‖η‖r31+r2

)
T
)

+ C̄6(‖η‖1+r2)T + C̄5(‖η‖1+r2)E

∫ T

0

|Xη,x
t |1+r1dt

≤
(

2 +
C̄5(‖η‖1+r2)

C1

)(
|x|2 +

(
C2 + C3‖η‖r31+r2

)
T
)

+ C̄6(‖η‖1+r2)T.

Combining this with the Chebyshev inequality and that ν, µ ∈P1+r2
M , there exist C > 0

depending on Ci, i = 1, 2, 3, r1, r2, r3, M and tε such that

P

(
sup

s∈[0,tε]
|Xµ,x

s | ∨ |Xν,x
s | ≥ n

)

≤ P

(
sup

s∈[0,tε]
|Xµ,x

s | ≥ n

)
+ P

(
sup

s∈[0,tε]
|Xν,x

s | ≥ n

)

≤ n−(2∧(1+r2))E

(
sup

s∈[0,tε]
|Xµ,x

s |2∧(1+r2) + sup
s∈[0,tε]

|Xν,x
s |2∧(1+r2)

)
≤ C(1 + |x|2∧(1+r2))n−(2∧(1+r2)). (2.29)

Recalling that tε is independent of ν ∈ P1+r2
M and x ∈ Rd, we derive from (2.29) and

Tν ∈P1+r2
M that

lim
n→+∞

sup
ν∈P

1+r2
M

I3,n = lim
n→+∞

sup
ν∈P

1+r2
M

∫
Rd
P

(
sup

s∈[0,tε]
|Xµ,x

s | ∨ |Xν,x
s | ≥ n

)
Tν(dx)

≤
(

lim
n→+∞

C

n2∧(1+r2)

)
sup

ν∈P
1+r2
M

Tν(1 + | · |2∧(1+r2))

= 0. (2.30)

For I1,n. It is easy to see that for s < τn(x)

|Xµ,x
s −Xν,x

s | ≤
∫ s

0

|b(Xµ,x
t , µ)− b(Xν,x

t , ν)|dt+

∣∣∣∣∫ s

0

(σ(Xµ,x
t , µ)− σ(Xν,x

t , ν)) dWt

∣∣∣∣
≤
∫ s

0

|b(Xµ,x
t , µ)− b(Xν,x

t , µ)|dt+

∫ s

0

|b(Xν,x
t , µ)− b(Xν,x

t , ν)|dt

+

∣∣∣∣∫ s

0

(σ(Xµ,x
t , µ)− σ(Xν,x

t , µ)) dWt

∣∣∣∣
+

∣∣∣∣∫ s

0

(σ(Xν,x
t , µ)− σ(Xν,x

t , ν)) dWt

∣∣∣∣ . (2.31)
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It follows from (H2) that∫ s∧τn(x)

0

|b(Xµ,x
t , µ)− b(Xν,x

t , µ)|dt ≤ Kn

∫ s∧τn(x)

0

|Xµ,x
t −Xν,x

t |dt

and

E sup
r∈[0,s]

∣∣∣∣∣
∫ r∧τn(x)

0

(σ(Xµ,x
t , µ)− σ(Xν,x

t , µ)) dWt

∣∣∣∣∣
≤ E

(∫ s∧τn(x)

0

‖σ(Xµ,x
t , µ)− σ(Xν,x

t , µ)‖2HS dt

) 1
2

≤ KnE

(∫ s∧τn(x)

0

|Xµ,x
t −Xν,x

t |
2

dt

) 1
2

≤ KnE

(
sup

t∈[0,s∧τn(x)]
|Xµ,x

t −Xν,x
t |

1
2

)(∫ s∧τn(x)

0

|Xµ,x
t −Xν,x

t |dt

) 1
2

≤ 1

2
E sup
t∈[0,s]

∣∣∣Xµ,x
t∧τn(x) −X

ν,x
t∧τn(x)

∣∣∣+
1

2
K2
nE

∫ s∧τn(x)

0

|Xµ,x
t −Xν,x

t |dt.

We remark that Kn here is independent of ν. Putting these into (2.31), we derive by the
Gronwall inequality that for every s > 0

E sup
t∈[0,s]

∣∣∣Xµ,x
t∧τn(x) −X

ν,x
t∧τn(x)

∣∣∣
≤ 2e(2Kn+K

2
n)s
(
E sup
r∈[0,s]

∫ r∧τn(x)

0

|b(Xν,x
t , µ)− b(Xν,x

t , ν)|dt

+ E sup
r∈[0,s]

∣∣∣∣∣
∫ r∧τn(x)

0

(σ(Xν,x
t , µ)− σ(Xν,x

t , ν)) dWt

∣∣∣∣∣ ). (2.32)

Because

E sup
r∈[0,s]

∫ r∧τn(x)

0

|b(Xν,x
t , µ)− b(Xν,x

t , ν)|dt ≤ E
∫ s

0

∣∣∣b(Xν,x
t∧τn(x), µ)− b(Xν,x

t∧τn(x), ν)
∣∣∣dt

≤ s sup
|x|≤n

|b(x, µ)− b(x, ν)|

and

E sup
r∈[0,s]

∣∣∣∣∣
∫ r∧τn(x)

0

(σ(Xν,x
t , µ)− σ(Xν,x

t , ν)) dWt

∣∣∣∣∣
≤ E

(∫ s∧τn(x)

0

‖σ(Xν,x
t , µ)− σ(Xν,x

t , ν)‖2HSdt

) 1
2

≤ E
(∫ s

0

‖σ(Xν,x
t∧τn(x), µ)− σ(Xν,x

t∧τn(x), ν)‖2HSdt

) 1
2

≤
√
s sup
|x|≤n

‖σ(x, µ)− σ(x, ν)‖HS ,

we have that

I1,n ≤ ‖∇f‖∞
∫
|x|≤n2

E sup
t∈[0,tε]

∣∣∣Xµ,x
t∧τn(x) −X

ν,x
t∧τn(x)

∣∣∣ Tν(dx)
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≤ 2e(2Kn+K
2
n)tε‖∇f‖∞

×

(
tε sup
|x|≤n

|b(x, µ)− b(x, ν)|+
√
tε sup
|x|≤n

‖σ(x, µ)− σ(x, ν)‖HS

)
.

Recalling that tε,Kn are independent of ν ∈ P1+r2
M . Then this, together with (2.5),

implies that lim
ν
w−→µ

I1,n = 0 as ν
w−→ µ in P1+r2

M .

Hence, letting ν
w−→ µ in P1+r2

M and n→ +∞, we find that

lim
ν
w−→µ

Tν
(∣∣Pµtεf − P νtεf ∣∣) = 0.

This, together with (2.25) and (2.24), yields that for all ε > 0

lim
ν
w−→µ

|Tµ(f)− Tν(f)| ≤ ε.

Therefore, the proof is complete.

Proof of Theorem 2.2. By Lemma 2.7, there is some M0 > 0 such that for each M ≥M0,
P1+r2
M is invariant under T . Since r2 > 0, by [3, Theorem 5.5] or [1, Theorem 5.5], P1+r2

M

is a convex and compact subset of (P1,W ). By Lemma 2.9, T is weak continuous in
P1+r2
M . Since P1+r2

M is compact in P1, T is continuous in P1+r2
M w.r.t. the Kantorovich-

Rubinstein norm. Hence, the Schauder fixed point theorem yields that T has a fixed in
P1+r2
M .

Proof of Corollary 2.4. Because σ is bounded and satisfies (H2) and (H3), we focus on
the drift term below when verifying (H1)–(H3). It follows from (2.10) that

〈∇V (x)−∇V (0), x〉+ µ(〈∇F (x− ·)−∇F (0− ·), x〉)

=

∫ 1

0

∫
Rd

(
〈∇2V (θx)x, x〉+ 〈∇2F (θx− y)x, x〉

)
µ(dy)dθ

≥
(
β2|x|2 − β1|x|+ β0 − β3µ(| · |2)

)
|x|2. (2.33)

Let δ1 = β3/(2β2). It follows by the Hölder inequality that

β3µ(| · |2)|x|2 ≤ δ1β2|x|4 +
β2
3

4δ1β2
‖µ‖44. (2.34)

By (2.8) and the Hölder inequality, for δ2 = α2/(4β2), we have that

|µ(〈∇F (0− ·), x〉)| ≤ α1|x|+ α2‖µ‖33|x| ≤ α1|x|+ α2‖µ‖34|x|

≤ α1|x|+
3α

4
3
2

4(4δ2β2)
1
3

‖µ‖44 + δ2β2|x|4. (2.35)

Putting (2.35) and (2.34) into (2.33), we have that

〈∇V (x) +∇F ∗ µ(x), x〉 ≥ (1− δ1 − δ2)β2|x|4 − β1|x|3 + β0|x|2 − (|∇V (0)|+ α1)|x|

−

(
3α

4
3
2

4(4δ2β2)
1
3

+
β2
3

4δ1β2

)
‖µ‖44

=

(
β2 −

β3
2
− α2

4

)
|x|4 − β1|x|3 + β0|x|2

− (|∇V (0)|+ α1)|x| −
(

3α2

4
+
β3
2

)
‖µ‖44. (2.36)
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Since β2 > α2 + β3, it holds that

β2 −
α2

4
− β3

2
>

3α2

4
+
β3
2
.

This, together with (2.36) and the Hölder inequality, yields that there are positive
constants C1, C2, C3 with C1 > C3 such that

2〈b(x, µ), x〉 ≤ −C1|x|4 + C2 + C3‖µ‖44.

Combining this with that σ is bounded on Rd × P, we have that (H1) holds with
r1 = r2 = 3, r3 = 4 = 1 + r2 and C1 > C3. Hence, to verify the assumptions of
Theorem 2.2, we just need to check (H2) and (H3).

Because V is twice continuous differentiable, ∇V is local Lipschitz. By (2.9) and the
mean value theorem, we have that

µ (|∇F (x− ·)−∇F (y − ·)|)

≤ |x− y|
∫ 1

0

µ
(
‖∇2F (x+ θ(y − x)− ·)‖

)
dθ

≤ α3|x− y|
(

1 + 2(γ0−1)+
(∫ 1

0

((1− θ)|x|+ θ|y|)γ0dθ + ‖µ‖γ0
γ0

))
≤ Cα3,γ0 |x− y| (1 + |x|γ0 + |y|γ0 + ‖µ‖γ0

4 ) .

Thus (2.2) holds. The inequality (2.3) follows from (2.7) and (2.8) directly. Hence, (H2)
holds.

For any π ∈ C (µ, ν), we have by (2.9) that

|b(x, µ)− b(x, ν)| = |µ(∇F (x− ·))− ν(∇F (x− ·))|

=

∣∣∣∣∫
Rd×Rd

(∇F (x− y1)−∇F (x− y2))π(dy1,dy2)

∣∣∣∣
≤ Cα3,γ0

∫
Rd×Rd

(1 + |x|γ0 + |y1|γ0 + |y2|γ0) |y1 − y2|π(dy1,dy2)

≤ Cα3,γ0
(1 + |x|γ0)

∫
Rd×Rd

|y1 − y2|π(dy1,dy2)

+ Cα3,γ0

∫
Rd×Rd

(|y1|γ0 + |y2|γ0)|y1 − y2|π(dy1,dy2)

≤ Cα3,γ0
(1 + |x|γ0)

∫
Rd×Rd

|y1 − y2|π(dy1,dy2)

+ C̃α3,γ0
(‖µ‖γ0

4 + ‖ν‖γ0

4 )

(∫
Rd×Rd

|y1 − y2|
4

4−γ0 π(dy1,dy2)

) 4−γ0
4

.

Thus

|b(x, µ)− b(x, ν)| ≤ Cα3,γ0(1 + |x|γ0)W (µ, ν) + C̃α3,γ0(‖µ‖γ0

4 + ‖ν‖γ0

4 )W 4
4−γ0

(µ, ν),

where W 4
4−γ0

(µ, ν) is the 4
4−γ0

-Wasserstein distance. Note that 4
4−γ0

< 1 + r2 since γ0 < 3

and r2 = 3. For µm, µ ∈P1+r2
M with µm

w−→ µ, we have by [3, Theorem 5.6] or [1, Theorem
5.5] that

lim
m→+∞

(
W (µm, µ) +W 4

4−γ0

(µ, µm)
)

= 0.

Hence, (H3) holds.
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2.3 Proof of Theorem 2.5

For given µ ∈ P1+r2 , under the assumptions of Theorem 2.5, it has been proved
by [31, Theorem 2.10] that (2.11) has a unique strong solution and the associated
semigroup Pµt has a unique invariant probability measure. Though σ is assumed to be
Hölder continuous in [31, (Hσ)], we remark here that this assumption can be replaced
by that σ is uniformly continuous according to [30, Theorem 3.2]. We also denote by Tµ
the associated invariant probability measure of Pµt and by T the mapping on P1+r2 .

Let a(x, µ) = (σσ∗)(x, µ), and let uµ be the solution of the following equation

1

2
tr
(
a(·, µ)∇2uµ

)
(x) + (∇b1(x,µ)uµ)(x) = λuµ(x)− b1(x, µ), x ∈ Rd. (2.37)

According to [32, Theorem 2.1] or [31, Theorem 7.5], it follows from (H4) and (H5) that
uµ ∈ H̃2,p ∩ C1+ε(Rd) for some ε > 0 and

lim
λ→+∞

sup
µ∈P1+r2

(‖uµ‖∞ + ‖∇uµ‖∞) = 0. (2.38)

Let Uµ(x) = x + uµ(x). Then by the Itô formula (see e.g. [30, Lemma 4.1 (iii)] or [32,
Lemma 3.3]), we get that

dUµ(Xµ
t ) = (∇Uµb0(·, µ) + λuµ) (Xµ

t )dt+ (∇Uµσ(·, µ))(Xµ
t )dWt. (2.39)

By (2.38), we choose λ0 > 0 such that for λ > λ0, supµ∈P1+r2 ‖∇uµ‖∞ < 1
2 . Then Uµ is a

diffeomorphism on Rd and

sup
µ∈P1+r2

(
‖∇(Uµ)−1‖∞ ∨ ‖∇Uµ‖∞

)
≤ sup
µ∈P1+r2

1

1− ‖∇uµ‖∞
≤ 2. (2.40)

Lemma 2.10. Under the assumptions of Theorem 2.5, there exists λ0 > 0 and for each
λ ≥ λ0, there is M0 > 0 such that for any M ≥ M0, P1+r2

M is invariant under the
mapping T .

Proof. Let Y µt = Uµ(Xµ
t ). Then Y µ0 = Uµ(Xµ

0 ), and by (2.39),

dY µt = (∇Uµb0(·, µ) + λuµ) (U−1µ (Y µt ))dt+ (∇Uµσ(·, µ))(U−1µ (Y µt ))dWt. (2.41)

We denote by P̂µt the Markov semigroup associated with (2.41). Define a mapping T ◦U−1
on P1+r2 as follows

(T ◦ U−1)µ = Tµ ◦ U−1µ , µ ∈P1+r2 .

Because

Tµ ◦ U−1µ (P̂µt f) = Tµ((P̂µt f) ◦ Uµ) = Tµ(Pµt (f ◦ Uµ)) = Tµ(f ◦ Uµ) = Tµ ◦ U−1µ (f).

The probability measure (T ◦ U−1)µ is the invariant probability measure of P̂µt .
Next, we check the coefficients of (2.41) are subject to (H1) and (H2) except (2.2).
We first verify (H2) except (2.2). By (2.13) and (2.40), it is clear that the diffusion

term ∇Uµσ(·, µ) of (2.41) satisfies (2.4):

sup
µ∈P1+r2 ,y∈Rd

‖(∇Uµσ(y, µ))(U−1µ (y))‖2HS ≤ 4λ22. (2.42)

For every x ∈ Rd,

|x| − ‖uµ‖∞ ≤ |(Uµ)−1(x)| = |x− uµ((Uµ)−1(x))| ≤ |x|+ ‖uµ‖∞. (2.43)
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Then the Jensen inequality and the C-r inequality yield that

|U−1µ (x)|1+r1 ≥ (1− ε0)r1 |x|1+r1 − (1− ε0)r1

εr10
‖uµ‖1+r1∞ , ε0 ∈ (0, 1), (2.44)

|U−1µ (x)|r1 ≤ 2(r1−1)
+

|x|r1 + 2(r1−1)
+

‖uµ‖r1∞. (2.45)

Inequality (2.45), together with (2.14), yields that

|b0(U−1µ (x), µ)| ≤ C5

[
1 + 2(r1−1)

+

(|x|r1 + ‖uµ‖r1∞)
]

+ C6‖µ‖
r3r1
1+r1
1+r2

. (2.46)

Noting that supµ∈P1+r2 ‖uµ‖∞ <∞, (2.3) holds.
We then verify (H1) for (2.41). Since (2.42), we focus on the drift term. By (2.1), we

have that

〈(∇Uµb0(·, µ))(U−1µ (x)), x〉+ λ〈uµ(U−1µ (x)), x〉
≤ 〈b0(U−1µ (x), µ), x〉+ ‖∇uµ‖∞|b0(U−1µ (x), µ)||x|+ λ‖uµ‖∞|x|
≤ 〈b0(U−1µ (x), µ), U−1µ (x)〉+ 〈b0(U−1µ (x), µ), uµ(U−1µ (x))〉

+ ‖∇uµ‖∞|b0(U−1µ (x), µ)||x|+ λ‖uµ‖∞|x|

≤ −C1

2
|U−1µ (x)|1+r1 +

C2

2
+
C3

2
‖µ‖r31+r2

+ ‖uµ‖∞|b0(U−1µ (x), µ)|+ ‖∇uµ‖∞|b0(U−1µ (x), µ)||x|+ λ‖uµ‖∞|x|. (2.47)

The Hölder inequality, (2.46) and (2.14) imply that for any positive ε1, ε2, ε3,

‖uµ‖∞|b0(U−1µ (x), µ)|+ ‖∇uµ‖∞|b0(U−1µ (x), µ)||x|

≤
(
r1‖uµ‖∞

1 + r1
ε

1+r1
r1

1 + ‖∇uµ‖∞
(
C52(r1−1)

+

+
ε1+r12

1 + r1
+

C6

1 + r2

))
|x|1+r1

+ C5‖uµ‖1+r1∞ 2(r1−1)
+

+ (1 + r1)−1‖uµ‖∞

(
C52(r1−1)

+

ε1

)1+r1

+
r1‖∇uµ‖∞

1 + r1

(
C5(1 + 2(r1−1)

+‖uµ‖r1)

ε2

) 1+r1
r1

+
‖uµ‖∞C6

(1 + r1)ε1+r13

+

r1C6‖uµ‖∞ε
1+r1
r1

3

1 + r1
+
C6‖∇uµ‖∞r1

1 + r1

 ‖µ‖r31+r2
=: C̄1(ε1, ε2, µ, λ)|x|1+r1 + C̄2(ε1, ε2, ε3, µ, λ) + C̄3(ε3, µ, λ)‖µ‖r31+r2 . (2.48)

Putting this and (2.44) into (2.47), and by using the Hölder inequality, we have that

〈(∇Uµb0(·, µ))(U−1µ (x)), x〉+ λ〈uµ(U−1µ (x)), x〉

≤ −
(
C1(1− ε0)r1

2
− C̄1(ε1, ε2, µ, λ)− ε1+r14

1 + r1

)
|x|1+r1

+ C̄2(ε1, ε2, ε3, µ, λ) +
C1‖uµ‖1+r1∞ (1− ε0)r1

2εr10
+
r1(λ‖uµ‖∞)

r1
1+r1

(1 + r1)ε
r1

1+r1
4

+

(
C3

2
+ C̄3(ε3, µ, λ)

)
‖µ‖r31+r2 ,

where ε4 is any positive constant. Due to (2.38), we have that

lim
λ→+∞

sup
µ∈P1+r2

C̄1(ε1, ε2, µ, λ) = 0.
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Taking into account that ε4 can be arbitrary small, there are λ0 > 0 and ε′4 > 0 such that
for λ > λ0 and 0 < ε4 < ε′4, it holds that

C1(1− ε0)r1

2
− C̄1(ε1, ε2, µ, λ)− ε1+r14

1 + r1
≥ C̃1 > 0

with some constant C̃1 independent of µ. Moreover, for given λ > λ0 and ε0, ε1, ε3, ε4

sup
µ∈P1+r2

(C̄1 + C̄2 + C̄3)(ε0, ε1, ε2, ε3, µ, λ) +
C1‖uµ‖1+r1∞

2εr10
+
r1(λ‖uµ‖∞)

r1
1+r1

(1 + r1)ε
r1

1+r1
4

 <∞.

Hence, we find that there are some positive constants C̃i, i = 1, 2, 3 independent of µ
such that

〈(∇Uµb0(·, µ))(U−1µ (x)), x〉+ λ〈uµ(U−1µ (x)), x〉
≤ −C̃1|x|1+r1 + C̃2 + C̃3‖µ‖r31+r2 . (2.49)

In the case that C1 > C3, due to (2.38), it is clear that

lim
λ→+∞

sup
µ∈P1+r2

(C̄1(ε1, ε2, µ, λ) + C̄3(ε3, µ, λ)) = 0.

We can choose ε0, ε1, ε3, ε4 small and a larger λ0 > 0 such that for λ > λ0

sup
µ∈P1+r2

C3

2 + C̄3(ε3, µ, λ)

C1(1−ε0)r1
2 − C̄1(ε1, ε2, µ, λ)− ε

1+r1
4

1+r1

<
C3 + 1

C1 + 1
< 1. (2.50)

Combining (2.42) with (2.49), (2.50) and (2.46), we have proven that there exists
λ0 > 0 and for any λ ≥ λ0, coefficients of (2.41) satisfy (H1) with some constants
Ĉi, i = 1, 2, 3 independent of µ, (H2) except (2.2), and

Ĉ3

Ĉ1

<
C3 + 1

C1 + 1
< 1, when r3 = 1 + r1 and C1 > C3. (2.51)

Though we can find an invariant subset for T ◦ U−1 in P1+r2 by Lemma 2.8, we need to
prove that P1+r2

M with large enough M is an invariant subset of T instead of T ◦ U−1.
Following the proof of Lemma 2.8, we have by (2.22) that for T ◦ U−1

‖(T ◦ U−1)µ‖1+r11+r2
≤ Ĉ2

Ĉ1

+
Ĉ3

Ĉ1

‖µ‖r31+r2 .

In the case that r3 = 1 + r1, by (2.51), there exists M̃0 > 0 such that

Ĉ2

Ĉ1

+
Ĉ3

Ĉ1

Mr3 ≤ C3 + 1

C1 + 1
M1+r1 , M ≥ M̃0.

In the case that r3 < 1 + r1, it is clear that there exists ˜̃M0 > 0 such that

Ĉ2

Ĉ1

+
Ĉ3

Ĉ1

Mr3 ≤
(
C3 + 1

C1 + 1
∧ 1

2

)
M1+r1 , M ≥ ˜̃M0.

Consequently, there exists c0 ∈ (0, 1) such that for M ≥ M̃0 ∨ ˜̃M0,

‖(T ◦ U−1)µ‖1+r11+r2
≤ Ĉ2

Ĉ1

+
Ĉ3

Ĉ1

Mr3 ≤ c0M1+r1 , µ ∈P1+r2
M .
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This, together with (2.43), implies that

‖Tµ‖1+r2 =
(
Tµ ◦ U−1µ (|U−1µ (·)|1+r2)

) 1
1+r2

≤
(
Tµ ◦ U−1µ (| · |1+r2)

) 1
1+r2 + ‖uµ‖∞

≤ c
1

1+r1
0 M + sup

µ∈P1+r2

‖uµ‖∞, µ ∈P1+r2
M .

Thus, for

M ≥M0 := M̃0 ∨ ˜̃M0 ∨
supµ∈P1+r2 ‖uµ‖∞

(1− c
1

1+r1
0 )

,

we have that

‖Tµ‖1+r2 ≤ c
1

1+r1
0 M + (1− c

1
1+r1
0 )M = M, µ ∈P1+r2

M .

Therefore, P1+r2
M is invariant under T .

According to the proof of Lemma 2.10, (H1) holds for (2.41). It follows from (2.40),
(H5) and the continuity of ∇Uµ that (∇Uµσ(·, µ))(U−1µ (·)) is continuous, non-degenerate
and bounded. Combining this with (H4) and (H5), by [31, Theorem 2.1], [30, Theorem
3.1] and the proof of Lemma 2.7, we can prove that Pµt is V -uniformly exponential
ergodic with some locally bounded V .

We next prove that T is weakly sequentially continuous in P1+r2
M . According to

the proof of Lemma 2.9, especially (2.24), (2.26), (2.27), (2.29) and (2.30), the weak
sequential continuity of T follows from the lemma below. For µ, ν ∈P, we let

τµ,νn (x) = inf {t > 0 | |Xν,x
t |+ |X

µ,x
t | > n} .

Lemma 2.11. Under the assumptions of Theorem 2.5, and let µ, µm ∈P1+r2
M such that

µm
w−→ µ. Then for every t > 0

lim
m→+∞

∫
|x|≤n2

E
(∣∣∣Xµ,x

t∧τµ,µmn (x)
−Xµm,x

t∧τµ,µmn (x)

∣∣∣) Tµm(dx) = 0. (2.52)

Proof. For any ν ∈P1+r2
M , let Xn,ν

t be the solution of the following SDE

dXn,ν
t = (b0ηn)(Xn,ν

t , ν)dt+ b1(Xn,ν
t , ν)dt+ σ(Xn,ν

t , ν)dWt, X
n,ν
0 = x, (2.53)

where n ∈ N with x > n, and ηn ∈ C1
b (Rd) is a cutoff function with 1[|y|≤n] ≤ ηn(y) ≤

1[|y|≤n+1]. By the pathwise uniqueness, for t < τµ,νn (x)

Xn,µ
t = Xµ,x

t , Xn,ν
t = Xν,x

t .

Denote b0n = b0ηn. Then

duµ(Xn,ν
t ) =

(
1

2
tr
(
a(·, ν)∇2uµ

)
(Xn,ν

t ) + (∇b1(·,ν)uµ +∇b0n(·,ν)uµ)(Xn,ν
t )

)
dt

+ (∇σ(·,ν)dWt
uµ)(Xn,ν

t ).

Then by using (2.37) and the Itô formula (see, e.g. [30, Lemma 4.1 (iii)] or [32, Lemma
3.3]), we have that

dUµ(Xn,ν
t ) = dXn,ν

t + duµ(Xn,ν
t )

= (b0n + b1) (Xn,ν
t , ν)dt+ σ(Xn,ν

t , ν)dWt +∇σ(Xn,νt ,ν)dWt
uµ(Xn,ν

t )
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+

(
1

2
tr
(
a(·, ν)∇2uµ

))
(Xn,ν

t )dt+
(
∇b1(·,ν)uµ +∇b0n(·,ν)uµ

)
(Xn,ν

t )dt

= (b0n + b1) (Xn,ν
t , ν)dt+ σ(Xn,ν

t , ν)dWt +∇σ(Xn,νt ,ν)dWt
uµ(Xν

t )

+

(
1

2
tr
(
a(·, µ)∇2uµ

)
(Xn,ν

t ) + (∇b1(Xn,νt ,µ)uµ)(Xn,ν
t )

)
dt

+
1

2
tr
(
(a(·, ν)− a(·, µ))∇2uµ

)
(Xn,ν

t )dt+ (∇b1(·,ν)−b1(·,µ)uµ)(Xn,ν
t )dt

+ (∇b0n(·,ν)uµ)(Xn,ν
t )dt

=
(
b0n(·, ν) +∇b0n(·,ν)uµ + b1(·, ν)− b1(·, µ) + λuµ

)
(Xn,ν

t )dt

+
1

2
tr
(
(a(·, ν)− a(·, µ))∇2uµ

)
(Xn,ν

t )dt+ (∇b1(·,ν)−b1(·,µ)uµ)(Xn,ν
t )dt

+ σ(Xn,ν
t , ν)dWt +∇σ(Xn,νt ,ν)dWt

uµ(Xn,ν
t )

= (∇Uµb0n(·, ν) +∇Uµ (b1(·, ν)− b1(·, µ)) + λuµ) (Xn,ν
t )dt

+
1

2
tr
(
(a(·, ν)− a(·, µ))∇2uµ

)
(Xn,ν

t )dt+∇Uµ(Xn,ν
t )σ(Xn,ν

t , ν)dWt.

In particular,

dUµ(Xn,µ
t ) = (∇Uµb0n(·, µ) + λuµ) (Xn,µ

t )dt+∇Uµ(Xn,µ
t )σ(Xn,µ

t , µ)dWt.

Then

d (Uµ(Xn,µ
t )− Uµ(Xn,ν

t )) = (∇Uµ(Xµ
t )b0n(Xµ

t , µ)−∇Uµ(Xν
t )b0n(Xν

t , ν)) dt

+∇Uµ(Xn,ν
t ) (b1(Xn,ν

t , µ)− b1(Xn,ν
t , ν)) dt

+ λ (uµ(Xn,µ
t )− uµ(Xn,ν

t )) dt

+
1

2
tr
(
(a(·, µ)− a(·, ν))∇2uµ

)
(Xn,ν

t )dt

+ ((∇Uµσ(·, µ))(Xn,µ
t )− (∇Uµσ(·, ν))(Xn,ν

t )) dWt.

Then

d|Uµ(Xn,µ
t )− Uµ(Xn,ν

t )|2

= 2 〈(∇Uµb0n(·, µ))(Xn,µ
t )− (∇Uµb0n(·, ν))(Xn,ν

t ), Uµ(Xn,µ
t )− Uµ(Xn,ν

t )〉dt
+ 2 〈(∇Uµ (b1(·, µ)− b1(·, ν))) (Xn,ν

t ), Uµ(Xn,µ
t )− Uµ(Xn,ν

t )〉dt
+ 2λ 〈uµ(Xn,µ

t )− uµ(Xn,ν
t ), Uµ(Xn,µ

t )− Uµ(Xn,ν
t )〉dt

+
〈
tr
(
(a(·, µ)− a(·, ν))∇2uµ

)
(Xn,ν

t ), Uµ(Xn,µ
t )− Uµ(Xn,ν

t )
〉

dt

+ ‖∇Uµ(Xn,µ
t )σ(Xn,µ

t , µ)−∇Uµ(Xn,ν
t )σ(Xn,ν

t , ν)‖2HSdt

+ 2 〈Uµ(Xn,µ
t )− Uµ(Xn,ν

t ), ((∇Uµσ(·, µ))(Xn,µ
t )− (∇Uµσ(·, ν))(Xn,ν

t )) dWt〉
= (I1 + I2 + I3 + I4 + I5)dt+ dMt,

where

Mt = 2

∫ t

0

〈Uµ(Xn,µ
s )− Uµ(Xn,ν

s ), ((∇Uµσ(·, µ))(Xn,µ
s )− (∇Uµσ(·, ν))(Xn,ν

s )) dWt〉 .

We choose λ > 0 large enough such that 1
2 ≤ ‖∇Uµ‖∞ ≤

3
2 . By the Krylov estimate,

see e.g. [31, Theorem 5.6] or [32, Theorem 3.1], the distributions of Xn,µ
t and Xn,ν

t are
absolutely w.r.t. the Lebesgue measure for almost every t > 0. Combining this with (2.2)
and ∇Uµ ∈ Cb(Rd;Rd ⊗Rd), we have by [30, Lemma 2.1] that for each n > 0, there is
Ĉn > 0 independent of x such that for any t ≤ τµ,νn (x)

I1 = 2 〈(∇Uµ(Xn,µ
t )−∇Uµ(Xn,ν

t )) b0n(Xn,µ
t , µ), Uµ(Xn,µ

t )− Uµ(Xn,ν)〉
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+ 2 〈∇Uµ(Xn,ν
t ) (b0n(Xn,µ, µ)− b0n(Xn,ν , µ)) , Uµ(Xn,µ

t )− Uµ(Xn,ν
t )〉

+ 2 〈∇Uµ(Xn,ν
t ) (b0n(Xn,ν , µ)− b0n(Xn,ν , ν)) , Uµ(Xn,µ

t )− Uµ(Xn,ν
t )〉

≤ 3C

2

(
sup
|x|≤n

|b0(x)|

)(
|M1(∇2uµ)(Xn,µ

t )|+ |M1(∇2uµ)(Xn,ν
t )|+ 3

2

)
|Xn,µ

t −Xn,ν
t |2

+
9

2
Kn|Xn,µ

t −Xn,ν
t |2 +

9

2
|Xn,µ

t −Xn,ν
t | sup

|x|≤n
|b0(x, µ)− b0(x, µ)|

≤ Ĉn
(
|M1(∇2uµ)(Xn,µ

t )|+ |M1(∇2uµ)(Xn,ν
t )|+ 1

)
|Xn,µ

t −Xn,ν
t |2

+ sup
|x|≤n

|b0(x, µ)− b0(x, µ)|2.

For I2,

I2 ≤ 9 |b1(Xn,ν
t , µ)− b1(Xn,ν

t , ν)| · |Xn,µ
t −Xn,ν

t |

≤ 9

2
|b1(Xn,ν

t , µ)− b1(Xn,ν
t , ν)|2 +

9

2
|Xn,µ

t −Xn,ν
t |2

For I3,

I3 ≤
3λ

2
|Xn,µ

t −Xn,ν
t |2.

For I4,

I4 ≤
3

2
‖a(Xn,ν

t , µ)− a(Xn,ν
t , ν)‖HS‖∇2uµ(Xn,ν

t )‖HS |Xn,µ
t −Xn,ν

t |

≤ 3‖σ‖∞‖∇2uµ(Xn,ν
t )‖HS‖σ(Xν

t , µ)− σ(Xν
t , ν)‖HS |Xn,µ

t −Xn,ν
t |

≤ 3

2
‖∇2uµ(Xn,ν

t )‖2HS |X
n,µ
t −Xn,ν

t |2 +
3

2
‖σ‖2∞‖σ(Xn,ν

t , µ)− σ(Xn,ν
t , ν)‖2HS .

For I5,

I5 ≤ ‖σ‖2∞‖∇Uµ(Xn,µ
t )−∇Uµ(Xn,ν

t )‖2HS +
9

4
‖σ(Xn,µ

t , µ)− σ(Xn,ν
t , ν)‖2HS

≤ C‖σ‖2∞
(
‖M1(∇2uµ)(Xµ

t )‖HS + ‖M1(∇uµ)(Xν
t )‖2HS +

3

2

)
|Xµ

t −Xν
t |2

+ C
(
‖M1(∇σ(·, µ))(Xn,µ

t )‖2HS + ‖M1(∇σ(·, µ))(Xn,ν
t )‖2HS + ‖σ‖2∞

)
|Xn,µ

t −Xn,ν
t |2

+
9

2
‖σ(Xn,ν

t , µ)− σ(Xn,ν
t , ν)‖2HS .

Hence, there exist C ′1 > 0 such that

|Uµ(Xµ
t∧τµ,νn (x)

)− Uµ(Xν
t∧τµ,νn (x))|

2 = |Uµ(Xn,µ
t∧τµ,νn (x)

)− Uµ(Xn,ν
t∧τµ,νn (x)

)|2

≤
∫ t∧τµ,νn (x)

0

|Xn,µ
s −Xn,ν

s |2dAµ,νn,s + t sup
|x|≤n

|b0(x, µ)− b0(x, µ)|2

+
9

2

∫ t∧τµ,νn (x)

0

|b1(Xn,ν
s , µ)− b1(Xn,ν

s , ν)|2ds

+ C ′1t sup
|x|≤n

‖σ(x, µ)− σ(x, ν)‖2HS +Mt∧τµ,νn (x),

where

Aµ,νn,t =

∫ t

0

{
C̃n
(
1 + ‖M1(∇2uµ)(Xn,µ

s )‖2HS + ‖M1(∇2uµ)(Xn,ν
s )‖2HS

)
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+ C ′2
(
1 + ‖M1(∇σ(·, µ))(Xn,µ

s )‖2HS + (‖∇2uµ‖2HS + ‖M1(∇σ(·, µ))‖2HS)(Xn,ν
s )

)}
ds

for some positive constants C ′2 and Ĉn which depends on n and is independent of x. By
the stochastic Gronwall lemma, we have that(

E|Xµ
t∧τµ,νn (x)

−Xν
t∧τµ,νn (x)|

)2
≤ 4

(
E|Uµ(Xµ

t∧τµ,νn (x)
)− Uµ(Xν

t∧τµ,νn (x))|
)2

≤ 2cpC
′
2

(
Ee

p
p−1A

µ,ν

n,t∧τµ,νn (x)

) 1−p
p

{
t sup
|x|≤n

‖σ(x, µ)− σ(x, ν)‖2HS

+ t sup
|x|≤n

|b0(x, µ)− b0(x, µ)|2 + E

∫ t∧τµ,νn (x)

0

|b1(Xn,ν
s , µ)− b1(Xn,ν

s , ν)|2ds

}
.

It is clear that ∫ t∧τµ,νn (x)

0

|b1(Xn,ν
s , µ)− b1(Xn,ν

s , ν)|2ds

=

∫ t∧τµ,νn (x)

0

|b1(Xn,ν
s , µ)− b1(Xn,ν

s , ν)|21[|Xn,νs |≤n]ds

=

∫ t∧τµ,νn (x)

0

|b1n(Xn,ν
s , µ)− b1,n(Xn,ν

s , ν)|2ds,

where b1n(x, ν) = b1(x, ν)1[|x|≤n]. For q > 2p
p−d , it follows from the Krylov estimate (see

e.g. [30, Lemma 4.1 (i)] that

E

∫ t∧τµ,νn (x)

0

|b1n(Xn,ν
s , µ)− b1n(Xn,ν

s , ν)|2ds ≤ Ct
2
q ‖b1n(·, µ)− b1n(·, ν)‖2

L̃p

≤ Ct
2
q ‖b1n(·, µ)− b1n(·, ν)‖2Lp ,

where the constant C depends on p, q, t, n, ‖b1n(·, ν)‖Lp . For fixed µ ∈ P1+r2
M and a

sequence µm ∈P1+r2
M such that µm

w−→ µ, we have that

lim
m→+∞

‖b1n(·, µm)− b1n(·, µ)‖Lp = 0.

Then the sequence {‖b1n(·, µm)‖Lp}m≥1 is bounded for any n ≥ 1. Moreover, combining
this with Khasminskii’s estimate (see e.g. [30, Lemma 4.1 (ii)]) for Xn,µm

t and Xn,µ
t , we

find that
sup
x∈Rd

sup
m
Ee

p
p−1A

µ,µm
n,t∧τµ,µmn (x) ≤ sup

x∈Rd
sup
m
Ee

p
p−1A

µ,µm
n,t <∞.

Hence,

lim
m→+∞

∫
|x|≤n2

E
(∣∣∣Xµ,x

t∧τµ,µmn (x)
−Xµm,x

t∧τµ,µmn (x)

∣∣∣) Tµm(dx)

≤ Cn lim
m→+∞

[√
t sup
|x|≤n

(‖σ(·, µ)− σ(·, µm)‖HS + |b0(·, µ)− b0(·, µm)|) (x)

+ t
1
q ‖b1n(·, µ)− b1n(·, µm)‖Lp

]
= 0.

Therefore the proof is complete.

Proof of Theorem 2.5. So far, we have proved that there exists M0 > 0 such that for
any M ≥ M0, T maps P1+r2

M into P1+r2
M and T is continuous in P1+r2

M w.r.t. to the
Kantorovich-Rubinstein distance. Therefore, the assertion of this theorem follows from
the Schauder fixed point theorem as proving in Theorem 2.2.
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3 Non-uniqueness

For a ∈ Rd, denote by µa the shifted probability of µ by a:

µa(f) = µ(f(· − a)).

Next theorem is devoted to a sufficient condition to find a stationary distribution concen-
trated around a ∈ Rd. For κ2 ≥ κ1 > 0 and 0 < γ1 ≤ γ2 < 1 + r2, we denote

Pγ1,γ2
a,κ1,κ2

= {µ ∈P1+r2 | ‖µa‖γ1 ≤ κ1, ‖µa‖γ2 ≤ κ2},
Dκ1,κ2 = {(w1, w2) | 0 ≤ w1 ≤ w2 ≤ κ2, 0 ≤ w1 ≤ κ1}.

Then non-uniqueness can be established by using this criteria.

Theorem 3.1. Suppose that the coefficients b, σ satisfy assumptions of Theorem 2.2
or b = b0 + b1, σ satisfy assumptions of Theorem 2.5. Assume that there are a ∈ Rd,
γ1, γ2 ∈ (0, 1 + r2) with γ1 ≤ γ2, and measurable functions g1, g2 on [0,+∞)3, which
satisfy that g1(·, w1, w2) and g2(·, w1, w2) are continuous and convex on [0,+∞) for any
w1, w2 ∈ [0,+∞), such that for µ ∈P1+r2

2〈b(x+ a, µ), x〉+ ‖σ(x+ a, µ)‖2HS
≤ −g1(|x|γ1 , ‖µa‖γ1

, ‖µa‖γ2
)− g2(|x|γ2 , ‖µa‖γ1

, ‖µa‖γ2
), x ∈ Rd. (3.1)

Let

g(w,w1, w2) = g1(w,w1, w2) + g2(w
γ2
γ1 , w1, w2), w1, w2 ≥ 0.

Suppose that g(·, w1, w2) is convex on [0,+∞) for any w1, w2 ∈ [0,+∞), and that there
exist κ2 ≥ κ1 > 0 such that for all (w1, w2) ∈ Dκ1,κ2

,

g(wγ1 , w1, w2) > 0, w ∈ [κ1,+∞), (3.2)

g2(wγ2 , w1, w2) + inf
w∈[0,κ1]

g1(wγ1 , w1, w2) > 0, w ∈ [κ2,+∞). (3.3)

Then there is µ ∈Pγ1,γ2
a,κ1,κ2

being a stationary probability measure of (1.1).

Consequently, if there exist a1, a2 ∈ Rd and κ1 <
|a1−a2|

4 such that the above as-
sumptions hold, then (1.1) has two distinct stationary probabilities µ1 ∈Pγ1,γ2

a1,κ1,κ2
, µ2 ∈

Pγ1,γ2
a2,κ1,κ2

.

If γ1 = γ2 =: γ, we denote Pγ
a,κ = Pγ,γ

a,κ,κ and have a simplified criteria as follows.

Corollary 3.2. Suppose that the coefficients b, σ satisfy assumptions of Theorem 2.2
or b = b0 + b1, σ satisfy assumptions of Theorem 2.5. Assume that there are a ∈ Rd,
γ ∈ (0, 1 + r2) and a measurable function g on [0,+∞)2, which satisfies that g(·, w1) is
continuous and convex for each w1 ≥ 0, such that for any µ ∈P1+r2

2〈b(x+ a, µ), x〉+ ‖σ(x+ a, µ)‖2HS ≤ −g(|x|γ , ‖µa‖γ). (3.4)

If there exist κ > 0 such that

g(wγ , w1) > 0, w ≥ κ, 0 ≤ w1 ≤ κ, (3.5)

then there is µ ∈Pγ
a,κ being a stationary probability measure of (1.1). Consequently, if

there exist a1, a2 ∈ Rd and κ < |a1−a2|
4 such that the above assumptions hold, then (1.1)

has two different stationary probabilities µ1 ∈Pγ
a1,κ, µ2 ∈Pγ

a2,κ.

For McKean-Vlasov SDEs, we have the following corollary.
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Corollary 3.3. Set b(x, µ) = −∇V (x) − ∇F ∗ µ(x) for twice continuous differentiable
functions V and F . Assume that∇V has polynomial growth, and that σ is non-degenerate,
bounded on Rd ×P and satisfies (H2) and (H3). The point a ∈ Rd is a critical point of V ,
and there are positive constants β0, β2 and non-negative constants β1 such that for every
x, y ∈ Rd

∇2V (a+ x) +∇2F (a− y + x) ≥ β0 − 2β1|x|+ 3β2|x|2. (3.6)

Suppose that there are non-negative constants α0, α1, α2, α3 such that (2.7) and (2.9)
with γ0 = 1 hold, and

|∇F (x)| ≤ α1 + α2|x|, x ∈ Rd. (3.7)

Let

κ0 = inf{w > 0 | β2w3 − β1w2 + (β0 − α2)w − α1 > 0},
κ1 = inf{w > κ0 | β2w3 − β1w2 + (β0 − α2)w − α1 < 0},
κ2 = sup{w > κ0 | β2w3 − β1w2 + (β0 − α2)w − α1 < 0}.

If β0 > α2, β0β2 > 3β2
1/8 and there is κ ∈ (κ0, κ1) ∪ (κ2,+∞) such that

‖σ‖2∞ < 2
(
β2κ

3 − β1κ2 + (β0 − α2)κ− α1

)
κ, (3.8)

then there is a stationary probability measure µ ∈P1
a,κ for (1.1).

Remark 3.4. Stationary distributions are found around the minimums of V , see also
[26]. In following examples, the inequality (3.6) holds for the minimums of V .

Corollary 3.3 provides a sufficient condition to find the stationary probability measure
around the critical point of V . According to Theorem 3.1, to prove that there are several
stationary distributions, κ needs to be small (e.g. less than a quarter of the distance
between two minimums). To get small κ such that (3.8) holds, a sufficient condition is
that α1 = 0 and ‖σ‖∞ is small, see examples below.

We present concrete examples to illustrate the non-uniqueness of stationary distribu-
tions. The first example has been investigated by many papers in the case of additive
noise, see e.g. [6, 26].

Example 3.5. Let d = 1, a1, a2 ∈ R with a1a2 < 0, β > 0 and α > 0. Consider the
following McKean-Vlasov SDE with quadratic interaction

dXt = −β(Xt − a1)Xt(Xt − a2)dt− α
∫
R

(Xt − y)LXt(dy)dt

+ σ(Xt,LXt)dWt. (3.9)

Assume that σ is positive and bounded on R×P and satisfies (2.2) and (H3). Then (3.9)
has a stationary distribution. Furthermore, if

a21 + a22 + 2(a1 − a2)2 + a21 ∨ a22 <
8α

β
, (3.10)

and there is some κ ∈ (0, (|a1| ∧ |a2|)/2) such that

‖σ‖∞ < κ
√

2β(κ− |a1 − a2|)(κ− |a1| ∧ |a2|), (3.11)

there exist two distinct stationary distributions ν1, ν2 ∈P1+r2 such that

ν1(| · −a1|) ≤ κ, ν2(| · −a2|) ≤ κ. (3.12)

Consequently, if σ is a positive constant, a1 = −a2 with (3.10) holds, and ‖σ‖∞ <

κ
√

2β(κ− 2|a1|)(κ− |a1|) for some 0 < κ < |a1|/2, then (3.9) has at least three stationary
distributions.
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For d ≥ 1, we give the following example.

Example 3.6. Let a1, a2 ∈ Rd, β > 0 and α > 0. Consider the following McKean-Vlasov
SDE with quadratic interaction

dXt = −β
2

(
(Xt − a1)|Xt − a2|2 + (Xt − a2)|Xt − a1|2

)
dt

+ σ(Xt,LXt)dWt − α1

∫
R

((Xt − y))LXt(dy)dt.

Assume that σ is non-degenerate and bounded on R ×P and satisfies (2.2) and (H3).
Then (3.9) has a stationary distribution. Furthermore, if 11

16 |a1 − a2|
2 < α

β , and there is
some κ ∈ (0, |a1 − a2|/4) satisfying

‖σ‖∞ < κ

√
2β (κ− |a1 − a2|)

(
κ− |a1 − a2|

2

)
,

then there exist two distinct stationary distributions ν1, ν2 ∈P1+r2 such that (3.12) hold.

The following example shows that our criteria can also deal with McKean-Vlasov
SDEs with non-quadratic interaction.

Example 3.7. Let a1, a2 ∈ Rd, and let β, α1 and α2 be positive constants. Consider the
following McKean-Vlasov SDE with non-quadratic interaction

dXt = −β
2

(
(Xt − a1)|Xt − a2|2 + (Xt − a2)|Xt − a1|2

)
dt+ σ(Xt,LXt)dWt

−
∫
Rd

(α1|Xt − y|2(Xt − y) + α2(Xt − y))LXt(dy)dt. (3.13)

Assume that σ is non-degenerate and bounded on R×P and satisfies (2.2) and (H3). Let

θ0 =
α2

β|a1 − a2|2
, θ1 =

(β + α1)
3
2 β

1
2

2(3(4 + θ0))
3
2α2

1

,

κ1 = θ1|a1 − a2|, κ2 =

(
βκ1
4α1

) 1
3

|a1 − a2|
2
3 .

Suppose that

α1 + β > 243(4 + θ0)β, (3.14)

‖σ‖2∞
2β|a1 − a2|4

<

(
θ1(4 + θ0)

2
− 3α1

β

)
∧ θ

2
1

5
. (3.15)

Then there are two distinct stationary distributions ν1, ν2 ∈P1+r2 such that

νi(| · −ai|) ≤ κ1,
(
νi(| · −a2|3)

) 1
3 ≤ κ2, i = 1, 2.

We finally give an example on the non-uniqueness of stationary distributions for
distribution depended SDEs with a measurable and bounded drift, which can be in
non-gradient form.

Example 3.8. Consider the SDE in Example 3.6 perturbed by a bounded drift:

dXt = −β(Xt − a1)Xt(Xt − a2)dt− α
∫
Rd

(Xt − y)LXt(dy)dt

+ h(Xt,LXt)dt+ σ(Xt,LXt)dWt, (3.16)
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where the constants α, β, a1, a2 satisfy all the conditions of Example 3.6, σ satisfies (H5)
and (2.13), and h is a bounded measurable function on Rd ×P satisfying (2.12). If there
is κ ∈ (0, |a1 − a2|/4) such that

‖σ‖2∞ + ‖h‖∞κ < 2βκ2(κ− |a1 − a2|)(κ− |a1 − a2|/2), (3.17)

then there exist two distinct stationary distributions ν1, ν2 ∈P1+r2 satisfying (3.12).

3.1 Proof of Theorem 3.1 and Corollary 3.3

Proof of Theorem 3.1. According to Theorem 2.2 or Theorem 2.5, we find a fixed point
of T in P1+r2

M for every M larger than some M0 > 0. Let PM,γ
a,κ = P1+r2

M ∩Pγ1,γ2
a,κ1,κ2

. We
are to find the stationary probability in PM,γ

a,κ .
By the Itô formula, we have that

|Xµ,a
t − a|2 − 2

∫ t

0

〈Xµ,a
s − a, σ(Xµ,a

s , µ)dWs〉

=

∫ t

0

(
‖σ(Xµ,a

s , µ)‖2HS + 2〈Xµ,a
s − a, b(Xµ,a

s , µ)〉
)

ds

≤ −
∫ t

0

g1(|Xµ,a
s − a|γ1 , ‖µa‖γ1

, ‖µa‖γ2
)ds

−
∫ t

0

g2(|Xµ,a
s − a|γ2 , ‖µa‖γ1

, ‖µa‖γ2
)ds

= −
∫ t

0

g(|Xµ,a
s − a|γ1 , ‖µa‖γ1

, ‖µa‖γ2
)ds.

Then by the Jensen inequality, we have that

E|Xµ,a
t − a|2

t
≤ −g

(
1

t

∫ t

0

E|Xµ,a
s − a|γ1ds, ‖µa‖γ1 , ‖µa‖γ2

)
(3.18)

and

E|Xµ,a
t − a|2

t
≤ −1

t

∫ t

0

Eg1(|Xµ,a
s − a|γ1 , ‖µa‖γ1

, ‖µa‖γ2
)ds

− 1

t

∫ t

0

Eg2(|Xµ,a
s − a|γ2 , ‖µa‖γ1

, ‖µa‖γ2
)ds

≤ −g1
(

1

t

∫ t

0

E|Xµ,a
s − a|γ1ds, ‖µa‖γ1

, ‖µa‖γ2

)
− g2

(
1

t

∫ t

0

E|Xµ,a
s − a|γ2ds, ‖µa‖γ1

, ‖µa‖γ2

)
. (3.19)

By (2.16) and γ1 ≤ γ2 < 1 + r2, there is a sequence tn ↑ +∞ such that

lim
n→+∞

1

tn

∫ tn

0

E|Xµ,a
s − a|γids = Tµ(| · −a|γi), i = 1, 2.

By the continuity of gi(·, ‖µa‖γ1
, ‖µa‖γ2

), i = 1, 2, we take t = tn in (3.19), and let n→ +∞.
Then

g((‖(Tµ)a‖γ1
γ1
,‖µa‖γ1 , ‖µa‖γ2) ≤ 0, (3.20)

g1(‖(Tµ)a‖γ1
γ1
, ‖µa‖γ1

, ‖µa‖γ2
) + g2(‖(Tµ)a‖γ2

γ2
, ‖µa‖γ1

, ‖µa‖γ2
) ≤ 0. (3.21)

Combining (3.20) with (3.2), for every µ ∈ PM,γ
a,κ , we have that ‖(Tµ)a‖γ1

≤ κ1. This,
together with (3.21) and (3.3), yields that ‖(Tµ)a‖γ2

≤ κ2. Hence, PM,γ
a,κ is an invariant
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set of the mapping T . It is clear that PM,γ
a,κ is also a compact, convex subset of (P1,W ).

By the Schauder fixed point theorem, there exists µ ∈PM,γ
a,κ such that µ = Tµ.

Let µ1 ∈PM,γ
a1,κ , µ2 ∈PM,γ

a2,κ be two fixed point of T . Since κ1 <
|a1−a2|

4 , the Chebyshev
inequality yields that

µ1

(
| · −a1| ≥

|a1 − a2|
2

)
≤ 2(µ1(| · −a1|γ1))

1
γ1

|a1 − a2|
≤ 2κ1
|a1 − a2|

<
1

2
,

µ2

(
| · −a2| ≥

|a1 − a2|
2

)
≤ 2(µ2(| · −a2|γ1))

1
γ1

|a1 − a2|
≤ 2κ1
|a1 − a2|

<
1

2
.

Therefore µ1 6= µ2.

Proof of Corollary 3.3. It follows from (3.6) that

∇2V (x) +∇2F (x− y) ≥ β0 − 2β1|x− a|+ 3β2|x− a|2

≥ 3

2
β2|x|2 − 2β1|x| −

(
3β2|a|2 + 2β1|a| − β0

)
. (3.22)

By (3.7), for any ε > 0,

|∇F (x)| ≤

(
α1 +

2α
3
2
2

3(3ε)
1
2

)
+ ε|x|3. (3.23)

By (2.7), (3.22), (3.23) with ε < 3β2

2 and (2.9) with γ0 = 1, it follows from Corollary 2.4
that (1.1) has a stationary distribution in P4.

We verify (3.4) and (3.5) for κ ∈ (κ0, κ1) ∪ (κ2,+∞), γ = 1 and

g(w,w1) = 2
(
β2w

4 − β1w3 + β0w
2 − (α1 + α2w1)w

)
− ‖σ‖∞, w, w1 ≥ 0.

Since a is the critical point of V , ∇V (a) = 0. Then

〈∇V (x+ a), x〉 = 〈∇V (x+ a)−∇V (a), x〉 =

∫ 1

0

〈∇2V (a+ θx)x, x〉dθ.

Thus

〈∇V (x+ a), x〉+ µ(〈∇F (x+ a− ·), x〉)

=

∫ 1

0

〈∇2V (a+ θx)x, x〉dθ + µ(〈∇F (a− ·), x〉)

+ µ(〈∇F (x+ a− ·)−∇F (a− ·), x〉)

=

∫ 1

0

∫
Rd
〈
(
∇2V (a+ θx) +∇2F (a− y + θx)

)
x, x〉µ(dy)dθ

+ µ(〈∇F (a− ·), x〉)
≥
(
β0 − β1|x|+ β2|x|2

)
|x|2 − (α1 + α2µ(|a− ·|))|x|.

Then

2〈b(x+ a, µ), x〉+ ‖σ(x+ a, µ)‖HS ≤ −g(|x|, ‖µa‖1), x ∈ Rd, µ ∈P1.

It is easy to see that

(∂2wg)(w,w1) = 2
(
12β2w

2 − 6β1w + 2β0
)
.
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Since β2
1 <

8
3β0β2, we have that (∂2wg)(w,w1) > 0. Thus g(·, w1) is convex on [0,+∞).

Consider the set
Aw1

= {w ≥ 0 | g(w,w1) ≤ 0}.

For any κ ≥ 0, we have that

Aw1
⊂ Aκ = {w ≥ 0 | g(w, κ) ≤ 0}
= {w ≥ 0 | 2

(
β2w

4 − β1w3 + β0w
2
)
≤ 2(α1 + α2κ)w + ‖σ‖2∞}, 0 ≤ w1 ≤ κ.

Since the polynomial β2w4 − β1w3 + β0w
2 is convex, there is w0 ≥ 0 such that

{w ≥ 0 | 2
(
β2w

4 − β1w3 + β0w
2
)
≤ 2(α1 + α2κ)w + ‖σ‖2∞} = [0, w0].

Since β0 > α2, for κ ∈ (κ0, κ1) ∪ (κ2,+∞), we have that

β2κ
3 − β1κ2 + (β0 − α2)κ− α1 > 0.

By (3.8), we have that

g(κ, κ) = 2
(
β2κ

4 − β1κ3 + β0κ
2 − (α1 + α2κ)κ

)
− ‖σ‖2∞

= 2
(
β2κ

3 − β1κ2 + (β0 − α2)κ− α1

)
κ− ‖σ‖2∞

> 0.

Thus w0 < κ. This yields that
⋃

0≤w1≤κAw1
⊂ [0, κ). Consequently, (3.5) holds.

3.2 Proofs of examples

Proof of Example 3.5. Setting

b(x, µ) = −β(x− a1)x(x− a2)− α
∫
R

(x− y)µ(dy),

it follows from Corollary 3.3 that (3.9) has stationary distributions.
Next, we use Corollary 3.2 to prove the existence of two distinct stationary distribu-

tions. Let γ = 1,

g(w,w1) = 2β(w4 − |2a1 − a2|w3 + (a1(a1 − a2) +
α

β
)w2 − αw

β
w1 − ‖σ‖2∞, w ≥ 0.

Then for given w1 ≥ 0

(∂2wg)(w,w1) = 4β

(
6w2 − 3|2a1 − a2|w + (a1(a1 − a2) +

α

β
)

)
.

By (3.10), we have that

3(2a1 − a2)2 − 8a1(a1 − a2) ≤ a21 + a22 + 2(a1 − a2)2 + a21 ∨ a22 <
8α

β
.

This implies that (∂2wg)(w,w1) > 0. Thus g(·, w1) is convex. Moreover,

2〈b(x+ a1, µ), x〉+ ‖σ(x, µ)‖2HS

= −2βx2(x+ a1)(x+ a1 − a2)− 2αx

∫
R

(x+ a1 − y)µ(dy) + ‖σ‖2∞

= −2β

(
x4 + (2a1 − a2)x3 + (a1(a1 − a2) +

α

β
)x2 − αx

β

∫
R

(a1 − y)µ(dy)

)
+ ‖σ‖2∞

≤ −g(|x|, ‖µa1‖1). (3.24)
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Let

p(w) = 2β(w4 − |2a1 − a2|w3 + (a1(a1 − a2) +
α

β
)w2). (3.25)

Then p is is convex on [0,+∞). Thus for κ > 0, there is w0 > 0 such that{
w ≥ 0 | p(w) ≤ 2ακw + ‖σ‖2∞

}
= [0, w0].

Hence, for any M > 0, µ ∈PM,1
a1,κ and 0 ≤ w1 ≤ κ, we have that

Aw1
:= {w ≥ 0 | g(w,w1) ≤ 0}

⊂
{
w ≥ 0 | 2β(w4 − |2a1 − a2|w3 + (a1(a1 − a2) +

α

β
)w2 − ακw

β
)− ‖σ‖2∞ ≤ 0

}
=
{
w ≥ 0 | p(w) ≤ 2ακw + ‖σ‖2∞

}
= [0, w0]. (3.26)

Since a1a2 < 0, we have that a1(a1−a2) > 0 and |a1−a2| > |a1|. Then for 0 < κ < |a1|∧|a2|,
we have that

κ2 − |2a1 − a2|κ+ a1(a1 − a2) = (κ− |a1|)(κ− |a1 − a2|)
≥ (κ− |a1| ∧ |a2|)(κ− |a1 − a2|).

Note that

p(κ)− 2ακ2 − ‖σ‖2∞ = 2β(κ2 − |2a1 − a2|κ+ a1(a1 − a2))κ2 − ‖σ‖2∞.

Thus, by (3.11),
p(κ)− 2ακ2 − ‖σ‖2∞ > 0.

This, together with (3.26), yields that w0 < κ. Taking into account (3.26), we get (3.5).
Hence, (3.9) has a stationary probability measure ν1 ∈ PM,1

a1,κ. It is clear that we can

replace a1 by a2. Thus (3.9) has a stationary probability measure ν2 ∈ Pa1,1
M,κ . Finally,

since

κ <
|a1| ∧ |a2|

2
≤ 1

2

(
|a1 − a2|

2

)
,

the two probability measures ν1 and ν2 are distinct by Theorem 3.1.
If a1 = −a2 and σ is a constant, it has been proved that (3.9) has a symmetric

stationary probability measure (see e.g. [14]):

µ0(dx) = c0 exp

{
− 2

σ2

(
β

(
x4

4
− a21x

2

2

)
− αx2

2

)}
dx,

where c0 is the normalization constant so that µ0 is a probability measure. Assuming
a1 > 0, it follows from (3.12) and κ < a1/2 that

ν1((−∞, 0]) ≤ ν1(| · −a1| ≥ a1) ≤ ν1(| · −a1|)
a1

≤ κ

a1
<

1

2
,

and, similarly, ν2([0,+∞)) < 1/2. Thus, ν1 and ν2 are not symmetric measures. Hence,
(3.9) has three stationary distributions.

Proof of Example 3.6. Set

g(w,w1) = 2β

(
w4 − 3

2
|a1 − a2|w3 +

(
|a1 − a2|2

2
+
α

β

)
w2 − αw

β
w1

)
− ‖σ‖2∞,
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p(w) = 2β

(
w4 − 3

2
|a1 − a2|w3 +

(
|a1 − a2|2

2
+
α

β

)
w2

)
.

One can follow line by line the proof of Example 3.5 to get the conclusion of this example,
and we omit the details.

Proof of Example 3.7. According to (3.13), we have that

b(x, µ) = −β
2

{
(x− a1)|x− a2|2 + (x− a2)|x− a1|2

}
−
∫
Rd

(
α1|x− y|2(x− y) + α2(x− y)

)
µ(dy).

It is a routine to check that all the conditions of Corollary 2.4, and we omit the details.
The rest is prove (3.1), (3.2) and (3.3) for γ1 = 1, γ2 = 3 and

g1(w,w1, w2) = 2β
[( |a1 − a2|2

2
+
α1

β
w2

1 +
α2

β

)
w2 −

(
α1

β
w3

2 +
α2

β
w1

)
w
]
− ‖σ‖2∞,

g2(w,w1) = 2β

[(
1 +

α1

β

)
w

4
3 − 3

(
|a1 − a2|+

α1

β
w1

)
w

]
,

g(w,w1, w2) = g1(w,w1, w2) + g2(w3, w1), w ≥ 0.

It is clear that

− β

2

(
|x|2|x+ a1 − a2|2 + 〈x+ a1 − a2, x〉|x|2

)
= −β

(
|x|4 +

3

2
〈a1 − a2, x〉|x|2 +

|a1 − a2|2

2
|x|2
)

≤ −β
(
|x|4 − 3

2
|a1 − a2||x|3 +

|a1 − a2|2

2
|x|2
)
,

and

− α1

∫
Rd
|x+ a1 − y|2〈x+ a1 − y, x〉µ(dy)− α2

∫
Rd
〈x+ a1 − y, x〉µ(dy)

= −α1

∫
Rd

(
|x|2 + 2〈x, a1 − y〉+ |a1 − y|2

) (
|x|2 + 〈a1 − y, x〉

)
µ(dy)

− α2

∫
Rd

(
|x|2 + 〈a1 − y, x〉

)
µ(dy)

≤ −α1

(
|x|4 + 3|x|2

∫
Rd
〈x, a1 − y〉µ(dy) + |x|2

∫
Rd
|a1 − y|2µ(dy)

)
− α1

(
2

∫
Rd
〈a1 − y, x〉2µ(dy) +

∫
Rd
|a1 − y|2〈a1 − y, x〉µ(dy)

)
− α2|x|2 − α2

∫
Rd
〈a1 − y, x〉µ(dy)

≤ −α1

(
|x|4 − 3µ(| · −a1|)|x|3 + µ(| · −a1|2)|x|2 − µ(| · −a1|3)|x|

)
− α2|x|2 + α2µ(| · −a1|)|x|.

Thus

2〈b(x+ a1, µ), x〉 = −β
(
|x|2|x+ a1 − a2|2 + 〈x+ a1 − a2, x〉|x|2

)
− 2α1

∫
Rd
|x+ a1 − y|2〈x+ a1 − y, x〉µ(dy)
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− 2α2

∫
Rd
〈x+ a1 − y, x〉µ(dy)

≤ −2β
[(

1 +
α1

β

)
|x|4 − 3

(
|a1 − a2|+

α1

β
µ(| · −a1|)

)
|x|3

+

(
|a1 − a2|2

2
+
α1

β
(µ(| · −a1|))2 +

α2

β

)
|x|2

−
(
α1

β
µ(| · −a1|3) +

α2

β
µ(| · −a1|)

)
|x|
]
.

Then

2〈b(x+ a1, µ), x〉+ ‖σ(x+ a1, µ)‖2HS ≤ −g(|x|, ‖µa1
‖1, ‖µa1

‖3), x ∈ Rd.

For µ with ‖µa1‖1 < κ1 and ‖µa1‖3 < κ2. Since α1

β > 1, we have that

θ1 =
(1 + α1

β )
3
2

(
β
α1

)2
2(3(4 + θ0))

3
2

≤
( 2α1

β )
3
2

(
β
α1

)2
2(3(4 + θ0))

3
2

<
1

2

√
β

α1
.

Let θ2 = κ2

|a1−a2| . Then

θ1 <

(
βθ1
4α1

) 1
3

= θ2.

As a consequence, we have that κ1 < κ2. It is clear that

(∂2wg)(w,w1, w2) = 2β
[
12

(
1 +

α1

β

)
w2 − 18

(
|a1 − a2|+

α1

β
w1

)
w

+ 2

(
|a1 − a2|2

2
+
α1

β
w2

1 +
α2

β

)]
.

By (3.14), we have that

θ1 <

(
2√
27

√
(1 +

α1

β
)(1 + 2θ0)− 1

)
β

α1
.

Then (
1 +

α1θ1
β

)2

<
4

27

(
1 +

α1

β

)
(1 + 2θ0).

This implies that(
18

(
|a1 − a2|+

α1

β
µ(| · −a1|)

))2

< 48

(
1 +

α1

β

)(
|a1 − a2|2 +

2α2

β

)
.

Consequently, g(·, w1, w2) is convex. Thus there is w0 > 0 such that

{w ≥ 0 | g(w,w1, w2) ≤ 0}

⊂
{
w ≥ 0

∣∣ (1 +
α1

β
)w4 − 3(|a1 − a2|+

α1

β
κ1)w3

+

(
|a1 − a2|2

2
+
α2

β

)
w2 −

(
α1

β
κ32 +

α2

β
κ1

)
w ≤ ‖σ‖

2
∞

2β

}
= [0, w0].

EJP 28 (2023), paper 93.
Page 31/34

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP981
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stationary distributions of DDSDEs

Since (3.14), we have that

θ1
2
− 3θ21 + (1− 2α1

β
)θ31 >

9θ1
20

>
θ1
4
.

This, together with 1
4θ1 = α1

β θ
3
2 and κ1 = θ1|a1 − a2|, implies that

|a1 − a2|2

2
κ1 − 3|a1 − a2|κ21 + (1− 2α1

β
)κ31 >

α1

β
κ32.

Moreover, it follows from (3.15) that

(1 +
α1

β
)κ41 − 3(|a1 − a2|+

α1

β
κ1)κ31 +

(
|a1 − a2|2

2
+
α2

β

)
κ21 −

(
α1

β
κ32 +

α2

β
κ1

)
κ1

≥ (1− 2α1

β
)κ41 − 3|a1 − a2|κ31 +

|a1 − a2|2

2
κ21 −

α1

β
κ32κ1

=

(
(1− 2α1

β
)θ31 − 3θ21 +

θ1
4

)
θ1|a1 − a2|4

>
θ21
5
|a1 − a2|4 >

‖σ‖2∞
2β

.

Hence, w0 ≤ κ1. Hence, (3.2) holds.
For (w1, w2) ∈ Dκ1,κ2

, we have that

g2(κ32, w1) + inf
κ1≥w≥0

g1(w,w1, w2)

≥ 2β

((
1 +

α1

β

)
κ42 − 3

(
|a1 − a2|+

α1

β
κ1

)
κ32

)
−
β
(
α1

β κ
3
2 + α2

β κ1

)2
|a1 − a2|2 + 2α2

β

− ‖σ‖2∞

= 2β

(1 +
α1

β

)
θ42 − 3

(
1 +

α1

β
θ1

)
θ32 −

(
α1

β θ
3
2 + θ0θ1

)2
2 + 4θ0

 |a1 − a2|4 − ‖σ‖2∞.
Taking into account that βθ1

4α1
= θ32, we have by (3.15) that(

1 +
α1

β

)
θ42 − 3

(
1 +

α1

β
θ1

)
θ32 −

(α1

β θ
3
2 + θ0θ1)2

2 + 4θ0

≥

[(
1 +

α1

β

)(
β

4α1

) 4
3

θ
1
3
1 −

3β

4α1
−
(

3

4
+

( 1
4 + θ0)2

2 + 4θ0

)
θ1

]
θ1

>

[(
1 +

α1

β

)(
β

4α1

) 4
3

θ
1
3
1 −

3β

4α1
−
(

1 +
θ0
4

)
θ1

]
θ1

=
(1 + α1

β )
3
2

(
β
α1

)2
24
√

3(1 + θ0
4 )

1
2

− 3β

4α1
=

(4 + θ0)θ1
2

− 3α1

4β

>
‖σ‖2∞

2β|a1 − a2|4
.

Thus
g2(κ32, w1) + g1(w,w1, w2) > 0, (w1, w2) ∈ Dκ1,κ2 .

Note that g2(·, w1) decreases first and then increase. Thus,⋃
(w1,w2)∈Dκ1,κ2

{
0 ≤ w

∣∣∣ g2(w3, w1) + inf
0≤w≤κ1

g1(w,w1, w2) ≤ 0

}
⊂ [0, κ2].

Hence, (3.3) holds. Therefore, the proof is complete.
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Proof of Example 3.8. With g(w,w1) in the proof of Example 3.6 replaced by g(w,w1)−
‖h‖∞w, as in the proof of Example 3.5, one has that

⋃
0<w≤κAw ⊂ [0, w0] for some

w0 ≥ 0. Let p(w) be the polynomial defined in the proof of Example 3.6. Then it follows
from (3.17) that

p(κ)− 2ακ2 − ‖h‖∞κ− ‖σ‖2∞
≥ 2βκ2(κ− |a1 − a2|/2)(κ− |a1 − a2|)− ‖h‖∞κ− ‖σ‖2∞
> 0.

Hence w0 ≤ κ. Replacing a1 by a2 we have the same consequence. Therefore, there exist
two distinct stationary distributions ν1 ∈Pa1,1

M,κ , ν2 ∈Pa2,1
M,κ .
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