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Abstract

We consider discrete β-ensembles, as introduced by Borodin, Gorin and Guionnet in
(Publications mathématiques de l’IHÉS 125, 1–78, 2017). Under general assumptions,
we establish a large deviation principle for the empirical (or spectral) measures
corresponding to these models. Our results apply in the cases when the potential of
the model depends on the number of particles, and/or has slow growth near infinity,
leading to an equilibrium measure with infinite support.
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1 Introduction and main results

Over the last few decades, several authors (e.g. [AGZ10], [BAG97], [Fér08], [Har12],
[HP00]) have established global large deviation principles (LDPs) for the spectral mea-
sures of classical random matrix models such as the Gaussian Orthogonal, Unitary and
Symplectic ensembles. Their analysis is based on the description of the joint law of
the eigenvalues as a continuous log-gas (sometimes called Coulomb gas). More re-
cently, [BGG17] proposed a discrete analogue of continuous log-gases, called discrete
β-ensembles and the goal of this paper is to prove an LDP for the spectral measures
corresponding to these models.

In Section 1.1 we recall the definition of the continuous log-gas on R and some of the
results regarding its global large deviations. In Section 1.2 we formulate our discrete
setup and state our main results.
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A global LDP for discrete β-ensembles

1.1 Continuous setting

Let ∆ be a closed interval in R, N ∈ N, β > 0 and V : ∆→ R be a continuous function.
A continuous log-gas is a probability distribution on ∆N , whose density is

ρ(x1, . . . , xN ) =
1

ZN
1{x1 > x2 > · · · > xN}

∏
1≤i<j≤N

(xi − xj)β
N∏
i=1

exp

(
−βN

2
V (xi)

)
, (1.1)

and ZN is a normalization constant. If ∆ is compact the above measure is well-defined,
and if ∆ is unbounded one needs to assume V (x) grows fast as |x| → ∞, so that

ZN :=

∫
∆N

1{x1 > x2 > · · · > xN}
∏

1≤i<j≤N

(xi − xj)β
N∏
i=1

exp

(
−βN

2
V (xi)

)
dxi <∞. (1.2)

The quantity ZN is usually referred to as the partition function of the model, the
parameter β is called the inverse temperature and V (x) is called the potential.

The study of continuous log-gases for general β > 0 and potentials V (x) is a rich
subject with many important connections to different branches of mathematics. For
example, when ∆ = R, V (x) = x2 and β = 1, 2, and 4, (1.1) is the joint density of the
(ordered) eigenvalues of random matrices from the Gaussian Orthogonal, Unitary and
Symplectic ensembles [AGZ10]. We refer the interested reader to the monographs
[AGZ10, For10, Meh04] for additional background and a textbook treatment of the
classical results on continuous log-gases.

A general question of interest asks about the limiting global distribution of the xi’s
as N →∞, i.e. about the convergence of the empirical measures

µN =
1

N

N∑
i=1

δxi , (1.3)

with (x1, . . . , xN ) distributed according to (1.1). Note that µN are random variables that
take value in the spaceM(∆) of probability measures on ∆, which we equip with the
usual weak topology. It is known under general assumptions on the potential V that the
sequence {µN}N≥1 converges almost surely to a deterministic probability measure µeq,
called the equilibrium measure, which is characterized as the unique minimizer of the
weighted energy integral

EV (µ) =

∫∫
R2

kV (x, y)µ(dx)µ(dx), over µ ∈M(∆), where

kV (x, y) = log |x− y|−1 +
1

2
V (x) +

1

2
V (y).

(1.4)

In fact, a stronger statement in this direction says that {µN}N≥1 satisfy a large de-
viation principle on M(∆) with speed N2 and good rate function IV (µ) = (β/2) ·
[EV (µ)− EV (µeq)]. This result was first established by Ben Arous and Guionnet when
∆ = R, β = 2 and V (x) = x2/2 in [BAG97]. For the case of a general potential V (x),
which grows faster than a linear multiple of log |x| near ±∞, proofs of the LDP can be
found in increasing generality as [HP00, Theorem 5.4.3], [AGZ10, Theorem 2.6.1] and
[Har12, Theorem 1.1]. The LDP of the measures in (1.1) has also been established when
the potential V (x) in (1.1) is allowed to vary with N in such a way that

VN (x) ≥ (1 + ξ) log(1 + x2) for all |x| ≥ T and N ≥ 1, (1.5)

where ξ, T > 0 are fixed, the functions VN are continuous and converge uniformly over
compact sets of ∆ to a function V – see [Fér08, Theorem 2.1].

The above few paragraphs aimed to give a brief overview of the global large deviation
problem for continuous log-gases and summarize some of the main results that are
available. We next turn to the discrete setup we investigate in the present paper.
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A global LDP for discrete β-ensembles

1.2 Discrete setting and main results

In this article we consider a discrete analogue of (1.1), which was introduced in
[BGG17]. To define the model we begin with some necessary definitions and notation.
Let θ > 0, N ∈ N and aN ∈ Z ∪ {−∞}, bN ∈ Z ∪ {∞} with aN ≤ bN . We set

YN (aN , bN ) = {(λ1, . . . , λN ) ∈ ZN : aN ≤ λN ≤ · · · ≤ λ1 ≤ bN},
Wθ

N (aN , bN ) = {(`1, . . . , `N ) : `i = λi + (N − i) · θ, with (λ1, . . . , λN ) ∈ YN (aN , bN )}.
(1.6)

We interpret `i’s as locations of particles. If θ = 1 then all particles live on the integer
lattice, while for general θ the particle of index i lives on the shifted lattice Z+ (N − i) · θ.

We define a probability measure PθN on Wθ
N (aN , bN ) through

PθN (`1, . . . , `N ) :=
1

ZN

∏
1≤i<j≤N

Qθ(`i− `j)
N∏
i=1

e−θNVN (`i/N), Qθ(x) :=
Γ(x+ 1)Γ(x+ θ)

Γ(x)Γ(x+ 1− θ)
.

(1.7)
Here Γ is the Euler gamma function, VN is a continuous function on R and

ZN :=
∑

(`1,...,`N )∈Wθ
N (aN ,bN )

∏
1≤i<j≤N

Qθ(`i − `j)
N∏
i=1

e−θNVN (`i/N) (1.8)

is a normalization constant (also called the partition function). If bN − aN < ∞ then
ZN <∞ and (1.7) is a well-defined probability measure. If bN − aN =∞ then one needs
to assume that VN grows sufficiently fast as |x| → ∞ to ensure that ZN <∞. We show
in Lemma 2.2 that as long as

lim inf
|x|→∞

NθVN (x)− (θ′N + (N − 1)θ) log(1 + x2) > −∞ for some θ′N > 1/2, (1.9)

we have that ZN <∞ and hence (1.7) is a well-defined probability measure.
The measures in (1.7) are called discrete β-ensembles and were introduced in

[BGG17] as discrete analogues of (1.1) and extensively studied. To see why one might
consider (1.7) as a discrete version of (1.1), note thatQθ(`i−`j) ∼ (`i−`j)2θ as `i−`j →∞
(see Lemma 2.1), which agrees with (1.1) for β = 2θ.

It is worth mentioning that there are other discrete analogues of (1.1); for example,
one can consider the following measure on W1

N (aN , bN ) as in (1.6)

P(`1, . . . , `N ) ∝
∏

1≤i<j≤N

|`i − `j |β
N∏
i=1

e−θNVN (`i/N). (1.10)

When θ = 2β = 1 the functional equation Γ(z + 1) = zΓ(z) gives Qθ(x) = x2 so that the
measures in (1.7) and (1.10) are the same. For general θ = 2β, the measures in (1.7) and
(1.10) are different, since for the former `i ∈ Z+ (N − i) · θ, while for the latter `i ∈ Z for
i = 1, . . . , N . While both (1.7) and (1.10) are reasonable discretizations of (1.1), there is
a much higher interest in the former coming from connections to integrable probability;
specifically, uniform random tilings, (z, w)-measures and Jack measures — see [BGG17,
Section 1] for more details. We also mention that (1.10) appears to lack the integrability
that is present in (1.7). In particular, while both global and edge fluctuations have been
successfully obtained for (1.7) in [BGG17] and [GH19], respectively, neither has been
established for (1.10), except when θ = 1.

Similarly to the continuous setting, we are interested in obtaining a large deviation
principle for the empirical measures

µN =
1

N

N∑
i=1

δ`i/N , (1.11)
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as N → ∞. As before, we view µN as random variables taking values in M(Rn) with
n = 1 (hereM(Rn) is the space of probability measures on Rn, equipped with the weak
topology). We mention that the weak topology onM(Rn) is compatible with the Lévy
metric dn defined for two measures µ, ν ∈M(Rn) by

dn(µ, ν) = inf{δ : µ(F ) ≤ ν(F δ) + δ ∀F ⊆ Rn closed}, where (1.12)

F δ = {x ∈ Rn : infy∈F ‖x − y‖n ≤ δ} and ‖ · ‖n is the Euclidean distance on Rn. Also
(M(Rn), dn) is a Polish space, [AGZ10, Theorem C.8].

In order to formulate our large deviations theorem we require some additional
notation that we now present. If ∆ ⊆ R is a closed interval, we let M(∆) denote the
subset ofM(R) consisting of probability measures µ, whose support Supp(µ) is contained
in ∆. If λ(∆) ≥ θ (here λ is the Lebesgue measure on R) we letMθ(∆) denote the subset
ofM(R) consisting of probability measures µ that are absolutely continuous with respect
to λ, are supported in ∆ and have density that is bounded by θ−1. The assumption that
λ(∆) ≥ θ ensures thatMθ(∆) is non-empty. The next statement summarizes the relevant
facts we require about the function EV (µ) from (1.4) when restricted to the setMθ(∆).

Theorem 1.1. Let θ > 0, ∆ ⊆ R be a closed interval such that λ(∆) ≥ θ and V : R→ R

be a continuous function satisfying

lim inf
|x|→∞

V (x)− log(1 + x2) > −∞. (1.13)

Assume also that kV (x, y) and EV (µ) are as in (1.4). Then the following statements hold.

1. For each µ ∈M(R) the integral EV (µ) is well-defined and EV (µ) ∈ (−∞,∞].

2. F θV := infµ∈Mθ(∆)EV (µ) is finite and EV (µθeq) = F θV for a unique µθeq ∈Mθ(∆).

3. The function

IθV (µ) :=

{
θ(EV (µ)− F θV ) for µ ∈Mθ(∆)

∞ for µ ∈M(R) \Mθ(∆)
(1.14)

is a good rate function (GRF) onM(R).

4. If µ ∈Mθ(∆), EV (µ) <∞ and there is a constant c ∈ R such that∫
R

(
log |x− y|−1+

1

2
log(1 + x2)

)
µ(dx) +

1

2
V (y)≥c, for a.e. y∈Supp(θ−1λ−µ) ∩∆,∫

R

(
log |x− y|−1 +

1

2
log(1 + x2)

)
µ(dx) +

1

2
V (y) ≤ c, for a.e. y ∈ Supp(µ),

then µ = µθeq. Here Supp denotes the support of a measure, θ−1λ denotes the
rescaled by θ−1 Lebesgue measure on R, and a.e. is with respect to λ.

5. If V (x) satisfies the stronger, compared to (1.13), growth condition

lim
|x|→∞

V (x)− log(1 + x2) =∞, (1.15)

then the measure µθeq from (2) above has compact support.

Remark 1.2. If V (x) is continuous and satisfies (1.13) then we note from the inequality

|x− y| ≤
√

1 + x2
√

1 + y2 for all x, y ∈ R (1.16)
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that kV (x, y) is lower bounded on R and so EV (µ) is well-defined for every µ ∈M(R) and
EV (µ) ∈ (−∞,∞]. Also, if V (x) is continuous and satisfies (1.15) or if ∆ is bounded then
all the statements in Theorem 1.1 follow from [DS97, Theorem 2.1] and its proof, with
the exception of part (4) where one needs to further assume that µ ∈Mθ(∆) is compactly
supported if ∆ is unbounded. The non-trivial (and new) parts of Theorem 1.1 are showing
that statements (2), (3) and (4) all hold when ∆ is unbounded and V (x) satisfies the
growth condition (1.13), rather than (1.15). We establish these three statements in
Section 2.3. Our proof of (2) and (3) is based on adapting the arguments in the proof of
[Har12, Theorem 1.1] (which deals with the case whenMθ(∆) is replaced withM(∆))
and our proof of (4) is based on adapting the arguments in the proof of [DS97, Theorem
2.1(d)].

The function IθV (µ) from (1.14) is the rate function in our large deviation principle,
see Theorem 1.3. We next explain how we scale the parameters in the definition of PθN
in (1.7) as N →∞.

Assumption 1. Let a ∈ [−∞,∞) and b ∈ (−∞,∞] be such that a ≤ b. We assume
that aN ∈ Z ∪ {−∞}, bN ∈ Z ∪ {∞} with aN ≤ bN satisfying limN→∞N−1aN = a and
limN→∞N−1bN = b. We also denote ∆ = [a, b+ θ] ∩R.

Assumption 2. We assume that V : R → R is a continuous function, which satisfies
(1.13). We also assume that VN (x) is a sequence of continuous functions on R such that
for each N ∈ N the inequality in (1.9) holds. As mentioned earlier, the inequality in
(1.9) implies that PθN in (1.7) is well-defined for any aN ∈ Z ∪ {−∞}, bN ∈ Z ∪ {∞}, see
Lemma 2.2. We further assume that at least one of the following two conditions hold:

(a) There exist εN ≥ 0 such that |VN (x) − V (x)| ≤ εN for all N ≥ 1, x ∈ R and
limN→∞ εN = 0.

(b) There exist ξ, T > 0 such that (1.5) holds and for each compact set K ⊆ R we have
limN→∞ supx∈K |VN (x)− V (x)| = 0.

In words, Assumption 2 states that either VN converge uniformly to V on R, which
satisfies the mild growth condition (1.13), or the VN converge to V uniformly over
compact sets, but have the uniform (in N ) stronger growth condition in (1.5). The only
other aspect of Assumption 2, is that VN satisfy (1.9) so that the measure PθN in (1.7) is
well-defined.

With the above notation in place we can present the main result of the paper.

Theorem 1.3. Suppose that θ > 0 and PθN is a sequence of probability measures
on Wθ

N (aN , bN ) as in (1.6) of the form (1.7), where aN , bN satisfy the conditions in
Assumption 1 and VN satisfy the conditions in Assumption 2. If µN are as in (1.11) for
(`1, . . . , `N ) distributed according to PθN , then the sequence of measures inM(R), given
by the laws of µN , satisfies an LDP with speed N2 and good rate function IθV (µ) as in
(1.14), with ∆ as in Assumption 1.

Remark 1.4. Theorem 1.3 can be understood as a discrete version of [Har12, Theorem
1.1(c,d)]. The essential difference between the two results is in the rate function, which in
the continuous case is given by (1.14) withMθ(∆) replaced withM(∆) (i.e. probability
measures on ∆ without any density constraints). The reason for this difference comes
from the fact that the measures µN from (1.11) can only approximate measures in
Mθ(∆) and are uniformly bounded away from measures in M(∆) \Mθ(∆). This is a
consequence of the discrete nature of our state space and the fact that `i are at least
θ away from each other, which means that within any interval (αN, βN) there are at
most 1 + θ−1 · (β − α) ·N particles. This means that the measure of any interval (α, β)

under µN is asymptotically bounded by θ−1 · (β − α), which means that asymptotically
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µN cannot approximate any measure that does not have a density bounded by θ−1, and
correspondingly the rate function IθV (µ) is infinite for such measures. For the continuous
case, the empirical measures in (1.3) can approximate any measure inM(∆) and that
accounts for the difference in the rate functions.

Theorem 1.3 is proved in Section 3.1 and is based on an adaptation of an elegant idea
from [Har12], which goes back to [HK12]. The core of this idea is to map the measures
µN in Theorem 1.3 to ones on the circle S := {~x = (x1, x2) ∈ R2 : x2

1 + (x2 − 1/2)2 = 1},
using the inverse stereographic projection T , that maps the one-point compactification
of C to the Riemann sphere, and restricting it to R. As explained in [Har12, Remark 1.5],
the advantage of working with the space of probability measures on S is that the latter
is compact in the weak topology. One consequence of this compactness is that it suffices
to prove a weak LDP upper bound for the measures T∗µN (the pushforwards of µN by T ),
and as a result we obtain a strong LDP upper bound for T∗µN , and consequently for µN .
Another consequence of the compactness is that it allows one to circumvent the necessity
of establishing an exponential tightness property for µN , which is required in classical
works on LDPs for continuous and discrete log-gases [AGZ10, BAG97, Fér08, HP00]. In
fact, as mentioned in [Har12, Remark 1.5], it is not even clear how to directly establish
the exponential tightness of µN under the weaker growth in (1.9).

While the core idea of our work is similar to [Har12], there are several new challenges
that we face, which come from the discreteness of our models in (1.7). For example,
when we prove the weak LDP upper bound of T∗µN in Lemma 3.1, the arguments in
[Har12] only work under Assumption 2(a), and provide the correct rate function only
on the set T∗(Mθ(∆)), see Section 3.2.1. To complete the proof under Assumption 2(b)
as well, and also find the correct rate function on all of probability measures on S, we
adapt some of the ideas from [Fér08, Joh00], see Sections 3.2.2 and 3.2.3. Obtaining
the strong LDP upper bound for µN from Lemma 3.1 is done in Step 1 of the proof
of Theorem 1.3 in Section 3.1, and essentially uses the argument in [Har12], which is
inspired by [DZ98, Theorem 4.1.1]. For the LDP lower bound, [Har12] relies on [AGZ10,
Theorem 2.6.1], which is not applicable in our case due to the discreteness of our models.
Consequently, we need to develop this part of the proof separately, for which we rely
on some ideas from discrete log-gases [Fér08, Joh00], as well as a couple of technical
lemmas – Lemmas 3.2 and 3.3.

To summarize, we have attempted to prove Theorem 1.3 under the weakest possible
conditions, when the intervals of support and the potentials VN for the measures PθN in
(1.7) are allowed to vary with N , and we assume as little as possible about them. Under
Assumption 2(a) one can adapt the arguments from [Har12], and under Assumption 2(b)
one can adapt the arguments from [Fér08, Joh00] to get the LDP upper bound, but we
need to modify both types of arguments to account for the varying nature of our supports
Wθ

N (aN , bN ) and potentials VN . For the LDP lower bound, we appropriately modify the
argument from [Har12], which is for continuous log-gases to our discrete setting.

1.3 Outline

The rest of the article is organized as follows. In Section 2.1, we provide sufficient
conditions for the measures PθN to be well-defined. Section 2.2 explains the compactifi-
cation argument from [Har12, Section 2] and in Section 2.3 we prove Theorem 1.1. In
Section 3.1 we state a certain weak LDP upper bound for the pushforward measures of
µN under the map T in Section 2.2, this is Lemma 3.1, as well as two technical results –
Lemmas 3.2 and 3.3. Within the same section, we prove Theorem 1.3 using these three
results. Lemma 3.1 is proved in Section 3.2, while Lemmas 3.2 and 3.3 are proved in
Section 3.3. In Section 4 we give two applications of Theorem 1.3. One of them is to
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certain measures related to Jack symmetric functions, and the other is to certain discrete
analogues of the Cauchy ensembles from [Har12, Example 1.3].

2 Preliminary results

In Section 2.1 we give sufficient conditions under which the measures in (1.7) are
well-defined. In Section 2.2 we recall the compactification argument from [Har12,
Section 2] and in Section 2.3 we present the proof of Theorem 1.1. We continue with the
same notation as in Section 1.2.

2.1 Well-posedness of PθN
We recall the following result from [DD21].

Lemma 2.1 ([DD21, Lemma 2.14]). For any x ≥ θ > 0 we have

Qθ(x) =
Γ(x+ 1)Γ(x+ θ)

Γ(x)Γ(x+ 1− θ)
∈
[
x2θ · exp(−(1 + θ)3x−1), x2θ · exp((1 + θ)3x−1)

]
. (2.1)

Lemma 2.2. Fix θ > 0, N ∈ N, aN ∈ Z ∪ {−∞}, bN ∈ Z ∪ {∞} with aN ≤ bN , and
Wθ

N (aN , bN ) as in (1.6). Suppose VN : R→ R is continuous and satisfies (1.9). For each
` = (`1, . . . , `N ) ∈Wθ

N (aN , bN ) define

W (`) =
∏

1≤i<j≤N

Qθ(`i − `j)
N∏
i=1

e−θNVN (`i/N),

whereQθ is as in (2.1). Then, W (`) > 0 for all ` ∈Wθ
N (aN , bN ), and ZN ∈ (−∞,∞), where

ZN :=
∑
`∈Wθ

N (aN ,bN )W (`). In particular, (1.7) is a well-defined probability measure.

Proof. The positivity of W (`) follows from the positivity of the gamma function on (0,∞)

and the positivity of exponential functions. Thus, we only need to prove that

Z∞N :=
∑

`∈Wθ
N (−∞,∞)

∏
1≤i<j≤N

Qθ(`i − `j) ·
N∏
i=1

e−θNVN (`i/N) <∞. (2.2)

The continuity of VN and (1.9) imply that we can find A > 0 such that for all x ∈ R

−θNVN (x) ≤ A− (θ′N + (N − 1)θ) log(1 + x2)

Combining the latter with Lemma 2.1, we conclude that

Z∞N =
∑

`∈Wθ
N (−∞,∞)

∏
1≤i<j≤N

Qθ(`i − `j) ·
N∏
i=1

e−θNVN (`i/N) ≤ eAN+(1+θ)3BNN(N−1)θ

×
∑

`∈Wθ
N (−∞,∞)

∏
1≤i<j≤N

(`i/N − `j/N)2θ
N∏
i=1

e−(θ′N+(N−1)θ) log(1+(`i/N)2),

(2.3)

where we have set B :=
∑

1≤i<j≤N
1

(j−i)θ and used that for ` ∈Wθ
N (−∞,∞) we have∑

1≤i<j≤N

1

`i − `j
≤

∑
1≤i<j≤N

1

(j − i)θ
= B.

Combining (2.3) with (1.16) we get that there is C > 0, depending on N and θ, such that

Z∞N ≤ C ·
∑

`∈Wθ
N (−∞,∞)

N∏
i=1

e−θ
′
N log(1+(`i/N)2) ≤ C ·

N∏
i=1

(∑
x∈Z

1

(1 + (x+ (N − i) · θ)2/N2)
θ′N

)
.

The last inequality implies (2.2) since θ′N > 1/2 by assumption.
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2.2 Compactification

In this section, we describe the compactification procedure from [Har12, Section 2],
and recall the results from that paper that we require. We mention that the setup in
[Har12] is for C, but can be readily adapted to R, using the usual embedding of R in C.

Let S ⊆ R2 be given by

S := {~x = (x1, x2) ∈ R2 : x2
1 + (x2 − 1/2)2 = 1}.

In words, S is the circle of radius 1/2, centered at the point (0, 1/2). We let T : R→ S be

T (x) :=

(
x

1 + x2
,

x2

1 + x2

)
,

and note that T is a homeomorphism from R onto S \ {np}, where we write np = (0, 1). If
∆ ⊆ R is a closed interval, we set

∆S = T (∆) ∪ {np}, (2.4)

and note that ∆S is a closed subset of S, and hence R2. For a closed subset F ⊆ R2

we endow it with the subspace topology, coming from the usual topology on R2, and
corresponding Borel σ-algebra. In addition, we write M(F ) for the set of probability
measures inM(R2), whose support is contained in F . We endowM(F ) with the weak
topology, which is the same as the subspace topology coming fromM(R2). In particular,
if d2 denotes the Lévy metric in (1.12) then (M(F ), d2) is a Polish space, and the metric
topology is the same as the weak topology onM(F ).

Given µ ∈M(R), we let T∗µ denote the push-forward of µ under the map T , i.e. for
each Borel set A ⊆ S we have

T∗µ(A) := µ(T−1(A)). (2.5)

We now state the first result we require from [Har12, Section 2].

Lemma 2.3 ([Har12, Lemma 2.1]). For each closed interval ∆ ⊆ R the map T∗ is a
homeomorphism fromM(∆) to {ν ∈M(∆S) : ν({np}) = 0}.

Our next task is to reformulate the minimization problem of (1.4), which is defined
for measures on R, to one that is defined for measures on S. Below we assume that V (x)

is a continuous function on R that satisfies (1.13). We define V : S → (−∞,∞] through

V(~x) =

{
V (y)− log(1 + y2) if ~x 6= np and y = T−1(~x)

lim inf |x|→∞ V (x)− log(1 + x2) if ~x = np.
(2.6)

The growth condition (1.13) ensures that V is lower semi-continuous and bounded from
below on S so that the function FV : S × S → (−∞,∞], given by

FV(~x, ~y) = log ‖~x− ~y‖−1
2 +

1

2
V(~x) +

1

2
V(~y), ~x, ~y ∈ S, (2.7)

is lower semi-continuous and bounded from below on S × S, where we recall that ‖ · ‖n
is the Euclidean distance on Rn. The latter implies that the weighted energy integral

EV(ν) =

∫∫
S2

FV(~x, ~y)ν(d~x)ν(d~y), ν ∈M(S) (2.8)

is well-defined, and takes values in (−∞,∞]. In addition, from [Har12, Equation (2.9)]
we have that if V (x) is continuous and satisfies (1.13), and EV is as in (1.4), then

EV (µ) = EV(T∗µ) for all µ ∈M(R), (2.9)
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provided that T∗ is as in (2.5), and V is as in (2.6). Equation (2.9) is the key identity,
which allows us to transport the minimization problem in (1.4) over measures inM(R)

to one over measures in M(S), the latter space being more convenient in view of its
compactness.

We end this section by formulating a useful proposition, which can be found as
[Har12, Proposition 2.3]. As our formulation is slightly different, we will also provide
the proof of the proposition for completeness. We mention that the core of our proof is
the same as that of [Har12, Proposition 2.3] and relies on an appropriate application of
[CKL98, Theorem 2.5]. Our main contribution is in providing a more detailed justification
of why [CKL98, Theorem 2.5] is applicable, compared to [Har12, Proposition 2.3].

Proposition 2.4. Let V be a continuous function on R that satisfies (1.13), and let V be
as in (2.6). If EV is as in (2.8), then

(a) For each α ∈ R the set {ν ∈M(S) : EV(ν) ≤ α} is compact inM(S).

(b) The function EV is strictly convex onM(S) in the sense that for any µ, ν ∈ M(S)

and t ∈ (0, 1) we have

EV(tµ+ (1− t)ν) ≤ tEV(µ) + (1− t)EV(ν), (2.10)

and the inequality in (2.10) is strict if µ 6= ν (here∞ <∞ is allowed).

Proof. For clarity, we split the proof into two steps. In the first step we prove the
proposition modulo a certain inequality, see (2.12), and in the second step we establish
(2.12). The inequality (2.12) will be used to show that [CKL98, Theorem 2.5] is applicable,
and its proof is based on adapting some ideas from the proof of [AGZ10, Lemma 2.6.2].

Step 1. We define for µ, ν ∈M(S) the function

I(µ, ν) :=

∫∫
S2

log ‖~x− ~y‖−1
2 µ(d~x)ν(d~y), (2.11)

and note that as ‖~x−~y‖2 ≤ 1 the integrand is in [0,∞], so that the integral is well-defined.
We claim that for any µ, ν ∈M(S) we have

2I(µ, ν) ≤ I(µ, µ) + I(ν, ν). (2.12)

We will establish (2.12) in the second step. Here, we assume its validity and conclude
the proof of the proposition.

We proceed to prove (a). Since FV(~x, ~y) is lower semi-continuous on S, there exists an
increasing sequence FnV (~x, ~y) of continuous functions, which converge to FV(~x, ~y) from
below. From the monotone convergence theorem

EV(µ) = sup
n

∫∫
S2

FnV (~x, ~y)µ(~x)dµ(d~y).

We conclude that EV is lower semi-continuous onM(S), and so {ν ∈M(S) : EV(ν) ≤ α}
is closed. SinceM(S) is compact we conclude the same for {ν ∈M(S) : EV(ν) ≤ α}.

We next prove part (b). Since log ‖~x− ~y‖−1
2 ≥ 0 and V is lower bounded on S we have

EV(ν) = I(ν, ν) +

∫
S
V(~x)ν(d~x),

for each ν ∈M(S). Consequently, it suffices to prove I(ν, ν) is strictly convex onM(S),
i.e. (2.10) holds with EV(ν) replaced with I(ν, ν).
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If I(µ, µ) =∞ or I(ν, ν) =∞, then the equation trivially holds (recall that∞ <∞ is
allowed). If both I(µ, µ) <∞ and I(ν, ν) <∞, then from (2.11) and (2.12), linearity of
the integral and the inequality log ‖~x− ~y‖−1

2 ≥ 0 we get

I(|ν − µ|, |ν − µ|) ≤ I(ν + µ, ν + µ) = I(µ, µ) + I(ν, ν) + 2I(µ, ν) <∞. (2.13)

By linearity, we have

I(tµ+ (1− t)ν, tµ+ (1− t)ν) = tI(µ, µ) + (1− t)I(ν, ν)− t(1− t)I(µ− ν, µ− ν).

Equation (2.13) shows that [CKL98, Theorem 2.5] is applicable, and the latter gives
I(µ− ν, µ− ν) ≥ 0 with equality if and only if µ = ν. The last two statements conclude
the proof of the strict convexity of I(ν, ν) and hence part (b).

Step 2. In this step, we prove (2.12). From [AGZ10, (2.6.19)] we have

log ‖~x− ~y‖−1
2 =

∫ ∞
0

1

2t

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
dt,

from which we conclude that

I(µ, ν) =

∫∫
S2

∫ ∞
0

1

2t

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
log ‖~x− ~y‖−1

2 dtµ(d~x)ν(d~y)

=

∫ ∞
0

∫∫
S2

1

2t

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
log ‖~x− ~y‖−1

2 µ(d~x)ν(d~y)dt.

(2.14)

In going from the first to the second line we used that ‖~x− ~y‖2 ≤ 1, which implies that
the integrand is non-negative and the integrals can be exchanged by Tonelli’s theorem.

In view of (2.14), we see that to show (2.12) it suffices to prove that for each t ∈ (0,∞)

2

∫∫
S2

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
log ‖~x− ~y‖−1

2 µ(d~x)ν(d~y)

≤
∫∫
S2

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
log ‖~x− ~y‖−1

2 µ(d~x)µ(d~y)

+

∫∫
S2

(
exp

(
− 1

2t

)
− exp

(
−‖~x− ~y‖

2
2

2t

))
log ‖~x− ~y‖−1

2 ν(d~x)ν(d~y).

At this point all the integrands have finite integrals and we can use linearity and symmetry
of the first line in µ and ν to reduce the above inequality to

0 ≤
∫∫
S2

exp

(
−‖~x− ~y‖

2
2

2t

)
(µ− ν)(d~x)(µ− ν)(d~y). (2.15)

Writing as usual ~x = (x1, x2) and ~y = (y1, y2), and using the identity

e−(x−y)2/2t =

√
t

2π

∫
R

eß(x−y)λe−tλ
2/2dλ,

which is nothing but the characteristic function of a normal variable with mean 0 and
variance t−1, we see that∫∫

S2

exp

(
−‖~x− ~y‖

2
2

2t

)
(µ− ν)(d~x)(µ− ν)(d~y)

=

∫∫
S2

exp

(
− (x1 − y1)2

2t
− (x2 − y2)2

2t

)
(µ− ν)(d~x)(µ− ν)(d~y)

=
t

2π

∫
R

∫
R

e−tλ
2
1/2e−tλ

2
2/2

∫
S
eß(x1−y1)λ1(µ− ν)(d~x)

∫
S
eß(x2−y2)λ2(µ− ν)(d~y)dλ1dλ2

=
t

2π

∫
R

∫
R

e−tλ
2
1/2e−tλ

2
2/2

∣∣∣∣∫
S
eßλ1x1+ßλ2x2(µ− ν)(d~x)

∣∣∣∣2 dλ1dλ2.

The last equality implies (2.15) as the last integrand is non-negative.
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2.3 Proof of Theorem 1.1

As explained in Remark 1.2, we only need to show that parts (2), (3) and (4) all
hold when ∆ is unbounded and V (x) is a continuous function that satisfies the growth
condition in (1.13). We mention that the arguments below are inspired by the proofs of
[DS97, Theorem 2.1] and [Har12, Theorem 1.1]. We split the proof into two steps.

Step 1. In this step we prove part (2). From our assumption that λ(∆) ≥ θ, we
can find a closed interval ∆′ = [a′, a′ + θ] ⊆ ∆. We observe that if µ has density
θ−1 · 1{x ∈ [a′, a′ + θ]}, then µ ∈ Mθ(∆) and EV (µ) < ∞. This implies that Mθ(∆) is
non-empty, F θV <∞ and EV is not identically equal to∞ onMθ(∆).

From Proposition 2.4 we know for every α ∈ R that {ν ∈M(S) : EV(ν) ≤ α} is
compact. In addition,M(∆S) is a closed subset ofM(S), since ∆S is a closed subset of
S. We thus conclude that for every α ∈ R the set {ν ∈M(∆S) : EV(ν) ≤ α} is a compact
subset of M(S). We next note that if ν({np}) > 0 we have EV(ν) = ∞ (due to the
log ‖~x−~y‖−1

2 term in (2.7)). The latter means that {ν ∈M(∆S) : EV(ν) ≤ α} is a compact
subset of {ν ∈M(∆S) : ν({np}) = 0} for any α ∈ R.

From (2.9) we know that EV (µ) = EV(T∗µ) for all µ ∈ M(R). Combining the latter
with Lemma 2.3 we conclude for α ∈ R that

T∗ {µ ∈M(∆) : EV (µ) ≤ α} = {ν ∈M(∆S) : EV(ν) ≤ α and ν({np}) = 0} , (2.16)

and so {ν ∈M(∆S) : EV(ν) ≤ α and ν({np}) = 0} and {µ ∈M(∆) : EV (µ) ≤ α} are home-
omorphic. As the right side of (2.16) is a compact subset of {ν ∈M(∆S) : ν({np}) = 0}
(we explained this in the previous paragraph), we conclude that {µ ∈M(∆) : EV (µ) ≤ α}
is a compact subset ofM(∆). This proves that EV has compact level sets inM(∆).

Since EV (µ) = EV(T∗µ) by (2.9), we have by (2.10) for t ∈ (0, 1) and µ, ν ∈M(R) that

EV (tµ+(1−t)ν) =EV(tT∗µ+(1−t)T∗ν)≤ tEV(T∗µ)+(1−t)EV(T∗ν) = tEV (µ)+(1−t)EV (ν),

with strict inequality if µ 6= ν. We conclude that EV (µ) is strictly convex onM(R).

Note that Mθ(∆) is a closed, convex subset of M(∆) and from the above work
{µ ∈M(∆) : EV (µ) ≤ α} is compact for each α ∈ R, and also convex by the convexity of
EV (µ). The latter observation shows that for each α ∈ R the set {µ ∈Mθ(∆) : EV (µ) ≤ α}
is a compact, convex subset ofMθ(∆).

Summarizing the above, we have that EV (µ) is strictly convex on the non-empty
convex setMθ(∆), has compact and convex level sets inMθ(∆) and is not identically
equal to ∞. This implies the existence and uniqueness of its minimizer µθeq ∈ Mθ(∆).
This proves part (2).

Step 2. In this step we prove parts (3) and (4).

From our work in Step 1, we know that EV (µ) has compact level sets inMθ(∆) and
sinceMθ(∆) is a non-empty closed subset ofM(R) we conclude that IθV (µ) has compact
level sets. In addition, since F θV is finite from Step 1, we conclude that IθV (µ) ∈ [0,∞].
This proves that IθV is a good rate function and completes part (3). In the remainder of
this step we prove part (4).

Let µ ∈Mθ(∆) be such that EV (µ) <∞ and there is a constant c ∈ R such that∫
R

(
log |x− y|−1 +

1

2
log(1 + x2)

)
µ(dx) +

V (y)

2
≥ c, for a.e. y ∈ Supp(θ−1λ− µ) ∩∆,∫

R

(
log |x− y|−1 +

1

2
log(1 + x2)

)
µ(dx) +

V (y)

2
≤ c, for a.e. y ∈ Supp(µ),

(2.17)
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where a.e. is with respect to the Lebesgue measure on R. We seek to prove that µ = µθeq.
We mention that the integral appearing in (2.17) is well-defined and takes value in
(−∞,∞], since the integrand is lower bounded in x on R for each y ∈ R and µ is a
probability measure. The existence of c, the continuity of V and the fact that µ is a
probability measure with density bounded by θ−1 together imply that the integral in
(2.17) is finite for each y ∈ R.

By a direct computation using the definition of T in Section 2.2 and (2.5) we have∫
R

(
log |x− y|−1 +

1

2
log(1 + x2)

)
µ(dx) +

V (y)

2
=

∫
S
log ‖~x− T (y)‖−1

2 (T∗µ)(d~x) +
V(T (y))

2
,

for all y ∈ R, where V(~y) is as in (2.6). The last equation and the linearity of T∗ shows
(2.17) is equivalent to∫

S
log ‖~x− ~y‖−1

2 (T∗µ)(d~x) +
V(~y)

2
≥ c, for a.e. ~y ∈ Supp(θ−1T∗λ− T∗µ) ∩ T (∆),∫

S
log ‖~x− ~y‖−1

2 (T∗µ)(d~x) +
V(~y)

2
≤ c, for a.e. ~y ∈ Supp(T∗µ) ∩ T (∆),

(2.18)

where the a.e. refers to the uniform measure on S.
Let us write ν = T∗µ and recall that EV (µ) = EV(ν) by (2.9). In particular, we have

EV(ν) <∞, which together with the fact that V is lower bounded implies that

I(ν, ν) <∞,
∫
S
V(~y)ν(d~y) <∞ and EV(ν) = I(ν, ν) +

∫
S
V(~y)ν(d~y), (2.19)

where we recall I(µ, ν) was defined in (2.11). Setting νeq = T∗µ
θ
eq and using that

EV(νeq) = EV (µθeq) = F θV <∞, we see that (2.19) holds with ν = νeq as well. Using (2.19)
and (2.12), we have

EV(νeq)− EV(ν) = I(νeq, νeq) + I(ν, ν) + 2

∫
S

[∫
S

log ‖~x− ~y‖−1
2 ν(d~x) +

V(~y)

2

]
(νeq − ν)(d~y)

− 2I(νeq, ν) ≥ 2

∫
S

[∫
S

log ‖~x− ~y‖−1
2 ν(d~x) +

V(~y)

2

]
(νeq − ν)(d~y).

To complete the proof it suffices to show that∫
S

[∫
S

log ‖~x− ~y‖−1
2 ν(d~x) +

V(~y)

2

]
(νeq − ν)(d~y) ≥ 0. (2.20)

Indeed, if (2.20) holds then the last two equations show that EV(νeq)−EV(ν) ≥ 0, which
by (2.9) implies EV (µθeq) ≥ EV (µ). As µθeq is the unique minimizer of EV overMθ(∆) and
µ ∈Mθ(∆) by assumption we conclude that µ = µθeq.

Let us denote

f(~y) =

∫
S

log ‖~x− ~y‖−1
2 ν(d~x) +

V(~y)

2
− c.

Using that
∫
S c(νeq−ν)(d~y) = 0, that Supp(ν),Supp(νeq) ⊆ ∆S , and the fact that ν({np}) =

0 = νeq({np}) (see Lemma 2.3), we see that∫
S

[∫
S

log ‖~x− ~y‖−1
2 ν(d~x) +

V(~y)

2

]
(νeq − ν)(d~y) = I1 + I2, where

I1 =

∫
E1

f(~y)(νeq − ν)(d~y), I2 =

∫
E2

f(~y)(νeq − ν)(d~y), with

E1 = {~y ∈ T (∆) : f(~y) > 0} and E2 = {~y ∈ T (∆) : f(~y) < 0}.

(2.21)
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Since µθeq ∈ Mθ(∆) we have θ−1T∗λ ≥ νeq. In addition, from (2.18) we have (θ−1T∗λ −
ν)(E2) = 0. Combining the last two statements we get

I2 =

∫
E2

f(~y)(νeq − θ−1T∗λ+ θ−1T∗λ− ν)(d~y) =

∫
E2

f(~y)(νeq − θ−1T∗λ)(d~y) ≥ 0. (2.22)

Also, from (2.18) we have ν(E1) = 0, and so

I1 =

∫
E1

f(~y)(νeq − ν)(d~y) =

∫
E1

f(~y)νeq(d~y) ≥ 0. (2.23)

Combining (2.21), (2.22) and (2.23) we obtain (2.20). This suffices for the proof.

3 LDP for µN

The goal of this section is to prove Theorem 1.3. The proof is presented in Section 3.1
and relies on a certain weak LDP upper bound for the pushforward measures of µN under
the map T in Section 2.2, this is Lemma 3.1, as well as two technical results – Lemmas 3.2
and 3.3. Lemma 3.1 is proved in Section 3.2 by adapting some of the arguments from
[Fér08, Har12, Joh00], while Lemmas 3.2 and 3.3 are proved in Section 3.3. We continue
with the same notation as in Sections 1.2 and 2.

3.1 Proof of Theorem 1.3

We begin this section by stating some results, which will be used in the proof of
Theorem 1.3.

The following lemma establishes a weak LDP upper bound for the measures
{T∗µN}N≥1, where T∗ is as in (2.5) and µN are as in (1.11), and is proved in Section 3.2.

Lemma 3.1. Continue with the same notation from Theorem 1.3 and suppose that the
same assumptions hold. Define

Z ′N = ZN ·N−N(N−1)θ, (3.1)

where ZN is as in (1.8). Then, for any µ ∈M(S) we have

lim sup
δ→0+

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µN ∈ B(µ, δ))

)
≤

{
−θ · EV(µ) if µ ∈ T∗(Mθ(∆))

−∞ if µ 6∈ T∗(Mθ(∆))
, (3.2)

where B(µ, δ) = {ρ ∈ M(S) : d2(ρ, µ) < δ} (here d2 is Lévy metric as in (1.12)), µN are
as in (1.11), T∗ is as in (2.5) and EV is as in (2.8) with V as in (2.6). In (3.2) we use the
convention log 0 = −∞.

We next state two technical lemmas, which are proved in Section 3.3.

Lemma 3.2. Let θ > 0, A > θ/2, µ∞ ∈ Mθ([−A,A]). Suppose that `N ∈ Wθ
N (−∞,∞)

are such that if µN = N−1
∑N
i=1 δ`Ni /N we have

1. limN→∞ d1(µN , µ∞) = 0, where d1 is the Lévy metric onM(R) as in (1.12);

2. µN ∈M([−A,A]).

Let VN be continuous functions on [−A,A] for N ∈ N ∪ {∞}, such that
limN→∞ sup[−A,A] |VN (x)− V∞(x)| = 0. Then, we have

lim
N→∞

∫∫
R2

1{x 6= y}kVN (x, y)µN (dx)µN (dy) = EV (µ∞), (3.3)

where kV and EV are as in (1.4).
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Lemma 3.3. Let a ∈ [−∞,∞) and b ∈ (−∞,∞] be such that a < b, θ > 0, and set
∆ = [a, b+ θ]∩R. Let V be a continuous function on R that satisfies (1.13). If µ ∈Mθ(∆),
then we can find a sequence of measures µn ∈Mθ(R) such that

1. limn→∞ d1(µn, µ) = 0, where d1 is the Lévy metic onM(R) as in (1.12);

2. limn→∞EV (µn) = EV (µ), where EV is as in (1.4);

3. for each n ∈ N, the set Supp(µn) is compact and contained in the interior of ∆.

With the above results in place we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The proof we present here is an adaptation of the proof of [Har12,
Theorem 1.1(c,d)]. For clarity, we split the proof into three steps.

Step 1. Note that it is enough to show that for any closed set F ⊆M(R),

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ F)

)
≤ −θ · inf

µ∈F∩Mθ(∆)
EV (µ), (3.4)

and for any open set O ⊆M(R),

lim inf
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ O)

)
≥ −θ · inf

µ∈O∩Mθ(∆)
EV (µ), (3.5)

where Z ′N is as in (3.1). Indeed, if we take F = O =M(R) in (3.4) and (3.5) we get

lim
N→∞

1

N2
logZ ′N = −θ · inf

µ∈Mθ(∆)
EV (µ) = −θF θV ,

where the latter was defined in Theorem 1.1 and is finite. Combining the last equality
with (3.4), (3.5), and the definition of IθV in (1.14), we get the statement of the theorem.

In the remainder of this step we establish (3.4) and in Step 2 we prove (3.5). The
approach we take to proving (3.4) is inspired by the proof of [DZ98, Theorem 4.1.1].

As (3.4) is clear when F = ∅, we assume that F 6= ∅ is a closed subset ofM(R). Then,

PθN (µN ∈ F) ≤ PθN (T∗µN ∈ clo(T∗F)) , (3.6)

where clo(T∗F) is the closure of T∗F inM(S). Let us fix ε > 0 and introduce

EεV(µ) =

{
min

(
EV(µ)− ε, ε−1

)
if µ ∈ T∗(Mθ(∆)),

ε−1 if µ 6∈ T∗(Mθ(∆)).

Then, from Lemma 3.1 for every µ ∈M(S) we can find δµ > 0 such that

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µN ∈ B(µ, δµ))

)
≤ −θEεV(µ). (3.7)

SinceM(S) is compact, so is clo(T∗F), and thus we can find a finite number of measures
ν1, . . . , νd ∈ clo(T∗F), such that

PθN (T∗µN ∈ clo(T∗F)) ≤
d∑
i=1

PθN (T∗µN ∈ B(νi, δνi)) .

Combining the latter with (3.6) and (3.7), we conclude that

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ F)

)
≤ d

max
i=1

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µN ∈ B(νi, δνi))

)
≤ −θ min

i=1,...,d
EεV(νi) ≤ −θ inf

ν∈clo(T∗F)
EεV(ν).

(3.8)
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Letting ε→ 0+ in (3.8), we obtain

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ F)

)
≤ −θ inf

ν∈clo(T∗F)∩T∗(Mθ(∆))
EV(ν).

As T∗ is a homeomorphism betweenM(R) and {ν ∈M(S) : ν({np}) = 0}, we have

inf
ν∈clo(T∗F)∩T∗(Mθ(∆))

EV(ν) = inf
ν∈T∗F∩T∗(Mθ(∆))

EV(ν) = inf
µ∈F∩Mθ(∆)

EV (µ),

where the last equality used (2.9). The last two equations imply (3.4).

Step 2. In this step we prove (3.5). Note that it suffices to show that for each
µ ∈Mθ(∆) and open neighborhood G ⊆M(R), containing µ, we have

lim inf
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ G)

)
≥ −θEV (µ). (3.9)

Note that by Lemma 2.1 we have for all N ∈ N and ` ∈Wθ
N (aN , bN )

Z ′NP
θ
N (`) = exp

O
 ∑

1≤i<j≤N

1

(j − i)

 ∏
1≤i<j≤N

(`i/N − `j/N)
2θ

N∏
i=1

e−θNVN (`i/N)

= exp (O (N logN))
∏

1≤i<j≤N

(`i/N − `j/N)
2θ

N∏
i=1

e−θNVN (`i/N)

= exp

(
O (N logN)− θN2

∫∫
R2

1{x 6= y}kVN (x, y)µN (dx)µN (dy)− θ
N∑
i=1

VN (`i/N)

)
,

(3.10)

where the constants in the big O notations depend on θ alone, and may be different for
different lines. We remark that in the first equality we used that `i − `j ≥ (j − i)θ for
N ≥ j > i ≥ 1.

If ∆ = [a, a + θ], i.e. a = b, then we have that Mθ([a, a + θ]) contains a single
element – the uniform measure on [a, a + θ]. Thus µ has density θ−1 · 1{x ∈ [a, a + θ]}.
Let `N ∈ Wθ

N (aN , bN ) be given by `Ni = aN + (N − i)θ for i = 1, . . . , N , and set µN =

N−1
∑N
i=1 δ`Ni /N . Since limN→∞N−1aN = a, we conclude that µN weakly converge to µ

(say by the Portmanteau theorem). In addition, we see that we can find a sufficiently
large A > 0 so that µN satisfy the conditions of Lemma 3.2 (µ∞ = µ and V∞ = V here).
From Lemma 3.2 and (3.10) we conclude that

lim inf
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ G)

)
≥ lim inf

N→∞

1

N2
log
(
Z ′NP

θ
N

(
`N
))

= −θEV (µ),

which proves (3.9) when a = b.
In the sequel we assume that ∆ = [a, b+ θ] with a < b. In view of Lemma 3.3, we see

that it suffices to prove (3.9) under the additional assumption that Supp(µ) is compact
and contained in the interior of ∆. In particular, we assume that there exist c, d ∈ R,
with c ≤ d and ε > 0 such that

a ≤ c− ε, d+ ε ≤ b, Supp(µ) ⊆ [c, d+ θ].

Claim. There is a sequence `N ∈Wθ
N (−∞,∞) such that for µN = N−1

∑N
i=1 δ`Ni /N

1. limN→∞ d1(µN , µ) = 0;

2. `N ∈Wθ
N (aN , bN ) for all large enough N ;
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3. Supp(µN ) ⊆ [c− ε, d+ θ + ε] for all large enough N .

We prove the claim in the next step. Here we assume its validity and prove (3.9).

We observe that, as `N ∈Wθ
N (aN , bN ) for all large N and limN→∞ d1(µN , µ) = 0,

lim inf
N→∞

1

N2
log
(
Z ′NP

θ
N (µN ∈ G)

)
≥ lim inf

N→∞

1

N2
log
(
Z ′NP

θ
N

(
`N
))
.

On the other hand, since Supp(µN ) ⊆ [c− ε, d+ θ+ ε] for all large enough N , we conclude
that we can find a sufficiently large A > 0 so that µN satisfy the conditions of Lemma 3.2
(µ∞ = µ and V∞ = V here). From Lemma 3.2 and (3.10), we conclude that

lim
N→∞

1

N2
log
(
Z ′NP

θ
N

(
`N
))

= −θEV (µ).

The last two equations prove (3.9) when a < b.

Step 3. In this step we construct `N as in the claim in Step 2. Let us denote
the density of µ by f(x), and note that since µ ∈ Mθ([c, d + θ]) we may assume that
0 ≤ f(x) ≤ θ−1 for all x ∈ R, f(x) = 0 for x 6∈ [c, d+ θ]. We let yi, for i = 1, . . . , N , denote
the quantiles of µ, defined as the smallest real numbers such that∫ yi

−∞
f(x)dx =

i− 1/2

N
.

Since f(x) = 0 for x 6∈ [c, d+ θ], we know that yi ∈ [c, d+ θ] for all i = 1, . . . , N .
We now let `Ni denote the largest element in Z+ (N − i)θ, which is less than or equal

to NyN−i+1. We claim that `N = (`N1 , . . . , `
N
N ) ∈WN

θ (−∞,∞), or equivalently we want

λN1 ≥ · · · ≥ λNN , where λNi = `Ni − (N − i)θ.

Suppose, for the sake of contradiction, that λNi − λNi−1 ≥ 1 for some i ∈ {2, . . . , N}. Then,

`Ni−1+1 = λNi−1+1+(N−i+1)θ ≤ `Ni +θ ≤ NyN−i+1+θ = NyN−i+2+N(yN−i+1−yN−i+2)+θ.

On the other hand, as f(x) ∈ [0, θ−1], we have

1

N
=

∫ yN−i+2

yN−i+1

f(x)dx ≤ θ−1(yN−i+2 − yN−i+1) =⇒ N(yN−i+1 − yN−i+2) ≤ −θ.

Combining the last two inequalities we get `Ni−1 + 1 ≤ NyN−i+2, which contradicts
the maximality of `Ni−1. As we got our desired contradiction, we conclude that `N ∈
WN

θ (−∞,∞).
In the remainder of this step, we prove that `N satisfy the three conditions of the

claim. We readily observe that µN weakly converge to µ (say by the Portmanteau
theorem), which establishes the first statement. In addition, by construction we have

Nc− 1 ≤ Ny1 − 1 ≤ `NN and `N1 ≤ NyN ≤ N(d+ θ),

which readily establishes third statement in the claim. In addition, since limN→∞ aN/N =

a ≤ c− ε and limN→∞ bN/N = b ≥ d+ ε, we see that the last inequality implies aN ≤ `NN
and `N1 ≤ bN + (N − 1)θ for all large N , proving the second statement in the claim.

3.2 Weak LDP upper bound for {T∗µN}N≥1

In this section we prove Lemma 3.1. Our proof is split into three parts – these are
Sections 3.2.1, 3.2.2 and 3.2.3. In Sections 3.2.1 and 3.2.2 we prove that for each
µ ∈M(S) we have

lim sup
δ→0+

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µN ∈ B(µ, δ))

)
≤ −θ · EV(µ), (3.11)

under Assumption 2(a) and 2(b), respectively. In Section 3.2.3 we prove (3.2).
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3.2.1 Proof under Assumption 2(a)

In this section we prove (3.11) when Assumption 2(a) holds. The proof we present here
is adapted from [Har12, Proposition 2.3] and for clarity is split into two steps.

Step 1. In this step, we introduce some relevant notation and establish a few
technical estimates, which will be used in the next step.

If T is as in Section 2.2, one directly verifies that

‖T (x)− T (y)‖2 =
|x− y|

√
1 + x2 ·

√
1 + y2

for x, y ∈ R. (3.12)

From (1.9) with N = 1, we know that there exists θ′ > 1/2 such that

lim inf
|x|→∞

θV (x)− θ′ log(1 + x2) > −∞.

The latter and the continuity of V implies that there is a constant A1 ≥ 0 such that

−θ′ log(1 + x2) +A1 ≥ −θV (x) for all x ∈ R.

The latter inequality implies that for N ≥ 2

∑
`∈Wθ

N (aN ,bN )

e−θV (`i/N) ≤
N∏
i=1

(∑
x∈Z

exp

(
−θV

(
x+ (N − i)θ

N

)))

≤ eA1N ·
N∏
i=1

(∑
x∈Z

1

(1 + (x/N + 1− iθ/N)2)
θ′

)
≤ exp (A2N logN) ,

(3.13)

where A2 > 0 depends on θ and θ′ alone. We mention that the existence of A2 uses that
θ′ > 1/2 (as observed above), and the fact that each of the above series can be bounded
by a constant multiple of N (say by comparing it with the integral

∫
R

(1 + y2/N2)−θ
′
dy).

If V is as in (2.6) and FV as in (2.7), we know that FV is lower bounded and lower
semi-continuous on S × S. This ensures the existence of continuous functions {FMV }M≥1

such that FMV increase pointwise to FV . By replacing FMV with min(M,FMV ) we may also
assume that FMV ≤M .

With the above notation we can proceed with the main argument in the next step.

Step 2. Combining (3.10) with (3.12), and setting ~zi = T (`i/N) for i = 1, . . . , N , we
conclude that

Z ′NP
θ
N (T∗µN ∈ B(µ, δ)) ≤ eCθN logN+θεNN

2 ∑
`∈Wθ

N (aN ,bN ):
T∗µN∈B(µ,δ)

∏
1≤i<j≤N

‖~zi − ~zj‖2θ2

×
N∏
i=1

e−θ(N−1)(V (`i/N)−log(1+(`i/N)2))−θV (`i/N),

where Cθ is a positive constant that depends on θ alone, and εN are as in Assumption
2(a). If {FMV }M≥1 are as in Step 1, then we see that the last inequality implies for N ≥ 2
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and M ∈ N

Z ′NP
θ
N (T∗µ

N ∈ B(µ, δ))

≤ eCθN logN+θεNN
2 ∑
`∈Wθ

N (aN ,bN ):
T∗µN∈B(µ,δ)

exp

−θ ∑
1≤i 6=j≤N

FV(~zi, ~zj)

 N∏
i=1

e−θV (`i/N)

≤ eCθN logN+θεNN
2 ∑

`∈Wθ
N (aN ,bN ):

T∗µN∈B(µ,δ)

exp

(
−θN2

∫∫
~x6=~y

FMV (~x, ~y)T∗µN (d~x)T∗µN (d~y)

) N∏
i=1

e−θV (`i/N),

(3.14)

Moreover, we have PθN -almost surely

T∗µN ⊗ T∗µN ({(~x, ~y) ∈ S × S : ~x = ~y}) =
1

N
,

which implies that on the event {T∗µN ∈ B(µ, δ)} we have∫∫
~x6=~y
FMV (~x, ~y)T∗µN (d~x)T∗µN (d~y) ≥

∫∫
S2

FMV (~x, ~y)T∗µN (d~x)T∗µN (d~y)− 1

N
max
S×S

FMV

≥ inf
ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y)− M

N
,

(3.15)

where in the last inequality we used that FMV ≤M .
Combining the last inequality with (3.13) and (3.14) we conclude that for some BM ,

depending on θ, V and M , and N ≥ 2

N−2 log
(
Z ′NP

θ
N (T∗µ

N ∈ B(µ, δ))
)

≤ −θ inf
ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y) +BM ·N−1 logN + θεN ,

which implies that

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µ

N ∈ B(µ, δ))
)
≤ −θ inf

ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y).

The last inequality and the continuity of FMV on S × S implies

lim sup
δ→0+

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µ

N ∈ B(µ, δ))
)
≤ −θ

∫∫
S2

FMV (~x, ~y)µ(d~x)µ(d~y).

Letting M → ∞ in the last inequality and using that, by the monotone convergence
theorem, the right side converges to −θEV(µ) we conclude (3.11).

3.2.2 Proof under Assumption 2(b)

In this section we prove (3.11) when Assumption 2(b) holds. In particular, we have that
VN converge uniformly over compact subsets to V , and satisfy the growth condition (1.5).
Notice that by the continuity of VN and the uniform convergence to V over compacts,
we may shift VN and V by the same positive constant (which of course does not affect
PθN ), so that

VN (x) ≥ (1 + ξ) log(1 + x2) for all x ∈ R and N ≥ 1. (3.16)

The proof we present here is adapted from [Fér08, Joh00] and is split into two steps.
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Step 1. In this step we introduce some relevant notation and establish a few technical
estimates, which will be used in the next step.

Using that |x− y|2 ≤ (1 + x2)(1 + y2) and (3.16) we have that

− kVN (x, y) = log |x− y| − 1

2
VN (x)− 1

2
VN (y) ≤ −ξ

2
log(1 + x2)− ξ

2
log(1 + y2), (3.17)

where we recall that kV was introduced in (1.4). In addition, we have that there exists a
constant A1 > 0, depending on θ alone, such that for all N ≥ 2 and α ≥ 1

∑
`∈Wθ

N (aN ,bN )

N∏
i=1

exp
(
−α log(1 + (`i/N)2)

)

≤
N∏
i=1

(∑
x∈N

exp

(
−α log

(
1 +

[x+ (N − i)θ]2

N2

)))
≤ exp(A1N logN).

(3.18)

Let VN be as in (2.6) and FVN as in (2.7) with V replaced with VN . For M ∈ N set

FMVN (~x, ~y) = min
(
log ‖~x− ~y‖−1

2 ,M/2
)
+

1

2
min (VN (~x),M/2)+

1

2
min (VN (~y),M/2) , (3.19)

and note that from (3.16) and (2.6) there is an M dependent neighborhood UM around
the point (np, np) ∈ S × S such that FMVN (~x, ~y) = M for ~x, ~y ∈ UM . In particular, we
conclude that FMVN are continuous on S × S. In addition, from the uniform convergence
of VN to V over compact sets, we conclude that the sequence

aMN := sup
~x,~y∈S

∣∣FMVN (~x, ~y)− FMV (~x, ~y)
∣∣ satisfies lim

N→∞
aMN = 0. (3.20)

With the above notation we can proceed with the main argument in the next step.

Step 2. Let us fix ρ ∈ (0, 1). Combining (3.10), (3.12), (3.16) and (3.17), and setting
~zi = T (`i/N) for i = 1, . . . , N , we conclude that for M,N ≥ 1 we have

Z ′NP
θ
N (T∗µN ∈ B(µ, δ)) ≤ eCθN logN

∑
`∈Wθ

N (aN ,bN ):
T∗µN∈B(µ,δ)

exp

−θ(1− ρ)
∑

1≤i6=j≤N

FVN (~zi, ~zj)



× exp

−θρ ∑
1≤i 6=j≤N

kVN (`i/N, `j/N)− θ
N∑
i=1

VN (`i/N)

 ≤ eCθN logN
∑

`∈Wθ
N (aN ,bN ):

T∗µN∈B(µ,δ)

exp

(
−θ(1− ρ)N2

∫∫
~x6=~y

FMVN (~x, ~y)T∗µN (d~x)T∗µN (d~y)−θρξ(N − 1)

N∑
i=1

log(1 + (`i/N)2)

)
,

where FMVN (~x, ~y) are as in Step 2, and Cθ is a positive constant that depends on θ alone.
Arguing as in (3.15) we have∫∫

~x6=~y
FMVN (~x, ~y)T∗µN (d~x)T∗µN (d~y) ≥ inf

ν∈B(µ,δ)

∫∫
S2

FMVN (~x, ~y)ν(d~x)ν(d~y)− M

N

≥ inf
ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y)− aMN −
M

N
,

where FMVN were defined in Step 1, and satisfy FMVN ≤M , while aMN are as in (3.20).
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Combining the last two inequalities with (3.18) we conclude that for N large enough
so that θρξ(N − 1) ≥ 1, and N ≥ 2, and M ≥ 1 we have

Z ′NP
θ
N (T∗µN ∈ B(µ, δ)) ≤ exp

(
−θ(1− ρ)N2 inf

ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y)

)
× exp

(
CθN logN + θ(1− ρ)N2aMN +MN +A1N logN

)
.

Using that limN→∞ aMN = 0, see (3.20), we conclude that

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µ

N ∈ B(µ, δ))
)
≤ −θ(1− ρ) inf

ν∈B(µ,δ)

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y).

The last inequality and the continuity of FMV on S × S implies

lim sup
δ→0+

lim sup
N→∞

1

N2
log
(
Z ′NP

θ
N (T∗µ

N ∈ B(µ, δ))
)
≤ −θ(1− ρ)

∫∫
S2

FMV (~x, ~y)µ(d~x)µ(d~y).

We may now let M →∞ above, and note that the right side converges to −θ(1− ρ)EV(µ)

by the monotone convergence theorem, and subsequently take ρ→ 0+ to get (3.11).

3.2.3 Proof of Lemma 3.1

In this section we conclude the proof of Lemma 3.1. We split the proof into two steps.

Step 1. If µ ∈ T∗(Mθ(∆)), then we have that (3.2) follows from (3.11), which was
established in Sections 3.2.1 and 3.2.2 above. We may thus assume that µ ∈M(S) and
µ 6∈ T∗(Mθ(∆)).

If µ({np}) > 0, then we have that EV(µ) =∞, because of the term log ‖~x− ~y‖−1
2 in FV ,

see (2.7). In particular, we see that in this case (3.2) again follows from (3.11), and we
may assume that µ({np}) = 0.

From Lemma 2.3 we know that T∗ is a homeomorphism between M(R) and {ν ∈
M(S) : ν({np}) = 0}, and so there is a unique measure ρ ∈ M(R) such that T∗ρ = µ.
Since µ 6∈ T∗(Mθ(∆)) we know that ρ 6∈ Mθ(∆).

We claim that there exist ε0 > 0 and N0 ∈ N, such that for N ≥ N0 we have

PθN (d1(ρ, µN ) < ε0) = 0, (3.21)

where dn is the Lévy metric onM(Rn) as in (1.12). We will prove (3.21) in Step 2 below.
For now, we assume its validity and conclude the proof of (3.2).

Since T∗ is a homeomorphism between M(R) and {ν ∈ M(S) : ν({np}) = 0}, we
conclude that there exists δ0 > 0 such that

B(µ, δ0) ∩ {ν ∈M(S) : ν({np}) = 0} ⊆ T∗{ρ′ ∈M(R) : d1(ρ, ρ′) < ε0}.

The latter implies that for δ ∈ (0, δ0] and N ≥ N0

PθN (T∗µN ∈ B(µ, δ)) = PθN (T∗µN ∈ B(µ, δ)∩{ν ∈M(S) :ν({np}) = 0})
≤ PθN (d1(ρ, µN ) < ε0) = 0,

which implies (3.2).

Step 2. In this step we prove (3.21). Observe that Mθ(∆) = M(∆) ∩Mθ(R) and
bothM(∆) andMθ(R) are closed subsets ofM(R). Since ρ 6∈ Mθ(∆) we conclude that
there exists ε ∈ (0, 1), such that at least one of the following holds:

1. d1(ρ, ρ′) > 2ε for all ρ′ ∈Mθ(R),
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2. d1(ρ, ρ′) > 2ε for all ρ′ ∈M(∆).

Suppose first that d1(ρ, ρ′) > 2ε for all ρ′ ∈Mθ(R). We take N0 = dθε−1e and proceed
to prove (3.21) with this choice of N0 and ε0 = ε. From (1.11) we know that µN =
1
N

∑N
i=1 δ`i/N , and we let

µ̃N (x) =

N∑
i=1

θ−1 · 1{x ∈ [`i/N, `i/N + θ/N)}.

Notice that µ̃N is a probability density function on R, and using the same letter to
denote the corresponding measure we have µ̃N ∈Mθ(R). Here we implicitly used that
`i − `j ≥ θ(j − i) for 1 ≤ i < j ≤ N . Furthermore, we have from (1.12) that

d1(µN , µ̃N ) ≤ θN−1,

which implies that for N ≥ N0 we have

PθN (d1(ρ, µN ) < ε) ≤ PθN
(
d1(ρ, µ̃N ) < ε+ θN−1

)
≤ PθN (d1(ρ, µ̃N ) < 2ε) = 0,

where the last equality used that µ̃N ∈ Mθ(R) so that d1(ρ, µ̃N ) > 2ε. This establishes
(3.21) when d1(ρ, ρ′) > 2ε for all ρ′ ∈Mθ(R).

Finally, we suppose that d1(ρ, ρ′) > 2ε for all ρ′ ∈M(∆). In particular, ∆ 6= R and so
we have that either ∆ = [a,∞), ∆ = (−∞, b+ θ] or ∆ = [a, b+ θ] for some finite a, b with
a ≤ b. As the three cases are handled quite similarly, we will only consider the case when
∆ = [a, b+ θ].

From Assumption 1, we know that limN→∞N−1aN = a and limN→∞N−1bN = b.
The latter implies that there is N0 ∈ N such that for N ≥ N0 and A1 = bεN/4c, B1 =

b(1− ε/4)Nc we have

1 ≤ A1 ≤ B1 ≤ N,
bN + (N −A1)θ

N
≤ b+ θ,

aN + (N −B1)θ

N
≥ a, A1 +N −B1

N
< ε.

(3.22)

Below we proceed to prove (3.21) for this choice of N0 and ε0 = ε.
Throughout we assume that N ≥ N0. For ` ∈Wθ

N (aN , bN ) we define

A =

{
min{i ∈ {1, . . . , N} : `i ≤ Nb+Nθ} if `N ≤ Nb+Nθ,

0 if `N > Nb+Nθ,
and

B =

{
max{i ∈ {1, . . . , N} : `i ≥ Na} if `1 ≥ Na
0 if `1 < Na

.

Observe that from (3.22) we have 1 ≤ A ≤ A1 ≤ B1 ≤ B ≤ N for all ` ∈Wθ
N (aN , bN ).

If µN = 1
N

∑N
i=1 δ`i/N we define

µ̃N =
(A− 1) + (N −B)

N
δ`A/N +

1

N

B∑
i=A

δ`i/N .

Note that µ̃N ∈M(∆) and also

d1(µN , µ̃N ) ≤ sup
F⊆R
|µN (F )− µ̃N (F )| = (A− 1) + (N −B)

N
≤ A1 +N −B1

N
< ε,

where the supremum is over closed subsets F of R, and in the last inequality we used
(3.22). The last inequality implies that for N ≥ N0 we have

PθN (d1(ρ, µN ) < ε) ≤ PθN (d1(ρ, µ̃N ) < 2ε) = 0,

where the last equality used that µ̃N ∈M(∆) so that d1(ρ, µ̃N ) > 2ε. This shows (3.21).
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3.3 Proof of technical lemmas

In this section we present the proofs of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. We first observe that∫∫
R2

1{x 6= y}kVN (x, y)µN (dx)µN (dy) =

∫∫
[−A,A]2

1{x 6= y} log |x− y|−1µN (dx)µN (dy)

+
N − 1

N

∫
[−A,A]

VN (x)µN (dx).

Since VN converge to V uniformly on [−A,A] and µN converge weakly to µ∞, we see
that to prove (3.3) it suffices to show that

lim
N→∞

∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy) =

∫∫
[−A,A]2

log |x− y|µ∞(dx)µ∞(dy). (3.23)

For M ∈ N we let fM (x, y) = max(log |x− y|,−M) and then note that∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy) ≤
∫∫

[−A,A]2
fM (x, y)µN (dx)µN (dy) +

M

N
,

which implies from the weak convergence of µN to µ∞ and the continuity of fM that

lim sup
N→∞

∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy) ≤
∫∫

[−A,A]2
fM (x, y)µ∞(dx)µ∞(dy).

Letting M →∞ in the last equation and using the dominated convergence theorem, with
dominating function θ−21{(x, y) ∈ [−A,A]2} · | log |x− y||, we obtain

lim sup
N→∞

∫∫
[−A,A]2

1{x 6= y} log |x−y|µN (dx)µN (dy) ≤
∫∫

[−A,A]2
log |x−y|µ∞(dx)µ∞(dy). (3.24)

We mention that in deriving (3.24) we used that µ∞ ∈Mθ([−A,A]).
In view of (3.24), we see that to show (3.23) it suffices to prove

lim inf
N→∞

∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy) ≥
∫∫

[−A,A]2
log |x− y|µ∞(dx)µ∞(dy). (3.25)

Let ε > 0 be given, and for M ∈ N let gM (x, y) be a smooth function on [−A,A]2 with

1 ≥ gM (x, y) ≥ 0, gM (x, y) = 1 for |x−y| ≥M−1, and gM (x, y) = 0 for |x−y| ≤ (2M)−1.

We note that for each M,N ≥ 1∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy) ≥
∫∫

[−A,A]2
gM (x, y) log |x− y|µN (dx)µN (dy)

+N−2
N∑
i=1

N∑
j=1,j 6=i

1{|`Ni /N − `Nj /N | ≤M−1} log |`Ni /N − `Nj /N |

(3.26)

If we set KM,N = bNθ−1M−1c, we note that N/M ≥ KM,Nθ, (KM,N + 1)θ > N/M . The
latter inequalities, and |`Ni − `Nj | ≥ |i− j|θ for 1 ≤ i 6= j ≤ N , imply

N∑
i=1

N∑
j=1,j 6=i

1{|`Ni /N − `Nj /N | ≤M−1} log |`Ni /N − `Nj /N | ≥ 2N ·
KM,N∑
i=1

log
iθ

N

= 2NKM,N log θ + 2N log (KM,N !)− 2NKM,N logN.

(3.27)
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From [Rob55, Equation (1)] we have

n! =
√

2πnn+1/2e−n · ern , where
1

12n+ 1
< rn <

1

12n
for all n ∈ N, (3.28)

and so if N is sufficiently large, depending on M, θ, we have

2N log (KM,N !) ≥ 2NKM,N logKM,N − 2NKM,N +O(N logN)

= 2NKM,N logN +
2N2

θM
log

(
1

θM

)
− 2NKM,N +O(N logN),

(3.29)

where the constants in the big O notations depend on M, θ and are possibly different. In
deriving the equality in (3.29) we used that KM,N = Nθ−1M−1 +O(1).

Combining (3.26), (3.27) and (3.29), we conclude that for each M ∈ N

lim inf
N→∞

∫∫
[−A,A]2

1{x 6= y} log |x− y|µN (dx)µN (dy)

≥ lim inf
N→∞

∫∫
[−A,A]2

gM (x, y) log |x− y|µN (dx)µN (dy) +
2

θM
log

(
1

θM

)
+

2[log θ − 1]

θM

=

∫∫
[−A,A]2

gM (x, y) log |x− y|µ∞(dx)µ∞(dy) +
2

θM
log

(
1

θM

)
+

2[log θ − 1]

θM
,

where in the last equality we used the weak convergence of µN to µ∞ and the continuity
of gM (x, y) · log |x− y|. Taking M →∞ in the last line we get (3.25) once we utilize the
dominated convergence theorem with dominating function θ−2 · | log |x− y|| · 1{(x, y) ∈
[−A,A]2}.

Proof of Lemma 3.3. We split the proof into two steps. In the first step, we introduce
some useful notation for our argument, and construct the measures µn. In the second
step, we show that the µn constructed in Step 1 satisfy the conditions of the lemma.

Step 1. Observe that our assumption that b > a implies that there are c, d ∈ R, c ≤ d
and ε1 ∈ (0, 1) such that a ≤ c− ε1, b ≥ d+ ε1. We let f(x) be the density of µ, and since
µ ∈Mθ(∆) we may assume that θ−1 ≥ f(x) ≥ 0 for all x ∈ R.

For ε > 0, we let Aε = {x ∈ [c − ε1, d + θ + ε1] : f(x) > θ−1 − ε} and Acε = {x ∈
[c− ε1, d+ θ+ ε1] : f(x) ≤ θ−1 − ε}. If λ denotes the Lebesgue measure on R, we see that
for all ε ∈ (0, θ−1) we have

(θ−1 − ε)λ(Aε) ≤ µ(Aε) ≤ 1,

which implies that there exists ε2 ∈ (0, θ−1) sufficiently small so that λ(Acε2) ≥ ε1. We put
ε = min(ε1, ε2) and note that λ(Acε) ≥ ε.

Let {an}n∈N, {an}n∈N be such that:

1. an+1 < an and bn+1 > bn for all n ∈ N, a1 ≤ c, b1 ≥ d,

2. limn→∞ an = a, limn→∞ bn = b.

We let ρn = 1 − µ([an, bn]) and observe that since µ ∈ Mθ(∆) (and thus has no atoms),
we have limn→∞ ρn = 0. The latter implies that there exists N0 ∈ N such that for n ≥ N0

we have ρn ≤ ε2.
Let us define the functions gn through

gn(x) =

{
f(x) · 1{x ∈ [an, bn]}+ ρn

λ(Acε)
· 1{x ∈ Acε} if n ≥ N0,

θ−1 · 1{x ∈ [c, c+ θ]} if n < N0.
(3.30)
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It is clear from the definition of ρn that gn(x) are probability density functions on R, and
we let µn be the corresponding measures.

Step 2. We proceed to prove that µn satisfy the conditions of the lemma.
We first check that µn ∈ Mθ(R). The latter is clear if n < N0, so we assume that

n ≥ N0. From (3.30), we see that

gn(x) ≤ f(x) ≤ θ−1 if x 6∈ Acε, and gn(x) ≤ (θ−1 − ε) +
ρn

λ(Acε)
≤ θ−1,

where we used that ρn ≤ ε2 and λ(Acε) ≥ ε. Thus µn ∈Mθ(R).
By construction, we know that µn are supported on [an, bn], and µn weakly converge

to µ (say by the Portmanteau theorem). Thus we only need to show that

lim sup
n→∞

EV (µn) ≤ EV (µ) and lim inf
n→∞

EV (µn) ≥ EV (µ),

which in view of (2.9) is equivalent to

lim sup
n→∞

EV(νn) ≤ EV(ν) and lim inf
n→∞

EV(νn) ≥ EV(ν), (3.31)

where νn = T∗µn, ν = T∗µ as in (2.5). In the remainder we focus on proving (3.31).
As FV(~x, ~y) as in (2.7) is lower semi-continuous on S × S, we know that there exists

an increasing sequence of continuous functions FMV (~x, ~y) that converge pointwise to
FV(~x, ~y) as M →∞. The latter shows that

lim inf
n→∞

EV(νn) ≥ lim inf
n→∞

∫∫
S2

FMV (~x, ~y)νn(d~x)νn(d~y) =

∫∫
S2

FMV (~x, ~y)ν(d~x)ν(d~y),

where we used the continuity of FMV and the fact that νn converge weakly to ν (this
follows from the weak convergence of µn to µ and Lemma 2.3). By the monotone
convergence theorem, the right side above converges to EV(ν) as M →∞, which proves
the second inequality of (3.31).

Let us write µ1
n to be the probability measure with density (1 − ρn)−1f(x) · 1{x ∈

[an, bn]} and µ2 the one with density [λ(Acε)]
−1 · 1{x ∈ Acε} for n ≥ N0. We also let

ν1
n = T∗µn,1 and ν2 = T∗µ

2. Then, we have for n ≥ N0

µn = (1− ρn) · µ1
n + ρn · µ2 and νn = (1− ρn) · ν1

n + ρn · ν2.

Using the convexity of EV onM(S), see Proposition 2.4, we know that

EV(νn) ≤ (1− ρn) · EV(ν1
n) + ρn · EV(ν2).

Notice that∣∣EV(ν2)
∣∣ =

∣∣EV (µ2)
∣∣ ≤ ε−2 ·

∫∫
[c−ε1,d+θ+ε1]2

| log |x− y||dxdy + sup
x∈[c−ε1,d+θ+ε1]

|V (x)| <∞,

which implies that limn→∞ ρn · EV(ν2) = 0 as limn→∞ ρn = 0.
Combining the last few statements, we see that to prove the first inequality in (3.31)

it suffices to show that

lim
n→∞

(1− ρn) · EV(ν1
n) = EV(ν) ⇐⇒ lim

n→∞
(1− ρn)2 · EV(ν1

n) = EV(ν) ⇐⇒

lim
n→∞

∫∫
S2

1{~x, ~y ∈ T ([an, bn])} · FV(~x, ~y)ν(d~x)ν(d~y) =

∫∫
S2

FV(~x, ~y)ν(d~x)ν(d~y).
(3.32)

Notice that T ([an, bn]) form an increasing sequence of sets and since ν(T ([an, bn])) =

1− ρn, we have ν (∪n≥1T ([an, bn])) = 1. The latter and the lower boundedness of FV(~x, ~y)

on S × S obtain the second line in (3.32) from the monotone convergence theorem.
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4 Applications

In this section, we give two brief applications of Theorem 1.3. In Section 4.1, we
consider certain measures related to Jack symmetric functions, and in Section 4.2, we
consider discrete analogues of the Cauchy ensembles from [Har12, Example 1.3]. We
continue with the notation from Section 1.2.

4.1 Jack measures

Fix θ, t ∈ (0,∞), N ∈ N. Let PJack
N be the measure on Wθ

N (0,∞), given by

PJack
N (`1, . . . , `N ) =

1

ZN
·

∏
1≤i<j≤N

Qθ(`i − `j)
N∏
i=1

e−θNVN (`i/N), (4.1)

where Qθ is as in (1.7),

VN (x) =
1

θN
log

Γ(Nx+ 1)

(tθN)Nx
, and ZN = Γ(θ)−NetθN

2

(tθN)
N(N−1)

2 ·
N∏
i=1

Γ(iθ). (4.2)

The measure PJack
N arises as a special case of the Jack measures, which are probability

measures on partitions related to Jack symmetric functions, and in turn are special
cases of the Macdonald measures from [BC14]. We refer the interested reader to [DD21,
Section 6.3], where the relationship to Jack symmetric functions is explained in detail
and it is shown that PJack

N is a well-defined probability measure on Wθ
N (0,∞). We also

mention here that the measure PJack
N was previously studied in [GS15], where it arises

as the time tN distribution of a certain Markov process on partitions, which is a discrete
version of β-Dyson Brownian motion (here β = 2θ).

We have the following result about the measures PJack
N .

Corollary 4.1. Fix θ, t ∈ (0,∞), N ∈ N and let PJack
N be as in (4.1). Let µN =

N−1
∑N
i=1 δ`i/N be the empirical measures of (`1, . . . , `N ), distributed according to PJack

N .
Then, the sequence of measures inM(R), given by the laws of µN , satisfies an LDP with
speed N2 and good rate function

IJack
V (µ) :=

{
θ(EV (µ)− EV (µJack

eq )) for µ ∈Mθ([0,∞))

∞ for µ ∈M(R) \Mθ([0,∞))
(4.3)

where EV is as in (1.4) and V (x) = θ−1 (x log x− log(etθ)x). Here µJack
eq is a probability

measure on [0,∞) with density φJack, which for t ≥ 1 is equal to

φJack(x) =

(θπ)−1 arccot

(
x+ θ(t− 1)√

4θtx− [x+ θ(t− 1)]2

)
for x ∈ (θ(

√
t− 1)2, θ(

√
t+ 1)2),

0 otherwise.

and for t ∈ (0, 1) is given by

φJack(x) =


(θπ)−1 arccot

(
x+ θ(t− 1)√

4θtx− [x+ θ(t− 1)]2

)
for x ∈ (θ(

√
t− 1)2, θ(

√
t+ 1)2),

θ−1 for 0 ≤ x < θ(
√
t− 1)2,

0 for x > θ(
√
t+ 1)2.

Proof. We first observe that PJack
N is of the form (1.7) with aN = 0 and bN =∞ for each

N ∈ N so that Assumption 1 from Section 1.2 is satisfied with ∆ = [0,∞).
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As explained in [DD21, Section 6.3], the functions VN are continuous on [0,∞) and
there exists a constant A > 0, depending on θ, t, such that for all N ≥ 1 and x ≥ 0

A+ VN (x) ≥ 2 log(1 + x2).

In addition, in [DD21, Section 6.3] it is shown that for each n ∈ N there is a constant
An > 0 (depending on n, θ and t) such that for all N ≥ 1

sup
x∈[0,n]

|VN (x)− V (x)| ≤ AnN−1 log(N + 1).

The latter observations show that VN and V satisfy the conditions in Assumption 2(b)
(here we extend V and VN to R by setting V (−x) = V (x) and VN (−x) = VN (x) for x ≥ 0).
We conclude from Theorem 1.3 that the sequence of measures inM(R), given by the
laws of µN , satisfies an LDP with speed N2 and good rate function IθV as in that theorem.

What remains is to show that IθV = IJack
V as in (4.3). From [DD21, Lemma 6.11]

we have that µJack
eq is the unique minimizer of EV on Mθ([0,∞)), which in view of

Theorem 1.1 shows that IθV = IJack
V .

4.2 Discrete Cauchy ensembles

Fix θ ∈ (1/2,∞), N ∈ N. Let PCauchy
N be the measure on Wθ

N (−∞,∞), given by

P
Cauchy
N (`1, . . . , `N ) =

1

ZN
·

∏
1≤i<j≤N

Qθ(`i − `j)
N∏
i=1

e−θNV (`i/N), (4.4)

where Qθ is as in (1.7), V (x) = log(1 + x2) and ZN is a normalization constant. We
mention that ZN is finite and PCauchy

N a well-defined probability measure on Wθ
N (−∞,∞)

from Lemma 2.2. Here it is important that θ > 1/2 and if θ ∈ (0, 1/2] then (4.4) is not a
well-defined probability measure since for W (`) =

∏
1≤i<j≤N Qθ(`i−`j)

∏N
i=1 e

−θNV (`i/N)

we have

∑
`∈Wθ

N (−∞,∞)

W (`) ≥
∑

`∈Wθ
N (−∞,∞):

`i=(N−i)θ for i=2,...,N

W (`) = C1

∞∑
n=0

N∏
j=2

Qθ(n+ (j − 1)θ)

× e−θN log(1+[n+(N−1)θ]2/N2) ≥ C2

∞∑
n=0

e
∑N
j=2 2θ log(n+(j−1)θ)−θN log(1+[n+(N−1)θ]2/N2) =∞.

In the last set of inequalities we have that C1, C2 are positive constants, depending on
θ and N . The first inequality on the second line follows from Lemma 2.1 and the last
equality follows from the fact that if cn is the n-th summand we have cn ∼ n−2θ as n→∞
and θ ∈ (0, 1/2].

When θ = 1 we recall that `i ∈ Z for all i ∈ {1, . . . , N} and Qθ(x) = x2, in which case
we observe that PCauchy

N from (4.4) is a discrete analogue of the Cauchy ensemble from
[Har12, Example 1.3].

We have the following result about the measures PCauchy
N .

Corollary 4.2. Fix θ ∈ (1/2, π], N ∈ N and let PCauchy
N be as in (4.4). Let µN =

N−1
∑N
i=1 δ`i/N be the empirical measures of (`1, . . . , `N ), distributed according to

P
Cauchy
N . Then, the sequence of measures in M(R), given by the laws of µN , satis-

fies an LDP with speed N2 and good rate function

IJack
V (µ) :=

{
θ(EV (µ)− EV (µCauchy

eq )) for µ ∈Mθ(R)

∞ for µ ∈M(R) \Mθ(R)
(4.5)
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where EV is as in (1.4). Here µCauchy
eq is the Cauchy distribution on R with density

φCauchy(x) =
1

π(1 + x2)
.

Remark 4.3. Let us explain the restriction of the parameter θ in Corollary 4.2. As
we explained in the beginning of the section, we require that θ > 1/2 so that PCauchy

N

is well-defined. The requirement that θ ≤ π is imposed so that the minimizer of EV
is precisely the Cauchy distribution. In general, Theorem 1.3 is applicable to PCauchy

N

for any θ > 1/2 and implies that the laws of µN , satisfies an LDP with speed N2 and
good rate function IθV as in Theorem 1.1. If µθeq is as in Theorem 1.1 for ∆ = R and
V = log(1 + x2) we will see in the proof of Corollary 4.2 that µθeq = µCauchy

eq , provided that
θ ∈ (0, π]. If θ > π then µCauchy

eq 6∈ Mθ(R) and so we necessarily have µθeq 6= µCauchy
eq .

It would be interesting to also find a formula for µθeq when θ > π, and one possible way
to approach this question is to first guess a formula µθeq using ideas that are similar to
those in [DS97, Section 4], [Fér08, Section 5] and [Joh00, Section 6]. Once a formula for
µθeq is obtained, one can use the variational characterization of the equilibrium measure,
see part (4) of Theorem 1.1, to verify that it is indeed the correct one.

We will not pursue the formula for µθeq when θ > π and refer the interested reader
to [DS97, Section 4], [Fér08, Section 5], [Joh00, Section 6] and more recently [DD21,
Section 6], for related contexts where the above approach has been carried out.

Proof. We first observe that PCauchy
N is of the form (1.7) with aN = −∞ and bN = ∞

for each N ∈ N so that Assumption 1 from Section 1.2 is satisfied with ∆ = R. It is
also clear that V (x) satisfies the conditions of Assumption 2(a) with θ′N = θ in (1.9). We
conclude from Theorem 1.3 that the sequence of measures inM(R), given by the laws
of µN , satisfies an LDP with speed N2 and good rate function IθV as in that theorem. This
is true for any θ > 1/2.

What remains is to show that IθV = ICauchy
V as in (4.5) when θ ∈ (1/2, π]. In [Har12,

Example 1.3 and Remark 2.2] it was shown using an elegant symmetry argument that
µCauchy
eq is the unique minimizer of EV over M(R) and since µCauchy

eq ∈ Mθ(R) when
θ ∈ (0, π] we conclude that µθeq = µCauchy

eq from part (2) of Theorem 1.1. This proves that

IθV = ICauchy
V when θ ∈ (1/2, π].

Remark 4.4. In the last part of the above proof, one can also deduce that µθeq = µCauchy
eq

when θ ∈ (1/2, π] from part (4) of Theorem 1.1. Indeed, by a direct computation we have∫
R

(
log |x− y|−1 +

log(1 + x2)

2

)
µCauchy
eq (dx) +

log(1 + y2)

2
=

∫
R

log(1 + x2)dx

2π(1 + x2)
∈ (0,∞)

(4.6)
for all y ∈ R. One also has from (4.6) that

EV (µCauchy
eq ) =

∫
R

∫
R

(
log |x− y|−1 +

log(1 + x2)

2
+

log(1 + y2)

2

)
µCauchy
eq (dx)µCauchy

eq (dy)

=

∫
R

∫
R

log(1 + x2)dx

2π(1 + x2)
· dy

π(1 + y2)
=

∫
R

log(1 + x2)dx

2π(1 + x2)
.

The fact that the integral in (4.6) does not depend on y ∈ R, EV (µCauchy
eq ) < ∞, and

µCauchy
eq ∈M(R) together imply µθeq = µCauchy

eq in view of part (4) of Theorem 1.1.
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