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Abstract

We address the issue of the Central Limit Theorem for (both local and global) empirical
measures of diffusions interacting on a possibly diluted Erdős-Rényi graph. Special
attention is given to the influence of initial condition (not necessarily i.i.d.) on the
nature of the limiting fluctuations. We prove in particular that the fluctuations
remain the same as in the mean-field framework when the initial condition is chosen
independently from the graph. We give an example of non-universal fluctuations for
carefully chosen initial data that depends on the graph. A crucial tool for the proof is
the use of extensions of Grothendieck inequality.
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1 Introduction

Fix n = 2, 3, . . . and let ξ(n) =
(
ξ

(n)
ij

)
ij=1,...,n

be a collection of independent and

identically distributed Bernoulli random variables, with parameter pn ∈ (0, 1] (i.e. ξ(n)

defines an asymmetric Erdős-Rényi random graph of parameter pn). Let T > 0 be a finite
time horizon. We are interested in the empirical measure of a weakly interacting particle
system where each particle is represented by a function on the 1-dimensional torus
T := R/2πZ. The population dynamics is defined by the following system of stochastic
differential equations

dθi,nt =
1

npn

n∑
j=1

ξ
(n)
ij Γ

(
θi,nt , θj,nt

)
dt+ dBit, 0 < t ≤ T, i = 1, . . . , n, (1.1)
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CLT for empirical measures of diffusions on random graphs

endowed with some initial condition
(
θi,n0

)
i=1,...,n

and where (Bi)i≥1 are independent and

identically distributed standard Brownian motions. The dynamics of θi,n is influenced by
the θj,n with i and j neighbors in the graph, through some regular function Γ : T×T→ R.
The interaction in (1.1) is renormalized by the (uniform) expected degree npn of each
vertex so that the interaction remains of order 1 as n → ∞. Note that we will be
particularly interested in situations when the initial condition may depend on the graph:
we denote by Pg := Pg(dξ

(n)) the law of the graph (that is a product measure on

{0, 1}n
2

) and by P0 := P0(dθn0 |ξ(n)), the law of the initial condition θn0 =
(
θi,n0

)
i=1,...,n

(that is not necessarily a product measure), conditioned on the graph. We define finally
P = P(dθn0 ,dξ

(n)) := P0(dθn0 |ξ(n))Pg(dξ
(n)) the joint law of the initial condition and

graph. Denoting by P the law of the Brownian motions, we will be working with P⊗P.
In particular, the notation E0 used in the rest of the paper will refer to conditional
expectations.

Remark 1.1. One could very well consider the more general dynamics

dθi,nt = F (θi,nt )dt+
1

npn

n∑
j=1

ξ
(n)
ij Γ

(
θi,nt , θj,nt

)
dt+ dBit, 0 < t ≤ T, i = 1, . . . , n, (1.2)

where F is a (bounded) smooth function on T modelling intrinsic dynamics for each
particle. The result of the present paper remain obviously valid, up to the notational cost
of adding e.g. some drift term −∂θ [µt(θ)F (θ)] in the nonlinear Fokker-Planck equation
(1.4). We chose to restrict to F ≡ 0 for simplicity of exposition.

An easy instance of (1.1) corresponds to the mean-field case, i.e. when pn ≡ 1 so that
ξ

(n)
ij ≡ 1 for all i and j (hence the graph of interaction is the complete graph). In such

a case, the interaction in (1.1) is a functional of the empirical measure of (θi,n)i=1,...,n

defined as

µnt =
1

n

n∑
i=1

δθi,nt
, t ∈ [0, T ]. (1.3)

The empirical measure is a (random) probability measure on T. The behavior of µn as
n→∞ in the mean-field case is standard and particularly well-covered in the literature
(see e.g. [64, 29]): provided that µn0 converges to µ0, one can show that µn converges to
the unique solution to the following non-linear Fokker-Planck equation

∂tµt(θ) =
1

2
∂2
θµt(θ)− ∂θ [µt(θ)(Γ ∗ µt)(θ)] , 0 < t ≤ T. (1.4)

In (1.4), the ∗ denotes the integration with respect to the second variable, i.e., (Γ∗µ)(·) =∫
T

Γ(·, θ)µ( dθ) for µ a probability measure on T. The convergence to (1.4) can be for
instance considered in the space of probability measure on continuous functions on the
torus, i.e., in P(C([0, T ],T)). In general, it depends on the topology where the sequence
(µn)n≥1 is studied.

A recent interest has been shown in the literature concerning extensions as (1.1) to
generic graphs of interactions. Observe that when (ξ

(n)
ij ) is no longer constantly equal to

1, the interaction is not a linear functional of the empirical measure (1.3), but rather of a
collection of the local empirical measures defined by

µn,lt :=
1

npn

n∑
i=1

ξ
(n)
li δθi,nt

, t ∈ [0, T ], l = 1, . . . , n. (1.5)

Contrary to the mean-field case where one easily obtains by Itô’s formula a closed
semimartingale decomposition of µn (e.g., [53, 64]), applying the same calculation in the
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CLT for empirical measures of diffusions on random graphs

general case (see, e.g., Lemma 4.3) shows that µn,l depends itself on empirical measures
involving higher order expansions within the graph structure: a whole hierarchy of
empirical measures (indexed by local patterns in the graph) appear and the difficulty
is to find a way to properly close this decomposition. However, if the graph (ξ

(n)
ij ) is

sufficiently close to the complete graph (in a way to be precised), the behavior of the
system (1.1) as n → ∞ should be described as well by the same macroscopic limit
(1.4). A rather informal question would be to understand how universal the mean-
field framework is: how much can we perturb the complete graph of interaction and
still conserve the same macroscopic properties as n → ∞? This question has been
addressed in details at the level of the law of large numbers: a series of recent papers
[21, 17, 43, 3, 8] have shown that µn converges to µ for a large class of graphs that
includes the Erdős-Rényi case. We refer to Section 2.7 for a more detailed discussion on
these results.

Note that one may be interested in two distinct graph regimes: the dense case when
pn → p ∈ (0, 1] as n → ∞, i.e., the mean degree of each vertex remains proportional
to the size of the population, and the diluted case (or vanishing density degree) when
pn → 0 as n→∞ and up to the sparse threshold npn → c > 0, where other phenomena
are known to be in play [57, 40].

1.1 Aim of this work

The purpose of the present work is to address the universality of the mean-field
framework at the level of fluctuations. We are interested in studying the limit of two
objects: first of all, the global fluctuation process ηn, given by

ηnt :=
√
n(µnt − µt), for 0 ≤ t ≤ T, (1.6)

i.e., the standard fluctuations of µn around the limit µ. Note that ηn not only depends
on the randomness coming from the noise in (1.1), but also on the graph ξ(n). We will
consider the behavior of ηn under the law P only, i.e., as a quenched object with respect
to the graph sequence realisation. In addition, we will include the challenging case when
the initial condition depends on the underlying graph. To the authors’ knowledge, this
issue has never been tackled. We refer to Section 2.7 for an overview on the existing
literature.

The second aim of this paper concerns the fluctuations of local empirical measures
around their limit. Recall the definition of the local empirical measure µn,l in (1.5). This
process is the empirical measure of particles at distance 1 of vertex l within the graph.
Note that µn,l is not necessarily of mass 1 (one only has

〈
µn,l , 1

〉
−−−−→
n→∞

1, Pg-a.s.), as

(1.5) is not renormalised by the degree dn,l :=
∑n
j=1 ξ

(n)
lj of vertex l, but rather by its

expectation E [dn,l] = npn. This choice of renormalisation turns out to be convenient for
our fluctuation results, as it permits to focus only on the fluctuations that come from the
dynamics and not to bother with intrinsic fluctuations in the vertex degrees in the graph.
The influence of this last choice of renormalising constant on our results is discussed
in details in the Appendix E. It turns out that the natural limit for the local empirical
measures (1.5) is also given by µ solution to (1.4). Hence, the second aim of the paper
will be to address the behavior of the joint fluctuation process

ζnt :=
(
ζn,1t , ζn,2t

)
:=
(√

npn

(
µn,1t − µt

)
,
√
npn

(
µn,2t − µt

))
, (1.7)

that is the joint fluctuation process for the local empirical measures around vertices 1

and 2. One point will be to understand how the limits of both ηn and ζn may or may not
depend on a specific realisation of the graph and, secondly, on the graph structure itself
(in particular the fact that the graph may be dense or diluted).
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1.2 Strategy of proof

To prove the convergence of fluctuations, we follow the classical trilogy of arguments:
tightness of ηn, identification of the limiting values of ηn as solution to a suitable partial
differential equation and uniqueness of the limit solution. The main tool to prove
the first two steps is a semimartingale decomposition in a suitable Hilbert space of
distributions (see, e.g., [51, 33, 25]). From this point of view, we closely follow the
strategy proposed in [25]. As already said, there is no possible way to obtain a closed
semimartingale decomposition for the empirical processes µn and µn,l (and thus for
ηn): we have supplementary terms that depend on expansions of higher order within
the graph. Our strategy, and the notable exception compared to [25], is to pursue the
expansion and to write the semimartingale decomposition of these higher order terms,
until the remaining errors in the expansion of µn become lower than 1/

√
n. Although

written in a separate way for clarity of exposition, the treatment of both global and
local fluctuations (note that the local fluctuations are considered under a stricter set
of hypotheses concerning the initial condition) follow the same main lines. The main
argument to close this expansion (and the main contribution of the paper) concerns
the use of generalised Grothendieck inequalities, which enable us to decorrelate the
dynamics from the proximity estimates between the graph (ξ

(n)
ij ) and the complete graph.

More details on the use of Grothendieck inequalities are given in Section 3.

1.3 Notation

The space of probability measures on a metric space X is denoted by P(X). As usual,
we denote by C([0, T ], X) the space of continuous functions from [0, T ] into X endowed
with the supremum norm, this last one being denoted by ‖·‖∞. For two probability
measures µ and ν on a given metric space X, we denote by dBL(µ, ν) their bounded
Lipschitz distance, i.e.,

dBL(µ, ν) = sup

{∫
X

f dµ−
∫
X

f dν , f ∈ BL(X)

}
, (1.8)

where BL(X) :=
{
f : X → R : ‖f‖∞ ≤ 1, ‖f‖Lip ≤ 1

}
and ‖f‖Lip is the Liptschitz con-

stant of f . In order to study the limit of both (1.6) and (1.7), we will need to introduce
several other weighted empirical processes, that all depend on the graph sequence(
ξ

(n)
ij

)
. The first one is a weighted empirical measure ν̂nt on T2, that is associated to the

fluctuations arising from the graph sequence, i.e.,

ν̂nt =
1

n2

n∑
i,j=1

ξ̂
(n)
ij δθi,nt

⊗ δθj,nt , 0 ≤ t ≤ T, (1.9)

as well as its rescaled counterpart

η̂n :=
√
n ν̂n. (1.10)

In (1.9) and (1.10), we used the notation

ξ̂
(n)
ij :=

ξ
(n)
ij

pn
− 1, i, j = 1, . . . , n. (1.11)

A measure that will arise naturally in the study of local fluctuations is the following:

µn,1,2t :=
1

np2
n

n∑
i=1

ξ
(n)
1i ξ

(n)
2i δθi,nt

, (1.12)
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whose role is to account for the presence/absence of the pattern 1← i→ 2 in the graph,
capturing a notion of connectivity between vertices 1 and 2. Let 〈·, ·〉 denote the duality

bracket between function spaces and their dual spaces, observe that the mass
〈
µn,1,2t , 1

〉
tends also almost surely to 1 as n→∞.

For studying the sequence (ηn)n≥1 defined in (1.6), we need a suitable space of
distributions. In fact, quantities such as ηn or ν̂n are not probability measures, having
total measure close to 0, and require to be studied in a larger space. As already done in
the literature [25, 33, 6, 4], we choose to work in a class of Hilbert spaces that include
(as a continuous embedding) the probability measures. The canonical choice is given
by the usual Sobolev Hilbert spaces H−r(Td) := W−r,2(Td) (with r > 0), dual of Hr(Td)

space of test functions with derivatives up to order r with finite moments of order 2

[1]. We define ‖h‖H−r(T) (resp. ‖h‖H−r(T2)) as the norm on H−r(T) (resp. H−r(T2)). To
keep the notation concise, we will often write ‖h‖−r for both these norms, whenever the
context leaves no ambiguity on the fact that this notation concerns functional acting on
test functions on T or T2. Sobolev inequalities, e.g., [1], state that

W r,2(Td) = Hr(Td) ⊂ C0,α(Td) (1.13)

for α ∈ (0, 1] and r = d
2 + α, where C0,α(Td) is the space of continuous functions with

α-Hölder regularity. By duality, P(Td) is continuously embedded into H−r(Td) for any
r > d

2 . This implies that any probability measure on T belongs to H−r(T) for any r > 1
2 .

For a given t ∈ [0, T ], the distribution ν̂nt is an element of the Hilbert space H−r(T2) for
r > 1. Recall also that one has the following Hilbert-Schmidt embeddings (see [25] and
[1, §6])

H−j(Td) ⊂ H−(m+j)(Td), m >
d

2
and j ≥ 0.

In the Hilbert space Hr(Td), one can define the semigroup operator S = (St)t≥0

associated to the Laplacian operator, this last one being denoted by ∆ (or ∂2
θ in the

one-dimensional case). It is well-known, e.g., [34], that S· is an analytic semigroup. For
a given operator L on some Hilbert space, we denote by L∗ its dual operator in the
corresponding dual Hilbert space.

2 Hypotheses and main results

2.1 General hypotheses

Assumption 2.1 (Regularity of Γ). We assume that Γ is infinitely differentiable on T2

(and hence bounded with bounded derivatives). A careful reading of the proofs below
shows that Γ being Ck for a sufficiently large k would be actually sufficient.

Assumption 2.2 (Initial condition). We suppose that the initial condition, that is the

random variables
(
θ1,n

0 , . . . , θn,n0

)
, are chosen independently from the Brownian motions

(B1, . . . , Bn) (but not necessarily i.i.d. and they may depend on the graph), such that
their empirical measure µn0 converges weakly to some µ0 in the following way:

dBL (µn0 , µ0) −−−−→
n→∞

0, P0-a.s. (2.1)

Remark 2.3. Note that since dBL (µn0 , µ0) ≤ 2, the convergence (2.1) actually implies

E0 [dBL (µn0 , µ0)
q
] −−−−→
n→∞

0 (2.2)

for any q ≥ 1. It is possible to assume only (2.2) for some q ≥ 1 and in such a case (2.4)
below remains true up to a supplementary integration w.r.t. E0 and the results of the
paper remain valid.
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2.2 Laws of large numbers for global and local empirical measures

Before presenting our main fluctuation results, let us state the following result (which
may have an interest of its own) on the convergence of the empirical measures µn, µn,l

and µn,1,2 defined respectively in (1.3), (1.5) and (1.12).

Theorem 2.4. Suppose here that Assumptions 2.1 and 2.2 are satisfied.

1. Convergence of the global empirical measure: under the dilution condition

npn →∞ (2.3)

the global empirical measure µn given in (1.3) verifies, for all q ≥ 1,

E

[
sup
s≤T

dBL (µns , µs)
q

]
−−−−→
n→∞

0, P-a.s. (2.4)

2. Convergence of local empirical measures: if one supposes further that the initial
condition is independent of the graph:

(a) if np3
n → ∞ as n → ∞, then for any fixed l ≥ 1, the local empirical measure

µn,l defined in (1.5) verifies, for all q ≥ 1,

E

[
sup
s≤T

dBL
(
µn,ls , µs

)q] −−−−→
n→∞

0, P-a.s. (2.5)

(b) if np5
n → ∞ as n → ∞, then the local empirical measure µn,1,2 defined in

(1.12) verifies for all q ≥ 1,

E

[
sup
s≤T

dBL(µn,1,2s , µs)
q

]
−−−−→
n→∞

0, P-a.s. (2.6)

The proof of Theorem 2.4 can be found in Appendix C. In comparison with the existing
literature, the convergence result (2.4) generalises the previous results in two ways:
we obtain the optimal dilution condition (2.3) under the quenched set-up and more
importantly, we allow for initial condition that possibly depend on the graph (not to
mention that they need not be necessarily i.i.d.). We refer to Section 2.7 for a more
detailed discussion on this matter. It is however likely that the dilution conditions
required for the convergence of the local empirical measures may not be optimal.

2.3 Global fluctuations

We now proceed with the main results concerning fluctuations. We address two
issues: first, global fluctuations (Section 2.3) that is the behavior as n→∞ of the global
fluctuation process ηn given in (1.6) as n→∞; second, local fluctuations (Section 2.4)
that is the joint convergence of the local fluctuation processes

(
ζn,1, ζn,2

)
given in (1.7).

In the rest of the paper, the following indices are fixed:

r0 > 3, r1 := r0 + 2, r2 := r1 + 2. (2.7)

Recall the definitions of ηn in (1.6) and η̂n in (1.10). We first state our main hypotheses
concerning the initial condition. We suppose in the following that either Assumption 2.5
or Assumption 2.6 is true.

Assumption 2.5 (Quenched initial fluctuations). We suppose that there exists α ∈ (0, 1)

such that the following estimates are true

sup
n
E0

(
‖ηn0 ‖

1+α
−r0

)
< +∞, Pg-a.s. (2.8)
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sup
n
E0

(
‖η̂n0 ‖

1+α
−r0

)
< +∞, Pg-a.s. (2.9)

Note that under (2.8) and (2.9), Pg-a.s., (ηn0 ) and (η̂n0 ) are tight inH−r1 (T) andH−r1
(
T2
)

respectively. In addition, we require that we have, Pg-a.s., the joint convergence in law
(w.r.t. P0) of (ηn0 , η̂

n
0 ) in H−r1 (T)⊗H−r1(T2) towards some (η0, η̂0) ∈ H−r1 (T)⊗H−r1(T2)

as n→∞.

Assumption 2.6 (Annealed initial fluctuations). We suppose the same hypotheses as for
Assumption 2.5, with (2.8) and (2.9) replaced by

sup
n
EgE0

(
‖ηn0 ‖

1+α
−r0

)
< +∞, (2.10)

sup
n
EgE0

(
‖η̂n0 ‖

1+α
−r0

)
< +∞, (2.11)

and the joint convergence of (ηn0 , η̂
n
0 ) to some (η0, η̂0) in law w.r.t. the joint law P of the

initial condition and graph.

Let us now state the main result of this paper on global fluctuations, concerning
the weak limit of the fluctuation processes ηn and η̂n. Define first the following linear
differential operators: for all test functions f and g, s ∈ [0, T ] and ν ∈ H−r with r > 1/2,

Θf(θ1, θ2) := Γ (θ1, θ2) ∂θf(θ1), (2.12)

L(1)
ν f(θ) :=

1

2
∂2
θf(θ) + 〈ν(dθ′) , Θf(θ, θ′)〉+ 〈ν(dθ′) , Θf(θ′, θ)〉 , (2.13)

L(2)
ν g(θ1, θ2) :=

1

2
∆g(θ1, θ2) + (〈ν(dθ′) , Γ(θ1, θ

′)〉 , 〈ν(dθ′) , Γ(θ2, θ
′)〉) · ∇g(θ1, θ2). (2.14)

Theorem 2.7 (General global fluctuations). Recall the definition of (r0, r1, r2) in (2.7)
and that µ solves the Fokker-Planck equation (1.4). Suppose that Assumptions 2.1, 2.2
hold as well as either of Assumption 2.5 or 2.6. Suppose finally that

lim
n
np4

n =∞. (2.15)

Then (ηn, η̂n) converges in law in C([0, T ], H−r1(T)⊗H−r1
(
T2
)
) to (η, η̂), unique solution

in C
(
[0, T ], H−r2 (T)⊕H−r2(T2)

)
to{

ηt = η0 +
∫ t

0
L(1),∗
µs ηsds+

∫ t
0

Θ∗η̂sds+Wt,

η̂t = η̂0 +
∫ t

0
L(2),∗
µs η̂sds,

(2.16)

where for any r > 2, (Wt)t∈[0,T ] is a Gaussian process in C ([0, T ], H−r), independent of
(η0, η̂0), with covariance

E [Ws(f1)Wt(f2)] =

∫ s

0

〈µu , ∂θf1∂θf2〉du, f1, f2 ∈ Hr, 0 ≤ s ≤ t ≤ T. (2.17)

In case Assumption 2.5 holds, the above convergence is almost sure w.r.t. the ran-
domness of the graph (quenched convergence) whereas in case of Assumption 2.6, the
convergence is understood under the annealed law P⊗P.

A particular case of Theorem 2.7 concerns the case where the initial condition for
the second order fluctuation process η̂n0 goes to 0 as n→∞:

Theorem 2.8 (Universal mean-field fluctuations). Suppose Assumptions 2.1, 2.2, condi-
tion (2.15) and either Assumption 2.5 or 2.6 are true. Suppose in addition that the limit
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of η̂n0 given in Assumptions 2.5 or 2.6 is η̂0 ≡ 0. Then the process (ηn) converges in law
as n→∞ in C([0, T ], H−r1(T)) to η, unique solution in C ([0, T ], H−r2 (T)) to

ηt = η0 +

∫ t

0

L(1),∗
µs ηsds+Wt, (2.18)

with η0 independent of W . In case of Assumption 2.5, the above convergence is almost-
sure w.r.t. the randomness of the graph (quenched convergence) and in case of Assump-
tion 2.6, the convergence holds w.r.t. the annealed law P⊗P.

Proof of Theorem 2.8. It suffices to note that the limiting dynamics of η̂ in (2.16) is
deterministic and linear, so that if initially η̂0 ≡ 0 one obtains by uniqueness that η̂t ≡ 0

uniformly in t ∈ [0, T ]. Hence, Theorem 2.8 follows immediately from Theorem 2.7.

Observe that (2.18) is nothing else than the limiting SPDE of the fluctuation process
in the pure mean-field case pn ≡ 1 that has been obtained in [25], under i.i.d. initial
condition. In this case, Theorem 2.8 is of course compatible with the result of [25]
as, when pn ≡ 1, η̂n0 is equally 0 for all n and ηn0 converges to a Gaussian process so
that Assumption 2.5 is trivially true. One can see Theorem 2.8 as a universality result,
valid beyond the mean-field case, under the dilution condition (2.15): the system (1.1)
conserves the same fluctuations as in the mean-field case, as long as one can verify
Assumption 2.5 or 2.6 and η̂0 ≡ 0. It is likely that the dilution condition (2.15) may
not to be optimal: the critical point on this matter is the concentration estimates on
quantities STn given in Definition 3.4. Any improvement in the rates of convergence
found in Proposition 3.5 would lead to corresponding improvements in (2.15). The
second direction in which Theorem 2.8 generalises the Central Limit Theorem of [25]
is the following: a crucial observation is that the fluctuation result in [25] was proven

in the case where the initial datum
(
θ1,n

0 , . . . , θn,n0

)
consists of i.i.d. random variables.

This hypothesis, being perfectly reasonable in the pure mean-field context as a natural
means to preserve exchangeability between particles, is not really relevant in the context
of (1.1), as exchangeability is lost, due to the presence of the graph. Anticipating on
Section 2.5 (where sufficient conditions for the result are given), we indeed show that
these universal fluctuations go well beyond the i.i.d. case as they remain valid as long as
the initial condition is chosen independently on the graph.

In an opposite way, we also describe in Proposition 2.14 an example of initial condition,
depending on the graph structure, such that η̂n0 has a non zero limit, and thus for which
the limit fluctuations are completely described by (2.16) and no longer by the mean field
fluctuations (2.18).

2.4 Local fluctuations

We now give our result concerning the local fluctuations (recall the definitions of the
local fluctuation processes ζin, i = 1, 2 in (1.7)). As global fluctuations compete with local
fluctuations, the main result concerns the convergence of the joint fluctuation process(
ζn,1, ζn,2, ηn

)
. We place ourselves in the case of i.i.d. initial condition, independent on

the graph. Anticipating on Proposition 2.11 and Example 2.12, we see that Theorem 2.8
is true: the global fluctuations of ηn are completely described in terms of (2.18).

Theorem 2.9. Suppose Assumption 2.1 and that (θ1,n
0 , . . . , θn,n0 ) are i.i.d. random vari-

ables with law µ0, independent from the graph. Suppose that lim infn np
5
n = ∞ and

denote by p := limn→∞ pn ∈ [0, 1]. Then, Pg almost surely, the joint fluctuation process(
ζn,1, ζn,2, ηn

)
converges as n → ∞ in C

(
[0, T ], (H−r1 (T))

3
)

to
(
ζ1, ζ2, η

)
solution in
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C
(

[0, T ], (H−r2 (T))
3
)

to the system{
ζlt = ζl0 +

∫ t
0
U∗s ζlsds+

√
p
∫ t

0
V∗s ηsds+W l

t , l = 1, 2,

ηt = η0 +
∫ t

0
L(1),∗
µs ηsds+Wt.

(2.19)

where

Usf (θ) =
1

2
∂2
θf(θ) + ∂θf (θ) 〈µs(dθ′) , Γ (θ, θ′)〉 , (2.20)

Vsf(θ) = 〈µs(dθ′) , ∂θf (θ′) Γ (θ′, θ)〉 , (2.21)

for (ζ1
0 , ζ

2
0 , η0) a Gaussian process with explicit covariance given in (5.2) and

(
W 1
t ,W

2
t ,Wt

)
Gaussian process with explicit covariance given in (5.18), the initial condition (ζ1

0 , ζ
2
0 , η0)

and the noise (W 1,W 2,W ) being independent.

A closer look at the structure of covariance of both initial condition in (5.2) and noise
in (5.18) shows that in the diluted case p = limn→∞ pn = 0, the process

(
ζ1, ζ2, η

)
are

mutually independent and each ζl (l = 1, 2) satisfy

ζlt = ζl0 +

∫ t

0

U∗s ζlsds+W l
t , l = 1, 2.

In the dense case p > 0, ζ1 and ζ2 are correlated in several ways: with a nontrivial
correlation of their noise and initial condition, and through the coupling of the global
fluctuation process η. Theorem 2.9 is proven in Section 5.

2.5 Examples

We give in this section examples of initial condition verifying Assumptions 2.5 or 2.6
as well as sufficient conditions for the universality hypothesis η̂0 ≡ 0 of Theorem 2.8.

2.5.1 Universal mean-field fluctuations

The main important point of this paragraph is to note that the universality condition η̂0 ≡
0 of Theorem 2.8 is true as long as one chooses the initial condition to be independent of
the graph (but not necessarily i.i.d.!).

Assumption 2.10 (Initial datum independent from the graph). Suppose that P = P0⊗Pg,
i.e., the initial condition (θi,n0 )n≥0 is independent from the graph (ξn)n≥0.

Proposition 2.11. Suppose Assumption 2.10. If lim infn p
3
nn

1−ε =∞ for some ε ∈ (0, 1),
then, for all r > 1,

lim
n→∞

E0

[
‖η̂n0 ‖

2
−r

]
= 0, Pg-a.s. (2.22)

In particular, (2.9) is true for any α ∈ (0, 1) and η̂0 ≡ 0.

Proof of Proposition 2.11 is given in Section 4.4.

2.5.2 Quenched mean-field fluctuations

We give now illustrating examples of initial condition that is independent of the graph,
hence particular cases of Assumption 2.10, for which the initial fluctuation process ηn0
verifies Assumption 2.5.

Example 2.12 (The case of i.i.d. initial condition). Suppose that (θi,n0 ) are i.i.d. with law
µ0 (and independent on the graph and on the Brownian motions (Bi)). Then Assump-
tions 2.5 is valid and the limit η0 is the Gaussian process with covariance

Cη0(f1, f2) =

∫
T

(
f1 −

∫
T

f1dµ0

)(
f2 −

∫
T

f2dµ0

)
dµ0. (2.23)
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The following example shows that Assumption 2.5 is sufficiently weak to possibly
include non necessarily i.i.d. initial condition. We do not try to give any sharp condition
here, we refer to the references mentioned in Example 2.13 for details.

Example 2.13 (The case of α-mixing sequence). On (Ω,A,P0), define T : Ω 7→ Ω a
bijective bimeasurable transformation preserving P0. LetM0 be a σ-algebra of A such
thatM0 ⊂ T−1 (M0) and θ0

0 be aM0-measurable random variable on T. Define finally
θi0 := θ0

0 ◦ T i for i ≥ 1. Then applying [20, (4.1) and Th. 2], supposing that∑
k>0

α (M0, σ(Xk)) <∞, (2.24)

(where α(A,B) is the Rosenblatt α-mixing coefficient between A and B), we have that
ηn0 converges as n → ∞ in H−1 (T) to a Gaussian process with explicit covariance.
Moreover, under the same condition, applying [19, Th. 1] for ϕ(η) := ‖η‖2−1, we obtain
the uniform bound (2.8) for α = 1, so that Assumption 2.5 is satisfied. In the context of
Markov chains, condition (2.24) is true as soon as the chain is ergodic of degree 2 [54]
and includes geometrically ergodic Markov chains [15].

2.5.3 An example of non-universal fluctuations

We construct in Section 4.4.2 an example of initial condition (depending on the graph
sequence) such that the limit fluctuations are non-universal:

Proposition 2.14. Take Γ(θ, θ′) = − sin (θ − θ′). For any graph sequence
(
ξ

(n)
ij

)
, there

exists a choice of initial condition (θ1,n
0 , . . . , θn,n0 ) such that (ηn0 , η̂

n
0 ) satisfies Assump-

tion 2.6 and converges in law (w.r.t. the annealed law P⊗P) to (η0, η̂0) with η0 = Z1δ0 +

Z2δπ2 (where (Z1, Z2) ∼ N (0, C) with the covariance matrix C defined as C =

(
1
4 − 1

4

− 1
4

1
4

)
and η̂0 = 2

3
√
π

(
−δ(0,0) + δ(0,π2 ) + δ(π2 ,0)

− δ(π2 ,π2 )

)
. In particular (recall that ∗ denotes the

integration with respect to the second variable), Γ ∗ η̂n0 converges to 2
3
√

2π

(
δ0 − δπ2

)
6≡ 0

so that, since for any test function f we have 〈Θ∗η̂0, f〉 = 〈Γ∗ η̂0, ∂θf〉, the limiting process
ηt is governed by (2.16) and not by the universal mean-field SPDE (2.18).

Proof of Proposition 2.14 is given in Section 4.4.2.

2.6 On possible generalisations to inhomogeneous graphs

We have focused on Erdős-Rényi random graphs as they represent a well-known
class of random graphs with many useful properties as edge exchangeability. However,
we would like to stress that the key ingredient in our proof is the independence of the
edges and not necessarily the fact that they are identically distributed. In other words,
we believe that the concentration estimates used in the proof of Proposition 3.5 and in
Appendix B could be suitably adapted to the graphon framework (see e.g. [3, 7, 43])
where the edge independence is kept. Of course, many things must be carefully defined
in this case, e.g., the CLT limit is now going to be an infinite system of equations labeled
by some u ∈ I, and the variables expressing the graph concentration are not centered
around one, but their graphon counterpart, e.g., ξ̂(n)

ij = p−1
n ξ

(n)
ij −W (ui, uj) for some

graphon W and labels ui, uj ∈ I.
To illustrate the fact that the main ingredient needed in our analysis is the indepen-

dance of edges we restrict ourselves here to a far simpler non exchangeable model
in which the technicalities appearing in the graphon case are not present: an elemen-
tary instance of the Stochastic Block model in case of only two communities. Let n
be an even number and divide the population into two clusters Cn1 =

{
1, . . . , n2

}
and
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Figure 1: Histograms representing 5000 realizations of
√
n(ψn1 − ψ1), where rnt e

iψnt =

〈µnt ( dθ), eiθ〉 and rte
iψt = 〈µt( dθ), eiθ〉, for the choice of interaction kernel Γ(θ, θ′) =

−K sin(θ − θ′) with K = 2. For the blue histogram the interaction is of mean-field
type with i.i.d. initial condition of distribution 1

2δ0 + 1
2δπ2 , while for the brown one it

is of symmetric Erdős-Renyi type with p = 0.5 and initial condition as described in
Section 4.4.2. We observe a dephasing at time t = 1 at the level of fluctuations, induced
by the graph-dependent initial condition.

Cn2 =
{
n
2 + 1, . . . , n

}
, and suppose that the ξ(n)

ij are independent with Bernoulli law with
parameter pi,j = p if i, j belong to the same cluster and pi,j = q if i, j belong to different
clusters. Then the mean degree of each node is nr with r = p+q

2 , so that the dynamics is

dθi,nt =
1

nr

n∑
j=1

ξ
(n)
ij Γ

(
θi,nt , θj,nt

)
dt+ dBit, 0 < t ≤ T, i = 1, . . . , n,

There are here two global empirical measures, each on one cluster: µn,Cl = 2
n

∑
i∈Cnl

δθi,n .
Suppose for simplicity that the initial condition is chosen independently from the graph,
with the appropriate convergence hypotheses of the empirical measure as n→∞.

Similar standard Itô’s calculations as for Lemma 4.3 (note here that (1.11) has to be
replaced by ξ̂(n)

ij := ξ
(n)
ij − pi,j), show that, for α = p

p+q , f regular and Mn,l appropriate
martingales
〈µn,C1

t , f〉 = 〈µn,C1

0 , f〉+
∫ t

0

〈
µn,C1
s , 1

2∂
2
θf + ∂θf

(
Γ ∗
{
αµn,C1

s + (1− α)µn,C2
s

})〉
ds

+ 〈Mn,1
t , f〉+

∫ t
0

2
n2r

∑
i∈C1

∑n
j=1 ξ̂

(n)
ij Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds,

〈µn,C2

t , f〉 = 〈µn,C2

0 , f〉+
∫ t

0

〈
µn,C2
s , 1

2∂
2
θf + ∂θf

(
Γ ∗
{

(1− α)µn,C1
s + αµn,C2

s

})〉
ds

+ 〈Mn,2
t , f〉+

∫ t
0

2
n2r

∑
i∈C2

∑n
j=1 ξ̂

(n)
ij Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds.
(2.25)

The mean-field limit is given by the system of coupled PDEs{
〈µC1
t , f〉 = 〈µC1

0 , f〉+
∫ t

0

〈
µC1
s , 1

2∂
2
θf + ∂θf

(
Γ ∗
{
αµC1

s + (1− α)µC2
s

})〉
ds,

〈µC2
t , f〉 = 〈µC2

0 , f〉+
∫ t

0

〈
µC2
s , 1

2∂
2
θf + ∂θf

(
Γ ∗
{

(1− α)µC1
s + αµC2

s

})〉
ds.

(2.26)

Setting now the fluctuations processes

ηn :=
(
ηn,C1 , ηn,C2

)
:=

(√
n

2

(
µn,C1 − µC1

)
,

√
n

2

(
µn,C2 − µC2

))
, (2.27)
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from (2.25) and (2.26) and using the same techniques as in the present paper, it is not
difficult to show that the proper limit for (2.27) is given by

ηC1
t = ηC1

0 +
∫ t

0

{
L(1),∗
µs ηC1

s + (1− α)U
(
µC1
s

)∗
ηC2
s

}
ds+W 1

t ,

ηC2
t = ηC2

0 +
∫ t

0

{
L(2),∗
µs ηC2

s + (1− α)U
(
µC2
s

)∗
ηC1
s

}
ds+W 2

t ,
(2.28)

for

L(1)
µs f =

1

2
∂2
θf + ∂θf

(
Γ ∗
{
αµC1

s + (1− α)µC2
s

})
+ αU

(
µC1
s

)
f,

L(2)
µs f =

1

2
∂2
θf + ∂θf

(
Γ ∗
{

(1− α)µC1
s + αµC2

s

})
+ αU

(
µC2
s

)
f,

U(µ)f =

∫
∂θf(θ)Γ (θ, ·)µ(dθ).

Here
(
W 1,W 2

)
are independent Gaussian process with covariance E

[
W l
s(f)W l

t (g)
]

=∫ t∧s
0

〈
µClu , ∂θf∂θg

〉
du. We retrieve from this calculations several easy particular cases:

1. When q = 0, that is α = 1: then we see from (2.28) that (ηC1 , ηC2) are independent
copies of the same process solving (2.18) (this is of course normal as the two
clusters C1 and C2 are now disjoint).

2. When p = q, that is α = 1
2 : for general initial condition µC1

0 and µC2
0 (not necessarily

identical), µ := 1
2 (µC1 + µC2) solves the mean-field (1.4) with initial condition

1
2 (µC1

0 + µC2
0 ) and we see from (2.28) that η := 1

2

(
ηC1 + ηC2

)
solves also (2.18)

(this is again obvious as the system consists now in a single Erdős-Rényi with an
homogeneous parameter p = q).

3. In the particular case µC1
0 = µC2

0 , the statements of the previous item remain true
for any α ∈ [0, 1].

2.7 A look at the literature

Interacting particle systems of mean field type have been repeatedly addressed in the
literature of the last fifty years, see [49, 55, 29, 64], this list being in no way exhaustive.
The first results focus on the Law of Large Numbers (LLN) for the empirical measure
together with existence and uniqueness related to the limit Fokker-Planck equation, see,
e.g., [28, 41, 29]. Shortly after, the Central Limit Theorem (CLT) [13, 66, 63, 65, 33] has
been established in several scenarios. Two main methods have been proposed in the
literature to study the fluctuations around the LLN limit. One method [66, 62, 63, 61, 14]
consists in focusing on the fluctuation field(√

n (〈µn , f〉 − 〈µ , f〉) , f ∈ F
)
,

with F some function space, typically F =
{
f ∈ L2(C([0, T ],Rd)),Eµ(f) = 0

}
, and to

prove that, as n→∞, it converges to some Gaussian field with prescribed covariance.
The other method, the one followed here and firstly proposed in [51, 33, 25], directly
addresses the fluctuation process (1.6), i.e., ηn =

√
n(µn − µ), and aims at showing

that ηn converges to the solution of a stochastic partial differential equation. See [66,
Chapter 3] for an interesting relation between these two approaches when the particle
interaction is linear.

We must stress that the first method has three main drawbacks: (i) the convergence
only concerns finite-dimensional marginals (ii) its proof relies heavily on exchangeability
properties of the system (that is in no way applicable in our quenched context) and (iii)
the covariance of the limit Gaussian field is not explicit but involves Radon-Nikodym
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derivatives and integrals of the dynamics operators. The second method is more chal-
lenging, yet it translates the limit dynamics in terms of a “classical” linear SPDE that can
be further studied, see [39] for a general result on this kind of limit equations. Finally,
observe that in some cases, the CLT for finite dimensional marginals can be derived from
a Large Deviation Principle, see [18, Chapter 4] and [12].

In the case of interacting particle systems on graphs, most of the literature focuses
on LLN [21, 17, 8, 56, 3, 7], with some exceptions concerning large deviations [17,
47, 56, 23]. It is interesting to compare the LLN established in Theorem 2.4 with the
previous ones in the literature. To the authors’ knowledge, there exists no result under
weaker assumptions on graph and initial condition than our Theorem 2.4. Although the
assumption npn →∞ is common across other results (but only appears in an annealed
context, e.g., [3, 56], whereas the best condition so far in a quenched context was
lim infn→∞

npn
log(n) > 0 [17]), the only work assuming general initial condition that may

depend on the graph is given by [16]. However, [16] focuses on a specific particle system,
the Kuramoto model, and proves a result in H−1-norm whereas Theorem 2.4 is stated
in terms of the classical weak convergence. Given the results [57, 40] on the sparse
regime npn → c > 0, the condition (2.3) of Theorem 2.4 appears to be optimal. Note
that the convergence of local empirical measures similar to (2.5) is also addressed in
[8] under the weaker condition npn →∞ but in an annealed context (to compare with
the condition np3

n →∞ in the present quenched setting). Finding the optimal regime of
validity of dilution for the quenched convergence remains open.

To the authors knowledge, there exists only one work addressing the CLT for dif-
fusions on graphs, i.e., [8], which addresses interacting diffusions on Rd and dense
inhomogeneous random graphs. Despite the generality of the particle systems and the
graphs under consideration, the CLT statement is substantially weaker than the one
presented here: it concerns finite dimensional marginals, the underlying graph sequence
is dense and the result is proven in probability with respect to the graph, whereas we
prove a Pg-a.s. convergence and consider graph sequences in possibly diluted regimes.
Finally, the initial condition in [8] are taken i.i.d. and independent of the graph, whereas
we only suppose the weak convergence of µn0 towards some probability measure, see
Assumption 2.2.

2.8 Organisation of the paper

The rest of the paper is organised as follows: we present in Section 3 the main
argument that we use for closing the hierarchy of empirical measures, that is extension
of Grothendieck inequalities. Section 4 contains the proofs of the global fluctuations
result (Theorem 2.7). The local fluctuations (Theorem 2.9) are treated in Section 5. We
gather in Appendices A and B some technical estimates (namely Sobolev inequalities
and further concentration estimates). Appendix C gives the proof of Theorem 2.4.
Uniqueness results are gathered in Appendix D. We finally discuss on the importance of
renormalisation of the interaction in Appendix E.

3 Grothendieck inequality and concentration estimates

Before giving the main result on Grothendieck inequality, we give a characterisation
of the processes ηn and η̂n in terms of semimartingales.

3.1 Characterisation of the processes

For the proofs of Theorem 2.7 and Theorem 2.8, we rely on the following characteri-
sation of the processes ηn and η̂n. Their proof can be found at the end of Section 4. For
the definition of the Doob-Meyer process for Hilbert-valued martingale, we refer to [50].
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Recall the definitions of L(1) and L(2), see (2.13) and (2.14) respectively.

Proposition 3.1. For any r > 3
2 and r′ > 5

2 the joint process (ηn, η̂n) belongs P ⊗
P-a.s. to C

(
[0, T ], H−r (T)⊗H−r′

(
T2
))

. Moreover, ηn and η̂n satisfy the following

semimartingale representations in H−r1(T) and H−r1(T2) respectively,

ηnt = ηn0 +

∫ t

0

L(1),∗
µns

ηns ds+

∫ t

0

Θ∗η̂ns ds+Wn
t , (3.1)

and

η̂nt = η̂n0 +

∫ t

0

L(2),∗
µns

η̂ns ds+
√
nCnt + Ŵn

t , (3.2)

where, for any regular test function g

Cnt (g) =

∫ t

0

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik ∂θ1g(θi,ns , θj,ns )Γ(θi,ns , θk,ns ) ds

+

∫ t

0

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
jk ∂θ2g(θi,ns , θj,ns )Γ(θj,ns , θk,ns ) ds,

(3.3)

the process (Wn
t )t∈[0,T ] is a martingale in C ([0, T ], H−r (T)) for r > 3

2 , with Doob-Meyer
process JWnK taking values in L (Hr, H−r) (where L(V1, V2) is the usual set of bounded
linear operators from V1 to V2) and given for t ∈ [0, T ] and ϕ,ψ ∈ Hr by

JWnKt · ϕ(ψ) = 〈Wn(ϕ) , Wn(ψ)〉t =
1

n

n∑
i=1

∫ t

0

ϕ′(θi,ns )ψ′(θi,ns )ds, (3.4)

and the process (Ŵn
t )t∈[0,T ] (whose explicit form is given in (4.12)) is a martingale in

C
(
[0, T ], H−r

(
T2
))

for r ≥ 4.

Note that one point of the proof, see Proposition 4.7, will be to show that the noise
Ŵn goes to 0 as n→∞.

A crucial step in the proofs of Theorem 2.7 and Theorem 2.8 is to show that the graph
dependent term Cn in (3.3) goes effectively to 0 as n → ∞. In view of its structure, a
strategy would be to take advantage on concentration estimates, with respect to the
graph, on quantities such as 1

n3

∑n
i,j,k=1 ξ̂

(n)
ij ξ̂

(n)
ik ui,jk where (ui,j,k) is any fixed sequence,

bounded by 1. However, ui,j,k := ∂θ1g(θi,ns , θj,ns )Γ(θi,ns , θk,ns ) in (3.3) depends in a highly

nontrivial manner on the graph sequence (ξ
(n)
ij ), and standard concentration results (e.g.

Bernstein inequalities) cannot be applied. The main novelty of the present work is to
circumvent this difficulty in using multi-linear extensions of the classical Grothendieck
inequality proved by R. Blei [10, 11].

The use of Grothendieck inequalities is detailed in the following subsection 3.2, in the
case of the term Cn: an immediate consequence of Propositions 3.3 and 3.5 is that the
term Cn does not contribute to the limit as n→∞. Note however that this strategy will
be applied repeatedly in this work to various other functionals of the graph sequence(
ξ

(n)
ij

)
. For the sake of readability, we postpone the definitions of these other quantities

and the corresponding concentration results to Appendix B.

3.2 Grothendieck inequality

The classical Grothendieck equality has received a lot of attention in the recent years,
as it was shown to be a powerful tool for the study of graph concentration [2, 32]. Let us
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consider an infinite dimensional Euclidian space with coordinates indexed by a space A:

l2(A) =

{
x = (xα)α∈A ∈ CA :

∑
α∈A
|xα|2 <∞

}
,

endowed with the usual scalar product 〈x , y〉l2(A) =
∑
α∈A xαȳα and the associated norm

‖ · ‖l2(A). In this context the classical Grothendieck inequality states that there exists a
universal constant K such that for any finite scalar array (ajk),

sup


∣∣∣∣∣∣
∑
j,k

ajk〈xj , yk〉l2(A)

∣∣∣∣∣∣ : xj , yk ∈ l2(A), max(‖xj‖l2(A), ‖yk‖l2(A)) ≤ 1


≤ K sup


∣∣∣∣∣∣
∑
j,k

ajksjtk

∣∣∣∣∣∣ : sj = ±1, tk = ±1

 . (3.5)

This inequality is known to fail in general when the scalar product is replaced by a
bounded trilinear functional, see for example [59]. However, in [10, 11] R. Blei describes
a family of multilinear functionals for which this inequality remains valid. We present
this result in the following.

Consider a positive integer m and a sequence U = (S1, . . . , SN ) of non empty sets
that satisfy

⋃N
i=1 Si = {1, 2, . . . ,m}. For α = (αj)1≤j≤m ∈ Am define the projections

πSi(α) = (αj)j∈Si . Consider, for θ : Am → C bounded, the functional νθ,U : l2
(
A|S1|

)
×

. . .× l2
(
A|SN |

)
→ C defined as follows:

νU,θ(x1, . . . , xN ) =
∑
α∈Am

θ(α)x1(πS1
(α)) · · ·xN (πSN (α)).

The functional νU,θ will satisfy a Grothendieck inequality under some assumptions on the
covering sequence U and on θ. Following the notations of [11] we denote, for 1 ≤ j ≤ m,
by kj the incidence of j in the covering sequence U , that is

kj(U) = |{i ∈ {1, . . . , N} : j ∈ Si}| ,

and by IU the minimal incidence:

IU = min {kj(U) : j ∈ {1, . . . ,m}} .

Moreover, we say that the mapping θ belongs to the space ṼU (Am) if there exists a

probability space (Ω̃, Ã, µ̃) and family of functions g(i)
ω , indexed by ω ∈ Ω̃ and defined on

ASi for i ∈ {1, . . . , N}, such that for all x ∈ Cm the mappings

ω 7→
(
g(i)
ω ◦ πSi

)
(x) and ω 7→

∥∥∥g(i)
ω

∥∥∥
∞

are measurable, with ∫
Ω̃

∥∥∥g(1)
ω

∥∥∥
∞
· · ·
∥∥∥g(N)
ω

∥∥∥
∞

dµ̃(ω) <∞, (3.6)

and such that we have the representation

θ(x) =

∫
Ω̃

(
g(1)
ω ◦ πSi

)
(x) · · ·

(
g(N)
ω ◦ πSi

)
(x) dµ̃(ω).

The norm ‖θ‖ṼU (Am) corresponds to the infimum of the left-hand side of (3.6) over all
possible representations. The following generalisation of the Grothendieck inequality
corresponds to Theorem 11.11 and Section 12.4 in [11].
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Theorem 3.2. Suppose that IU ≥ 2 and that θ ∈ ṼU (Am). Then there exists a positive
constant KU , depending only on the covering U , such that for any finitely supported
scalar N -array aj1...jN ,

sup

∣∣∣∣∣∣
 ∑
j1...,jN

aj1...jN νU,θ(x1, . . . , xN ) : ‖x1‖l2(A|S1|) ≤ 1, . . . , ‖xN‖l2(A|SN |) ≤ 1


∣∣∣∣∣∣

≤ KU‖θ‖ṼU (Am) sup


∣∣∣∣∣∣
∑

j1,...,jN

aj1...jN s1,j1 · · · sN,jN

∣∣∣∣∣∣ : s1,j1 = ±1, . . . , sN,jN = ±1

 .

In this paper we will use this result with A = Z, m = 2, N = 3 and θ(x) = 1, which is
trivially an element of ṼU (Z2). Let us now show how this inequality can be applied to
bound the term Cn in (3.3).

A remark on notation: as ξ̂(n)
ij ξ̂

(n)
ik in the first term of (3.3) is the recentered version

of ξ(n)
ij ξ

(n)
ik , which encodes for the presence of both (directed) edges i→ j and i→ k in

the graph, it is natural to label the corresponding quantity by the local tree (where
each stands for a directed edge i→ j). Every similar quantities in the following will be
labeled according to this principle. Therefore, define

Sn := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik risjtk

∣∣∣∣∣∣ , (3.7)

and

Sn := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
jk risjtk

∣∣∣∣∣∣ . (3.8)

Proposition 3.3. Let Cn be given in (3.3). Then there exists a constant CΓ, depending
only on Γ, such that for n large enough

sup
t∈[0,T ]

‖Cnt ‖−3 ≤ TCΓ

(
Sn + Sn

)
. (3.9)

Proof. Let Cn,1 and Cn,2 be such that 〈Cn, f〉 = 〈Cn,1, f〉+ 〈Cn,2, f〉, the first term Cn,1

being given by

〈Cn,1t , f〉 =

∫ t

0

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik

[
∂θ1f(θi,ns , θj,ns )

]
Γ(θi,ns , θk,ns ) ds,

and the second term Cn,2 by

〈Cn,2t , f〉 =

∫ t

0

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
jk

[
∂θ2f(θi,ns , θj,ns )

]
Γ(θj,ns , θk,ns ) ds.

Let’s focus on 〈Cn,1t , f〉. The point is to establish a bound on 〈Cn,1t , f〉 that only depends
on T , some norm of Γ, the H3(T2)-norm of f , and the underlying graph ξ(n), using

Theorem 3.2. To simplify notations, define Ξ
(n)
ijk := n−3ξ̂

(n)
ij ξ̂

(n)
ik for every choice of i, j

and k. Then

〈Cn,1t , f〉 =

∫ t

0

n∑
i,j,k=1

Ξ
(n)
ijk

[
∂θ1f(θi,ns , θj,ns )

]
Γ(θi,ns , θk,ns ) ds. (3.10)
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Let (ea)a∈Z be the canonical basis of L2(T): observe that ∂θ1f and Γ can be rewritten in
L2(T2) as

∂θ1f(θ1, θ2) =
∑
a∈Z

ea(θ2)

∫
T

∂θ1f(θ1, θ)ēa(θ) dθ,

Γ(θ1, θ2) =
∑
b∈Z

eb(θ2)

∫
T

Γ(θ1, θ)ēb(θ) dθ.

Moreover, define y1,i, y2,j and y3,k by

y1,i(a, b) =

(∫
T

∂θ1f(θi,ns , θ)ēa(θ) dθ

)(∫
T

Γ(θi,ns , θ)ēb(θ) dθ

)
, a, b ∈ Z,

y2,j(a) = ea(θj,ns ), a ∈ Z,
y3,k(b) = eb(θ

k,n
s ), b ∈ Z.

(3.11)

With the previous notation, the term 〈Cn,1t , f〉 can be decomposed as follows:

〈Cn,1t , f〉 =

∫ t

0

n∑
i,j,k=1

Ξ
(n)
ijk

∑
a,b∈Z

y1,i(a, b)y2,j(a)y3,k(b) ds.

In order to apply Theorem 3.2, we replace the factors defined in (3.11) by `2-summable
elements. For some δ > 0 define the following functions:

x1,i(a, b) = C2
δ

(
(1 + a2)(1 + b2)

)1/4+δ
y1,i(a, b), a, b ∈ Z,

x2,j(a) = C−1
δ (1 + a2)−1/4−δy2,j(a), a ∈ Z,

x3,k(b) = C−1
δ (1 + b2)−1/4−δy3,k(b), b ∈ Z,

where Cδ = (
∑
a∈Z(1 + a2)−1/2−2δ)1/2 for some δ > 0. Observe that x1,i(a, b)x2,j(a)x3,k(b)

= y1,i(a, b)y2,j(a)y3,k(b) for every a, b ∈ Z. By construction, the `2(Z)-norms of x2,j and
x3,k are equal to 1. Moreover the `2(T2)-norm of x1,i can be bounded by

‖x1,i‖2`2(T2)

= C4
δ

∑
a,b∈Z

(
(1 + a2)(1 + b2)

)1/2+2δ
∣∣∣∣∫
T

∂θ1f(θi,ns , θ)ēa(θ) dθ

∣∣∣∣2 ∣∣∣∣∫
T

Γ(θi,ns , θ)ēb(θ) dθ

∣∣∣∣2

= C4
δ

(∑
a∈Z

(1 + a2)1/2+2δ

∣∣∣∣∫
T

∂θ1f(θi,ns , θ)ēa(θ) dθ

∣∣∣∣2
)

×

(∑
b∈Z

(1 + b2)1/2+2δ

∣∣∣∣∫
T

Γ(θi,ns , θ)ēb(θ) dθ

∣∣∣∣2
)

≤ C4
δ CΓ,δ

∑
a∈Z

(1 + a2)1/2+2δ

∣∣∣∣∫
T

∂θ1f(θi,ns , θ)ēa(θ) dθ

∣∣∣∣2 =C4
δ CΓ,δ

∥∥∂θ1f(θi,ns , ·)
∥∥2

H1/2+2δ(dθ2)
,

where the constant CΓ,δ only depends on Γ and δ. By the definition of the fractional
Hs-norm, for 0 < s < 1, one has that∥∥∂θ1f(θi,ns , ·)

∥∥2

H1/2+2δ( dθ2)
=
∥∥∥∂1/2+2δ

θ2
∂θ1f(θi,ns , ·)

∥∥∥2

L2( dθ2)
.

We can bound the previous norm with a fractional Hilbert norm on T2, no longer
dependent on the value of θi,ns , see Lemma A.1. Thus, it holds that

sup
θ1∈T

∥∥∥∂1/2+2δ
θ2

∂θ1f(θi,ns , ·)
∥∥∥2

L2( dθ2)
≤ C

∥∥∥∂1/2+2δ
θ2

∂θ1f(·, ·)
∥∥∥2

H1( dθ1, dθ2)
.
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This last expression is further bounded by C ′ ‖f(·, ·)‖H2+1/2+2δ( dθ1, dθ2) because of
Sobolev’s embeddings. Choosing δ = 1/4, we conclude that there exists a constant
CΓ, depending only on Γ, such that

‖x1,i‖2`2(T2) ≤ CΓ ‖f‖2H3( dθ1, dθ2) <∞. (3.12)

We are now able to apply Theorem 3.2 with A = Z, m = 2, N = 3, U = {{1, 2}, {1}, {2}}
and θ(x) = 1: ∣∣∣∣∣∣

n∑
i,j,k=1

Ξ
(n)
ijk

∑
a,b∈Z

x1,i(a, b)x2,j(a)x3,k(b)

∣∣∣∣∣∣ ≤ KU ‖x1,i‖2`2(T2) Sn . (3.13)

Taking the supremum in t ∈ [0, T ] and in f ∈ H3
(
T2
)
, we finally obtain∥∥Cn,1∥∥C([0,T ],H−3(T2))

≤ T CΓSn .

Using similar arguments, one can show that∥∥Cn,2∥∥C([0,T ],H−3(T2))
≤ T CΓSn ,

which concludes the proof.

Other controls on similar quantities have been gathered in Appendix B.

3.3 Concentration estimates

Recall the definition of the ξ̂(n)
ij in (1.11), and the definitions of Sn and Sn given in

(3.7) and (3.8) respectively. In view of Proposition 3.3, our aim is to obtain a bound on
these two terms, as well as others, which will be of constant use in the paper:

Definition 3.4. For fixed n ≥ 1, define

Sn := sup
s,t∈{±1}n

∣∣∣∣∣∣ 1

n2

∑
i,j=1

ξ̂
(n)
ij sitj

∣∣∣∣∣∣ , (3.14)

Sn := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
ik ξ̂

(n)
jk risjtk

∣∣∣∣∣∣ , (3.15)

Sn := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ki risjtk

∣∣∣∣∣∣ , (3.16)

Sn (l) := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
li ξ̂

(n)
ij ξ̂

(n)
ik risjtk

∣∣∣∣∣∣ , l ∈ {1, 2} , (3.17)

Sn (l) := sup
r,s,t∈{±1}n

∣∣∣∣∣∣ 1

n3

n∑
i,j,k=1

ξ̂
(n)
li ξ̂

(n)
ij ξ̂

(n)
jk risjtk

∣∣∣∣∣∣ , l ∈ {1, 2} . (3.18)

Proposition 3.5. Under the assumption npn −→
n→∞

∞, we have

lim sup
n→∞

√
npn Sn ≤ 3, P-a.s. (3.19)

Moreover there exists a positive constant κ such that for all T ∈
{
, , ,

}
,

lim sup
n→∞

np2
n S
T
n ≤ κ, P-a.s. (3.20)
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and such that for l ∈ {1, 2} and T ∈
{

,
}

,

lim sup
n→∞

np3
n S
T
n (l) ≤ κ, P-a.s. (3.21)

Proof. Let us first prove (3.19). Relying on Bernstein’s inequality and on a union bound,
we obtain

P

 sup
s,t∈{±1}n

∣∣∣∣∣∣
n∑

i,j=1

ξ̂
(n)
ij sitj

∣∣∣∣∣∣ > t

 ≤ 2 · 4n exp

(
−1

2

t2pn
2n2 + t

3

)
.

Thus, the choice t = c√
npn

leads to

P

(
Sn >

c
√
npn

)
≤ 2 · 4n exp

(
−1

2

c2n

2 + c
3
√
npn

)
,

which is summable for c = 3 with the hypothesis npn −→
n→∞

∞. Let us now prove (3.20)

for T = . The proof for the other cases are the same, up to a transposition of matrix.

Remark that, considering A the matrix
(
ξ̂ij

)
1≤i,j≤n

and S the diagonal matrix with

values (si)1≤i≤n on the diagonal, we have, denoting ‖ · ‖ the operator norm of matrices,∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
jk risjtk = rASAt ≤ n‖ASA‖ ≤ n‖A‖2.

Consider the matrix A multiplied by pn, its coefficients are bounded by one: it is well
known (see for example Corollary 2.3.5 in [67]), that there exist absolute constants c and
C such that, for all λ ≥ C,

P
(
‖pnA‖ > λ

√
n
)
≤ Ce−cλn. (3.22)

Recalling the previous inequality, this means that

P

(
Sn >

λ

np2
n

)
≤ Ce−cλn,

which is summable. The bound (3.21) can be treated in the same way. Let us fix l ∈ {1, 2},
T = , and define moreover R̂ to the the diagonal matrix with diagonal values given by(
ξ̂

(n)
li ri

)
1≤i≤n

. We then have

∑
i,j,k

ξ̂
(n)
li ξ̂

(n)
ij ξ̂

(n)
ik risjtk = sAtR̂At ≤ n

pn
‖A‖2,

where we used the rough bound ‖R̂‖ ≤ 1
pn

. We can then proceed as above. The proof for
T = is similar.

We will consider in many places of the paper various (possibly weighted) empirical
means involving the centered variables ξ̂(n)

ij . We refer to Appendix B where the definitions
and the corresponding asymptotics for these quantities have been gathered.

4 Proofs concerning the global fluctuations

In this section, we will refer to two linear forms and their continuity properties.

Lemma 4.1. Let θ, θ′ ∈ T be fixed. The following linear forms

Dθ(f) := f ′(θ),
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∆θ,θ′(f) := f(θ)− f(θ′),

are continuous on Hm (T) for any m > 1
2 : there exists a constant cm > 0 such that

sup
θ∈T
‖Dθ‖−(m+1) < cm,

sup
θ,θ′∈T

‖∆θ,θ′‖−(m+1) < cm |θ − θ′| .

Proof. We have for all regular f and θ, θ′ ∈ T,

|Dθ(f)| = |f ′(θ)| ≤ ‖f‖C1 ≤ Cm ‖f‖Hm+1 ,

where the last inequality is due to Sobolev embedding, see, e.g., [1, Theorem 5.4, Case C].
Similarly, for ∆θ,θ′ we have

|∆θ,θ′(f)| ≤ |θ − θ′| ‖f‖C1 ≤ Cm |θ − θ′| ‖f‖Hm+1 ≤ 2πCm ‖f‖Hm+1 .

4.1 Regularity and semimartingale representations

We present the stochastic differential equations satisfied by µn, ηn and η̂n, and aim in
particular at proving Proposition 3.1. We define S := (St)t≥0 as the analytic semigroup
associated to the Laplacian operator. We present here a well-known argument ([4, 26])
concerning the regularity of (St), that we will employ at multiple steps.

Lemma 4.2. Let r > d/2 and k ≥ r. Then, there exists ε > 0 such that the following
conditions hold:

1. P(Td) ⊂ H−r+ε(Td) continuously and there exists C, only depending on ε, such
that for every µ ∈ P(Td)

sup
h, ‖h‖r−ε≤1

〈µ, h〉−r+ε,r−ε ≤ C,

2. For every h ∈ Hr(Td), it holds that

‖St−sh‖k ≤ C

(
1 +

1

(t− s) k−r2

)
‖h‖r .

Proof. The first statement is a consequence of Sobolev’s inequalities. The second
statement comes from the regularity of the semigroup (see for example [34]).

We start with the semimartingale representation of µn.

Lemma 4.3. The empirical measure µn satisfies the following weak semimartingale
representation: for any f ∈ C2(T) and t ∈ [0, T ]

〈µnt , f〉 = 〈µn0 , f〉+

∫ t

0

〈µns ,
1

2
∂2
θf + (µns ∗ Γ)∂θf〉 ds

+ 〈ν̂nt ( dθ1, dθ2),Γ (θ1, θ2) ∂θf (θ1)〉+ 〈Mn
t , f〉 ,

(4.1)

where ν̂nt is given by (1.9). The noise term Mn
t in (4.1) is defined by

〈Mn
t , f〉 =

1

n

n∑
i=1

∫ t

0

∂θf
(
θi,ns
)

dBis. (4.2)
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Let r > 1/2. Then, µn satisfies the following weak-mild equation: for any h ∈ Hr and
t ∈ [0, T ],

〈µnt , h〉−r,r = 〈µn0 , Sth〉−r,r +

∫ t

0

〈µns , (µns ∗ Γ)(∂θSt−sh)〉−r,r ds

+

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns , (Γ ∗ δθj,ns )∂θSt−sh〉−r,r ds+mn

t (h),

where

mn
t (h) =

1

n

n∑
i=1

∫ t

0

∂θSt−sh
(
θi,ns
)

dBis. (4.3)

Proof. The proof is based on the Itô’s formula. Consider a regular function f = f(θ),
then

df(θi,nt ) = ∂θf(θi,nt ) dθi,nt +
1

2
∂2
θf(θi,nt ) dJθi,nKt.

Observe that dJθi,nKt = dt for every i = 1, . . . , n. By summing over i, dividing by n and
integrating with respect to the time in the previous expression, one obtains that, writing
ξ
(n)
ij

pn
= ξ̂

(n)
ij + 1,

〈µnt , f〉 = 〈µn0 , f〉+

∫ t

0

〈µns ,
1

2
∂2
θf + (µns ∗ Γ)∂θf〉 ds+ 〈Mn

t , f〉

+

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds.

Finally, observe that the last expression is equivalent to (4.1) since∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds = 〈ν̂nt ( dθ1, dθ2),Γ (θ1, θ2) ∂θf (θ1)〉 . (4.4)

The second part of the proposition follows from Itô’s formula on the test function
f(θ, s) = (St−sh)(θ) and by using the fact that ∂sSt−sh = − 1

2∂
2
θSt−sh. Because of Sobolev

inequalities, recall (1.13), P(T) ⊂ H−r continuously for any r > 1/2: any bracket 〈·, ·〉−r,r
is indeed the action of an element of H−r against an element of Hr. Well-posedness of
mn given in (4.3) as an element of H−r have already been addressed in the literature,
see, e.g., [6, 4, 16], we will give another proof in Proposition 4.8.

Using Lemma 4.3 as well as the limit PDE (1.4), we can write down an equation for
ηn as defined in (1.6).

Lemma 4.4. Suppose Assumption 2.1. The process (ηn) given in (1.6) belongs P⊗P-
a.s. to C ([0, T ], H−r (T)) for any r > 3

2 . Moreover, ηn satisfies the following weak
semimartingale representation: for every regular test function f (recall the definition of
L(1) given in (2.13)),

〈ηnt , f〉 = 〈ηn0 , f〉+

∫ t

0

〈
ηns , L

(1)
µns

(f)
〉

ds+

∫ t

0

〈η̂ns (dθ,dθ′) , Γ (θ, θ′) ∂θf(θ)〉ds+Wn
t (f),

(4.5)
where η̂nt is given in (1.10) and where Wn

t is defined by

〈Wn
t , f〉 :=

1√
n

n∑
i=1

∫ t

0

∂θf
(
θi,ns
)

dBis. (4.6)
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Let r > 1/2. The process ηn satisfies the following weak-mild equation: for every
h ∈ Hr(T) and t ∈ [0, T ]:

〈ηnt , h〉−r,r = 〈ηn0 , Sth〉−r,r +

∫ t

0

〈ηns , (Γ ∗ µns )∂θSt−sh〉−r,r ds

+

∫ t

0

〈µs , (Γ ∗ ηns )∂θSt−sh〉−r,r ds+ wnt (h)

+

∫ t

0

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns , (Γ ∗ δθj,ns )∂θSt−sh〉−r,r ds,

(4.7)

where

wnt (h) =
1√
n

n∑
i=1

∫ t

0

(∂θSt−sh)
(
θi,ns
)

dBis.

Proof. We first address the continuity of the processes ηn: for θ, θ′ ∈ T and ϕ a regular
test function

|〈δθ − δθ′ , ϕ〉| = |ϕ(θ)− ϕ(θ′)| ≤ ‖ϕ′‖∞ |θ − θ
′| ≤ ‖ϕ‖C1 |θ − θ′| ≤ C ‖ϕ‖Hr |θ − θ

′| ,

by Sobolev embedding, for any r > 3
2 . This means that

‖δθ − δθ′‖H−(r+1) ≤ C |θ − θ′| .

Now, a.s. for all n ≥ 1, t 7→
(
θ1,n
t , . . . , θn,nt

)
is continuous from [0, T ] to Tn. In particular,

for all i = 1, . . . , n, for all t and tm → t, we have
∥∥∥δθi,ntm − δθi,nt ∥∥∥H−r ≤ C ∣∣∣θi,ntm − θi,nt ∣∣∣ which

goes to 0 as tm → t. As a conclusion: t 7→ µnt is a.s. continuous from [0, T ] to H−r for
r > 3

2 . Classical results [25, 64] assure that µ solves the Fokker-Planck equation (1.4),
i.e.,

∂tµt(θ) =
1

2
∂2
θµt(θ)− ∂θ [µt(θ)(Γ ∗ µt)(θ)] , 0 < t ≤ T,

and that it is an element of C([0, T ], H−r) (see for example [60]). As a conclusion, ηn is
a.s. continuous in H−r(T). Equation (4.5) (respectively (4.7)) is derived by subtracting
the representations (resp. the weak-mild formulations) satisfied by µn and µ, and by
multiplying everything by

√
n. Observe that Wn in (4.6) is nothing but Mn in (4.2)

multiplied by
√
n, and similarly for wn and mn. Well-posedness of wn as an element of

H−r is postponed to Proposition 4.8.

Recall the definition of the noise term Wn
t in (4.6).

Lemma 4.5. Under Assumption 2.1, P-a.s., for any n ≥ 1, the process (Wn
t )t∈[0,T ] is a

martingale in C ([0, T ], H−r (T)), for r > 3
2 . The corresponding Doob-Meyer process JWnK

takes values in L (Hr, H−r) and is given by (3.4). Moreover, (Wn)n≥1 satisfies

sup
n

E

(
sup
t∈[0,T ]

‖Wn
t ‖

2
−r

)
< +∞. (4.8)

Proof. This proof follows closely the arguments given in [25, Prop. 4.1]. Let (ϕp)p≥1 be
an orthonormal system in Hr. Let us first prove that

sup
n

∑
p≥1

E

(
sup
t∈[0,T ]

|Wn
t (ϕp)|2

)
= sup

n
E

∑
p≥1

sup
t∈[0,T ]

|Wn
t (ϕp)|2

 < +∞. (4.9)
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By Doob’s inequality,

∑
p≥1

E

(
sup
t∈[0,T ]

|Wn
t (ϕp)|2

)
≤ C

∑
p≥1

E
(
|Wn

T (ϕp)|2
)

= C
∑
p≥1

E

(
1

n

n∑
i=1

∫ T

0

∣∣∂θϕp(θi,ns )
∣∣2 ds

)
,

= C
1

n

n∑
i=1

E

(∫ T

0

∥∥∥Dθi,ns

∥∥∥2

−r
ds

)
≤ Cc2r−1T,

for the constant cr−1 > 0 given in Lemma 4.1, which gives (4.9).
We now prove that the trajectories of Wn are almost surely continuous in H−r. By

(4.9), the series
∑
p≥1 supt∈[0,T ] |Wn

t (ϕp)|2 is a.s. convergent, and hence, for fixed n and

all ε > 0, there exists p0 ≥ 1 sufficiently large so that
∑
p>p0

supt∈[0,T ] |Wn
t (ϕp)|2 < ε

6 .
Let (tm)m≥1 be a sequence in [0, T ] such that tm −−−−→

m→∞
t, then

∥∥Wn
tm −W

n
t

∥∥2

−r =
∑
p≥1

∣∣〈Wn
tm −W

n
t , ϕp

〉∣∣2
≤

p0∑
p=1

∣∣〈Wn
tm −W

n
t , ϕp

〉∣∣2 + 2
∑
p>p0

(∣∣〈Wn
tm , ϕp

〉∣∣2 + |〈Wn
t , ϕp〉|

2
)
.

The last summand is smaller than 4ε
6 and the first one can be made smaller than ε

3 by the
a.s. continuity of t 7→ 〈Wn

t , ϕ〉 for all ϕ. Hence, a.s. Wn ∈ C ([0, T ], H−r). The expression
of JWnK in (3.4) follows directly from Itô’s isometry and (4.8) is a direct consequence of
the stronger statement (4.9).

The supplementary term in the drift in the semimartingale representation (4.5) can be
expressed in terms of the higher order fluctuation process η̂n defined in (1.10). The idea
is to proceed further and write the semimartingale decomposition of η̂n. For 1 ≤ i ≤ n,
define the measures

µ̂n,it =
1

n

n∑
j=1

ξ̂
(n)
ij δθj,nt

∈ H−r, r >
1

2
. (4.10)

Lemma 4.6. Suppose Assumption 2.1. The process (η̂n) defined in (1.10) belongs

P ⊗ P-a.s. to C
(

[0, T ], H−r
′ (
T2
))

for any r′ > 5
2 and satisfies the following weak

semimartingale decomposition: for all regular test function (θ1, θ2) 7→ g(θ1, θ2) (recall
the definition of L(2) and Cn given respectively in (2.14) and (3.3)),

〈η̂nt , g〉 = 〈η̂n0 , g〉+

∫ t

0

〈
η̂ns , L

(2)
µns

(g)
〉

ds+
√
nCnt (g) + Ŵn

t (g), (4.11)

Ŵn
t (g) :=

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij

∫ t

0

∇g(θi,ns , θj,ns ) · ( dBis, dBjs). (4.12)

Let r > 3/2. The process η̂n satisfies the following weak-mild equation: for every
h ∈ Hr(T2) and t ∈ [0, T ]:

〈η̂nt , h〉−r,r = 〈η̂n0 , Sth〉−r,r +

∫ t

0

〈η̂ns , Λns · [∇St−sh]〉−r,r ds+ ŵnt (h)

+

∫ t

0

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns ⊗ δθj,ns , Λ̂ns,ij · ∇St−sh〉−r,r ds,

(4.13)
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with, recall definition (4.10), Λns and Λ̂ns,ij are respectively given by

Λns (θ1, θ2) := (〈µns (dθ′) , Γ(θ1, θ
′)〉 , 〈µns (dθ′) , Γ(θ2, θ

′)〉) ∈ R2, (4.14)

Λ̂ns,ij(θ1, θ2) :=
(〈
µ̂n,is (dθ′) , Γ(θ1, θ

′)
〉
,
〈
µ̂n,js (dθ′) , Γ(θ2, θ

′)
〉)
∈ R2, (4.15)

and where

ŵnt (h) :=
1

n3/2

n∑
i,j=1

ξ̂
(n)
ij

∫ t

0

∇St−sh(θi,ns , θj,ns ) · ( dBis, dBjs). (4.16)

Proof. The proof of continuity of the trajectories of η̂n follows the same argument as in
the proof of Lemma 4.4, as for any n ≥ 1, η̂n is a finite weighted sum of Dirac measures
δ(θi,nt ,θj,nt ). One has for any (θ1, θ2), (θ′1, θ

′
2) ∈ T2, any regular test function ψ on T2, for

any r > 5
2 ,∣∣〈δ(θ1,θ2) − δ(θ′1,θ′2) , ψ

〉∣∣ = |ψ(θ1, θ2)− ψ (θ′1, θ
′
2)| ≤ ‖ψ‖C1 {|θ1 − θ′1|+ |θ2 − θ′2|}
≤ C ‖ψ‖Hr(T2) {|θ1 − θ′1|+ |θ2 − θ′2|} ,

which proves the desired continuity, with the same arguments as for Lemma 4.4. The
semimartingale representation (4.11) is derived as the one of Lemma 4.3 but where
Itô’s formula is applied to test functions of two variables, i.e., to g(θi,nt , θj,nt ). The
second part of the proposition follows again from Itô’s formula, but with test functions
g(θ, θ′, s) = (St−sh)(θ, θ′), and by using the fact that ∂sSt−sh = − 1

2∇St−sh. The choice
of r > 3/2 and Sobolev inequalities, recall (1.13), assure that any bracket 〈·, ·〉−r,r
makes sense as the action of an element of H−r(T2) against an element of Hr(T2).
Well-posedness of mn given in (4.3) is given in Proposition 4.10.

Proposition 4.7. For any r > 3, the process
(
Ŵn
t

)
is a martingale in C

(
[0, T ], H−r(T2)

)
,

whose Doob-Meyer process JŴnKt taking values in L
(
Hr(T2), H−r(T2)

)
is given for

every ϕ,ψ ∈ Hr(T2) by

JŴnKt · ϕ(ψ) =
〈
Ŵn(ϕ) , Ŵn(ψ)

〉
t

=
1

n3

∑
i,j,k

ξ̂
(n)
ij ξ̂

(n)
ik

∫ t

0

∂θ1ϕ
(
θi,ns , θj,ns

)
∂θ1ψ

(
θi,ns , θk,ns

)
ds

+
1

n3

∑
i,j,k

ξ̂
(n)
ij ξ̂

(n)
jk

∫ t

0

∂θ2ϕ
(
θi,ns , θj,ns

)
∂θ1ψ

(
θj,ns , θk,ns

)
ds

+
1

n3

∑
i,j,k

ξ̂
(n)
ij ξ̂

(n)
ki

∫ t

0

∂θ1ϕ
(
θi,ns , θj,ns

)
∂θ2ψ

(
θk,ns , θi,ns

)
ds

+
1

n3

∑
i,j,k

ξ̂
(n)
ij ξ̂

(n)
kj

∫ t

0

∂θ2ϕ
(
θi,ns , θj,ns

)
∂θ2ψ

(
θk,ns , θj,ns

)
ds.

Moreover,
(
Ŵn

)
satisfies P-almost surely

E

(
sup
t∈[0,T ]

∥∥∥Ŵn
t

∥∥∥2

−r

)
−−−−→
n→∞

0. (4.17)
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Proof. Once again, we follow a very similar approach as in [25]. Recall from (4.12), that
we may write

Ŵn
t (f) =

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij

∫ t

0

∂θ1f(θi,ns , θj,ns ) dBis +
1

n3/2

n∑
i,j=1

ξ̂
(n)
ij

∫ t

0

∂θ2f(θi,ns , θj,ns ) dBjs ,

:= Ŵn,1
t (f) + Ŵn,2

t (f),

so that it is sufficient to prove (4.17) for Ŵn,1
t and Ŵn,2

t separately. Let (ϕp)p≥1 be an

orthonormal system in Hr
(
T2
)
. We have that

E

(
sup
t∈[0,T ]

∥∥∥Ŵn,1
t

∥∥∥2

−r

)
= E

 sup
t∈[0,T ]

∑
p≥1

∣∣∣Ŵn,1
t (ϕp)

∣∣∣2
 ≤∑

p≥1

E

(
sup
t∈[0,T ]

∣∣∣Ŵn,1
t (ϕp)

∣∣∣2)

≤ C
∑
p≥1

E
(〈
Ŵn,1 (ϕp)

〉
T

)
,

by Doob’s inequality. This last quantity is further bounded by

E

(
sup
t∈[0,T ]

∥∥∥Ŵn,1
t

∥∥∥2

−r

)
≤
∫ T

0

C

n3
E

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik

∑
p≥1

∂θ1ϕp
(
θi,ns , θj,ns

)
∂θ1 ϕ̄p

(
θi,ns , θk,ns

)
ds

= C

∫ T

0

E

[
cn (Φ, Id, θ

n
s )

]
ds,

with the notations of Lemma B.2 (with k = r). Doing the same for Ŵn,2
t requires to

control now the term cn (Φ, Id, θ
n
s ), and hence we obtain directly (4.17) from (B.9) and

(3.20). The continuity of the trajectories of Ŵn follows from the very same argument
previously used from Lemma 4.5.

We now proceed further with moment estimates. Note that from here, our proof
differs significantly from the line of proof followed in [25]. One could see Propositions 4.8
and 4.10 as equivalents of [25, Prop. 3.5], where a similar estimate on the fluctuation
process is proven. Note however that the proof of [25, Prop. 3.5] uses in an essential
way the exchangeability of the particles as well as the fact that the initial condition of
(1.1) are i.i.d., which is no longer the case here. We circumvent this difficulty by taking
advantage of the mild formulations (4.7) and (4.13) and the regularising properties
of the heat kernel. By this method (see (4.21) and Remark 4.9), the control we have
on the moments of ηn and η̂n is weaker than in [25, Prop. 3.5], in the sense that one
needs to have α ∈ [0, 1) in (4.18) and (4.22), whereas the same estimate is proven
directly for α = 1 in [25, Prop. 3.5]. Note finally that a stronger uniform in time control
E[supt∈[0,T ] ‖ηnt ‖

2
−r] is proven in [25, Prop. 4.3], but a careful reading shows that this

estimate is only used in [25] to prove the continuity of the fluctuation process, for which
we have provided an alternative proof in Lemma 4.4. Recall that E [·] stands for the
expectation w.r.t. the noise only, the results below hold for a fixed realisation of the
graph and initial condition.

Proposition 4.8. Suppose that Assumption 2.1 hold and take r > 3
2 . Let α ∈ [0, 1). The

sequence of processes (ηn)n≥1 satisfies P-a.s.

sup
t∈[0,T ]

E[‖ηnt ‖
1+α
−r ] ≤ C

(
1 + ‖ηn0 ‖

1+α
−r + sup

t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ]

)
. (4.18)
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Proof. Recall the weak-mild formulation (4.7). Let gn(h) be the term involving the graph,
i.e.,

gnt (h) :=

∫ t

0

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns , (Γ ∗ δθj,ns )∂θSt−sh〉−r,r ds.

In (4.7), taking the supremum with respect to h in Hr such that ‖h‖r ≤ 1, one can write:

‖ηnt ‖−r ≤‖η
n
0 ‖−r +

∫ t

0

‖ηns ‖−r sup
‖h‖r≤1

‖(Γ ∗ µns )∂θSt−sh‖r ds

+

∫ t

0

‖µt‖−r sup
‖h‖r≤1

‖(Γ ∗ ηns )∂θSt−sh‖r ds+ ‖wnt ‖−r + sup
‖h‖r≤1

gnt (h).

By using the classical inequality (
∑m
i=1 ai)

1+α ≤ mα
∑m
i=1 a

1+α
i , one obtains

1

5α
‖ηnt ‖

1+α
−r ≤‖η

n
0 ‖

1+α
−r + Tα

∫ t

0

‖ηns ‖
1+α
−r sup

‖h‖r≤1

‖(Γ ∗ µns )∂θSt−sh‖1+α
r ds

+ Tα
∫ t

0

‖µt‖1+α
−r sup

‖h‖r≤1

‖(Γ ∗ ηns )∂θSt−sh‖1+α
r ds+ ‖wnt ‖

1+α
−r

+

(
sup
‖h‖r≤1

gnt (h)

)1+α

.

(4.19)

Observe that similar to the proof of [4, Proposition 2.2], one has that

‖(Γ ∗ ηns )∂θSt−sh‖r ≤ ‖∂θSt−sh‖r ‖Γ ∗ η
n
s ‖W r,∞

≤ C
(

1 +
1√
t− s

)
‖h‖r ‖η

n
s ‖−r ,

where we have used the fact that ‖Γ ∗ ηns ‖W r,∞ ≤ C ′ ‖ηns ‖−r given Assumption 2.1. Note
that, as pointed out in Lemma 4.2, uniformly on s, n, 〈µns , h〉 ≤ ‖h‖∞ ≤ C ‖h‖r, since
µns is a probability measure. Hence, by Assumption 2.1, there is a constant C > 0

independent on s, n such that

sup
‖h‖r≤1

‖(Γ ∗ µns )∂θSt−sh‖1+α
r ≤ C

(
1 +

1

(t− s) 1+α
2

)
. (4.20)

For the graph term, one could repeat the second part of the proof in [16, Lemma 3.2],
where it is shown that there exists a positive constant C (only depending on Γ) such that

sup
‖h‖r≤1

gnt (h) ≤ C
√
t
√
nSn .

In turn, this would mean that, using Proposition 3.5, for any t ∈ [0, T ] and P-a.s.

sup
‖h‖r≤1

gnt (h) ≤ C
√
T
√
pn
.

However this is not enough when one considers pn converging to zero. To tackle the
interesting case pn → 0, we need to take advantage of the representation of gnt (h)
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through η̂n, recall (4.4). Observe that, using (4.20), we have(
sup
‖h‖r≤1

gnt (h)

)1+α

≤ Tα sup
‖h‖r≤1

∫ t

0

〈η̂ns (dθ,dθ′) , Γ (θ, θ′) ∂θSt−sh(θ)〉1+α
−r,r ds

≤ Tα
∫ t

0

‖η̂ns ‖
1+α
−r sup

‖h‖r≤1

‖Γ (θ, θ′) ∂θSt−sh(θ)‖1+α
r ds

≤ CΓ,T

∫ t

0

(
1 +

1

(t− s) 1+α
2

)
‖η̂ns ‖

1+α
−r ds,

(4.21)

that is, by Lemma 4.4, a finite quantity, since r > 3
2 . Taking the expectation with respect

to the Brownian motions, we get

E

[
sup
‖h‖r≤1

gnt (h)1+α

]
≤ CT,Γ sup

t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ].

Taking the expectation E in the inequality (4.19) yields

E[‖ηnt ‖
1+α
−r ] ≤‖ηn0 ‖

1+α
−r + C

∫ t

0

(
1 +

1

(t− s) 1+α
2

)
E[‖ηns ‖

1+α
−r ] ds

+ E[‖wnt ‖
1+α
−r ] + CT,Γ sup

t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ].

One can then apply a version of Gronwall-Henry’s inequality (see for example [31],
Lemma 5.2), and obtain that

E[‖ηnt ‖
1+α
−r ] ≤ C

(
‖ηn0 ‖

1+α
−r + sup

t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ] + E[‖wnt ‖

1+α
−r ]

)
.

Concerning the noise term, we have, as α < 1, E[‖wnt ‖
1+α
−r ] ≤ E[‖wnt ‖

2
−r]

1+α
2 and for

(ϕp)p≥0 an orthonormal system in Hr(T),

E[‖wnt ‖
2
−r] =

∑
p≥1

E
[
|wnt (ϕp)|2

]
≤ C

∑
p≥1

E
[
〈wn(ϕp)〉t

]
≤ C

n

∑
p≥1

n∑
i=1

∫ t

0

E
[∣∣∂θSt−sϕp(θi,ns )

∣∣2] ds =
C

n

n∑
i=1

∫ t

0

E
[
‖Us,t,i‖2−r

]
ds,

where Us,t,i := f 7→ ∂θSt−sf(θi,ns ).

Remark 4.9. We cannot use here the fact that ‖∂θSt−s‖−r ≤ C(1 + 1/
√
t− s) because

(t − s)−1 is not integrable. However, we can exploit the properties of the semigroup
and the Sobolev embeddings as done in the proof of [26, Lemma 11]. Namely, let
0 < ε < min(1, r − 1/2), then there exists a positive constant C such that

sup
‖h‖r≤1

∣∣(∂θSt−sh)
(
θi,ns
)∣∣2 = sup

‖h‖r≤1

∣∣∣〈δθi,ns , (∂θSt−sh)〉
−r+ε,r−ε

∣∣∣2
≤ C

∥∥∥δθi,ns ∥∥∥2

−r+ε
‖St−sh‖2r+1−ε

≤ C ′
(

1 +
1

(t− s)1−ε

)
,

where we have used both statements of Lemma 4.2, the second statement with k̄ = r+1−ε
and r̄ = r so that k̄ − r̄ = 1− ε.
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Finally, gathering all these estimates, we deduce that there exists C > 0, depending
on T , such that

sup
t∈[0,T ]

E[‖wnt ‖
1+α
−r ] ≤ C.

Putting every estimate together, we end up with (4.18).

Proposition 4.10. Suppose that Assumption 2.1 holds and take r > 2 and α ∈ [0, 1). For
n large enough, the sequence of processes (η̂n)n≥1 satisfies P-a.s.

sup
t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ] ≤ C

(
‖η̂n0 ‖

1+α
−r +

1

(
√
npn)

1+α +
1

(
√
np2

n)
1+α

)
. (4.22)

Proof. From the mild formulation (4.13) of η̂n, one has that

1

4α
‖η̂nt ‖

1+α
−r ≤ ‖η̂

n
0 ‖

1+α
−r + Tα

∫ t

0

‖η̂ns ‖
1+α
−r sup

‖h‖r≤1

‖Λns · ∇St−sh‖
1+α
r ds+ ‖ŵnt ‖

1+α
−r

+

∫ t

0

sup
‖h‖r≤1

1

n3/2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns ⊗ δθj,ns , Λ̂ns,ij · ∇St−sh〉−r,r ds

1+α

:= ‖η̂n0 ‖
1+α
−r + (A) + (B) + (C). (4.23)

The noise term (B) can be treated similarly to Ŵn, recall Proposition 4.7, using the
same arguments of wn, recall Proposition 4.8. In particular, for an orthonormal basis
Φ = (ϕp)p≥1 of Hr one has that

sup
t∈[0,T ]

E
[
‖ŵnt ‖

2
−r

]
= sup
t∈[0,T ]

∑
p≥1

E
[
(ŵnt (ϕp))

2
]

≤ C sup
t∈[0,T ]

∑
p≥1

E
[
〈ŵn(ϕp)〉t

]
≤ C ′ sup

t∈[0,T ]

∫ t

0

[
sup
u∈Tn

cn(Φ, St−s, u) + sup
u∈Tn

cn(Φ, St−s, u)

]
ds,

where the definitions of cTn (Φ, St−s, u) are given in Lemma B.2 (taking in particular
k = 3 + ε if ε > 0 is such that r − 2ε > 2, so that k − r = 1− ε). Since ‖St−s‖L(Hr,Hk) ≤

C

(
1 + 1

(t−s)
k−r
2

)
, Lemma B.2 implies that supu∈Tn

∣∣cTn (Φ, St−s, u)
∣∣ ≤ C (1 + 1

(t−s)1−ε

)
STn

for any T ∈
{
,
}

for some constant C > 0 that does not depend on s, t or n. Integrating
w.r.t. s and using Proposition 3.5 gives (recall that α ∈ (0, 1))

sup
t∈[0,T ]

E
[
‖ŵnt ‖

1+α
−r

]
≤ sup
t∈[0,T ]

E
[
‖ŵnt ‖

2
−r

] 1+α
2 ≤ C

(
Sn + Sn

) 1+α
2

,

and from Proposition 3.5 we deduce that the last quantity is P-a.s. of order 1
(
√
npn)1+α

.

Consider now the second term (A) in (4.23): we have (recall the definition of Λns in
(4.14))

sup
‖h‖r≤1

‖Λns · ∇St−sh‖r ≤ sup
‖h‖r≤1

‖Λns ‖W r,∞ ‖∇St−sh‖r ≤ C
(

1 +
1

(t− s)1/2

)
.

Elevating everything to the power 1 + α (recall that α < 1) and taking the expectation
gives that

E

[∫ t

0

‖η̂ns ‖
1+α
−r sup

‖h‖r≤1

‖Λns · ∇St−sh‖
1+α
r ds

]
≤ C

∫ t

0

(
1 +

1

(t− s) 1+α
2

)
E
[
‖η̂ns ‖

1+α
−r

]
ds.

EJP 28 (2023), paper 147.
Page 28/63

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1038
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT for empirical measures of diffusions on random graphs

The expression within the integral in the last term (C) in (4.23), is the sum
√
ng

n,(1)
s +√

ng
n,(2)
s where

gn,(1)
s = sup

‖h‖r≤1

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik

[
∂θ1St−sh(θi,ns , θj,ns )

]
Γ(θi,ns , θk,ns ),

gn,(2)
s = sup

‖h‖r≤1

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
jk

[
∂θ2St−sh(θi,ns , θj,ns )

]
Γ(θj,ns , θk,ns ).

These terms are very similar to the term Cnt defined in (3.3), and can be treated similarly
as done in Proposition 3.3, but relying moreover on the regularity of the semigroup St−s.
More precisely one can follow the steps of the proof of Proposition 3.3, only replacing f
with St−sg, the bound given (3.12) becoming then

‖x1,i‖l2(T2) ≤ C‖St−sf‖3 ≤ C ′
(

1 +
1

(t− s) 3−r
2

)
‖f‖r.

which leads to the bounds, for some constant C > 0 independent on s < t ≤ T

gn,(1)
s ≤

(
1 +

1

(t− s) 3−r
2

)
Sn and gn,(2)

s ≤

(
1 +

1

(t− s) 3−r
2

)
Sn .

Integrating w.r.t. s, elevating to the power 1 + α and taking the expectation gives finally
that E [(C)] ≤ C

(
√
np2n)

1+α , P-a.s. Finally, with another application of Gronwall-Henri

inequality, one obtains that the process η̂n satisfies P-a.s.

sup
t∈[0,T ]

E[‖η̂nt ‖
1+α
−r ] ≤ C

(
‖η̂n0 ‖

1+α
−r +

1

(
√
npn)

1+α +
1

(
√
np2

n)
1+α

)
.

This concludes the proof.

To prove Proposition 3.1 it remains to give some regularity results for the operators
L(1)
µns

and L(2)
µns

. They are continuous in a suitable class of Hilbert spaces, as stated below.

Lemma 4.11. Fix r > 0. For every probability measure ν, the linear operator L(1)
ν (resp.

L(2)
ν ) is continuous from H−(r+2)(T) to H−r(T) (resp. from H−(r+2)(T2) to H−r(T2)):

there exist two positive constants C1,T and C2,T such that for all test function f(θ) and
g(θ1, θ2), ∥∥∥L(1)

ν (f)
∥∥∥
r
≤ C1,T ‖f‖r+2 , (4.24)∥∥∥L(2)

ν (g)
∥∥∥
r
≤ C2,T ‖g‖r+2 . (4.25)

Proof. This is a straightforward consequence of the definitions (2.13) and (2.14), As-
sumption 2.1 and the fact that ν is a probability measure. See [25, Lemma 3.7] for a very
similar proof.

Proof of Proposition 3.1. The continuity of the processes (ηn, η̂n) has been addressed
in Lemmas 4.4 and 4.6. Both semimartingale decompositions in (3.1) and (3.2) hold if

each term make sense in H−r1(T) and H−r1
(
T2
)

respectively. Since
∥∥∥L(1),∗

µns
ηns

∥∥∥
−(r+2)

≤

C ‖ηns ‖−r for any r > 0 by Lemma 4.11, one obtains from (4.18) and (4.22) that, under

both Assumptions 2.5 and 2.6 ,
∫ T

0

∥∥∥L(1),∗
µns

ηns

∥∥∥
−r1

ds is P⊗P almost-surely finite (recall

the definition of r0, r1 in (2.7)), so that this drift term makes sense as a Bochner integral.
It suffices now to gather this estimate and Lemma 4.5 to conclude. The same argument
works also for η̂n.
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4.2 Tightness results

We use the following tightness criterion [36, pp. 34-35]: a sequence of (Ωn,Fnt )-
adapted processes (Y n)n≥1 with path in C([0, T ], H), where H is an Hilbert space is tight
if both of the following conditions hold:

1. For every t in some dense subset of [0, T ], the law of Y nt is tight in H,

2. (Aldous condition) For every ε1, ε2 > 0, there exists δ > 0 and n0 ≥ 1 such that for
every (Fnt )-stopping time τn ≥ T ,

sup
n≥n0

sup
θ≤δ

P
(∥∥Y nτn − Y nτn+θ

∥∥
H
≥ ε1

)
≤ ε2.

Remark 4.12. Suppose that there exists a Hilbert space H0 such that the injection
H0 → H is compact and such that, there exists m ≥ 1 such that for fixed t ∈ [0, T ], we
have supnE

(
‖Y nt ‖

m
H0

)
< +∞. Then, for this t, Condition (1) above is satisfied. Indeed,

for any R > 0, BR :=
{
h ∈ H0, ‖h‖H0

≤ R
}

is compact in H, and, by Markov inequality,

P (Y nt /∈ BR) = P
(
‖Y nt ‖H0

> R
)
≤

E
(
‖Y nt ‖

m
H0

)
Rm

,

which goes to 0 as R→∞, uniformly in n.

Theorem 4.13. Recall the definition of (r0, r1) in (2.7). Under Assumptions 2.1, 2.2,
condition (2.15) and either Assumption 2.5 or 2.6, the sequence of laws of both (ηn)n≥1

(resp. (η̂n)n≥1) is tight in C ([0, T ], H−r1 (T)) (resp. in C
(
[0, T ], H−r1

(
T2
))

) (and the
tightness is Pg-almost sure in the case of Assumption 2.5).

Proof. We deal first with the process η̂n. Recall the definition of (r0, r1) in (2.7). We apply
the above tightness criterion in the case H0 = H−r0

(
T2
)

and H = H−r1
(
T2
)
. Applying

(4.22) for r = r0 > 3, we obtain from Remark 4.12 that Condition (1) of the tightness
result is satisfied. Let us verify now the Aldous condition: consider ε1, ε2 > 0, θ ≥ 0 and
τn a stopping time. Then, from (3.2),

P
(∥∥η̂nτn+θ − η̂nτn

∥∥
−r1
≥ ε1

)
= P

(∥∥∥∥∥
∫ τn+θ

τn

L(2),∗
µns

η̂ns ds+
√
n

∫ τn+θ

τn

Cns ds+ Ŵn
τn+θ − Ŵn

τn

∥∥∥∥∥
−r1

≥ ε1

)

≤ P

(∥∥∥∥∥
∫ τn+θ

τn

L(2),∗
µns

η̂ns ds

∥∥∥∥∥
−r1

≥ ε1

3

)
(4.26)

+ P

(∥∥∥∥∥√n
∫ τn+θ

τn

Cns ds

∥∥∥∥∥
−r1

≥ ε1

3

)
(4.27)

+ P

(∥∥∥Ŵn
τn+θ − Ŵn

τn

∥∥∥
−r1
≥ ε1

3

)
. (4.28)

Concentrate on the first term (4.26): by Markov and Jensen’s inequalities

P

(∥∥∥∥∥
∫ τn+θ

τn

L(2),∗
µns

η̂ns ds

∥∥∥∥∥
−r1

≥ ε1

3

)
≤ 1

(ε1/3)
1+αE

(∫ τn+θ

τn

∥∥∥L(2),∗
µns

η̂ns

∥∥∥
−r1

ds

)1+α


≤ θα

(ε1/3)
1+αE

(∫ τn+θ

τn

∥∥∥L(2),∗
µns

η̂ns

∥∥∥1+α

−r1
ds

)
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≤ Cθα

(ε1/3)
1+αE

(∫ T

0

‖η̂ns ‖
1+α
−r0 ds

)
,

where we used Lemma 4.11. We are now in position to apply (4.22) for r = r0, so that,
using condition (2.15) for another constant C > 0 independent of n,

P

(∥∥∥∥∥
∫ τn+θ

τn

L(2),∗
µns

η̂ns ds

∥∥∥∥∥
−r1

≥ ε1

3

)
≤ Cθα

(ε1/3)
1+α .

The second term (4.27) is treated using Proposition 3.3: since r1 > 5 ≥ 3,

P

(∥∥∥∥∥√n
∫ τn+θ

τn

Cns ds

∥∥∥∥∥
−r1

≥ ε1

3

)
≤
T
√
nE
(

sups∈[0,T ] ‖Cns ‖−r1
)

ε1/3
,

which goes to 0 as n→∞, by Proposition 3.3, uniformly in θ ≤ δ. The last term (4.28)
follows from a similar argument, using now Proposition 4.7. We have the rough bound

P

(∥∥∥Ŵn
τn+θ − Ŵn

τn

∥∥∥
−r1
≥ ε1

3

)
≤

4E

(
sups∈[0,T ]

∥∥∥Ŵn
s

∥∥∥2

−r1

)
(ε1/3)

2 .

Since r1 ≥ 4, we have by Proposition 4.7 that this term also goes to 0 as n→∞. Putting
all the previous estimates together, we obtain that Aldous criterion is verified, and hence
the tightness of η̂n in C

(
[0, T ], H−r1

(
T2
))

.
Now turn to the tightness of ηn, which follows from very similar arguments. The

point (1) of the tightness criterion follows directly from (4.18) and (4.22) (for r = r0) and
Remark 4.12. In a similar way, for the Aldous criterion,

P
(∥∥ηnτn+θ − ηnτn

∥∥
−r1
≥ ε1

)
≤ P

(∥∥∥∥∥
∫ τn+θ

τn

L(1),∗
µns

ηns ds

∥∥∥∥∥
−r1

≥ ε1

3

)

+ P

(∥∥∥∥∥
∫ τn+θ

τn

∂θ1(Γ ∗ η̂ns )ds

∥∥∥∥∥
−r1

≥ ε1

3

)
+ P

(∥∥Wn
τn+θ −Wn

τn

∥∥
−r1
≥ ε1

3

)
.

The first term is treated in the exact same way as for (4.26) above and we leave the
details to the reader. Similarly, we have

P

(∥∥∥∥∥
∫ τn+θ

τn

∂θ1(Γ ∗ η̂ns )ds

∥∥∥∥∥
−r1

≥ ε1

3

)
≤ 1

(ε1/3)
1+αE

(∫ τn+θ

τn

‖∂θ1(Γ ∗ η̂ns )‖−r1 ds

)1+α
 ,

≤ θα

(ε1/3)
1+αE

(∫ τn+θ

τn

‖∂θ1(Γ ∗ η̂ns )‖1+α
−r1 ds

)
,

≤ Cθα

(ε1/3)
1+αE

(∫ T

0

‖η̂ns ‖
1+α
−r0 ds

)
,

where we used ‖∂θ1(Γ ∗ η̂ns )‖−r1 ≤ ‖∂θ1(Γ ∗ η̂ns )‖−(r1−1) ≤ C ‖η̂ns ‖−(r1−2) = C ‖η̂ns ‖−r0 for
a constant C > 0 independent of s. Recall now that r0 > 3 so that (4.22) holds. We finally
turn to the noise term Wn whose treatment differs slightly from the previous calculations:
we reproduce here (without giving all the details) some parts of the calculation made in
[36, p. 40] (as part of the proof of the Rebolledo’s theorem): we have, for all a > 0

P
(∥∥Wn

τn+θ −Wn
τn

∥∥
−r1
≥ ε1

)
≤ 1

ε2
1

E ((trH−r1 JWnKτn+θ − trH−r1 JWnKτn) ∧ a)
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+ P (trH−r1 JWnKτn+θ − trH−r1 JWnKτn ≥ a) ,

where JWnK is the Doob-Meyer process associated to Wn given by (3.4). Choosing here
a ≤ ε2

1ε2/2, we see that it suffices to control

P (|trH−r1 JWnKτn+θ − trH−r1 JWnKτn | > a) ≤ 1

a
E

∫ τn+θ

τn

1

n

n∑
i=1

∑
p≥1

∣∣ψ′p (θi,ns )∣∣2 ds


≤ 1

a
E

(∫ τn+θ

τn

1

n

n∑
i=1

∥∥∥Dθi,ns

∥∥∥2

−r1
ds

)
≤ Cθ

a
,

where (ψp) is a complete orthonormal system in Hr1 and using Lemma 4.1. This gives
the result.

4.3 Convergence

The first result of this paragraph concerns the identification of the limit of the noise
term:

Proposition 4.14 (Identification of the noise). Under the assumptions of Section 2.1,
P-a.s., the process (Wn) converges in law in C ([0, T ], H−r) for all r > 2 to the Gaussian
process W ∈ C ([0, T ], H−r) with covariance given by (2.17).

Proof. Tightness of (Wn) follows from (4.8) and the same calculations as the end of the
proof of Theorem 4.13 (with H−r in place of H−r1). Identification of the limit is a simple
consequence of (3.4) and the weak convergence (2.4) of the empirical measure µn (see
also [25], Th. 5.2 for a similar proof).

Proposition 4.15. Recall the definition of (r0, r1, r2) in (2.7). Under Assumption 2.1,
Assumption 2.2, condition (2.15) and either Assumptions 2.5 and 2.6, the process (ηn, η̂n)

has convergent subsequences in C
(
[0, T ], H−r1 (T)⊕H−r1(T2)

)
and any accumulation

point (η, η̂) is a solution in the space C
(
[0, T ], H−r2 (T)⊕H−r2(T2)

)
to the system (2.16).

Proof. This proof follows the classical arguments of [25] with adequate technical changes.
Consider such a convergent subsequence that we rename (ηn, η̂n) for convenience and
let (η, η̂) be its limit in C

(
[0, T ], H−r1 (T)⊕H−r1(T2)

)
. We prove that (η, η̂) solves (2.16).

From Assumption 2.5, (4.18) and (4.22), we deduce (replace it by the same estimate
with some additional Eg in case of Assumption 2.6) that Pg-a.s.,

E0E

[
sup
t≤T

(
‖ηt‖1+α

−r1 + ‖η̂t‖1+α
−r1

)]
<∞,

so that
∫ t

0
L(1),∗
µs ηsds (resp.

∫ t
0
L(2),∗
µs η̂sds) makes sense as a Bochner integral in H−r2 (T)

(resp. H−r2
(
T2
)
). For the same reason, since Γ is regular with bounded derivatives

(Assumption 2.1), we easily see from the definition of Θ in (2.12) that
∫ t

0
Θ∗η̂sds makes

sense as a Bochner integral in H−r2(T). Let us start with the second equation in (2.16):
we know from (4.17) that Ŵn converges in C

(
[0, T ], H−r1

(
T2
))

to 0 as n→∞ and from
Proposition 3.3 combined with Proposition 3.5 that, under the dilution condition (2.15),√
nCn converges to 0 in C

(
[0, T ], H−r1

(
T2
))

. Hence, to prove the result, it suffices

to show that 〈η̂nt , g〉 − 〈η̂n0 , g〉 −
∫ t

0

〈
η̂ns , L

(2)
µns

(g)
〉

ds converges in law, as n → ∞, to

〈η̂t , g〉 − 〈η̂0 , g〉 −
∫ t

0

〈
η̂s , L(2)

µs (g)
〉

ds for all test function g ∈ Hr2
(
T2
)
. Decompose the

previous quantity into, for Fg(α)t := 〈αt , g〉 − 〈α0 , g〉 −
∫ t

0

〈
αs , L(2)

µs (g)
〉

ds,

〈η̂nt , g〉 − 〈η̂n0 , g〉 −
∫ t

0

〈
η̂ns , L

(2)
µns

(g)
〉

ds = Fg (η̂n)t −
∫ t

0

〈
η̂ns ,

{
L(2)
µns
− L(2)

µs

}
(g)
〉

ds.
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It is easy to see that for fixed g in Hr2
(
T2
)
, α ∈ C

(
[0, T ], H−r1(T2)

)
7→ Fg(α) ∈

C ([0, T ],R) is continuous, so that, since (η̂n) converges in law as n → ∞ to η̂ in
C
(
[0, T ], H−r1(T2)

)
, we have that Fg (η̂n) converges in law to Fg (η̂) as n → ∞. It

remains to prove that
∫ t

0

〈
η̂ns ,

{
L(2)
µns
− L(2)

µs

}
(g)
〉

ds converges in law to 0. We prove that

it goes to 0 in L1: we have

E0E

[∫ t

0

∣∣∣〈η̂ns , {L(2)
µns
− L(2)

µs

}
(g)
〉∣∣∣ ds] ≤ E0E

[∫ t

0

‖η̂ns ‖−r1
∥∥∥{L(2)

µns
− L(2)

µs

}
(g)
∥∥∥
r1

ds

]
.

(4.29)

Concentrate on
∥∥∥{L(2)

µns
− L(2)

µs

}
(g)
∥∥∥
r1

: by definition of L(2) (recall (2.14)), it suffices to

estimate ‖∂θ1g 〈(µns − µs)(dθ′) , Γ (·, θ′)〉‖r1 (the other term being treated analogously):∥∥∂θ1g 〈(µns − µs)(dθ′) , Γ (·, θ′)〉
∥∥2

r1

=
∑
k,l≥0
k+l≤r1

∫
T2

∣∣∣∣∂kθ1 (∂θ1∂lθ2g(θ1, θ2)

∫
Γ(θ1, θ

′)(µns − µs)(dθ′)
)∣∣∣∣2 dθ1dθ2

=
∑
k,l≥0
k+l≤r1

∫
T2

∣∣∣∣∣∣
k∑
j=0

(
k

j

)(
∂j+1
θ1

∂lθ2g(θ1, θ2)

∫
∂k−jθ1

Γ(θ1, θ
′)(µns − µs)(dθ′)

)∣∣∣∣∣∣
2

dθ1dθ2

≤
∑
k,l≥0
k+l≤6

2k
k∑
j=0

(
k

j

)∫
T2

∣∣∣∂j+1
θ1

∂lθ2g(θ1, θ2)
∣∣∣2 ∣∣∣∣∫ ∂k−jθ1

Γ(θ1, θ
′)(µns − µs)(dθ′)

∣∣∣∣2 dθ1dθ2.

Since Γ is regular with bounded derivatives, we have the following bound (recall the
definition of dBL in (1.8))∣∣∣∣∫ ∂k−jθ1

Γ(θ1, θ
′)(µns − µs)(dθ′)

∣∣∣∣2 ≤ CdBL (µns , µs)
2
,

where the constant C above is uniform in s and 0 ≤ j ≤ k ≤ r1. Hence, we obtain, for
another numerical constant C̃ > 0∥∥∥{L(2)

µns
− L(2)

µs

}
(g)
∥∥∥
r1
≤ C̃dBL (µns , µs) ‖g‖r1+1 .

Going back to (4.29), we obtain by Hölder inequality and using (4.22),

E0E

[∫ t

0

∣∣∣〈η̂ns , {L(2)
µns
− L(2)

µs

}
(g)
〉∣∣∣ds] ≤ C̃ ‖g‖r1+1

∫ t

0

E0E
[
‖η̂ns ‖−r1 dBL (µns , µs)

]
ds

≤ C̃ ‖g‖r1+1

∫ t

0

E0E
[
‖η̂ns ‖

1+α
−r1

] 1
1+α

E0E
[
dBL (µns , µs)

1+α
α

] α
1+α

ds

≤ C̃ ‖g‖r1+1

(
sup
n

sup
s≤T

E0E
[
‖η̂ns ‖

1+α
−r1

] 1
1+α

)∫ t

0

E0E
[
dBL (µns , µs)

1+α
α

] α
1+α

ds

≤ CT ‖g‖r1+1

∫ t

0

E0E
[
dBL (µns , µs)

1+α
α

] α
1+α

ds,

which goes to 0 as n → ∞, by (2.4) applied for q = 1+α
α ≥ 1 (recall Remark 2.3). Now

turn to the first equation in (2.16): for all f ∈ Hr1+1 (T), the mapping α 7→ 〈α· , Θ(f)〉
is continuous from C([0, T ], H−r1(T2) to C ([0, T ],R) so that we have the convergence
of
∫ t

0
Θ∗η̂ns ds towards

∫ t
0

Θ∗η̂sds as n → ∞. Decomposing in a same way as before

the drift as
〈
ηns , L

(1)
µns

(f)
〉

=
〈
ηns , L

(1)
µs (f)

〉
+
〈
ηns , L

(1)
µns
− L(1)

µs (f)
〉

, we see once again
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that it suffices to prove that E0E
[∫ t

0

∣∣∣〈ηns , L(1)
µns
− L(1)

µs (f)
〉∣∣∣ds] −−−−→

n→∞
0 for fixed f ∈

Hr1+1 (T), which follows from the very same calculation as before, using again the fact

that sups≤T E0E
[
dBL (µns , µs)

1+α
α

]
−−−−→
n→∞

0 (recall (2.4)). This concludes the proof of

Proposition 4.15.

The proof of Theorem 2.7 is then complete provided we prove the following unique-
ness result:

Proposition 4.16. Under the assumptions of Theorem 2.7, there is pathwise uniqueness
(as well as uniqueness in law) of a solution (η, η̂) in C

(
[0, T ], H−r1 (T)⊕H−r1(T2)

)
to the

coupled system (2.16).

Proof of Proposition 4.16, which relies heavily on classical estimates (see e.g. [37, 38,
51, 46] for similar techniques) is postponed to Appendix D.

4.4 Particular cases

The point of this paragraph is to prove the results of Section 2.5.

4.4.1 Proof of Proposition 2.11

Recall that we suppose Assumption 2.10 and that for any test function g

〈η̂n0 , g〉 =
1

n3/2

n∑
i,j=1

ξ̂
(n)
ij g(θi,n0 , θj,n0 ).

Considering (ep)p∈Z the canonical orthonormal basis of L2(T), the family defined by(
ψp,q = (1 + p2 + q2)−

r
2 ep ⊗ eq

)
p,q∈Z constitutes an orthonormal basis of H−r(T2). Then

E0

[
‖η̂n0 ‖

2
−r

]
=
∑
p,q∈Z

E0

[
|〈η̂n0 , ψp,q〉|

2
]

=
1

n3

∑
i,j,k,l

ξ̂
(n)
ij ξ̂

(n)
kl E0

 ∑
p,q∈Z

ψp,q(θ
i,n
0 , θj,n0 )ψ̄p,q(θ

k,n
0 , θl,n0 )

 .
The term

Hi,j,k,l := E0

 ∑
p,q∈Z

ψp,q(θ
i,n
0 , θj,n0 )ψ̄p,q(θ

k,n
0 , θl,n0 )


satisfies (recall r > 1),

|Hi,j,k,l| ≤
∑
p,q∈Z

(1 + p2 + q2)−r =: Cr.

Defining

Sn =
1

n3

∑
i,j,k,l∈{1,...,n},(i,j) 6=(k,l)

ξ̂
(n)
ij ξ̂

(n)
kl Hi,j,k,l,

we get the decomposition

E0

[
‖η̂n0 ‖

2
−r

]
− Sn =

1

n3

n∑
i,j=1

(
ξ̂

(n)
ij

)2

Hi,j,i,j .
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Since the random variables Vij = 1
n3

((
ξ̂

(n)
ij

)2

Hi,j,i,j − 1−pn
pn

Hi,j,i,j

)
satisfy |Vij | ≤ C′r

n3pn2

and Var (Vij) ≤ C′r
np3n

, applying Bernstein’s inequality leads to the bound

P

∣∣∣∣∣∣
n∑

i,j=1

Vij

∣∣∣∣∣∣ > t

 ≤ 2 exp

−1

2

−t2
C′r
np3n

+
tC′r

3n3p2n

 = 2 exp

(
−1

2

−np3
nt

2

C ′r +
tC′rpn
3n2

)
.

So, choosing t = p
− 3

2
n n−

1
2 +δ for δ small and remarking that

∑n
i,j=1

1−pn
n3pn

Hi,j,i,j ≤

p
− 3

2
n n−

1
2 +δ for n large enough, we obtain, for some positive constant c,

P
(∣∣∣E0

[
‖η̂n0 ‖

2
−r

]
− Sn

∣∣∣ > 2p
− 3

2
n n−

1
2 +δ
)
≤ e−cn

2δ

.

Now, relying on the decoupling inequality provided by [58], we get that for some constant
C and for ξ̂(n,1)

ij , ξ̂
(n,2)
ij two independent copies of ξ̂(n)

ij ,

P (|Sn| ≥ t) ≤ CP

 n∑
i=1

∣∣∣∣∣∣ 1

n3

∑
i,j,k,l∈{1,...,n},(i,j) 6=(k,l)

ξ̂
(n,1)
ij ξ̂

(n,2)
kl Hi,j,k,l

∣∣∣∣∣∣ ≥ t

C

 .

Consider the filtration Fl,m = σ
(
ξ̂(n,1), ξ̂

(n,2)
1,1 , . . . , ξ̂

(n,2)
lm

)
. Denoting

Xk,l(x, z) =
1

n3

 n∑
i,j∈{1,...,n}:(i,j)6=(k,l)

Hi,j,k,lxij

 z,

the process

Ym1,m2
=

∑
(k,l):(k,l)≤(m1,m2)

Xk,l

(
ξ̂(n,1), ξ̂

(n,2)
kl

)
is a martingale which satisfies Yn,n = 1

n3

∑
i,j,k,l∈{1,...,n},(i,j) 6=(k,l) ξ̂

(n,1)
ij ξ̂

(n,2)
kl Hi,j,k,l. It

satisfies moreover ∣∣∣Xk,l

(
ξ̂(n,1), ξ̂

(n,2)
kl

)∣∣∣ ≤ Cr
np2

n

,

and

〈Y 〉n,n =

n∑
m1,m2=1

E

[(
Xk,l

(
ξ̂(n,1), ξ̂

(n,2)
kl

))2

|Fm1,m2−1

]

=
1

n2

(
1

pn
− 1

) n∑
m1,m2=1

 1

n2

n∑
i,j∈{1,...,n}:(i,j)6=(k,l)

Hi,j,k,lξ̂
(n,1)
ij

2

.

Applying Bernstein’s inequality we get

P

∣∣∣∣∣∣ 1

n2

n∑
i,j∈{1,...,n}:(i,j)6=(k,l)

Hi,j,k,lξ̂
(n,1)
ij

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−1

2

t2

Cr
pnn2 + tCr

3n2pn

)

= 2 exp

(
−1

2

pnn
2t2

Cr + tCr
3

)
,

which means that, taking t = p
− 1

2
n n−1+δ for δ small, we get, for some positive constant c,

P
(
〈Y 〉n,n > p

− 3
2

n n−1+δ
)
≤ n2e−cn

2δ

.
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We can now apply Bernstein’s inequality for martingales (see [27, Th. 1.6] or [68,
Th. 1.1]):

P (|Yn,n| > t) ≤ P
(
〈Y 〉n,n > p

− 1
2

n n−1+δ
)

+ P
(
|Yn,n| > t, 〈Y 〉n,n ≤ p

− 1
2

n n−1+δ
)

≤ n2e−cn
2δ

+ 2 exp

(
−1

2

t2

p
− 1

2
n n−1+δ + tCrp

−2
n n−1

3

)
.

Choosing t = p
− 1

4
n n−

1
2 +δ we obtain

P (|Yn,n| > t) ≤ n2e−cn
2δ

+ 2 exp

−1

2

nδ

Cr + Cr

3p
7
4
n n

1
2

 ,

which concludes the proof of Proposition 2.11.

4.4.2 A case where the initial condition depends on the graph

The aim is to construct an example of initial condition that depends on the graph and for
which η̂n0 has a non trivial limit in distribution. We place ourselves in the case where Γ is
given by Γ(θ, θ′) = − sin(θ − θ′) and the graph sequence is a symmetric Erdős-Rényi with

p = 1
2 . In particular, the variables ξ(n)

ij are such that ξ(n)
ij = ξ

(n)
ji for every 1 ≤ i, j ≤ n. We

further suppose that they do not depend on n, i.e., ξ(n)
ij = ξij for every i, j and n, and that

the diagonal terms are equal to 0, i.e., ξi,i = 0 for all i. Let (Gn)n≥1 be the corresponding

filtration with Gn = σ
(

(ξij)1≤i,j≤n

)
.

Let the sequence (θi0)i≥1 be defined by recursion with values in {0, π2 }. We initiate
the recursion by choosing θ1

0 uniformly in {0, π2 }. Then, supposing that (θ1
0, . . . , θ

n
0 ) are

already defined (and Gn-measurable), we consider the Gn+1-measurable random variables

Rn0 =
∑

i≤n: θi0=0

ξ̂i n+1,

Rnπ
2

=
∑

i≤n: θi0=π
2

ξ̂i n+1,

and make the choice θn+1
0 = 0 when Rnπ

2
> Rn0 , θn+1

0 = π
2 when Rnπ

2
< Rn0 , and θn+1

0 = Un

with Un chosen uniformly in
{

0, π2
}

(independently from Gn) when Rnπ
2

= Rn0 .

Remark that by symmetry of the laws of Rn0 and Rnπ
2

(recall that p = 1
2 ), θn+1

0 is a

uniform random variable in {0, π2 } independent from Gn. Hence, defining the sequence
(Xn)n≥1 by Xn =

∑n
i=1 1{θi0=0}, (2Xn − n)n≥1 is a symmetric simple random walk on

Z. Observe that the laws of Rn0 and Rnπ
2

depend on Gn only via Xn. Conditionally on

{Xn = x}, R
n
0 +x
2 is a Binomial random variable with parameters x and 1

2 and
Rnπ

2
+n−x
2 is

a Binomial with parameters n− x and 1
2 , independent of Rn0 .

Since µn0 = Xn
n δ0 + n−Xn

n δπ
2
, we have dBL(µn0 , µ0) →

n→∞
0 P-a.s., where µ0 = 1

2δ0 +

1
2δπ2 , while ηn0 =

√
n
(
Xn
n −

1
2

)
δ0 +

√
n
(
n−Xn
n − 1

2

)
δπ

2
converges in law in H−r1 to η0 =

Z1δ0 + Z2δπ2 , where (Z1, Z2) has centered Gaussian distribution of covariance matrix(
1
4 − 1

4

− 1
4

1
4

)
.
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The process η̂n0 can be expressed in terms of Rn0 , Rnπ
2

as follows:

〈η̂n0 , g〉 =
2

n
3
2

n−1∑
k=1

Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)
g(0, 0)

+
1

n
3
2

n−1∑
k=1

max
(
Rkπ

2
, Rk0

)(
g
(π

2
, 0
)

+ g
(

0,
π

2

))
+

2

n
3
2

n−1∑
k=1

Rkπ
2

(
1{

Rkπ
2
<Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=π
2

}
)
g
(π

2
,
π

2

)
,

and

〈Γ ∗ η̂n0 , f〉 =
1

n
3
2

n−1∑
k=1

max
(
Rkπ

2
, Rk0

)(
f(0)− f

(π
2

))
.

Let us study the convergence of these different terms. Since we have E
[(
Rk0
)2] ≤ n

4 and

E

[(
Rkπ

2

)2
]
≤ n

4 , we get

E

[(
1

n
3
2

n−1∑
k=1

Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)

− 1

n
3
2

n−1∑
k=1

E

[
Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)
|Gk

])2]

≤ 1

n3

n−1∑
k=1

E

[(
Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)

− E

[
Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)
|Gk

])2]

≤ 4

n3

n−1∑
k=1

E

(Rk01{
Rkπ

2
≥Rk0

}
)2
 ≤ 1

n
,

and similarly

E

( 1

n
3
2

n−1∑
k=1

max
(
Rkπ

2
, Rk0

)
− 1

n
3
2

n−1∑
k=1

E
[
max

(
Rkπ

2
, Rk0

)
|Gk
])2


≤ 4

n3

n−1∑
k=1

(
E

[(
Rkπ

2

)2
]

+ E
[(
Rk0
)2]) ≤ 1

n
,

and

E

[(
1

n
3
2

n−1∑
k=1

Rkπ
2

(
1{

Rkπ
2
<Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)

− 1

n
3
2

n−1∑
k=1

E

[
Rk0

(
1{

Rkπ
2
<Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=π
2

}
)
|Gk

])2]
≤ 1

n
.

Hence, it remains to study the convergence of the terms

N1
n :=

1

n
3
2

n−1∑
k=1

E

[
Rk0

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)
|Gk

]
,
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N2
n :=

1

n
3
2

n−1∑
k=1

E
[
max

(
Rkπ

2 ·
, Rk·0

)
|Gk
]
,

N3
n :=

1

n
3
2

n−1∑
k=1

E

[
Rkπ

2

(
1{

Rkπ
2
<Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=π
2

}
)
|Gk

]
.

Recall that, conditionally to {Xn = x} and up to a scaling factor 1/2, Rn0 and Rnπ
2

are

(centered) Binomial random variables. Since Xn/n converges almost surely to 1
2 , one can

apply the classical Normal approximation of the binomial distribution and approximate
Rn0√
n/2

by a centered Normal random variable. This yields to

N1
n =

1√
2

1

n

n−1∑
k=1

√
k

n
E

[√
2Rk0√
k

(
1{

Rkπ
2
>Rk0

} + 1{
Rkπ

2
=Rk0 , U

k=0

}
)
|Gk

]
a.s.−→
n→∞

L√
2

∫
[0,1]

√
xdx,

where, considering two independent random variables Y1, Y2 with standard normal
distribution,

L := E
[
Y11{Y2≥Y1}

]
= − 1

2
√
π
.

This means that N1
n converges almost surely to − 1

3
√

2π
. Via similar arguments, one can

prove that

N2
n

a.s.−→
n→∞

1√
2
E [max (Y1, Y2)]

∫
[0,1]

√
xdx =

2

3
√

2π
,

and

N3
n

a.s.−→
n→∞

− 1

3
√

2π
.

Finally, we deduce that in this particular example η̂n0 convergences law in H−r1(T2) to

η̂0 = 2
3
√
π

(
−δ(0,0) + δ(0,π2 ) + δ(π2 ,0)

− δ(π2 ,π2 )

)
, while Γ ∗ η̂n0 converges in law to

2
3
√

2π

(
δ0 − δπ2

)
in H−r1(T).

5 About fluctuations of local empirical measures

The purpose of the present section is to prove Theorem 2.9. Recall the definition
(1.5) of the empirical measure µn,lt of particles at distance 1 of vertex l = 1, 2 and the
definition (1.12) of the empirical measure µn,1,2t of particles that are connected to both
vertices 1 and 2. Recall that we are interested in the behavior of the joint fluctuation
process (1.7)

ζnt =
(
ζn,1t , ζn,2t

)
=
(√

npn

(
µn,1t − µt

)
,
√
npn

(
µn,2t − µt

))
.

As we will see below, we will actually need to incorporate also the dynamics of the

global fluctuation process ηnt , that is to look at the joint convergence of
(
ζn,1t , ζn,2t , ηnt

)
as n→∞.

5.1 The initial condition

We first address the convergence of the initial condition
(
ζn,10 , ζn,20 , ηn0

)
.

Proposition 5.1. Suppose that (θi,n0 ) are i.i.d. random variable with law µ0, independent
of the graph. Recall that p := limn→∞ pn ∈ [0, 1]. Then, if np2

n →∞, for all r > 1
2 ,

sup
n
E

[∥∥∥ζn,l0

∥∥∥2

−r

]
<∞, (5.1)
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and
(
ζn,10 , ζn,20 , ηn0

)
converges in law as n→∞ in H−(r+1/2) (T)

3 to the Gaussian process

(ζ1
0 , ζ

2
0 , η0) with covariance

C
((

f1
g1
h1

)
,
(
f2
g2
h2

))
:= Cζ0(f1, f2) + Cζ0(g1, g2) + Cη0(h1, h2)

+ Cζ10 ,ζ20 (f1, g2) + Cζ10 ,ζ20 (f2, g1) + Cζ0,η0(f1, h2) + Cζ0,η0(f2, h1)

+ Cζ0,η0(g1, h2) + Cζ0,η0(g2, h1),

(5.2)

where for Covµ0
(f, g) =

∫ (
f −

∫
fdµ0

) (
g −

∫
gdµ0

)
dµ0,

Cζ0(f, g) := Covµ0
(f, g) + (1− p)

(∫
fdµ0

)(∫
gdµ0

)
,

Cη0(f, g) := Covµ0
(f, g),

Cζ10 ,ζ20 (f, g) := pCovµ0(f, g),

Cζ0,η0(f, g) :=
√
pCovµ0(f, g),

(5.3)

where fi, gi, hi, i = 1, 2 are test functions on T. In particular, (ζ1
0 , ζ

2
0 , η0) are mutually

independent in the diluted case p = 0.

Proof of Proposition 5.1. We have, setting ψ̄ := ψ −
∫
ψdµ0,

∥∥∥ζn,l0

∥∥∥2

−r
=
∑
p≥1

∣∣∣〈ζn,l0 , ψp

〉∣∣∣2 = npn
∑
p≥1

∣∣∣∣∣ 1

npn

n∑
i=1

ξ
(n)
li ψ̄p

(
θi,n0

)
+

1

n

n∑
i=1

ξ̂
(n)
li

∫
ψpdµ0

∣∣∣∣∣
2

≤ 2npn
∑
p≥1

∣∣∣∣∣ 1

npn

n∑
i=1

ξ
(n)
li ψ̄p

(
θi,n0

)∣∣∣∣∣
2

+ 2npn

∣∣∣∣∣ 1n
n∑
i=1

ξ̂
(n)
li

∣∣∣∣∣
2

‖µ0‖2−r .

Taking the expectation (w.r.t. both graph and initial condition), we obtain

E

[∥∥∥ζn,l0

∥∥∥2

−r

]
≤ 2

∑
p≥1

∫ (
ψ̄p(θ)

)2
µ0 (dθ) + ‖µ0‖2−r

 .

Recalling that ψp = (1+p2)−
r
2 ep, this last quantity is bounded provided r > 1

2 . Hence (ζn,l0 )

is tight in H−(r+1/2) (T) and the triplet
(
ζn,10 , ζn,20 , ηn0

)
has convergent subsequences in

H−(r+1/2) (T)
3. It suffices to identify its finite dimensional marginals: consider u, v, w ∈ R

and f, g, h test functions. Define

ϕn(u, v, w) := E
[
eiu〈ζ

n,1
0 , f〉+iv〈ζn,20 , g〉+iw〈ηn0 , h〉

]
,

X(l)
n (f) :=

1
√
npn

n∑
j=1

ξ
(n)
lj f̄ (θj,0) ,

Y (l)
n (f) :=

√npn
n

n∑
j=1

ξ̂
(n)
lj

∫ fdµ0,

so that

ϕn(u, v, w)

= E
[
exp

(
iuX(1)

n (f) + ivX(2)
n (g) + iw 〈ηn0 , h〉

)
exp

(
iuY (1)

n (f) + ivY (2)
n (g)

)]
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= E

[
exp

(
iuY (1)

n (f) + ivY (2)
n (g)

)
E

[
exp

(
iuX(1)

n (f) + ivX(2)
n (g) + iw 〈ηn0 , h〉

) ∣∣∣∣∣Fξ
]]

,

(5.4)

where Fξ is the σ-field generated by the variables
(
ξ

(n)
ij

)
. For fixed

(
ξ

(n)
lj

)
j=1,...,n

, de-

note by U (n)
j := 1√

n

(
u
ξ
(n)
1j√
pn
f̄ (θj,0) + v

ξ
(n)
2j√
pn
ḡ (θj,0) + wh̄ (θj,0)

)
:= 1√

n

(
A

(n)
j +B

(n)
j + C

(n)
j

)
.

Then E
[
U

(n)
j |Fξ

]
= 0 for all j and define s2

n,U :=
∑n
j=1E

[(
U

(n)
j

)2

|Fξ
]
. Then we have

s2
n,U =

1

n

n∑
j=1

E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2

|Fξ
]

=
1

n

n∑
j=1

(
u2
ξ

(n)
1j

pn
Varµ0f + v2

ξ
(n)
2j

pn
Varµ0g + w2Varµ0h

)

+
2

n

n∑
j=1

(
uv
ξ

(n)
1j ξ

(n)
2j

pn
Covµ0(f, g) + uw

ξ
(n)
1j√
pn

Covµ0(f, h) + vw
ξ

(n)
2j√
pn

Covµ0(g, h)

)
.

Note that, using (B.5) and (B.6), we have that P-a.s. s2
n,U −−−−→n→∞

s2
U := s2

U (u, v, w), where

s2
U :=u2Varµ0f + v2Varµ0g + w2Varµ0h

+ 2
√
p
(
uv
√
pCovµ0(f, g) + uwCovµ0(f, h) + vwCovµ0(g, h)

)
. (5.5)

Fix some δ > 0 and compute

1

s2+δ
n,U

n∑
j=1

E

[∣∣∣U (n)
j

∣∣∣2+δ

|Fξ
]

=
1

n
δ
2

1
n

∑n
j=1E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2+δ

|Fξ
]

(
1
n

∑n
j=1E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2

|Fξ
]) 2+δ

2

.

Applying Hölder inequality twice (to the expectation E [·|Fξ] and to the discrete mean
1
n

∑n
j=1), we have,

 1

n

n∑
j=1

E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2+δ

|Fξ
] 1

2+δ

≤

 1

n

n∑
j=1

E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2+δ

|Fξ
] 2

2+δ

 1
2

≤

 1

n

n∑
j=1

E

[(
A

(n)
j +B

(n)
j + C

(n)
j

)2

|Fξ
] 1

2

.

This means that P-a.s., 1

s2+δn,U

∑n
j=1E

[∣∣∣U (n)
j

∣∣∣2+δ

|Fξ
]
≤ n−

δ
2 which goes to 0 as n → ∞.

The Lyapounov’s condition for CLT is satisfied (see [9, eq. (27.16), p. 385]). We are
in position to apply Th. 27.3, p. 385 of [9]: P-a.s., 1

sn,U

∑n
j=1 U

(n)
j converge in law to a

standard Gaussian N (0, 1), which gives that uX(1)
n (f) + vX

(2)
n (g) + w 〈ηn0 , h〉 converges

in law to N (0, s2
U (u, v, w)) where s2

U (u, v, w) is given by (5.5).
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We use the same argument for the term uY
(1)
n (f) + vY

(2)
n (g): if we denote V (n)

j :=

u
√
npn
n ξ̂

(n)
1j

∫
fdµ0 + v

√
npn
n ξ̂

(n)
2j

∫
gdµ0, we have E

[
V

(n)
j

]
= 0 and

s2
n,V :=

n∑
j=1

E

[(
V

(n)
j

)2
]

= (1− pn)

(
u2

(∫
fdµ0

)2

+ v2

(∫
gdµ0

)2
)
,

which goes as n→∞ to

s2
V := (1− p)

(
u2

(∫
fdµ0

)2

+ v2

(∫
gdµ0

)2
)
. (5.6)

The Lyapounov condition is also verified: 1

s2+δn,V

∑n
j=1E

[∣∣∣V (n)
j

∣∣∣2+δ
]

is of order c

(npn)
δ
2
−−−−→
n→∞

0. Hence, applying the same result, we have that uY (1)
n (f) + vY

(2)
n (g) converges in law to

some Gaussian N
(
0, s2

V

)
, where s2

V is given by (5.6).
With these two convergence results at hand, we can now go back to (5.4): since that

P-a.s., uX(1)
n (f) + vX

(2)
n (g) + w 〈ηn0 , h〉 converges in law to N (0, s2

U ), we have that P-a.s.,

E

[
exp

(
iuX

(1)
n (f) + ivX

(2)
n (g) + iw 〈ηn0 , h〉

) ∣∣∣∣∣Fξ
]

converges to exp
(
− s

2
U

2

)
. Then one can

write from (5.4),

ϕn(u, v, w) = exp

(
−s

2
U

2

)
E

[
exp

(
iuY (1)

n (f) + ivY (2)
n (g)

)]

+ E

[
exp

(
iuY (1)

n (f) + ivY (2)
n (g)

)
× E

[
exp

(
iuX(1)

n (f) + ivX(2)
n (g) + iw 〈ηn0 , h〉

) ∣∣∣∣∣Fξ
]
− e−

s2U
2

]
.

The first term above converges to exp
(
− s

2
U+s2V

2

)
and by dominated convergence theorem,

we see that the second term above converges to 0.

5.2 Semimartingale decompositions

We follow here the same approach as for the global fluctuation process, that is to
apply Itô’s formula so as to derive a proper semimartingale decomposition for ζn,lt ,
the key step being to identify the vanishing terms as n → ∞ in this decomposition
(which correspond here to terms in the asymptotic development of µn,l that are of order
lower than 1√

npn
). Since the approach is highly similar to the one followed for global

fluctuations, we only give the main lines of proof and leave to the details to the reader.

Proposition 5.2. For any r > 3
2 the joint process (ζn,1, ζn,2, ηn) belongs P ⊗ P-a.s.

to C
(

[0, T ], H−r (T)
3
)

. Moreover, ζn,l, l = 1, 2 satisfy the following semimartingale

representation in H−r1(T)

ζn,lt = ζn,l0 +

∫ t

0

U∗s ζn,ls ds+
√
pn

∫ t

0

Vn,l,∗s ηns ds+

∫ t

0

{√
pnΘ∗η̂ns + Θ∗$n,l

s

}
ds+Wn,l

t (5.7)

where Us is given in (2.20), Vn,ls f(θ) :=
〈
µn,ls (dθ′) , ∂θf (θ′) Γ (θ′, θ)

〉
is the microscopic

equivalent of Vs defined in (2.21) and Θ is defined by (2.12). The remaining drift term in
(5.7) is given by

$n,l
t :=

√
npn

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij δθi,nt

⊗ δθj,nt , (5.8)
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and the noise term is

Wn,l
t (f) :=

∫ t

0

1
√
npn

n∑
i=1

ξ
(n)
li ∂θf(θi,ns )dBis. (5.9)

The process (Wn,1
t ,Wn,2

t ,Wn
t )t∈[0,T ] is a martingale in C

(
[0, T ], (H−r)

3
)

for r > 3
2 , with

Doob-Meyer process given for t ∈ [0, T ] and ϕ,ψ ∈ Hr by

JWn,l,Wn,lKt · ϕ(ψ) =

∫ t

0

〈
µn,ls , ∂θϕ∂θψ

〉
ds, l = 1, 2,

JWn,1,Wn,2Kt · ϕ(ψ) = pn

∫ t

0

〈
µn,1,2s , ∂θϕ∂θψ

〉
ds,

JWn,l,WnKt · ϕ(ψ) =
√
pn

∫ t

0

〈
µn,ls , ∂θϕ∂θψ

〉
ds, l = 1, 2.

(5.10)

Finally, for r > 1/2, the process ζn,l satisfies the following weak-mild equation: for every
h ∈ Hr(T) and t ∈ [0, T ]:

〈
ζn,lt , h

〉
−r,r

=
〈
ζn,l0 , Sth

〉
−r,r

+

∫ t

0

〈
ζn,ls , (Γ ∗ µs)∂θSt−sh

〉
−r,r ds

+
√
pn

∫ t

0

〈
µn,ls , (Γ ∗ ηns )∂θSt−sh

〉
−r,r ds

+

∫ t

0

√
pn

n3/2

n∑
i,j=1

ξ̂
(n)
ij 〈δθi,ns , (Γ ∗ δθj,ns )∂θSt−sh〉−r,r ds

+

∫ t

0

√
npn

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij 〈δθi,ns , (Γ ∗ δθj,ns )∂θSt−sh〉−r,r ds

+ wn,lt (h),

(5.11)

where

wn,lt (h) =
1
√
npn

n∑
i=1

ξ
(n)
li

∫ t

0

(∂θSt−sh)
(
θi,ns
)

dBis.

Main lines of proof of Proposition 5.2. First begin by applying Itô’s formula to µn,l, for
l = 1, 2: for f regular,

〈
µn,lt , f

〉
=
〈
µn,l0 , f

〉
+

∫ t

0

〈
µn,ls ,

1

2
∂2
θf

〉
ds+

∫ t

0

1

npn

n∑
i=1

ξ
(n)
li ∂θf(θi,ns )dBis

+

∫ t

0

1

n2

n∑
i,j=1

ξ
(n)
li

pn

ξ
(n)
ij

pn
∂θf

(
θi,ns
)

Γ
(
θi,ns , θj,ns

)
ds. (5.12)

Concentrate on the last term of (5.12): write
ξ
(n)
li

pn
= ξ̂

(n)
li + 1 and

ξ
(n)
ij

pn
= ξ̂

(n)
ij + 1 so that

∫ t

0

1

n2

n∑
i,j=1

ξ
(n)
li

pn

ξ
(n)
ij

pn
∂θf

(
θi,ns
)
Γ
(
θi,ns , θj,ns

)
ds

=

∫ t

0

1

n2

n∑
i,j=1

ξ
(n)
li

pn
∂θf

(
θi,ns
)

Γ
(
θi,ns , θj,ns

)
ds
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+

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij ∂θf

(
θi,ns
)

Γ
(
θi,ns , θj,ns

)
ds

+

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij ∂θf

(
θi,ns
)

Γ
(
θi,ns , θj,ns

)
ds.

The first term above is equal to
∫ t

0

〈
µn,ls (dθ) , ∂θf (θ) 〈µns (dθ′) , Γ (θ, θ′)〉

〉
ds and that the

second one is exactly
∫ t

0
〈ν̂nt ( dθ1, dθ2),Γ (θ1, θ2) ∂θf (θ1)〉ds (recall (4.4)). Using now the

fact that µ solves (1.4), we obtain (recall the definitions of ηn in (1.6) and of η̂n in (1.10)),〈
ζn,lt , f

〉
=
〈
ζn,l0 , f

〉
+

∫ t

0

〈
ζn,ls ,

1

2
∂2
θf + ∂θf (θ) 〈µs(dθ′) , Γ (θ, θ′)〉

〉
ds

+
√
pn

∫ t

0

〈
ηns (dθ′) ,

〈
µn,ls (dθ) , ∂θf (θ) Γ (θ, θ′)

〉〉
ds

+
√
pn

∫ t

0

〈η̂ns ( dθ1, dθ2) , Γ (θ1, θ2) ∂θf (θ1)〉ds

+

∫ t

0

√
npn

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij ∂θf

(
θi,ns
)

Γ
(
θi,ns , θj,ns

)
ds+Wn,l

t (f).

All of this gives (5.7), using the definition of the noise in (5.9) and the drift term $n,l in
(5.8). The rest of the proof follows from the same arguments as for Lemma 4.4.

5.3 Tightness and convergence

Recall Proposition 2.11: under our hypotheses η̂n converges to η̂ ≡ 0 as n→∞, so
that we see that the term

∫ t
0

√
pnΘ∗η̂ns ds in (5.7) does not contribute to the limit when

n→∞. It remains to deal with the term
∫ t

0
Θ∗$n,l

s ds that we want also to prove that it
vanishes as n→∞. This is the purpose of the following proposition:

Proposition 5.3. Under the hypotheses of Section 2.4, the process
(
$n,l

)
converges to

0 as n→∞, in C
(
[0, T ], H−r1(T2)

)
.

Main lines of proof of Proposition 5.3. We follow the same strategy as for η̂n: to write a
semimartingale decomposition for $n,l, to prove tightness of this process and to identify
its limit as the unique solution to a linear SPDE with noise and initial condition identically
zero, so that, by uniqueness limn→∞$n,l ≡ 0. We only draw the main lines of proof here.
Recall the definition of $n,l in (5.8). By Itô’s formula, for any regular (θ1, θ2) 7→ g(θ1, θ2)〈

$n,l
t , g

〉
=
〈
$n,l

0 , g
〉

+

∫ t

0

〈
$n,l
s ,

1

2
∆g

〉
+

∫ t

0

√
npn

n3

∑
i,j,k

ξ̂
(n)
li ξ̂

(n)
ij

ξ
(n)
ik

pn
∂θ1g(θi,ns , θj,ns )Γ

(
θi,ns , θk,ns

)
ds (5.13)

+

∫ t

0

√
npn

n3

∑
i,j,k

ξ̂
(n)
li ξ̂

(n)
ij

ξ
(n)
jk

pn
∂θ2g(θi,ns , θj,ns )Γ

(
θj,ns , θk,ns

)
ds (5.14)

+

∫ t

0

√
npn

n2

∑
i,j

ξ̂
(n)
li ξ̂

(n)
ij

(
∂θ1g(θi,ns , θj,ns )dBis+ ∂θ2g(θi,ns , θj,ns )dBjs

)
. (5.15)

Writing again
ξ
(n)
ik

pn
= 1 + ξ̂

(n)
ik and

ξ
(n)
jk

pn
= 1 + ξ̂

(n)
jk , so that

(5.13) =

∫ t

0

〈
$n,l
s (dθ1,dθ2) , ∂θ1g(θ1, θ2)

(
1

n

∑
k

Γ
(
θ1, θ

k,n
s

))〉
ds
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+

∫ t

0

√
npn

n3

∑
i,j,k

ξ̂
(n)
li ξ̂

(n)
ij ξ̂

(n)
i,k ∂θ1g(θi,ns , θj,ns )Γ

(
θi,ns , θk,ns

)
ds,

(5.14) =

∫ t

0

〈
$n,l
s (dθ1,dθ2) , ∂θ2g(θ1, θ2)

(
1

n

∑
k

Γ
(
θ2, θ

k,n
s

))〉
ds

+

∫ t

0

√
npn

n3

∑
i,j,k

ξ̂
(n)
li ξ̂

(n)
ij ξ̂

(n)
j,k ∂θ2g(θi,ns , θj,ns )Γ

(
θj,ns , θk,ns

)
ds.

Another application of Grothendieck inequality gives that the remaining terms in the last

two sums are controlled in H−r1
(
T2
)

by respectively
√
npnSn (l) defined in (3.17) and

√
npnSn (l) defined in (3.18). Hence, by Proposition 3.5, this term is of order 1

(np5n)1/2

which goes to 0 as n→∞. Secondly, the noise term in (5.15), that we denote by Wn,$
t (g)

is again controlled as follows

E
[
Wn,$
t (g)2

]
=
pn
n3

∑
i,j,k

(
ξ̂

(n)
li

)2

ξ̂
(n)
ij ξ̂

(n)
ik E

(
∂θ1g(θi,ns , θj,ns )∂θ1g(θi,ns , θk,ns )

)
,

and by the same argument as above, the H−r
(
T2
)
-norm of Wn$ (for r > 3) is of order

1
np3n

which goes to 0 as n→∞, so that the noise term (5.15) vanishes as n→∞. Finally,
we turn to the initial condition:〈

$l,n
0 , g

〉
=

√
npn

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij g

(
θi,n0 , θj,n0

)
. (5.16)

Using the same arguments as for the proof of Proposition 2.11, it is straightforward

to show that limn→∞E0

[∥∥∥$n,l
0

∥∥∥2

−r1

]
= 0, Pg-a.s.. (recall that the initial condition is

supposed to be i.i.d. independent of the graph).
By the same arguments as before, one can prove that the process ($n,l

t ) is tight in
H−r1

(
T2
)

and converges as n→∞ to the unique solution $s in H−r2
(
T2
)

to

〈
$l
t , g

〉
=

∫ t

0

〈
$l
s ,

1

2
∆g

〉
ds

+

∫ t

0

〈
$l
s(dθ1,dθ2) , ∂θ1g(θ1, θ2) 〈µs(du) , Γ (θ1, u)〉

〉
ds

+

∫ t

0

〈
$l
s(dθ1,dθ2) , ∂θ2g(θ1, θ2) 〈µs(du) , Γ (θ2, u)〉

〉
ds,

(5.17)

which, by uniqueness of a solution to (5.17), is necessarily $ ≡ 0. This proves Proposi-
tion 5.3.

5.4 Identification of the noise

Proposition 5.4. Under the hypotheses of Section 2.4, the joint noise process (con-
sidered in Proposition 5.2) (Wn,1

t ,Wn,2
t ,Wn

t )t∈[0,T ] converges as n→∞ in H−r1(T)3 to
(W 1

t ,W
2
t ,Wt)t∈[0,T ] Gaussian process with covariance, for f1, f2 ∈ Hr, 0 ≤ s ≤ t ≤ T ,

E
[
W l
s(f1)W l

t (f2)
]

= E [Ws(f1)Wt(f2)] =

∫ s

0

〈µu , ∂θf1∂θf2〉du, l = 1, 2,

E
[
W 1
s (f1)W 2

t (f2)
]

= p

∫ s

0

〈µu , ∂θf1∂θf2〉du,

E
[
W l
s(f1)Wt(f2)

]
=
√
p

∫ s

0

〈µu , ∂θϕ∂θψ〉du, l = 1, 2.

(5.18)
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Moreover, (W 1
t ,W

2
t ,Wt)t∈[0,T ] is independent of the initial condition (ζ1

0 , ζ
2
0 , η0) given in

Proposition 5.1.

Remark 5.5. In the diluted case, (W 1
t ,W

2
t ,Wt)t∈[0,T ] are mutually independent.

Proof of Proposition 5.4. This follows directly from (5.10) and the convergence results
(2.5) and (2.6).

5.5 Proof of the main convergence result

We now turn to the proof of Theorem 2.9:

Main lines of proof of Theorem 2.9. Putting all the previous estimates into the semi-
martingale decomposition (5.7) and applying the same arguments as for the process
ηn (using in particular the weak-mild formulation (5.11) which lead to similar esti-
mates as for Proposition 4.8), we see that ζn,l is tight in H−r1 (T) and that, almost
surely w.r.t. the randomness of the graph, the joint process

(
ζn,1, ζn,2, ηn

)
converges in

C
(

[0, T ], (H−r1(T))
3
)

towards
(
ζ1, ζ2, η

)
solution to

〈
ζlt , f

〉
=
〈
ζl0 , f

〉
+

∫ t

0

〈
ζls ,

1

2
∂2
θf + ∂θf (θ) 〈µs(dθ′) , Γ (θ, θ′)〉

〉
ds

+
√
p

∫ t

0

〈ηs (dθ′) , 〈µs(dθ) , ∂θf (θ) , Γ (θ, θ′)〉〉ds+W l
t (f),

〈ηt , f〉 = 〈η0 , f〉+

∫ t

0

〈
ηs , L(1)

µs (f)
〉

ds+Wt(f).

that is nothing else as the weak formulation of (2.19). Note that we use here the
convergence (2.5) to identify the limit as in the proof of Proposition 4.15. Uniqueness of
a solution to (5.7) follows from the same arguments as for Section D.

A Sobolev spaces and inequalities

A.1 From mixed L∞-L2 norms to Sobolev norms

Lemma A.1. There exists a constant C > 0 such that, for any regular function v :

T×T→ R, it holds that

sup
θ1∈T

‖v(θ1, ·)‖2L2( dθ2) ≤ C ‖v(·, ·)‖2H1( dθ1, dθ2) .

Proof. Let u : T → R be defined for θ1 ∈ T by u(θ1) = ‖v(θ1, ·)‖2L2( dθ2). Observe that

‖u‖L1 = ‖v(·, ·)‖2L2( dθ1, dθ2). In particular,

|∂θ1u(θ1)| ≤ 2

∫
T

|∂θ1v(θ1, θ2)| |v( dθ1, dθ2)| dθ2 ≤

≤
∫
T

|∂θ1v(θ1, θ2)|2 dθ2 +

∫
T

|v( dθ1, dθ2)|2 dθ2.

By integrating the previous expression with respect to θ1, one obtains

‖∂θ1u‖L1 ≤
∫
T

|∂θ1v(θ1, θ2)|2 dθ1 dθ2 + ‖v(·, ·)‖2L2( dθ1, dθ2) ,

which implies

‖u‖W 1,1 ≤
∫
T

(
|∂θ1v(θ1, θ2)|2 + |∂θ2v(θ1, θ2)|2

)
dθ1 dθ2 + 2 ‖v(·, ·)‖2L2( dθ1, dθ2)

≤ 2 ‖v(·, ·)‖2W 1,2( dθ1, dθ2) .
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By using [1, Theorem 5.4, Part I, Case (B)], there exists an universal constant C > 0 such
that

sup
θ1∈T

|u(θ1)| = ‖u‖C0 ≤ C ‖u‖W 1,1 .

Observe that supθ1∈T |u(θ1)| = supθ1∈T ‖v(θ1, ·)‖2L2( dθ2), the proof is concluded with the
constant given by 2C.

B More on Grothendieck inequalities and concentration
estimates

We gather in this Section the definitions of some auxiliary (possibly weighted) em-
pirical mean values concerning the centered variables ξ̂(n)

ij as well as concentration
estimates for these quantities.

Define the following quantities (where u = (ui)i=1,...,n and (vj)j=1,...,n are fixed
sequences such that |ui| ≤ 1, |vj | ≤ 1):

Un,1(l, v) =
1

n

n∑
j=1

ξ̂
(n)
lj vj , l = 1, 2, (B.1)

Un,1(l, v) =
1

n

n∑
j=1

ξ̂
(n)
1,j ξ̂

(n)
2j vj , l = 1, 2, (B.2)

Un,2(u, v) :=
1

n2

n∑
i,j=1

ξ̂
(n)
ij uivj , (B.3)

Vn,2 (u, v, l) :=
1

n2

n∑
i,j=1

ξ̂
(n)
li ξ̂

(n)
ij uivj , l = 1, 2. (B.4)

In (B.1) and (B.2) (resp. (B.3) and (B.4)) the subscript 1 (resp. 2) stands for the fact that

Un,1 and Un,1 (resp. Un,2 and Vn,2 ) are of order 1 (resp. order 2) in the sense that one
sums over j only (resp. over both i and j).

Lemma B.1. Suppose that np2
n −−−−→

n→∞
+∞. Then for all ε ∈

(
0, 1

2

)
,

lim sup
n→∞

(npn)
1
2−ε

∣∣∣Un,1(l, v)
∣∣∣ ≤ 1,P-a.s., l = 1, 2 (B.5)

lim sup
n→∞

(np2
n)

1
2−ε

∣∣∣∣Un,1(l, v)

∣∣∣∣ ≤ 1,P-a.s. (B.6)

Moreover, under npn −−−−→
n→∞

+∞, for all ε ∈
(
0, 1

2

)
,

lim sup
n→∞

(npn)1−ε
∣∣∣Un,2(u, v)

∣∣∣ ≤ 1, P-a.s. (B.7)

Finally, suppose that pn ≥ c
n1−δ for some δ > 0 (as n→∞). For l ∈ {1, 2}, for any ε > 1−δ

δ ,
if |ui| ≤ 1, |vj | ≤ 1,

lim sup
n→∞

(npn)1−ε
∣∣∣Vn,2 (u, v, l)

∣∣∣ ≤ 1, P-a.s. (B.8)

Proof of Lemma B.1. We first prove (B.5). By Bernstein inequality, since
∣∣∣ξ̂(n)
lj vj

∣∣∣ ≤ 1
pn

and E

[(
ξ̂

(n)
ij vj

)2
]
≤ 1

pn
, we have P

(∣∣∣∑n
j=1 ξ̂

(n)
lj vj

∣∣∣ > t
)
≤ 2 exp

(
− 1

2
t2pn
n+ t

3

)
. Choos-

ing for ε ∈
(
0, 1

2

)
, t = n

1
2 +εp

ε− 1
2

n , we obtain that P

(∣∣∣ 1
n

∑n
j=1 ξ̂

(n)
lj vj

∣∣∣ > 1

(npn)
1
2
−ε

)
≤
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2 exp

(
− 1

2
(npn)2ε

1+ 1

3(npn)
1
2
−ε

)
. Since npn → ∞, for n large we have 1

3(npn)
1
2
−ε ≤ 1, so that

the previous quantity is further bounded by 2 exp
(
− 1

4 (npn)2ε
)
, which is summable under

the assumptions of the present lemma. To prove (B.6), we apply the same Bernstein

inequality to the sequence of independent ξ̂(n)
1,j ξ̂

(n)
2j vj , j = 1, . . . , n: since

∣∣∣ξ̂(n)
1,j ξ̂

(n)
2j vj

∣∣∣ ≤ 1
p2n

and E

[(
ξ̂

(n)
1,j ξ̂

(n)
2j vj

)2
]
≤ 1

p2n
, we have P

(∣∣∣∑n
j=1 ξ̂

(n)
1,j ξ̂

(n)
2j vj

∣∣∣ > t
)
≤ 2 exp

(
− 1

2
t2p2n
n+ t

3

)
. Hence,

the calculation is the same as before, replacing pn by p2
n and the result follows from the

same calculations. Estimate (B.7) is again a simple consequence of Bernstein inequality:

for all t > 0 we have P
(∣∣∣∑i,j ξ̂ij

∣∣∣ > t
)
≤ 2 exp

(
− 1

2
t2pn
n2+ t

3

)
. Choosing t = n1+εpε−1

n , the

previous bound becomes 2 exp

(
− 1

2
n2εp2ε−1

n

1+ 1

3(npn)1−ε

)
. Since npn →∞, this quantity is further

bounded, for n large, by 2 exp
(
− 1

4n
2εp2ε−1

n

)
. Now note that nεp2ε−1

n ≥ 1 when ε ∈
(
0, 1

2

)
,

so that the final bound becomes 2 exp
(
− 1

4n
ε
)
. Let us now give the proof of (B.8) for l = 1.

Fix (ui, vj) such that |ui| ≤ 1 and |vj | ≤ 1 and define

Yn :=

n∑
i,j=1

ξ̂
(n)
1i ξ̂

(n)
ij uivj

Denote by Fi = σ
(
ξ̂

(n)
pq , p, q ≤ i

)
. Then (Yi)i=1,...,n is a (Fi)-martingale and one has, for

all k < n

E
[
(Yk+1 − Yk)

2 |Fk
]
≤ 2E

(k+1∑
q=1

ξ̂
(n)
1,k+1ξ̂

(n)
k+1,quk+1vq

)2

|Fk


+ 2E

( k∑
p=1

ξ̂
(n)
1,p ξ̂

(n)
p,k+1upvk+1

)2

|Fk


= 2

k+1∑
q=1

E

[(
ξ̂

(n)
1,k+1

)2
]
E

[(
ξ̂

(n)
k+1,q

)2
]
u2
k+1v

2
q

+ 2

k∑
p=1

(
ξ̂

(n)
1,p

)2

E

[(
ξ̂

(n)
p,k+1

)2
]
u2
pv

2
k+1.

The above quantity is a.s. bounded by ck
p2n

, for some numerical constant c independent of

k, n, u, v. Hence, we deduce that, almost surely 〈Y 〉n ≤
c′n2

p2n
. Noting that |Yi+1 − Yi| ≤ c′′n

p2n
almost surely, one can apply Bernstein inequality for martingales [24], we obtain,

for all t > 0 P (|Yn| > t) = P (|Yn| > t, 〈Y 〉n ≤ Ln) ≤ 2 exp
(
− 1

2
t2p2n

c′n2+ c′′nt
3

)
. Choosing

t = n1+εpε−1
n , for ε > 0 (to be fixed later) the bound above becomes P (|Yn| > t) ≤

2 exp
(
− 1

2
n2εp2εn

c′+ c′′nε

3p
1−ε
n

)
. Since nε

p1−εn
≥ 1, the previous quantity is bounded by 2 exp

(
− 1

2
nεp1+εn

c′+ c′′
3

)
.

Since pn ≥ 1
n1−δ for n large, we have nεp1+ε

n ≥ nε−(1+ε)(1−δ). Choosing ε > 1−δ
δ , we obtain

that ε − (1 − 3ε)(1 − δ) > 0, the above quantity is summable in n and we conclude by
Borel-Cantelli Lemma.

We now turn to quantities similar to the term Cn in (3.3), for which we apply again
Grothendieck inequalities. We recall here the definitions of STn in (3.7), (3.8) and
Definition 3.4.
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Lemma B.2. Let k > 3, r > 0, Φ := (ϕp(θ1, θ2))p be a complete orthonormal system in

Hr(T2), F an bounded linear operator from Hr to Hk, and u := (ui)i=1,...,n an arbitrary
vector in Tn. Define the quantities

cn(Φ, F, u) :=
1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik

∑
p≥1

∂θ1F (ϕp) (ui, uj) ∂θ1 F̄ (ϕp) (ui, uk) ,

cn(Φ, F, u) :=
1

n3

n∑
i,j,k=1

ξ̂
(n)
ik ξ̂

(n)
jk

∑
p≥1

∂θ1F (ϕp) (ui, uk) ∂θ1 F̄ (ϕp) (uj , uk) .

Then, there exists a constant C > 0, which is not depending on n, such that, for
T ∈ { , },

sup
u∈Tn

∣∣cTn (Φ, u)
∣∣ ≤ CSTn ‖F‖2L(Hr,Hk). (B.9)

Proof of Lemma B.2. We focus on the term with T = , but the other terms can be dealt
in a similar manner. Write the same decomposition as for Proposition 3.3: if again
(ea)a∈Z is the canonical basis of L2(T) then, for fixed p ≥ 1, write ∂θ1F (ϕp)(θ1, θ2) =∑

a∈Z ea(θ2)
∫
T
∂θ1F (ϕp)(θ1, θ)ēa(θ) dθ as well as, for a, b ∈ Z,

x1,i(a, b) = C2
δ

(
(1 + a2)(1 + b2)

)1/4+δ

×
∑
p≥1

(∫
T

∂θ1F (ϕp)(ui, θ)ēa(θ) dθ

)(∫
T

∂θ1F (ϕp)(ui, θ)ēb(θ) dθ

)
,

x2,j(a) = C−1
δ (1 + a2)−1/4−δea(uj),

x3,k(b) = C−1
δ (1 + b2)−1/4−δeb(uk),

where Cδ = (
∑
a∈Z(1 + a2)−1/2−2δ)1/2 for some δ > 0. We then have, using Cauchy-

Schwarz inequality

‖x1,i‖2`2 = C4
δ

∑
a,b∈Z

(
(1 + a2)(1 + b2)

)1/2+2δ

×

∑
p≥1

(∫
T

∂θ1F (ϕp)(ui, θ)ēa(θ) dθ

)(∫
T

∂θ1F (ϕp)(ui, θ)ēb(θ) dθ

)2

≤ C4
δ

∑
a∈Z

(1 + a2)1/2+2δ
∑
p≥1

∣∣∣∣∫
T

∂θ1F (ϕp)(ui, θ)ēa(θ) dθ

∣∣∣∣2
2

= C4
δ

(∑
a∈Z

(1 + a2)1/2+2δ ‖IF,a,ui‖
2
−r

)2

,

(B.10)

for the linear form

IF,a,u(ϕ) :=

∫
T

∂θ1F (ϕ)(u, θ)ēa(θ) dθ. (B.11)

Observe that for fixed a, |a| ≥ 1, u ∈ T and any l ≥ 1

0 =

∫
T

∂lθ [∂θ1F (ϕ)(u, θ)ēa(θ)] dθ

=

∫
T

[∂θ1 [∂lθ2F (ϕ)(u, θ)]] ēa(θ)dθ + (ia)l
∫
T

∂θ1F (ϕ)(u, θ) ēa(θ)dθ

=

∫
T

[∂θ1 [∂lθ2F (ϕ)(u, θ)]] ēa(θ)dθ + (ia)l IF,a,u(ϕ).
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Taking the absolute values in the previous expression and using Lemma A.1, one obtains
that there exists a positive constant C, independent of a and u, such that

|IF,a,u(ϕ)| = 1

|a|l

∣∣∣∣∫
T

∂θ1∂
l
θ2F (ϕ)(u, θ)ēa(θ)dθ

∣∣∣∣ ≤ 1

|a|l
sup
u∈T

∥∥∂θ1∂lθ2ϕ (u, ·)
∥∥
L2(dθ2)

≤ C

|a|l
∥∥∂θ1∂lθ2F (ϕ) (·, ·)

∥∥
H1(dθ1,dθ2)

≤ C

|a|l
‖F (ϕ)‖Hl+2(dθ1,dθ2) .

This means that, taking l = bkc − 2,

sup
u∈Tn

‖Ia,u‖−r ≤
C

|a|l
‖F‖L(Hr,Hk), for any a ∈ Z, |a| ≥ 1.

Going back to (B.10), choosing δ small enough, this implies that

sup
i
‖x1,i‖2`2 ≤ C

4
δ C

2

(∑
a∈Z
|a|1+2δ−2l‖F‖2L(Hr,Hk)

)2

< C(l, δ)‖F‖4L(Hr,Hk) <∞.

We are finally in position to apply Grothendieck inequality (Theorem 3.2), which gives
the result.

C Proof of Theorem 2.4

The proof of convergence follows the same structure for µn, µn,l and µn,1,2, since all
of them may be written as

mn
t :=

1

n

n∑
i=1

Ξ
(n)
i δθi,nt

, t ∈ [0, T ]. (C.1)

Indeed, µn corresponds to (C.1) for the choice Ξ
(n)
i := 1, µn,l for the choice Ξ

(n)
i :=

ξ
(n)
li

pn

whereas µn,1,2 satisfies (C.1) for Ξ
(n)
i :=

ξ
(n)
1i ξ

(n)
2i

p2n
. In the following we use the notation

Sn (Ξ) :=
1

n

n∑
k=1

Ξ
(n)
k . (C.2)

Hence, we proceed with the calculations with a general mn and detail the appropriate
changes when required. Consider θt solution to dθt =

∫
Γ (θt, θ)µt (dθ) dt+ dBt, where

Bt is a standard Brownian motion. Define then for s ≤ t and any test function f ,
Ps,tf(θ) := EB [f (Φts(θ))], where t 7→ Φts(θ) is the solution to the previous equation with
Φss(θ) = θ. Straightforward calculations (using Itô’s formula and the fact that s 7→ Ps,tf

satisfies a Backward Kolmogorov equation, see e.g. [45, Lemma 4.3] for more details)
show that, for all f regular〈
mn
T − µT , f

〉
= 〈mn

0 − µ0 , P0,T f〉+
1

n

n∑
k=1

∫ T

0

Ξ
(n)
k ∂θPt,T f(θk,nt )dBkt

+

∫ T

0

1

n

n∑
i=1

Ξ
(n)
i ∂θPt,T f(θi,nt )

 1

npn

n∑
j=1

ξ
(n)
ij Γ

(
θi,nt , θj,nt

)
−
∫

Γ
(
θi,nt , θ

)
µt (dθ)

 dt

= 〈mn
0 − µ0 , P0,T f〉+

1

n

n∑
k=1

∫ T

0

Ξ
(n)
k ∂θPt,T f(θk,nt )dBkt
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+

∫ T

0

1

n2

n∑
i,j=1

Ξ
(n)
i ξ̂

(n)
ij ∂θPt,T f(θi,nt )Γ

(
θi,nt , θj,nt

)
dt

+

∫ T

0

1

n

n∑
i=1

Ξ
(n)
i ∂θPt,T f(θi,nt )

〈
Γ
(
θi,nt , ·

)
, µnt − µt

〉
dt,

so that

1

4q−1
|〈mn

T − µT , f〉|
q ≤ |〈mn

0 − µ0 , P0,T f〉|q +

∣∣∣∣∣ 1n
n∑
k=1

∫ T

0

Ξ
(n)
k ∂θPt,T f(θk,nt )dBkt

∣∣∣∣∣
q

+ T q−1

∫ T

0

∣∣∣∣∣∣ 1

n2

n∑
i,j=1

Ξ
(n)
i ξ̂

(n)
ij ∂θPt,T f(θi,nt )Γ

(
θi,nt , θj,nt

)∣∣∣∣∣∣
q

dt

+ T q−1

∫ T

0

∣∣∣∣∣ 1n
n∑
i=1

Ξ
(n)
i ∂θPt,T f(θi,nt )

〈
Γ
(
θi,nt , ·

)
, µnt − µt

〉∣∣∣∣∣
q

dt

:= (A) + (B) + (C) + (D). (C.3)

Consider the initial condition (A): writing ξli
pn

= ξ̂li+1, we see that µn,l0 = µn0 + µ̂n,l0 (recall

the definition of µ̂n,lt in (4.10)) and that µn,1,20 = µn0 + µ̂n,10 + µ̂n,20 + µ̂n,1,20 where

µ̂n,1,20 =
1

n

n∑
i=1

ξ̂
(n)
1,i ξ̂

(n)
2i δθi,n0

.

Thus, setting

m̂n
0 :=


0 if mn = µn,

µ̂n,l0 if mn = µn,l,

µ̂n,10 + µ̂n,20 + µ̂n,1,20 if mn = µn,1,2,

we have in all cases that (noting that if f ∈ BL = BL(T) (recall (1.8)), P0,T f is also in
BL)

(A) = |〈mn
0 − µ0 , P0,T f〉|q ≤ 2q−1dBL (µn0 , µ0)

q
+ 2q−1 |〈m̂n

0 , P0,T f〉|q .

Consider now the term (B): note that ([45, Lemma 4.4]), there exists a constant C0 > 0

such that uniformly in θ, t ≤ T and in f such that ‖f‖Lip ≤ 1, |∂θPt,T f(θ)| ≤ C0. Hence,

we see that E [(B)] ≤ C

(
1
n2

∑n
k=1

(
Ξ

(n)
k

)2
) q

2

, which is, P-a.s., uniformly in f ∈ BL,

smaller than Cβqn with

βn :=


n−

1
2 if mn = µn,(

np2
n

)− 1
2 if mn = µn,l,(

np4
n

)− 1
2 if mn = µn,1,2.

Consider now the term (C) in (C.3): using again that |∂θPt,T f(θ)| ≤ C0 and since
ξ
(n)
li

pn
≤ 1

pn
, we see by another application of Grothendieck inequality that, P⊗P-a.s., (C)

is uniformly controlled by Cγqn(Sn )q, where

γn :=


1 if mn = µn,
1
pn

if mn = µn,l,
1
p2n

if mn = µn,1,2.
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Concentrate now on the last term (D) in (C.3). Developing into Fourier series
gives, for ea, a ∈ Z the standard Fourier basis, for θ1, θ2 ∈ T, Γ (θ1, θ2) =∑
a∈Z ea (θ2)

∫
Γ (θ1, θ) ēa(θ)dθ. Note that

∣∣∫ Γ (θ1, θ) ēa(θ)dθ
∣∣ ≤ C

(1+|a|)r for some constant

C > 0 independent of θ1, as
∥∥∂rθ2Γ(θ1, θ2)

∥∥
∞ < +∞, which means that∣∣∣〈Γ

(
θi,nt , ·

)
, µnt − µt

〉∣∣∣ ≤ C∑
a∈Z

(1 + |a|)−r |〈ea , µnt − µt〉| .

So we obtain, by Jensen inequality, recalling that |∂θPt,T f(θ)| ≤ C0 and the definition of
Sn (Ξ) in (C.2),

(D) ≤ C |Sn (Ξ)|q
(∑
a∈Z

(1 + |a|)−r
)q−1 ∫ T

0

(∑
a∈Z

(1 + |a|)−r |〈ea , µnt − µt〉|
q

)
dt.

Taking the expectation on both sides and noting that for any fixed a ∈ Z, ea is bounded
and Lipschitz with constant equal to |a|, we obtain

E [(D)] ≤ C |Sn (Ξ)|q
(∑
a∈Z

(1 + |a|)−r
)q−1(∑

a∈Z
(1 + |a|)−r |a|q

)

×
∫ T

0

sup
f∈BL

E

[
sup
s≤t
|〈f , µns − µs〉|

q

]
dt.

Choosing r = q + 2, we deduce finally that there is another constant C > 0 such that

E [(D)] ≤ C |Sn (Ξ)|q
∫ T

0

E

[
sup
s≤t

dBL (µns , µs)
q

]
dt.

Taking expectation E [·] in (C.3), we obtain, for all f ∈ BL, for some constant C > 0

E

[
sup
s≤T
|〈mn

s − µs , f〉|
q

]
≤ C

(
2q−1dBL (µn0 , µ0)

q
+ 2q−1 |〈m̂n

0 , P0,T f〉|q + βqn + (γnSn )q

+ |Sn (Ξ)|q
∫ T

0

E

[
sup
s≤t

dBL (µns , µs)
q

]
dt

)
.

(C.4)

Specify first the analysis to the case mn = µn: recalling that m̂n
0 ≡ 0 and Sn (Ξ) = 1 in

this case, one obtains

E

[
sup
s≤T
|〈µns − µs , f〉|

q

]
≤ C

(
2q−1dBL (µn0 , µ0)

q
+ βqn + (γnSn )q +

∫ T

0

E

[
sup
s≤t

dBL (µns , µs)
q

]
dt

)
. (C.5)

If we would have been able to put the supremum in f ∈ BL inside the expectation in the
lefthand side of (C.5), the result would follow simply by a Grönwall argument. To bypass
this difficulty, we proceed by a compactness argument, which will be useful not only to
mn = µn but to the other cases too, so that we write it with a general mn: the set BL is
compact, by Ascoli-Arzelà theorem. Thus, for all ε > 0, there exists f1, . . . , fk ∈ BL such
that for all f ∈ BL, there exists j = 1, . . . , k such that supθ∈T |f(θ)− fj(θ)| ≤ ε. Take now
f ∈ BL, n ≥ 1, we have,

1

3q−1
sup
s≤T
|〈mn

s − µs, f〉|
q ≤ sup

s≤T
|〈mn

s − µs, fj〉|
q

+ sup
s≤T
|〈mn

s , f − fj〉|
q

+ sup
s≤T
|〈µs, f − fj〉|q .
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Note that since µs is a probability measure, sups≤T |〈µs , f − fj〉|
q ≤ εq ≤ ε for ε ≤ 1. In

a same way, sups≤T |〈mn
s , f − fj〉|

q ≤ Sn (Ξ)
q
ε, Pg-a.s. (and this Pg-a.s. does not depend

on f , gj , nor ε). Hence, there is a universal constant C > 0 such that, for any t ∈ [0, T ]

E

[
sup
s≤t

dBL (mn
s , µs)

q

]
≤ C (1 + Sn (Ξ)

q
) ε+ max

j=1,...,k
E

[
sup
s≤t
|〈mn

s − µs , fj〉|
q

]
(C.6)

Apply once (C.6) to the righthand side of (C.5) (with mn = µn), then take f = fj and
finally the maximum over j = 1, . . . , k in (C.4) we obtain,

max
j=1,...,k

E

[
sup
s≤T
|〈µns − µs , fj〉|

q

]
≤ C

(
2q−1dBL (µn0 , µ0)

q
+ βqn + (γnSn )q + 2CTε

+

∫ T

0

max
j=1,...,k

E

[
sup
s≤t
|〈µns − µs , fj〉|

q

]
dt

)
.

Taking lim supn→∞ on both sides, using (2.1), the fact that both βn and γnSn go to 0 as
n→∞ under the present assumptions, we obtain, setting

vt := lim sup
n→∞

max
j=1,...,k

E

[
sup
s≤t
|〈µns − µs , fj〉|

q

]
that vT ≤ 2C2Tε + C

∫ T
0
vtdt, so that by Grönwall Lemma, vT ≤ C ′ε, for a constant

C ′ > 0 that only depends on (Γ, T ). Inserting this estimate into (C.6) gives finally
that lim supn→∞E

[
sups≤t dBL (µns , µs)

q] ≤ (C + C ′)ε for all ε, which gives the desired
convergence (2.4).

We now turn to the proof of the convergence of the local empirical measures: com-
bining (C.6) with (C.4) applied to f = fj and taking now advantage that we know that
(2.4) is true, we obtain

lim sup
n→∞

E

[
sup
s≤T

dBL (mn
s , µs)

q

]
≤ Cε+ lim sup

n→∞
max

j=1,...,k
|〈m̂n

0 , P0,T fj〉|q .

Note here that it is not sufficient for us to directly apply Grothendieck inequality to the
remaining term (since it is only saying that this term is bounded, not that it goes to 0).
The point here is to note that fj ∈ BL so that gj := P0,T fj ∈ BL too. Hence, there exists
some j′, such that ‖gj − fj′‖∞ ≤ ε. Writing again gj = gj − fj′ + fj′ , we obtain further
that

lim sup
n→∞

E

[
sup
s≤T

dBL (mn
s , µs)

q

]
≤ Cε+ lim sup

n→∞
max

j′=1,...,k
|〈m̂n

0 , fj′〉|
q
, (C.7)

for another constant C > 0. Recall that for any test function f (recall (B.1) and (B.2)),〈
µ̂n,l0 , f

〉
=

1

n

n∑
j=1

ξ̂
(n)
lj f(θj,n0 ) = Un,1(l, v),

and 〈
µ̂n,1,20 , f

〉
=

1

n

n∑
j=1

ξ̂
(n)
1,j ξ̂

(n)
2j f(θj,n0 ) = Un,1(l, v),

for the choice of vj = f
(
θnj,0
)
. Using (B.5) and (B.6), we obtain that in any case Pg-a.s.,

maxj′=1,...,k |〈m̂n
0 , fj′〉|

q → 0 as n→∞. Note however that this Pg-a.s. depends on the
choice of the functions fj and thus on ε. Taking now ε of the form ε = 1

p with p ≥ 1, we
have from (C.7) and the previous argument that Pg-a.s.,

lim sup
n→∞

E

[
sup
s≤T

dBL (mn
s , µs)

q

]
≤ C

p
,

for any p ≥ 1, which concludes the proof.
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D Uniqueness results

Let us introduce some notation: define

Λs(θ1, θ2) := (〈µs(dθ′) , Γ(θ1, θ
′)〉 , 〈µs(dθ′) , Γ(θ2, θ

′)〉) ,

L(1)
s := L(1)

µs ,

L(2)
s := L(2)

µs ,

so that the operator L(2)
s (recall its definition in (2.14)) may be written as

L(2)
µs (g) =

1

2
∆g +∇g · Λs(θ1, θ2).

Since Γ is regular with bounded derivatives, so is (θ1, θ2) 7→ Λs(θ1, θ2) with derivatives
that are bounded uniformly in s ∈ [0, T ]. Applying [38], p.227, the flow (Xs,t(θ))0≤s≤t≤T
is a Cr2+2 diffeomorphism, where Xs,t(θ) is the unique solution to the Itô SDE in T2

Xs,t(θ) = θ +

∫ t

s

Λr(Xs,t(θ))dr +Bt −Bs,

where θ := (θ1, θ2) ∈ T2 and B := (B1, B2) is a standard Brownian motion on T2. Using
this and backward Itô formula [38], p 256, it is possible to prove (see [37], p. 760 for
further details) that setting

U(t, s)g(θ1, θ2) := EB [g(Xs,t(θ))] , (D.1)

one obtains, for all g ∈ C2, all 0 ≤ s ≤ t ≤ T , θ ∈ T2

U(t, s)g(θ)− g(θ) =

∫ t

s

L(2)
r U(t, r)g(θ)dr.

The next step is to prove that the previous equality is also valid in the space Cr2 . This
relies on the following lemma (see [37], Lemma 3.11 for a proof of this result)

Lemma D.1. Under the assumptions of Section 2.1, for any probability measure ν the
operator L(2)

ν is continuous from Cr2+2 to Cr2 and∥∥∥L(2)
ν g

∥∥∥
Cr2
≤ C ‖g‖Cr2+2 ,∥∥∥L(2)

s g − L(2)
t g

∥∥∥
Cr2
≤ C ‖g‖Cr2+2 |t− s| .

as well as, for any j ≤ r2 + 2 the operator U(t, s) is a linear operator from Cj to Cj such
that

‖U(t, s)g‖Cj ≤ C ‖g‖Cj , 0 ≤ s ≤ t ≤ T,

‖U(t, s)g − U(t, s′)g‖Cj ≤ C ‖g‖Cj+1

√
s′ − s, 0 ≤ s ≤ s′ ≤ t ≤ T.

In particular, we know that for g ∈ Cr2+3, s 7→ L(2)
s (U(t, s)g) is continuous in Cr2 and

hence that
∫ t

0
L(2)
s (U(t, s)g)ds makes sense as a Bochner integral in Cr2 . In particular, we

obtain, for every g ∈ Cr2+3 that

U(t, s)(g)− g =

∫ t

s

L(2)
r U(t, r)gdr, in Cr2 . (D.2)

With this at hand, we are ready to state the first uniqueness result:
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Proposition D.2. Under the assumptions of Section 2.1, for any functional R belong-
ing to C

(
[0, T ], H−r2

(
T2
))

, there is at most one solution in C
(
[0, T ], H−r1

(
T2
))

to the
equation

Et =

∫ t

0

L(2),∗
s Esds+

∫ t

0

Rsds, t ∈ [0, T ], in H−r2
(
T2
)
. (D.3)

Moreover, if Et is a solution, then one has the representation

Et =

∫ t

0

U(t, s)∗Rsds, in C−r2 ,

where U is given in (D.1).

Proof. Let E be a solution to (D.3) in C
(
[0, T ], H−r1

(
T2
))

. Since H−r1 ↪→ H−r2 , we have
for all g ∈ Hr2

(
T2
)
〈Et , g〉 =

∫ t

0

〈
Es , L(2)

s g
〉

ds+

∫ t

0

〈Rs , g〉ds.

Both relations are in particular true for every g ∈ Cr2+3 ↪→ Hr2 . Combining (D.2) and
(D.3), we obtain for g ∈ Cr2+3,

〈Et , g〉 =

∫ t

0

{〈
Es , L(2)

s U(t, s)g
〉

+ 〈Rs , U(t, s)g〉
}

ds

−
∫ t

0

∫ t

s

〈
Es , L(2)

s L(2)
r U(t, r)g

〉
drds−

∫ t

0

∫ t

s

〈
Rs , L(2)

r U(t, r)g
〉

drds

=

∫ t

0

{〈
Es , L(2)

s U(t, s)g
〉

+ 〈Rs , U(t, s)g〉
}

ds

−
∫ t

0

{∫ r

0

〈
Es , L(2)

s L(2)
r U(t, r)g

〉
ds+

∫ r

0

〈
Rs , L(2)

r U(t, r)g
〉

ds

}
dr

=

∫ t

0

{〈
Es , L(2)

s U(t, s)g
〉

+ 〈Rs , U(t, s)g〉
}

ds−
∫ t

0

〈
Er , L(2)

r U(t, r)g
〉

dr

=

∫ t

0

〈Rs , U(t, s)g〉ds.

Since Cr2+3 is dense in Cr2 , the identity Et =
∫ t

0
U(t, s)∗Rsds holds in C−r2 . Since Cr2 is

dense in Hr1 , uniqueness for (D.3) holds in C
(
[0, T ], H−r1(T2)

)
.

In an identical way, one can state a similar result concerning L(1)
s , the only difference

being that L(1)
s is not the generator of a diffusion, due to the nonstandard nonlocal last

term in (2.13). Hence, we decompose L(1)
s into

L(1)
s := L(1)

s +K(1)
s , (D.4)

where

L(1)
s f :=

1

2
∂2
θf(θ) + ∂θf(θ) 〈µs(dθ′) , Γ(θ, θ′)〉 ,

K(1)
s f := 〈µs(dθ′) , Γ (θ′, θ) ∂θf(θ′)〉 .

Setting vs(θ) := 〈µs(dθ′) , Γ(θ, θ′)〉 define in a similar way the flow (Xs,t(θ))0≤s≤t≤T as
the unique solution to the Itô SDE in T

Xs,t(θ) = θ +

∫ t

s

vr(Xs,t(θ))dr +Bt −Bs,
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where θ ∈ T and B is a standard Brownian motion on T. Define also

V (t, s)f(θ) := EB [f(Xs,t(θ))] , (D.5)

one obtains, in a same way as before the following result (whose proof is left to the
reader)

Proposition D.3. Under the assumptions of Section 2.1, for any functional R element
of C ([0, T ], H−r1 (T)), there is at most one solution in C ([0, T ], H−r1 (T)) to the equation

Et =

∫ t

0

L(1),∗
s Esds+

∫ t

0

Rsds, t ∈ [0, T ], in H−r2 (T) . (D.6)

Moreover, if Et is a solution, then one has the representation

Et =

∫ t

0

V (t, s)∗Rsds, in C−r1 ,

where V is given in (D.5).

We are now in position to prove Proposition 4.16:

Proof of Proposition 4.16. The proof follows arguments similar to [51] (see also [46]).
Pathwise uniqueness of a solution to the second equation of (2.16) is easy: let η̂1, η̂2 ∈
C
(
[0, T ], H−r1(T2)

)
be two solutions in H−r2(T2). Then, the difference η̂ := η̂1 − η̂2

satisfies (D.3) in the case R ≡ 0, so that Proposition D.2 gives η̂ ≡ 0. Now turn to the
pathwise uniqueness of a solution to the first equation of (2.16): let η ∈ C ([0, T ], H−r1 (T))

be a solution in H−r2(T). Setting h(t) :=
∫ t

0
L(1),∗
s ηsds = ηt − η0 −

∫ t
0

Θ∗η̂sds − Wt ∈
C ([0, T ], H−r1 (T)) and differentiating this quantity w.r.t. t, one obtains that (almost
surely w.r.t. the randomness)

d

dt
h(t) = L

(1),∗
t h(t) +K

(1),∗
t h(t) + L(1),∗

t

(
η0 +

∫ t

0

Θ∗η̂sds+Wt

)
,

where we recall the decomposition (D.4).

Set Rt := K
(1),∗
t h(t) +L(1),∗

t

(
η0 +

∫ t
0

Θ∗η̂sds+Wt

)
. Since L(1),∗

t

(
η0 +

∫ t
0

Θ∗η̂sds+Wt

)
belongs to C([0, T ], H−r1(T)) we focus on the regularity of the first term: we have for
0 < s < t,∣∣∣〈h(t)− h(s) , (K

(1)
t −K(1)

s )f
〉∣∣∣ ≤ ‖h(t)− h(s)‖−r1

∥∥∥(K
(1)
t −K(1)

s )f
∥∥∥
r1
,

and using the fact that µt has for t > 0 a smooth density µt(dθ) = pt(θ)dθ (see e.g. [18]
or [30, Prop. 7.1])∥∥∥(K

(1)
t −K(1)

s )f
∥∥∥2

r1
=
∑
k≤r1

∫
T

∣∣∣∣∫
T

∂kθΓ (θ′, θ) ∂θf(θ′)(pt(θ
′)− ps(θ′))dθ′

∣∣∣∣2 dθ

≤ ‖∂θf‖∞
∑
k≤r1

∫
T

(∫
T

∣∣∂kθΓ (θ′, θ)
∣∣ |pt(θ′)− ps(θ′))|dθ′)2

dθ. (D.7)

Since ‖∂θf‖∞ ≤ ‖f‖C1 ≤ C ‖f‖2 ≤ C ‖f‖r1 and since the quantity in (D.7) goes to 0 as
t − s → 0, we conclude from this that R ∈ C ([0, T ], H−r1 (T)). Remark also that for all
j ≤ r1 ∥∥∥∂jθK(1)

t f
∥∥∥
∞

=

∥∥∥∥∫
T

∂jθΓ (θ′, θ) ∂θf(θ′)µt(dθ
′)

∥∥∥∥
∞
≤ C ‖∂θf‖∞ ,
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for a constant C that only depends on Γ. In particular,
∥∥∥K(1)

t f
∥∥∥
Cr1
≤ C ‖f‖C1 ≤ C ‖f‖Cr1

and hence ∥∥∥K(1)
t

∥∥∥
C−r1

≤ C. (D.8)

We are now in position to apply Proposition D.3 to the case E = h: h is solution to

h(t) =

∫ t

0

V ∗(t, u)

(
K(1),∗
u h(u) + L(1),∗

u

(
η0 +

∫ u

0

Θ∗η̂vdv +Wu

))
du, in C−r1 . (D.9)

The main point of the proof is to see that h solution of (D.9) can be approximated by the
converging sequence (hn)n≥1 defined recursively as follows{

h1(t) =
∫ t

0
V ∗(t, u)L(1),∗

u (η0 +
∫ u

0
Θ∗η̂vdv +Wu) du,

hn(t) =
∫ t

0
V ∗(t, u)(K

(1),∗
u hn−1(u) + L(1),∗

u

(
η0 +

∫ u
0

Θ∗η̂vdv +Wu

)
) du, n ≥ 2.

(D.10)
Indeed, by the boundedness of the semigroup V (t, u) and by (D.8), we obtain that for all
0 < u < t < T , for all f ∈ Cr1 , for all h ∈ C−r1∣∣∣〈h , K(1)

u V (t, u)f
〉∣∣∣ ≤ ‖h‖C−r1 ∥∥∥K(1)

u V (t, u)f
∥∥∥
Cr1
≤ C ‖h‖C−r1 ‖V (t, u)f‖Cr1

≤ C ‖h‖C−r1 ‖f‖Cr1 .

Thus, the sequence (hn)n≥1 defined in (D.10) satisfies, for all n ≥ 2

‖hn+1(t)− hn(t)‖C−r1 ≤ C
∫ t

0

‖hn(u)− hn−1(u)‖C−r1 du.

By an immediate recursion, for all k ≥ 1, ‖hn+1+k(t)− hn+k(t)‖C−r1 ≤ Ck T
k

k! , so that
(hn)n≥1 is a Cauchy sequence in C([0, T ], C−r1) and thus converges to h, solution of (D.9).

Turning back to η and writing S(t) := η0 +
∫ t

0
Θ∗η̂sds+Wt, we obtain that η is uniquely

written as

ηt = lim
n→∞

{
η0+

∫ t

0

Θ∗η̂sds+Wt +

∫ t

0

V ∗(t, t1)L(1),∗
t1 S(t1) dt1

+

∫ t

0

∫ t1

0

V ∗(t, t1)K
(1),∗
t1 V ∗(t, t2)L(1),∗

t2 S(t2) dt2 dt1 + . . .

+

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

V ∗(t, t1)K
(1),∗
t1 · · ·V ∗(t, tn)L(1),∗

tn S(tn) dtn . . . dt2 dt1

}
.

(D.11)

This proves pathwise uniqueness. But if one chooses another solution η̃ defined on
another probability space, with initial condition η̃0 and noise W̃ with the same law
as (η0,W ), we obtain the same expression as above with S replaced by S̃(t) = η̃0 +∫ t

0
Θ∗η̂sds+ W̃t. Since S and S̃ have then the same law, uniqueness in law follows from

(D.11). Proposition 4.16 is proven.

E On the choice of renormalisation

The question we ask here concerns the influence of a different choice of renormalisa-
tion in (1.1): namely, it would also make sense to renormalise the interaction in (1.1) by
the exact degree

dn,i :=

n∑
j=1

ξ
(n)
ij , i = 1, . . . , n, (E.1)
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rather than the expected degree E [dn,i] = npn as we have done in (1.1). Of course
renormalizing by dn,i only makes sense if dn,i 6= 0. Denoting by

ρn := sup
i=1,...,n

∣∣∣∣dn,inpn
− 1

∣∣∣∣ = sup
i=1,...,n

∣∣∣∣∣ 1n
n∑
k=1

ξ̂
(n)
ik

∣∣∣∣∣ , (E.2)

by an easy application of Bernstein inequality (as in the proof of Lemma B.1) and Borel
Cantelli Lemma, under (2.15), for all ε ∈

(
0, 1

2

)
, there exists an event A such that

Pg(A) = 1, and on A
lim sup
n→∞

(npn)
1
2−ερn ≤ 1. (E.3)

In particular, on A, infi=1,...,n dn,i →∞. Hence, define, on A, for n sufficiently large

dθi,nd,t =
1

dn,i

n∑
j=1

ξ
(n)
ij Γ

(
θi,nd,t , θ

j,n
d,t

)
dt+ dBit, 0 < t ≤ T, i = 1, . . . , n. (E.4)

The subscript d is here to specify this choice of renormalisation by the degree. Define
accordingly µnd , ηnd and η̂nd the respective global empirical measure and fluctuation
processes. The corresponding local empirical and fluctuation processes become naturally,
again on A, for n sufficiently large

µn,ld :=
1

dn,l

n∑
k=1

ξ
(n)
lk δθk,nd

, l = 1, . . . , n (E.5)

ζn,ld :=
√
dn,l

(
µn,ld − µ

)
. (E.6)

It is quite clear that this different choice of renormalisation does not change anything
concerning the Law of Large Number on the global and local empirical measures, as
P-a.s. dn,i

npn
→ 1 as n → ∞, for all i = 1, . . . , n: Theorem 2.4 remains identical for µnd

and µn,ld . It is a priori not clear if this change in renormalisation would influence the
fluctuation results. We suppose here for simplicity that the initial condition is chosen to
be independent from the graph. The main result of this paragraph is the following.

Proposition E.1. Theorem 2.8 remains unchanged when one replaces (1.1) by (E.4):
under the same hypotheses, the process ηnd converges to the same limit η given by (2.18).
Moreover, under the same hypotheses as Theorem 2.9, the joint process (ζn,1d , ζn,2d )

converges in law w.r.t. P ⊗ P as. n → ∞ towards
(
ζ1 +D1µ, ζ2 +D2µ

)
, where

(
ζ1, ζ2

)
are given in (2.19) and (D1, D2) are independent real Gaussian variables Dl ∼ N (0, 1−p)
for l = 1, 2, with

(
ζ1, ζ2

)
and (D1, D2) independent.

Proof of Proposition E.1. Let us first consider the convergence of the global fluctuation
process ηnd . Perform the same Itô decomposition for µnd as in the proof of Lemma 4.3: on
the event A, for n sufficiently large, for f regular, one obtains

〈
µnd,t , f

〉
=
〈
µnd,0 , f

〉
+

∫ t

0

〈
µnd,s ,

1

2
∂2
θf + (µnd,s ∗ Γ)∂θf

〉
ds+

〈
Mn
d,t , f

〉
+

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij Γ

(
θi,nd,s, θ

j,n
d,s

)
∂θf

(
θi,nd,s

)
ds+Dn,t(f).

The only thing that changes from Lemma 4.3 is the apparition of the supplementary drift
term

Dn,t(f) :=

∫ t

0

1

n2

n∑
i,j=1

ξ
(n)
ij

(
n

dn,i
− 1

pn

)
Γ
(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds. (E.7)
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All that remains is to show that, P-a.s.
√
nDn,t goes to 0 as n → ∞. Some auxiliary

notation and results first: introduce the random variables χn := supi=1,...,n
npn
dn,i

and recall
the definition of ρn in (E.2). For all i = 1, . . . , n, an application of Bernstein inequality
leads to

P

(
npn
dn,i

≥ 2

)
= P

 1

n

n∑
j=1

ξ̂
(n)
ij ≤ −

1

2

 ≤ exp

(
−1

8

npn
7/6

)
≤ exp(−n3/4),

under the dilution condition (2.15). A union bound on i = 1, . . . , n together with Borel
Cantelli Lemma gives that

lim sup
n→∞

χn ≤ 2, P− a.s. (E.8)

Notice that (
n

dn,i
− 1

pn

)
= − n

dn,i

(
1

n

n∑
k=1

ξ̂
(n)
ik

)
, (E.9)

so that

Dn,t(f) = −
∫ t

0

1

n3

n∑
i,j,k=1

ξ
(n)
ij

n

dn,i
ξ̂

(n)
ik Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds. (E.10)

Write
ξ
(n)
ij

pn
= ξ̂

(n)
ij + 1, so that one obtains

Dn,t(f) = −
∫ t

0

1

n3

n∑
i,j,k=1

npn
dn,i

ξ̂
(n)
ij ξ̂

(n)
ik Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds

−
∫ t

0

1

n3

n∑
i,j,k=1

npn
dn,i

ξ̂
(n)
ik Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds.

Using again (E.9) in the second term above, we obtain

Dn,t(f) = −
∫ t

0

1

n3

n∑
i,j,k=1

npn
dn,i

ξ̂
(n)
ij ξ̂

(n)
ik Γ

(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds

+

∫ t

0

1

n

n∑
i=1

npn
dn,i

(
1

n

n∑
k=1

ξ̂
(n)
ik

)2
 1

n

n∑
j=1

Γ
(
θi,ns , θj,ns

) ∂θf
(
θi,ns
)

ds

−
∫ t

0

1

n2

n∑
i,k=1

ξ̂
(n)
ik

 1

n

n∑
j=1

Γ
(
θi,ns , θj,ns

) ∂θf
(
θi,ns
)

ds,

:= D
(1)
n,t(f) +D

(2)
n,t(f) +D

(3)
n,t(f).

Concentrate on the first term above:

D
(1)
n,t(f) = −

∫ t

0

1

n2

n∑
i,j=1

ξ̂
(n)
ij

(
1

n

n∑
k=1

ξ̂
(n)
ik

)
npn
dn,i

Γ
(
θi,ns , θj,ns

)
∂θf

(
θi,ns
)

ds.

Informally, one expects that npn
dn,i
≈ 1. Nonetheless, this term is still random and one

cannot rule out the unlikely possibility that it takes extreme values. The point is to include

this term within the Grothendieck estimate: applying (3.5) to aij := ξ̂
(n)
ij

(
1
n

∑n
k=1 ξ̂

(n)
ik

)
,

we obtain that, for some constant that depends on (Γ, f), P⊗ P-a.s.∣∣∣∣∣D
(1)
n,t(f)

χn

∣∣∣∣∣ ≤ K sup
si,tj

1

n2

n∑
i,j=1

ξ̂
(n)
ij

(
1

n

n∑
k=1

ξ̂
(n)
ik

)
sitj ≤ K sup

si,tj ,rk

1

n3

n∑
i,j,k=1

ξ̂
(n)
ij ξ̂

(n)
ik sitjrk.
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The main conclusion of this calculation is that one has P⊗ P-a.s.∣∣∣D(1)
n,t(f)

∣∣∣ ≤ KSnχn. (E.11)

Combining (E.11), (3.20) and (E.8), we see that D(1)
n,t(f) is P ⊗ P-a.s. of order C

np2n
, so

that
√
nD

(1)
n,t(f) → 0 as n → ∞, under (2.15). For the term D

(2)
n,t(f), we have the rough

bound
∣∣∣D(2)

n,t(f)
∣∣∣ ≤ χnρ

2
n ‖Γ‖∞ ‖∂θf‖∞ which, by (E.8) and (E.3), is P ⊗ P-a.s. of order

(npn)−1+2ε, so that
√
nD

(2)
n,t(f) is of order n−1/4+3ε/2 under (2.15). Choosing ε < 1/6 gives

that
√
nD

(2)
n,t(f) → 0 as n → ∞. Note that all the previous calculations depend on the

specific choice of test function f . It suffices to take a dense set of such test functions
to realise that limn→∞

√
n(D

(1)
n,t +D

(2)
n,t) ≡ 0, P⊗P-a.s. The last term gives nothing else

than
√
nD

(3)
n,t(f) = −

∫ t

0

〈η̂ns (dθ1,dθ2) , ∂θf(θ1) (Γ ∗ µns ) (θ2)〉ds,

which, P-a.s., converges as a process, in law w.r.t. P to 0 under the present hypotheses
that the initial condition is chosen to be independent on the graph (as one can prove
along the same lines as what has been done before that the limit η̂ ≡ 0 in this case).
Hence, P-a.s.,

√
nDn,t converges in law w.r.t. P to 0 as n→∞.

Turn now to the case of local fluctuations: we only sketch the proof and leave the
main details to the reader. Define first some auxiliary local processes, for l = 1, . . . , n,
aain on A, for n sufficiently large,

µ̃n,ld :=
1

npn

n∑
k=1

ξ
(n)
ik δθk,nd

, (E.12)

ζ̃n,ld :=
√
npn

(
µ̃n,ld − µ

)
. (E.13)

Think of (µ̃n,ld , ζ̃n,ld ) as intermediate steps between (1.5) and (E.5) (resp. (1.7) and (E.6)):
they are empirical measures on the system (E.4) but we are still conserving the same
expected renormalisation npn. The same analysis as for ηnd (based on Itô decomposition
and proof that the remaining terms vanish as n→∞) gives that, under the hypotheses of

Theorem 2.9, on A, and hence P-a.s., the limit (in law w.r.t. P) of
(
ζ̃n,1d , ζ̃n,2d , ηnd

)
remains

the same, i.e. is given by (2.19). An easy calculation relates the two processes ζn,ld and

ζ̃n,ld : for l = 1, 2 and t ∈ [0, T ],

ζn,ld =

√
npn
dn,l

ζ̃n,ld −
√
npn

 1

n

n∑
j=1

ξ̂
(n)
lj

µ

 :=

√
npn
dn,l

(
ζ̃n,ld −D

n,lµ
)
. (E.14)

One can interpret the decomposition (E.14) as the sum of a fluctuation term coming
from the dynamics and a term coming from the fluctuation of the degree itself. From
the easy convergence of the joint renormalised degrees (Dn,1, Dn,2) (in law w.r.t. Pg)

towards some independent (D1, D2) with Dl ∼ N (0, 1 − p), the fact that
√

npn
dn,l
→ 1 as

n→∞, Pg-a.s., and the convergence of (ζ̃n,1d , ζ̃n,2d ) (in law w.r.t. P, almost-surely w.r.t. P),
we deduce immediately the result of Proposition E.1.
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