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Abstract

We introduce and study a notion of duality for two classes of optimization problems
commonly occurring in probability theory. That is, on an abstract measurable space
(Ω,F), we consider pairs (E,G) where E is an equivalence relation on Ω and G is a sub-
σ-algebra of F ; we say that (E,G) satisfies “strong duality” if E is (F ⊗F)-measurable
and if for all probability measures P,P′ on (Ω,F) we have

max
A∈G
|P(A)−P′(A)| = min

P̃∈Π(P,P′)
(1− P̃(E)),

where Π(P,P′) denotes the space of couplings of P and P′, and where “max” and
“min” assert that the supremum and infimum are in fact achieved. The results herein
give wide sufficient conditions for strong duality to hold, thereby extending a form of
Kantorovich duality to a class of cost functions which are irregular from the point of
view of topology but regular from the point of view of descriptive set theory. The given
conditions recover or strengthen classical results, and they have novel consequences
in stochastic calculus, point process theory, and random sequence simulation.
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1 Introduction

The objects of interest in this paper are two optimization problems commonly occur-
ring in probability theory. To state them, we consider two probability measures P and
P′ on an abstract measurable space (Ω,F). For an equivalence relation E on Ω (which,
when viewed as a subset of Ω× Ω, is (F ⊗ F)-measurable) we often aim to solve

minimize 1− P̃(E)

over all couplings P̃ of P,P′,
(EC)
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Duality for equivalence couplings and total variation

which we refer to as the equivalence coupling problem for E or simply the E-coupling
problem. Alternatively, for a sub-σ-algebra G of F , we might aim to solve

maximize |P(A)− P′(A)|
over A ∈ G,

(TV)

which we refer to as total variation problem for G or simply the G-total variation problem.
While one is typically interested in one of (EC) or (TV) for particular applications, our
goal in this paper is to show that, in great generality, they are in fact equivalent.

1.1 Review of prior work

There already exist a few particular instances of strong duality which motivate the
potential success of such a general theory; the most classical example will certainly be
familiar to the reader. It states that, if Ω is Polish space with B(Ω) is its Borel σ-algebra,
and if ∆ = {(ω, ω) ∈ Ω× Ω : ω ∈ Ω} denotes the diagonal in Ω× Ω, we have

max
A∈B(Ω)

|P(A)− P′(A)| = min
P̃∈Π(P,P′)

(1− P̃(∆)) (1.1)

for all Borel probability measures P,P′ on Ω, where Π(P,P′) denotes the space of all
couplings of P and P′. This result has certainly been known for a long time, at least for
countable sets Ω, so its exact source is difficult to track down [50, Chapter I.7].

A second known example concerns the space of binary sequences Ω := {0, 1}N with
the Borel σ-algebra of its product topology, and E0 the equivalence relation of eventual
equality. (Actually, {0, 1} can be replaced with any Polish space.) A coupling of two
Borel probability measures P,P′ on Ω is called successful if E0 has probability one, that
is, if the two random sequences are eventually equal almost surely. It was shown in a
series of works [58, 27, 70, 35], culminating in [34], that the existence of a successful
coupling of two Borel probability measures P,P′ on Ω is closely related to P and P′

assigning the same probability to all elements of the tail σ-algebra T . More precisely
[34, Theorem 2.1], one has

max
A∈T
|P(A)− P′(A)| = 0 if and only if min

P̃∈Π(P,P′)
(1− P̃(E0)) = 0, (1.2)

for all Borel probability measures P,P′ on Ω.
A third example, from ergodic theory, shows that eventual equality and the tail

σ-algebra in (1.2) can be replaced with the analogous objects for the notion of shift-
invariance. Adopting the notation of the preceding paragraph, write I for the shift-
invariant σ-algebra and ES for the equivalence relation of equality modulo shifts. A cou-
pling of two probability measures P,P′ on Ω is called a successful shift-coupling if ES
has probability one, that is, if the random sequences are almost surely equal modulo a
random shift. Then, it was shown [2] that one has

max
A∈I
|P(A)− P′(A)| = 0 if and only if min

P̃∈Π(P,P′)
(1− P̃(ES)) = 0, (1.3)

for P,P′ any two Borel probability measures on Ω.
Subsequent work also saw many generalizations of (1.3). For example, in [29] it is

shown that a similar statement holds for measurable actions of very many groups and
semigroups on Polish spaces. There is also [65] which generalizes this fact to the setting
of cardinal algebras. We also have [46, Theorem 1] which establishes an analogous
statement for unimodular random networks, where the shift operation is replaced by
a root-change operation; this example is particularly interesting since the underlying
measurable space is not standard Borel [46, Proposition 1].
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Duality for equivalence couplings and total variation

The most general formulation of an existing result in the spirit of strong duality that
we are aware of is [59, Theorem 1] which proves, as a consequence of a much more
general result on constrained versions of the Skorokhod representation theorem, the
following: If two Borel probability measures on a metric space S agree on the sub-σ-
algebra generated by a measurable function g : S → T for a sufficiently nice space T ,
then they can be coupled together so that their images under g are almost surely equal.
This is a sort of strong duality statement for equivalence relations on S that can be
represented as pullbacks of ∆ in T by g; however, the regularity conditions required on
T mean this result does not recover strong duality for many examples of interest (for
example, the pairs (E0, T ) and (ES , I) above).

1.2 Relation to Kantorovich duality

The theory of Monge-Kantorovich optimal transport and Kantorovich duality can also
be seen as an important precedent for our work; see [74, 73] for the standard background,
and [61] for a more comprehensive treatment which is better suited to our setting. Since
(EC) is exactly a Monge-Kantorovich optimal transport problem with cost c := 1− 1E , it
is natural to try to prove strong duality as a consequence of some sufficiently general
theorem in the vast literature on Kantorovich duality [74, 73, 45, 62, 64, 5, 6]. In this
subsection we address the limitations of such an approach.

First, we consider the case that Ω is Polish and E is closed in Ω× Ω. Then the cost
function c = 1− 1E is lower-semicontinuous, so a standard form of Kantorovich duality
[74, Theorem 5.10] gives

max
f,f ′

(∫
Ω

f dP+

∫
Ω

f ′ dP′
)

= min
P̃∈Π(P,P′)

(1− P̃(E)),

where the right side is achieved and the left side is taken over, say, all bounded measur-
able f, f ′ : Ω→ R with f ⊕ f ′ ≤ 1− 1E . In fact, it is standard that one can equivalently
take the maximum over function classes which are assumed to have further structure,
hence massaging the left side in the following ways: first, one can assume that f is
P-integrable and c-convex; second, one can assume that f ′ is equal to f c, the c-transform
of f ; third, one can use that c satisfies the triangle inequality (this follows from E being
transitive) to get that f c = −f ; fourth, one can use that c satisfies the bounds 0 ≤ c ≤ 1

to assume that f satisfies the bounds 0 ≤ f ≤ 1; fifth, one can use that c is symmetric
(this follows from E being reflexive) to replace the parentheses with absolute values.
At this point some straightforward additional analysis shows that one can take f to be
of the form 1A for A ranging over a suitable sub-σ-algebra G of F . (Alternatively, one
can begin by directly appling a form of Kantorovich duality which is specifically tailored
to cost functions which only take on values in {0, 1}, like [73, Theorem 1.27].) Thus,
Kantorovich duality implies that closed equivalence relations satisfy our strong duality.

However, for the applications most of interest in probability theory, one needs to
consider the case that Ω is Polish and E is Fσ in Ω × Ω. Since c = 1 − 1E is no longer
guaranteed to be lower semicontinuous, the standard form of Kantorovich duality does
not apply. Nonetheless, one has [61, Corollary 2.3.9] for all measurable costs, which
guarantees

sup
f,f ′

(∫
Ω

f dP+

∫
Ω

f ′ dP′
)

= inf
P̃∈Π(P,P′)

(1− P̃(E)),

where again the left side is taken over all bounded measurable f, f ′ : Ω → R with
f ⊕ f ′ ≤ 1− 1E . While this may give the impression that strong duality is within reach,
there are two crucial ways in which we become stuck: For one, there are not sufficient
results in the literature which guarantee that the left side can be massaged, as in the
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preceding paragraph, into the form of a total variation norm; indeed, steps three, four,
and five can be executed similarly, but steps one and two are hard to rigorosouly justify,
due to the fact that classical approximation arguments break down when c lacks the
appropriate topological regularity. For another, which we explain further in the next
paragraph, the existence of primal minimizers is not guaranteed. Thus, existing forms
of Kantorovich duality do not appear to imply that Fσ equivalence relations satisfy our
strong duality for a suitable sub-σ-algebra G of F .

In our opinion, the question of the existence of primal minimizers has received
surprisingly little attention. In the classical setting where Ω is a Polish space and the
cost c is lower semi-continuous, existence of course follows immediately from topological
considerations. Yet, many authors do not attempt to expand the scope of existence
results; for instance, in [6] it is stated: “If c fails to be lower semi-continuous, there
is little reason why a primal optimizer should exist”. Nonetheless, there are, as far
as we know, exactly two known results outside the classical setting: The first is [61,
Remark 2.12(a)] in which it is shown that primal minimizers always exist if one works in
the world of finitely-additive probability measures, but this is not useful to us since we
are interested in the more standard setting of countably-additive probability measures.
The second is [61, Theorem 2.3.10] (originally proven in [45]) in which it is shown that
primal minimizers exist for costs which are limits of regular costs, with respect to a
certain metric; unfortunately, this condition is still not general enough to cover our
setting of interest.

For all these reasons, the state-of-the-art technology on Kantorovich duality does not
appear to imply our notion of strong duality in a sufficiently general setting. Nonetheless,
our strong duality can certainly be seen as a form of Kantorovich duality, at least in a
formal sense. In this way, our positive results can be seen as rather surprising in that
they establish a form of Kantorovich duality for highly irregular costs. From the point
of view of optimal transport, our results can be succinctly summarized as follows: One
can exchange topological regularity (the cost function is lower semi-continuous) for
descriptive set-theoretic regularity (the cost function is supported on an equivalence
relation) while maintaining a form of Kantorovich duality.

1.3 Statement of main results

Having established these precedents for duality between (EC) and (TV), we now state
the main results of the paper. Throughout, let (Ω,F) be an abstract measurable space.

Write P(Ω,F) for the set of probability measures on (Ω,F). For P,P′ ∈ P(Ω,F),
write Π(P,P′) for the space of all couplings of P,P′, that is, all probability measures on
(Ω× Ω,F ⊗F) with marginals given by P and P′, respectively. Then, we consider pairs
(E,G), where E is an equivalence relation on Ω and where G is a sub-σ-algebra of F . We
say that E is measurable if E ∈ F ⊗ F when viewed as a subset of Ω × Ω, and we say
that a pair (E,G) satisfies strong duality if E is measurable and if we have

max
A∈G
|P(A)− P′(A)| = min

P̃∈Π(P,P′)
(1− P̃(E)) (1.4)

for all P,P′ ∈ P(Ω,F); the appearence of “max” and “min” assert that the supremum
and infimum are both achieved.

Our main results, as is the common practice in mathematical optimization, come in
the form of sufficient conditions for strong duality to hold. To state them, we need to
introduce an important simplification. For an equivalence relation E on Ω, define the
sub-σ-algebra

E∗ := {A ∈ F : ∀(ω, ω′) ∈ E : (ω ∈ A⇔ ω′ ∈ A)}
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of F , and, for sub-σ-algebra G of F , define the equivalence relation

G∗ := {(ω, ω′) ∈ Ω× Ω : ∀A ∈ G : (ω ∈ A⇔ ω′ ∈ A)}

on Ω. (An equivalent definition of G∗ which has been extensively studied in classical works
on the existence of regular conditional distributions [11, 8, 37] is G∗ =

⋃
H is a G-atom(H ×

H), where by a G-atom we mean an intersection of all events in G containing a given
point.) It turns out (Lemma 3.3) that ∗ is an antitone Galois correspondence which plays
a central role in the notion of strong duality.

With the correspondence in hand, we can state our first main result:

Theorem 3.13. If (Ω,F) is a standard Borel space and if a pair (E,G) satisfies E ⊆
G∗,G ⊆ E∗, and E ∈ G ⊗ G, then (E,G) satisfies strong duality.

While the conditions E ⊆ G∗ and G ⊆ E∗ are usually trivial to verify, the condition
E ∈ G ⊗G is more complicated. In fact, while this condition appears to be rather general,
there are important examples of pairs satisfying strong duality for which this result
does not apply; notably, the tail equivalence relation and the tail σ-algebra (E0, T ) given
above. This suggests that strong duality is a more general phenomenon, and this leads
us to our second main result:

Theorem 3.14. If (Ω,F) is a standard Borel space and if equivalence relations E1 ⊆
E2 ⊆ · · · on Ω and sub-σ-algebras G1 ⊇ G2 ⊇ · · · of F are such that for each n ∈ N the
pair (En,Gn) satisfies strong duality, then the pair (

⋃
n∈NEn,

⋂
n∈N Gn) satisfies strong

duality.

It is now useful to make a few remarks about these main theorems. First, we note
that Theorem 3.13 and Theorem 3.14 are together powerful enough to establish strong
dualizability for most “reasonable” pairs of equivalence relations and sub-σ-algebras
appearing in probability theory. To illustrate this, we investigate three major applica-
tions (in stochastic calculus, point process theory, and random sequence simulation) in
Section 2. Additionally, we show (Proposition 3.9) that many existing results in ergodic
theory can be immediately upgraded into results about strong duality. For the remaining
remarks, let (Ω,F) denote a standard Borel space, (E,G) a pair satisfying strong duality,
and P,P′ ∈ P(Ω,F) any probability measures.

Second, it is crucial to emphasize that the statements and proofs of our main results
are purely measure-theoretic. Even though expanding the generality to this setting
forces one to leave behind many useful topological tools, our proofs reveal that only a
few non-elementary results (notably, the existence of regular conditional probabilities,
the Hahn-Jordan decomposition for finite signed measures, and some basic aspects of
Hilbert spaces) are needed. Keeping this generality in mind, it is highly non-trivial
that optimizers can even be guaranteed to exist; since compactness arguments are not
available, we must instead directly construct the putative optimizers and show that they
have the desired properties. Thus, it is exactly this measure-theoretic perspective that
allows us to push beyond the reach of standard Kantorovich duality.

Third, we comment on the structure of solutions to (EC) and (TV). Indeed, for (EC),
the objective P̃ 7→ 1−P̃(E) is affine and the feasible region Π(P,P′) is convex, so it follows
that its solution set is convex and, by strong duality, non-empty; in fact, we have an exact
characterization of minimizers (Proposition 3.12), which largely parallels a classical
characterization of primal minimizers for (1.1). For (TV), it is known (Lemma 3.11) that
maximizers always exist, even without the assumption of strong duality; however, there
does not appear to be a useful characterization of maximizers. We also remark that,
while our results give a very wide guarantee of the existence of solutions, concrete
settings of interest will generally require further analysis in order to show that there
exist solutions with desirable properties.
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We now consider the perspective that one of (EC) and (TV) is a given primal problem
and that one seeks a suitable dual problem of the opposite form. As we outline in this
last part, both perspectives are possible in great generality, although the situation is not
completely symmetric.

On the one hand, we consider (Subsection 3.6) the setting that an equivalence relation
E on Ω is given, and that one seeks a suitable sub-σ-algebra G of F such that (E,G)

satisfies strong duality. In this setting, it can be shown (Proposition 3.15) that (E,E∗)

satisfies strong duality as soon as (E,G) is satisfies strong duality for some sub-σ-algebra
G of F . Since E∗ is thus a canonical choice of G, we can say that E itself is strongly
dualizable whenever the pair (E,E∗) satisfies strong duality. Let us also recall a standard
term from descrptive set theory, that an equivalence relation E on a standard Borel space
(Ω,F) is called smooth if there exists a standard Borel space (X,X ) and a measurable
map φ : (Ω,F) → (X,X ) such that for all ω, ω′ ∈ Ω we have (ω, ω′) ∈ E if and only if
φ(ω) = φ(ω′). Then we have the following:

Corollary 3.18. On a standard Borel space, any equivalence relation that can be written
as a countable increasing union of smooth equivalence relations is strongly dualizable.

An equivalence relation that can be written as a countable increasing union of smooth
equivalence relations is typically called hypersmooth in descriptive set theory. Indeed,
many equivalence relations encountered in probability theory are hypersmooth.

On the other hand, we consider (Subsection 3.7) the setting that a sub-σ-algebra G of
F is given, and that one seeks a suitable equivalence relation E on Ω such that (E,G)

satisfies strong duality. As before we still say that G itself is strongly dualizable whenever
the pair (G∗,G) satisfies strong duality. This setting is slightly more complicated than
the previous, since G being strongly dualizable need not be equivalent to the existence
of some E such that (E,G) satisfies strong duality, and since there exist (Example 3.20)
sub-σ-algebras that are not stongly dualizable. Nonetheless, we have the following:

Corollary 3.23. On a standard Borel space, any sub-σ-algebra that can be written as
a countable decreasing intersection of countably-generated sub-σ-algebras is strongly
dualizable.

A sub-σ-algebra that can be written as a countable decreasing intersection of
countably-generated sub-σ-algebras is sometimes called a tail σ-algebra in probability
theory [22]. (Note that we say “a tail σ-algebra” rather than “the tail σ-algebra”, in
order to distinguish the general case from the particular example of T .) Indeed, many
sub-σ-algebras encountered in probability theory are tail σ-algebras.

Finally, we note that, in addition to recovering some known results, our main the-
orems have novel consequences in a few probabilistic settings. Most importantly, we
obtain a characterization of the solution to the so-called “Brownian germ coupling
problem” for one-dimensional diffusions (Theorem 2.3) which complements recent work
in [25, 75]. We also obtain (Corollary 2.6) some partial results on couplings of point
processes; these results are simple (and perhaps already known) in the setting of Poisson
point processes, but our robust method of proof allows us to conclude the same about
the more complicated setting of determinantal point processes. Our work also yields
(Corollary 2.10) a non-constructive proof of the existence of some interesting randomized
sorting algorithms, but many questions remain.

1.4 Future work

We now outline a few open questions related to this work.
A main open question remaining at the end of this work concerns the generality of

strong duality. That is, can we find necessary and sufficient conditions for a pair (E,G) to
satisfy strong duality? While the sufficient conditions of this paper are already powerful
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enough to prove strong duality for most applications of interest to probabilists, we have
two motivations for posing the question more generally.

The first motivation concerns the question of strong dualizability for equivalence
relations. In this case, we have shown that all hypersmooth equivalence relations
are strongly dualizable, and also (Corollary 3.19) that all countable Borel equivalence
relations are strongly dualizable. Additionally, we were unable, despite trying for quite
some time, to come up with a single example of a measurable equivalence relation which
is not strongly dualizable. Thus, from the perspective of descriptive set theory, the
following is natural:

Conjecture 1.1. On a standard Borel space, all Borel equivalence relations are strongly
dualizable.

The second motivation concerns the question of strong dualizability for sub-σ-algebras.
Indeed, in the general theory of couplings, one has Thorisson’s “Working Hypothesis”
from [70] that “Each meaningful distributional relation should have a coupling counter-
part”. The present results extend the existing work of [59] in developing the theme that,
if two probability measures agree on a given sub-σ-algebra, then they can be coupled to
be almost surely equivalent under a suitable equivalence relation. While there indeed
exist sub-σ-algebras which are not strongly dualizable, we believe the present work
shows that the term “meaningful” in fact excludes very few cases.

Another possible avenue for future work concerns a notion of duality which lies in
between weak duality and strong duality; that is, that a pair (E,G) has the property that
we have

max
A∈G
|P(A)− P′(A)| = inf

P̃∈Π(P,P′)
(1− P̃(E))

for all probability measures P,P′ ∈ P(Ω,F). (Recall that the supremum on the left is
always achieved, by Lemma 3.11.) While this property is likely interesting in its own
right, we did not pursue it in the present work, since most interesting applications to
probability require the infimum to be realized.

Additionally, several open questions arise when one interprets the present results in
the setting of optimal transport theory. That is, we can consider slight modifications to
the primal problem (EC) and ask whether there exists a suitable modification to the dual
problem (TV) such that one maintains strong duality. For one, we can fix a family of, say,
bounded measurable functions {fi}i∈I from Ω× Ω to R and consider the problem

minimize 1− P̃(E)

over all couplings P̃ of P,P′

subject to

∫
Ω×Ω

fi dP̃ = 0 for all i ∈ I.

This constraint encodes, for example, the so-called problems of martingale optimal
transport [4, 7] and optimal transport under symmetry [51]. (See [76].) Another
possibility is to consider, for a parameter ε > 0, the regularized problem

minimize 1− P̃(E) + εH(P̃ |P⊗ P′)
over all couplings P̃ of P,P′

where H(P̃ |P ⊗ P′) denotes the relative entropy. This is the analog of the so-called
problem of entropically-regularized optimal transport which has been extensively studied
in many recent works [54, 30].

Lastly, we pose the question of whether one can use Kantorovich duality alone to prove
strong duality for a sufficiently rich class of examples. As we have seen in Subsection 1.2,
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this is not straightforward from existing literature, but it still seems possible to sharpen
various approximation arguments in order to conclude. Interestingly, it appears that
arguments based on Kantorovich duality will lead to slightly different results than the
arguments herein. For example, we believe that some clever applications of Kantorovich
duality should allow one to prove:

Conjecture 1.2. On a Polish space, all Fσ equivalence relations are strongly dualizable.

Strictly speaking, this result is not implied by Corollary 3.18, since there exist
equivalence relations which can be written as a countable increasing union of closed sets
but not as an countable increasing union of closed equivalence relations (for instance,
the shift equivalence relation ES , and also many orbit equivalence relations). Yet, for
most applications, both Corollary 3.18 and Conjecture 1.2 apply.

2 Applications

In this section we apply our main results to three different areas of probability theory,
and we hope that our notion of strong duality and our sufficient conditions will inspire
similar work in the future. Throughout this section, if Ω is a Polish space, we write P(Ω)

for the space of Borel probability measures on Ω.

2.1 Stochastic calculus

Our first application concerns stochastic calculus, so for this subsection we assume
that the reader has familiarity with the basic theory, as outlined in, say, [63]. For the
setting, let us write Ω := C0([0,∞),R) for the usual Wiener space of continuous real-
valued functions vanishing at zero, endowed with the topology of uniform convergence
on compact sets. Also writeW for the Wiener measure on Ω, that is, the law of a standard
Brownian motion.

A common question in the theory of stochastic processes is that of determining
when two stochastic processes behave similarly at small time scales. For example, it is
known that any process which is locally absolutely continuous with respect to Brownian
motion must have the local limit of a Brownian motion [21, Lemma 4.3] and that “the
compound Poisson component [of the Lévy-Itô decomposition] does not contribute to
the initial sample path behaviour of a Lévy process” [9, p. 15]. Another well-studied
notion of small-time similarity (which is especially important from the point of view of
mathematical finance) is that of separating times [72, 24]: For each pair of stochastic
processes started at the same point, there exists a unique stopping time such that their
laws are mutually absolutely continuous before this time and mutually singular after it;
in fact, exact forms of the separating times are known for pairs of processes such as
Bessel processes, Lévy processes, and general diffusions.

Our object of interest in this application is a somewhat different notion of small-time
similarity. For the sake of simplicity, we focus on the case of comparing an arbitrary
continuous process to a Brownian motion, in the following sense:

Definition 2.1. A probability measure P ∈ P(Ω) is said to have the Brownian germ
coupling property (Brownian GCP) if one can construct a probability space (Ω̃, F̃ , P̃) on
which are defined

(i) a standard Brownian motion B = {Bt}t≥0,

(ii) a stochastic process X = {Xt}t≥0 with law P, and

(iii) a random time T with P̃(T > 0) = 1,

such that P̃(Xt = Bt for all 0 ≤ t ≤ T ) = 1. A stochastic process is said to have the
Brownian GCP if its law has the Brownian GCP.
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In words, a stochastic process with the Brownian GCP is a process which can be
coupled to almost surely travel alongside a Brownian motion for some positive amount of
time. This notion of local Brownianity appears rather strong, and, apart from trivialities,
it is not at all obvious how to construct stochastic processes satisfying this property.
Thus, we were greatly intrigued by the results of [25], which show that all Brownian
motions with drift satisfy the Brownian GCP. This suggests that the class of stochastic
processes satisfying the Brownian GCP may actually be quite rich; our present goal is to
understand exactly how rich it is.

Our major contribution is to show that the duality theory presents a robust approach
to this problem. Towards this end, if we write ω = {ωt}t≥0 for the canonical coordinate
process in Ω and if we define the usual germ σ-algebra via

F0+ :=
⋂
t>0

σ(ωs : 0 ≤ s ≤ t),

then we are led to the following fundamental result:

Proposition 2.2. A probability measure P ∈ P(Ω) has the Brownian GCP if and only if
we have P(A) = W(A) for all A ∈ F0+.

Proof. It can be easily checked that the equivalence relation

E0+ :=
⋃
t>0

{(ω, ω′) ∈ Ω× Ω : {ωs}0≤s≤t = {ω′s}0≤s≤t}

is hypersmooth and satisfies E∗0+ = F0+, hence by Corollary 3.18 that (E0+,F0+) satisfies
strong duality. Thus, we claim that a probability measure P ∈ P(Ω) has the Brownian
GCP if and only if there exists some coupling P̃ ∈ Π(W,P) with P̃(E0+) = 1. For
one direction, observe that, if P satisfies the GCP, then the joint law P̃ of (B,X) is
exactly a coupling P̃ ∈ Π(W,P) with P̃(E0+) = 1. For the other direction, suppose
that P̃ ∈ Π(W,P) is some coupling with P̃(E0+) = 1. We claim that the desired space
(Ω̃, F̃ , P̃) is given by Ω̃ := Ω× Ω, and F̃ := B(Ω)⊗ B(Ω), and P̃ as given. Indeed, one can
define T := sup{t ≥ 0 : ωs = ω′s for all 0 ≤ s ≤ t}, which is clearly a measurable function
of the pair (ω, ω′). Thus, the result holds by the definition of strong duality.

On the one hand, this provides an authoritative answer to the question of which
stochastic processes have the Brownian GCP. On the other hand, it remains to show
that this equivalent condition is easy to verify in some concrete cases. In fact, the value
of Proposition 2.2 is that the classical tools of stochastic calculus have very much to
say about the germ σ-algebra F0+, and thus many soft arguments suddently become
available to us.

As an illustration of this, we have a simple and comprehensive characterization of the
Brownian GCP for the case of time-homogeneous one-dimensional diffusions within the
realm of classical conditions ensuring the existence of strong solutions to a given SDE
[63, Chapter IX, Theorem 2.1]. Since the Brownian GCP is spatially translation-invariant
and temporally local, we lose no generality in restricting our attention to diffusions
started at the origin and viewed on a finite time interval.

Theorem 2.3. If µ : R→ R and σ : R→ [0,∞) are Lipschitz continuous, then the strong
solution X = {X}0≤t≤1 of the SDE{

dXt = µ(Xt)dt+ σ(Xt)dBt for 0 ≤ t ≤ 1

X0 = 0,
(2.1)

has the Brownian GCP if and only if σ ≡ 1 on some neighborhood of 0.
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Proof. For one direction, let (Ω̃, F̃ , P̃) be a probability space witnessing the fact that X
satisfies the Brownian GCP. Then consider the event

A :=
⋃
n∈N
{ω ∈ Ω : 〈ω, ω〉t = t for all [0, 2−n]}

where 〈ω, ω〉 denotes the Itô quadratic variation of ω. Since A ∈ F0+ and P̃(B ∈ A) = 1,
Proposition 2.2 implies that we must have P̃(X ∈ A) = 1. Now note that the quadratic
variation of X is given by 〈X,X〉t =

∫ t
0
(σ(Xs))

2 ds, so we conclude that there almost
surely exists some N ∈ N with σ(Xs) = 1 for all 0 ≤ s ≤ 2−N . In particular, we conclude
σ(0) = 1.

Next we define the random times τ− := inf{t > 0 : Xt < 0} and τ+ := inf{t > 0 :

Xt > 0} on (Ω̃, F̃ , P̃), which are stopping times with respect to the natural filtration of
X. We recall that the standard small-time approximation for diffusions with Lipschitz
coefficients guarantees that Xt/

√
t converges in distribution as t → 0 to a Gaussian

random variable with mean 0 and variance σ(0) = 1, hence

P̃(τ− = 0) = lim
t→0

P̃(Xs < 0 for some 0 ≤ s ≤ t)

≥ lim inf
t→∞

P̃(Xt < 0)

= lim inf
t→∞

P̃

(
Xt√
t
< 0

)
=

1

2
> 0.

By Blumenthal’s zero-one law applied to the strong Markov process X, we see that
P̃(τ− = 0) > 0 implies P̃(τ− = 0) = 1. The same argument applies to show P̃(τ+ = 0) = 1.

Finally, we put all the pieces together. By the almost sure continuity of X and the fact
that P̃(τ− = 0) = P̃(τ+ = 0) = 1, we conclude that {Xs : 0 ≤ s ≤ T} contains an open
neighborhood of 0 for any random variable T which is almost surely strictly positive.
Since we already know that there exists an N-valued random variable N with σ(Xs) = 1

for all 0 ≤ s ≤ 2−N , we conclude that we have σ ≡ 1 on some neighborhood of 0.
For the other direction, suppose that σ ≡ 1 on some neighborhood U of 0. Then get

reals a, b ∈ R with a < b and 0 ∈ (a, b) ⊆ [a, b] ⊆ U . Since (2.1) admits strong solutions,
we can construct X = {Xt}t≥0 on the probability space (Ω,B(Ω),W) with its natural
filtration {Ft}t≥0 defined via Ft := σ(ωs : 0 ≤ s ≤ t) for t ≥ 0. We write E for the
expectation on this space.

To begin, we claim that the exit time τXa,b := inf{t > 0 : Xt /∈ [a, b]} has finite
exponential moments of all orders. To see this, define m := max−a≤x≤b µ(x), which is
finite by the continuity of µ on [a, b]. Since we have µ(Xt) ≤ m for all 0 ≤ t ≤ τXa,b almost
surely, it follows that one can construct Bm = {Bmt }t≥0 a Brownian motion with drift m
on the same probability space in such a way that we have Xt ≤ Bmt for all 0 ≤ t ≤ τXa
almost surely. Then define the stopping time τB

m

a := inf{t > 0 : Bmt ≤ a}, and note that
we have τXa,b ≤ τB

m

a almost surely. It is known that τB
m

a has finite exponential moments

of all orders, so the same must be true of τXa,b.
In particular, we have shown

E

[
exp

(
1

2

∫ τX
a,b

0

(µ(Xs))
2 ds

)]
≤ E

[
exp

(
m2

2
τXa,b

)]
<∞.

This stopping-time version of Novikov’s condition implies a stopping-time version of
Girsanov’s theorem which states that the law of X is mutually absolutely continuous
with the law of X ′ = {X ′t}t≥0, the strong solution to the SDE{

dX ′t = σ(X ′t)dBt for 0 ≤ t ≤ 1

X ′0 = 0,
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when restricted to the stopped σ-algebra Fτa,b
⊆ B(Ω), for τa,b := inf{t > 0 : ωt /∈ [a, b]}.

Importantly, note F0+ ⊆ Fτa,b
by the continuity of sample paths. Since Blumenthal’s

zero-one law implies that all events in F0+ have probability in {0, 1} under the laws
W(X ∈ ·) and W(X ′ ∈ ·), we conclude W(X ∈ A) = W(X ′ ∈ A) for all A ∈ F0+.

Finally, observe that σ ≡ 1 on U implies that X ′ is a standard Brownian motion
up to the stopping time τU := inf{t > 0 : X ′ /∈ U}. Since τU > 0 by the continuity of
sample paths, this means X ′ has the Brownian GCP. Now by Proposition 2.2 we get
W(X ′ ∈ A) = W(A) for all A ∈ F0+, and, consequently, W(X ∈ A) = W(A) for all
A ∈ F0+. Therefore, one last application of Proposition 2.2 implies that X has the
Brownian GCP.

Observe that Theorem 2.3 recovers the result of [25], since Brownian motion with
drift is certainly included as a special case. However, the generality comes at a cost, since
our result is essentially non-constructive. In contrast, the work in [25] is satisfyingly
concrete, being based on William’s excursion theory for Brownian motions with drift.
Thus, we would be greatly interested, for certain diffusions, in finding concrete couplings
alongside a Brownian motion such that they agree for some positive random initial
amount of time. For instance, is this possible for a standard Brownian motion and a
standard Ornstein-Uhlenbeck process?

2.2 Point process theory

Our second application concerns point processes, for which [41] is the standard
reference. To set things up, fix k ∈ N with k ≥ 1, and let Ω denote the space of
non-negative, locally finite, integer-valued, simple Borel measures on Rk. It is known
[60, Proposition 1.11] that Ω is a standard Borel space when endowed with the Borel
σ-algebra of the weak topology. (In fact, Rk can be replaced with any locally compact
Polish space). An element of Ω is often called a configuration, and it can equivalently be
regarded as a locally finite countable subset of Rk. Each P ∈ P(Ω) is called (the law of)
a point process.

The Poisson point processes are of course the simplest family of point processes,
although recent attention has mostly turned to point processes exhibiting strong spatial
correlations. Recent work has significantly improved understanding of such aspects
as Palm conditioning [31, 17, 57], number rigidity [33, 32], connections to infinite-
dimensional stochastic differential equations [55, 38], and more. Much of this progress
concerns the so-called determinantal point processes (including those arising from the
Gamma, Airy, Bessel, and Bergman kernels) for which many analytic and algebraic
properties form essential tools; however, there have also been significant advances in
the more general setting, notably including the point process of zeros of the standard
planar Gaussian analytic function.

The statements of our results require some notation and terminology. First, a finite
collection of distinct points x ∈ (Rk)` will be called point set and ` ∈ N will be called
its length, denoted |x|; here we use the convention that ∅ is the unique point set with
|∅| = 0. Next, for a point process P ∈ P(Ω) and a point set x = (x1, . . . , x`) ∈ (Rk)`,
we write Px for the reduced Palm measure of P under x; roughly speaking, the point
process Px is the result of first conditioning P to contain the points x1, . . . , x` ∈ Rk and
then deleting them from the resulting configuration. Then we introduce the following:

Definition 2.4. With respect to a point process P ∈ P(Ω), two points sets x and x′

are said to have similar potential if there exists a coupling ωx and ωx′ of Px and Px′ ,
respectively, on a probability space (Ω̃, F̃ , P̃) such that we have P̃(‖ωx−ωx′‖TV <∞) = 1.

Let us now provide some interpetation for this notion and this terminology. Indeed,
consider taking a sample ω from P and transforming it into a sample ωx from Px. One

EJP 28 (2023), paper 132.
Page 11/33

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1016
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Duality for equivalence couplings and total variation

of course has to modify some subset of the points of ω to achieve this, but the amount
of total modification necessary depends on x; if it is extremely rare that x appears in ω
then many points will need to be moved, and if it is extremely common that x appears
in ω then not so many points will need to be moved. Now let us consider the effect of
conditionings on two different point sets, x and x′. If x is much rarer than x′, then many
points need to be moved in order to get from ω to ωx while not so many points need to
be moved in order to get from ω to ωx′ . Since the condition ‖ωx − ωx′‖TV <∞ exactly
means that the configurations ωx and ωx′ differ only in finitely many points, this means
that x and x′ have a similar probability of appearing in ω.

Alternatively, one can view conditioning on containing x as adding some amount of
potential energy to the configuration ω; if the amount of energy added is very high the
system is likely to find a completely different equilibrium, and if the amount of energy
added is very low the system is likely to stay close to its current equilibrium. Thus, the
condition ‖ωx−ωx′‖TV <∞ can be interpreted as saying that x and x′ add a comparable
amount of potential energy to the system ω. In fact, the idea to consider the energy
added to a point process by (Palm) conditioning is not a new one; this is usually made
quantitative via the analysis of so-called logarithmic derivatives [16], but only for the
case of (Palm) conditioning on single points.

The contribution of this subsection is to show that the similarity of potentials is
closely related, via our duality theory, to many aspects of the existing literature. In order
to do this, we need to introduce some notation. For a compact set B ⊆ Rk, let us write
FB := σ(ω(U \ B) : U ⊆ Rk open) for the σ-algebra generated by the configuration ω

outside B. Then we define the tail σ-algebra

T :=
⋂

B⊆Rk

B compact

FB ,

and we prove the following:

Proposition 2.5. Two point sets x and x′ have similar potential with respect to a point
process P ∈ P(Ω) if and only if Px(A) = Px′(A) for all A ∈ T .

Proof. It can be easily shown that the equivalence relation

E :=
⋃

B⊆Rk

B compact

{(ω, ω′) ∈ Ω× Ω : ω(U \B) = ω(U \B) for all U ⊆ Rk open}

is hypersmooth and satisfies E∗ = T , hence by Corollary 3.18 that (E, T ) satisfies strong
duality. Moreover, we observe that two point sets x and x′ have similar potential with
respect to a point process P if and only if there exists a coupling P̃ ∈ Π(Px,Px′) with
P̃(E) = 1. Therefore, the result follows from the definition of strong duality.

To push this one step further, we provide the following consequence for determinantal
point processes.

Corollary 2.6. If P is a determinantal point process and the point sets x and x′ are such
that the reduced Palm measures Px and Px′ are mutually absolutely continuous, then x

and x′ have similar potential with respect to P.

Proof. By the Shirai-Takahashi theorem [66, Theorem 1.7], reduced Palm measures of
determinantal point processes are themselves determinantal point processes. Moreover,
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we have the the Osada-Osada-Lyons zero-one law1 which states that T is trivial under
every determinantal point processes. Consequently, Px and Px′ being mutually absolutely
continuous implies that we must have Px(A) = Px′(A) for all A ∈ T . Thus, the proof is
completed by applying Proposition 2.5.

To close this subsection, we explore some consequences of combining Corollary 2.6
with existing literature. First, we note that many point processes of interest have
the property that the reduced Palm measures Px and Px′ are mutually absolutely if
and only if the point sets x and x′ satisfy |x| = |x′|: indeed, this is the case for many
determintal point processes on R with integrable kernels [15, Theorem 1.4], for the
Ginibre point process [57, Theorem 1.1], and for certain determinantal point processes
on C associated to Hilbert spaces of entire functions [18, Theorem 1.1]. Consequently,
all of these point processes have the property that any two point sets have similar
potential whenever they have the same length. For a somewhat different example, we
recall that certain determinantal point processes on the unit disc D ⊆ C associated
to Hilbert spaces of holomorphic functions have the property that the reduced Palm
measures of any two point sets are mutually absolutely continuous [18, Theorem 1.4].
Thus, these determinantal point processes have the property that all points sets have
similar potential to each other, under no assumption on their lengths.

2.3 Random sequence simulation

Our final application concerns simulating random sequences with complicated depen-
dency structures. For this section, let X be a Polish space, and set Ω := XN with the
Borel σ-algebra of the product topology on Ω. We write ω = {ωn}n∈N for an arbitrary
element of Ω.

Our motivation is to try to understand which laws of random sequences can be simu-
lated by applying a random sorting algorithm to an independent identically distributed
sequence. Towards making this precise, let us define some objects of interest. First,
write S for the group of all permutations of N (that is, all bijections σ : N → N), and
let us endow S with the topology of pointwise convergence. Then for n ∈ N, write
Πn for the subgroup of all permutations σ ∈ S with σ(i) = i for i > n; these are the
permutations that fix all elements except possibly those in {1, . . . , n}. We also define
Π∞ :=

⋃
n∈N Πn ⊆ S; it is known that the topology inherited from S makes Π∞ into a

Polish group [44, Theorem 6.26]. We also let Π∞ act on Ω in the natural way, by setting
σ · {ωn}n∈N := {ωσ−1(n)}n∈N. In particular, observe that the action is jointly continuous
when viewed as a map a : Π∞ × Ω→ Ω. When we wish to emphasize that one argument
is fixed, we will equivalently write a(σ, ω) =: aω(σ) =: aσ(ω) for ω ∈ Ω and σ ∈ Π∞.

Now we introduce our main object of interest.

Definition 2.7. For P,P′ ∈ P(Ω), an algorithmic reassortment from P to P′ is a transi-
tion kernel K : Ω× B(Π∞)→ [0, 1] such that we have

P′(A) =

∫
Ω

K(ω, a−1
ω (A)) dP(ω)

for all A ∈ B(Ω); we say that P′ is an algorithmic reassortment of P if there exists an
algorithmic reassortment from P to P′.

1There appears to be some amgibuity about whose names should appear with this result: The zero-one law
was first proven for discrete spaces and conjectured for more general spaces by Lyons in [52]. Subsequently, it
was proven more generally (under very mild assumptions) by Osada and Osada in [56]. However, the proof in
[56] contained a small error which was later repaired by Lyons in [53]. Also see [19, Theorem 1.7] by Bufetov,
Qiu, and Shamov for closely-related concurrent work.
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An algorithmic reassortment from P to P′ exactly corresponds to an algorithm
described at the beginning of this subsection: For each ω ∈ Ω, we have K(ω, ·) which
represents the required (possibly-random) permutation bringing ω to ω′. Since a random
element from K(ω, ·) fixes all but finitely elements of N almost surely, it can be regarded
as (in fact, decomposed into) a finite sequence of transpositions on N, and this means
that an algorithm represented by an algorithmic reassortment K must terminate in a
finite number of swaps. However, such algorithms are not required to terminate in a
finite number of reads; they may need to read the entire infinite sequence ω before
deciding which swaps to apply.

Of course, it will turn out to be the case that algorithmic reassortment can be studied
via our duality theory. To do this, let us define the usual exchangeable σ-algebra via

E := {A ∈ B(Ω) : a−1
σ (A) = A for all σ ∈ Π∞}.

Then we have the following:

Theorem 2.8. For probability measures P,P′ ∈ B(Ω), we have that P′ is an algorithmic
reassortment of P if and only if P(A) = P′(A) for all A ∈ E .

Proof. One can easily check that the equivalence relation

E := {(ω, ω′) ∈ Ω× Ω : σ · ω = ω′ for some σ ∈ Π∞},

is hypersmooth and satisfies E∗ = E , so Corollary 3.18 implies that (E, E) satisfies strong
duality. (Alternatively, one can directly apply Corollary 3.19.)

By the definition of strong duality, it therefore suffices to show that P′ being an
algorithmic reassortment of P is equivalent to the existence of some P̃ ∈ Π(P,P′) with
P̃(E) = 1. For the first direction, suppose that P′ is an algorithmic reassortment of P,
and let K be the guaranteed kernel. Now construct a probability space on which are
defined ω a random element of Ω with law P and σ a random element of Π∞ whose
law conditional on ω is K(ω, ·). Then, setting, ω′ := σ · ω, it is easy to see that the
joint law P̃ of (ω, ω′) satisfies P̃(E) = 1. For the second direction, we suppose that
there exists P̃ ∈ Π(P,P′) with P̃(E) = 1. Now we claim that there exists a measuable
map ψ : E → Π∞ with ψ(ω, ω′) · ω = ω′ for all (ω, ω′) ∈ E, where E is given the Borel
σ-algebra of the topology inherited from Ω× Ω; indeed this can be verified easily from
the Kuratowski and Ryll-Nardzewski measurable selection theorem, but we omit the
details. (Note, however, that E is not Polish and that (E,B(E)) is not standard Borel.) It
follows that the probability space (Ω × Ω,B(Ω) ⊗ B(Ω), P̃) supports a random variable
σ : Ω× Ω→ Π∞ defined for (ω, ω′) ∈ Ω× Ω via

σ(ω, ω′) :=

{
ψ(ω, ω′), if (ω, ω′) ∈ E,
σ0, if (ω, ω′) /∈ E,

where σ0 ∈ Π∞ is any arbitrary fixed element. Since Ω and Π are both Polish, there
exists a regular conditional distribution K : Ω × B(Π∞) → [0, 1] of σ with respect to ω,
and this completes the proof.

Remark 2.9. The preceding result shows that P is an algorithmic reassortment of P′

if and only if P′ is an algorithmic reassortment of P, which is not obvious from the
definition.

Our main application of this characterization is as follows:

Corollary 2.10. If P =
⊗

n∈N µ for some µ ∈ P(X) and V : Ω → R is measurable,
non-negative, and has 0 <

∫
Ω
V dP <∞, then P′ ∈ P(Ω) defined via

dP′

dP
(ω) :=

V (ω)∫
Ω
V dP

EJP 28 (2023), paper 132.
Page 14/33

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1016
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Duality for equivalence couplings and total variation

is an algorithmic reassortment of P.

Proof. By the Hewitt-Savage zero-one law, we have P(A) ∈ {0, 1} for all A ∈ E . Moreover,
P′ and P are mutually absolutely continuous by construction. Therefore, P′(A) = P(A)

for all A ∈ E , so the result follows from Theorem 2.8.

There are still a number of interesting questions in this direction. For instance,
while we have given a rather abstract existence proof of such algorithms, we would be
interested in understanding whether they can be constructed, in some generality, in
a more concrete way. Moreover, we would be interested in understanding when such
algorithms can be guaranteed to require only finitely many reads, in addition to the
existing guarantee of only finitely many writes.

3 Proofs of main results

In this section we develop the abstract duality theory as outlined in the introduction.
Throughout this section, (Ω,F) denotes a fixed measurable space.

3.1 Preliminaries

In this subsection we review some notation, definitions, and results that will be
needed throughout the paper.

The first concepts concern the elementary notions of relations. By a relation R on Ω

we mean any subset R ⊆ Ω× Ω. By an equivalence relation E on Ω we mean a relation
Ω which is reflexive, symmetric, and transitive. There is a well-known correspondence
between equivalence relations on Ω and partitions of Ω, where an equivalence relation
gives rise to a partition by dividing the space into equivalence classes, and where a
partition gives rise to an equivalence relation by declaring two points to be equivalent if
and only if they occur in the same element of the partition.

Next we consider basic measure theory, as found in, say [40] or [13]. For this part,
we let (S,S) denote an abstract measurable space; the results herein will typically be
applied when (S,S) is taken to be (Ω,F) or (Ω × Ω,F ⊗ F), but some other cases will
also be used. For example, write R for the set of real numbers and B(R) for the Borel
σ-algebra of its standard topology. We write bS for the space of bounded measurable
functions from (S,S) to (R,B(R)). The Cartesian product of S with itself is denoted
S × S, and the product σ-algebra of S with itself, that is the σ-algebra generated by the
S × S, is denoted S ⊗ S. We write π, π′ : S × S → S for the projection maps onto the first
and second coordinates, respectively.

Now, we writeM(S,S) for the space of finite signed mesaures on (S,S). We endow
M(S,S) with the partial order ≤ where µ, µ′ ∈ M(S,S) have µ ≤ µ′ if and only if we
have µ(A) ≤ µ′(A) for all A ∈ S. For µ, µ′ ∈ M(S,S) there exists [40, Corollary 2.9] a
unique element ofM(S,S) which is ≤-maximal among all elements which are ≤-bounded
above by both µ and µ′, and we denote this by µ ∧ µ′. In fact, if P,N ∈ S are respectively
the positive part and negative part of the Jordan decomposition of the signed measure
µ− µ′, then we have µ ∧ µ′ = µ(· ∩N) + µ′(· ∩ P ).

We write P(S,S) for the space of probability measures on (S,S). By a sub-probability
measure on (S,S) we mean an element µ ∈ M(S,S) with 0 ≤ µ(A) ≤ 1 for all A ∈ S,
and we write Ps(S,S) ⊇ P(S,S) for the space of all sub-probability measures on (S,S).
For any µ, µ′ ∈ Ps(S,S), a coupling of µ and µ′ is an element ν ∈ Ps(S × S,S ⊗ S)

satisfying ν ◦ π−1 = µ and ν ◦ (π′)−1 = µ′, and a sub-coupling of µ and µ′ is an element
ν ∈ Ps(S × S,S ⊗ S) satisfying ν ◦ π−1 ≤ µ and ν ◦ (π′)−1 ≤ µ′. The spaces of couplings
and sub-couplings of µ, µ′ ∈ Ps(S,S) are denoted Π(µ, µ′) and Πs(µ, µ

′), respectively;
observe that Π(µ, µ′) is empty unless µ(S) = µ′(S).
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Finally, we review some concepts related to Polish spaces; these ideas can be found
in standard sources on measure theory like [13], or in more specialized treatments like
[42]. By a Polish space we mean a separable topological space (X, τ) such that there
exists a complete metric d on X which generates the topology τ . We write B(τ) for the
Borel σ-algebra of a Polish space, that is, the σ-algebra generated by the open sets. By
a standard Borel space we mean a measurable space (X,X ) such that there exists a
topology τ on X making (X, τ) into a Polish space and such that we have B(τ) = X .

Let us also review our central definition; let (Ω,F) denote an abstract measurable
space, and consider any pair (E,G) where E is a relation on Ω and G is a subset of F .
We say that E is measurable if E ∈ F ⊗ F . We say that (E,G) satisfies strong duality if
E is measurable and if we have

max
A∈G
|P(A)− P′(A)| = min

P̃∈Π(P,P′)
(1− P̃(E))

for all P,P′ ∈ P(Ω,F). An event A ∈ G achieving the supremum on the left is called G-
optimal for P,P′ and a coupling P̃ ∈ Π(P,P′) achieving the minimum on the right side is
called E-optimal for P,P′; a coupling P̃ ∈ Π(P,P′) satisfying 1− P̃(A) = supA∈G |P(A)−
P′(A)| will be called (E,G)-optimal, and note that E-optimality is equivalent to (E,G)-
optimality if (E,G) satisfies strong duality. Further, a coupling satisfying P̃(E) = 1 is
called E-successful. It turns out that it will also be useful along the way to consider
two further notions of duality; we briefly introduce them now, and in the following
subsections we study them more carefully.

First, let us say that a pair (E,G) satisfies weak duality if E is measurable and if we
have

max
A∈G
|P(A)− P′(A)| ≤ inf

P̃∈Π(P,P′)
(1− P̃(E)) (3.1)

for all P,P′ ∈ P(Ω,F). Let us emphasize that the infimum need not be achieved in
that E-optimal couplings are not required to exist (and that we will later show that the
supremum is always achieved.) Moreover, observe that strong duality obviously implies
weak duality.

Second, let us say that a pair (E,G) satisfies quasi-strong duality if, for all P,P′ ∈
P(Ω,F), the following are equivalent:

(i) For all A ∈ G, we have P(A) = P′(A).

(ii) There exists a P̃ ∈ Π(P,P′) and a N ∈ F ⊗ F with P̃(N) = 0 and (Ω× Ω) \ E ⊆ N .

Crucially, observe that the measurability of E is not required in order for (E,G) to
satisfy quasi-strong duality; if E happens to be measurable, then (ii) above is simply
equivalent to the existence of an E-successful coupling. The primary desire to generalize
beyond measurable relations is to be able to say something about analytic equivalence
relations on standard Borel spaces, which are a common object of study in ergodic theory
[29].

3.2 Weak duality

In this subsection we study weak duality as a stepping stone to strong duality. The
results herein provide some reductions which simplify our later work.

To begin, we state a fundamental set-theoretic correspondence between equivalence
relations and sub-σ-algebras.

Definition 3.1. For any relation E on Ω, define the sub-σ-algebra

E∗ := {A ∈ F : ∀(ω, ω′) ∈ E : (ω ∈ A⇔ ω′ ∈ A)}
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of F , and, for any subset G of F , define the equivalence relation

G∗ := {(ω, ω′) ∈ Ω× Ω : ∀A ∈ G : (ω ∈ A⇔ ω′ ∈ A)}.

on Ω.

We point out that the collection E∗ is a σ-algebra even when E is not an equivalence
relation, and likewise the relation G∗ is an equivalence relation even when G is not
a σ-algebra. Although these operations will typically be applied when E and G are,
respecively, an equivalence relation and a σ-algebra, the added generality will be useful
in some cases. We also have the following:

Remark 3.2. The map E 7→ E∗ depends on the ambient σ-algebra F with which Ω is
endowed, while the map G 7→ G∗ does not. We hope it causes no confusion that this
dependence is not emphasized in the notation.

Another important collection of remarks concerns the algebraic structure of this
correspondence. While such algebraic terminology does not immediately pay dividends
for our work, we believe that it is nonetheless useful to highlight the perspective; we
direct the reader to [12, Section 1.6] for further information on abstract order theory.

Lemma 3.3. For E a relation on Ω and G a subset of F , we have

(i) E∗∗ ⊇ E and G∗∗ ⊇ G, and

(ii) E ⊆ G∗ if and only if G ⊆ E∗.

In other words, the correspondence given by ∗ is an antitone Galois correspondence.

As is the case in many antitone Galois correspondences, it is instructive to understand
the operation arising by applying the correspondence twice. (In general, the resulting
operation is not the identity.)

Lemma 3.4. For E a relation on Ω we have E∗∗ = E if and only if E is an equivalence
relation.

Proof. First, suppose that E is an equivalence relation, and let us show that E∗∗ = E.
Since we have E ⊆ E∗∗ by Lemma 3.3, it suffices to show E∗∗ ⊆ E. Indeed, take any
(ω, ω′) ∈ E∗∗ and recall that for any A ∈ E∗ that ω ∈ A if and only if ω′ ∈ A. Now combine
E ∈ F ⊗ F with Fubini’s theorem to get [ω]E := {ω′′ ∈ Ω : (ω, ω′′) ∈ Ω} ∈ F , then use
the symmetry and transitivity of E to get [ω]E ∈ E∗. By the reflexivity of E we have
ω ∈ [ω]E , hence (ω, ω′) ∈ E∗∗ gives ω′ ∈ [ω]E . This is exactly (ω, ω′) ∈ E, hence E∗∗ ⊆ E,
as needed. Second, note that E∗∗ = E implies that E is an equivalence relation, since
E∗∗ is always an equivalence relation.

As we see in the following, it is not true that G being a σ-algebra implies G∗∗ = G.

Example 3.5. Let Ω be an uncountable set, let F be the σ-algebra of all subsets of Ω,
and let G be the σ-algebra of all sets which are countable or whose complements are
countable. Then G∗ = ∆ and G∗∗ = F ) G.

Having clarified some aspects of the Galois correspondence, our next goal is to show
that it is indeed useful in studying weak and strong duality. As a first indication of this,
let us show how the Galois correspondence leads to a necessary and sufficient condition
for weak duality.

Proposition 3.6. For E a relation on Ω and G a subset of F with Ω ∈ G, the pair (E,G)

satisfies weak duality if and only if E is measurable and E ⊆ G∗ and (equivalently, or)
G ⊆ E∗.
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Proof. First suppose that (E,G) satisfies weak duality. By definition, E is measurable, so
we only need to show G ⊆ E∗ and E ⊆ G∗. These are equivalent by part (ii) of Lemma 3.3,
so it suffices to show G ⊆ E∗. Indeed, take any (ω, ω′) ∈ E, and note that by setting
P := δω and P′ := δω′ , we have

sup
A∈G
|1{ω ∈ A} − 1{ω′ ∈ A} ≤ 1− 1{(ω, ω′) ∈ E} = 0.

This says that for any A ∈ G we have ω ∈ A if and only if ω′ ∈ A. In other words, G ⊆ E∗.
Conversely, suppose that E is measurable and that G ⊆ E∗ and E ⊆ G∗. Note that

E ⊆ G∗ implies that for any A ∈ G we have

{(ω, ω′) ∈ Ω× Ω : ω ∈ A} ∩ E = {(ω, ω′) ∈ Ω× Ω : ω′ ∈ A} ∩ E.

Thus, for any P,P′ ∈ P(Ω,F) and P̃ ∈ Π(P,P′), we can bound:

P(A)− P′(A) = P̃(ω ∈ A)− P̃(ω′ ∈ A) = P̃({ω ∈ A} \ E)

− P̃({ω′ ∈ A} \ E)

≤ P̃({ω ∈ A} \ E).

Now take the supremum over A ∈ G and use that Ω ∈ G, then take the infimum over
P̃ ∈ Π(P,P′) to conclude.

As we have seen in Remark 3.2 and Example 3.5, the roles of E and G in our duality
theory are not completely symmetric. While in the bulk of the paper we typically aim to
state our results in the most symmetric form possible, we will address, in Subsection 3.6
and Subsection 3.7, the particularities associated with taking either of E or G as given.

Corollary 3.7. For any measurable relation E on Ω, the pair (E,E∗) satisfies weak
duality. For any G ⊆ F such that G∗ is measurable and Ω ∈ G, the pair (G∗,G) satisfies
weak duality.

Proof. By part (i) of Lemma 3.3, we have E ⊆ E∗∗ and G ⊆ G∗∗, and we of course also
have Ω ∈ E∗. Thus, the result follows from Proposition 3.6.

3.3 Quasi-strong duality

In this brief subsection we study quasi-strong duality as it relates to strong duality.
We begin with a simple but useful auxiliary result.

Lemma 3.8. For any P,P′ ∈ P(Ω,F), if M̃ ∈ Πs(P,P
′) is a sub-coupling of P and P′,

then there exists a coupling P̃ ∈ Π(P,P′) with M̃ ≤ P̃.

Proof. By assumption, Q := P− M̃ ◦ π−1 and Q′ := P′ − M̃ ◦ (π′)−1 are sub-probability
measures on (Ω,F). Of course, they have the same total mass, which we denote γ ∈ [0, 1].
More explicitly, we have

γ = Q(Ω) = P(Ω)− (M̃ ◦ π−1)(Ω) = 1− M̃(Ω× Ω).

The remainder of the proof proceeds in two cases.
If γ = 0, we take P̃ := M̃. To see that it is a probability measure, compute

0 = γ = Q(Ω) = P(Ω)− (M̃ ◦ π−1)(Ω)

= 1− M̃(Ω× Ω)

= 1− P̃(Ω× Ω).
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To see that it has the correct marginals, observe that P̃ ◦ π−1 ≤ P with P̃ a probability
measure implies that P̃ ◦ π−1 = P; likewise for P̃ ◦ (π′)−1.

If γ > 0, we take

P̃ := M̃+
Q⊗Q′

γ
.

To see that it is a probability measure, compute

P̃(Ω× Ω) = M̃(Ω× Ω) +
γ2

γ
= M̃(Ω× Ω) + γ = 1.

To see that it has the correct marginals, compute

P̃ ◦ π−1 = M̃ ◦ π−1 +
Q′(Ω)

γ
Q = M̃ ◦ π−1 +Q = P,

and likewise for P̃ ◦ (π′)−1.

From this we get the following.

Proposition 3.9. On a standard Borel space (Ω,F), a pair (E,G) satisfies strong duality
if and only if E is measurable and (E,G) satisfies quasi-strong duality.

Proof. Let E be an equivalence relation on Ω and G a sub-σ-algebra of F . It is clear that
(E,G) satisfying strong duality implies that it satisfies quasi-strong duality. Conversely,
suppose that E is measurable and that (E,G) satisfies quasi-strong duality. To see that
(E,G) satisfies strong duality, let us show that an (E,G)-optimal coupling exists for all
P,P′ ∈ P(Ω,F). To do this, consider µ := P|G and µ′ := P′|G as probability measures on
the measurable space (Ω,G), and set ν := µ ∧ µ′. (Note that ν is not in general equal
to (P ∧ P′)|G .) Next, write K : Ω × F → [0, 1] for a regular conditional distribution of
P with respect to G, and K ′ : Ω × F → [0, 1] for a regular conditional distribution of
P′ with respect to G. Finally, define sub-probability measures M,M′ ∈ Ps(Ω,F) via
M(A) :=

∫
Ω
K(ω,A) dν(ω) and M′(A) :=

∫
Ω
K ′(ω,A) dν(ω) for all A ∈ F .

By construction we have M(Ω) = M′(Ω) = ν(Ω). Moreover, for A ∈ G we have
K(ω,A) = 1A(ω) holding P-almost surely hence µ-almost surely, and ν � µ implies that
it further holds ν-almost surely; similarly, for A ∈ G we have K ′(ω,A) = 1A(ω) holding
ν-almost surely. In particular, for A ∈ G we have

M(A) =

∫
Ω

K(ω,A) dν(ω) = ν(A) =

∫
Ω

K ′(ω,A) dν(ω) = M′(A).

This means we can apply quasi-strong duality (to a suitable rescaling of M and M′) to
get that there must exist some M̃ ∈ Π(M,M′) and some N ∈ F ⊗ F with M̃(N) = 0 and
(Ω× Ω) \ E ⊆ N .

Since E is measurable, this implies

M̃(Ω× Ω)− M̃(E) = M̃((Ω× Ω) \ E) ≤ M̃(N) = 0

hence M̃(E) = M̃(Ω× Ω) = ν(Ω). In fact, for A ∈ F we have

(M̃ ◦ π−1)(A) = M(A) =

∫
Ω

K(ω,A) dν(ω)

≤
∫

Ω

K(ω,A) dµ(ω)

=

∫
Ω

K(ω,A) dP(ω) = P(A),
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hence M̃ ◦ π−1 ≤ P. Likewise we have M̃ ◦ (π′)−1 ≤ P′. This gives M̃ ∈ Πs(P,P
′), so we

can apply Lemma 3.8 to get some P̃ ∈ Π(P,P′) with M̃ ≤ P̃.
Finally, let P,N ∈ G denote the positive and negative part of the Jordan decomposition

of the signed measure µ− µ′ on (Ω,G). It is well-known [40, Corollary 2.9] that we have

ν(A) = µ(A)− µ(A ∩ P ) + µ′(A ∩ P )

for all A ∈ G, and thus

ν(Ω) = 1− µ(P ) + µ′(P )

≥ 1− sup
A∈G
|µ(A)− µ′(A)|

= 1− sup
A∈G
|P(A)− P′(A)|.

Combining this all, we have shown

1− P̃(E) ≤ 1− M̃(E) = 1− ν(Ω) ≤ sup
A∈G
|P(A)− P′(A)|.

Since Proposition 3.6 establishes the reverse inequality, we have shown that P̃ is (E,G)-
optimal, hence that (E,G) satisfies strong duality.

The value of Proposition 3.9 is twofold. First, it allows us to simplify the proofs
of some later results by demonstrating quasi-strong duality in place of strong duality.
Second, it allows us to immediately upgrade many results from the existing literature,
which primarily come in the form of quasi-strong duality, into statements of strong duality.
For example, it is known (see [29, Proposition 3.1] and the remarks thereafter) that if
G countable group acting measurably on a standard Borel space (Ω,F), then the orbit
equivalence relation

EG := {(ω, ω′) ∈ Ω× Ω : g · ω = g′ · ω′ for some g ∈ G}

is measurable, the invariant σ-algebra

IG := {A ∈ F : g−1(A) = A for all g ∈ G}

satisfies E∗G = IG, and the pair (EG, IG) satisfies quasi-strong duality. Thus we conclude:

Theorem 3.10. If G is a countable group acting measurably on a standard Borel space,
then (EG, IG) satisfies strong duality.

The result of [29] in fact guarantees quasi-strong duality for a more general collec-
tion of semigroups acting measurably on a standard Borel space, and thus we get an
analogous statement of strong duality for free. However, the precise sufficient conditions
of [29] are rather cumbersome to state, so we omit them for brevity’s sake. Suffice it
to say that quasi-strong duality is known for most orbit equivalence relations, so our
results establish strong duality for most measurable orbit equivalence relations.

3.4 Optimality conditions

Before we get to the next subsection in which we prove our main results of interest
on strong duality, we address a manifestation of a common principle in mathematical
optimization, that identifying a useful duality between classes of optimization problems
can lead one to optimality conditions.

Along the way, we will need an important intermediate result. It establishes that
(TV) always admits a maximizer, and that the maximization problem is equivalent to a
suitable convex relaxation. Since this result is well-known, we omit its proof.
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Lemma 3.11. For any sub-σ-algebra G of F and any P,P′ ∈ P(Ω,F), we have

max
A∈G
|P(A)− P′(A)| = max

f∈bG
0≤f≤1

∣∣∣∣∫
Ω

f dP−
∫

Ω

f dP′
∣∣∣∣ .

Now we turn to the question of characterizing optimal solutions to the problems (EC)
and (TV). We primarily pursue the study minimizers of (EC), which, as we have indicated,
might not always exist. Our main result in this direction is an exact characterization of
minimizing couplings.

Proposition 3.12. For a pair (E,G) satisfying strong duality and any P,P′ ∈ P(Ω,F), a
coupling P̃ ∈ Π(P,P′) is (E,G)-optimal if and only if P̃(· \ E) ◦ π−1 and P̃(· \ E) ◦ (π′)−1

are mutually singular on (Ω,G).

Proof. For the “if” direction, we suppose that P̃(· \ E) ◦ π′ −1 and P̃(· \ E) ◦ (π′)−1

are mutually singular on (Ω,G), that is, that there exists A ∈ G such that we have
(P̃(· \ E) ◦ π−1)(A) = 1 − P̃(E) and (P̃(· \ E) ◦ (π′)−1)(A) = 0. By Corollary 3.7, it now
suffices to show that we have 1− P̃(E) ≤ |P(A)− P′(A)|. Indeed, we simply bound:

1− P̃(E) = P̃({(ω, ω′) ∈ Ω× Ω : 1A(ω) = 1,1A(ω′) = 0} \ E)

=

∫
Ω×Ω

(1A(ω)− 1A(ω′)) d(P̃(· \ E))(ω, ω′)

=

∫
Ω×Ω

(1A(ω)− 1A(ω′)) dP̃(ω, ω) = P(A)− P′(A) ≤ |P(A)− P′(A)|.

For the “only if” direction, we suppose that P̃ ∈ Π(P,P′) is E-optimal for P,P′. By
Lemma 3.11, there is some event A ∈ G that is G-optimal for P,P′. Note that A ∈ G is
equivalent to having |1A(ω)− 1A(ω′)| = 1− 1E(ω, ω′) for all ω, ω′ ∈ Ω. At the same time,
we can compute:

|P(A)− P′(A)| =
∣∣∣∣∫

Ω×Ω

(1A(ω)− 1A(ω′)) dP̃(ω, ω′)

∣∣∣∣
≤
∫

Ω×Ω

|1A(ω)− 1A(ω′)| dP̃(ω, ω′)

=

∫
Ω×Ω

1− 1E(ω, ω′) dP̃(ω, ω′) = 1− P̃(E).

However, note that P̃ being E-optimal and A being G-optimal combine with strong duality
to show that |P(A)−P′(A)| = 1− P̃(E). Consequently, the inequality above is an equality,
and we have∣∣∣∣∫

Ω×Ω

(1A(ω)− 1A(ω′)) dP̃(ω, ω′)

∣∣∣∣ =

∫
Ω×Ω

|1A(ω)− 1A(ω′)| dP̃(ω, ω′).

This implies that we have either

P̃({(ω, ω′) ∈ Ω× Ω : 1A(ω) ≥ 1A(ω′)}) = 1

or

P̃({(ω, ω′) ∈ Ω× Ω : 1A(ω) ≤ 1A(ω′)}) = 1.

In the first case, we use |1A(ω)− 1A(ω′)| = 1 for (ω, ω′) ∈ (Ω× Ω) \ E to get

P̃({(ω, ω′) ∈ Ω× Ω : 1A(ω) = 1,1A(ω′) = 0} \ E) = 1− P̃(E)
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hence (P̃(· \ E) ◦ π−1)(A) = 1− P̃(E) and (P̃(· \ E) ◦ (π′)−1)(A) = 0. In the second case,
the same argument shows

P̃({(ω, ω′) ∈ Ω× Ω : 1A(ω) = 0,1A(ω′) = 1} \ E) = 1− P̃(E)

hence (P̃(· \ E) ◦ π−1)(A) = 0 and (P̃(· \ E) ◦ (π′)−1)(A) = 1− P̃(E). In either case, we
have shown that P̃(· \ E) ◦ π−1 and P̃(· \ E) ◦ (π′)−1 are mutually singular on (Ω,G), as
claimed.

We believe, but are unable to prove, that the previous condition for minimality should
be necessary and sufficient in great generality. For one indication of this, we recall
the result [3, Theorem 1]: For a measurable cost function on a standard Borel space, a
coupling is minimal for the Monge-Kantorovich optimal transport problem if and only
if it is concentrated on a cyclically monotone set. Thus, our condition is necessary and
sufficient if one can show that a set S ⊆ Ω×Ω is (1− 1E)-cyclically monotone if and only
if there exists an event A ∈ G satisfying S \ E ⊆ (A× Ω) ∪ (Ω× (Ω \A)). We believe this
is an interesting avenue for future work.

One can certainly also use this duality to characterize maximizers of (TV), but the
resulting condition is not so useful: An event A ∈ G is G-optimal if and only if there exists
a coupling P̃ ∈ Π(P,P′) such that A witnesses the mutual singularity of P̃(· \ E) ◦ π−1

and P̃(· \ E) ◦ (π′)−1. We believe it would be interesting to see if this condition can be
re-intrepret in a manner which does not reference a quantifier over all possible couplings
P̃ ∈ Π(P,P′).

3.5 Strong duality

In this subsection, we finally devote our attention to strong duality. In particular, we
state and prove the sufficient conditions of our main results.

Theorem 3.13. If (Ω,F) is a standard Borel space and if a pair (E,G) satisfies E ⊆ G∗
and (equivalently, or) G ⊆ E∗ as well as E ∈ G ⊗ G, then (E,G) satisfies strong duality.

Proof. We see that G ⊆ F implies that E is measurable, so, by Proposition 3.9, it suffices
to show that (E,G) satisfies quasi-strong duality. Further, note that Proposition 3.6
guarantees that (ii) implies (i) in the definition of quasi-strong duality, so it only remains
to show that (i) implies (ii). That is, for any P,P′ ∈ P(Ω,F) satisfying P(A) = P′(A) for
all A ∈ G, we must construct an E-successful coupling.

Our construction is as follows. First, define ν := P|G as a probability measure on
(Ω,G), and note by assumption that we also have ν = P′|G . Second, we use the fact that
(Ω,F) is standard Borel to get [13, Corollary 10.4.6] a regular conditional distribution of
P with respect to G denoted K : Ω×F → [0, 1] as well as a regular conditional probability
of P′ with respect to G denoted K ′ : Ω × F → [0, 1]. Next, we define the set-function
P̃ : F × F → [0, 1] via

P̃(A×A′) :=

∫
Ω

K(ω,A)K ′(ω,A′) dν(ω)

for A,A′ ∈ F . The last step of the construction is to show that P̃ extends uniquely
to a probability measure on (Ω × Ω,F ⊗ F), which (by a slight abuse of notation) we
also denote by P̃. This of course follows from Carathéodory’s extension theorem [40,
Theorem 2.5] if we can show that P̃ is countably additive on the semi-ring F × F , so
suppose that we have A × A′ =

⋃
n∈N(An × A′n) for A,A′, {An}n∈N, and {A′n}n∈N in F

such that {An ×A′n}n∈N are disjoint. This implies 1A ⊗ 1A′ =
∑
n∈N(1An

⊗ 1A′n), so for
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a fixed ω ∈ Ω we can take the probability of both sides under the product measure
K(ω, · )⊗K ′(ω, · ) and we get

K(ω,A)K ′(ω,A′) =
∑
n∈N

K(ω,An)K ′(ω,A′n).

Now integrate both sides with respect to ν, and use monotone convergence to get

P̃(A×A′) =

∫
Ω

K(ω,A)K ′(ω,A′) dν(ω)

=

∫
Ω

∑
n∈N

K(ω,An)K ′(ω,A′n) dν(ω)

=
∑
n∈N

∫
Ω

K(ω,An)K ′(ω,A′n) dν(ω) =
∑
n∈N

P̃(An ×A′n).

This is as desired, and thus completes the construction. To complete the proof, we need
to verify two further properties about P̃.

First, we claim that P̃ is a coupling of P and P′. Indeed, for any A ∈ F :

(P̃ ◦ π−1)(A) = P̃(A× Ω)

=

∫
Ω

K(ω,A)K ′(ω,Ω) dν(ω)

=

∫
Ω

K(ω,A) dν(ω) =

∫
Ω

K(ω,A) dP(ω) = P(A),

hence P̃ ◦ π−1 = P. The same calculation shows P̃ ◦ (π′)−1 = P′.
Second, we claim that P̃(E) = 1. To do this, write f : (Ω,G)→ (Ω× Ω,G ⊗ G) for the

measurable map f(ω) := (ω, ω), and let us show that we have P̃(S) = ν(f−1(S)) for all
S ∈ G ⊗ G. Indeed, it is straightforward to show that for all A,A′ ∈ G we have

P̃(A×A′) =

∫
Ω

K(ω,A)K ′(ω,A′) dν(ω)

=

∫
Ω

1A(ω)1A′(ω) dν(ω) = ν(A ∩A′) = ν(f−1(A×A′)).

In the second equality, we used that K(ω,A) = 1A(ω) holds P-almost surely hence
ν-almost surely, and that K ′(ω,A′) = 1A′(ω) holds P′-almost surely hence ν-almost surely.
This shows that the probability measures P̃ and ν ◦ f−1 agree on the π-system G × G, so
it follows that they agree on G ⊗ G. Finally, we use E ∈ G ⊗ G to compute:

P̃(E) = ν(f−1(E)) ≥ ν(f−1(∆)) = ν(Ω) = 1.

This finishes the proof.

One may be tempted to think that Theorem 3.13 is powerful enough to establish
strong duality most cases of interest in probability theory. However, many examples
of (E,G) of interest do not satisfy E ∈ G ⊗ G: importantly, the tail equivalence relation
E0 and the tail σ-algebra T are such that (E0, T ) satisfies strong duality (to see this,
combine [34] with Proposition 3.9), but E0 /∈ T ⊗ T . (The fact that E0 /∈ T ⊗ T is
closely related to the Glimm-Effros dichotomy [43, Theorem 6.5], but it can also be
shown directly via elementary considerations.) Thus, our goal is to widen our sufficient
conditions to include (E0, T ). Towards filling this gap, we establish our next main result:

Theorem 3.14. On a standard Borel space (Ω,F), if equivalence relations E1 ⊆ E2 ⊆ · · ·
on Ω and sub-σ-algebras G1 ⊇ G2 ⊇ · · · of F are such that for each n ∈ N the pair (En,Gn)

satisfies strong duality, then the pair (
⋃
n∈NEn,

⋂
n∈N Gn) satisfies strong duality.
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Proof. For convenience, write E :=
⋃
n∈NEn and G :=

⋂
n∈N Gn. Since En is measurable

for all n ∈ N it follows that E is measurable. Hence, it suffices by Proposition 3.9
to show that (E,G) satisfies quasi-strong duality. To see that (ii) implies (i) in the
definition of quasi-strong duality, use Proposition 3.6 to see that, for each n ∈ N, the
pair (En,Gn) being strongly hence weakly dual implies En ⊆ G∗n for all n ∈ N. Now the
antimonotonicity of the Galois correspondence gives En ⊆ G∗n ⊆ G∗ for all n ∈ N hence
E ⊆ G∗. Thus, Proposition 3.6, shows that (E,G) satisfies weak duality, which implies
that (ii) implies (i) in the definition of quasi-strong duality. To see that (i) implies (ii), we
take any P,P′ ∈ P(Ω,F) with P(A) = P′(A) for all A ∈ G, and we show how to construct
an (E,G)-optimal coupling.

To begin, set P0 := P and P′0 := P′. Then, inductively for n ∈ N, use the strong
duality of (En,Gn) to let P̃n be an (En,Gn)-optimal coupling of Pn and P′n, and set
Pn+1 := Pn − P̃n(· ∩ En) ◦ π−1 and P′n+1 := P′n − P̃n(· ∩ En) ◦ (π′)−1. To ensure that
this construction is well-defined, we must verify that Pn and P′n are, for each n ∈ N,
sub-probability measures with the same total mass. Indeed, we claim by induction on
n ∈ N that

Pn(Ω) = P′n(Ω) = 1−
n−1∑
m=0

P̃m(Em).

The base case n = 0 holds because P0 and P′0 are probability measures, and the inductive
step for n ∈ N follows from combining

Pn+1(Ω) = Pn(Ω)− (P̃n(· ∩ En) ◦ π′ −1)(Ω)

= Pn(Ω)− P̃n(En)

= 1−
n−1∑
m=0

P̃m(Em)− P̃n(En) = 1−
n∑

m=0

P̃m(Em)

with the analogous calculation for P′n+1(Ω).
Next, fix n ∈ N, and recall that by construction we have Pn+1 = P −

∑n
m=0 P̃m(· ∩

Em) ◦π−1 and P′n+1 = P′−
∑n
m=0 P̃m(· ∩Em) ◦ (π′)−1. Thus, combining the (En+1,Gn+1)-

optimality of P̃n+1 with the triangle inequality, we get

1−
n+1∑
m=0

P̃m(Em)

= 1−
n∑

m=0

P̃m(Em)− P̃n+1(En+1)

= sup
A∈Gn+1

|Pn+1(A)− P′n+1(A)|

≤ sup
A∈Gn+1

|P(A)− P′(A)|

+

n∑
m=0

sup
A∈Gn+1

|(P̃m(· ∩ Em) ◦ π−1)(A)− (P̃m(· ∩ Em) ◦ (π′)−1)(A)|.

We claim that the sum in the last line above is equal to zero. In fact, we claim that all
summands are equal to zero, in that for all m = 0, 1, . . . , n we have

sup
A∈Gn+1

|(P̃m(· ∩ Em) ◦ π−1)(A)− (P̃m(· ∩ Em) ◦ (π′)−1)(A)| = 0. (3.2)

Since
(P̃m(· ∩ Em) ◦ π−1)(Ω) = (P̃m(· ∩ Em) ◦ (π′)−1)(Ω) = P̃m(Em),
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it follows by normalizing that (3.2) holds if and only if we have

sup
A∈Gn+1

|(P̃m(· |Em) ◦ π−1)(A)− (P̃m(· |Em) ◦ (π′)−1)(A)| = 0. (3.3)

By the strong duality of (En+1,Gn+1) we know that (3.3) holds if and only if there exists
an En+1-successful coupling of P̃m(· |Em) ◦ π−1 and P̃m(· |Em) ◦ (π′)−1. Of course, the
coupling P̃m(· |Em) is exactly what is needed, since Em ⊆ En+1 implies P̃m(En+1 |Em) =

1. Thus, we have shown

1−
n+1∑
m=0

P̃m(Em) ≤ sup
A∈Gn+1

|P(A)− P′(A)| (3.4)

for all n ∈ N.

Now let us get for each n ∈ N some An ∈ Gn with

|P(An)− P′(An)| ≥ sup
A∈Gn

|P(A)− P′(A)| − 1

2n

Now consider the Hilbert space L2(Ω,F , 1
2 (P + P′)), in which {1An}n∈N form a norm-

bounded sequence. By the Banach-Alaoglu theorem, there exists a subsequence {nj}j∈N
and some f ∈ L2(Ω,F , 1

2 (P+ P′)) with 1Anj
→ f weakly. Since L2(Ω,Gn, 1

2 (P+ P′)) is a

strongly closed subspace of L2(Ω,F , 1
2 (P+ P′)), it follows that it is also weakly closed.

This implies that f ∈ L2(Ω,Gn, 1
2 (P + P′)) for all n ∈ N, hence f ∈ L2(Ω,G, 1

2 (P + P′)).
Also, we have

0 ≤ lim
j→∞

∫
Ω

1Anj
1{f≤0} d

(
P+ P′

2

)
=

∫
Ω

f1{f≤0} d

(
P+ P′

2

)
≤ 0

which shows that f ≥ 0 holds P- and P′-almost surely; a similar argument shows that
f ≤ 1 holds P- and P′-almost surely. Putting this all together, we conclude that there
exists a function g : Ω→ R which is G-measurable and satisfies 0 ≤ g ≤ 1 such that f = g

both P- and P′-almost surely. Consequently, Lemma 3.11 gives:

lim inf
n→∞

sup
A∈Gn

|P(A)− P′(A)| ≤ lim
j→∞

|P(Anj
)− P′(Anj

)|

=

∣∣∣∣∫
Ω

f dP−
∫

Ω

f dP′
∣∣∣∣

=

∣∣∣∣∫
Ω

g dP−
∫

Ω

g dP′
∣∣∣∣

≤ sup
A∈G
|P(A)− P′(A)|.

Therefore, we conclude

1−
∑
n∈N

P̃n(En) ≤ sup
A∈G
|P(A)− P′(A)|, (3.5)

by taking n→∞ in (3.4).

Now we have all of the ingredients to construct our coupling. First, set

M̃ :=
∑
n∈N

P̃n(· ∩ En),
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which is evidently a sub-probability measure on (Ω× Ω,F ⊗ F). Next, we claim that M̃
is a sub-coupling of P and P′. Indeed, for any A ∈ F and n ∈ N:

n∑
m=0

(P̃m(· ∩ Em) ◦ π−1)(A) =

n∑
m=0

(Pm+1(A)− Pm+1(A))

= P(A)− Pn+1(A)

≤ P(A).

Thus, taking n→∞ we get

(M̃ ◦ π−1)(A) =
∑
n∈N

(P̃n(· ∩ En) ◦ π−1)(A) ≤ P(A)

as claimed. We also get M̃◦π−1 ≤ P by the same calculation. Lastly, we apply Lemma 3.8
to get some P̃ ∈ Π(P,P′) with M̃ ≤ P̃.

It only remains to show that P̃ is (E,G)-optimal. Indeed, note that for all n ∈ N:

M̃(En+1) ≥
n+1∑
m=0

P̃m(Em ∩ En+1) =

n+1∑
m=0

P̃m(Em).

Thus, taking n→∞ gives

M̃(E) ≥
∑
n∈N

P̃n(En).

Finally, by applying M̃ ≤ P̃ and (3.5), we find

1− P̃(E) ≤ 1− M̃(E) ≤ 1−
∑
n∈N

P̃n(En) ≤ sup
A∈G
|P(A)− P′(A)|.

This shows that P̃ is (E,G)-optimal, so the result is proved.

3.6 Given an equivalence relation

In this subsection we consider the setting that E is a given equivalence relation on
Ω and that one wants to find a suitable sub-σ-algebra G of F such that (E,G) satisfies
strong duality. Indeed, we show that this is possible in great generality, and such results
will follow readily by specializing the abstract results of the previous subsection.

The first result shows that E∗ is a canonical choice of G:

Proposition 3.15. For E a relation on Ω and G a subset of F with Ω ∈ G, if the pair
(E,G) satisfies strong duality, then (E,E∗) satisfies strong duality.

Proof. By Proposition 3.6, the weak duality of (E,G) implies G ⊆ E∗. Thus, for any
P,P′ ∈ P(Ω,F) we can use the strong duality of (E,G) to bound:

sup
A∈E∗

|P(A)− P′(A)| ≥ sup
A∈G
|P(A)− P′(A)| = min

P̃∈Π(P,P′)
(1− P̃(E)).

At the same time, Corollary 3.7 gives the bound:

sup
A∈E∗

|P(A)− P′(A)| ≤ inf
P̃∈Π(P,P′)

(1− P̃(E)).

Combining these completes the proof.
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Motivated by this result, a measurable equivalence relation E on Ω has (E,E∗)

satisfying strong duality if and only if there exists a sub-σ-algebra G of F such that (E,G)

satisfies strong duality; in this case we say that E is strongly dualizable. Let us also say
that E is weakly dualizable if (E,E∗) satisfies weak duality, and that it is quasi-strongly
dualizable if (E,E∗) satisfies quasi-strong duality.

Next, we require some basic definitions. Let us say that an equivalence relation E
on a standard Borel space (Ω,F) is smooth if there exists a standard Borel space (X,X )

and some measurable map φ : (Ω,F) → (X,X ) such that ω, ω′ ∈ Ω have (ω, ω′) ∈ E if
and only if φ(ω) = φ(ω′). Roughly speaking, a smooth equivalence relation is one that
is “generated by” equality of Polish-space valued random variables. Then, we have the
following equivalent characterizations of smoothness:

Lemma 3.16. For an equivalence relation E on Ω, the following are equivalent:

(i) E is smooth.

(ii) E∗ is countably-generated.

(iii) E ∈ E∗ ⊗ E∗.

Remark 3.17. Although it is not in our notation, the properties (i), (ii), and (iii) all
depend on the ambient σ-algebra F with which Ω is endowed. (cf. Remark 3.2)

Proof. It is classical that (i) and (ii) are equivalent (see [67, Exercise 5.1.10]), so it
suffices to prove that (i) and (iii) are equivalent. To show (i) implies (iii), suppose E is
smooth so there exists a standard Borel space (X,X ) and a measurable map φ : Ω→ X

such that ω, ω′ ∈ Ω have (ω, ω′) ∈ E if and only if φ(ω) = φ(ω′). It readily follows that
φ : (Ω, E∗)→ (X,X ) is measurable, hence also that f : (Ω×Ω, E∗⊗E∗)→ (X×X,X ⊗X )

defined via f(ω, ω′) := (φ(ω), φ(ω′)) is measurable. Finally, observe that we have ∆ ∈
X ⊗ X since (X,X ) is standard Borel, hence E = f−1(∆) ∈ E∗ ⊗ E∗. Thus, (iii) holds.

It requires a bit more work to show (iii) implies (i), so suppose E ∈ E∗ ⊗ E∗. It is
classical that Σ1 := {B ∈ E∗⊗E∗ : there exist A1, A2, , . . . ∈ E∗×E∗ with B ∈ σ(Am×An :

m,n ∈ N)} is a σ-algebra containing E∗ × E∗, hence E∗ ⊗ E∗ ⊆ Σ1. In particuar, there
exist A1, A2, . . . ∈ E∗ × E∗ with E ∈ σ(Am ×An : m,n ∈ N).

Next, we aim to show that the equivalence classes [ω]E := {ω′ ∈ Ω : (ω, ω′) ∈ E}
are in σ(An : n ∈ N) for all ω ∈ Ω. To do this, take arbitrary ω ∈ Ω and define
Σ2(ω) := {B ∈ E∗⊗E∗ : ([ω]E × [ω]E)∩B ∈ σ(Am×An : m,n ∈ N)}, which is easily seen
to be a σ-algebra. Moreover, observe that for all m,n ∈ N we have

([ω]E × [ω]E) ∩ (Am ×An) =

{
Am ×An, if ω ∈ Am ∩An,
∅, if ω /∈ Am ∩An,

since Am, An ∈ E∗. This implies σ(An × Am : m,n ∈ N) ⊆ Σ2(ω), hence E ∈ Σ2(ω).
Consequently, [ω]E × [ω]E = ([ω]E × [ω]E) ∩ E ∈ σ(Am × An : m,n ∈ N) ⊆ σ(An : n ∈
N)⊗ σ(An : n ∈ N). Now Fubini’s theorem gives [ω]E ∈ σ(An : n ∈ N), as claimed.

Moving on, we claim that, for all ω, ω′ ∈ Ω with (ω, ω′) /∈ E, there exists n ∈ N such
that we have either [ω]E ⊆ An and [ω′]E ∩ An = ∅ or [ω]E ⊆ Ω \ An and [ω′]E ⊆ An.
If this is not true, then, recalling {An}n∈N ⊆ E∗, there must exist ω, ω′ ∈ Ω with
(ω, ω′) /∈ E such that for all n ∈ N we have [ω]E , [ω

′]E ⊆ An or [ω]E , [ω
′]E ⊆ Ω \ An.

But Σ3(ω, ω′) := {A ∈ E∗ : [ω]E , [ω
′]E ⊆ A or [ω]E , [ω

′]E ⊆ Ω \ A} is a σ-algebra, so
σ(An : n ∈ N) ⊆ Σ3(ω, ω′). This contradicts the conclusion of the previous paragraph.

Finally, we define the function φ : (Ω,F) → (R,B(R)) via the summation φ(ω) :=∑
n∈N 3−n1An

(ω) for all ω ∈ Ω, which is clearly measurable. Also, the previous paragraph
shows that ω, ω′ ∈ Ω have (ω, ω′) ∈ E if and only if φ(ω) = φ(ω′). Therefore, E is smooth,
so (i) holds. This finishes the proof.
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This characterization leads us to our main result:

Corollary 3.18. On a standard Borel space, any equivalence relation that can be written
as a countable increasing union of smooth equivalence relations is strongly dualizable.

Proof. Suppose that E1 ⊆ E2 ⊆ · · · are smooth equivalence relations and E =
⋃
n∈NEn.

For each n ∈ N, we have En ∈ E∗n ⊗ E∗n by Lemma 3.16 and En ⊆ E∗∗n by part (i) of
Lemma 3.3; thus, Theorem 3.13 implies that (En, E

∗
n) satisfies strong duality for all

n ∈ N. Consequenently, Theorem 3.14 implies that (E,
⋂
n∈NE

∗
n) satisfies strong duality,

hence E is strongly dualizable.

In descriptive set theory, an equivalence relation that can be written as a countable
increasing union of smooth equivalence relations is called a hypersmooth equivalence
relation.

We also prove the following result, which is interesting from the point of view
of descriptive set theory, Recall that a Borel equivalence relation is a measurable
equivalence relation on a standard Borel space, and that a countable Borel equivalence
relation is a Borel equivalence relation whose equivalences classes are all countable.

Corollary 3.19. On a standard Borel space, all countable Borel equivalence relations
are strongly dualizable.

Proof. The Feldman-Moore theorem [43, Theorem 2.3] states that, for any countable
Borel equivalence relation E on a standard Borel space (Ω,F), there exists a countable
group G acting measurably on Ω such that E = EG. Therefore, Theorem 3.10 guarantees
that E is strongly dualizable.

3.7 Given a sub-σ-algebra

In this subsection we consider the setting that G is a given sub-σ-algebra of F and that
one wants to find a suitable equivalence relation E on Ω such that (E,G) satisfies strong
duality. As before, we show that this is possible in great generality, as a consequence of
our general results.

We begin, however, with a negative result which shows that the task in this setting
can be impossible:

Example 3.20. Take Ω := [0, 1] with F its Borel σ-algebra, and let G be the σ-algebra of
all subsets of Ω which are countable or whose complements are countable. Now suppose
that E is an equivalence relation on Ω such that the pair (E,G) satisfies strong duality.
By Proposition 3.6, we have G∗ ⊇ E. Since G separates points, we also have G∗ = ∆.
Thus, these considerations give E ⊆ G∗ = ∆. Since E is an equivalence relation, it also
satisfies E ⊇ ∆, hence we have E = ∆. Then, let λ denote the Lebesgue measure on
(Ω,F), and define probability measures P and P′ via

dP

dλ
(x) = 2x and

dP′

dλ
(x) = 2(1− x)

for x ∈ Ω. It is easy to see that we have

sup
A∈G
|P(A)− P′(A)| = 0.

However, since we have 1− 1∆(x, x′) ≥ x− x′ for all x, x′ ∈ Ω it also follows that

min
P̃∈Π(P,P′)

(1− P̃(∆)) ≥ min
P̃

(∫
Ω

xdP(x)−
∫

Ω

x′dP′(x′)

)

=

∫ 1

0

2x2dλ(x)−
∫ 1

0

2x′(1− x′)dλ(x′) =
2

3
− 1

3
=

1

3
> 0.
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Since this contradicts the assumption that (E,G) satisfies strong duality, there can be no
equivalence relation E on Ω for which the pair (E,G) satisfies strong duality.

Despite this difficulty, we will develop some wide sufficient conditions for a positive
answer, and these will be general enough to cover most cases of interest to probabilists.

Next we show that G∗ is a (somewhat) canonical choice of E, although observe that it
can be hard to directly check for the measurability of G∗ given G:

Proposition 3.21. For G a sub-σ-algebra of F and E an equivalence relation on Ω, if
the pair (E,G) satisfies strong duality and G∗ is measurable, then (G∗,G) satisfies strong
duality.

Proof. By part (i) of Lemma 3.3 we have G ⊆ G∗∗, so Proposition 3.6 implies that (G∗,G)

satisfies weak duality. To see that (G∗,G) in fact satisfies strong duality, take arbitrary
P,P′ ∈ P(Ω,F), and use the strong duality of (E,G) to get P̃ ∈ Π(P,P′) with

sup
A∈G
|P(A)− P′(A)| = 1− P̃(E).

Now note that (E,G) satisfying strong duality implies that it satisfies weak duality,
whence E ⊆ G∗ by Proposition 3.6. Consequently, 1 − P̃(E) ≥ 1 − P̃(G∗), and this
completes the proof.

As before, let us say that a sub-σ-algebra G of F is strongly dualizable if (G∗,G)

satisfies strong duality. In contrast to the previous subsection, this need not be equivalent
to the existence of some measurable equivalence relation E on Ω such that (E,G) satisfies
strong duality, since G∗ can fail to be measurable. Let us also say that G is weakly
dualizable or quasi-strongly dualizable if (G∗,G) satisfies weak duality or quasi-strong
duality, respectively.

Now we turn to another important result.

Lemma 3.22. If a sub-σ-algebra G of F is countably-generated, then G∗ ∈ G ⊗ G.

Proof. Suppose that there exists a sequence {An}n∈N in G satisfying G = σ(An : n ∈ N).
We claim in this case that

G∗ = {(ω, ω′) ∈ Ω× Ω : ∀n ∈ N(ω ∈ An ⇔ ω′ ∈ An)} .

It is obvious that the right side contains G∗, so it only remains to show that the right
side is contained in G∗. Indeed, suppose that (ω, ω′) is an element of the right side.
Then Σ(ω, ω′) := {A ∈ G : ω ∈ A ⇔ ω′ ∈ A} is a σ-algebra containing {An}n∈N, so it
must contain σ(An : n ∈ N) = G, and this yields (ω, ω′) ∈ G∗. Thus, we can write the
expression above as

G∗ =
⋂
n∈N

(((Ω \An)× Ω) ∪ (Ω×An))

∩
⋂
n∈N

((Ω× (Ω \An)) ∪ (An × Ω)).

Since each set on the right side is in G, it follows that G∗ ∈ G ⊗ G.

Finally, we come to the main result of this subsection:

Corollary 3.23. On a standard Borel space, any sub-σ-algebra that can be written as
a countable decreasing intersection of countably-generated sub-σ-algebras is strongly
dualizable.

EJP 28 (2023), paper 132.
Page 29/33

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1016
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Duality for equivalence couplings and total variation

Proof. Suppose that G1 ⊇ G2 ⊇ · · · are countably-generated sub-σ-algebras and G =⋂
n∈N Gn. For each n ∈ N, we have G∗n ∈ Gn ⊗ Gn by Lemma 3.22 and Gn ⊆ G∗∗n by part (i)

of Lemma 3.3; thus, Theorem 3.13 implies that (G∗n,Gn) satisfies strong duality for all
n ∈ N. Consequently, Theorem 3.14 implies that (

⋃
n∈N G∗n,G) satisfies strong duality.

Thus, it only remains to show that
⋃
n∈N G∗n = G∗. To do this, note that we readily have⋃

n∈N G∗n ⊆ (
⋂
n∈N Gn)∗ by the antimonotonicity of the Galois correspondence. For the

converse, suppose that (ω, ω′) is not in the left side. Then for each n ∈ N there exists
An ∈ Gn with ω ∈ An and ω′ /∈ An. It follows that the set A :=

⋂
m∈N

⋃
n≥mAn has

A ∈
⋂
n∈N Gn and ω ∈ A and ω′ /∈ A, whence (ω, ω′) is not in the right side. This shows⋃

n∈N G∗n = (
⋂
n∈N Gn)∗ = G∗, so G is strongly dualizable.

Some authors refer to a sub-σ-algebra that can be written as a countable decreasing
intersection of countably-genreated sub-σ-algebras a tail σ-algebra.

Let us conclude by giving an equivalent definition of G∗ which can be desirable in
some situations. We write G(ω) := ∩{A ∈ G : ω ∈ A} for ω ∈ Ω as the intersection of
all events in G which contain ω ∈ Ω; this is called the atom of G at ω, and we write
at(G) = {G(ω) : ω ∈ Ω} for the collection of all atoms of G. Then it is easy to show that
we have

G∗ :=
⋃

H∈at(G)

H ×H.

Note that, in general, atoms of G need not be G-measurable and, as always, that G∗ need
not be (F ⊗ F)-measurable.

The difficulties of this subsection, compared the previous subsection, are largely due
to the fact that G∗ need not be measurable. Thus, in light of Proposition 3.9, the study of
quasi-strong duality may be more natural, compared to the study of strong duality, for
sub-σ-algebras G.
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