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Entropic repulsion of 3D Ising interfaces
conditioned to stay above a floor

Reza Gheissari* Eyal Lubetzky†

Abstract

We study the interface of the Ising model in a box of side-length n in Z3 at low
temperature 1/β under Dobrushin’s boundary conditions, conditioned to stay in a half-
space above height −h (a hard floor). Without this conditioning, Dobrushin showed in
1972 that typically most of the interface is flat at height 0. With the floor, for small h,
the model is expected to exhibit entropic repulsion, where the typical height of the
interface lifts off of 0. Detailed understanding of the SOS model—a more tractable
height function approximation of 3D Ising—due to Caputo et al., suggests that there is
a single integer value −h∗

n ∼ −c logn of the floor height, delineating the transition
between rigidity at height 0 and entropic repulsion.

We identify an explicit h∗
n = (c?+o(1)) logn such that, for the typical Ising interface

above a hard floor at −h, all but an ε(β)-fraction of the sites are propelled to be above
height 0 if h < h∗

n − 1, whereas all but an ε(β)-fraction of the sites remain at height 0
if h ≥ h∗

n. Further, c? is such that the typical height of the unconditional maximum is
(2c? + o(1)) logn; this confirms scaling predictions from the SOS approximation.
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1 Introduction

Let µ∓n be the distribution of the Ising model with Dobrushin’s boundary conditions
on the 3D cylinder,

Λn = J−n2 ,
n
2 K2 ×Z = {−bn2 c, . . . , d

n
2 e}

2 ×Z .

More precisely, let µ∓n be the distribution over assignments of ±1 spins to the cells of
Λn, denoted C (Z3). The probability of a configuration σ is proportional to exp(−βH(σ)),
where H counts the number of disagreeing neighboring cells under ∓-boundary con-
ditions that are minus in the upper-half space {(x1, x2, x3) : x3 > 0} and plus in the
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Entropic repulsion of 3D Ising interfaces

lower-half space. The parameter β is an inverse temperature parameter which in our
context will be a large enough constant. The weak limit of µ∓n as n→∞ is denoted µ∓

Z3 ,
which was the famous example of Dobrushin [16] for a Gibbs measure on Z3 which is
not translational invariant in every direction.

For an Ising configuration σ ∼ µ∓n with Dobrushin boundary conditions, its interface
is defined as follows: consider every f in F (Z3) (the faces of Z3) that separates two
disagreeing spins of σ, and let the interface I be the ∗-connected component of such
faces incident to the {x3 = 0} plane outside Λn (two faces are ∗-connected if they have
a common bounding vertex). Dobrushin [16] showed that for β > 0 large enough, with
high probability (w.h.p.) the interface I is rigid (hence the conclusion on µ∓

Z3) at height
0; that is, for some fixed εβ > 0 going to 0 as β goes to infinity,∣∣I ∩ (J−n2 ,

n
2 K2 × {0})

∣∣ ≥ (1− εβ)n2 , w.h.p. over I ∼ µ∓n .

In this work we consider the entropic repulsion effect of a hard floor constraint for
µ∓n : namely, let

Ifl
h = {I ⊂ J−n2 ,

n
2 K2 × [−h,∞)} (1.1)

be the event that the interface is everywhere above height −h, and define the measure
“with a floor at −h,”

µ̂h
n = µ∓n

(
· | Ifl

h

)
for h ≥ 0 . (1.2)

The hard constraint of confining I to a half-space above height −h creates an energy vs.
entropy competition: wherever the interface is to remain flat at height 0, its downward
oscillations would be capped at depth h. Indeed, in several other more tractable models,
a conditioning of this sort was shown to propel the interface above height 0 (see §1.1 for
related work). Of course, one expects this to hold only for small values of h, whereas for
large enough h, the effect of a hard floor at height −h should be unnoticeable, and the
interface should remain flat at height 0 (this would certainly be the case if one should
take h to be larger than the height of the global maximum in a typical interface I ∼ µ∓n ).

Our main result, Theorem 1.1, identifies the exact h delineating this phase transition:
for any β large enough, we identify a critical integer h∗n such that, for all h < h∗n, a typical
interface I ∼ µ̂h

n would have (say) at most a 0.01 fraction of the faces of I be at height 0,
whereas for h > h∗n at least (say) 0.99 of the points would be such. This height is defined
by

h∗n = h∗n(β) := inf{h ≥ 1 : αh > log n− 2β} , (1.3)

in which the quantities αh = αh(β) are given by

αh = − logµ∓
Z3

(
( 1

2 ,
1
2 ,

1
2 )

+←−−−−−→
R2×[0,∞)

(Z+ 1
2 )2 × {h− 1

2}
)
, (1.4)

where v
+←→
A

w denotes there is a path of adjacent or diagonally adjacent plus spins

between v and w in A.

Theorem 1.1. There exist β0, c0 > 0 so that, if εβ = 1/(c0e
β) and h∗n is as in (1.3), then

for every β > β0, with probability at least 1− exp(−εβn) the interface I ∼ µ̂h
n satisfies∣∣I ∩ (J−n2 ,

n
2 K2 × {0})

∣∣ < εβ n
2 if h < h∗n − 1 , (1.5)∣∣I ∩ (J−n2 ,

n
2 K2 × {0})

∣∣ > (1− εβ)n2 if h ≥ h∗n . (1.6)

Furthermore, (1.5) also holds if we replace J−n2 ,
n
2 K2×{0} by J−n2 ,

n
2 K2× (−∞, h∗n−h−1).
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Entropic repulsion of 3D Ising interfaces

Figure 1: An Ising interface in Λn for n = 500 conditioned to lie above a floor at height
h = 0.

While one may easily be convinced that the hard floor constraint in µ̂h
n will become

unnoticeable once h exceeds the typical value of Mn, the maximum height of the un-
constrained interface I ∼ µ∓n (which, by reflection symmetry, is the same as the typical
value of the minimum height, whence I will stay in J−n2 ,

n
2 K2 × [−h,∞) w.h.p.), in fact h∗n

is asymptotically 1/2 of that value, as the next remark states.

Remark 1.2. In [22], the authors derived a law of large numbers for the maximum
height Mn of I ∼ µ∓n : as n → ∞ one has Mn/ log n → 2/α in µ∓n -probability, for the
quantity α = α(β) defined there as

α := lim
h→∞

αh
h
∈ [4β − C, 4β + e−4β ] , (1.7)

with the αh’s as given in (1.4) (the tightness, and moreover Gumbel tails, of Mn −E[Mn]

were proved in [21]). Theorem 1.1 shows that the critical h for repulsion in µ̂h
n is

h∗n = ( 1
α + o(1)) log n, which is 1+o(1)

2 E[Mn] for I ∼ µ∓n , in line with known scaling results
for the SOS approximation of the 3D Ising model (see §1.1).

Akin to the behavior of the SOS model, the case h = h∗n − 1 can depend on n, as the
next remark details.

Remark 1.3. Theorem 1.1 extends to treat h = h∗n−1 whenever the determinstic quantity
λn := log n−αh∗n , which is known to belong to [−2β− εβ , 2β] for all n (the upper bound is
by definition (1.3) whereas the lower bound is by results in [22]) does not fall in a certain
εβ-fraction of this interval. For instance, (1.5) extends to h = h∗n − 1 for λn ≥ 2 log β,
while (1.6) extends to h = h∗n − 1 for λn ≤ log β (see Remarks 5.8 and 6.6).

In the special case h = 0, Theorem 1.1, together with a short and self-contained result
(Claim 6.3), translates to the following: with high probability, I ∼ µ̂0

n has

|I ∩ (J−n2 ,
n
2 K2 × Jh∗n − 1, (1 + εβ)h∗nK)| > (1− εβ)n2 . (1.8)

In view of Theorem 1.1, we conjecture the lower bound here is exact (once the
interface has reached a height h∗n above the floor, it has no further incentive to rise),
so that the upper bound (1 + εβ)h∗n in (1.8) can be replaced by h∗n. More generally, in
Theorem 1.1, we conjecture that for every h, the interface I ∼ µ̂h

n has (1− εβ)n2 of its
faces be at height either h∗n − h− 1 or h∗n − h.

Remark 1.4. While our results are stated for the cylinder Λn = J−n2 ,
n
2 K2 ×Z, all proofs

go through mutatis mutandis on the box Λn = J−n2 ,
n
2 K3 as the interface never feels the

effect of the boundary conditions on the top and bottom, except with e−cn probability.
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Remark 1.5. Our results extend to any dimension d ≥ 3 and are presented for d = 3 to
simplify the exposition. Theorem 1.1 would be given analogously, with n2 replaced by
nd−1, and with h∗n defined as in (1.3) with 2β replaced by (d− 1)β and with the natural

generalization of αh(d). Pertaining Remark 1.2, when d > 3, one has Mn/ log n
p−→

(d− 1)/α(d), whence the ratio E[Mn]/h∗n goes to d− 1 as n→∞.

1.1 Related work

The study of entropic repulsion for interfaces separating stable phases of the Ising
model has a long history. We first describe the picture in Z2. Without any floor (i.e., under
µ∓n as opposed to µ̂h

n), the Ising interface in a strip of side-length n with Dobrushin’s
boundary conditions is known to have

√
n height fluctuations [14], and converge to a

Brownian bridge under a diffusive rescaling at all β > βc(d) [26, 24]. In the presence of
a floor at height zero, either by means of plus boundary conditions in the entire lower
half-space or by means of conditioning on the interface being restricted to the upper
half-space, one could easily deduce that the fluctuations remain O(

√
n); convergence

to a Brownian excursion was recently shown in [29]. In particular, no matter the
conditioning on a floor (at whatever negative height) the entropic repulsion effect does
not change the order of the typical height of the interface. We also mention that in
this two-dimensional setting, [30] established an equivalence between the floor effects
induced by conditioning on the interface to be non-negative, and by plus boundary
conditions in the lower half-space.

In dimensions d ≥ 3, the phenomenology is completely different. Recall that without
any floor conditioning, the interface is rigid about its ground state, i.e., the interface
is mostly flat at height zero, with O(1) height oscillations about that with exponential
tails [16, 38]. In [22, 21] the authors studied more refined features regarding the typical
shape of this interface near its high points, and used that to deduce that the maximum
height is tight and has uniform Gumbel tails about its median m∗n = ( 2

α + o(1)) log n.
When introducing a hard floor, either via conditioning or via a set of plus spins in

the lower half-space, far less is known, though this problem has been discussed in
the physics literature at least since [6]. That work proposed using the solid-on-solid
(SOS) model [1], a distribution over ϕ : J−n2 ,

n
2 K2 → Z with Hamiltonian,

∑
x∼y |ϕx − ϕy|

as an approximation to the Ising interface on which such questions can be studied.
The work [6] identified the order of the typical height the SOS surface rises to due to
the entropic repulsion effect at sufficiently low temperatures, and in [8, 9] the exact
asymptotics of this height were determined. In particular, it was found in [8, 9] that in
the SOS model, the typical height of the surface above a floor at height zero, is exactly
half of the maximum height in the absence of a floor (note this matches the scaling
relation between h∗n and m∗n we found for the Ising model: see Remark 1.2). Beyond
that, [10] established that the macroscopic level lines converge to the Wulff shape, and
have n1/3+o(1) fluctuations along the sides of the box. The work [32] generalized the
results of [8, 9] of this entropic repulsion phenomenon to integer valued |∇ϕ|p interfaces
(the SOS model being the p = 1 case). Let us also mention that the question of entropic
repulsion has been extensively studied in the context of the discrete Gaussian free
field [4, 5, 12, 13]. In all such height function approximations, identification of the
height to which the interface rises given a floor at height zero is effectively equivalent
to identification of the floor height −h at which the phase transition in the form of
Theorem 1.1 occurs.

Despite this progress for understanding the entropic repulsion phenomenon on
the SOS approximation, for the actual Ising interface, much less was known. A non-
quantitative delocalization result that the typical height of the interface goes to infinity
when the floor is at height zero was established by means of correlation inequalities
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in [17, 18]. The works [33, 25] sketched an argument that this interface rises to a
height that is between (c/β) log n and (C/β) log n for two different constants C > c > 0.
However, we are not aware of any previous work on the 3D Ising model pinpointing the
location of an entropic repulsion phenomenon to within o(log n), let alone identifying its
exact height.

Understanding the entropic repulsion phenomenon also opens the door to studying
wetting phenomena for interfaces between phases: see [6] as well as the surveys [40, 27]
for details on the below discussion. Here, one can for instance change the interaction
strength for the edges along the floor from 1 to some J ≥ 0; the interface then undergoes
a transition at some Jw(β) ≤ 1 between a partial wetting regime (J < Jw) where the
typical interface height is O(1), and a complete wetting regime (J > Jw) in which
the typical interface height diverges. In d = 2, this transition can be deduced for
the Ising model by means of the machinery of [35, 36, 7]. In d ≥ 3, wetting for the
SOS model was first studied in [11], and Jw(β) was precisely identified in [31]; for the
Ising model, some partial results can be obtained, as in [18, 3, 2]. A related physical
phenomenon occurs when instead keeping J = 1, but introducing an external field
−λ < 0 which pushes the interface down, competing with the repulsion away from the
floor. This competition induces a physical phenomenon known as pre-wetting, whereby
as λ = λn ↓ 0, the interface interpolates between the delocalized one at λ = 0 and
one having uniformly bounded height oscillations when λ is uniformly bounded away
from zero. In d = 2, this interpolation is smooth, and the interface behavior is now
well-understood, exhibiting KPZ fluctuation exponents and local convergence to the
Ferrari–Spohn diffusion [39, 19, 28]. In the d ≥ 3 case, less is known rigorously, aside
from the first few jumps of the interface for λ small but independent of the system
size [3].

1.2 Proof ideas

The proof of Theorem 1.1 proceeds in two parts corresponding to each of (1.5)
and (1.6). A more detailed formulation of (1.5) can be found in Theorem 5.1, and a more
detailed formulation of (1.6) can be found in Theorem 6.1. Unlike [16, 22, 21, 23] the
proofs in this paper are primarily probabilistic in nature, with all combinatorial objects
we use having already appeared in the previous work [23].

1.2.1 A priori regularity estimates

The first step in our analysis consists of establishing that, typically,

(i) all but an εβ-fraction of the faces of I are horizontal faces for which the intersection
of I with the column through them is a singleton—call these ceiling faces following
Dobrushin [16]; and

(ii) all but an εβ-fraction of the ceiling faces belong to connected components—referred
to as ceilings—that are reasonably large and regular, being of size at least n1.9 and
with a boundary of size at most n1+o(1).

In light of these facts, we may restrict our attention to the heights of faces of I belonging
to ceilings as in (ii). This is crucial because the estimates we import from [23] on large
deviations of the maximal height oscillations interior to a ceiling are only sharp inside
ceilings with a uniformly bounded isoperimetric dimension.

Such a priori estimates are established using the basic fact that, if Γ ⊂ Ifl
h is such that

µ∓n (Γ) � µ∓n (Ifl
h), then Γ is also atypical under the conditional measure µ̂h

n = µ∓n (· | Ifl
h).

Concretely, the lower bound on µ∓n (Ifl
0) given in the next proposition allows us to rule out

any event Γ which, e.g., has µ∓n (Γ) ≤ exp(−1.1n log n).
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Proposition 1.6. There exists β0 > 0 such that, for every fixed β > β0 and every
sufficiently large n, the probability of the event Ifl

0, i.e. that the 3D Ising interface I is a
subset of J−n2 ,

n
2 K2 ×R+, satisfies

e−(1+εβ)n logn ≤ µ∓n
(
Ifl
0

)
≤ e−(1−εβ)n logn ,

where εβ is some sequence going to 0 as β increases.

The lower bound in this proposition is relatively straightforward, and we establish it
in §4 en route to deriving the mentioned preliminary regularity estimates. The upper
bound is more delicate, and while not needed for our arguments, in §5.3 we obtain it as
a corollary of our proof of (1.5) (namely, from the more detailed result in Theorem 5.2,
which rules out the existence of large ceilings below height h∗n − h− 1 under µ̂∓n ).

1.2.2 Idea of proof of (1.5)

We begin with a natural approach for ruling out the existence of a ceiling C (a connected
component of (horizontal) ceiling faces of I), whose height ht(C) is h∗n−h−1−k for k ≥ 1

and whose projection on height 0, together with every finite component it bounds (in
these components the interface can exhibit local oscillations relative to C) is a set S with
area |S| ≥ θkn2 for some 0 < θ(β) < 1. (The aim would be to show that such a C is atypical
under µ̂h

n, and then take a union bound over k.) Denote the maximal downward oscillation
inside C by M̄↓S = ht(C) − min{x3 : (x1, x2, x3) ∈ I , (x1, x2) ∈ S}, and suppose for the

moment that the following bound holds: µ∓n (M̄↓S < h) . exp(−|S|e−αh) for any h, with αh
from (1.4). (The actual bound available to us—see (2.9)—has a few small differences
(error terms, a restriction on h) in addition to one major proviso we will soon describe.)
This estimate is quite intuitive in light of the fact ([22, 21]) that the µ∓n -probability of
a local oscillation of height at least h below a site in the bulk is approximately e−αh ;
indeed, if the oscillations in every site of S were mutually independent, we would get
the bound (1 − e−αh)|S| ≈ exp(−|S|e−αh). In the event that a ceiling C as described
above exists, we are guaranteed to have M̄↓S < h∗n − k by the implicit conditioning
on Ifl

h in µ̂h
n. To rule this out, we shift the interface up by k, effectively sending C to

height h∗n − h− 1, which reduces the weight of the interface by about exp(−4(β − C)kn)

due to the necessary addition of 4kn faces to the interface. The benefit of doing so
is that, even though we can still only say that M̄↓S < h∗n − k (the local oscillations
within C are unaffected by the shift), the shifted interface is only guaranteed to have
M̄↓S < h∗n by the implicit conditioning in µ̂h

n, at which point one could utilize the fact that

µ∓n (M̄↓S < h∗n−k | M̄
↓
S < h∗n) ≈ µ∓n (M̄↓S < h∗n−k) . exp(−|S|e−αh∗n−k) (where one also uses

a sharp lower bound on the denominator in the ratio µ∓n (M̄↓S < h∗n − k)/µ∓n (M̄↓S < h∗n)).
In summary, the probability of encountering such a ceiling C can be bounded from above
by approximately

exp
(
4(β − C)kn− |S|e−αh∗n−k

)
.

The sequence (αh) is known [21] to satisfy αh∗n−k ≤ αh∗n − (4β − C)k, whereas e−αh∗n ≤
e2β/n by the definition of h∗n in (1.3). Plugging these in the bound above, together with
the fact that |S| ≥ θkn2, yields

exp
(
4(β − C)kn− e−2β(θe4β−C)kn

)
,

in which the second term in the exponent dominates the first term for θ := e−β when β
is large enough.

This approach highlights the competition between energy and entropy (the terms
4βkn and |S|e−αh∗n−k ) propelling the interface from being rigid at height 0. It is worth-
while comparing this argument to the simpler analysis of entropic repulsion in the SOS
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model: there, to rule out a large subset C at height less than h, one can lift the configura-
tion by k, and then plant downward spikes in an εβ-subset of C. In the 3D Ising model,
the large deviation rate of the height above/below a site in the bulk is not governed by
a deterministic shape (such as the single column spike in the SOS model), but rather
by a distribution over complex oscillations; hence, we instead consider interfaces with
M̄↓S < h∗n − k, where no oscillation dipped below a certain height.

One obvious difficulty in carrying out the above approach is due to having, in lieu of
the simplified case of one given ceiling C, an abundance of randomly located ceilings.
One needs to reveal (here and in what follows, we use the term reveal or expose to refer
to conditioning on the realizations of the objects under consideration) their boundaries,
but not their interior, in order to appeal to the bounds of [23], and do so with care, as
the boundary of one ceiling may overlap with that of another. Moreover, a single wall—a
connected component of non-ceiling faces—may give rise to multiple ceilings at different
heights. However, these details can be handled by exposing the outermost walls and
reevaluating the ceiling landscape given the exposed walls (and the ceilings they nest):
we may identify a slab at height h∗n − h − 1 − k where the total area in the ceilings Ci
exceeds θkn2, and attempt to apply the above argument to each of the Si’s separately,
for a bound of exp(−

∑
|Si|e−αh∗n−k).

The main obstacle, as hinted above, is actually the upper bound we have for µ∓n (M̄↓S <

h), which is only valid in conjunction with an indicator that every wall in the bulk of
S must be relatively small—namely, the diameter of every such wall should be at most
exp(ch) . nεβ (see Proposition 2.28 and the event GDS◦ in the key estimate (2.9) in it). The
source of this constraint is that, in order to prove said bound in [23], the region S was
partitioned into boxes Bi of side length L, whose interiors B◦i were inspected carefully
(while ignoring Bi \B◦i ); the constraint on the maximum diameter of any wall meant that
no wall in B◦i could reach ∂Bi, leading to the desired independence of local oscillations
between B◦i ’s. We stress that this obstacle is real, rather than a limitation of the proof
technique: a single wall of size (c/β)n log n can raise/lower an area of order n2 by height
(c/β) log n, forming correlations between the heights in its interior as it nests sites in
ceilings. The cost of such a wall is exp(−c′n log n), which can still be larger than µ∓n (Ifl

h),
and indeed, this is precisely the mechanism of entropic repulsion, where most of the
interface is raised by a single large wall...

To overcome this obstacle, we reveal every mesoscopic wall—in the sense of hav-
ing diameter larger than a threshold of ec(h

∗
n−k) ∨ log n; see (5.1)—in I and carry the

above approach in this conditional space. This is achieved in Lemma 5.6, the key to
showing (1.5). The following are worthwhile mentioning from its proof:

(1) Conditioning on all mesoscopic walls can reveal a complicated set of walls nesting
one another, supporting a collection of ceilings Ci (the full interface I will mod-
ify these Ci’s via nested microscopic walls). Whereas we would like to appeal to
Proposition 2.28 simultaneously for every Ci which is at height h∗n − h− 1− k, there
are two prerequisites on its interior Si to qualify an application of that proposition:
(i) Si should be simply-connected; (ii) the isoperimetric dimension of Si should be
bounded by an absolute constant. Item (ii) is handled by our a priori regularity
estimates, as we only treat Si’s with area at least n1.9 and boundary at most n1+o(1).
However, Item (i) is simply false when one mesoscopic wall nests another... Our
remedy for this is to further expose the walls along a minimal collection of faces that
connect the boundaries of all Si’s, which will make the unrevealed portion of the Si’s
simply-connected by definition.

(2) Controlling the set of faces that connect the Si’s is imperative: too large of a set may
potentially deform the regularity of the Si’s, increasing their isoperimetric dimension

EJP 28 (2023), paper 95.
Page 7/44

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP987
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropic repulsion of 3D Ising interfaces

beyond the scope of Proposition 2.28. Here we rely on the fact that there is a total
of n1+o(1) faces in the union of the boundaries of the Si’s. A classical bound on
the Euclidean Traveling Salesman Problem (TSP) then shows that we can connect
an arbitrary face from each one via a minimum set of size at most n3/2+o(1) faces.
Thus, revealing the (microscopic, by the conditioning) walls along said set modifies
the area and boundary of each Si by at most n3/2+o(1), keeping its isoperimetric
dimension (we had |Si| ≥ n1.9 and |∂Si| ≤ n1+o(1)) in check.

(3) Recall that in the simplified outline one needed a sharp upper bound for µ∓n (M̄↓S <

h∗n − k | M̄
↓
S < h∗n). In the actual proof, we must instead estimate µ∓n (M̄↓S < h∗n − k |

M̄↓S < h∗n ,GDS◦), where GDS◦ is the event that no walls in S◦, the bulk of S, are

mesoscopic. We infer this bound from a sharp upper bound on µ∓n (M̄↓S < h∗n − k ,GDS◦)
and a sharp lower bound on µ∓n (M̄↓S < h∗n ,GDS◦). The former is provided by (2.9)
in Proposition 2.28, as discussed above. The latter is available from (2.8), which
is given in terms of a slightly different event GmS◦ , yet in our application this event
implies the required event GDS◦ .

In Section 5 we give a short proof (Claim 5.4) for entropic repulsion at h < (1− εβ)h∗n
(away from the critical threshold); see the discussion following it for more on the
obstacles that arise at h = (1 + o(1))h∗n.

1.2.3 Idea of proof of (1.6)

We now describe our approach for showing that in the regime of h ≥ h∗n, all but εβn2

faces of I are at most at height zero (the fact that all but εβn2 faces of I are at least
at height zero follows straightforwardly from the FKG inequality and rigidity under the
unconditional measure µ∓n ).

Consider a ceiling C at height ht(C) ≥ 1 whose interior S has area at least θn2. To
demonstrate the basic idea that lets rigidity prevail over entropic repulsion in this
range of h, suppose that the interface gives rise to this ceiling by means of a cylindrical
wall W of the form ∂S × [0,ht(C)]. In this situation, one can compare the original
interface I with the interface I ′ obtained by truncating the height of the wall W to
be ht(C) − 1: the weight of I ′ will increase by about exp((β − C)|∂S|), so this simple
Peierls argument can rule out the existence of such a ceiling C as long as it does not
violate the hard floor constraint. By definition, I ′ ∈ Ifl

h if and only if M̄↓S , the maximal

downward oscillation inside C, satisfies M̄↓S < ht(C) + h. The probability of the latter
event is exponentially small in n, yet it can still be outweighed by the energy gain due
to truncating W .

Concretely, let IW ⊂ Ifl
h be the set interfaces containing the above wall W , and further

let ĨW ⊂ IW be the subset of interfaces which in addition satisfy M̄↓S ≤ h∗n (so that, in

particular, M̄↓S < ht(C)+h). We may reduce µ̂h
n(I ∈ ĨW | I ∈ IW ), akin to the discussion in

the previous section, to µ∓n (M̄↓S ≤ h∗n | M̄
↓
S ≤ ht(C) + h), and appeal to Proposition 2.28—

however this time we are interested in a sharp lower bound on this quantity. To that
end, we can use the sharp lower bound on µ∓n (M̄↓S ≤ h∗n) ≥ exp(−(1 + εβ)|S|eαh∗n+1)

from (2.8) in that proposition (only the upper bound (2.9) had the extra event GDS◦ that
greatly complicated matters), and simply drop the conditioning (only decreasing the
probability in doing so). By the definition of h∗n in (1.3) and the fact that the sequence
is known ([22]) to have αh+1 ≥ αh + 4β − C, we have αh∗n+1 ≥ e−2β+C/n, and combining

this with the Peierls bound on µ̂h
n(ĨW ) shows that µ̂h

n(IW ) is bounded from above by
approximately

exp
(
−(β − C)|∂S|+ |S|e−2β+C/n

)
≤ exp

(
−
(
β − C + e−2β+C′

)
|∂S|

)
,

EJP 28 (2023), paper 95.
Page 8/44

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP987
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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using here the isoperimetric inequality |S| ≤ |∂S|n/4. Notice that this argument did not
actually need S to have area θn2; e.g., if the boundary of S were at least log n, one could
already rule out C via a union bound; our actual proof (applicable to a general wall W as
opposed to the cylinder from the toy example above), along the same vein, will rule out
any ceiling whose supporting wall W contains at least n9/10 faces.

The main obstacle in using this approach to rule out general ceilings C at positive
height is that, in the 3D Ising model, the only (tractable) approach one has to shrinking
the height of a subset of the interface is the deletion of a collection of walls: even a
single wall may have a complicated landscape of overhangs and nested walls near its
boundary, so devising a notion of truncating its height to arrive at a valid interface, while
gaining the energy of |∂S| without an entropic cost, is highly nontrivial. (E.g., how do we
reconcile the effect of having walls nested in W shift due to the truncation and collide
with W? Deleting those would impact the entropy, whereas modifying them in any other
way can, in addition, lead to similar ripple effects.)

Furthermore, even if we decide to delete the entire wall W , our Peierls map cannot
consist of that alone: due to the long-range interactions that the deletion of W and the
resulting shifts induce between interface faces, this operation must also be followed by
the deletion of certain other walls that interact too strongly with W—either the groups
of walls in Dobrushin’s original work [16], or the one-sided wall clusters in [23]. Roughly
put, the wall cluster criterion says that if W nests a wall W ′ whose number of faces is
larger than its distance to W , then we must also tag W ′ for deletion, and process its
inner walls recursively (see Def. 2.20). Hence, if we delete W and its wall cluster W,
and then aim to analyze M̄↓S , we have the following problem: whereas revealing only
W and its exterior gave no information on the interface in S (so we were free to apply
Proposition 2.28), the act of revealing its wall cluster W robs us of that feature, by
imposing the constraint that the size of every wall W ′ that remained unexposed in S

should not exceed its distance to W...
Our remedy for this problem is establishing a certain monotonicity principle, which

may find other uses. Intuitively, conditioning on wall sizes being below various thresholds,
albeit complicated (here, the threshold for a given wall depends on its distance to the
wall cluster), should only yield better control over oscillations. Making this intuition
precise is the observation that results relying on Peierls maps that only deleted walls—
such were, e.g., key results in [23] that we use here—can also be established in the
above conditional setting (if an interface satisfied the wall size constraints, so will
the interface corresponding to a subset of its walls). As such, we can extend said
results from [23], and notably the lower bounds of Proposition 2.28, to this setting
(see Proposition 3.3). This observation and the extensions it gives rise to appear in
Section 3.

In Section 6 we give a short proof (Claim 6.3) for rigidity at height zero for h ≥
(1 + εβ)h∗n (away from the critical threshold); see the discussion following it for more on
the obstacles that arise at h = (1 + o(1))h∗n.

1.3 Outline of paper

In Section 2, we overview the notation we use in the paper and recall many of the
key definitions and tools from [16] and [23] used in our analysis. In Section 3, we extend
several of the preliminary estimates of [23] to also hold under a monotone conditioning
event, which will later be needed for showing (1.6). In Section 4, we establish an a priori
bound on the probability that the interface lies above the floor at height 0, and use it to
prove preliminary regularity estimates for the interface above a floor at −h. In Section 5,
we treat the case of h < h∗n − 1, establishing (1.5) of Theorem 1.1. Then in Section 6, we
handle h ≥ h∗n, establishing (1.6) of Theorem 1.1.
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2 Preliminaries

In this section, we recall the decomposition of the interface into walls and ceilings
and their groupings into wall clusters. We then recall the results of [23] that we will
require in this paper regarding the law of the maximum oscillation inside a ceiling,
conditionally on all walls outside that ceiling. Throughout this, we will also introduce
any notation that will be used throughout the paper.

2.1 Notation

We begin by describing the underlying geometry on which we will be working, and
any related graph notation we will use throughout the paper.

Lattice notation

The underlying graphs we consider throughout this paper are rectangular subsets of Z3.
To be precise, Z3 is the integer lattice graph with vertices at (x1, x2, x3) ∈ Z3 and edges
between nearest neighbor vertices (at Euclidean distance one). A face of Z3 is the open
set of points bounded by four edges (or four vertices) forming a square of side length
one, lying normal to one of the coordinate directions. A cell of Z3 is the set of points
bounded by six faces (or eight vertices) forming a cube of side length one.

Because our interest is the behavior of the interface separating plus and minus spins,
it will be convenient for us to consider Ising configurations as assignments of ±1 spins
to the vertices of the dual graph (Z3)∗ = (Z + 1

2 )3; these are naturally identified with
the cells of Z3 for which they are the midpoint.

More generally, we will frequently identify edges, faces, and cells with their midpoints.
A subset Λ ⊂ Z3 specifies an edge, face, and cell collection via the edges, faces, and
cells of Z3 all of whose bounding vertices are in Λ. We will denote the resulting edge set
by E (Λ), face set by F (Λ), and cell set by C (Λ).

Two edges are adjacent if they share a vertex, two faces adjacent if they share
a bounding edge, and two cells adjacent if they share a bounding face. We denote
adjacency by the notation ∼. It will also be useful to have a notion of connectivity
in R3 (as opposed to Z3); we say that an edge/face/cell is ∗-adjacent, denoted ∼∗, to
another edge/face/cell if they share a bounding vertex. A connected component of faces
(respectively ∗-connected component of faces) is a maximal set of faces such that for any
pair of faces in that set, there is a sequence of adjacent faces (resp., ∗-adjacent) faces
starting at one face and ending at the other.

We use the notation d(A,B) = infx∈A,y∈B d(x, y) to denote the Euclidean distance
in R3 between two sets A,B. We then let Br(x) = {y : d(y, x) ≤ r}. When these balls
are viewed as subsets of edges/faces/cells, we include all those edges/faces/cells whose
midpoint falls in Br(x).

Subsets of Z3

As mentioned, the primary subsets of Z3 with which we will be concerned are of the
form of cubes and cylinders. In view of that, define the centered n×m× h box,

Λn,m,h := J−n2 ,
n
2 K× J−m2 ,

m
2 K× J−h2 ,

h
2 K ⊂ Z3 ,

where

Ja, bK := {bac, bac+ 1, . . . , dbe − 1, dbe} .

We can then let Λn denote the special case of the cylinder Λn,n,∞. The (outer) boundary
∂Λn of the cell set C (Λn) is the set of cells in C (Z3) \ C (Λn) adjacent to a cell in C (Λn).
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We are also going to use a dedicated notation for horizontal slices and half-spaces
of Z3. For any h ∈ Z let Lh be the subgraph of Z3 having vertex set Z2 × {h} and
correspondingly define edge and face sets E (Lh) and F (Lh). For a half-integer h ∈ Z+ 1

2 ,
let Lh collect the faces and cells in F (Z3) ∪ C (Z3) whose midpoints have half-integer
e3 coordinate h. A certain such set which will recur is L0 and its restriction to F (Λn)

which we denote by L0,n.
Finally we use L>h =

⋃
h′>h Lh′ and L<h =

⋃
h′<h Lh′ , and similarly L≥h and L≤h, for

half-spaces.

Projections onto L0

Throughout the paper, we will refer to a face as horizontal if its normal vector is ±e3,
and as vertical if its normal vector is one of ±e1 or ±e2.

For a face f ∈ F (Z3), its projection is the edge or face given by

ρ(f) = {(x1, x2, 0) : (x1, x2, s) ∈ f for some s ∈ R} ⊂ L0 .

Specifically, the projection of a horizontal face is a face in F (L0), while the projection of
a vertical face is an edge in E (L0). The projection of a collection of faces F is given by
ρ(F ) :=

⋃
f∈F ρ(f), which may consist both of edges and faces of L0.

2.2 The Ising model

An Ising configuration σ on a subset Λ ⊂ Z3 is an assignment of ±1-valued spins
to the cells of Λ, i.e., σ ∈ {±1}C (Λ). For a finite connected subset Λ ⊂ Z3, the Ising
model on Λ with boundary conditions η ∈ {±1}C (Z3) is the probability distribution over
σ ∈ {±1}C (Λ) given by

µηΛ(σ) ∝ exp [−βH(σ)] , where

H(σ) =
∑

v,w∈C (Λ)
v∼w

1{σv 6= σw}+
∑

v∈C (Λ),w∈C (Z3)\C (Λ)
v∼w

1{σv 6= ηw} . (2.1)

Throughout this paper, we will be considering the Dobrushin boundary conditions,
denoted η = ∓, where ηw = −1 if w is in the upper half-space (w3 > 0) and ηw = +1 if w
is in the lower half-space (w3 < 0).

Infinite-volume measures

Though (2.1) is defined only on finite graphs, the definition can be extended to infinite
graphs via a consistency criterion known as the DLR conditions (see e.g., the book [20]
for a definition and discussion. On Zd, such infinite-volume measures arise as weak limits
of finite-volume measures, say n→∞ limits of the Ising model on boxes of side length
n with prescribed sequences of boundary conditions. At low temperatures β > βc(d),
the Ising model on Zd admits multiple infinite-volume Gibbs measures µ+

Z3 and µ−
Z3

obtained by taking plus and minus boundary conditions on boxes of side-length n and
sending n→∞. An important consequence of the work of [16] was that when d ≥ 3, the
weak limit µ∓

Z3 := limn→∞ µ∓n,n,n is a non-translation-invariant DLR measure, and is thus
distinct from any mixtures of µ+

Z32 and µ−
Z32.

2.3 Interfaces under Dobrushin boundary conditions

Having defined Ising configurations and the Ising measure with Dobrushin boundary
conditions, let us now formally define the interface separating the plus and minus phases.
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Definition 2.1 (Interfaces). For a domain Λn,m,h with Dobrushin boundary conditions,
and an Ising configuration σ on C (Λn,m,h), the interface I = I(σ) is defined as follows:

1. Extend σ to a configuration on C (Z3) by taking σv = +1 if v ∈ L<0 \ C (Λn,m,h) and
σv = −1 if v ∈ L>0 \ C(Λn,m,h).

2. Let F (σ) be the set of faces in F (Z3) separating cells with differing spins under σ.

3. Let I∞(σ) be the (maximal) ∗-connected component of faces in F (σ) containing
L0 \F (Λn,m,h) in F (σ). (This is also the unique infinite ∗-connected component in
F (σ).)

4. The interface I(σ) is the restriction of I∞(σ) to F (Λn,m,h).

Taking the h → ∞ limit µ∓n,m,h to obtain the infinite-volume measure µ∓n,m,∞, the
interface defined is easily seen to stay finite almost surely. Thus, µ∓n,m,∞-almost surely,
the above process also defines the interface for configurations on all of C (Λn,m,∞).

Remark 2.2. Every (finite) interface uniquely defines a configuration with exactly one
∗-connected plus component and exactly one ∗-connected minus component. For every
I, we can obtain this configuration, which we call σ(I), by iteratively assigning spins to
C(Λn,m,h), starting from ∂Λn,m,h and proceeding inwards, in such a way that adjacent
sites have differing spins if and only if they are separated by a face in I. Informally,
σ(I) is indicating the sites that are in the “plus phase” and “minus phase” given the
interface I.

2.4 The Ising interface conditioned on a floor

In this paper, we study the behavior of the interface I(σ) when conditioned on a
floor event, i.e., conditioned on the interface lying above a certain horizontal plane (the
floor). For us, the floor will either reside at height zero, or into the lower half-space, so
that we are examining the entropic repulsion of the interface into the upper half-space.
More precisely, we use the following notation to denote the Ising measure with a floor at
height −h for h ≥ 0:

µ̂h
n(σ) = µ∓n (σ | I ⊂ L≥−h) = µ∓n (σ | Ifl

h) .

2.5 Decomposition of the interface: walls and ceilings

Having defined the key objects of interest in this paper, we now begin to collect the
main tools for its analysis. We begin by recalling the classical decomposition of [16] of
the Ising interface into walls and ceilings.

Definition 2.3 (Walls and ceilings). A face f ∈ I is a ceiling face if it is horizontal and
there is no f ′ ∈ I, f ′ 6= f such that ρ(f) = ρ(f ′). A face f ∈ I is a wall face if it is not a
ceiling face.

A wall is a ∗-connected component of wall faces and a ceiling is a ∗-connected
component of ceiling faces.

Intuitively speaking, the walls capture all the oscillations of the interface off of the
lowest energy (horizontally flat) interface, while the ceilings capture the flat stretches of
the interface. In particular, every ceiling has a unique height, denoted ht(C), since all
faces in the ceiling have the same x3 coordinate.

Definition 2.4. Throughout the paper, we let C(I) be the collection of all ceilings of I,
and for every height h ∈ Z, we let Ch(I) = {C ∈ C(I) : ht(C) = h}.

The projections of walls, like non-crossing loop collections in Z2, satisfy certain
important nesting relations.
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Definition 2.5 (Nesting of walls). For a wall W , the complement (in L0) of its projection,
denoted

ρ(W )c := (E (L0) ∪F (L0)) \ ρ(W ) ,

splits into one infinite component, and some finite ones. An edge or face u ∈ E (L0) ∪
F (L0) is said to be interior to (or nested in) a wall W , denoted by u bW , if u is not in
the infinite component of ρ(W )c. A wall W ′ is nested in a wall W , denoted W ′ b W , if
every element of ρ(W ′) is interior to W . Similarly, a ceiling C is nested in a wall W if
every element of ρ(C) is interior to W .

We can then identify the connected components of ρ(W )c with the ceilings incident
to W .

Lemma 2.6 ([16]). For a projection of the walls of an interface, each connected com-
ponent of that projection (as a subset of edges and faces) corresponds to a single wall.
Moreover, there is a 1-1 correspondence between the ceilings adjacent to a standard
wall W and the connected components of ρ(W )c. Similarly, for a wall W , all other walls
W ′ 6= W can be identified to the connected component of ρ(W )c they project into, and in
that manner they can be identified to the ceiling of W to which they are interior.

The above correspondence can be made more transparent by introducing the follow-
ing notion.

Definition 2.7. For a wall W , the ceilings incident to W can be decomposed into interior
ceilings of W (those ceilings identified with the finite connected components of ρ(W )c),
and a single exterior ceiling, called the supporting ceiling of W , identified with the
infinite connected component of ρ(W )c.

Definition 2.8. The hull of a ceiling C, denoted
•

C is the minimal simply-connected set of
horizontal faces containing C. The hull of a wall,

•

W is the union of W with the hulls of
its interior ceilings.

Observation 2.9. For every interior ceiling C of W , the projection of its hull, ρ(
•

C), is
exactly the finite component of ρ(W )c it projects into. On the other hand, the projection
of the hull of the floor of W is all of L0,n. Finally, the set ρ(

•

W ) is the union of ρ(W ) with
all the finite components of ρ(W )c.

Finally, we can assign the index points of L0,n the walls of an interface I as follows.

Remark 2.10. Given an interface I, for every face x ∈ F (L0), assign x the wall W of I
if x bW and x shares an edge with ρ(W ). If there is no W for which this is the case, let
Wx = ∅. Importantly, this labeling scheme is such that x is only assigned one wall, but
the same wall may be assigned to many index faces.

We also introduce a notion of a nested sequence of walls which will recur.

Definition 2.11. To any edge/face/cell x, we can assign a nested sequence of walls
Wx =

⋃
sWus consisting of all walls nesting ρ(x) (by Definition 2.5, this forms a nested

sequence of walls).

2.6 The standard wall representation

A key property of the wall and ceilings decomposition of [16] is that neither the
ceilings, nor crucially the vertical positions of the walls, are needed to reconstruct the
interface. This is formalized by the following notion of standard walls, also defined
in [15].

Definition 2.12 (Standard walls). A wall W is a standard wall if there exists an interface
IW such that IW has exactly one wall given by W . A collection of standard walls is
admissible if any two standard walls in the collection have pairwise vertex disjoint
projections.
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Definition 2.13 (Standardization of walls). For every wall W of I, we can define its
standardization ΘstW which is the translate of the wall by (0, 0,−s) where s is the height
of its supporting ceiling. (We leave the dependence of s, and therefore the dependence
of ΘstW on the rest of I to be contextually understood.)

We then have the following important bijection between interfaces and their standard
wall representation, defined as the collection of standard walls given by standardizing
all walls of I.

Lemma 2.14 ([16]). The map sending an interface to its standard wall representation is
a bijection between the set of all valid interfaces and the set of all admissible collections
of standard walls.

We note the following observation based on the bijection given by Lemma 2.14.

Observation 2.15. Consider interfaces I and J , such that the standard wall repre-
sentation of I contains that of J (and additionally has the standard walls ΘstW =

(ΘstW1, . . . ,ΘstWr)). There is a 1-1 map between the faces of I \W and the faces of
J \H where H is the set of faces in J projecting into ρ(W). Moreover, this bijection
can be encoded into a map f 7→ θlf that only consists of vertical shifts, and such that all
faces projecting into the same connected component of ρ(W)c undergo the same vertical
shift.

2.7 The induced distribution on interfaces

Aside from the decomposition of the Ising interface into walls and ceilings, the other
key tool used by [16] to establish rigidity of the interface was an expression for the Ising
distribution over interfaces as a perturbation, by means of the cluster expansion [34], of
a Gibbs measure on interfaces with weight exp(−β|I|). The perturbative term takes into
account the interaction of bubbles of the low-temperature Ising configurations in the
minus phase above and plus phase below the interface, with the interface itself.

Here and throughout the paper, let µ∓n = µ∓Λn = limh→∞ µ∓n,n,h.

Theorem 2.16 ([16, Lemma 1]). There exist β0 > 0, c̄ > 0, K̄ > 0, and a function g = gβ
such that the following holds for every β > β0. For every interface I,

µ∓n (I) ∝ exp

(
− β|I|+

∑
f∈I

g(f, I)

)
,

and for every I, I ′ and f ∈ I and f ′ ∈ I ′,

|g(f, I)| ≤ K̄ (2.2)

|g(f, I)− g(f ′, I ′)| ≤ K̄e−c̄r(f,I;f ′,I′) (2.3)

where r(f, I; f ′, I ′) is the largest radius around the origin on which I − f (I shifted by
the midpoint of the face f ) is congruent to I ′ − f ′. That is to say,

r(f, I; f ′, I ′) := sup
{
r : (I − f) ∩Br(0) ≡ (I ′ − f ′) ∩Br(0)

}
,

where the congruence relation ≡ is equality as subsets of R3.

We will say that the radius r(f, I; f ′, I ′) is attained by a face g ∈ I (resp., g′ ∈ I ′) of
minimal distance to f (resp., f ′) if the presence of that face prevents r(f, I; f ′, I ′) from
being any larger.

2.8 Excess energy of interfaces and walls

Given the representation of Theorem 2.16, we see that the ratio between the weight
of I and the weight of I ′ will have a term of the form exp(−β(|I| − |I ′|)). This difference
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in sizes of the interfaces can be thought of as the excess energy of one interface over
the other, and will recur throughout the paper.

Definition 2.17 (Excess energy). For two interfaces I,J , the excess energy of I with
respect to J , denoted m(I;J ), is given by

m(I;J ) := |I| − |J | .

Evidently, for any valid interface I, we have that m(I;L0,n) ≥ 0.

We relate this notion back to the walls and ceilings, and assign excess energies to
walls as follows.

Definition 2.18. For a wall W , recall that IΘstW is the interface whose only wall is the
standardization of W , and define its excess energy by

m(W ) = m(IΘstW ;L0,n) .

This excess energy can alternatively be expressed as m(W ) = |W | − |F (ρ(W ))|; one then
finds that

m(W ) ≥ 1

2
|W | , and m(W ) ≥ |ρ(W )| = |E (ρ(W )|+ |F (ρ(W ))| . (2.4)

Evidently, any two faces x, y ∈ L0,n both nested in W must satisfy d(x, y) ≤ m(W ).

For a collection of walls W, we define m(W) =
∑
W∈W m(W ). It then becomes

evident that the excess energy of an interface, m(I;L0,n) is exactly given by the excess
energy of its wall collection.

2.9 Wall clusters and rigidity inside ceilings

Up to this point, all of the above consisted of simple reformulations of concepts from
the classical work [16]. The main result there was exponential tails on the wall through
a face x ∈ L0,n for any x. In [23], these ideas were extended and a concept called wall
clusters was introduced to establish that these exponential tails hold even conditionally
on arbitrary nesting walls.

Towards the definition of wall clusters, we first define a notion of close nesting
between walls.

Definition 2.19. A wall W ′ is closely nested in a wall W if W ′ is nested in W (W ′ bW )
and

dρ(W,W
′) := d(ρ(W ), ρ(W ′)) ≤ m(W ′) .

Definition 2.20. For a wall W , define the wall cluster Clust(W ) as follows:

1. Initialize Clust(W ) with W .

2. Iteratively, add to Clust(W ) all walls W ′′ that are closely nested in some wall
W ′ ∈ Clust(W ).

Remark 2.21. The key upshot of wall clusters is that unlike the analogous grouping
scheme in [16] (called groups of walls), the wall cluster of W is completely nested in W ,
i.e., ρ(Clust(W )) ⊂ ρ(

•

W ).

In [23] we used the following bounds on the effect on the Ising measure of removing
a wall cluster at a point x ∈ L0,n, and on the number of possible wall clusters through x.

Lemma 2.22 ([23, Lemma 3.10]). There exists C > 0 such that for every β > β0 the
following holds. For every fixed I, and every x ∈ L0,n, if J is the interface obtained (per
Lemma 2.14) by removing ΘstClust(Wx) from the standard wall representation of I, then∣∣∣ log

µ∓n (I)

µ∓n (J )
+ βm(Clust(Wx))

∣∣∣ ≤ Cm(Clust(Wx)) .
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Lemma 2.23 ([23, Lemma 3.13]). Fix x ∈ L0,n, and fix any set of walls (Wz)z∈A for some
A ⊂ L0,n with x /∈ A. There exists a universal constant C > 0 such that the number of
wall clusters Clust(Wx) compatible with (Wz)z∈A, and having m(Clust(Wx)) = M is at
most CM .

Combining the above, [23, Section 3] established rigidity in a set S ⊂ L0,n even
conditionally on the shape of the interface outside S. In order to phrase this formally,
let us introduce some notation. For a collection of walls W, let IW be the set of all
interfaces having ΘstW in its standard wall representation. Notice that if W = (Wz)z/∈S
and ρ(W) ∩ S = ∅, then for every I ∈ IW, there is a single ceiling CW having ρ(CW) ⊃ S.
In particular, given the event {I ∈ IW}, the minimal energy interface is then the one for
which Wx = ∅ for all x ∈ S. The next results give exponential tails of walls of x ∈ S and
height oscillations above x ∈ S about ht(CW), conditionally on IW.

Theorem 2.24 ([23, Thm. 3.1]). There exists C > 0 so that for all β > β0 the following
holds. Fix any two admissible collections of walls (W1, . . . ,Wr), and W = (Wz)z∈A such
that ρ(W) ∩ ρ(

⋃
i≤r

•

W i) = ∅. Then

µ∓n (IW1,...,Wr | IW) ≤ exp
(
− (β − C)

∑
i≤r

m(Wi)
)
.

As a consequence we obtain the following for nested sequences of walls inside S.
In what follows, for a set S ⊂ L0,n and a site x ∈ S, let Wx,S be the collection of walls
nesting x, and themselves fully nested in S. Noticing that the number of possible nested
wall collections Wx,S having m(Wx,S) = M is at most CM for some universal constant C,
and enumerating over these possible choices, we obtain the following corollary.

Corollary 2.25 ([23, Cor. 3.2]). There exists C > 0 so that for all β > β0 the following
holds. Let Sn ⊂ L0,n be such that L0 \ Sn is connected, and let Wn = (Wz)z/∈Sn be an
admissible collection of walls with ρ(Wn) ⊂ Scn. For every x ∈ Sn and every r ≥ 1,

µ∓n (m(Wx,Sn) ≥ r | IWn) ≤ exp(−(β − C)r) .

We will also use the following extension of Corollary 2.25 to the case of x1, . . . , xN ∈ Sn
for some N ≤ r.
Corollary 2.26. In the setting of Corollary 2.25, if x1, . . . , xN ∈ Sn for some N ≤ r then
we have

µ∓n

(
m
( ⋃
i≤N

Wxi,Sn

)
≥ r | IWn

)
≤ exp(−(β − C)r) .

Proof. The number of possible collections of nested sequences of walls ∪i≤NWxi,Sn

having total excess energy m(∪i≤NWxi,Sn) = M can be seen to be at most CN+M for
some universal constant C as follows: there are 2N+M many ways to partition the
excess energy into M1, . . . ,MN amongst the N points, and then one can systematically
enumerate over the wall collections Wxi,Sn \

⋃
j<iWxi,Sn having excess area Mi for each

i, costing in total a further CM . Summing Theorem 2.24 over all such collections and all
M ≥ r, one then obtains the desired.

2.10 The law of the maximum height oscillation in a ceiling

A key ingredient in our proof will be tail bounds on the maximum height oscillations
inside a ceiling and conditionally on the interface outside that ceiling. Towards this us
introduce some notation. For each face x, let htI(x) = {h : (x1, x2, h) ∈ I}. For a subset
S ⊂ L0,n, define

M↑S(I) := max
f∈S

max htI(f) , and M↓S(I) := min
f∈S

min htI(f) .
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We will be especially interested in studying the behavior of these quantities when
conditioning on IWn

for some collection W = {Wz : z /∈ S} such that ρ(W) ⊂ Sc. In this
situation, in the interface IW, there is a single ceiling CW for which S ⊂ ρ(CW); this will
be the reference height with which the oscillations inside h will be compared: as such,
define the maximal upwards and downwards oscillations about ht(CW) as

M̄↑S(I) = M↑S(I)− ht(CW) , and M̄↓S(I) = ht(CW)−M↓S(I) .

Also, for a subset S ⊂ L0,n (understood contextually), recall from [23] the following two
events for A ⊂ S:

GmA (r) =
⋂
x∈A
{m(Wx,S) < r} , GDA (r) =

⋂
x∈A
{diam(Wx,S) < r} . (2.5)

We begin with providing certain cruder bounds on the behavior of M̄↑S(I), M̄↓S(I) quanti-
ties for arbitrary sets S, that can be proved using only the conditional exponential tail
bounds obtained in Section 2.9.

The following bounds were primarily formulated in [23] for upwards oscillations M̄↑Sn ,
but since their application in this paper is for downwards oscillations, we express them
for M̄↓Sn : the two formulations are equivalent by reflection symmetry of Λn about L0.

Proposition 2.27 ([23, Prop. 6.1]). There exist β0, C > 0 so the following holds for all
β > β0. Let Sn ⊂ L0,n be a simply-connected set such that |Sn| → ∞ with n, and let
Wn = {Wz : z /∈ Sn} be such that ρ(W) ⊂ Scn. Then for every h = hn ≥ 1,

µ∓n

(
M̄↓Sn < h

∣∣ IWn

)
≥ µ∓n

(
GmSn(4h)

∣∣ IWn

)
≥ exp

(
− |Sn|e−(4β−C)h

)
, (2.6)

and

µ∓n

(
M̄↓Sn < h | IWn

)
≤ exp

(
−|Sn|e−(4β+C)h

)
. (2.7)

Moreover, identical bounds hold if M̄↓Sn is replaced by M̄↑Sn .

For “nice” sets S, the above bounds on the distributions of M̄↓Sn and M̄↑Sn can be
sharpened significantly so that the lower and upper bounds essentially match; indeed
this was the main result of [23]. It relies on an identification of the exact rate of a
deviation of height h above a point x ∈ Sn as αh from (1.4); without any conditioning that
goes back to [22, 21]. To state this refined form, which is crucial to the identification of
the height h∗n in our main theorems, we first formalize what we mean by “nice” sets.

Definition (isoperimetric dimension of face sets). A simply-connected subset of faces
S ⊂ F (L0,n) is said to have isoperimetric dimension at most d, denoted dimip(S) ≤ d, if
|∂S| ≤ |S|(d−1)/d.

For sets Sn with a uniformly bounded dimip(Sn) we have the following much finer
estimates.

Proposition 2.28 ([23, Prop. 6.2]). There exist β0, κ0 > 0 such that the following holds
for every fixed β > β0. Let Sn ⊂ L0,n be a sequence of simply-connected sets such that
dimip(Sn) ≤

√
β and limn→∞ |Sn| = ∞. Let Wn = (Wz)z/∈Sn be such that ρ(Wn) ⊂ Scn.

For every
√

log |Sn| ≤ h ≤ 1√
β

log |Sn|,

µ∓n

(
M̄↓Sn < h

∣∣ IWn

)
≥ µ∓n

(
M̄↓Sn < h , GmSn\S◦n,h(4h) , GmS◦n,h(5h) | IWn

)
≥ exp

(
−(1 + εβ)|Sn|e−αh

)
, (2.8)
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and

µ∓n

(
M̄↓Sn < h , GDS◦n,h(eκ0h) | IWn

)
≤ exp

(
−(1− εβ)|Sn|e−αh

)
, (2.9)

where S◦n,h := {x ∈ Sn : d(x, ∂Sn) ≥ e2κ0h}. Moreover, identical bounds hold if M̄↓Sn is

replaced by M̄↑Sn .

3 Extension of estimates within a ceiling to be conditional on no
big walls

In this section we use the observation that the proof of Theorem 2.24 is monotone
w.r.t. wall sizes since it hinges on maps that only delete walls (see (3.2) below) in order
to elevate Theorem 2.24, and consequently also the lower bounds in Propositions 2.27
and 2.28, to apply conditionally on events of the following form:

EηS :=
⋂
z∈S
{m(Wz) ≤ ηz} for η = {ηz}z∈S . (3.1)

This extension will be important in the proof of (1.6) as hinted in Section 1.2.
The proof of Theorem 2.24 in [23] relied on a Peierls-type argument: a map Φ that

deletes wall clusters. Extending it to be conditional on EηS rests on the fact that Φ clearly
satisfies

m(Wz(Φ(I)) ≤ m(Wz(I)) for every z and every I , (3.2)

and so, in particular, if I ∈ EηS for some η then necessarily Φ(I) ∈ EηS . We now formalize
the extension and include a proof for completeness.

Theorem 3.1. In the setting of Theorem 2.24, for any η = {ηz}z∈Ac we have

µ∓n (IW1,...,Wr
| IW , EηAc) ≤ exp

(
− (β − C)

∑
i≤r

m(Wi)
)
.

Proof. Consider a map Φ = Φ(Wi)i which takes an interface I ∈ IW1,...,Wr
∩ IW ∩ EηAc ,

deletes
⋃
i ΘstClust(Wi) from its standard wall representation, and from the resulting

standard wall collection, constructs the interface Φ(I). On the one hand, the map
satisfies a weight gain of (see [23, Lemma 3.10])∣∣∣ log

µ∓n (I)

µ∓n (Φ(I))
+ βm(I; Φ(I))

∣∣∣ ≤ Cm(I; Φ(I)) = Cm(
⋃
i

Clust(Wi)) .

On the other hand, for fixed (Wi)i, the number of sets
⋃
i Clust(Wi) is bounded by

exp(Cm(
⋃
i Clust(Wi))) (see [23, Lemma 3.13]). Furthermore, the resulting interface

Φ(I) belongs to IW ∩ EηAc since it only decreases the wall collection, and only deletes
walls confined to Ac. If we let M = m(

⋃
i Clust(Wi)) and apply the map Φ pointwise to

I ∈ IW1,...,Wr ∩ IW ∩ EηAc , mapping them to interfaces J ∈ IW ∩ EηAc , we obtain

µ∓n (IW1,...,Wr
, IW, EηAc) ≤

∑
J∈IW,Eη

Ac

µ∓n (J )
∑
k≥M

e−(β−C)k ≤ e−(β−C)Mµ∓n (IW, EηAc) .

Dividing both sides by the probability on the right-hand side then yields the desired
conditional probability bound.

Corollary 3.2. In the setting of Corollary 2.25, for any η = {ηz}z∈Sn we have

µ∓n (m(Wx,Sn) ≥ r | IWn
, EηSn) ≤ exp(−(β − C)r) .
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We stress that the monotonicity in excess energy of Φ does not carry to the more
complicated maps in [22, 21, 23] where the quantities αh governing the large deviation
rates in Proposition 2.28 arise. Still, we are able to extract the following extension of
the lower bounds (2.6) and (2.8) stated in Propositions 2.27 and 2.28, which will be
needed in Section 6. (In what follows, we retain the definition of S◦n,h from the latter
proposition in terms of 2κ0 rather than κ0—placed there due to the role of κ0 in the
upper bound (2.9), which we do not include here—for the sake of consistency.)

Proposition 3.3. There exist β0, C, κ0 > 0 so the following holds for all β > β0. Let Sn ⊂
L0,n be a simply-connected set such that |Sn| → ∞ with n, and let Wn = {Wz : z /∈ Sn}
be such that ρ(Wn) ⊂ Scn.

1. For every h = hn ≥ 1 and every η,

µ∓n

(
M̄↓Sn < h

∣∣ IWn , E
η
Sn

)
≥ exp

(
− |Sn|e−(4β−C)h

)
, (3.3)

2. Further suppose that dimip(Sn) ≤
√
β. For every

√
log |Sn| ≤ h ≤ 1√

β
log |Sn| and

every η satisfying that ηz ≥ 5h for all z ∈ S◦n,h := {x ∈ Sn : d(x, ∂Sn) ≥ e2κ0h},

µ∓n

(
M̄↓Sn < h | IWn , E

η
Sn

)
≥ exp

(
−(1 + εβ)|Sn|e−αh

)
. (3.4)

Proof. The proof will follow the same arguments used to establish (2.6), and (2.8) in [23,
Proofs of (6.1) and (6.3)]; hence we will only describe the modifications required to adapt
it to the conditional space given EηSn .

The proof of (2.6) used the fact that {M̄↓Sn < h} ⊃ {GmSn(4h)} (defined in (2.5)) and
shows that

µ∓n (GmSn(4h) | IWn
) ≥ exp(−|Sn|e−(4β−C)h)

by iteratively exposing Gx,Sn (the sequence of nested walls Wx,Sn which nest x in Sn, as
well as the walls nested in this sequence of walls) along a corresponding filtration Fi.
One uses the fact that

GmSn(4h) =
⋂
x∈Sn

Ĝx , where Ĝx =
⋂

u∈ρ(
•
Gx,Sn )

{m(Wu,Sn) < 4h} , (3.5)

and that, when revealing Gx,Sn , either diam(Gzi,Sn) ≥ 4h, which has probability at most
e−(4β−C)h under µ∓n (· | Fi), or there are O(h2) sites z ∈ ρ(

•

Gx,Sn), and µ∓n (m(Wz,Sn) ≥
4h | Fi) ≤ e−(4β−C)h for any given z, both bounds due to Corollary 2.25. Combined,
µ∓n (Ĝx | Fi) ≥ 1−O(h2e−(4β−C)h) ≥ exp(−e−(4β−C′)h). Applying the exact same argument
while appealing to Corollary 3.2 in lieu of Corollary 2.25 now shows that (3.3) holds
conditionally on EηSn .

For the proof of (2.8), we first tiled S◦n,h by L× L boxes Qi with L ∼ 1
2e

2κ0h, with Q
denoting their union. We then applied the above analysis to bound the probabilities of
Ĝz for z ∈ S \Q. Thereafter, breaking Qi into its bulk Q′i ⊂ Qi and remainder Qi \Q′i,
one gives a lower bound on an event

Di :=
⋂
z∈Q′i

Ĥz ∩
⋂

z∈Qi\Q′i

Ĝm
z (4h)

where Ĥz is some event involving the pillar of z in Sn and is a subset of {m(Wz,Sn) < 5h}.
In light of this fact, Di is already a subset of the event

⋂
z∈Qi{m(Wz,Sn) < 5h}. Since

ηz ≥ 5h for all z ∈ S◦n,h, this means Di is already a subset of the event EηSn , and thus

µ∓n (Di | Fi, EηSn) ≥ µ∓n (Di | Fi) .

With this observation, the bounds from the proof in [23] can be applied as is.
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4 Basic bounds using the Ising measure without a floor

The aim of this section is to establish a priori estimates on the number of total wall
faces in the interface, the number of wall faces in any collection of N ≤ n distinct walls,
and the number of faces in ceilings that are small, say smaller than n1.9, or not thick
in that they have isoperimetric dimension much larger than 2. To prove these we first
lower bound the probability that the interface lies above a floor at height 0, which gives
one side of the bound of Proposition 1.6.

4.1 A map to lift the entire interface by k

We begin by introducing a simple but recurring tool we will use: a map to lift the
entirety of the interface up by a height of k. Unlike height function models, even this
simple map cannot be done in a bijective manner at the level of Ising interfaces, but the
multiplicity of the map and the interactions it induces in the interface via the g term in
Theorem 2.16 are mild.

Definition 4.1. For any k ≥ 1, define the map Φ↑k as the following map: for an interface
I,

1. Let θ↑I be the shift of I by the vector (0, 0, k);

2. Let Bk = F (∂L0,n × J0, kK), and let I ′ = θ↑I ⊕Bk (where ⊕ denotes the symmetric
difference);

3. Let Φ↑k(I) be given by taking I ′ and removing all finite ∗-connected components of
I ′ ∪ (L0 \ L0,n).

The main use of this map is the following estimate on its effect on the mass of any
set of interfaces when passed through Φ↑k, showing it only costs roughly exp(4βkn) to lift
the interface by k.

Proposition 4.2. Fix β > β0. Consider any set of interfaces A, and any k ≥ 1. Then,

µ∓n (A)

µ∓n (Φ↑k(A))
≤ exp(4(β + C)kn) .

Moreover, this holds under µ̂h
n for any h ≥ 0.

We begin by arguing that the map Φ↑k is well-defined and describing some of its key
properties.

Lemma 4.3. For every k ≥ 1, Φ↑k is well-defined on the set of all interfaces in Λn. For

every I it has m(Φ↑k(I); I) ≤ 4kn. Furthermore, if I ∈ Ifl
h, then Φ↑k(I) \Bk ⊂ L≥k−h, and

for every ceiling C ∈ C(I), its shift up by height k is a subset of a ceiling of Φ↑k(I).

Proof. We begin with the well-definedness of Φ↑k on the set of all interfaces on Λn.
Consider the spin configuration obtained by taking σ(I) and shifting it by (0, 0, k); this
is exactly the spin configuration whose set of separating faces are I ′ ⊕ Bk. Taking
that spin configuration and flipping the spins in all bubbles, i.e., finite ∗-connected
sets of minus or plus spins, then yields a configuration Φ↑k(σ(I)), say, whose set of

separating faces is exactly Φ↑k(I). Moreover, that set of separating faces corresponds
to an interface per Remark 2.2 as the spin configuration has no finite ∗-connected plus
or minus components.

Next we turn to the excess energy generated by the map. Notice that the map
consists of the addition of at most 4kn faces in step (2), and then removes some faces in
step (3). As such, we have for every I that m(Φ↑k(I); I) = |Φ↑k(I)| − |I| ≤ 4kn.
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Turning now to the properties of the range of the map, consider any I ∈ Ifl
h. The map

Φ↑k raises all faces of I by k, and only adds faces of Bk. Namely, Φ↑k(I) ⊂ θ↑I ∪Bk, and
θ↑I ∈ Ifl

h−k.
To prove the last property, recall that a horizontal face f is a ceiling face in I if and

only if all spins of σ(I) in the column through f are plus below f , and minus above f
(see [21, Observation 4.10]). Consider a ceiling face f ∈ I; from earlier in this proof, in
the spin configuration σ(Φ↑k(I)), this entire column is shifted up vertically by k (shifting
f to f + (0, 0, k)) and then all bubbles in the resulting spin configuration are deleted.
However, no bubbles can intersect the column through f + (0, 0, k) because if they did,
that would violate the property that all spins below f + (0, 0, k) are plus and all spins
above are minus. As such, no spins are flipped in this column, and the face f + (0, 0, k)

must be a ceiling face of Φ↑k(I). If the set of ceiling faces of I are a subset of those

of Φ↑k(I), then evidently any connected component of them in I will be a subset of a

connected component of them in Φ↑k(I), concluding the proof.

We now turn to the proof of Proposition 4.2.

Proof of Proposition 4.2. The proof of the proposition consists of taking into account
the weight change from application of the map Φ↑k, as well as its multiplicity.

We begin with considering the change in the weight of an interface in A when mapped
through Φ↑k. More precisely, we first show that for every I and every k ≥ 1, we have∣∣∣ log

µ∓n (Φ↑k(I))

µ∓n (I)
+ βm(Φ↑k(I); I)

∣∣∣ ≤ C(kn+ |m(Φ↑k(I); I)|
)
. (4.1)

To show (4.1), fix any I and for ease of notation let J = Φ↑k(I). For f ∈ I, let θ↑f be its
vertical shift by k. By Theorem 2.16, the left-hand side of (4.1) is at most∣∣∣∑

f∈I

g(f, I)−
∑
f ′∈J

g(f ′,J )
∣∣∣ ≤ ∑

f :θ↑f∈θ↑I\J

|g(f, I)|+
∑

f ′∈J\θ↑I

|g(f ′,J )|

+
∑

f :θ↑f∈θ↑I∩J

|g(f, I)− g(θ↑f,J )| .

By (2.2), the first sum on the right-hand side is at most K̄|θ↑I \ J | and the second sum
is at most K̄|J \ θ↑I|, so that together, they contribute at most K̄|θ↑I ⊕ J |. Turning
to the last term, by (2.3), and the fact that the radius r(f, I; θ↑f,J ) is the same as
r(θ↑f ; θ↑I; θ↑f,J ) which must be attained at a face of θ↑I ⊕ J ,∑

f :θ↑f∈θ↑I∩J

|g(f, I)− g(θ↑f,J )| ≤
∑

f ′∈θ↑I∩J

K̄e−c̄r(f ′;θ↑I;f ′,J )

≤
∑

f ′∈θ↑I∩J

∑
g∈θ↑I⊕J

K̄e−c̄d(f ′,g) .

This is evidently at most CK̄|θ↑I ⊕ J |. To conclude, notice that

|θ↑I ⊕ J | = |J \ θ↑I|+ |θ↑I \ J | , and m(J ; I) = |J \ θ↑I| − |θ↑I \ J | .

Rearranging the latter equality and taking absolute values, we see that |θ↑I \ J | ≤
|J \ θ↑I| + |m(J ; I)|. Since |J \ θ↑I| ≤ 4kn, we then get |θ↑I ⊕ J | ≤ 8kn + |m(J ; I)|,
yielding (4.1).

We next consider the multiplicity of the map Φ↑k. The key claim here is that for every

M ≥ 0, for every J in the range of Φ↑k, we have∣∣{I ∈ (Φ↑k)−1(J ) : |m(J ; I)| = M
}∣∣ ≤ exp

(
C(kn+M)

)
. (4.2)
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To show this, consider the set of faces B = I ′ \ J , i.e., all bubbles deleted in step (3) of
Definition 4.1. We first claim that this serves as a witness to the pre-image I, i.e., for
every fixed J , given B = B(I) one can uniquely reconstruct I. This is evidently done by
noticing that I ′ = J ∪ B, then taking I ′ ⊕ Bk, and shifting it by the vector (0, 0,−k) to
obtain I.

Moreover, for an interface I having |m(J ; I)| = M , we must have |B| ≤ 4kn + M

since

|I ′| − |I| ≤ 4kn , and m(J ; I) = |I ′| − |I| − |B| .

It therefore suffices for us to enumerate over possible face sets B having at most 4kn+M

many faces. We first note that every ∗-connected component of B must intersect Bk;
indeed since θ↑I ⊕ I ′ ⊂ Bk, if a ∗-connected component of B doesn’t intersect Bk, then
its shift by (0, 0,−k) was a finite ∗-connected component of I bounding a bubble, and
therefore I would not have been an admissible interface.

In order to enumerate over the choice of B, we first choose some N ≤ M for the
number of ∗-connected components of B and choose a subset of N faces f1, . . . , fN
amongst Bk for some representative face of Bk for each of those N components. We
then choose corresponding values M1, . . . ,MN such that

∑
Mi ≤ 4kn+M dictating how

many faces belong to each of those components, and finally for each fi, we enumerate
over the possible ∗-connected components of faces in F (Λn) of size Mi containing fi. In
total, this enumeration counts at most

M

(
4kn

M

)
2N+4kn+M C4kn+M

many such choices, which is at most C4kn+M for some other C, establishing (4.2).

We are now in position to conclude the proof of the proposition. For a set A of
interfaces, we can rewrite

µ∓n (A) =
∑
I∈A

µ∓n (I) =
∑

J∈Φ↑k(A)

µ∓n (J )
∑

−∞<M≤4kn

∑
I∈A∩(Φ↑k)−1(J )

m(J ;I)=M

µ∓n (I)

µ∓n (J )
.

Applying (4.1) and (4.2), we find

µ∓n (A) ≤ µ∓n (Φ↑k(A))
∑

−∞<M≤4kn

eβM+C(kn+|M |) ≤ e(4β+C)knµ∓n (Φ↑k(A)) .

Dividing both sides out by µ∓n (Φ↑k(A)) yields the desired result. The fact that this holds

under µ̂h
n follows from the fact that if A ⊂ Ifl

h, then Φ↑k(A) ⊂ Ifl
h per Lemma 4.3.

4.2 Lower bound on the probability of lying above the floor

With the map of Definition 4.1 in hand, we can now prove the following simple lemma
giving a lower bound on the probability of the interface under µ∓n to lie above height
0. This will give the lower bound from Proposition 1.6, whereas the matching upper
bound up to a factor of 1 + εβ will be a consequence of our estimates in §5 (namely,
Theorem 5.2).

Lemma 4.4. There exists β0 > 0 and a sequence εβ → 0 as β →∞ such that, for every
β > β0,

µ∓n (Ifl
0) ≥ exp(−(1 + εβ)n log n) .
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Proof. Let h0 = (4β − C0)−1 log n, where C0 > 0 is the absolute constant from Propo-
sition 2.27. Recalling that Ifl

h0
= {I : M↓n ≤ h0}, we have by (2.6) (with Sn = L0,n)

that
µ∓n (Ifl

h0
) ≥ exp(−n2e−(4β−C0)h0) = e−n .

At the same time, we can compare the weight of Ifl
h0

to that of Ifl
0 by application of the

map Φ↑h0
since we have Φ↑h0

(Ifl
h0

) ∈ Ifl
0 by Lemma 4.3. In particular, by Proposition 4.2,

µ∓n (Ifl
h0

) ≤ e(4β+C′)h0nµ∓n (Ifl
0) .

Combining this with the aforementioned lower bound of µ∓n (Ifl
h0

) ≥ e−n concludes the
proof.

4.3 Wall faces in total and in linearly many walls

Our first application of Lemma 4.4 will establish that the interface I ∼ µ̂h
n must

contain at most e−2βn2 wall faces w.h.p., as given by the following lemma. (N.B. it is easy
to infer the weaker upper bound of (C/β)n2 on the number of such faces from the cluster
expansion representation of Theorem 2.16. To do so, one compares all such interfaces to
the completely flat one (that is, analyze the energy gain and multiplicity loss incurred
in the map that deletes every wall), with a multiplicity of exp(C(n2 +m)) for interfaces
with m excess faces competing with a probability gain of exp(−(β − C)m).)

Lemma 4.5. There exist β0, C > 0 such that, for every β > β0,

µ∓n

(∑
{m(W ) : W is a wall in I} ≥ e−2βn2

)
≤ exp(−Ce−4βn2) .

Consequently, the same bound holds true under µ̂h
n for any h ≥ 0.

Proof. Order the faces of L0,n using labels 1, . . . , n2 by scanning L0,n in a connected
manner, row by row. Roughly put, we will reveal {Wx}x∈L0,n

in this order, skipping any x
that belongs to ρ(

•

W x′) for some already revealed Wx′ . Formally:

1. Initialize F = L0,n as the set of unexplored faces.

2. While F 6= ∅, repeatedly reveal Wx for x ∈ F having the smallest label in F , and
delete ρ(

•

W x) from F .

(Note that, in this way, our set of revealed walls remains always connected to ∂Λn.) This
process terminates at F = ∅ with a collection of nonempty walls Wx 6= ∅ whose hull
is yet unexplored; processing these walls in an arbitrary order, apply to each such Wx

the same exposure procedure (Step 2) from an initial F = ρ(
•

W x). (As before, the set of
revealed walls is always connected to ∂Λn.) Let (Fj)n

2

j=1 be the corresponding filtration.
If xj is about to be revealed in step j of the process, and Sj−1 is the connected

component of faces that contains xj in L0,n \ ρ(
⋃
k<j(Wxk ∪ {xk})), then the fact that the

projections of the walls revealed thus far are connected to ∂L0,n supports an application
of Corollary 2.25, which implies that

µ∓n (m(Wxj ) ≥ r | Fj−1) ≤ µ∓n (m(Wxj ,Sj−1
) ≥ r | Fj−1) ≤ e−(β−C)r .

It follows that
∑
im(Wxi) is is stochastically dominated by

∑n2

i=1(ξi−1) where the ξi’s are
i.i.d. Geometric(p) for p = 1− e−(4β−C), using that every Wx 6= ∅ has m(Wx) ≥ 4. Thus,
bounding

∑
i ξi via the correspondence between the negative binomial and binomial

distributions,

µ∓n

(∑
{m(W ) : W is a wall in I} > be−2βn2c

)
≤ P

(
Bin(b(1 + e−2β)n2c, p) < n2

)
.
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The latter binomial random variable has mean µ ∈ [(1 + 1
2e
−2β)n2, (1 + e−2β)n2] provided

β is large enough, whence the probability that it is less than µ− a for a = 1
2e
−2βn2 is at

most exp(− 1
2a

2/µ). This establishes the claimed bound for
∑
W m(W ) under µ∓n , and the

analogous bound under µ̂h
n follows from Lemma 4.4.

The next application of Lemma 4.4 rules out having n distinct walls, each with
diameter at least log n.

Lemma 4.6. There exist β0, C > 0 so that the following holds for every β > β0. Let
En be the event that there exist N ≤ n distinct faces x1, . . . , xN ∈ L0,n such that
m(
⋃
iWxi) ≥ (6/β)n log n in the interface I. Then µ∓n (En) ≤ exp(−(5 − εβ)n log n), and

consequently, µ̂h
n(En) ≤ exp(−3n log n).

Proof. Fix a set A of at most n distinct faces in L0,n. We infer from Corollary 2.26 that

µ∓n

(
m(
⋃
x∈A

Wx) ≥ (6/β)n log n

)
≤ e−(β−C)(6/β)n logn ≤ e−(6−εβ)n logn

provided β0 (thus also β) is large enough. Substituting the fact that
(
n2

|A|
)
≤
(
n2

n

)
≤

exp(n log n+ n) yields

µ∓n (En) ≤
∑
N≤n

(
n2

N

)
e−(6−εβ)n logn ≤ e−(5−ε′β)n logn ,

and the conclusion for µ̂h
n follows from Lemma 4.4.

4.4 Ceilings with a sub-linear area or a large isoperimetric dimension

We will next use Lemma 4.4 to rule out an excessive total area in ceilings whose hull
satisfies |C| ≤ cβn2/ log2 n (Lemma 4.7), as well as in ceilings with |C| ≥ n and dimip ≥ 4

(Lemma 4.8), by showing the corresponding events have probabilities smaller than
exp(−(1 + εβ)n log n). (N.B. that the threshold |C| = O(n2/ log2 n) is correct when aiming
at an error probability of exp(−cn log n) for a total excess area of cn2, as the probability
of finding a single such ceiling is some exp(−cn/ log n), and c log2 n many such ceilings
would be needed for a total area of cn2.)

Lemma 4.7. There exist β0, C > 0 so that for every fixed β > β0 and every 1 ≤ A ≤
2 log2 n−

√
log n,

µ∓n

(∑{
|C| : C is a ceiling with 2A−1 ≤ |C| ≤

(
n

eβ logn

)2} ≥ C
eβA

n2
)
< e−5n logn ,

and the same bound holds under µ̂h
n.

Proof. We begin by ruling out the contribution of ceilings C with |C| ≤ L1 for L1 :=

n2/ log8 n via the bound

µ∓n

(∑{
|C| : C is a ceiling with 2A−1 ≤ |C| ≤ L1

}
≥ C

eβA
n2
)
≤ exp(−εβn log2 n) , (4.3)

for some sequence εβ vanishing as β →∞. Partitioning the set of ceilings in I into sets
A1,A2, . . . given by

Ak = {C : 2k−1 ≤ |C| ≤ 2k} ,

we will argue that, for a suitable absolute constant C0 > 0, for each k = 1, . . . , dlog2 L1e
we have

µ∓n

( ∑
C∈Ak

|C| ≥ (εβ,kn)2

)
≤ exp

(
− (β − C)

(εβ,kn)2

2k/2+1

)
for εβ,k :=

C0

eβ/2k
. (4.4)
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This, as we will later see, will readily imply (4.3) by a union bound over k.
To establish (4.4), denote the ceilings of Ak by C1, . . . , CN for some N , and suppose

that the event under consideration holds, i.e.,
∑N
i=1 |Ci| ≥ (εβ,kn)2. Further let

χ :=

∑N
i=1 |Ci|

(εβ,kn)2
( ≥ 1 ) .

It then follows, by the definition of Ak, that

N ≤ χ(εβ,kn)221−k .

In addition, for each i we have |∂
•

Ci| ≥ 4|
•

Ci|1/2 ≥ 4|Ci|1/2 by the isoperimetric inequality
in Z2, whence again the definition of Ak implies that

N∑
i=1

|∂
•

Ci| ≥ 4

N∑
i=1

|Ci|2−k/2 ≥ χ(εβ,kn)222−k/2 .

For any prescribed sequence of faces x1, . . . , xN such that xi ∈ ρ(Ci) for each i, we can
appeal to Corollary 2.26 to find that for any r ≥ N ,

µ∓n

(
m
( ⋃
i≤N

Wxi

)
≥ r
)
≤ exp(−(β − C)r) .

Since m(
⋃N
i=1 Wxi) ≥ 1

2

∑N
i=1 |∂

•

Ci| (each face of ∂
•

Ci corresponds to a distinct face in its

supporting wall W , which may correspond in this way to a face in at most one other ∂
•

Cj),
we can take r = χ(εβ,kn)221−k/2 (which is at least N2k/2 ≥ N by the above bound on N )
and conclude that

µ∓n

( ∑
C∈Ak

|C| ≥ (εβ,kn)2

)
≤
∑
χ

∑
N≤χ(εβ,kn)221−k

(
n2

N

)
exp

(
−(β − C)χ(εβ,kn)221−k/2

)
.

(4.5)
Using the bound

∑
j≤pm

(
m
j

)
≤ exp(H(p)m) where H(p) = p log 1

p + (1 − p) log 1
1−p is

the binary entropy function (with natural base)—valid for every m and p ≤ 1
2 (here

p = ε2
β,k21−k < 1

2 if β0 is large enough)—yields

µ∓n

( ∑
C∈Ak

|C| ≥ (εβ,kn)2

)
≤
∑
χ

exp
((

H(χε2
β,k21−k)− 2(β − C)χε2

β,k2−k/2
)
n2
)
.

Hence, in order to establish (4.4) it suffices to show that if the absolute constant C0 > 0

is large enough then

H(χε2
β,k21−k) ≤ 3

2
(β − C)χε2

β,k2−k/2 for every k ≥ 1 , (4.6)

noting the sum over at most n2 values of χ ∈ [1, ε−2
β,k] adds a 2 log n term to the exponent,

which is readily absorbed in the constant C from (4.4) since (εβ,kn)22−(k/2+1) is of order
at least n log2 n for all k ≤ dlog2 L1e. Indeed, using that H(p) ≤ p(log 1

p + 1) for any
0 < p < 1, it suffices to show that, for every k ≥ 1,

2 log(1/εβ,k) + log(1/χ) + (log 2)(k − 1) + 1 ≤ 3

4
(β − C)2k/2 . (4.7)

By the definition of εβ,k and the fact that χ ≥ 1, it suffices to show, for every k ≥ 1,

β + (log 2)(k − 1) + 2 log k + 1− 2 logC0 ≤
3

4
(β − C)2k/2 . (4.8)
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For every k ≥ 1 we have 3
42k/2β ≥ 3 · 2−3/2β ≥ 21

20β; thus, in order to establish (4.6) it
suffices to show that

(log 2)(k − 1) + 2 log k + 1− 2 logC0 ≤
1

20
(β − C)2k/2 ,

and indeed this easily holds for every large enough k, whereas selecting a large enough
C0 allows us to assume that k is sufficiently large. (We note in passing that the β

term in the left-hand of (4.8) is the crux of our final threshold Ce−βn2 in (4.3), which
corresponds to (εβ,1n)2. A term of 2β on the left-hand of (4.8), for instance, would violate
this inequality for k = 1 and a large enough β.)

Having established (4.4), we observe that ε2
β,k2−k/2 is decreasing in k, whence a

union bound over k shows that
∑
C∈Ak |C| ≤ (εβ,kn)2 holds for all k = 1, . . . , dlog2 L1e

except with probability at most

dlog2 L1e exp
(
−(β − C)C2

0e
−βdlog2 L1e−2 1

2
√

2
L
−1/2
1 n2

)
≤ exp

(
−e−βn log2 n

)
,

where the O(logL1) prefactor as well as the absolute constants in the exponent were
offset by the β−C term. On this event, the fraction of n2 in ceilings with 2A−1 ≤ |C| ≤ L1

is at most
∑
k≥A ε

2
β,k ≤ C2

0e
−β∑

k≥A k
−2, thereby giving (4.3).

Letting L2 := e−2βn2/ log2 n, we will treat ceilings with L1 ≤ C ≤ L2 by establishing
that

µ∓n

(∣∣⋃{
ρ(C) : C is a ceiling with L1 ≤ |C| ≤ L2

}∣∣ ≥ Ce−βn2
)
≤ exp(−c0βn log n)

(4.9)
for some absolute constants C, c0 > 0. This will follow from showing that, for all
k = dlog2 L1e, . . . , dlog2 L2e,

µ∓n

( ∑
C∈Ak

|C| ≥ (ε̄β,kn)2

)
≤ exp

(
− (β − C)

(ε̄β,kn)2

2k/2+1

)
for ε̄β,k :=

e−β/2

dlog2 L2e − k + 8
.

(4.10)
As argued above (4.10) will follow once we show the analog of (4.7) w.r.t. the modified
quantity ε̄β,k, which here translates into showing that for every dlog2 L1e ≤ k ≤ dlog2 L2e,

β + 2 log(dlog2 L2e − k + 8) + (log 2)(k − 1) + 1 ≤ 3

4
(β − C)2k/2 .

This indeed holds as the left-hand is O(k) = O(log n) while the right-hand has order
2k/2 ≥

√
L1 = n1−o(1) for each such k, and (4.10) is obtained. To identify the dominant

term in the union bound over k, note that

ε̄2
β,k2−k/2

ε̄2
β,k+12−(k+1)/2

=
√

2
(

1− 1

dlog2 L2e − k + 8

)2

≥
√

2 · ( 7
8 )2 > 1 ,

whence
∑
C∈Ak |C| ≤ (ε̄β,kn)2 holds for all k = dlog2 L1e, . . . , dlog2 L2e except with proba-

bility

dlog2 L2e exp
(
−(β − C) 1

64e
−β 1

2
√

2
L
−1/2
2 n2

)
≤ exp (−c0βn log n) ,

using the definition of L2. This establishes (4.9), thereby completing the proof.

Lemma 4.8. There exist β0, C > 0 so that for every fixed β > β0,

µ∓n

(⋃{
ρ(

•

C) : C is a ceiling with |
•

C| ≥ n , dimip(
•

C) ≥ 4
}
≥ n5/3

)
≤ exp(−(β − C)n7/6) ,

(4.11)
and the same bound holds under µ̂h

n.

EJP 28 (2023), paper 95.
Page 26/44

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP987
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropic repulsion of 3D Ising interfaces

Proof. Let C1, . . . , CN be the outermost ceilings satisfying |
•

C| ≥ n and dimip(
•

C) ≥ 4.
Clearly, N ≤ n by the lower bound on the area of each of these pairwise disjoint ceilings.
Furthermore, by the assumption on the isoperimetric dimension, |∂

•

Ci| ≥ |
•

Ci|3/4 for every
i; thus, whenever

∑N
i=1 |

•

Ci| ≥ n5/3 we can conclude that∑
i

|∂
•

Ci| ≥ n−1/2
∑
i

|
•

Ci| ≥ n7/6 .

By the same argument the led to (4.5), it now follows that the probability in the left-hand
of (4.11) is at most∑

N≤n

(
n2

N

)
exp

(
−(β − C)n7/6

)
≤ exp

(
−(β − C ′)n7/6

)
,

where we absorbed
∑
N≤n

(
n2

N

)
≤ exp

(
(1 + o(1))n log n

)
into the larger constant C ′, as

required.

5 Bounding the interface histogram below a given height

Our objective in this section is to obtain the following bound on the height histogram
of the interface in the presence of a floor at height −h, capturing the essence of entropic
repulsion.

Theorem 5.1. Let Ln,k be the set of x ∈ L0,n such that I ∩({x}×R) intersects L<h∗n−h−k
or is not a singleton. There exist β0, C > 0 so that for all β > β0 and every h < h∗n− 1 and
k ≥ 1,

µ̂h
n

(
|Ln,k| ≥ Ce−βn2

)
≤ exp

(
−e(β−C)kn

)
.

This will be a consequence of the following estimate on the total area in macroscopic
and near macroscopic ceilings below height h∗n − h− 1.

Theorem 5.2. There exist β0, C > 0 so that for every fixed β > β0, if h < h∗n − 1 and

Cj(I) = {C is a ceiling in I with ht(C) = j}

then for every 1 ≤ k ≤ h∗n − 1,

µ̂h
n

(∑
{|C| : C ∈ Ch∗n−h−k−1(I) , |C| ≥ n1.9} ≥ e−βkn2

)
≤ e−(e(β−C)k ∧ 3 logn)n .

Remark 5.3. The threshold of e−βkn2 on
∑
|C| in Theorem 5.2 could be extended via

the same proof into e−aβkn2 for any fixed 1 < a < 2 (with a bottleneck at a = 2 due to
our reliance on e−aβh

∗
n = O(n3/2), whereas e−2βh∗n is only guaranteed to be O(n3/2+εβ )

by the best upper bound we have for h∗n).

Observe that the proof of Theorem 5.1 follows directly from Theorem 5.2 along
with our results from §4: By Lemma 4.7, the total area in ρ(C) for ceilings C with
|C| ≤ n2/ log3 n is at most Ce−βn2 except with probability exp(−5n log n); thus, for fixed
k̄ ≥ 1, the size of

⋃
{ρ(C) : C ∈ C<h∗n−h−k̄} is at most e−βk̄n2 except with probability

exp(−e(β−C)k̄n) via Theorem 5.2 and a union bound over k = k̄, . . . , h∗n − 1; and there are
at most e−2βn2 wall faces in I except with probability exp(−cβn2) by Lemma 4.5.

The general principle behind the proof is the standard competition between energy
and entropy which propels the interface to height h∗n − 1. It will be illuminating to
consider the case h = 0 and show, via a straightforward Peierls argument which served
as the basis of the sharp results for the SOS model in [9, 10], that the interface in µ̂0

n

is propelled to height (1− εβ)h∗n. We do so in the next claim, and then explain why one
cannot hope for such an argument, albeit effective for SOS, to be applicable for the Ising
model.
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Claim 5.4. There exist β0, C0 > 0 such that, if h0 = b(4β + C0)−1 log nc, then for every
β > β0 and k ≥ 2,

µ̂0
n

(∑
{|C| : C ∈ Ch0−k(I)} ≥ e−2βkn2

)
≤ exp

(
−eβkn

)
.

Proof. Let k ≥ 1. For I ∈ Ifl
0, let

A0(I) =
⋃
{ρ(C) : C ∈ Ch0−k−1(I)} , A1(I) =

⋃
{ρ(C) : C ∈ Ch0−k(I)},

and let

I = {I : |A0(I)| ≥ e−2βkn2} .

Further let I′ = Φ↑1(I), where we recall from Definition 4.1 which effectively shifts the
interface up by 1. In particular, |A1(I ′)| ≥ e−2βkn2 for every I ′ ∈ I′.

For I ′ ∈ I′ and a subset A ⊂ A1(I ′), let JI′ be the interfaces obtained from I ′ by
setting all spins of σ(I ′) in A × ( 1

2 + Z+) to be minus (modifying h0 − k spins above
each x ∈ A). As I ′ ∩ ((L0,n \ ∂L0,n) ×R)) ⊂ L≥1 for any I ∈ Ifl

0, by Lemma 4.3, we can
recover I ′ from J ∈ JI′ (reading A off from J ∩ L0). This implies that the interface sets
{JI′ : I ′ ∈ I′} are pairwise disjoint.

Moreover, if |A| = m then it is easy to verify that for some absolute constant C > 1,

µ̂0
n(J ) ≥ exp(−(β + C)4(h0 − k)m)µ̂0

n(I ′), ,

since any such J has m(J ; I ′) ≤ 4(h0 − k)m by construction. Taking C0 = 4C in the
definition of h0, this translates into µ̂0

n(J ) ≥ pmµ̂0
n(I ′) where p = pk,n = e(4β+C0)k/n

(noting that pk,n ≤ ph0,n ≤ 1), and so,

1 ≥
∑
I′∈I′

∑
J∈JI′

µ̂0
n(J ) ≥

∑
I′∈I′

µ̂0
n(I ′)

∑
A⊂A1(I′)

p|A| =
∑
I′∈I′

µ̂0
n(I ′) (1 + p)

|A1(I′)|

≥ exp
(

1
2pe
−2βkn2

)
µ̂0
n(I′) = exp(1

2e
(2β+C0)kn)µ̂0

n(I′) ,

using 1 + p ≥ exp(p/2) for p ≤ 1 in the inequality between the lines. By Proposition 4.2
we have µ̂0

n(I) ≤ µ̂0
n(I′) exp(4(β+C ′)n) for another C ′ > 0, completing the proof provided

β0 is large enough.

The proof of Claim 5.4 captured the effect of entropic repulsion: if an interface I is
such that A0(I), the projections of the ceilings at height j = h0 − k, is too large, one
can compare it to the set of (many) interfaces J obtained by elevating all heights via
a single n × n slab of (+) spins (a cost of exp(−(4β − C)n) in energy) while replacing
any subset of A0 by spikes reaching down to height 0 (a gain of exp(e−(4β−C)j |A0|) in
entropy); comparing the two competing terms, the entropy term wins when j < h0, giving
the claim. Unfortunately, the correct rate α of large deviations in the 3D Ising model
exceeding height j is realized not by a deterministic shape such as a spike of height
j but rather by a distribution over pillars Px that behave as decorated random walks
(e.g., typically diam(ρ(Px)) has order

√
j for such Px). For one to be able to modify I

to have such downward pillars Px at a subset A ⊂ A0, they would need to all fit in the
corresponding ceilings and with one another; then, one would need to account for their
randomness and interactions among themselves and with existing walls. Even more
problematic is the fact that comparing the interface J with a given pillar Px of height j
to an interface I without it via cluster expansion (Theorem 2.16) incurs a cost of exp(K̄j)

due the interaction term g. This would result in an error of nεβ—thus not improving on
Claim 5.4.
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One could instead begin by examining the interfaces I ′ obtained from I by elevating
all height by 1 yet without planting any spikes or pillars. As mentioned above, µ̂0

n(I ′)
is at least exp(−4(β − C)n)µ̂0

n(I), due to the additional n × n slab of (+) spins. The
latter interfaces have their minima within A0 × R not reaching to height 0, which
one would expect to have probability at most exp(−e−αh |A0|) via the estimate (2.9) in
Proposition 2.28 (proved via the approximate Domain Markov property for ceilings
in [23]). If this probability outweighs the exp(−4(β − C)n) factor, we will obtain the
desired lower bound.

However, the event GS◦n,h in (2.9) complicates matters, and is a real (rather than a
technical) obstacle: Mesoscopic walls nested in a ceiling may encapsulate additional
ceilings and modify their heights in a complicated way (whereby a single wall supports
multiple ceilings in different heights), making some of them more favorable, by the exact
same entropic repulsion mechanism that propels the interface to height h∗n − 1. Thus,
we cannot preclude the existence of such walls, and must resort to an analysis of their
subtle effect.

Our approach for handling the delicate effect of mesoscopic walls involves condition-
ing on them—possibly revealing large ceilings at different heights in the process—then
reevaluating the new landscape of ceilings, and applying the aforementioned entropic
repulsion argument for a specific height in this conditional space.

Consider an integer 1 ≤ k < h∗n. With κ0 > 0 the absolute constant from Proposi-
tion 2.28, define

W†(I) =
{
W : W is a wall of I with diam(ρ(W )) ≥ (eκ0(h∗n−k) ∨ log n)

}
(5.1)

(note the dependence on k) and associate to every I the interface I† consisting only of
these walls, i.e.,

I† := IW†(I) . (5.2)

Remark 5.5. If W ′ c W for some W ∈ W† then W ′ ∈ W† since diam(ρ(W ′)) >

diam(ρ(W )). (This would not be the case were our inclusion criterion for W† instead
been phrased e.g. in terms of m(W ).) Consequently, every face of a ceiling C ∈ I sup-
ported by some W ∈W†(I) is also a ceiling face in I† at the exact same height (whereas
C may be contained in a strictly larger ceiling C† ∈ I† with ht(C†) = ht(C)).

With this in mind, we will later use that if the set of ceilings Ch∗n−h−k−1(I) with

|
•

C| ≥ n1.9 is {C1, . . . , CN}, then Ch∗n−h−k−1(I†) includes ceilings {C†1, . . . , C
†
N ′} for some

N ′ ≤ N where every Cj must have Cj ⊂ C†ij for some ij . (N.B. that N ′ ≤ N as a single

ceiling in I† may include multiple Cj ’s, as well as extra horizontal wall faces from I
which were deleted in the transition to I†, but distinct ceilings in I† must correspond to
disjoint such sets of ceilings in I by definition of a ceiling as a ∗-connected component of
ceiling faces.)

The key reduction in the proof of Theorem 5.2 is the next bound on the total area of a
certain class of ceilings in Ch∗n−h−1(Φ↑k(I)†), which we will thereafter use to bound the
total area of ceilings in Ch∗n−h−k−1(I).

Lemma 5.6. There exist absolute constants β0, C > 0 so that, for all β > β0 and
0 ≤ h < h∗n − 1, the following holds. Let 1 ≤ k < h∗n, define I† as in (5.2), and let

C†(I) =
{
C† ∈ Ch∗n−h−1(I†) : |C†| ≥ n1.9 , M̄↓C†(I) < h∗n − k

}
.

Then for every sufficiently large enough n we have

µ̂h
n

( ∑
C†∈C†(I)

|C†| ≥ e−βkn2 , m(W†(I)) ≤ n log n

)
≤ e−(e(β−C)k ∧n1/5)n .

EJP 28 (2023), paper 95.
Page 29/44

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP987
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropic repulsion of 3D Ising interfaces

Further, with γ := ne−αh∗n this remains true when replacing e(β−C)k in the right-hand by
γe(3β−C)k, and moreover, it holds conditionally on the event {W†(I) = Wn} for any Wn

such that m(Wn) ≤ n log n.

(We emphasize that the definition of C† looked at M̄C† in I as opposed to in I†.)
We postpone the proof of this lemma in order to show how to derive Theorem 5.2

from it.

5.1 Proof of Theorem 5.2 modulo Lemma 5.6

Consider some I ∈ Ifl
h. Since every W†(I) consists of distinct walls, each of which has

size at least log n, if
∑
W∈W†(I) m(W ) ≥ 1

2n log n, then any subset of |W†(I)| ∧ n many of

those walls also has total m at least 1
2n log n. Thus, by Lemma 4.6 with N = |W†(I)| ∧ n,

µ̂h
n(
∑
{m(W ) : W ∈W†(I)} ≥ 1

2n log n}) ≤ e−3n logn .

It will therefore suffice to show that

µ̂hn(Ik) ≤ exp(−(e(β−C)kn) (5.3)

for

Ik =

{
I ∈ Ifl

h :
∑

C∈Ch∗n−h−k−1(I)

|C|1{|C|≥n1.9} ≥ e−βkn2 , m(W†(I)) ≤ 1
2n log n

}
.

(N.B. we are aiming to bound
∑
|C|, throughout this theorem, as opposed to

∑
|

•

C|;
indeed, the latter can include an array of ceilings at different heights, which would be
treated by sets Ik’s as above for different k’s.) For each I ∈ Ik, define

Ĩ = Φ↑k(I)

where Φ↑k is the map given in Definition 4.1, which we recall translates I by (0, 0, k), adds
a subset of the 4kn wall faces F (∂L0,n × J0, kK), and then deletes some other subset of
wall faces. By the definition of I ∈ Ik,∑

W∈W†(Ĩ)

m(W ) ≤
∑

W∈W†(I)

m(W ) + 4kn ≤ 1
2n log n+ 4kn < n log n , (5.4)

using here that 4kn ≤ (1 + εβ)β−1n log n.
Denote by C the set of every ceiling C ∈ Ch∗n−h−k−1(I) that satisfies |C| ≥ n1.9, and

further let C̃ be the analogous subset of the ceilings Ch∗n−h−1(Ĩ). As no ceiling face was

deleted from θ↑I in forming Ĩ, we see that every C ∈ C must satisfy ρ(C) ⊂ ρ(C̃) for some
C̃ ∈ Ch∗n−h−1(Ĩ), and so |C̃| ≥ n1.9 as well, thus C̃ ∈ C̃. In particular, if I ∈ Ik then Ĩ
satisfies ∑

C̃∈C̃

|C̃| ≥ e−βkn2 .

Now, if C̃ ∈ C̃ then its supporting wall W must satisfy diam(ρ(W )) ≥ diam(C̃) ≥
1
2 |C̃|

1/2 ≥ 1
2n

0.95, implying that W ∈ W†(Ĩ) for every sufficiently large n (as we have
exp(κ0(h∗n − k)) ≤ nεβ whereas εβ <

1
2 , say, provided β0 is suitably large). In particular

(invoking Remark 5.5), every face in C̃ ∈ C̃ must be part of some ceiling C† ∈ Ĩ† at the
same height of h∗n − h − 1 (which, once again, satisfies |C†| ≥ |C̃| ≥ n1.9). Moreover,
by Lemma 4.3 we know that Ĩ ∩ ((L0,n \ ∂L0,n) × R) ⊂ L≥k−h; thus, for every ceiling
C† ∈ Ch∗n−h−1(Ĩ†),

M↓C†(Ĩ) ≤ (h∗n − h− 1)− (k − h) = h∗n − k − 1 ,
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which, when combined, imply that C† ∈ C†(Ĩ) as defined in Lemma 5.6. In conclusion,∑
C†∈C†(Ĩ)

|C†| ≥ e−βkn2 and m(W†(Ĩ)) < n log n

holds for all Ĩ ∈ Φ↑k(Ik). We may thus bound µ̂h
n(Φ↑k(Ik)) via Lemma 5.6, and combine it

with Proposition 4.2 to get that

µ̂h
n(Ik) ≤ e(4β+C)kn µ̂h

n(Φ↑k(Ik)) ≤ exp
[(

(4β + C)k −
(
γe(3β−C)k ∧ n1/5

))
n
]
.

Since k = O(log n), the case where γe(3β−C)k ≥ n1/5 immediately leads to µ̂h
n(Ik) ≤

exp[−(1 − o(1))n6/5], thus it remains the treat the converse case. Recalling that γ
satisfies

exp(−2β − e−4β) ≤ γ < exp(2β) ,

we see that γe(3β−C)k ≥ e(β−C)k (with room to spare: we could have taken C ′ exp[β +

(3β − C)(k − 1)]), so

µ̂h
n(Ik) ≤ exp

[
(4β + C)kn− e(β−C)kn

]
≤ exp

[
−e(β−C′)kn

]
,

where replacing the constant C > 0 by some larger absolute constant C ′ > 0 in the last
transition allowed us to absorb the term (4β + C)kn. We have thus established (5.3), as
required.

5.2 Proof of Lemma 5.6

Let I ∼ µ̂h
n, and reveal the wall collection W†(I), which by our assumption satisfies

m(W†(I)) ≤ n log n. We would like to obtain an upper bound on the probability that
there are εβn2 faces in ceilings of C†(I) (for an appropriate εβ). As our large deviation
estimates in Proposition 2.28 are only applicable to simply-connected regions, extra care
must be taken to modify the ceilings of I† into a simply-connected subset. To do so, we
will expose a minimal additional collection of walls, indexed by P† below.

Towards that purpose, define the random variable P†, measurable given W†(I), to be

P† = P†(I) := min face subset of L0,n s.t. P†(I) ∪ ρ(W†(I)) ∪ ∂L0,n is ∗ -connected

and the collection S†h (also measurable given W†(I), as the latter determines I†) to be

S†h = S†h(I) :=
{
S† = ρ(C†) \ P† : C† ∈ Ch∗n−h−1(I†) , |C†| ≥ n1.9

}
.

(For P†(I) to be well-defined, if there exist multiple face subsets of L0,n, all with the
same cardinality, that turn ρ(W†(I)) ∪ ∂L0,n to be ∗-connected, choose the identity of
P†(I) according to a predefined arbitrary lexicographic ordering of all subsets of L0,n.)
We will show that

µ̂h
n

( ∑
S†∈S†h

|S†|1{M̄↓
S†

(I)<h∗n−k}
≥ e−βkn2

∣∣∣W†(I)

)
1{m(W†(I))≤n logn}

≤ e−(γe(3β−C)k ∧n1/5)n , (5.5)

where here we used M̄↓
S†

to denote the minimum height of I within S† after centering it
by ht(C†) = h∗n − h− 1.

It is important to stress that for every ceiling C† in I†, the only obstacles preventing
it from being simply-connected would be walls from W†(I) nested in it; hence, by the
minimality of P†,

ρ(C†) \ P† is simply-connected for every ceiling C† in I† .
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(If C† is supported by W ∈ W†(I) and P = P† ∩
•

C† connects x, y ∈ W and some
W ′ ∈ W†(I) nested in C†, one can delete the part of P connecting x to W , retaining
connectivity of W,W ′ via the other part of P .)

Recall that each C† has |C†| ≥ n1.9 and |∂C†| ≤ n log n (the latter due to our assumption
on W†(I)). To address the effect of subtracting the set P† from the ceilings C† of I†, we
will appeal to the following classical result concerning Euclidean Traveling Salesman
Problems (TSPs). (For the d-dimensional analog of this result, see, e.g., the references
in [37, §2], as well as Lemma 1 there.)

Fact 5.7. [[41]; see also, e.g., [37, §2]] For every m points x1, . . . , xm in [0, 1]2 there
exists a path connecting them of length at most

√
2.8m+ 2.

For completeness, we include the short classical argument giving the bound 2d
√
me:

one divides [0, 1]2 into strips of height 1/
√
m each, and proceeds from the bottom strip to

the top via switchbacks, connecting the points within each strip from left-to-right, then
right-to-left, etc. If we were to use only horizontal and vertical lines (as an upper bound),
and there are ki points in strip i, then the total length associated with strip i would be at
most 1 + ki/

√
m, whence the overall total length is at most d

√
me+

∑
ki/
√
m ≤ 2d

√
me.

By our assumption that m(W†(I)) ≤ n log n, we can apply Fact 5.7 to the faces of
ρ(W†(I)) ∪ ∂L0,n with m = O(n log n), rescaling [0, 1]2 to L0,n. This yields that there
exists a face subset P† ⊂ L0,n connecting ρ(W†(I)) ∪ ∂L0,n of size

|P†| = O(n
√
m) = O(n3/2

√
log n) < n1.6

for large enough n. In the first equality, the extra n came from rescaling of [0, 1]2 to L0,n.
Also the discretization effect of faces amounts to at most 2m = O(n log n) additional
faces at the endpoints of each of the paths.

With this bound in hand, we may proceed to show (5.5). Write C†(I) = {C†1, . . . , C
†
N}

for some N , as well as S†i = ρ(C†i ) \ P†, and note that we may assume that

N∑
i=1

|S†i | ≥ e
−βkn2 , (5.6)

or else there is nothing left to show. For each z ∈ P†, let Uz be ρ(C†) for the ceiling C† in
I† with z ∈ ρ(C†i ), and reveal the walls in Gz,Uz (where we recall Gx,S is the sequence of
nested walls Wx,S which nest x in S, as well as the every wall nested in this sequence of
walls), denoting the set of all walls revealed so far by W0. For every i = 1, . . . , N , let

S̃i = S†i \
⋃
z∈P†

ρ(
•

Gz,Uz ) ,

which is simply-connected since
•

S†i = S†i (and S̃i was obtained by deleting from S†i , at
the very most, a collection of simply-connected regions each adjacent to its boundary).
Observe that every W revealed as part of Gz,Uz for z ∈ P† necessarily has diam(ρ(W )) ≤
exp(κ0(h∗n−1−k))∨ log n ≤ exp(κ0h

∗
n)∨ log n ≤ nεβ (otherwise it would have been part of

W†(I)). Thus, when obtaining S̃i from S†i , we subtracted at most |P†|nεβ ≤ n1.6+εβ from
its area, and similarly added at most n1.6+εβ to its perimeter. Recalling that S†i itself was
obtained by deleting P† from C†i which had |C†i | ≥ n1.9 and |∂C†i | ≤ n log n, it follows that

|S̃i| ≥ |C†i | − |P
†|nεβ ≥ n1.9 − n1.6+εβ ≥ 1

2
n1.9 ,

and

|∂S̃i| ≤ |∂C†i |+ n1.6+εβ ≤ (1 + o(1))n1.6+εβ .
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Combining these inequalities, while recalling that S̃i is simply-connected, shows that for
large enough n,

dimip(S̃i) ≤ 7

provided that β0 is large enough (whence εβ becomes small enough). Finally, note that

N∑
i=1

|S†i \ S̃i| ≤ |P
†|(eκ0h

∗
n ∨ log n) ≤ n1.6+εβ <

1

2
e−βkn2 , (5.7)

where the last inequality is by the fact that e−βkn2 ≥ n7/4−εβ for large n, since h∗n ≤
1

4β−C log n+C ′ and so e−βk ≥ e−βh∗n ≥ n−1/4−εβ . Combining this with the (deterministic)
fact that

N∑
i=1

|S†i |1{M̄↓
S
†
i

<h∗n−k}
≤

N∑
i=1

(
|S̃i|1{M̄↓

S̃i
<h∗n−k}

+ |S†i \ S̃i|
)
,

it therefore suffices to show that

µ̂h
n(E |W0) ≤ e−(γe(3β−C)k∧n1/5)n where E =

{ N∑
i=1

|S̃i|1{M̄↓
S̃i

(I)<h∗n−k}
≥ 1

2
e−βkn2

}
.

To this end, we now wish to successively reveal the walls in S̃i. Let Fi be the filtration
corresponding to initially revealing W0, then proceeding to reveal Wi = {Wz : z ∈ S̃i} at
step i = 1, . . . , N . Recalling the definition of the event G playing a role in Proposition 2.28,
given by

GA(r) =
⋂
z∈A
{diam(ρ(Wz)) ≤ r ∨ log n}) ,

we stress that every z ∈ L0,n whose Wz was not revealed as part of W0 is conditioned to
satisfy Gz(eκ0~) for

~ = h∗n − k .

By taking a supremum at every step i over the walls outside S̃i, it therefore remains to
bound the conditional probability that the event E occurs given on W0, via

µ̂h
n(E |W0) ≤

N∏
i=1

µ̂h
n(M̄↓

S̃i
< ~ | GL0,n\{ρ(W ):W∈W†}(e

κ0~) , Fi−1) ≤
N∏
i=1

Ψi (5.8)

for
Ψi := sup

W={Wz :z/∈S̃i}
ρ({

•
W :W∈W})⊂S̃i

µ̂h
n

(
M̄↓
S̃i
< ~ | GS̃i(e

κ0~) , IW

)
.

Recall that if S†i = ρ(C†i )\P† for some ceiling C†i ∈ Ch∗n−h−1(I†) then by definition ht(C†i ) =

h∗n − h − 1. Therefore, when looking at Ψi, the implicit conditioning in µ̂h
n that I ∈ Ifl

h

amounts to having M̄↓
S̃i
< h∗n via µ∓n . With this in mind, for every W = {Wz : z /∈ S̃i}

with ρ({
•

W : W ∈W} ⊂ S̃i we have

µ̂h
n

(
M̄↓
S̃i
< ~ | GS̃i(e

κ0~) , IW

)
= µ∓n

(
M̄↓
S̃i
< ~ | M̄↓

S̃i
< h∗n , GS̃i(e

κ0~) , IW

)
=

µ∓n

(
M̄↓
S̃i
< ~ , GS̃i(e

κ0~) | IW
)

µ∓n
(
M̄↓
S̃i
< h∗n , GS̃i(e

κ0~) | IW
) . (5.9)

First consider 1 ≤ k ≤ h∗n − 1 −
√

2 log n, so that
√

2 log n ≤ ~ ≤ h∗n − 2, whence the
criterion for Gz(eκ0~) is dominated by the exp(κ0~) term (exceeding, e.g., log2 n for every
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large n). As S̃i is simply-connected, has dimip(S̃i) ≤ 7 and ~ ≥
√

2 log n ≥ (log |S̃i|)1/2, we
may use (2.9) from Proposition 2.28 for h = ~, yielding

µ∓n (M̄↓
S̃i
< ~ , GS̃i(e

κ0~) | IW) ≤ exp(−(1− εβ)|S̃i|e−α~) ,

where we used that the event GS̃i(e
κ0~) implies GS̃◦i (eκ0~) for the subset S̃◦i ⊂ S̃i specified

in that proposition. At the same time, invoking (2.8) from the same proposition, this time
for h = h∗n, we get

µ∓n (M̄↓
S̃i
< h∗n , GS̃i(e

κ0~) | IW) ≥ exp(−(1 + εβ)|S̃i|e−αh∗n ) ,

here using that GS̃i(e
κ0~) is implied by Gm

S̃i
(5h∗n) (and hence also by Gm

S̃i
(4h∗n)) since

eκ0~ > log2 n > 5h∗n for every sufficiently large n. Substituting the last two displays
in (5.9), we find that

Ψi ≤ exp
(
−
(
(1− εβ)e−α~ − (1 + εβ)e−αh∗n

)
|S̃i|
)
.

We know from [21, Corollary 5.2] that

α~ + αk − εβ ≤ α~+k and αk ≥ (4β − C)k ,

which, since ~ + k = h∗n and we defined γ := n exp(−αh∗n), implies that

γ

n
= e−αh∗n ≤ e−αk+εβe−α~ ≤ e−(4β−C)ke−α~ .

Hence, we may absorb the term (1 + εβ)e−αh∗n = (1 + εβ)γ/n from the above upper bound
on Ψi into the constant C > 0 from the lower bound e−α~ ≥ e(4β−C)kγ/n (with k ≥ 1 and
β0 large) and obtain that

Ψi ≤ exp
(
−γe(4β−C)k|S̃i|/n

)
; (5.10)

thus, by plugging in the fact that ∑
i

|S̃i| ≥
1

2
e−βkn2 , (5.11)

obtained from (5.6) and (5.7), we infer that

N∏
i=1

Ψi ≤ exp

(
− γe(4β−C)k

N∑
i=1

|S̃i|
n

)
≤ exp

(
− 1

2
γe(3β−C)kn

)
. (5.12)

Next, consider 1
3h
∗
n ≤ k ≤ h∗n − 1. Treating this regime is significantly easier. (The

overlap between the regimes is indicative: the latter can be used to yield a lower bound of
(1− εβ)h∗n on the typical height of I.) With the same starting point (5.9), we invoke (2.7)
from Proposition 2.27 to deduce that

µ∓n (M̄↓
S̃i
< ~ , GS̃i(e

κ0~) | IW ) ≤ µ∓n (M̄↓
S̃i
< ~ | IW ) ≤ exp(−|S̃i|e−(4β−C)~) ,

whereas (2.6) from Proposition 2.27 implies that

µ∓n (M̄↓
S̃i
< h∗n , GS̃i(e

κ0~) | IW ) ≥ µ∓n (GS̃i(4h
∗
n) | IW ) ≥ exp(−|S̃i|e−(4β+C)h∗n) ,

since (eκ0~ ∨ log n) ≥ (4h∗n ∨ log n) = log n. Combining these estimates, and using that
~ = h∗n − k, yields

Ψi ≤ exp
(
−|S̃i|e(4β−C)k−2Ch∗n

)
≤ exp

(
−e(4β−C)k|S̃i|n−1−εβ

)
.
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Together with the bound (5.11) and the fact that k ≥ 1
3h
∗
n, this shows that

N∏
i=1

Ψi ≤ exp
(
− 1

4e
(3β−C)kn1−εβ

)
≤ exp

(
−cn5/4−εβ

)
. (5.13)

Combining (5.12) and (5.13) with (5.8) concludes the proof.

Remark 5.8. One can extend Lemma 5.6—followed by Theorem 5.2, and in turn, Theo-
rem 5.1—to the case h = h∗n − 1 if either k ≥ 2 or the quantity γ = n exp(−αh∗n)—which
we recall satisfies e−2β−εβ ≤ γ < e2β—is in a given range, for a suitably modified εkβ
replacing e−βk. Consider for instance the regime where

γ > β2 or k ≥ 2 .

One then defines C†(I) from Lemma 5.6 to be

C†(I) =
{
C† ∈ Ch∗n−h(I†) : |C†| ≥ n1.9 , M̄↓C†(I) ≤ h∗n − k

}
,

and argues that, in place of its conclusion, one has

µ̂h
n

( ∑
C†∈C†(I)

|C†| ≥ c0β−kn2 , m(W†(I))≤n log n

)
≤ exp

(
−
(
5γβ−ke(4β−C)(k−1) ∧ n1/5

)
n
)
.

Indeed, this follows by showing that, in lieu of (5.5), one has

µ̂h
n

( ∑
S†∈S†h

|S†|1{M̄↓
S†

(I)≤h∗n−k}
≥ e−βkn2

∣∣∣W†(I)

)
1{m(W†(I))≤n logn}

≤ e−(5γβ−ke(4β−C)(k−1) ∧n1/5)n . (5.14)

Following the same argument used to prove Lemma 5.6 yet with ~ = h∗n + 1− k, instead
of the bound (5.10) one arrives at Ψi ≤ exp(−γCe(4β−C)(k−1)|S̃i|/n). Taking c0 := 5C and
plugging in

∑N
i=1 |S̃i|/n ≥ c0β−kn implies (5.14). In the application of this lemma towards

proving Theorem 5.2, the exponent on the right of (5.14) competes with (4β + C)kn.
For k ≥ 2, the former is the dominant term regardless of γ, whereas for k = 1 it is the
dominant term if 5γ/β > 4β + C, as in our assumption.

5.3 Proof of Proposition 1.6

The lower bound in the proposition is precisely the statement of Lemma 4.4, and
it remains to show how to derive the upper bound via Theorem 5.2. If C is the set
of ceilings in I with |C| ≥ n1.9 and height at least h∗n − 1, and E is the event that∑
C∈C |C| ≥ A := (1 − 2e−β)n2, then Theorem 5.2 together with Lemma 4.7 imply that

µ̂0
n(E) = 1− o(1), implying in particular that

µ∓n (Ifl
0) = (1− o(1))µ∓n (E) .

We have at most n0.1 such ceilings, and if W1, . . . ,WN (N ≤ n0.1) are the nested se-
quences of walls supporting them, then

m
( N⋃
i=1

Wi

)
≥ 4
√
A(h∗n − 1) ≥ 1− e−β/2

β + 1/4
n log n = (1− εβ)β−1n log n

since h∗n ≥ (4β+ e−β)−1 log n−C for large enough n, and an area of A ceiling faces must
be supported by a perimeter of at least 4

√
A vertical wall faces at heights 1, . . . , h∗n − 1.

EJP 28 (2023), paper 95.
Page 35/44

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP987
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Entropic repulsion of 3D Ising interfaces

Using
∑
N≤n0.1

(
n2

N

)
≤ exp(n0.1+o(1)), we deduce from Theorem 2.26 that

µ∓n (E) ≤ exp
(
−(β − C)(1− εβ)β−1n log n

) ∑
N≤n0.1

(
n2

N

)
≤ exp

(
−(1− ε′β)n log n

)
,

and the proof is complete.

6 Bounding the interface histogram above a given height

Our goal in this section is to establish the following bound on the fraction of the sites
in L0,n above/below which the interface is not a singleton at height 0 whenever h ≥ h∗n.

Theorem 6.1. Let Un be the set of x ∈ L0,n such that I ∩ ({x} ×R) 6= {0}. There exist
β0, C > 0 so that for all β > β0 and every h ≥ h∗n, we have

µ̂h
n

(
|Un| ≥ Ce−βn2

)
≤ exp

(
−e−βn

)
.

This will be a consequence of the following estimate on encountering walls with a
near linear excess energy.

Theorem 6.2. There exist β0, C > 0 so the following holds for all β > β0. For every
h ≥ h∗n and r ≥ n9/10,

µ̂h
n

(
∃ a wall W in I with |ρ(

•

W )| ≥ r2
)
≤ e−(β−C)(r∧n logn) .

Furthermore, for any k ≥ 1,

µ̂h
n

(
∃ walls {Wi}ki=1 in I with disjoint hulls and min

i
|ρ(

•

W i)| ≥ r2
)
≤ e−(β−C)(kr∧n logn) .

Theorem 6.1 readily follows from Theorem 6.2 and our results from Section 4; to see
this, argue as follows: Lemma 4.7 guarantees that the total area in ρ(

•

C) for ceilings C
with |

•

C| ≤ n2/ log3 n is at most Ce−βn2 except with probability exp(−5n log n). To treat
the remaining ceilings having |

•

C| > n2/ log3 n, define

W`(I) = {outermost walls W in I with e−` ≤ |ρ(
•

W )|/n2 ≤ e1−`} (` ∈ J2β, 3 log log nK) .

An application of Theorem 6.2 with k = e`/2 and r = ne−`/2 shows that |W`(I)| ≤
e`/2 (reflecting a total area of at most n2e1−`/2) except with probability exp(−(β −
C)n). A union bound then shows that, except with probability exp(−(β − C)n), we have⋃
`

⋃
W∈W`

|ρ(
•

W )| ≤ Cn2e−β. The probability that a single outermost W exists with

|ρ(
•

W )| ≥ e−2βn2 (and hence m(W ) ≥ e−βn) is, by another application of Theorem 6.2, at
most exp(−(β−C)e−βn), the dominant term in our final estimate. Finally, by Lemma 4.5,
the total number of wall faces is at most e−2βn2 except with probability exp(−cβn2).

It will be illuminating to describe how the vanilla SOS approach can yield an estimate
on the total area in ceilings at height at least 1 when h ≥ (1 + εβ)h∗n once we combine it
with the approximate Domain Markov property for ceilings established in [23]. More
generally, we have the following claim, applicable to any h ≥ 0 (the above mentioned
estimate corresponds to the special case h = h1, which in turn is (1 + εβ)h∗n; at the other
end, the case h = 0 gives a bound on

∑
{|C| : C ∈ C>h1

(I)} for I ∈ µ̂0
n, a counterpart for

Claim 5.4).

Claim 6.3. There exist β0, C0 > 0 such that for every h1 ≥ (1 + 1√
β

) 1
4β−C0

log n and all
β > β0 and h ≥ 0,

µ̂h
n

(∑
{|C| : C ∈ C>h1−h(I)} ≥ (1/

√
β)n2

)
≤ O (exp (−3n log n)) .
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Proof. Suppose h ≤ h1 (otherwise there is nothing to prove), and let β0, C0 > 0 be
given by Proposition 2.27. Further set h0 = b 1

4β−C0
log nc. For every interface I, let

{C1, . . . , CN} denote the set of outermost ceilings in C>h1−h(I) with |
•

C| ≥ n1.9 (note that
N ≤ n0.1). Lemma 4.7 allows us to ignore ceilings with smaller areas, whereas if xi
is any face in the wall supporting Ci then Lemma 4.6 allows us to preclude any I in
which m(

⋃
iWxi) > (6/β)n log n. With this in mind, let I be the set of interfaces where∑

i |Ci| ≥ (1/
√
β)n2 and in addition m(

⋃
iWxi) ≤ 30nh0.

Reveal the outermost walls of I ∈ I, and continue the process inductively in supported
ceilings, while not revealing any walls nested in the Ci’s. Applying Proposition 2.27
iteratively on Si = ρ(

•

Ci) for each Ci, we see that for S =
⋃
i Si and any realization W of

the walls outside of S (subject to having I ∈ Ifl
0) we have

µ̂h
n(M̄↓S ≤ h0 | IW) ≥ µ∓n (M̄↓S ≤ h0 | IW) ≥ exp

(
− |S|(e−(4β−C0)(h0+1)

)
≥ e−|S|/n ≥ e−n ,

using that, given the wall set W, the event I ∈ Ifl
h is implied by M̄↓S ≤ h1 (which is implied

by M̄↓S ≤ h0) in the first inequality. So, if I′ is the set of I ∈ I such that M̄↓S ≤ h0 for
S =

⋃
i ρ(

•

Ci), then µ̂h
n(I′) ≥ exp(−n)µ̂h

n(I).
Now consider the map Φ on I′ which, for every Ci—recalling xi is some face in the

wall supporting it—deletes the entire nested sequence Wxi and replaces it by cylinders
of the form ρ(∂C)× [h−, (ht(C) ∧ (h0 − h))] for every ceiling C that was supported by one
of the walls W ∈Wxi , with h− the height of its nesting ceiling. (Notice that Φ(I) ∈ Ifl

h

holds for all I ∈ I′.)
The ceilings {Ci} account for at least (β−1/2n2)1/2 vertical wall faces in each of the

slabs h0 + 1, . . . , h1 in I; thus, in our cluster expansion (namely, Theorem 2.16), we have
βm(I; Φ(I)) ≥ β3/4n(h1 − h0) ≥ β1/4nh0, vs. the contribution of the interaction terms g

in that theorem, which is at most K̄|
⋃
iWxi | ≤ 30K̄nh0. Altogether, if β0 is large enough

then µ̂0
n(I) ≤ exp(n)µ̂0

n(I′) ≤ exp(−(1− εβ)β1/4nh0), as required.

Remark 6.4. We now explain why one cannot hope for the proof of Claim 6.3 to hold
all the way to h1 = (1 + o(1))h∗n, while pointing out a subtle but important difference
from the Peierls argument used in the SOS model. Whereas in the SOS model (being a
distribution over height functions) one can always lower a level line by 1 via decreasing
the heights in its interior, the analog of a level line in the Ising model—a ceiling C0
supported by a wall W0—might not be (in fact often will not be) consistent with such an
operation. Indeed, even if we suppose C0 is the only ceiling supported by W0 (to simplify
matters), it may be (and in fact often will be the case) that the ceiling C0 is a part of a
larger connected set F ⊂ I of horizontal faces at height ht(C0), which are categorized
as wall (rather than ceiling) faces due to the shape of the interface far (say, at distance
ε log n) below them. It is the set F that one would want to trim so as to gain |∂C| in energy
(since, locally around ht(C0), that set is the analogue of an SOS level line). However,
such an operation might shift the thermal fluctuations of the interface above ρ(F \ C0)

and have them clash with other wall faces. Further complicating matters is the fact
that the wall W0 might be tilted, whence its horizontal fluctuations (on account of which
faces in F \ C0 are not ceiling faces) are not well understood. To bypass these issues, the
proof of Claim 6.3 “straightened” the walls supporting the ceilings under consideration
into cylinders; e.g., in the case described above with a single C0, the energetic cost of
modifying W0 in k ∼ h∗n slabs would have order at least k|∂C0|. To offset this cost and
rule out a ceiling C0 with |∂C0| � n, one would need to gain at least (1/β)kn deleted walls
from the trimming operation; with ∂C0 contributing O(n) such wall faces in every slab
being shrunk, this argument would need a leeway of h1 ≥ (1 + c/β)k ≥ (1 + εβ)h∗n slabs.

Whereas these obstacles are highly nontrivial, in the setting of Theorem 6.2 there
is a single wall W0 whose entire wall cluster may be successfully deleted in the regime
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h ≥ h∗n—with the caveat that it will require the extension given in §3 of the bounds on
the maximum within a ceiling obtained in [23].

6.1 Proof of Theorem 6.2

Let us first consider the situation of a single wall W0; the case of multiple walls
W

(1)
0 , . . . ,W

(`)
0 will be obtained by iteratively applying this argument.

We will show the following stronger statement, applicable to any h ≥ 0. Recalling
that the supporting ceiling of a wall W0 is the ceiling whose faces are adjacent to

•

W 0

(which for outermost walls necessarily belongs to C0), and letting

Ir :=
{
I : ∃ a wall W0 in I supported by Ĉ0 ∈ C≥h∗n−h(I) such that m(W0) ≥ r

}
,

we will argue that

µ̂h
n (Ir) ≤ e−(β−C)(r∧n logn) for every r ≥ n9/10 .

In the case h ≥ h∗n, this will immediately imply the required result, as every W with
m(ρ(

•

W )) ≥ r2 is contained in some outermost wall W0 with m(W0) ≥ |ρ(
•

W 0)|1/2 ≥
|ρ(

•

W )|1/2 ≥ r, for which the above estimate holds.
Consider a standard wall W0, as well as a realization of its complete wall cluster

F0 = Clust(W0), such that m(F0) = r for some r ≥ n9/10. Further let

IF0
:=

{
I :

W0 ∈ standard wall collection of I, its wall cluster is F0

and it is supported by a ceiling Ĉ0 ∈ C≥h∗n−h(I)

}
,

emphasizing that we did not restrict this set to I ∈ Ifl
h. It will suffice to show that

µ̂h
n(IF0) ≤ e−(β−C)(r∧n logn) , (6.1)

since there are O(n2) = eo(r) locations for the placement of W0, and at most ec̄r wall
clusters F with m(F) ≤ r for some c̄ > 0 (independent of β), whence a union bound
over (6.1) will conclude the proof.

If r ≥ n log n then this is readily implied by [23, Lemma 3.10], as µ∓n (IFx0 ) ≤ exp(−(β−
C)m(Fx0)) which is then at most exp(−(β−C)n log n), hence extends to µ̂h

n via Lemma 4.4.
Assume therefore that r ≤ n log n.

Further assume—this time, an assumption that will require extra justification—that
W0 satisfies∑

{|C| : C is a ceiling of IW0
with C bW0, dimip(C) > 4} ≤ n7/4 . (6.2)

(We will later show that, except with probability O(exp(−3n log n)), every wall Wz ∈ I
satisfies this.)

Let Ĉ0 denote the ceiling that supports W0, and let

C0 = {C is a ceiling of J = IF0
with C bW0} and S0 =

⋃
C∈C0

ρ(C) .

(Note that C0 consists not of ceilings of IW0 but rather those of the interface J com-
prising the wall cluster F0. Whereas the former are simply-connected, a ceiling C ∈ C0

might not be, due to nested walls in Clust(W0).) Further let

ĪF0
:=
{
I ∈ IF0

: M̄↓S0
≤ h∗n

}
.

(Observe that I ∈ ĪF0
need not belong to Ifl

h even if it does satisfy that I ∩ (ρ(
•

W 0)c ×
R) ⊂ L≥−h; for instance, the interface will intersect L<−h when a ceiling C ∈ C0
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has ht(C) < h∗n − h while M̄↓ρ(C) = h∗n.) Let V0 = {Wz : z /∈ ρ(
•

W 0)} be an arbitrary

realization of the set of walls of ρ(
•

W 0)c which is compatible with W0 and such that
I ∩ (ρ(

•

W 0)c ×R) ⊂ L≥−h and the ceiling Ĉ0 supporting W0 has ht(Ĉ0) ≥ h∗n − h. The key
to the proof of (6.1) (and in turn, the entire theorem) is establishing that for any such
V0,

µ̂h
n

(
ĪF0 | IF0 ∩ IV0

)
≥ exp(−Cr) for an absolute constant C > 0. (6.3)

It is important to stress the effect of conditioning on IF0
∩ IV0

. Conditioning on the
IV0

—namely on the walls V0 external to W0—will not introduce any complication as far
as the behavior of I within C ∈ C0 is concerned, thanks to our results [23] on the rigidity
and approximate Domain Markov property for ceilings. However, the conditioning on
IF0 does need to be handled with care, as it is equivalent to conditioning on

m(Wz) ≤ dρ(z, ∂W0) for every z ∈ S0 ,

on top having the walls in F0 belong to the interface; in other words, in terms of the
event EηS from (3.1),

µ̂h
n(· | IF0 ∩ IV0) = µ̂h

n(· | EηS0
, IF0 ∩ IV0) with ηz = dρ(z, ∂W0) for all z ∈ S0 . (6.4)

Before analyzing I in this delicate conditional space towards (6.3), let us show how
to infer (6.1) from it. Let Φ be the map on interfaces I ∈ ĪF0 that deletes all of F0 from
the standard wall representation of I. Clearly, Φ is a bijection (F0 being fixed), and the
crux of the definition of ĪF0 is that I ′ := Φ(I) ∈ Ifl

h holds for all I ∈ ĪF0 (in fact even if
we had I intersect S0 ∩ L<−h). Indeed, I does not intersect ρ(

•

W 0)c × L<−h, and having
deleted F0 from it to reach I ′, clearly I ′ does not intersect (S0)c × L<−h, whereas in
S0 ×R, since we have ht(Ĉ0) ≥ h∗n − h (by the definition of V0), it has a minimum height
of at least h∗n − h− M̄↓S0

(I) ≥ −h by the definition of ĪF0 . Recalling that m(F0) = r, we
infer from [23, Lemma 3.10] that

µ̂h
n(ĪF0

| IV0
) =

∑
I′:Φ−1(I′)∈ĪF0

µ̂h
n(Φ−1(I ′) | IV0

)

≤
∑

I′:Φ−1(I′)∈ĪF0

e−(β−C)rµ̂h
n(I ′ | IW0) ≤ e−(β−C)r .

(Here we only conditioned on IV0
rather than on IF0

∩ IV0
.) Via the key inequality (6.3),

this implies

µ̂h
n(IF0 | IV0) =

µ̂h
n(ĪF0 | IV0)

µ̂h
n(ĪF0

| IF0
∩ IV0

)
≤ e−(β−C′)r , (6.5)

which, given that this holds for every V0 compatible with interfaces in IF0
, estab-

lishes (6.1).
To prove (6.3), let P ⊂ L0,n be a minimum set of faces that makes {ρ(W ) : W ∈

F0}∪ρ(W0) connected (we read P deterministically from F0 via an arbitrarily predefined
tie breaking between sets of equal size). As we next observe, the criterion for a wall W
to be part of Clust(W0) readily implies that

|P| ≤ m(F0) = r ;

indeed, initializing F̂ = {W0} and P̂ = ∅, consider the process of adding to F̂ walls
W ∈ F0 \ F̂ one at a time, in tandem with adding to P̂ the shortest path between ρ(W )

and ρ(F̂), until arriving at F̂ = F0 and P̂ which connects every {ρ(W ) : W ∈ F̂} to ρ(W0).
Every W ∈ F0 \ F̂ must satisfy dρ(W, F̂) ≤ m(W ) by the definition of Clust(W0), hence
incurs an addition of at most m(W ) faces to P̂. The process terminates with |P̂| ≤ m(F0),
hence the same bound applies to the minimum face set P connecting these walls.
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Ordering the faces of P as z1, z2, . . ., we proceed to expose Gzi,S0
for i = 1, 2, . . . condi-

tionally on IF0
∩ IV0

and the walls already revealed along this process for j < i, denoting
the corresponding filtration by Fi. Recalling (3.5) from the proof of Proposition 3.3, we
again define

Ĝx =
⋂

u∈ρ(
•
Gx,S0 )

{m(Wu,S0
) < 4h∗n} ,

and note that by the exact same argument that followed (3.5), now with ηz = dρ(z, ∂W0),
we have

µ∓n (Ĝzi | E
η
S0
, IF0

∩ IV0
,Fi) ≥ exp(−e−(4β−C)h∗n) ,

and the same bound under µ̂h
n. The result of iterating this bound for all zi ∈ P, followed

by the bound 1− x ≥ e− 3
2x for x < 1

2 , is that for

GmP (4h∗n) =
⋂
z∈P
{m(Wz,C0

) < 4h∗n}

we have, in light of (6.4), that

µ̂h
n (GmP (4h∗n) | IF0

∩ IV0
) ≥

(
1− e−(4β−C′)h∗n

)|P|
≥ exp

(
−|P|e−(4β−C′′)h∗n

)
≥ exp

(
−rn−1+εβ

)
, (6.6)

where we used that h∗n ≥ (4β + e−4β)−1 log n − C (see [21, Corollary 5.2]). Letting
WP =

⋃
{

•

Gz : z ∈ P}, note that the interface cannot have M̄↓ρ(C) ≥ h∗n at {z} × R for

z ∈ ρ(C) without also having m(Wz,ρ(C)) ≥ 4h∗n. Conditional on GmP (4h∗n), we next look at

events of the form {M̄↓S ≤ h∗n} for S = ρ(C) \ ρ(WP) with C ∈ C0.
Partition C ∈ C0 into two subsets C′0,C

′′
0 as follows:

C′0 := {C ∈ C0 : |C| ≥ n7/4 and dimip(ρ(C)) ≤ 8} , C′′0 := C0 \C′0 ,

consider S = ρ(C) \ ρ(WP) for C ∈ C0, and let W be an arbitrary realization of the walls
of Sc under µ̂h

n that is compatible with IF0
∩ IV0

, GmP (4h∗n) and EηC0
. Note that, by the

minimality of P, the set S is simply-connected. Furthermore, having I ∈ Ifl
h within S ×R

is equivalent to having M̄↓S ≤ ht(C) + h; hence,

µ̂h
n(M̄↓S ≤ h

∗
n | E

η
S , IW) = 1 whenever ht(C) ≤ h∗n − h . (6.7)

Suppose now that C is such that ht(C) > h∗n− h. In this case, M̄↓S ≤ h∗n implies that I ∈ Ifl
h,

so

µ̂h
n(M̄↓S ≤ h

∗
n | E

η
S , IW) = µ∓n (M̄↓S ≤ h

∗
n | E

η
S , IW , M̄↓S ≤ ht(C) + h)

≥ µ∓n (M̄↓S ≤ h
∗
n | E

η
S , IW) . (6.8)

If C ∈ C′0 then |S| ≥ |C|−|P| ≥ (1−o(1))|C| (recalling that |P| ≤ r ≤ n log n and |C| ≥ n7/4),
whereas |∂S| ≤ |∂C| + |P| ≤ (1 + o(1))|C|7/8 (as |∂C| ≤ |C|7/8 due to dimip(C) ≤ 8, while
r ≤ n log n and |C|7/8 > n3/2). In particular, dimip(S) ≤ 8 + o(1) in this case. By
Proposition 3.3, we may thus apply (3.4), deducing that

µ∓n (M̄↓S ≤ h
∗
n | IW , EηS) ≥ exp

(
−(1 + εβ)|S|e−αh∗n+1

)
≥ exp

(
−(1 + εβ)|C|e−αh∗n+1

)
, (6.9)

noting that we meet the assumptions for every n large enough there since h∗n ≥ (4β +

εβ)−1 log n ≥
√

log |S|, and for every z that satisfies d(z, ∂S) ≥ e2κ0h
∗
n our constraint in η
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is set to ηz = d(z, ∂W0) ≥ e2κ0h
∗
n > 5h∗n. For the remaining ceilings of C0, namely C ∈ C′′0 ,

we may appeal to (3.3) and derive

µ∓n (M̄↓S ≤ h
∗
n | IW , EηS) ≥ exp

(
−|S|e−(4β−C)h∗n

)
≥ exp

(
−|C|e−(4β−C)h∗n

)
. (6.10)

Combining (6.6)–(6.10), we conclude that

µ̂h
n(ĪF0

| IF0
∩ IV0

) ≥ exp

(
− n−1+εβr − (1 + εβ)

∑
C∈C′0

|C|e−αh∗n+1 −
∑
C∈C′′0

|C|e−(4β−C)h∗n

)
,

(6.11)
and it remains to account for the total area of the ceilings in C′0 and C′′0 . We will use the
following straightforward deterministic fact.

Fact 6.5. Let a, r be integers, let W be a set of walls with a total of r faces, and suppose
there are m distinct ceilings {Ci}mi=1 in IW such that ρ(Ci) ⊂

⋃
W∈W ρ(

•

W ) and |Ci| ≤ a

for all i. Then
∑m
i=1 |Ci| ≤ 3r

√
a.

Proof. As every Ci is bounded by wall faces in W, and each face of W ∈W bounds at
most 2 distinct ceiling faces, we have

∑m
i=1 |∂Ci| ≤ 2r. So, via the isoperimetric inequality

|Ci| ≤ |∂Ci|2 (with a factor 4 to spare),

m∑
i=1

|Ci| ≤
√
a

∑
i:|∂Ci|≤

√
a

|∂Ci|+
∣∣{i : |∂Ci| ≥

√
a
}∣∣ a ≤ √ar +

2r√
a
a = 3r

√
a .

For C′0 we use (along the same vein as the proof of the fact above) that |C| ≤ |∂C|n/4
and

∑
|∂C| ≤ 2r to deduce that ∑

C∈C′0

|C| ≤ nr/2 .

For C′′0 , recall that C0, . . . , CL are the ceilings of IW0 nested in W0 (as opposed to C0,
which takes Clust(W0) into consideration). For every C ∈ C′′0 there is a unique i ≥ 1 such
that ρ(C) ⊂ ρ(Ci), so∑

C∈C′′0

|C|1{∃i : ρ(C)⊂ρ(Ci) , dimip(Ci)>4} ≤
∑
i

|Ci|1{dimip(Ci)>4} ≤ n7/4

by construction of W0, whereas Fact 6.5 (and having m(F0) = r ≤ n log n) shows that∑
C∈C′′0

|C|1{|C|≤n7/4} = O(n15/8 log n) .

Finally, if |C| > n7/4 yet ρ(C) ⊂ ρ(Ci) for some i such that dimip(ρ(Ci)) ≤ 4, then |∂C| ≤
|∂Ci| + m(F0) which is at most |Ci|3/4 + r ≤ (1 + o(1))n3/2, so dimip(ρ(C)) ≤ 7 + o(1).
Therefore, C ∈ C′0 for large n.

Substituting these bounds in (6.11), along with the facts αh∗n+1 ≥ αh∗n + 4β − C ≥
log n+ 2β − C and h∗n ≥ (4β + e−4β)−1 log n− C from [21, Corollary 5.2], it now follows
that, for some other absolute C > 0,

µ̂h
n(ĪF0 | IF0 ∩ IV0) ≥ exp

(
−e−2β+Cr − n7/8+εβ

)
≥ exp

(
−C ′e−2βr

)
, (6.12)

where the term n−1+εβr was absorbed into the e−2β+Cr term, and the final inequality
used that r ≥ n9/10. This establishes (6.3), thereby concluding the proof for all W0

satisfying (6.2).
It remains to justify the assumption (6.2) for W0; recalling that we have m(W0) ≤

n log n, this property will be obtained as a consequence of our results from Section 4, as
we have the following:
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(a) if {Ci} is the set of ceilings of I ∼ µ̂h
n with |

•

Ci| ≥ n and dimip(
•

Ci) ≥ 4, then |
⋃
i ρ(

•

Ci)| <
n5/3 with probability at least 1− exp(−(β − C)n7/6) by Lemma 4.8;

(b) if W0 is a wall with m(W0) ≤ n log n, and {Ci} is the set of ceilings of IW0
that

are nested in W0 and satisfy |Ci| ≤ n, then Fact 6.5 shows that, deterministically,∑
i |Ci| = O(n3/2 log n).

Combining these (along with a union bound on W0 and its location) we see that W0

satisfies (6.2) (we arrived at an upper bound of n5/3 + n3/2+o(1) < n7/4) except with
probability O(exp(−n7/6−o(1))), as claimed.

To obtain the result for a collection of walls W (1)
0 , . . . ,W

(`)
0 , observe that our bound on

the probability of finding a given such W0 was conditional on V0, an arbitrary realization
of walls in ρ(

•

W 0)c. Therefore, for any fixed collection of such walls, we may iteratively

bound the probability of W (i)
0 conditional on the occurrence of {W (j)

0 }j<i, provided that
the hulls of said walls are disjoint (guaranteed by our hypothesis), and obtain an overall
bound of exp(−(β − C)(`r ∧ n log n)). A union bound over the location and structure of
these walls thus concludes the proof.

Remark 6.6. One can extend Theorem 6.2—and in turn, Theorem 6.1—to the case of
h = h∗n − 1, in the same vein as Remark 5.8, provided that the quantity γ = n exp(−αh∗n)

(which satisfies e−2β−εβ ≤ γ < e2β) is in a given range, e.g.,

γ ≤ β .

We claim that (6.1) holds for IF0 defined w.r.t. a supporting ceiling Ĉ0 ∈ C≥0. We
accordingly modify ĪF0 to feature a strict inequality: ĪF0 = {I ∈ IF0 : M̄↓S0

< h∗n},
and claim that the arguments hold true thereafter. Indeed, since ht(Ĉ0) ≥ 0, having
M̄↓S0

≤ h∗n − 1 = h would guarantee that Φ(I) ∈ Ifl
h for every I ∈ IF0 , whence (6.5)

remains true. For the analogue of (6.7), we now have that µ̂h
n(M̄↓S < h∗n | E

η
S , IW) = 1

whenever ht(C) ≤ 0, as h = h∗n − 1; and for (6.8), in case ht(C) > 0, we can again
bound µ̂h

n(M̄↓S < h∗n | E
η
S , IW) from below by µ∓n (M̄↓S < h∗n | E

η
S , IW). We conclude

that (6.11) holds for this case when replacing αh∗n+1 by αh∗n , and so (6.12) holds true
if the term e−2β+Cr is to be replaced by (1 + εβ)γr/2. Our assumption γ ≤ β thus
supports the analogue of (6.3) with a lower bound of exp(−(1 + εβ)(β/2)r), which is
outweighted by the term exp(−(β −C)r) from (6.5) to give a final probability estimate of
exp(−(β/2− C)r ∧ n log n).
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