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Abstract

For every exponentially ergodic one-dimensional probabilistic cellular automaton
with positive rates, we construct a locally defined coupling-from-the-past flow whose
coalescence time has a finite exponential moment. This construction leads to a finite-
size necessary and sufficient condition for exponential ergodicity of one-dimensional
cellular automata. As a corollary, we prove that every sufficiently small perturbation of
an exponentially ergodic one-dimensional cellular automaton is exponentially ergodic.
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1 Introduction

1.1 Definitions and the main result

Probabilistic Cellular Automata (PCA) form a class of discrete-time Markov processes
on spaces of the form A L, where L is a lattice (typically, L = Zd for some d ≥ 1),
and A is a finite set called an alphabet (see e.g. [17] for a seminal reference on the
subject, the tribute article [8], and [7] for a recent overview). In the present paper,
we consider one-dimensional PCAs, that is, L = Z. An element of A Z is a bi-infinite
sequence (v(x))x∈Z, where v(x) ∈ A for all x ∈ Z, and we equip the set A Z with the
product topology and product σ-algebra. The dynamics of the PCA is specified through a
transition kernel K from A {−1,0,1} to A , so that for every v = (v−1, v0, v1) ∈ A {−1,0,1},
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CFTP for exponentially ergodic one-dimensional PCA

K(v, ·) is a probability measure on A . Formally, a probabilistic cellular automaton with
kernel K is a discrete-time Markov process (Xt)t on A Z, such that:

The random variables (Xt(x))x∈Z are independent given Xt−1, (1.1)

∀x ∈ Z, Xt(x) ∼ K(πxJx−1,x+1K(Xt−1), ·), (1.2)

where Jx, yK denotes the discrete interval Jx, yK = {z ∈ Z; x ≤ z ≤ y}, and where, given
two sets I ⊂ J , we denote by πI the canonical projection from A J to A I , then letting
πxI = $−x ◦ πI , where $z denotes the canonical shift from A I to A z+I .

Moreover, we say that our PCA satisfies the positive rates condition when1 there
exists a w ∈ A such that

min
v∈A {−1,0,1}

K(v, {w}) > 0. (1.3)

One key question about the long-term dynamics of PCAs is that of ergodicity: we say
that a PCA is ergodic when there exists a (necessarily unique) probability distribution
µ on A Z such that, for every initial condition X0 = ξ ∈ A Z, one has the convergence

Xt
d−−−−→

t→+∞
µ. For an ergodic PCA, an important additional question is that of the

convergence speed: we say that a PCA is exponentially ergodic when there exist positive
constants a, b > 0 such that2, for all t ≥ 0, all ξ ∈ A Z, and all I ⊂ Z,

dTV

(
Law(πI(Xt)), µ|I

)
≤ a|I|e−bt, (1.4)

where dTV denotes the total variation distance between probability measures (see Sec-
tion 2), and where, for a probability measure ν on A J with I ⊂ J , we denote by ν|I the
image on A I of the probability measure ν with respect to the projection πI .

Among the various methods that may be used to prove ergodicity, we focus on the
so-called coupling from the past (CFTP) approach, which has become a popular tool
in the context of Markov-chain based numerical methods (see [14]), but had already
been used earlier (not under this specific name) to establish ergodicity for a variety of
processes – see e.g. [17] in the context of PCAs, or [10] in the context of continuous-time
interacting particle systems.

To formalize this approach, we define a CFTP flow to be a family of random functions3(
Φ
tn+1

tn

)
n≥0

, where (tn)n≥0 is a decreasing integer-valued sequence such that t0 = 0,

and where Φ
tn+1

tn : A Z → A Z is such that, for all n ≥ 1, and all ξ ∈ A Z, the sequence
ξ,Φtntn−1

(ξ), . . . ,Φt1t0◦· · ·◦Φ
tn
tn−1

(ξ), has the same distribution asXtn , Xtn−1
, . . . , Xt0 , starting

from Xtn = ξ. Here we have that tn < · · · < t0 = 0, due to the fact that we consider
coupling from the “past” time tn to the “present” time t0 = 0.

The coalescence time of the flow at a site x ∈ Z is then defined as

Tx = inf{−tn; n ≥ 1, πx ◦ Φt1t0 ◦ · · · ◦ Φtntn−1
is a constant function},

1This assumption may be called a weak positive rates condition, with the (more usual) strong positive rates
condition stating that (1.3) must hold for every w ∈ A .

2Looking at even the simplest examples (e.g. independent Markov chains at each site), it is clear that the
r.h.s. of a bound such as (1.4) must exhibit some dependence on I. The factor |I| is consistent with usual
definitions of mixing in the context of Markov random fields (see e.g. [16]) and is also implied (via the union
bound) by the existence a CFTP scheme satisfying property (i) in the statement of Theorem 1.1. However,
replacing |I| in (1.4) by g(|I|), where the function g is such that limL→+∞ log g(L)/L = 0, one can still prove
Theorem 1.1, following exactly the same steps. Thus, starting with a bound similar to (1.4) but involving e.g.
|I|2 or exp(|I|1/2), we still get in the end a PCA for which (1.4) holds with a factor |I| (possibly with different
constants a, b).

3We use the space S of functions φ : A Z → A Z for which there exists an r ≥ 1 such that the value of φ(ξ)
at site x is a function of those values of ξ(y) for which |y − x| ≤ r only. Measurability on S is then defined by
viewing elements of S as countable collections of functions from A Jx−r,x+rK to A .
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CFTP for exponentially ergodic one-dimensional PCA

with the convention inf ∅ = +∞, and where we use the notation πx instead of π{x} (that
is, the projection πI where I = {x}). If for all x, one has that Tx < +∞ a.s., then the PCA
is ergodic. Moreover, if the tail of Tx satisfies an inequality of the form P(Tx > t) ≤ ae−bt
for all t ≥ 0 (with a and b not depending on x), one gets the bound (1.4) with the same
constants a and b. (See e.g. [12], Section 3.)

Our main result is a converse to this property. It states that, whenever a PCA is
exponentially ergodic and has positive rates, it is possible to define a CFTP flow for
which Tx has a finite exponential moment (uniformly bounded over x), and which is, in a
precise sense, locally defined.

Theorem 1.1. Consider an exponentially ergodic one-dimensional PCA with positive
rates. Then there is a CFTP flow with tn = −n · L for a certain integer L, enjoying the
following properties:

(i) for all x ∈ Z and t ≥ 0, P(Tx > t) ≤ ce−dt where c > 0 and d > 0 do not depend on
x;

(ii) the family of random functions
(

Φ
tn+1

tn

)
n≥0

is i.i.d.;

(iii) there exists an i.i.d. family of random variables4 (Vy)
y∈ 1

2Z
, and a (measurable)

function F , such that, for all k ∈ Z and ξ ∈ A Z, one can write the value of Φt1t0(ξ)

within Jk(2L)− L, k(2L) + LK as:

π
k(2L)
Jk(2L)−L,k(2L)+LK

(
Φt1t0(ξ)

)
= F

(
Vk−1/2, Vk, Vk+1/2, π

k(2L)
J(k−1)(2L),(k+1)2LK(ξ)

)
.

Property (i) merely states the exponential bound on the tail of the coalescence time.
Property (ii) is a locality property of the flow with respect to time: the flow is defined on
a regular time-grid with mesh L, with an i.i.d. structure over distinct time cells. Finally,
property (iii) is a locality property with respect to space: over a grid with mesh 2L, the
flow only involves the value of the initial condition and an auxiliary i.i.d. structure within
a bounded window.

The conclusion of Theorem 1.1 is already known to hold, under a stronger form,
in the case of a monotone PCA (i.e. when the kernel K is stochastically monotone
with respect to a total order on A and the corresponding partial product order on
A {−1,0,1}), as observed in [3]. In such a case, ergodicity alone is enough to guarantee
the existence of a CFTP flow, one can take tn = −n, and πxx(Φ−10 (ξ)) can be written as
F (Vx, π

x
Jx−1,x+1K(ξ)); moreover, the tail of the coalescence time precisely matches the

actual speed of convergence to the limiting distribution.
Still, to our knowledge, a result as general as Theorem 1.1 – where no other assump-

tion beyond exponential ergodicity and positive rates is needed – is new, and, except in
the monotone case just discussed, only sufficient (but not necessary) conditions for the
existence of such a CFTP flow were known (see e.g. [4, 12]). Let us also mention the
reference [11], where a finite-size sufficient condition (condition CN,R) for exponential
ergodicity of PCA is defined (here L = Zd and A is allowed to be a general compact
metric space), and applied to several relevant examples; when satisfied, condition CN,R
leads to a pair-coupling (which is weaker than a CFTP flow) with exponentially fast
convergence.

Moreover, most, if not all, one-dimensional PCAs known to be ergodic are also
exponentially ergodic5, so our result can be applied to a wide range of models.

4One may further assume that the random variables Vy take their values in a finite set.
5One counterexample, pointed to us by I. Marcovici, is the one-dimensional discrete-time critical contact

process, for which one can show that convergence occurs at polynomial speed, see [6] and [5]. Note that this
couter-example is in a certain sense degenerate, since it fails to satisfy the strong positive rates condition, and
its limiting distribution is the Dirac measure concentrated on the “all 0” configuration.
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1.2 Consequences

A direct consequence of Theorem 1.1 is the existence of an algorithm to perfectly
sample from the invariant distribution µ of any exponentially ergodic one-dimensional
PCA with positive rates. Also, using the results6 in [15], we deduce that, if X ∼ µ, the
joint distribution of

(
πJk(2L),(k+1)2LK(X)

)
k∈Z admits a representation as a finite factor of

a finite-valued i.i.d. process (it is unclear whether this can be strengthened to prove that
µ itself enjoys this property).

Next, we observe that the flow constructed in the proof of Theorem 1.1 leads to a
finite-size necessary and sufficient condition for exponential ergodicity (with positive
rates)7. Specifically, the proof shows that, assuming positive rates, exponential ergodicity
is equivalent to the existence of an integer L ≥ 1 such that

ρ = (4L+ 1)P
(
πJ−L,LK ◦ Φ−L0 is not a constant function

)
< 1. (1.5)

As a consequence, at least in principle, the property of being an exponentially ergodic
PCA can always be checked using an algorithm that explores larger and larger values
of L (and of the other relevant parameters used in the construction), and stops when
a value of ρ < 1 has been found8. Another consequence of this finite-size condition is
that exponential ergodicity (with positive rates) is a robust property with respect to
sufficiently small perturbations of the dynamics, as stated in the following corollary.

Corollary 1.2. If the kernel K defines an exponentially ergodic one-dimensional PCA
with positive rates, it is also the case of any kernel K′ that is a sufficiently small9

perturbation of K.

1.3 Discussion

Theorem 1.1 holds for exponentially ergodic one-dimensional PCAs, and it is indeed a
natural question whether an analogous result holds in dimension d ≥ 2.

One place10 where the proof of Theorem 1.1 seems to rely heavily on the one-
dimensional setting is Lemma 4.4, where we show that exponential ergodicity implies
the existence of a coupling with good coalescence properties for the dynamics with
boundary conditions. The proof of the lemma uses the fact that the number of sites
within a fixed distance of the boundary of a d-dimensional box does not grow with the
size of the box, which is specific to d = 1. (This is reminiscent of the proof in [13] that
“weak mixing implies strong mixing for squares” in the context of two-dimensional spin
systems, where here we have one dimension of space and one of time instead of two
dimensions of space.) Using stronger mixing conditions (involving the dynamics with
boundary conditions) may allow to extend the conclusion of Theorem 1.1 to dimensions
d ≥ 2, but it is unclear how such mixing conditions could be related to more familiar

6Note that, in [15], the term “exponentially ergodic PCA” is used to refer to the existence of a suitable CFTP
flow, whereas in the present paper, exponential ergodicity is a mixing property from which we have to deduce
the existence of the CFTP flow.

7It is also claimed in [11] that CN,R is not just a sufficient, but also a necessary condition for exponential
ergodicity. However, the proof of necessity provided in [11] assumes that couplings of probability distributions
with certain specific properties exist, and it is unclear how one may directly derive these from just exponential
ergodicity, so that additional assumptions seem to be needed to make that proof work.

8Note that, if the input PCA is not exponentially ergodic, the procedure will run forever and we will not get
any answer, only exponentially ergodic PCAs will be confirmed as such.

9To be specific, let us measure closeness with the distance d∞(K,K′) =
maxv∈A {−1,0,1},w∈A |K

′(v, {w}) − K(v, {w})|. The conclusion of the corollary then reads: there ex-

ists ε > 0 (depending on K) such that, for all K′ satisfying d∞(K,K′) ≤ ε, the PCA defined by K′ is
exponentially ergodic. Since the kernels we are dealing with are finite-dimensional objects, we may in fact use

any vector norm on RA {−1,0,1}×A to define the distance.
10But not necessarily the only place, see also Lemma 4.1.
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ones in the context of PCAs such as (1.4). Note that, in the distinct but related context
of Markov random fields, the use of “strong” mixing conditions to build CFTP structures
and/or perfect simulation algorithms is an active research topic (see e.g. [16, 1], and the
references therein).

Another interesting extension would be to the case of (continuous-time) interacting
particle systems, for which the deterministic bound on the speed of propagation of
information in PCA dynamics does not hold.

1.4 Organization of the paper

The paper is essentially self-contained. Section 2 contains definitions and simple but
useful results on couplings (no claim at originality is made there). Section 3 is devoted
to definitions related to PCA dynamics within trapezoids, which are heavily used in the
subsequent proofs. Section 4 contains a succession of lemmas leading to the proof of
Theorem 1.1 and Corollary 1.2.

2 Couplings

Given a finite set S and a finite family (νe)e∈E of probability distributions on S, a
coupling of (νe)e∈E is a family of S-valued random variables (Ze)e∈E , such that Ze ∼ νe
for all e ∈ E. Alternatively, we may view such a coupling as a random map Ψ : E → S,
where Ψ(e) = Ze.

Given two probability distributions ν1, ν2 on S, remember the definition of the total
variation distance dTV(ν1, ν2) = 1

2

∑
s∈S |ν1(s)− ν2(s)|. It is a classical result that the total

variation distance is the minimum value of P(Z1 6= Z2) over all couplings of ν1, ν2. The
following two lemmas provide two useful variations over this kind of result. (See [2] for
a more general and stronger version of Lemma 2.2, and [9] for an earlier result with a
content similar to Lemma 2.2.)

Lemma 2.1. Assume that, for a certain 0 < ε < 1, there exists an e0 ∈ E such that one
has dTV(νe, νe0) ≤ ε/|S| for all e ∈ E. Then, for all γ ∈]ε, 1[, there exists a coupling of
(νe)e∈E such that P(Ze = Ze0 for all e ∈ E) ≥ (1− γ)(1− ε/γ).

Proof. Let A = {s ∈ S; νe0(s) ≤ ε/(γ|S|)}. One has that νe0(A) =
∑
s∈A νe0(s) ≤

|A| · ε/(γ|S|) ≤ ε/γ. Now, if s ∈ Ac, one has that νe0(s) ≥ ε/(γ|S|), so that, since |νe(s)−
νe0(s)| ≤ dTV(νe, νe0) ≤ ε/|S|, one has νe(s) ≥ νe0(s)− ε/|S| ≥ (1− γ)νe0(s). Now consider
a pairwise disjoint family (I(s))s∈Ac of subintervals of [0, 1], with respective lengths
(1− γ)νe0(s), Then, for every e ∈ E, complete these intervals into a partition of [0, 1] by
adding pairwise disjoint intervals (Le(s))s∈Ac , with respective lengths νe(s)−(1−γ)νe0(s),
and pairwise disjoint intervals (Ke(s))s∈A, with respective lengths νe(s). Now consider
a random variable U with uniform distribution on [0, 1]. Whenever U belongs to the
interval I(s), we set Ze = s for all e ∈ E. When U does not belong to

⋃
s∈Ac I(s),

for a given e, either U belongs to a (unique) interval Le(s), or to a (unique) interval
Ke(s), and we define Ze as precisely the corresponding s. It is now apparent that each
Ze has νe as its distribution, while P(Ze0 = Ze for all e ∈ E) ≥ P(U ∈

⋃
s∈Ac I(s)) =∑

s∈Ac(1− γ)νe0(s) = (1− γ)νe0(Ac) ≥ (1− γ)(1− ε/γ).

Lemma 2.2. Assume that, for a certain 0 < ε < 1, there exists an e0 ∈ E such that one
has dTV(νe, νe0) ≤ ε for all e ∈ E. Then there exists a coupling of (νe)e∈E such that, for all
J ⊂ E, P(Ze = Ze0 for all e ∈ J) ≥ 1− |J |ε.

Proof. We recycle the classical coupling construction leading to the probability of inequal-
ity between a pair of random variables being equal to the total variation distance. First
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Figure 1: A downward trapezoid (above) and an upward trapezoid (below). In the upward
case, the outer boundary is shown in blue. The integer lattice is drawn using purple
dotted lines.

consider a partition of the interval [0, 1] into a pairwise disjoint family (Je0(s))s∈S of subin-
tervals, with respective lengths νe0(s). For e ∈ E \ {e0}, let Ae = {s ∈ S; νe0(s) ≥ νe(s))}.
For s ∈ Ae, let Je(s) be a subinterval of [0, 1] with length νe(s) such that Je(s) ⊂ Je0(s).
Then, for s ∈ Ace, let Je(s) be the union of a finite number of disjoint subintervals of [0, 1],
in such a way that Je0(s) ⊂ Je(s), that the total length of Je(s) equals νe(s), and that
the family (Je(s))s∈S forms a partition of [0, 1]. Using a random variable U with uniform
distribution on [0, 1], and defining Ze as the unique s such that Je(s) contains U , we have
that Ze ∼ νe for all e ∈ E, and, for all e ∈ E \ {e0}, P(Ze0 = Ze) = dTV(νe, νe0). Thus,
P(∃ e ∈ J such that Ze0 6= Ze) ≤

∑
e∈J P(Ze0 6= Ze) =

∑
e∈J dTV(νe, νe0) ≤ |J |ε.

In the sequel, a coupling provided by Lemma 2.1 (resp. Lemma 2.2) will be called a
type I (resp. type II) coupling.

3 Trapezoids

In this paper, we use the generic term trapezoid to refer to discrete isosceles trape-
zoids drawn on the space-time lattice Z× (−N) whose lateral sides have their respective
slopes equal either to −1,+1 or to +1,−1, as shown in Fig. 1. We distinguish between
downward trapezoids (when the top is longer than the base), and upward trapezoids
(when the top is shorter than the base), with time flowing from top to bottom.

We define the outer boundary of an upward trapezoid T as the union, on both sides,
of the two discrete segments parallel to the lateral sides of T, at horizontal distance
respectively 1 and 2 from T, starting at the ordinate of the top, and stopping one unit
above the ordinate of the base. The outer boundary is denoted by ∂+T. We also use the
notation T(m) = T ∩ (Z× {m}).

The (regular) boundary of T is formed by the elements of T that lie at horizontal
and/or vertical distance 1 from the complement of T in Z× (−N).
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3.1 Dynamics within a trapezoid

3.1.1 Downward case

Consider a downward trapezoid T with height L and base-length K, with top(T) =

Jz−L, z+K +LK×{τ} = T(τ), and base(T) = Jz, z+KK×{τ +L} = T(τ +L). Starting
from a configuration ζ ∈ A top(T) consisting of an element of A at each site of the top of
T, we define the PCA dynamics within T as a Markov process on the successive state
spaces A T(τ), . . . ,A T(τ+L) in which, given the configurations within T(τ +m), where
0 ≤ m ≤ L− 1, the configuration within T(τ +m+ 1) is obtained by following (1.1)–(1.2),
for x ∈ Jz − L+m+ 1, z +K + L−m− 1K. We denote by G(ζ,T) the resulting overall
distribution on A T.

The following restriction property shows that the dynamics within T we have just
defined, coincides with the restriction of the overall dynamics of the PCA within T,
conditional upon a suitably defined “outside” of T. The proof is omitted, and is an easy
consequence of e.g. the basic coupling described in Subsection 3.2.3 below.

Lemma 3.1. Consider s ≤ τ , and define outs(T) as the set of (x, t) such that either
s ≤ t < τ , or τ ≤ t ≤ τ + L and the horizontal distance from (x, t) to T is ≥ 2(t − τ).
Starting from Xs = ξ at a time s ≤ τ , the distribution of (Xt(x))(x,t)∈T, conditional upon
(Xt(x))(x,t)∈outs(T), is G(ζ,T), with ζ = (Xt(x), (x, t) ∈ top(T)).

3.1.2 Upward case

Consider an upward trapezoid T with height L and top-length M , top(T) = Jz, z +MK×
{τ} = T(τ) and base(T) = Jz − L, z + M + LK × {τ + M} = T(τ + L). Starting from a
configuration ζ ∈ A top(T) consisting of an element of A at each site of the top of T,
and a boundary condition χ ∈ A ∂+T consisting of an element of A at each site of the
outer boundary ∂+T, we can define the PCA dynamics within T as in the previous case:
given the configurations within T(τ +m), where 0 ≤ m ≤ L− 1, the configuration within
T(τ +m+ 1) is obtained by following (1.1)–(1.2), for x ∈ Jz−m−1, z+M +m+ 1K, using
the boundary condition to make sense of (1.2) when x ∈ {z−m− 1, z−m, z+M +m, z+

M +m+ 1}. We denote by Gχ(ζ,T) the resulting overall distribution on A T.
We now state a restriction property for the dynamics with boundary conditions on T.

The proof is similar to that of Lemma 3.1.

Lemma 3.2. Consider s ≤ τ , and define outs(T) as the set of (x, t) ∈ Z × Js, τ + LK
such that either (x, t) /∈ T or (x, t) ∈ top(T). Starting from Xs = ξ at a time s ≤ τ ,
the distribution of (Xt(x))(x,t)∈T, conditional upon (Xt(x))(x,t)∈outs(T), is Gχ(ζ,T), with
ζ = (Xt(x), (x, t) ∈ top(T)) and χ = (Xt(x), (x, t) ∈ ∂+(T)).

3.2 Coupling within a trapezoid

3.2.1 Downward (K,L)-coupling

Given a downward trapezoid T with height L and base-length K, we define a downward
(K,L)-coupling to be a coupling of the dynamics within T, for every possible initial
configuration on the top, that is, a coupling of the family G(ζ,T), ζ ∈ A top(T). Note
that, given a coupling for the configuration at the base, i.e. a coupling for the family
G(ζ,T)|base(T) , ζ ∈ A top(T), one can always build a full (K,L)-coupling by sampling

from the distribution of the whole dynamics within T starting from ζ, conditional upon
the random configuration at the base generated by the coupling. If Ψ denotes a random
function from A top(T) to A T corresponding to a (K,L)-coupling, we say that coalescence
occurs when πbase(T) ◦ Ψ is a constant function, and we say that an (x, t) ∈ base(T) is
locked when π(x,t) ◦Ψ is a constant function.
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3.2.2 Upward (M,L)-coupling

For an upward trapezoid T with height L and top-length M , we define an upward
(M,L)-coupling to be a coupling of the dynamics within T for every possible boundary
condition, and every possible initial configuration on the top of T, i.e. a coupling for the
family Gχ(ζ,T), ζ ∈ A top(T), χ ∈ A ∂+T. As above, a coupling for the configuration at
the base is enough to define a full (M,L)-coupling. If Ψ denotes a random function from
A top(T) ×A ∂+T to A T corresponding to an (M,L)-coupling, we say that coalescence
occurs for the boundary condition χ when ζ 7→ πbase(T)(Ψ(ζ, χ)) is a constant function,
and we say that (x, t) ∈ base(T) is locked for the boundary condition χ when ζ 7→
π(x,t)(Ψ(ζ, χ)) is a constant function.

3.2.3 The basic coupling

The basic coupling provides a simple way of defining couplings for the PCA dynamics.
It is defined through an i.i.d. family of random functions (Γx,t)x∈Z,t∈Z, where Γx,t :

A {−1,0,1} → A is such that, for all v ∈ A {−1,0,1}, the law of Γx,t(v) is K(v, ·). Moreover,
thanks to the positive rates property (1.3), we may assume that there is a κ > 0 and a
w ∈ A such that

P(Γx,t(v) = w for all v) ≥ κ. (3.1)

(It is easy to explicitly design such functions, using a single random variable Ux,t with
uniform distribution on [0, 1] and a suitable partition of [0, 1] into sub-intervals for each
v). Conditions (1.1)–(1.2) are then implemented through the equation:

Xt(x) = Γx,t

(
πxJx−1,x+1K(Xt−1)

)
.

Using the basic coupling, we can easily design downward (K,L)-couplings or upward
(M,L)-couplings, but these may not enjoy the coalescence properties we are after. We
shall nevertheless use the basic coupling on parts of the trapezoids we consider, using
the restriction properties contained in Lemmas 3.1 and 3.2 to patch together couplings
defined on different parts.

4 Proof of the main results

Our first lemma shows that, for downward trapezoids with a sufficiently large height-
to-base ratio, one has a coupling with suitable control over the non-coalescence proba-
bility.

Lemma 4.1. There exist constants α > 0, c1 > 0, d1 > 0 such that, for all large enough
K, and all L ≥ αK, one can define a downward (K,L)-coupling such that the probability
of non-coalescence is bounded above by c1 · e−d1K .

Proof. For K ≥ 1, and arbitrary z, τ , denote by T the downward trapezoid with top =

Jz−L, z+K +LK×{τ}, and base = Jz, z+KK×{τ +L}. We shall apply Lemma 2.1 with
S = A base, E = A top, µe = G(e,T)|base , and e0 an arbitrarily chosen element of E.

One has |S| = |A |K+1, and, from the exponential ergodicity property (1.4), one has
the bound dTV(µe, µe0) ≤ 2a(K+1)·exp(−bL) ≤ 2a(K+1)·exp(−bαK) for all e. As soon as
α > log(|A |)/b, we see that ε = 2a(K + 1) · exp(−bαK) · |A |K+1 decays exponentially fast
with K, so we can apply Lemma 2.1, with the value of ε just defined, and e.g. γ = ε1/2, to
get the desired coupling.

It turns out that, to prove Theorem 1.1, we need to extend Lemma 4.1 to allow for
“flatter” trapezoids, at the price of a slightly worse bound on the coalescence probability.
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+

Figure 2: Fitting a trapezoid with base length kn and height `n into a triangle with base
length 2`n+1 and height `n+1. The integer lattice is drawn using purple dotted lines.

This is done in the following two lemmas, using as a key tool a family of nested self-
similar trapezoids with a type I coupling (Lemma 4.2), followed by a type II coupling
(Lemma 4.3).

First, let us recall the ∼ notation used hereafter: given two sequences of real numbers
(un)n≥1 and (vn)n≥1, we write un ∼ vn if un−vn = o(un) (or equivalently: un−vn = o(vn)).
When un ∼ vn and one of the sequences is eventually non-zero, so is the other, and we
have that limn→+∞ un/vn = 1.

Lemma 4.2. For all A > 0, and for arbitrarily large L, there exists a downward (K,L)-
coupling with the following properties11 as L→ +∞:

• L/K ∼ (logL)−A

• the probability that the number of unlocked sites exceeds K · (logL)−A is bounded

above by e−L
1+o(1)

Proof. Let α > 0, c1 > 0 and d1 > 0 be as in the statement of Lemma 4.1. Let `0 be a
even integer number such that `0 ≥ 4α, and define inductively the sequences (`n)n≥0
and (kn)n≥0 by kn = b`n/αc2, and `n+1 = kn/2 + 2`n, where bmc2 stands for the largest
even integer number less than or equal to m.

These definitions allow one to exactly fit a downward trapezoid with base length kn
and height `n into a discrete isosceles triangle with base length 2`n+1 and height `n+1,
as shown in Fig. 2.

By definition, we have that, for all n, `n+1 ≥ `n/(2α) − 1 + 2`n = (2 + 1/(2α))`n − 1,
and we deduce that the sequence (`n)n≥0 is increasing, and that, for all n ≥ 0, 1/(2α) ≤
kn/`n ≤ 1/α. On the other hand, we have that (1 + 1/(2α))n`0 ≤ `n ≤ (2 + 1/(2α))n`0.

Now put side-by-side q downward trapezoids with base length kn and height `n.
These trapezoids form generation 0, and fit into a larger downward trapezoid T of height
L = `n and base length K = qkn + (2q − 2)`n. Between two consecutive trapezoids
of generation 0 lies a triangle with base length 2`n and height `n. Within every such
triangle, we fit a trapezoid with base length kn−1 and height `n−1. These trapezoids
form generation 1. We then iterate the following procedure for i = 1, . . . , n− 1. Between
two consecutive trapezoids of generation ≤ i (two consecutive trapezoids may belong
to distinct generations) lies a triangle with base length 2`n−i and height `n−i. Within
every such triangle, we fit a trapezoid with base length kn−i−1 and height `n−i−1. An
illustration is provided in Fig. 3.

11 A more precise formulation is that there exist a sequence (Ln)n≥1 and a sequence (Kn)n≥1 of integers
such that limn→+∞ Ln = +∞ and the pair (Kn, Ln) satisfies the properties stated in the lemma.
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The 0-th generation trapezoids cover a base of total length qkn, and the triangles
between them cover a base of total length (2q − 2)`n. For i = 0, . . . , n − 1, going from
generation i to generation i+ 1 results in the addition of a new generation of trapezoids
with heights `n−i−1 and base lengths kn−i−1. As a consequence, the base length covered
by triangles lying between consecutive trapezoids of generation ≤ i+1 is the base length
covered by triangles lying between consecutive trapezoids of generation ≤ i, multiplied
by a factor 1− kn−i−1

kn−i−1+4`n−i−1
≤ 8α

1+8α < 1.
As a result, the total length in the base of T that is not covered by the base of a

trapezoid of whichever generation, is less than f = (2q − 2)`n

(
8α

1+8α

)n
.

There are q trapezoids in generation number 0, and q − 1 in generation number 1.
After generation 1, each further generation leads to twice as many trapezoids as in the
previous one, so the total number of trapezoids is r = q+(q−1) ·(1+2+ · · ·+2n−2) ≤ q ·2n.

We now define a downward (K,L)-coupling inside T, for all large enough `0. We
use within each trapezoid belonging to generation n− j (with height `j and base length
kj), the (kj , `j)-coupling from Lemma 4.1, independently from other trapezoids (the fact
that `0 is large enough, and that, by construction, `j ≥ αkj , ensures that the lemma can
be applied for all j = 0, . . . , n). In the part of T not belonging to any of the previous
trapezoids, we just use the basic coupling. That this is a licit construction leading to a
downward (K,L)-coupling is a consequence of Lemmas 3.1 and 3.2.

For a trapezoid of height `j and base length kj , the probability of non-coalescence
of the (kj , `j)-coupling is, according to Lemma 4.1, bounded above by c1e−d1kj . By the
union bound, the probability that coalescence does not occur in at least one of the
trapezoids, is less than rc1e−d1k0 , and so less than q · 2ne−d1k0 . When coalescence occurs
in every trapezoid, every unlocked site of our overall (K,L)-coupling must belong to the
complement of the bases of these trapezoids, whose total length does not exceed f .

Now let B be such that B · log
(
1 + 1

8α

)
> A, let q =

⌈
1

2+1/α · (log `0)A
⌉

and let

n = dB · log log `0e (assuming that `0 is large enough so that q ≥ 2 and n ≥ 1).
From the bound (2 + 1/α)n`0 ≤ `n ≤ (2 + 2/α)n`0, we see that, as `0 → +∞,

log `n ∼ log `0, and also q ∼ 1
2+1/α · (log `n)A. Remembering that L = `n and that

K = qkn + (2q − 2)`n, we see that K ∼ (logL)AL. Moreover, f = (2q − 2)`n

(
8α

1+8α

)n
∼

2
2+1/αK(logL)−B log(1+ 1

8α ) = o
(
K · (logL)−A

)
.

Now remember that the probability of having more than f unlocked sites is bounded
above by q · 2ne−d1k0 . We have q ∼ 1

2+1/α (logL)A, 2n ∼ (logL)B log 2, and, writing

`0 = elog `0 , and using the fact that logL ∼ log `0, and k0 = `0/α + O(1), we may write

e−d1k0 as e−L
1+o(1)

, and absorb both smaller order factors (logL)A and (logL)B log 2 into
this expression, so that the probability of having more than f unlocked sites is bounded
above by e−L

1+o(1)

.

Lemma 4.3. For any A > 0, and for arbitrarily large L, there exists a downward (K,L)-
coupling with the following properties12 as L→ +∞:

• L/K ∼ h(logL)−A for some constant h > 0

• the probability that coalescence does not occur is bounded above by e−L
1+o(1)

.

Proof. Apply Lemma 4.2 to find a downward (K0, L0)-coupling for an arbitarily large
L0, with L0/K0 ∼ (logL0)−A as L0 → +∞, and let t =

⌈
(h− 1)K0 · (logL0)−A

⌉
for a

certain constant h > 1 + (log |A |)/b. We then let the resulting K0 sites at the base

12See Footnote 11.
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Figure 3: Illustration with q = 3 and α = 1. The trapezoid T is drawn with dashed
lines. Three generations of nested trapezoids are drawn: generation 0 (red), generation
1 (green), generation 2 (blue).

evolve according to a type II (K0 − 2t, t)-coupling (see Lemma 2.2), independent from
the previous (K0, L0)-coupling.

Conditional upon the (K0, L0)-coupling, when the number of unlocked sites is less than
K0 · (logL0)−A, there are at most |A |K0·(logL0)

−A
distinct initial configurations fed into

the top of the type II (K0−2t, t)-coupling. In such a case, by Lemma 2.2, the (conditional)
probability that coalescence does not occur within the (K0 − 2t, t)-coupling is bounded

above by |A |K0·(logL0)
−A

(K0−2t)2ae−bt, which rewrites as e−L
1+o(1)
0 since h > (log |A |)/b

and L0/K0 ∼ (logL0)−A. On the other hand, by Lemma 4.2, the probability that the
number of unlocked sites exceeds K0 · (logL0)−A in the (K0, L0)-coupling is also bounded

above by e−L
1+o(1)
0 .

We have thus built a downward (K,L)-coupling with K = K0 − 2t and L = L0 + t,
with K ∼ K0 and L ∼ hL0, and so L/K ∼ h(logL0)−A ∼ h(logL)−A. Moreover, the

non-coalescence probability is bounded above by e−L
1+o(1)
0 , and so by e−L

1+o(1)

.

We now consider couplings for the dynamics involving boundary conditions within an
upward trapezoid.

Lemma 4.4. There exists a constant θ > 0 such that, for all large enough L and
M ≤ L/(logL)θ, there is an upward (M,L)-coupling whose non-coalescence probability

is bounded above, for any boundary condition, by e−L
1+o(1)

as L→ +∞, where the o(1)

is uniform over M and over the boundary condition.

Proof. We define a coupling of the dynamics within an upward trapezoid T with height
L and top length M , for a given boundary condition χ, assuming that M ≤ L. Remember
the constants a, b in (1.4). Let t = d2(logL)/be, and, for

⌈
(logL)3

⌉
≤ i ≤ q, where

q = bL/tc, consider the slice of T formed by the upward trapezoid Ti with height t and
base length M + 2it (see Fig. 4).

For each i, we divide the base of Ti into seven consecutive intervals I1, . . . , I7 (from
left to right), whose lengths gj are defined as follows: g1 = g3 = g5 = g7 = k, with
k = d(6/b) log logLe2 (here dme2 stands for the largest even integer number less than or
equal to m), g2 = g6 =

⌈
(logL)2

⌉
, g4 = M + 2it− (g1 + g2 + g3 + g5 + g6 + g7). (Condition

i ≥ (logL)3 ensures that, for all large enough L, we have g4 ≥ 0.)
We then put two downward trapezoids Ti,1 and Ti,3 of height k/2 on top of I2 and I6

respectively, and a downward trapezoid Ti,2 of height t on top of I4. Observe that these
trapezoids do not intersect each other except on their boundaries, and, that for all large
enough L, they do not touch the outer boundary of T (see Fig. 5).

We now define by induction the coupling within T. To begin with, above Td(logL)3e,
and below Tq, we use the basic coupling. Then, assuming that the coupling has already
been defined above Ti, we do the following within Ti. Outside Ti,1 ∪Ti,2 ∪Ti,3, we use
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Figure 4: Slicing of T by consecutive trapezoids Ti, depicted in various colours. Bound-
ary conditions are shown in blue.

Figure 5: Within a trapezoid Ti, intervals I1, . . . , I7, and trapezoids Ti,1 (red), Ti,2

(green), Ti,3 (red). Boundary conditions are shown in blue.

the basic coupling. Since these downward trapezoids do not touch the outer boundary,
the dynamics within them do not involve the boundary condition. Moreover, their bases
and heights have been chosen in such a way that, for all large L, we have, say13,

2a · base length · e−b·height ≤ 1/4. (4.1)

As a consequence, within Ti,j for j = 1, 2, 3, Lemma 2.2 provides a type II coupling
such that, for any pair of configurations at the top of Ti,j , the probability that they do not
lead to the same configuration at the base of Ti,j is bounded above by14 2 · 2a · base length ·
e−b·height, where we have used the exponential ergodicity property (1.4). Using (4.1), we
see that, for all large L, this probability is bounded above by 2 · 1/4 = 1/2. Since Ti,j ,
for j = 1, 2, 3 do not touch each other except on their boundaries, we may use these
couplings independently within Ti,1,Ti,2,Ti,3. There remain less than 4k sites within
I1 ∪ I3 ∪ I5 ∪ I7 that do not belong the the bases of Ti,1,Ti,2,Ti,3. Invoking the positive
rates property of our PCA in conjunction with the basic coupling outside Ti,1∪Ti,2∪Ti,3,
the probability to have every such site in a certain state w ∈ A , for every configuration
at the top of Ti, is bounded below by κ4k (see (3.1) for the definition of κ in the context

13Using (1.4), we see that the l.h.s. of (4.1) bounds the total variation distance for the configuration at the
base, starting from two distinct initial conditions at the top; the prefactor 2 is needed since (1.4) is a bound on
the distance between a configuration and the limiting distribution.

14Here, the prefactor 2 comes from applying Lemma 2.2 with a pair, i.e. a set J with |J | = 2.
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of the basic coupling) independently of what happens within Ti,1∪Ti,2∪Ti,3. As a result,
the probability of having the same pair of configurations on the base of Ti is bounded
below by (1/2)3 · κ4k.

The coupling is now defined on the whole of T. Starting from a pair of configu-
rations ζ1, ζ2 at the top of T, the probability that all of the q −

⌈
(logL)3

⌉
trapezoids

Ti fail to produce the same pair of configurations on their base, is bounded above by(
1− κ4k/8

)q−d(logL)3e
. As soon as η > 1 + log(1/κ)(24/b), this quantity is bounded above

by e−L/(logL)
η

for all large enough L.
Since there are |A |M+1 distinct initial conditions, using the union bound exactly as

in the proof of Lemma 2.2, the probability of non-coalescence of this coupling is bounded
above by |A |M+1e−L/(logL)

η

. Choosing any θ > η, the inequality M ≤ L/(logL)θ yields
the desired bound on the coalescence probability, and this bound is uniform over χ. To
get a coupling defined for every boundary condition, we use a version of the coupling
just defined for every χ, drawn independently over the various values of χ.

Now consider the following construction (see Fig. 6): starting from an integer L, set
K = 2L, and put side-by-side (from left to right) two downward trapezoids Ta,Tc with
height L and top length K, in such a way that top(Ta) and top(Tc) have exactly one
point in common. Then put between Ta and Tc an upward trapezoid Tb with height
L− 1, base length K − 2, and whose base has the same ordinate as those of Ta and Tc,
so that the boundary of Tb lies at a horizontal distance equal to 1 from the boundaries of
Ta and Tc. Since K = 2L, these three trapezoids are in fact triangles.

Lemma 4.5. For arbitrarily large L, there exists a (K,L)-coupling within T = Ta ∪Tb ∪
Tc such that:

• The dynamics within Ta and Tc are given by two i.i.d. (K,L)-couplings.

• The dynamics within Tb is given by an (M,L−1)-coupling with M = 0, independent
from the above two (K,L)-couplings.

• The non-coalescence probability of the overall coupling is bounded above by
e−L

1+o(1)

.

Proof. Remember the constant θ from Lemma 4.4, and let A > θ. Now consider an
integer L1 (which can be chosen to be arbitrarily large), then an integer K1 such that the
conditions of Lemma 4.3 for a downward (K1, L1)-coupling are satisfied. Note that, by
choosing q even in the proof of Lemma 4.2, we may assume that K1 is an even number,
and let L = L1 +K1/2 and K = 2L. Then let L2 = L− L1, and M2 = 2L1 − 2. For large
L1, we have that K1 ∼ h−1L1(logL1)A. We deduce that L2 ∼ (h−1/2)L1(logL1)A, and
logL2 ∼ logL1, so that L2/(logL2)θ ∼ (h−1/2)L1(logL1)A−θ. Since M2 = 2L1 − 2 and
A > θ, we see that, for all large enough L1, M2 ≤ L2/(logL2)θ so that the conditions of
Lemma 4.4 for an upward (M2, L2)-coupling are satisfied.

Now (see Fig. 6) put side-by-side two downward trapezoids T1, T2 with height L1

and base length K1, in such a way that top(T1) and top(T2) have exactly one point
in common. Then insert between T1 and T2 an upward trapezoid T3 whose top has
the same ordinate as the base of T1, T2, with height L2 and base length K − 2. As a
consequence, top(T3) has length M2, and exactly fills the gap between base(T1) and
base(T2). Next, put two downward triangles T1 and T2 just below respectively T1 and
T2, so that the top of T1 (resp. T2) coincides with the base of T1 (resp. T2). Finally, let
Ta = T1 ∪T1, Tc = T2 ∪T2, and let Tb denote the triangle located between Ta and Tc,
whose boundary is at horizontal distance 1 from these. One checks that this construction
is consistent with that of Ta,Tb,Tc given before the statement of the lemma.

We use the downward (K1, L1)-coupling provided by Lemma 4.3, independently within
T1 and T2. Within T1 and T2, and also within the triangle located between T1 and T2,
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Figure 6: Here, the boundaries of Ta (left), Tb (middle), Tc (right) are drawn with
dashed lines. Then T1 (left) and T2 (right) are drawn in red, while T3 is drawn in green,
and T1 (left) and T2 (right) are drawn in blue.

we use the basic coupling. Finally, within T3, we use the upward (M2, L2)-coupling from
Lemma 4.4, independently from the couplings used within T1 and T2.

The outer boundary of T3 is included in T1 ∪ T2, so the boundary values for the
dynamics in T3 are determined by the couplings we have already defined.

When there is coalescence within T1 and T2, only one (random) boundary condition
appears at the outer boundary of T3, depending solely on the coupling within Ta and
Tc, so that, when in addition there is coalescence within T3 for this specific boundary
condition, there is coalescence within T. Since the coupling within T3 is independent
from the couplings within Ta and Tc, and since the bound on the non-coalescence
probability of the coupling provided by Lemma 4.4 is uniform with respect to the
boundary condition, the probability of not having coalescence, conditional upon the fact

that there is coalescence within T1 and T2, is bounded above by e−L
1+o(1)
2 . Since the

probability of not having coalescence within T1 or within T2 is also bounded above by

e−L
1+o(1)
1 , and since both logL1 ∼ logL and logL2 ∼ logL, we conclude that the overall

probability of non-coalescence is bounded above by e−L
1+o(1)

.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Remember the definition of T, Ta, Tb from Lemma 4.5. We start
with a triangle Ta whose top is J−K, 0K× {−L}, so that the base of Tb is J−(L− 1), (L−
1)K× {0}, and tile the whole lattice Z× (−N) by translating Ta and Tb with vectors of
the form λ1(2L, 0) + λ2(0, L), where λ1 ∈ Z and λ2 ∈ −N. We then define a flow Φ

tn+1

tn for
tn = −n · L by using i.i.d. copies of the couplings provided by Lemma 4.5, respectively
for every translate of Ta, and every translate of Tb (here Tc counts as a translate of Ta).
Step 1 – Precise definition of the CFTP flow

Let us describe the construction more precisely. We start by writing the downward
(K,L)-coupling within Ta as a family of A Ta -valued random variables indexed by ζ ∈
A top(Ta), put under the explicit form

(Ha(ζ), V−1/2))ζ∈A top(Ta) ,

where Ha : A top(Ta) × Ra → A Ta is a measurable map, Ra is a sample space, and
V−1/2 is an Ra-valued random variable. Since our construction (see Lemmas 2.1 and 2.2)
can be made from a finite number of i.i.d. random variables U1, . . . , Um with uniform
distribution on [0, 1], we may explicitly choose15 Ra = [0, 1]ma for a large enough ma, and

15Since the couplings under consideration involve only a finite number of random variables with a finite
number of possible values, we may as well use a finite set for Ra, and the same is true for Rb defined below.
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V−1/2 = (U1, . . . , Uma). Similarly, we write the upward (0, L− 1)-coupling within Tb as a
family of A Tb -valued random variables indexed by ζ ∈ A top(Tb) and χ ∈ A ∂+Tb , under
the form

(Hb(ζ, χ), V0))ζ∈A top(Tb),χ∈A ∂+Tb ,

with a measurable map Hb : A top(Tb)×A ∂+Tb×Rb → A Tb , and where V0 is independent
from V−1/2. Finally, we write the downward (K,L)-coupling within Tc as

(Hc(ζ), V+1/2))ζ∈A top(Tc) ,

where Hc : A top(Tc) ×Ra → A Tc is defined by translating Ha according to Hc(ζ, v) =

$(2L,0)(Hc($
(−2L,0)(ζ), v)), and where V+1/2 a random variable independent from

V−1/2, V0, with the same distribution as V−1/2. From the observations made in the
proof of Lemma 4.5, the overall (K,L) coupling within T = Ta ∪ Tb ∪ Tc can now be
written as a family of A T-valued random variables indexed by ζ ∈ A top(T) under the
form

(H(ζ, V−1/2, V0, V1/2))ζ∈top(T),

with a measurable map H : A top(T) ×Ra ×Rb ×Ra → A T whose definition combines
Ha,Hb,Hc. We now extend V−1/2, V0, V+1/2 by considering two independent families of
i.i.d. random variables (Vy)

y∈ 1
2 +Z

and (Vy)y∈Z, and, for every k ∈ Z, we define value

of the flow Φt1t0 on the interval Jk(2L)−L, k(2L) +LK by suitably translating the definition
obtained within T:

π
k(2L)
Jk(2L)−L,k(2L)+LK(Φ

t1
t0(ξ)) = ϕ ◦ πbase(T)

(
H(ζ, Vk−1/2, Vk, Vk+1/2)

)
, (4.2)

where ζ = (ξ(x+k(2L)),−L)x∈J−2L,+2LK and where ϕ : A base(T) → A J−L,+LK canonically
maps every element of A base(T) = A J−L,LK×{0} to the corresponding element of A J−L,LK.

Let us first check that (4.2) is consistent when z = k(2L) + L for a certain k ∈ Z,
since z then belongs to both Jk(2L)− L, k(2L) + LK and Jk′(2L)− L, k′(2L) + LK, where
k′ = k + 1. It is indeed the case since, whether (4.2) is applied with k or k′, the value
of the flow at z is determined by Ha

(
(ξ(x+ z),−L)x∈J−L,+LK, Vz/2L

)
. Property (iii) in

Theorem 1.1 is then a straightforward consequence of (4.2).
Let us now check that the distribution of Φt1t0(ξ) coincides with the distribution of Xt0

starting from Xt1 = ξ. Indeed, the distribution of the PCA dynamics within each translate
of Ta is, by construction, the correct one. Moreover, by Lemma 3.1, these dynamics form
an independent family, so the joint distribution of these in our construction is correct.
Finally, by Lemma 3.2, the distribution of the PCA dynamics within each translate of Tb,
conditional upon the dynamics within the translates of Ta, is the correct one.

Finally, we define (Φ
tn+1

tn )n≥1 (with tn = −n · L) as an i.i.d. family, independent from,
and with the same distribution as, Φt1t0 . Thanks to the Markov property of the PCA, we
thus have a CTFP flow. Moreover, property (ii) in Theorem 1.1 is satisfied.

For m ≥ n+ 1, we let Φtmtn = Φtmtm−1
◦ · · · ◦ Φ

tn+1

tn . Also, by convention, Φtntn denotes the
identity function.
Step 2 – Bound on the coalescence time

We now prove property (i). Given x ∈ Z, let z denote the element of Z of the form
2kL closest to x, where k ∈ Z, and define I(x) = Jz − 2L, z + 2LK. For n ≥ 0, we let
J(x, n) = ∅ if there is coalescence within T+ (z,−Ln), and J(x, n) = I(x) otherwise. The
sets J(x, n) have been defined in such a way that, for all m ≥ n+ 1,

πJ(x,n) ◦ Φtmtn+1
is a constant function⇒ πx ◦ Φtmtn is a constant function , (4.3)

with the convention that π∅ ◦ Φtmtn+1
is a constant function.
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We then define a random sequence (Pn)n≥0 of finite subsets of Z, in the following
way. We start with P0 = {x}. Then, assuming P0, . . . , Pn have already been defined, we
let Pn+1 =

⋃
x∈Pn J(x, n).

One checks by induction using (4.3) that, if Pn = ∅, then πx◦Φtnt0 is a constant function,
so that we have the bound P(Tx > nL) ≤ P(Pn 6= ∅).

Now observe that |Pn+1| ≤
∑
y∈Z 1(y ∈ Pn)|J(y, n)|. Moreover, for fixed y, 1(y ∈ Pn) is

measurable with respect to σ(Φtktk−1
, 1 ≤ k ≤ n), while |J(y, n)| is measurable with respect

to σ(Φ
tn+1

tn ). Since the random functions (Φtktk−1
)k≥1 form an independent sequence,

1(y ∈ Pn) and |J(y, n)| are independent, so we have that E(|Pn+1|) ≤
∑
y∈ZP(y ∈

Pn)E(|J(y, n)|).
In view of the definition of J(y, n), E(|J(y, n)|) = (4L+1)·P(non-coalescence in T) = ρ.

As a consequence, we deduce that E(|Pn+1|) ≤ ρ ·
∑
y∈ZP(y ∈ Pn) = ρ ·E(|Pn|). Iterating

this inequality, we deduce that E(|Pn|) ≤ ρn.

Since the non-coalescence probability is bounded above by e−L
1+o(1)

, ρ can be made
arbitrarily small by choosing a large enough value of L, and we indeed assume that ρ is
< 1. Using the Markov inequality and the fact that |Pn| is an integer number, we have
the following sequence of inequalities, which proves (i):

P(Tx > nL) ≤ P(Pn 6= ∅) = P(|Pn| > 0) = P(|Pn| ≥ 1) ≤ E(|Pn|) ≤ ρn.

Proof of Corollary 1.2. Assume that K is a transition kernel defining an exponentially
ergodic PCA with positive rates, and let K′ denote a transition kernel distinct from K.
Given ε ∈]0, 1[, assume that K′ is close enough to K so that, for any v ∈ A {−1,0,1} and w ∈
A , K′(v, {w}) ≥ (1−ε)K(v, {w}). Letting K′′(v, {w}) = 1

ε

(
K′(v, {w})− (1− ε)K(v, {w})

)
,

we see that K′′ is a transition kernel such that K′ = (1− ε)K + εK′′.
We now reuse the tiling of Z × (−N) with translated copies of Ta and Tb used to

prove Theorem 1.1, and define a coupling for the dynamics of K′ as follows. Within each
copy of Ta, declare each site in Ta \ top(Ta) to be blue with probability 1 − ε and red
with probability ε, independently for each site. If all sites are blue, we use within Ta the
coupling defined for the K-dynamics in the proof of Theorem 1.1. If at least one site is
red, we use a version of the basic coupling where red sites use K′′ while blue sites use K.
A similar construction is done for each copy of Tb.

We now redo the construction of the sets (Pn)n≥0 used in the proof of Theorem 1.1
with the following modification: J(x, n) = ∅ if there is coalescence within T+ (z, Ln) and
all sites in T + (z, Ln) are blue, and J(x, n) = I(x) otherwise. As a consequence,

E(|J(y, n)|) ≤ (4L+ 1) · ((1− ε)mp+ (1− (1− ε)m)) ,

where m = |T \ top(T)| and p = P(non-coalescence of the K-dynamics in T). For large
enough L, we have that (4L+1)p < 1. For such an L, noting that m depends only on L and
not on ε, we see that, for all ε small enough so that E(|J(y, n)|) < 1, the same argument
as in the proof of Theorem 1.1 leads to the conclusion that the coalescence time T ′x for
the K′-dynamics has a finite exponential moment uniformly bounded over x.
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